diff --git a/.gitattributes b/.gitattributes index a0373e61cd5d8f033d7ec5472a0f708252dc4f36..d436a9c9f51a6ccec39a2e83e37c2e080f590da1 100644 --- a/.gitattributes +++ b/.gitattributes @@ -181,3 +181,6 @@ CtAyT4oBgHgl3EQfR_f1/content/2301.00079v1.pdf filter=lfs diff=lfs merge=lfs -tex mtE3T4oBgHgl3EQf6gu4/content/2301.04791v1.pdf filter=lfs diff=lfs merge=lfs -text JdAyT4oBgHgl3EQffviy/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text tdAzT4oBgHgl3EQf6v4U/content/2301.01878v1.pdf filter=lfs diff=lfs merge=lfs -text +V9AzT4oBgHgl3EQfJ_vP/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +x9FJT4oBgHgl3EQfhSy6/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +XNAyT4oBgHgl3EQf9PpX/content/2301.00870v1.pdf filter=lfs diff=lfs merge=lfs -text diff --git a/29AyT4oBgHgl3EQfb_di/content/tmp_files/2301.00273v1.pdf.txt b/29AyT4oBgHgl3EQfb_di/content/tmp_files/2301.00273v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..db1c6a1d96da18cc8bd350f88abf6a66f988317d --- /dev/null +++ b/29AyT4oBgHgl3EQfb_di/content/tmp_files/2301.00273v1.pdf.txt @@ -0,0 +1,1110 @@ +arXiv:2301.00273v1 [math.PR] 31 Dec 2022 +REAL ZEROS OF MIXED RANDOM FEWNOMIAL SYSTEMS +PETER B¨URGISSER +Abstract. Consider a system f1(x) = 0, . . . , fn(x) = 0 of n random real polynomials in n +variables, where each fi has a prescribed set of exponent vectors described by a set Ai ⊆ Zn +of cardinality ti, whose convex hull is denoted Pi. Assuming that the coefficients of the fi are +independent standard Gaussian, we prove that the expected number of zeros of the random +system in the positive orthant is at most (2π)− n +2 f0 (t1 − 1) . . . (tn − 1). Here f0 denotes the +number of vertices of the Minkowski sum P1 + . . . + Pn. We also derive a better bound in +the unmixed case where all supports Ai are equal, improving upon [8]. All arguments equally +work for real exponent vectors. +1. Introduction +In many applications, we want to understand or find the (positive) real solutions of a system +of multivariate polynomial equations, e.g., see [11, 16, 29]. Bezout’s theorem, which bounds +the number complex zeros in terms of degrees, usually highly overestimates the number of real +zeros. This can be already seen from Descartes’ rule of signs [10, p. 42], which implies that +a real univariate polynomial with t terms has at most t − 1 positive zeros. In 1980, Khovan- +skii [19] obtained a far reaching generalization of Descartes’ rule. He showed that the number +of nondegenerate1 positive solutions of a system f1(x) = 0, . . . , fn(x) = 0 of n real polynomial +equations in n variables is bounded only in terms of n and the number t of distinct exponent +vectors occurring in the system. This result in fact allows for any real exponents. Following +Kushnirenko, one speaks of fewnomial systems, with the idea that the number t of terms is small, +see [20]. +Understanding the complex zeros of fewnomial systems is much simpler: the famous BKK- +Theorem [2, 24] states that for given finite supports A1, . . . , An ⊆ Zn and Laurent polynomials +fi(x) = � +a∈A ci(a)xa1 +1 · · · xan +n +with generic complex coefficients ci(a), the number of complex +solutions in (C×)n of a corresponding system f1(x) = 0, . . . , fn(x) = 0 is given by n! times the +mixed volume of the Newton polytopes P1, . . . , Pn, where Pi is defined as the convex hull of Ai. +Note that the number of real zeros has little to do with the metric properties of Pi: indeed, +replacing Ai by a multiple mAi amounts to substituting xi by xm +i (m > 0). Clearly, this does not +change the number of positive real zeros of a fewnomial system, however Pi has been replaced +by mPi. +The bound on the number of real zeros obtained by Khovanskii is exponential in the number t. +It is widely conjectured that this bound is far from optimal: in fact it is conjectured [27] that for +fixed n, the number of nondegenerate positive solutions of a fewnomial system with t exponent +vectors is bounded by a polynomial in t. Quite surprisingly, this question is open even for n = 2! +Date: January 3, 2023. +2010 Mathematics Subject Classification. 60D05, 14P99. +Key words and phrases. fewnomials, random polynomials, real algebraic geometry, sparsity. +Supported by the ERC under the European Union’s Horizon 2020 research and innovation programme (grant +agreement no. 787840). +1i.e., the Jacobian of the system does not vanish at the zero. +1 + +2 +PETER B¨URGISSER +For results in special cases, we refer to [4, 1, 29, 22, 23, 3]. Moreover, there is a very interesting +connection to complexity theory [21, 5]. +Given this state of affairs of real fewnomial theory, a possible way to advance is to ask +what happens in generic situations. This can be made formal by considering random fewnomial +systems. Fix supports A1, . . . , An ⊆ Zn of cardinality t1, . . . , tn, respectively, and consider a +system of n random polynomials fi(x) as above, but now the coefficients ci(a) are assumed +to be independent standard Gaussian. Let us denote by N(A1, . . . , An) the expectation of the +number of nondegenerate positive real zeros of such system. Actually, we work in more generality, +allowing any subsets Ai of Rn; see Section 4. There is a large literature on the real zeros of +random polynomials: we refer to [8] for references. +In [8] it was proven that N(A, . . . , A) ≤ 21−n�t +n +� +. The main result of the present paper is an +extension of this to the mixed case, where the fewnomials may have have different supports Ai. +Our bound depends on the combinatorial structure of the Minkowski sum P1 + . . .+ Pn through +the number of its vertices. We remark that our proof is quite different from the one in [8], which +was quite indirect. +Theorem 1.1. If Pi denotes the convex hull of the finite nonempty set Ai ⊆ Rn of cardinality ti, +for i = 1, . . . , n, then +N(A1, . . . , An) ≤ (2π)− n +2 f0 (t1 − 1) . . . (tn − 1). +Here f0 denotes the number of vertices of the Minkowski sum P := P1 + . . . + Pn. +The bound in this theorem looks similarly to the one in a conjecture attributed to Kush- +nirenko, which states that the number of positive nondegenerate zeros is always bounded by +(t1 − 1) · · · (tn − 1). However, this was disproved in [15].2 +In the unmixed situation, where all supports are equal to A, it is well known [12] that the +expected number of positive zeros can be expressed by the volume of the image of the Veronese +like map Rn +>0 → P(RA) sending x to [xa]a∈A. This is a consequence of the kinematic formula +for real projective spaces. In the mixed situation, there is no such simple characterization: one +has to work with the more complicated kinematic formula for products of projective spaces +(Theorem 3.2) that we derive from [17, 9]. After passing to exponential coordinates w = log x, +we bound the resulting integral over Rn with a strategy inspired by the theory of toric varieties. +The normal fan of the polytope P affords a decomposition of Rn into the normal cones C at +the vertices of P. The resulting integral over C can be bounded in terms of the characteristic +function of the dual cone of C. Finally, an explicit a priori bound on the characteristic function +(Proposition 2.4) completes the argument. +1.1. The univariate case and a conjecture. The univariate case (n = 1) was settled by +Jindal et al. [18]. They showed that for any subset S ⊆ R of cardinality t, we have +(1.1) +N(S) ≤ 2 +π +√t − 1. +Moreover, they constructed a sequence St ⊆ Z of supports of cardinality t with N(St) ≥ c +√ +t for +some constant c > 0. Consider for t1, . . . , tn ≥ 1 the supports A1 := St1 × 0 . . . × 0, . . . , An := +0 × . . . × 0 × Stn. These supports describe a system of n equations, where the ith equation +depends on xi only. Therefore, N(A1, . . . , An) = N(St1) · · · N(Stn), which with the above leads +to the lower bound +(1.2) +N(A1, . . . , An) ≥ cn√t1 · · · tn. +2This conjecture was never published by Kushnirenko and apparently, he did not believe in it. + +REAL ZEROS OF MIXED RANDOM FEWNOMIAL SYSTEMS +3 +We complement this by showing that for any A = S1 ×. . .×Sn in product form, the expectation +N(A, . . . , A) can be expressed in terms of the N(Si) as follows. +Proposition 1.2. If A = S1 × . . . × Sn for finite Si ⊆ R, then +N(A, . . . , A) = +πn +vol(Pn) N(S1) · · · N(Sn). +We conjecture that the lower bound (1.2) is optimal in the following sense. +Conjecture 1. Let Ai ⊆ Rn be finite nonempty sets of cardinality ti with convex hull Pi, for +i = 1, . . . , n. We denote by f0 the number of vertices of P1 + . . . + Pn. Then +N(A1, . . . , An) ≤ κ(f0)√t1 · · · tn +for some function κ : N → N. In particular, N(A, . . . , A) ≤ κ(f0) t +n +2 for A ⊆ Rn of cardinality t. +In the special case A = S1 × . . . × Sn, by combining (1.1) with Proposition 1.2, we obtain +N(A, . . . , A)vol(Pn) ≤ 2n√ +t, which is much smaller than what Conjecture 1 predicts. +1.2. Improvement in unmixed case. We can improve the dependence on n in the bound of +Theorem 1.1 in the case where all supports are equal. +Theorem 1.3. For A ⊆ Rn of cardinality t ≥ 1 with convex hull P and f0 vertices, we have +N(A, . . . , A) ≤ +1 +vol(Pn) f0 +�t−1 +n +� +. +To compare this with the bound N(A, . . . , A) ≤ 21−n�t +n +� +from [8], note that vol(Pn)−1 = +Γ( n+1 +2 )π− n+1 +2 . Hence, for n → ∞, the new bound goes asymptotically faster to zero than the +old one. However, the bound in [8] also holds for nonstandard centered Gaussian coefficients +ci(a) ∼ N(0, σi(a)2). +1.3. Location of zeros. We finish with a result on the typical location of the zeros. It is well +known that for random real polynomials, the positive reals zeros x tend to accumulate around 1: +see [12] for the dense and [18] for the sparse case. This means that w = log x accumulates +around 0. We generalize this to multivariate systems as follows. +Theorem 1.4. Fix a finite supports A1 . . . , An ⊆ Rn and consider a random system (4.3) with +independent standard Gaussian coefficients ci(a) for the stretched supports mAi, where m ∈ Z>0. +Fix ε > 0. Then the probability that the system has a zero w ∈ Rn with ∥w∥ > ε goes to zero, as +m → ∞. +2. Preliminaries +2.1. A metric property of charts of real projective space. Consider the real projective +space Pm. We shall identify the tangent space T[y]Pm at a point [y] := [y0 : . . . : ym] with Ry⊥. +The standard Riemannian metric on Pm is defined by ⟨v, w⟩[y] := ∥y∥−2⟨v, w⟩ for v, w ∈ Ry⊥. +We denote by Py the orthogonal projection onto Ry⊥. +Consider the affine chart (Pm)y0̸=0 → Rm, which maps [y0 : . . . : ym] to y−1 +0 (y1, . . . , ym). Its +inverse is given by +π: Rm → (Pm)y0̸=0, (y1, . . . , ym) �→ [1 : y1 : . . . : ym]. +By [6, Lemma 14.8], the derivative of π at y′ := (y1, . . . , yn) satisfies Dy′π = ∥π(y′)∥−1Py. From +this we conclude for the spectral norm +(2.1) +∥Dy′π∥ ≤ ∥π(y′)∥−1 ≤ 1. + +4 +PETER B¨URGISSER +2.2. On the quantity σ. The relative position of two subspaces of a Euclidean vector space E +can be quantified by a volume like quantity, which is crucial in the study of integral geometry +in homogeneous spaces; see [17] and [9, §3.3]. To define this quantity, note first that there is an +induced inner product on the exterior algebra Λ(E) given by (see [9, (2.1)]) +⟨v1 ∧ · · · ∧ vk, w1 ∧ · · · ∧ wk⟩ = det(⟨vi, wj⟩)1≤i,j≤k. +More concretely, ∥v1 ∧ . . . ∧ vn∥ = | det[v1, . . . , vn]|, where [v1, . . . , vn] denotes the matrix with +columns vi ∈ E = Rn +Let V, W be linear subspaces of E of complementary dimensions. We define (see [9, (3.3)]) +(2.2) +σ(V, W) := ∥v1 ∧ . . . ∧ vk ∧ w1 ∧ . . . ∧ wm∥ ∈ [0, 1], +where v1, . . . , vk and w1, . . . , wm are orthonormal bases of V and W, respectively. +Clearly, +σ(V, W) = σ(W, V ). The extreme cases are: σ(V, W) = 0 iff V ∩ W ̸= 0 and σ(V, W) = 1 iff v +and W are orthogonal. +Proposition 2.1. We have σ(V ⊥, W ⊥) = | det p |, if p: V ⊥ → W denotes the restriction of the +orthogonal projection E → W to V ⊥. Moreover, σ(V, W) = σ(V ⊥, W ⊥). +Proof. Let ν1, . . . , νm be an orthonormal basis of V ⊥. We decompose νi = ν′ +i + ν′′ +i according +to E = W ⊕ W ⊥. Then p(νi) = ν′ +i and | det p | = ∥ν′ +1 ∧ . . . ∧ ν′ +m∥. If ω1, . . . , ωk denotes an +orthonormal basis of W ⊥, we have +σ(V ⊥, W ⊥) = ∥ν1 ∧ . . . ∧ νm ∧ ω1 ∧ . . . ∧ ωk∥ = ∥ν′ +1 ∧ . . . ∧ ν′ +m ∧ ω1 ∧ . . . ∧ ωk∥ = ∥ν′ +1 ∧ . . . ∧ ν′ +m∥, +the last equality holding since the span of the ν′ +i equals W, which is orthogonal to the span of +the wj, which is W ⊥. This proves σ(V ⊥, W ⊥) = | det p |. +For the second assertion, we use that | det p | = | det q |, where q: W ⊥ → V denotes the +restriction of the orthogonal projection E → V to W ⊥, see [7, Lemma 5.4]. +□ +Clearly, the definition (2.2) can be extended to more than two subspaces; see [9, (3.5)]. But if +W = W1 ⊕. . .⊕Wn is an orthogonal decomposition, we can reduce to the case of two subspaces: +(2.3) +σ(V, W1, . . . , Wn) = σ(V, W1 + . . . + Wn). +This is a consequence of [9, Lemma A.6]. +2.3. Characteristic function of convex cones. We prove here an priori upper bound on the +characteristic function of a convex cone, which is a key ingredient in the proof of Theorem 1.1. +A convex cone C ⊆ Rn is called proper if it is n-dimensional and pointed, i.e., contained in a +halfspace. It is well known that a convex C ⊆ Rn is proper iff its dual cone +C∗ := {x ∈ Rn | ∀y ∈ C ⟨x, y⟩ ≥ 0} +is proper. Let g ∈ GL(n, R). Then K := g(C) is a proper cone and gT (K∗) = C∗. We denote +by int(C) the interior of C. +We assign to a proper cone C ⊆ Rn the function +(2.4) +vC : int(C∗) → R>0, vC(x) := +� +C +e−⟨x,y⟩ dy. +One calls vC the characteristic function (or Koszul-Vinberg characteristic) of C∗. It is a useful +analytic tool for investigating convex cones, e.g., see [13, I.3] and [14]. E.g., Rn +>0 is self dual and +vRn +>0(x) = (x1 · . . . · xn)−1 for x ∈ Rn +>0. + +REAL ZEROS OF MIXED RANDOM FEWNOMIAL SYSTEMS +5 +The homogeneity property vC(tx) = t−nvC(x) for t > 0, x ∈ int(C∗) is immediate to check. +Moreover, the transformation formula implies the following invariance property: if g ∈ GL(n, R) +and K := g(C), then gT (K∗) = C∗ and +(2.5) +vK(z) = | det g| vC(gT z) +for z ∈ int(K∗). +Remark 2.2. The function log vC is strictly convex and essentially equals Nesterov and Ne- +mirowski’s universal self-concordant barrier function [26, §2.5], see [14] for the proof. +The following result is well known, e.g., see [14, Thm. 4.1]. We provide the simple proof for +the sake of completeness. +Lemma 2.3. For x ∈ int(C∗) we have +vC(x) = n! vol +� +y ∈ C | ⟨x, y⟩ ≤ 1 +� +. +Proof. We fix x ∈ int(C∗). For t ≥ 0 we define the n − 1-dimensional slice +Ct := +� +y ∈ C | ⟨x, y⟩ = t∥x∥ +� +. +By Fubini, we get +vC(x) = +� +C +e−⟨x,y⟩ dy = +� ∞ +0 +voln−1(Ct)e−t∥x∥dt = voln−1(C1) +� ∞ +0 +tn−1e−t∥x∥dt. +Note that +� ∞ +0 +tn−1e−t∥x∥dt = +1 +∥x∥n +� ∞ +0 +sn−1e−sds = +1 +∥x∥n Γ(n) = (n − 1)! +∥x∥n . +Moreover, we have +voln−1(C1) = n voln +� +y ∈ C | ⟨x, y⟩ ≤ ∥x| +� += n ∥x∥n voln +� +y ∈ C | ⟨x, y⟩ ≤ 1 +� +. +It follows that +vC(x) = n ∥x∥n voln +� +y ∈ C | ⟨x, y⟩ ≤ 1 +� (n − 1)! +∥x∥n += n! voln +� +y ∈ C | ⟨x, y⟩ ≤ 1 +� +, +completing the proof. +□ +The following technical result is essential for the proof of Theorem 1.1. +Proposition 2.4. Let C ⊆ Rn be a proper cone and b1, . . . , bn ∈ C∗. Then we have +∥b1 ∧ . . . ∧ bn∥ · vC(b1 + . . . + bn) ≤ 1. +This bound is optimal. +Proof. We denote by cone(b1, . . . , bn) ⊆ C∗ the convex cone generated by b1, . . . , bn. Without +loss of generality, we may assume that b1, . . . , bn ∈ C∗ is a basis of Rn. Let b∗ +1, . . . , b∗ +n denote its +dual basis, that is ⟨b∗ +i , bj⟩ = δij. In matrix terminology, [b∗ +1, . . . , b∗ +n]T [b1, . . . , bn] = In, hence +(2.6) +det[b∗ +1, . . . , b∗ +n] det[b1, . . . , bn] = ±1. +Moreover, the definition of the dual basis implies that cone(b∗ +1, . . . , b∗ +n) is the dual cone of +cone(b1, . . . , bn). Therefore, by duality, we get +C ⊆ cone(b1, . . . , bn)∗ = cone(b∗ +1, . . . , b∗ +n). +Put d := b1 + . . . + bn and let y ∈ C such that ⟨d, y⟩ ≤ 1. Since C ⊆ cone(b∗ +1, . . . , b∗ +n), we can +write y = � +i tib∗ +i with ti ≥ 0. Moreover � +i ti = ⟨d, y⟩ ≤ 1. Thus we have shown the inclusion +{y ∈ C | ⟨d, y⟩ ≤ 1} ⊆ conv{0, b∗ +1, . . . , b∗ +n}. + +6 +PETER B¨URGISSER +This implies the inequality of volumes +voln{y ∈ C | ⟨d, y⟩ ≤ 1} ≤ volnconv{0, b∗ +1, . . . , b∗ +n} = 1 +n!| det[b∗ +1, . . . , b∗ +n]|. +Multiplying with n! | det[b1, . . . , bn]|, using (2.6) and taking into account Lemma 2.3, the assertion +follows. +The optimality is attained for C = Rn ++ and bi = diei with di > 0. Indeed, we have +| det[b1, . . . , bn] |vC(d) = d1 · . . . · dn (d1 · . . . · dn)−1 = 1. +□ +2.4. Vertices and normal fan of sums of polytopes. We recall here some basic facts about +polytopes and their normal fans; see [30, §7.1] for more details. +Let P ⊆ Rn be a full-dimensional polytope and v be a vertex of P. The cone Pv of P at v is +defined as the convex cone generated by P − v. It is a proper cone. The dual cone of Pv, also +called the inner normal cone of P at v, is defined as +P ∗ +v := {y ∈ Rn | ∀x ∈ P ⟨x, y⟩ ≥ 0}. +The cone P ∗ +v is also proper. The union over all P ∗ +v equals Rn. Moreover, for v1 ̸= v2, we have +dim(P ∗ +v1 ∩ P ∗ +v2) < n. In fact, the P ∗ +v are the n-dimensional cones of the normal fan of P. +We will need the following result. +Lemma 2.5. Let P1, . . . , Pn be polytopes in Rn. There is an injective map +Vert(P1 + . . . + Pn) → Vert(P1) × . . . Vert(Pn), v �→ (v1, . . . , vn) +satisfying v = v1 + . . . + vn. Moreover, if we denote by Πi the cone of Pi at the vertex vi, then +Π := Π1 + . . . + Πn is the cone of P1 + . . . + Pn at the vertex v1 + . . . + vn. In particular, +Π∗ = Π∗ +1 ∩ . . . ∩ Π∗ +n. +Proof. For the following, see [28, §1.7]. To a nonzero weight ω ∈ Rn we assign the face of Pi, +given by +F(Pi, ω) := +� +w ∈ Rn | ⟨w, ω⟩ = min +w′∈Pi⟨w′, ω⟩ +� +. +We have (see [28, Thm. 1.7.5]) +F(P1 + . . . + Pn, ω) = F(P1, ω) + . . . + F(Pn, ω). +Suppose that F(P1 + . . . + Pn, ω) = {v} is a vertex. Then all F(Pi, ω) = {vi} are vertices +and v = v1 + . . . vn. +It is easy to see that the vi are uniquely determined by v. +The map +v �→ (v1, . . . , vn) is as required. The remaining assertions are clear. +□ +3. Random intersections in products of projective spaces +3.1. The kinematic formula. We specialize here the general kinematic formula for homo- +geneous spaces from [9, Thm. A.2] to the case of products of real projective spaces (Theo- +rem 3.2). For this purpose, we define the average scaling factor and we explain how to bound it +in Lemma 3.5. +Consider the product Ω := Pm1 × · · · × Pmn of real projective spaces. The product G := +O(m1 +1)×· · ·×O(mn +1) of orthogonal groups acts transitively on Ω. So Ω is a homogeneous +space and we have an induced transitive action of G on the tangent bundle of Ω. We focus on +the special hypersurfaces H1, . . . , Hn of Ω of the following shape +(3.1) +H1 := Pm1−1 × Pm2 × · · · × Pmn, . . . , Hn := Pm1 × Pm2 · · · × Pmn−1. +They are determined upon selecting hyperplanes Pmi−1 in Pmi. Our goal is to investigate the +average cardinality of the intersection Z ∩H1 ∩. . .∩Hn of an n-dimensional smooth submanifold + +REAL ZEROS OF MIXED RANDOM FEWNOMIAL SYSTEMS +7 +Z ⊆ Ω with random Hi corresponding to independently chosen uniform random hyperplanes +in Pmi. +Fix a distinguished point ω ∈ Ω and denote by K the stabilizer group of ω. +E.g., take +ωi = [1 : 0 . . . : 0] for all i. Notice that we have an induced action of K on the tangent space +T := TωΩ, which we can identify with the standard action of K = O(m1) × · · · × O(mn) on +T = Rm1 × · · · × Rmn. This induces an action of K on the Grassmann manifold Gr(d, T ) of +linear subspaces of T with codimension d. Note that this action is transitive if n = 1, but not +for n ≥ 2. +We assign to an n-dimensional smooth submanifold Z ⊆ Ω a map +(3.2) +Z → Gr(n, T )/K, z �→ KgNpZ +as follows. For given p ∈ Z choose any g ∈ G such that gp = ω. The induced action of g maps +the tangent space TpΩ to TωΩ = T . This transports the normal subspace NpZ ⊆ TpΩ of Z at p +to gNpZ ⊆ T . Note that the K-orbit of the subspace gNpZ does not depend on the choice of g, +which shows that the map (3.2) is well defined. +We call the submanifold Z cohomogeneous if the map (3.2) is constant; see [9, A.5.1] and [25]. +For instance, a product Z = L1 × . . . × Ln of lines Li in Pmi is cohomogeneous: indeed, the +map (3.2) sends any point p ∈ Z to the K-orbit of R × . . . × R. +Definition 3.1. The average scaling factor function of the n-dimensional submanifold Z of +Pm1 × · · · × Pmn is the function ¯σZ : Z → [0, 1] defined at p ∈ Z by +¯σZ(p) := E Liσ(gNpZ, L1 × . . . × Ln), +where g ∈ G satisfies gp = ω0, and the expectation is taken over uniformly random lines Li in +T = Rm1 × · · · × Rmn (see (2.2) for the definition of σ). +Note that due to the averaging over the K-orbit, the choice of g is irrelevant. The above +definition is consistent with the one in [9, Def. A.1], since +(3.3) +σ(gNpZ, L1 × . . . × Ln) = σ(gNpZ, L1 × 0 × · · · × 0, . . . , 0 × · · · × 0 × Ln) +by (2.3); indeed note that the n lines L1 × 0 × · · · × 0, ... are pairwise orthogonal. +We introduce the notation +ρn := E ∥x∥ = +√ +2 Γ( n+1 +2 ) +Γ( n +2 ) +≤ √n +for standard Gaussian x ∈ Rn. We note that by [6, Lemma 2.25], +(3.4) +vol(Pmi−1) +vol(Pmi) += +1 +√π +Γ( mi+1 +2 +) +Γ( mi +2 ) += +1 +√ +2π ρmi, +We can now explicitly state the kinematic formula for products of real projective spaces. +Theorem 3.2. For any n-dimensional submanifold Z of Pm1 × · · · × Pmn, we have +E g∈G#(Z ∩ g1H1 ∩ . . . ∩ gnHn) = (2π)− n +2 ρm1 · · · ρmn +� +Z +¯σZ dZ, +where the hypersurfaces Hi are defined in (3.1). +Proof. If σK : Z × H1 × . . . × Hn → [0, 1] denotes the average scaling function from [9, Def. A.1], +then [9, Thm. A.2] states that +E g∈G#(Z ∩ g1H1 ∩ . . . ∩ gnHn) = +1 +vol(Ω)n +� +Z×H1×...×Hn +σK d(Z × H1 × . . . × Hn). + +8 +PETER B¨URGISSER +By K-invariance and (3.3), we have σK(z, y1, . . . , yn) = ¯σZ(z) for all z ∈ Z and yi ∈ Hi. +Therefore, +E g∈G#(Z ∩ g1H1 ∩ . . . ∩ gnHn) = vol(H1) · · · vol(Hn) +vol(Ω)n +� +Z +¯σZ dZ. +Finally, (3.4) gives +vol(H1) · · · vol(Hn) +vol(Ω)n += +n +� +i=1 +vol(Pmi−1) +vol(Pmi) += (2π)− n +2 ρm1 · · · ρmn, +which completes the proof. +□ +Example 3.3. A product Z = L1 × . . . × Ln of lines Li is cohomogeneous. Theorem 3.2 implies +that ¯σZ = (2/π)n/2(ρm1 · · · ρmn)−1. +We shall focus on submanifolds Z arising as the image of an injective smooth map +(3.5) +ψ: U → Pm1 × · · · × Pmn, ψ(x) := (ψ1(x), . . . , ψn(x)), +where the ψi : U → Pmi are smooth maps defined on an open subset U ⊆ Rn. Let us denote by +Jψ(x) := +� +det((Dxψ)T Dxψ) +the absolute Jacobian of ψ at x. The transformation formula implies that +(3.6) +� +Z +¯σZ dZ = +� +U +¯σZ(ψ(x))Jψ(x) dx. +We next analyze the integrand on the right-hand side more closely. +Lemma 3.4. Let x ∈ U and put Ti := Tψi(x)Pmi. +Let λ1, . . . , λn be independent standard +Gaussian linear forms on Ti. This defines the random linear forms λi ◦ Dxψi on Rn. Then +ρm1 · · · ρmn ¯σZ(ψ(x))Jψ(x) = E λ1,...,λn ∥(λ1 ◦ Dxψ1) ∧ . . . ∧ (λn ◦ Dxψn)∥ . +Proof. To simplify notation, we assume w.l.o.g. that p = ψ(x) is the distinguished point ω. +We also identify Ti with Rmi. For ui ∈ Ti with ∥ui∥ = 1 consider the line Li = Rui and the +orthogonal projection pi : Ti → Li, which is is given by pi(w) = µi(w)ui with the linear form on Ti +defined by µi(w) := ⟨w, ui⟩. Thus the orthogonal projection pL : T1 × · · · × Tn → L1 × · · · × Ln +is described by µ1, . . . , µn. This implies that +(3.7) +| det(pL ◦ Dxψ)| = ∥(µ1 ◦ Dxψ1) ∧ . . . ∧ (µn ◦ Dxψn)∥ . +On the other hand, according to Proposition 2.1, we have +σ(L1 × · · · × Ln, NpZ) = | det p′ +L|, +where p′ +L : TpZ → L1 × · · · × Ln denotes the restriction of pL to TpZ. Applying the determinant +to the composition of Dxψ with p′ +L, we get +Jψ(x) | det p′ +L| = | det(pL ◦ Dxψ)|. +By averaging over random lines Li, we deduce from the definition of ¯σZ and the above that +Jψ(x)¯σZ(p) = Jψ(x) E Liσ(NpZ, L1 × · · · × Ln) = Jψ(x) E Li| det p′ +L| = E Li| det(pL ◦ Dψ)|. +Finally, a standard Gaussian linear form on Ti is obtained as λi = riµi with independent random +variables ri and ui, where ui is uniformly random in the unit sphere of Ti and r2 +i is χ2-distributed + +REAL ZEROS OF MIXED RANDOM FEWNOMIAL SYSTEMS +9 +with mi degrees of freedom. Thus E ri = ρmi. Altogether, we obtain, using (3.7), +ρm1 · · · ρmnJψ(x)¯σZ(p) = ρm1 · · · ρmnE | det(pL ◦ Dψ)| += ρm1 · · · ρmnE ∥(µ1 ◦ Dxψ1) ∧ . . . ∧ (µn ◦ Dxψn)∥ += E ∥(λ1 ◦ Dxψ1) ∧ . . . ∧ (λn ◦ Dxψn)∥ , +which completes the proof. +□ +3.2. Bounding the average scaling factor. In order to bound the quantity in Lemma 3.4, +we use affine charts for the product of projective spaces. Denote by yi0, . . . , yimi coordinates +for Pmi. Fix 0 ≤ ri ≤ mi for i = 1, . . . , n, and consider the inverse of the affine chart πiri : Rmi → +(Pmi)yiri̸=0, see Subsection 2.1. We describe the maps ψi from (3.5) in these charts by smooth +functions defined on open subsets of Rn, +(3.8) +ϕiri : Rn ⊇ Uiri → Rmi, +satisfying ψi := πiri ◦ ϕiri. In order to simplify notation, we assume w.l.og. ri = 0 and write +πi := πi0, ϕi := ϕi0. In these charts, the combined map ψ of (3.5) is represented by a map +ϕ: U → Rm1 × · · · × Rmn, ϕ(x) = (ϕ1(x), . . . , ϕn(x)) +defined on some open subset U ⊆ Rn. We view the derivative M(x) := Dxϕ as a matrix of +format (m1 + . . . + mn) × n with blocks Mi(x) := Dxϕi ∈ Rmi×n. For 1 ≤ ji ≤ mi, i = 1, . . . , n, +we denote by M(x)j1,...,jn the n × n submatrix of M(x) obtained by selecting in the ith block +the jith row. +Lemma 3.5. Let x ∈ U be such that [yi] := ψi(x) ∈ (Pmi)y0̸=0 for all i. Then +ρm1 · · · ρmn ¯σZ(ψ(x))Jψ(x) ≤ +� +j1,...,jn +| det M(x)j1,...,jn|, +where the sum is over the n-tuples (j1, . . . , jn) ∈ [m1] × . . . × [mn]. +Proof. From ψi = πi ◦ ϕi we get Dψi = Dπi ◦ Dϕi, where we drop arguments for notational +simplicity. Let λi : Ti → R be a linear form on Ti = Tψi(x)Pmi. Then, defining wi := λi ◦ Dπi, +λi ◦ Dψi = λi ◦ Dπi ◦ Dϕi = wi ◦ Dϕi. +If we identify λi ◦ Dxψi with a vector in Rn and wi with a vector in Rmi, then we have the +matrix product of formats n × � +i mi and � +i mi × n, +(3.9) +R(x) := + + +(λ1 ◦ Dxψ1)T +... +(λn ◦ Dxψ1)T + + = + + +wT +1 +0 +. . . 0 +0 +wT +2 +. . . 0 +... +... +... +0 +0 +wT +n + + · + + +M1(x) +... +Mn(x) + + . +Lemma 3.4 tells us that +ρm1 · · · ρmn ¯σZ(ψ(x))Jψ(x) = E λi| det R(x))|, +where the expectation is over independent standard Gaussian λi. Note that the resuling random +vector wi := λi ◦ Dπi is not standard Gaussian anymore. However ∥Dπi∥ ≤ 1 by (2.1) and +Lemma 3.6 below implies that E w2 +ij ≤ 1 for the jth component wij of wi. +From Binet-Cauchy, we obtain from (3.9) +(det R(x))2 = +� +j1,...,jn +w2 +1j1 · · · w2 +njn(det M(x)j1,...,jn)2, + +10 +PETER B¨URGISSER +where the sum is over all (j1, . . . , jn) ∈ [m1] × . . . × [mn]. Taking expectations yields +E w(det R(x))2 ≤ +� +j1,...,jn +(det M(x)j1,...,jn)2. +We conclude that +E w| det R(x))| ≤ +� +E w(det R(x))2� 1 +2 ≤ +� +j1,...,jn +| det M(x)j1,...,jn|, +which completes the proof. +□ +Lemma 3.6. Let A ∈ Rp×m with ∥A∥ ≤ 1. If y ∈ Rp is standard Gaussian, then the random +variable z := yA satisfies E |zj|2 ≤ 1 for all j. +Proof. From zj = � +i yiaij we get z2 +j = � +i,k yiykaijakj. Hence E z2 +j = � +i a2 +ij. Finally, � +i a2 +ij = +∥A(ej)∥2 ≤ ∥A∥2 ≤ 1. +□ +4. Mixed random fewnomial systems +The goal here is to provide the proofs of the assertions in the introduction. +Let us first +introduce some notation. +We assign to a real valued function c: A → R on a finite nonempty subset A ⊆ Rn the real +analytic function FA,c : Rn → R +(4.1) +FA,c(w) := +� +a∈A +c(a)e⟨a,w⟩. +In the special case where A consists of integer vectors, FA,c arises from the Laurent polynomial +fA,c(x) = � +a∈A c(a)xa by a substitution: FA,c(w) = fA,c(ew). Generally, we have the following +equivariance property: for g ∈ GL(n, R) and b ∈ Rn, +(4.2) +FA+b,b.c(w) = e⟨b,w⟩FA,c(w), +Fg(A),g.c(w) = FA,c(gT w), +where (g.c)(a) := c(g−1a) and b.c(a) := c(a − b). +Suppose now we have n such analytic functions encoded by ci : Ai → R, for i = 1, . . . , n. +Throughout, we denote by ti the cardinality of Ai and by Pi its convex hull. We are interested +in the number N of nondegenerate zeros w ∈ Rn of the system +(4.3) +FA1,c1(w) = 0, . . . , FAn,cn(w) = 0. +Our goal is to study the expected number of nondegenerate zeros for random coefficient func- +tions. More specifically, we denote by N(A1, . . . , An) the expectation of N, when all the coeffi- +cients ci(a), for i ∈ [n] and ai ∈ Ai, are independent standard Gaussians. Clearly, N(A1, . . . , An) +is invariant under permutations of the Ai. Also, N(A1, . . . , An) = 0 if ti = 1 for some i. More- +over, we have N(A1, . . . , An) = 0 if dim(P1 + . . . + Pn) < n, see Lemma 4.2. +Equation (4.2) implies the following invariance properties +(4.4) +N(A1 + b1, . . . , An + bn) = N(A1, . . . , An), +N(g(A1), . . . , g(An)) = N(A1, . . . , An), +where b1, . . . , bn ∈ Rn and g ∈ GL(n, R). +Our main result is Theorem 1.1 stated in the introduction. Note that it gives the correct +answer N(A1, . . . , An) = 0 if ti = 1 for some i. +Example 4.1. In the case t1 = . . . = tn = 2, the Pi are segments. If they are linearly independent, +P1 + . . . + Pn is a parallelepiped with 2n vertices. Thus, Theorem 1.1 gives N(A1, . . . , An) ≤ +(2/π) +n +2 . This can be easily verified directly as follows. Suppose Ai = {ai, bi}. We claim that +N(A1, . . . , An) = 2−n if b1 − a1, . . . , bn − an are linearly independent. For showing this, by the + +REAL ZEROS OF MIXED RANDOM FEWNOMIAL SYSTEMS +11 +invariance properties (4.4), it suffices to consider the case where Ai = {0, ei}. Then (4.3) amounts +to the system ci(0) + ci(ei)ewi = 0, for i = 1, . . . , n, which has a solution iff ci(0)ci(ei) < 0, for +all i. This happens with probability 2−n, hence indeed N(A1, . . . , An) = 2−n. +4.1. Proof of Theorem 1.1. Let us look at a special instance of (3.5). To the given finite +nonempty subsets A1, . . . , An ⊆ Rn, we assign the maps +ψi : Rn +>0 → P(RAi) ≃ Pmi, ψi(x) := [xai]ai∈Ai, +where mi := #Ai − 1. Recall that Pi denotes the convex hull of Ai and put P := P1 + . . . + Pn. +We consider the combined map +(4.5) +ψ: Rn +>0 → Pm1 × · · · × Pmn, ψ(x) := (ψ1(x), . . . , ψn(x)). +Lemma 4.2. The map ψ is injective iff P is n-dimensional. Moreover, if P is not n-dimensional, +then rankDxψ < n for all x ∈ Rn +>0. +Proof. Assume ψ(exp(w)) = ψ(exp(w′)) for w ̸= w′ ∈ Rn Then there are ci ∈ R such that for +all ai ∈ Ai we have ⟨ai, w − w′⟩ = ci. Hence, ⟨x, w − w′⟩ = ci for all xi ∈ Pi. It follows that +⟨x, w − w′⟩ = c1 + . . . + cn for all x ∈ P. Hence dim P < n. +Conversely, assume there is a nonzero w ∈ Rn and c ∈ R such that ⟨x, w⟩ = c for all x ∈ P. +Then there are ci ∈ R such that ⟨xi, w⟩ = ci for all xi ∈ Pi. It follows that for any x ∈ Rn +>0 and +any s ∈ R we have +ψi(eswx) = [(esw)aixai]ai∈Ai = [es⟨ai,w⟩xai]a∈Ai = [escixai]a∈Ai = ψi(x). +Hence ψ is not injective. Moreover, w is in the kernel of the derivative of ψi at x. +□ +We denote by Z the image of ψ. Then we can write +N(A1, . . . , An) = E g∈G#(Z ∩ g1H1 ∩ . . . ∩ gnHn), +where the hypersurfaces Hi are defined in (3.1). By Theorem 3.2 and (3.6), this can be expressed +as +(4.6) +N(A1, . . . , An) = (2π)− n +2 ρm1 · · · ρmn +� +Rn +> +(¯σZ ◦ ψ)Jψ dx. +We make the coordinate change Rn → Rn +>0, (w1, . . . , wn) �→ x = (e−w1, . . . , e−wn), which has +the absolute Jacobian x1 · · · xn, and obtain (slightly abusing notation) +(4.7) +� +Rn +> +(¯σZ ◦ ψ)Jψ dx = +� +Rn x1 · · · xn(¯σZ ◦ ψ)Jψ dw. +Recall from Subsection 2.4 that each vertex v of P defines the inner normal cone Cv := P ∗ +v . +We can write +(4.8) +Rn = +� +v +Cv +as the union over the vertices v of P. Moreover, we know that dim(Cv ∩ Cv′) < n for different +vertices v, v′. Therefore, we can rewrite (4.7) as the sum +� +v +� +Cv +x1 · · · xn(¯σZ ◦ ψ)Jψ dw. +over the f0 many vertices v of P. +Fix now a vertex v of P. According to Lemma 2.5, there are vertices vi of Pi, for i = 1, . . . , n, +satisfying v = v1 + . . . + vn. Note that ai ∈ Ai. + +12 +PETER B¨URGISSER +We define the map ϕi : Rn +>0 → RAi\{vi} by +ϕi(x) = (xai−vi)ai∈Ai\{vi} ∈ RAi\{vi} ≃ Rmi. +Note that ϕi expresses ψi in the affine chart given by P(RAi)yvi ̸=0 → Rai∈Ai\{vi}, which maps +[yai]ai∈Ai to y−1 +vi (yai)ai∈Ai\{vi}. So we are in the setting of Subsection 3.2 and ϕi is an instance +of (3.8). The rows of the matrix M(x) := Dxϕ are labeled by the disjoint union A1⊔. . .⊔An and +M(x) has n columns. For any n-tuple (a1, . . . , an) with ai ∈ Ai \{vi}, we denote by M(x)a1,...,an +the n×n submatrix of M(x), obtained by selecting from M(x) the rows numbered by a1, . . . , an. +We apply Lemma 3.5 to bound +ρm1 · · · ρmn +� +Cv +x1 · · · xn(¯σZ ◦ ψ)Jψ dw ≤ +� +a1,...,an +� +Cv +x1 · · · xn| det M(x)a1,...,an| dw, +where the sum runs over all tuples (a1, . . . , an) with ai ∈ Ai \ {vi}. So there are m1 · · · mn many +summands. To prove Theorem 1.1, it is sufficient to show that +(4.9) +� +Cv +x1 · · · xn| det M(x)a1,...,an| dw ≤ 1 +for each vertex v and each selection (a1, . . . , an). +The component (row) of the derivative Dxϕi corresponding to ai ∈ Ai \ {vi} is given by +(Dxϕi)ai = xai−vi(ai − vi)diag(x−1 +1 , . . . , x−1 +n ). +Hence the n × n-submatrix M(x)a1,...,an of M(x) is given by +M(x)a1,...,an = diag(xa1−v1, . . . , xan−vn) + + +a1 − v1 +... +an − vn + + diag(x−1 +1 , . . . , x−1 +n ). +Therefore, setting bi := ai − vi, we get +x1 · · · xn det(M(x)a1,...,an) = xb1+...+bn det[b1, . . . , bn]. +Let us write Πi for the cone of Pi at the vertex vi. By definition, bi ∈ Π∗ +i . By Lemma 2.5, +Π := Π1+. . .+Πn equals the cone of the polytope P = P1+. . .+Pn at the vertex v = v1+. . .+vn. +Hence bi ∈ Π∗ +i ⊆ Π∗ +1 ∩ . . . ∩ Π∗ +n = Π∗ = Cv. +We can therefore rewrite the left-hand side of (4.9) as +(4.10) +� +Cv +x1 · · · xn| det M(x)a1,...,an| dw = +� +Cv +e−⟨b1+...+bn,w⟩| det[b1, . . . , bn]| dw. +By Proposition 2.4, this is at most 1. This shows claim (4.9) and finishes the proof of Theo- +rem 1.1. +□ +4.2. Proof of Proposition 1.2. For finite Si ⊆ R, put A := S1 × . . . × Sn, and consider the +maps +ψi : R>0 → P(RSi), xi �→ [xai +i ]ai∈Si, +ψ: Rn +>0 → P(RA), x �→ [xa]a∈A +with images Zi and Z, respectively. The kinematic formula for real projective space gives (see +[9, Cor. A.3]) +N(Si) = vol(Zi) +vol(P1), +N(A, . . . , A) = vol(Z) +vol(Pn). +The key insight is that Z is obtained as the image of Z1 × . . . × Zn under the Segre embedding +P(RS1) × . . . × P(RSn) → P(RS1 ⊗ . . . ⊗ RSn) ≃ P(RA), + +REAL ZEROS OF MIXED RANDOM FEWNOMIAL SYSTEMS +13 +which is well known to be isometric. Therefore, vol(Z) = vol(Z1) · · · vol(Zn), and this completes +the proof of Proposition 1.2. +□ +4.3. Proof of Theorem 1.3. Given is a finite subset A ⊆ Rn with convex hull P. By Lemma 4.2 +we can can w.l.o.g. assume that dim P = n. Consider the injective map +(4.11) +ψ: Rn +>0 → P(RA), ψ(x) := [xa]a∈A +with image Z ⊆ P(RA). The kinematic formula for real projective space [9, Cor. A.3] is con- +siderably simpler than the one in Theorem 3.2, since O(m) acts transitively on the Grassmann +manifolds Gr(k, Rm): we have +(4.12) +N(A, . . . , A) = vol(Z) +vol(Pn) = +1 +vol(Pn) +� +Rn +>0 +Jψ(x) dx. +We now proceed as in the proof of Theorem 1.3. We make the coordinate change x = e−w +and decompose the resulting integral according to the decomposition (4.8) of Rn into the full +dimensional cones Cv corresponding to vertices v. Thus +� +Rn +>0 +Jψ(x) dx = +� +Rn x1 · · · xnJψ(x) dw = +� +Cv +� +Cv +x1 · · · xnJψ(x) dw +For a fixed vertex v of P, we consider the map ϕ: Rn +>0 → RA\{v} defined by +(4.13) +ϕ(x) = (xa−v)a∈A\{v}. +Then we have ψ(x) = π(ϕ(x)), where π is the inverse of the chart P(RA)yv̸=0 → RA\{v}. It is +easy to verify that Jψ(x) ≤ Jϕ(x) using ∥Dϕ(x)π∥ ≤ 1, see (2.1). +Le us view M(x) := Dxϕ as a matrix whose rows are labelled by elements of A \ {v}. and +denote by M(x)a1,...,an the submatrix of M(x) obtained by selecting the rows labelled by the ai. +Binet-Cauchy implies that +Jϕ(x)2 = det(M(x)T M(x)) = +� +a1,...,an +(det M(x)a1,...,an)2, +with the sum running over all n-element subsets {a1, . . . , an} of A\{v}, of which there are +�t−1 +n +� +many. This implies Jϕ(x) ≤ � +a1,...,an | det M(x)a1,...,an|. We have arrived at +� +Cv +x1 · · · xnJψ(x) dw ≤ +� +a1,...,an +� +Cv +x1 · · · xn| det M(x)a1,...,an| dw ≤ +�t − 1 +n +� +, +where the right-hand inequality follows from Proposition 2.4 as in (4.10). +□ +4.4. Proof of Theorem 1.4. The key observation is the following. Define for ε > 0 +Dε := {x ∈ Rn | ∥x∥ ≥ ε}. +Lemma 4.3. Let C ⊆ Rn be a proper cone, d ∈ int(C∗), and ε > 0. Then +lim +m→∞ mn +� +C∩Bε +e−m⟨d,w⟩ dw = 0 +Proof. Since ∩m≥1Dmε = ∅, basic integration theory implies +lim +m→∞ +� +C∩Dmε +e−⟨d,u⟩ du = 0. +Making the change of variables u = mw shows the assertion. +□ + +14 +PETER B¨URGISSER +We now observe the following. Let U ⊆ Rn +>0 be open. Analogously as for (4.6), one shows +that +(2π)− n +2 ρm1 · · · ρmn +� +U +x1 · · · xn(¯σZ ◦ ψ)Jψ dw. +equals the expected number of nondegenerate zeros in U of the random system (4.3). +We follow the proof of Theorem 1.1. Note that stretching the support does not change the +Newton polytopes Pi and P = P1 + . . . + Pn. Fix a vertex v of P. According to Lemma 2.5, +there are vertices vi of Pi, for i = 1, . . . , n, satisfying v = v1 + . . . + vn. Tracing the proof +of Theorem 1.1, one sees that it is sufficient to show that (compare (4.10)) for any selection +a1 ∈ A1 \ {v1}, . . . , an ∈ An \ {vn}, the vectors bi = ai − vi satisfy +lim +m→∞ +� +Cv +e−m⟨b1+...+bn,w⟩| det[mb1, . . . , mbn]| dw = 0. +However, this is a consequence of Lemma 4.3. +□ +4.5. Additional comment. It is instructive to see how (4.12) directly follows from the more +general kinematic formula in Theorem 3.2. Consider the injective map ψ from (4.11) with image +Z ⊆ P(RA). We use ψ to define the map +(4.14) +ψd : Rn +>0 → (P(RA))n, x �→ (ψ(x), . . . , ψ(x)). +The image Zd = {(y, . . . , y) | y ∈ Z} ⊆ (Pm)n of ψd is the diagonal embedding of Z in the +product of projective spaces. By Theorem 3.2 and (3.6) we have +N(A, . . . , A) = (2π)− n +2 ρn +m +� +Rn +>0 +(¯σZd ◦ ψd)Jψd dx. +Via Lemma 4.4 below, we indeed conclude that +N(A, . . . , A) = +1 +vol(Pn) +� +Rn +>0 +Jψ dx = vol(Z) +vol(Pn), +which is (4.12). +Lemma 4.4. For x ∈ Rn +>0 we have +ρn +m ¯σZd(ψd(x))Jψd(x) = +(2π) +n +2 +vol(Pn)Jψ(x). +Proof. Lemma 3.4 applied to the map ψd from (4.14) gives +(4.15) +ρn +m ¯σZd(ψd(x))Jψd(x) = E λ1,...,λn ∥(λ1 ◦ Dxψ) ∧ . . . ∧ (λn ◦ Dxψ)∥ +where the λi are standard Gaussian linear forms on Tψ(x)Pm. Take an isometry Tψ(x)Pm ≃ Rm, +view λi ∈ Rm as a vector, and view ∆ := Dxψ as a matrix in Rm×n. We note that Jψ(x) = +� +det(∆T ∆). The right-hand side of (4.15) can be written as the expectation E λi| det R(x)|, +with the matrix +(4.16) +R(x) := + + +λT +1 ◦ Dxψ +... +λT +n ◦ Dxψ + + = + + +λT +1 +... +λT +n + + · ∆. +We thus need to prove that +(4.17) +E λi| det R(x)| = +(2π) +n +2 +vol(Pn) +� +det(∆T ∆). + +REAL ZEROS OF MIXED RANDOM FEWNOMIAL SYSTEMS +15 +In order to show this, by the singular value decomposition, we may assume that ∆ = +� +D +0 +� +, +where D = diag(σ1, . . . , σn). Note that +� +det(∆T ∆) = σ1 · · · σn. Then (4.16) can be written as +R(x) = ΛD, where Λ ∈ Rn×n is a standard Gaussian square matrix and we get E Λ| det(R(x))| = +σ1 · · · σn E w| det Λ|. It is well known that E Λ| det Λ| = ρnρn−1 · · · ρ1, e.g., see [6, Cor. 4.11]. On +the other hand (see [6, Lemma 2.25]) +ρm = +√ +2π vol(Pm−1) +vol(Pm) , +hence ρnρn−1 · · · ρ1 = (2π) +n +2 +vol(Pn). We have thus verified (4.17). +□ +References +[1] Mart´ın Avenda˜no. The number of roots of a lacunary bivariate polynomial on a line. Journal of Symbolic +Computation, 44(9):1280–1284, 2009. +[2] D. N. Bernstein. The number of roots of a system of equations. Funkcional. Anal. i Priloˇzen., 9(3):1–4, 1975. +[3] Fr´ed´eric Bihan and Boulos El-Hilany. A sharp bound on the number of real intersection points of a sparse +plane curve with a line. Journal of Symbolic Computation, 81:88–96, 2017. +[4] Fr´ed´eric Bihan and Frank Sottile. New fewnomial upper bounds from Gale dual polynomial systems. Mosc. +Math. J., 7(3):387–407, 573, 2007. +[5] Ir´en´ee Briquel and Peter B¨urgisser. The real tau-conjecture is true on average. Random Structures Algo- +rithms, 57(2):279–303, 2020. +[6] Peter B¨urgisser and Felipe Cucker. Condition, volume 349 of Grundlehren der Mathematischen Wis- +senschaften [Fundamental Principles of Mathematical Sciences]. Springer, Heidelberg, 2013. The geometry +of numerical algorithms. +[7] Peter B¨urgisser, Felipe Cucker, and Pierre Lairez. Rigid continuation paths ii. structured systems. Preprint +arXiv:2010.10997, 2021. +[8] Peter B¨urgisser, Alperen A. Erg¨ur, and Josu´e Tonelli-Cueto. On the number of real zeros of random fewno- +mials. SIAM J. Appl. Algebra Geom., 3(4):721–732, 2019. +[9] Peter B¨urgisser and Antonio Lerario. Probabilistic Schubert calculus. J. Reine Angew. Math., 760:1–58, +2020. +[10] Ren´e Descartes. La G´eom´etrie. Librairie Scientifique A. Hermann, 1886. Digital reproduction of 2008 by +Project Gutenberg (Ebook number: 26400). +[11] Mathias Drton, Bernd Sturmfels, and Seth Sullivant. Lectures on algebraic statistics, volume 39 of Oberwol- +fach Seminars. Birkh¨auser Verlag, Basel, 2009. +[12] Alan Edelman and Eric Kostlan. How many zeros of a random polynomial are real? Bull. Amer. Math. Soc. +(N.S.), 32(1):1–37, 1995. +[13] Jacques Faraut and Adam Kor´anyi. Analysis on symmetric cones. Oxford Mathematical Monographs. The +Clarendon Press, Oxford University Press, New York, 1994. Oxford Science Publications. +[14] Osman G¨uler. Barrier functions in interior point methods. Math. Oper. Res., 21(4):860–885, 1996. +[15] Bertrand Haas. A simple counterexample to Kouchnirenko’s conjecture. Beitr¨age Algebra Geom., 43(1):1–8, +2002. +[16] Fritz Horn and Roy Jackson. General mass action kinetics. Arch. Rational Mech. Anal., 47:81–116, 1972. +[17] Ralph Howard. The kinematic formula in Riemannian homogeneous spaces. Mem. Amer. Math. Soc., +106(509):vi+69, 1993. +[18] Gorav Jindal, Anurag Pandey, Himanshu Shukla, and Charilaos Zisopoulos. How many zeros of a random +sparse polynomial are real? In ISSAC’20—Proceedings of the 45th International Symposium on Symbolic +and Algebraic Computation, pages 273–280. ACM, New York, [2020] ©2020. +[19] Askold G. Khovanski˘ı. A class of systems of transcendental equations. Dokl. Akad. Nauk SSSR, 255(4):804– +807, 1980. +[20] Askold G. Khovanski˘ı. Fewnomials, volume 88 of Translations of Mathematical Monographs. American Math- +ematical Society, Providence, RI, 1991. +[21] Pascal Koiran. Shallow circuits with high-powered inputs. Proc. Second Symposium on Innovations in Com- +puter Science, ICS, 2011. +[22] Pascal Koiran, Natacha Portier, and S´ebastien Tavenas. On the intersection of a sparse curve and a low-degree +curve: a polynomial version of the lost theorem. Discrete Comput. Geom., 53(1):48–63, 2015. + +16 +PETER B¨URGISSER +[23] Pascal Koiran, Natacha Portier, and S´ebastien Tavenas. A Wronskian approach to the real τ-conjecture. J. +Symbolic Comput., 68(part 2):195–214, 2015. +[24] Anatoli G. Kushnirenko. Poly`edres de Newton et nombres de Milnor. Invent. Math., 32(1):1–31, 1976. +[25] L´eo Mathis. The Handbook of Zonoid Calculus. PhD thesis, SISSA, 2022. +[26] Yurii Nesterov and Arkadii Nemirovskii. Interior-point polynomial algorithms in convex programming, vol- +ume 13 of SIAM Studies in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), +Philadelphia, PA, 1994. +[27] Kaitlyn Phillipson and J. Maurice Rojas. Fewnomial systems with many roots, and an adelic tau conjecture. +In Proceedings of Bellairs workshop on tropical and non-Archimedean geometry (May 6-13, 2011, Barbados), +Contemporary Mathematics, volume 605, pages 45–71, 2014. +[28] Rolf Schneider. Convex bodies: the Brunn-Minkowski theory, volume 151 of Encyclopedia of Mathematics +and its Applications. Cambridge University Press, Cambridge, expanded edition, 2014. +[29] Frank Sottile. Real solutions to equations from geometry, volume 57 of University Lecture Series. American +Mathematical Society, Providence, RI, 2011. +[30] G¨unter M. Ziegler. Lectures on polytopes, volume 152 of Graduate Texts in Mathematics. Springer-Verlag, +New York, 1995. +Institute of Mathematics, Technische Universit¨at Berlin +Email address: pbuerg@math.tu-berlin.de + diff --git a/29AyT4oBgHgl3EQfb_di/content/tmp_files/load_file.txt b/29AyT4oBgHgl3EQfb_di/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..a6a5f1fa4ced435aeed2a6c8687f2ec2de5f5836 --- /dev/null +++ b/29AyT4oBgHgl3EQfb_di/content/tmp_files/load_file.txt @@ -0,0 +1,1470 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf,len=1469 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='00273v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='PR] 31 Dec 2022 REAL ZEROS OF MIXED RANDOM FEWNOMIAL SYSTEMS PETER B¨URGISSER Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Consider a system f1(x) = 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , fn(x) = 0 of n random real polynomials in n variables, where each fi has a prescribed set of exponent vectors described by a set Ai ⊆ Zn of cardinality ti, whose convex hull is denoted Pi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Assuming that the coefficients of the fi are independent standard Gaussian, we prove that the expected number of zeros of the random system in the positive orthant is at most (2π)− n 2 f0 (t1 − 1) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' (tn − 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Here f0 denotes the number of vertices of the Minkowski sum P1 + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' + Pn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' We also derive a better bound in the unmixed case where all supports Ai are equal, improving upon [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' All arguments equally work for real exponent vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Introduction In many applications, we want to understand or find the (positive) real solutions of a system of multivariate polynomial equations, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=', see [11, 16, 29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Bezout’s theorem, which bounds the number complex zeros in terms of degrees, usually highly overestimates the number of real zeros.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' This can be already seen from Descartes’ rule of signs [10, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' 42], which implies that a real univariate polynomial with t terms has at most t − 1 positive zeros.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' In 1980, Khovan- skii [19] obtained a far reaching generalization of Descartes’ rule.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' He showed that the number of nondegenerate1 positive solutions of a system f1(x) = 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , fn(x) = 0 of n real polynomial equations in n variables is bounded only in terms of n and the number t of distinct exponent vectors occurring in the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' This result in fact allows for any real exponents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Following Kushnirenko, one speaks of fewnomial systems, with the idea that the number t of terms is small, see [20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Understanding the complex zeros of fewnomial systems is much simpler: the famous BKK- Theorem [2, 24] states that for given finite supports A1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , An ⊆ Zn and Laurent polynomials fi(x) = � a∈A ci(a)xa1 1 · · · xan n with generic complex coefficients ci(a), the number of complex solutions in (C×)n of a corresponding system f1(x) = 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , fn(x) = 0 is given by n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' times the mixed volume of the Newton polytopes P1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , Pn, where Pi is defined as the convex hull of Ai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Note that the number of real zeros has little to do with the metric properties of Pi: indeed, replacing Ai by a multiple mAi amounts to substituting xi by xm i (m > 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Clearly, this does not change the number of positive real zeros of a fewnomial system, however Pi has been replaced by mPi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' The bound on the number of real zeros obtained by Khovanskii is exponential in the number t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' It is widely conjectured that this bound is far from optimal: in fact it is conjectured [27] that for fixed n, the number of nondegenerate positive solutions of a fewnomial system with t exponent vectors is bounded by a polynomial in t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Quite surprisingly, this question is open even for n = 2!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Date: January 3, 2023.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' 2010 Mathematics Subject Classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' 60D05, 14P99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Key words and phrases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' fewnomials, random polynomials, real algebraic geometry, sparsity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Supported by the ERC under the European Union’s Horizon 2020 research and innovation programme (grant agreement no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' 787840).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' 1i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=', the Jacobian of the system does not vanish at the zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' 1 2 PETER B¨URGISSER For results in special cases, we refer to [4, 1, 29, 22, 23, 3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Moreover, there is a very interesting connection to complexity theory [21, 5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Given this state of affairs of real fewnomial theory, a possible way to advance is to ask what happens in generic situations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' This can be made formal by considering random fewnomial systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Fix supports A1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , An ⊆ Zn of cardinality t1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , tn, respectively, and consider a system of n random polynomials fi(x) as above, but now the coefficients ci(a) are assumed to be independent standard Gaussian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Let us denote by N(A1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , An) the expectation of the number of nondegenerate positive real zeros of such system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Actually, we work in more generality, allowing any subsets Ai of Rn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' see Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' There is a large literature on the real zeros of random polynomials: we refer to [8] for references.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' In [8] it was proven that N(A, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , A) ≤ 21−n�t n � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' The main result of the present paper is an extension of this to the mixed case, where the fewnomials may have have different supports Ai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Our bound depends on the combinatorial structure of the Minkowski sum P1 + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='+ Pn through the number of its vertices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' We remark that our proof is quite different from the one in [8], which was quite indirect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' If Pi denotes the convex hull of the finite nonempty set Ai ⊆ Rn of cardinality ti, for i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , n, then N(A1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , An) ≤ (2π)− n 2 f0 (t1 − 1) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' (tn − 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Here f0 denotes the number of vertices of the Minkowski sum P := P1 + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' + Pn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' The bound in this theorem looks similarly to the one in a conjecture attributed to Kush- nirenko, which states that the number of positive nondegenerate zeros is always bounded by (t1 − 1) · · · (tn − 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' However, this was disproved in [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='2 In the unmixed situation, where all supports are equal to A, it is well known [12] that the expected number of positive zeros can be expressed by the volume of the image of the Veronese like map Rn >0 → P(RA) sending x to [xa]a∈A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' This is a consequence of the kinematic formula for real projective spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' In the mixed situation, there is no such simple characterization: one has to work with the more complicated kinematic formula for products of projective spaces (Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='2) that we derive from [17, 9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' After passing to exponential coordinates w = log x, we bound the resulting integral over Rn with a strategy inspired by the theory of toric varieties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' The normal fan of the polytope P affords a decomposition of Rn into the normal cones C at the vertices of P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' The resulting integral over C can be bounded in terms of the characteristic function of the dual cone of C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Finally, an explicit a priori bound on the characteristic function (Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='4) completes the argument.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' The univariate case and a conjecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' The univariate case (n = 1) was settled by Jindal et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' [18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' They showed that for any subset S ⊆ R of cardinality t, we have (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='1) N(S) ≤ 2 π √t − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Moreover, they constructed a sequence St ⊆ Z of supports of cardinality t with N(St) ≥ c √ t for some constant c > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Consider for t1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , tn ≥ 1 the supports A1 := St1 × 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' × 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , An := 0 × .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' × 0 × Stn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' These supports describe a system of n equations, where the ith equation depends on xi only.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Therefore, N(A1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , An) = N(St1) · · · N(Stn), which with the above leads to the lower bound (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='2) N(A1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , An) ≥ cn√t1 · · · tn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' 2This conjecture was never published by Kushnirenko and apparently, he did not believe in it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' REAL ZEROS OF MIXED RANDOM FEWNOMIAL SYSTEMS 3 We complement this by showing that for any A = S1 ×.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='×Sn in product form, the expectation N(A, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , A) can be expressed in terms of the N(Si) as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' If A = S1 × .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' × Sn for finite Si ⊆ R, then N(A, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , A) = πn vol(Pn) N(S1) · · · N(Sn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' We conjecture that the lower bound (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='2) is optimal in the following sense.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Conjecture 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Let Ai ⊆ Rn be finite nonempty sets of cardinality ti with convex hull Pi, for i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' We denote by f0 the number of vertices of P1 + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' + Pn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Then N(A1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , An) ≤ κ(f0)√t1 · · · tn for some function κ : N → N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' In particular, N(A, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , A) ≤ κ(f0) t n 2 for A ⊆ Rn of cardinality t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' In the special case A = S1 × .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' × Sn, by combining (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='1) with Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='2, we obtain N(A, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , A)vol(Pn) ≤ 2n√ t, which is much smaller than what Conjecture 1 predicts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Improvement in unmixed case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' We can improve the dependence on n in the bound of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='1 in the case where all supports are equal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' For A ⊆ Rn of cardinality t ≥ 1 with convex hull P and f0 vertices, we have N(A, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , A) ≤ 1 vol(Pn) f0 �t−1 n � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' To compare this with the bound N(A, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , A) ≤ 21−n�t n � from [8], note that vol(Pn)−1 = Γ( n+1 2 )π− n+1 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Hence, for n → ∞, the new bound goes asymptotically faster to zero than the old one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' However, the bound in [8] also holds for nonstandard centered Gaussian coefficients ci(a) ∼ N(0, σi(a)2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Location of zeros.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' We finish with a result on the typical location of the zeros.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' It is well known that for random real polynomials, the positive reals zeros x tend to accumulate around 1: see [12] for the dense and [18] for the sparse case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' This means that w = log x accumulates around 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' We generalize this to multivariate systems as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Fix a finite supports A1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , An ⊆ Rn and consider a random system (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='3) with independent standard Gaussian coefficients ci(a) for the stretched supports mAi, where m ∈ Z>0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Fix ε > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Then the probability that the system has a zero w ∈ Rn with ∥w∥ > ε goes to zero, as m → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Preliminaries 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' A metric property of charts of real projective space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Consider the real projective space Pm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' We shall identify the tangent space T[y]Pm at a point [y] := [y0 : .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' : ym] with Ry⊥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' The standard Riemannian metric on Pm is defined by ⟨v, w⟩[y] := ∥y∥−2⟨v, w⟩ for v, w ∈ Ry⊥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' We denote by Py the orthogonal projection onto Ry⊥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Consider the affine chart (Pm)y0̸=0 → Rm, which maps [y0 : .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' : ym] to y−1 0 (y1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , ym).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Its inverse is given by π: Rm → (Pm)y0̸=0, (y1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , ym) �→ [1 : y1 : .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' : ym].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' By [6, Lemma 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='8], the derivative of π at y′ := (y1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , yn) satisfies Dy′π = ∥π(y′)∥−1Py.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' From this we conclude for the spectral norm (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='1) ∥Dy′π∥ ≤ ∥π(y′)∥−1 ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' 4 PETER B¨URGISSER 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' On the quantity σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' The relative position of two subspaces of a Euclidean vector space E can be quantified by a volume like quantity, which is crucial in the study of integral geometry in homogeneous spaces;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' see [17] and [9, §3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' To define this quantity, note first that there is an induced inner product on the exterior algebra Λ(E) given by (see [9, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='1)]) ⟨v1 ∧ · · · ∧ vk, w1 ∧ · · · ∧ wk⟩ = det(⟨vi, wj⟩)1≤i,j≤k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' More concretely, ∥v1 ∧ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' ∧ vn∥ = | det[v1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , vn]|, where [v1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , vn] denotes the matrix with columns vi ∈ E = Rn Let V, W be linear subspaces of E of complementary dimensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' We define (see [9, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='3)]) (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='2) σ(V, W) := ∥v1 ∧ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' ∧ vk ∧ w1 ∧ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' ∧ wm∥ ∈ [0, 1], where v1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , vk and w1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , wm are orthonormal bases of V and W, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Clearly, σ(V, W) = σ(W, V ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' The extreme cases are: σ(V, W) = 0 iff V ∩ W ̸= 0 and σ(V, W) = 1 iff v and W are orthogonal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' We have σ(V ⊥, W ⊥) = | det p |, if p: V ⊥ → W denotes the restriction of the orthogonal projection E → W to V ⊥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Moreover, σ(V, W) = σ(V ⊥, W ⊥).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Let ν1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , νm be an orthonormal basis of V ⊥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' We decompose νi = ν′ i + ν′′ i according to E = W ⊕ W ⊥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Then p(νi) = ν′ i and | det p | = ∥ν′ 1 ∧ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' ∧ ν′ m∥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' If ω1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , ωk denotes an orthonormal basis of W ⊥, we have σ(V ⊥, W ⊥) = ∥ν1 ∧ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' ∧ νm ∧ ω1 ∧ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' ∧ ωk∥ = ∥ν′ 1 ∧ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' ∧ ν′ m ∧ ω1 ∧ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' ∧ ωk∥ = ∥ν′ 1 ∧ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' ∧ ν′ m∥, the last equality holding since the span of the ν′ i equals W, which is orthogonal to the span of the wj, which is W ⊥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' This proves σ(V ⊥, W ⊥) = | det p |.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' For the second assertion, we use that | det p | = | det q |, where q: W ⊥ → V denotes the restriction of the orthogonal projection E → V to W ⊥, see [7, Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' □ Clearly, the definition (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='2) can be extended to more than two subspaces;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' see [9, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='5)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' But if W = W1 ⊕.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='⊕Wn is an orthogonal decomposition, we can reduce to the case of two subspaces: (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='3) σ(V, W1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , Wn) = σ(V, W1 + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' + Wn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' This is a consequence of [9, Lemma A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Characteristic function of convex cones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' We prove here an priori upper bound on the characteristic function of a convex cone, which is a key ingredient in the proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' A convex cone C ⊆ Rn is called proper if it is n-dimensional and pointed, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=', contained in a halfspace.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' It is well known that a convex C ⊆ Rn is proper iff its dual cone C∗ := {x ∈ Rn | ∀y ∈ C ⟨x, y⟩ ≥ 0} is proper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Let g ∈ GL(n, R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Then K := g(C) is a proper cone and gT (K∗) = C∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' We denote by int(C) the interior of C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' We assign to a proper cone C ⊆ Rn the function (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='4) vC : int(C∗) → R>0, vC(x) := � C e−⟨x,y⟩ dy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' One calls vC the characteristic function (or Koszul-Vinberg characteristic) of C∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' It is a useful analytic tool for investigating convex cones, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=', see [13, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='3] and [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=', Rn >0 is self dual and vRn >0(x) = (x1 · .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' · xn)−1 for x ∈ Rn >0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' REAL ZEROS OF MIXED RANDOM FEWNOMIAL SYSTEMS 5 The homogeneity property vC(tx) = t−nvC(x) for t > 0, x ∈ int(C∗) is immediate to check.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Moreover, the transformation formula implies the following invariance property: if g ∈ GL(n, R) and K := g(C), then gT (K∗) = C∗ and (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='5) vK(z) = | det g| vC(gT z) for z ∈ int(K∗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' The function log vC is strictly convex and essentially equals Nesterov and Ne- mirowski’s universal self-concordant barrier function [26, §2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='5], see [14] for the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' The following result is well known, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=', see [14, Thm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' We provide the simple proof for the sake of completeness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' For x ∈ int(C∗) we have vC(x) = n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' vol � y ∈ C | ⟨x, y⟩ ≤ 1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' We fix x ∈ int(C∗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' For t ≥ 0 we define the n − 1-dimensional slice Ct := � y ∈ C | ⟨x, y⟩ = t∥x∥ � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' By Fubini, we get vC(x) = � C e−⟨x,y⟩ dy = � ∞ 0 voln−1(Ct)e−t∥x∥dt = voln−1(C1) � ∞ 0 tn−1e−t∥x∥dt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Note that � ∞ 0 tn−1e−t∥x∥dt = 1 ∥x∥n � ∞ 0 sn−1e−sds = 1 ∥x∥n Γ(n) = (n − 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' ∥x∥n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Moreover, we have voln−1(C1) = n voln � y ∈ C | ⟨x, y⟩ ≤ ∥x| � = n ∥x∥n voln � y ∈ C | ⟨x, y⟩ ≤ 1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' It follows that vC(x) = n ∥x∥n voln � y ∈ C | ⟨x, y⟩ ≤ 1 � (n − 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' ∥x∥n = n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' voln � y ∈ C | ⟨x, y⟩ ≤ 1 � , completing the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' □ The following technical result is essential for the proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Let C ⊆ Rn be a proper cone and b1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , bn ∈ C∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Then we have ∥b1 ∧ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' ∧ bn∥ · vC(b1 + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' + bn) ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' This bound is optimal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' We denote by cone(b1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , bn) ⊆ C∗ the convex cone generated by b1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , bn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Without loss of generality, we may assume that b1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , bn ∈ C∗ is a basis of Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Let b∗ 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , b∗ n denote its dual basis, that is ⟨b∗ i , bj⟩ = δij.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' In matrix terminology, [b∗ 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , b∗ n]T [b1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , bn] = In, hence (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='6) det[b∗ 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , b∗ n] det[b1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , bn] = ±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Moreover, the definition of the dual basis implies that cone(b∗ 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , b∗ n) is the dual cone of cone(b1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , bn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Therefore, by duality, we get C ⊆ cone(b1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , bn)∗ = cone(b∗ 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , b∗ n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Put d := b1 + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' + bn and let y ∈ C such that ⟨d, y⟩ ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Since C ⊆ cone(b∗ 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , b∗ n), we can write y = � i tib∗ i with ti ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Moreover � i ti = ⟨d, y⟩ ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Thus we have shown the inclusion {y ∈ C | ⟨d, y⟩ ≤ 1} ⊆ conv{0, b∗ 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , b∗ n}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' 6 PETER B¨URGISSER This implies the inequality of volumes voln{y ∈ C | ⟨d, y⟩ ≤ 1} ≤ volnconv{0, b∗ 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , b∗ n} = 1 n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='| det[b∗ 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , b∗ n]|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Multiplying with n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' | det[b1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , bn]|, using (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='6) and taking into account Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='3, the assertion follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' The optimality is attained for C = Rn + and bi = diei with di > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Indeed, we have | det[b1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , bn] |vC(d) = d1 · .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' · dn (d1 · .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' · dn)−1 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' □ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Vertices and normal fan of sums of polytopes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' We recall here some basic facts about polytopes and their normal fans;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' see [30, §7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='1] for more details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Let P ⊆ Rn be a full-dimensional polytope and v be a vertex of P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' The cone Pv of P at v is defined as the convex cone generated by P − v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' It is a proper cone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' The dual cone of Pv, also called the inner normal cone of P at v, is defined as P ∗ v := {y ∈ Rn | ∀x ∈ P ⟨x, y⟩ ≥ 0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' The cone P ∗ v is also proper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' The union over all P ∗ v equals Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Moreover, for v1 ̸= v2, we have dim(P ∗ v1 ∩ P ∗ v2) < n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' In fact, the P ∗ v are the n-dimensional cones of the normal fan of P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' We will need the following result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Let P1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , Pn be polytopes in Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' There is an injective map Vert(P1 + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' + Pn) → Vert(P1) × .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Vert(Pn), v �→ (v1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , vn) satisfying v = v1 + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' + vn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Moreover, if we denote by Πi the cone of Pi at the vertex vi, then Π := Π1 + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' + Πn is the cone of P1 + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' + Pn at the vertex v1 + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' + vn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' In particular, Π∗ = Π∗ 1 ∩ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' ∩ Π∗ n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' For the following, see [28, §1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' To a nonzero weight ω ∈ Rn we assign the face of Pi, given by F(Pi, ω) := � w ∈ Rn | ⟨w, ω⟩ = min w′∈Pi⟨w′, ω⟩ � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' We have (see [28, Thm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='5]) F(P1 + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' + Pn, ω) = F(P1, ω) + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' + F(Pn, ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Suppose that F(P1 + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' + Pn, ω) = {v} is a vertex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Then all F(Pi, ω) = {vi} are vertices and v = v1 + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' vn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' It is easy to see that the vi are uniquely determined by v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' The map v �→ (v1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , vn) is as required.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' The remaining assertions are clear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' □ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Random intersections in products of projective spaces 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' The kinematic formula.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' We specialize here the general kinematic formula for homo- geneous spaces from [9, Thm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='2] to the case of products of real projective spaces (Theo- rem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' For this purpose, we define the average scaling factor and we explain how to bound it in Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Consider the product Ω := Pm1 × · · · × Pmn of real projective spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' The product G := O(m1 +1)×· · ·×O(mn +1) of orthogonal groups acts transitively on Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' So Ω is a homogeneous space and we have an induced transitive action of G on the tangent bundle of Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' We focus on the special hypersurfaces H1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , Hn of Ω of the following shape (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='1) H1 := Pm1−1 × Pm2 × · · · × Pmn, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , Hn := Pm1 × Pm2 · · · × Pmn−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' They are determined upon selecting hyperplanes Pmi−1 in Pmi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Our goal is to investigate the average cardinality of the intersection Z ∩H1 ∩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='∩Hn of an n-dimensional smooth submanifold REAL ZEROS OF MIXED RANDOM FEWNOMIAL SYSTEMS 7 Z ⊆ Ω with random Hi corresponding to independently chosen uniform random hyperplanes in Pmi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Fix a distinguished point ω ∈ Ω and denote by K the stabilizer group of ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=', take ωi = [1 : 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' : 0] for all i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Notice that we have an induced action of K on the tangent space T := TωΩ, which we can identify with the standard action of K = O(m1) × · · · × O(mn) on T = Rm1 × · · · × Rmn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' This induces an action of K on the Grassmann manifold Gr(d, T ) of linear subspaces of T with codimension d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Note that this action is transitive if n = 1, but not for n ≥ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' We assign to an n-dimensional smooth submanifold Z ⊆ Ω a map (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='2) Z → Gr(n, T )/K, z �→ KgNpZ as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' For given p ∈ Z choose any g ∈ G such that gp = ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' The induced action of g maps the tangent space TpΩ to TωΩ = T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' This transports the normal subspace NpZ ⊆ TpΩ of Z at p to gNpZ ⊆ T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Note that the K-orbit of the subspace gNpZ does not depend on the choice of g, which shows that the map (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='2) is well defined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' We call the submanifold Z cohomogeneous if the map (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='2) is constant;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' see [9, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='1] and [25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' For instance, a product Z = L1 × .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' × Ln of lines Li in Pmi is cohomogeneous: indeed, the map (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='2) sends any point p ∈ Z to the K-orbit of R × .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' × R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' The average scaling factor function of the n-dimensional submanifold Z of Pm1 × · · · × Pmn is the function ¯σZ : Z → [0, 1] defined at p ∈ Z by ¯σZ(p) := E Liσ(gNpZ, L1 × .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' × Ln), where g ∈ G satisfies gp = ω0, and the expectation is taken over uniformly random lines Li in T = Rm1 × · · · × Rmn (see (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='2) for the definition of σ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Note that due to the averaging over the K-orbit, the choice of g is irrelevant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' The above definition is consistent with the one in [9, Def.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='1], since (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='3) σ(gNpZ, L1 × .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' × Ln) = σ(gNpZ, L1 × 0 × · · · × 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , 0 × · · · × 0 × Ln) by (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='3);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' indeed note that the n lines L1 × 0 × · · · × 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' are pairwise orthogonal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' We introduce the notation ρn := E ∥x∥ = √ 2 Γ( n+1 2 ) Γ( n 2 ) ≤ √n for standard Gaussian x ∈ Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' We note that by [6, Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='25], (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='4) vol(Pmi−1) vol(Pmi) = 1 √π Γ( mi+1 2 ) Γ( mi 2 ) = 1 √ 2π ρmi, We can now explicitly state the kinematic formula for products of real projective spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' For any n-dimensional submanifold Z of Pm1 × · · · × Pmn, we have E g∈G#(Z ∩ g1H1 ∩ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' ∩ gnHn) = (2π)− n 2 ρm1 · · · ρmn � Z ¯σZ dZ, where the hypersurfaces Hi are defined in (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' If σK : Z × H1 × .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' × Hn → [0, 1] denotes the average scaling function from [9, Def.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='1], then [9, Thm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='2] states that E g∈G#(Z ∩ g1H1 ∩ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' ∩ gnHn) = 1 vol(Ω)n � Z×H1×.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='×Hn σK d(Z × H1 × .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' × Hn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' 8 PETER B¨URGISSER By K-invariance and (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='3), we have σK(z, y1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , yn) = ¯σZ(z) for all z ∈ Z and yi ∈ Hi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Therefore, E g∈G#(Z ∩ g1H1 ∩ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' ∩ gnHn) = vol(H1) · · · vol(Hn) vol(Ω)n � Z ¯σZ dZ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Finally, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='4) gives vol(H1) · · · vol(Hn) vol(Ω)n = n � i=1 vol(Pmi−1) vol(Pmi) = (2π)− n 2 ρm1 · · · ρmn, which completes the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' □ Example 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' A product Z = L1 × .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' × Ln of lines Li is cohomogeneous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='2 implies that ¯σZ = (2/π)n/2(ρm1 · · · ρmn)−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' We shall focus on submanifolds Z arising as the image of an injective smooth map (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='5) ψ: U → Pm1 × · · · × Pmn, ψ(x) := (ψ1(x), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , ψn(x)), where the ψi : U → Pmi are smooth maps defined on an open subset U ⊆ Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Let us denote by Jψ(x) := � det((Dxψ)T Dxψ) the absolute Jacobian of ψ at x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' The transformation formula implies that (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='6) � Z ¯σZ dZ = � U ¯σZ(ψ(x))Jψ(x) dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' We next analyze the integrand on the right-hand side more closely.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Let x ∈ U and put Ti := Tψi(x)Pmi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Let λ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , λn be independent standard Gaussian linear forms on Ti.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' This defines the random linear forms λi ◦ Dxψi on Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Then ρm1 · · · ρmn ¯σZ(ψ(x))Jψ(x) = E λ1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=',λn ∥(λ1 ◦ Dxψ1) ∧ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' ∧ (λn ◦ Dxψn)∥ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' To simplify notation, we assume w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='l.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='o.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' that p = ψ(x) is the distinguished point ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' We also identify Ti with Rmi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' For ui ∈ Ti with ∥ui∥ = 1 consider the line Li = Rui and the orthogonal projection pi : Ti → Li, which is is given by pi(w) = µi(w)ui with the linear form on Ti defined by µi(w) := ⟨w, ui⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Thus the orthogonal projection pL : T1 × · · · × Tn → L1 × · · · × Ln is described by µ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , µn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' This implies that (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='7) | det(pL ◦ Dxψ)| = ∥(µ1 ◦ Dxψ1) ∧ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' ∧ (µn ◦ Dxψn)∥ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' On the other hand, according to Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='1, we have σ(L1 × · · · × Ln, NpZ) = | det p′ L|, where p′ L : TpZ → L1 × · · · × Ln denotes the restriction of pL to TpZ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Applying the determinant to the composition of Dxψ with p′ L, we get Jψ(x) | det p′ L| = | det(pL ◦ Dxψ)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' By averaging over random lines Li, we deduce from the definition of ¯σZ and the above that Jψ(x)¯σZ(p) = Jψ(x) E Liσ(NpZ, L1 × · · · × Ln) = Jψ(x) E Li| det p′ L| = E Li| det(pL ◦ Dψ)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Finally, a standard Gaussian linear form on Ti is obtained as λi = riµi with independent random variables ri and ui, where ui is uniformly random in the unit sphere of Ti and r2 i is χ2-distributed REAL ZEROS OF MIXED RANDOM FEWNOMIAL SYSTEMS 9 with mi degrees of freedom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Thus E ri = ρmi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Altogether, we obtain, using (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='7), ρm1 · · · ρmnJψ(x)¯σZ(p) = ρm1 · · · ρmnE | det(pL ◦ Dψ)| = ρm1 · · · ρmnE ∥(µ1 ◦ Dxψ1) ∧ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' ∧ (µn ◦ Dxψn)∥ = E ∥(λ1 ◦ Dxψ1) ∧ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' ∧ (λn ◦ Dxψn)∥ , which completes the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' □ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Bounding the average scaling factor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' In order to bound the quantity in Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='4, we use affine charts for the product of projective spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Denote by yi0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , yimi coordinates for Pmi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Fix 0 ≤ ri ≤ mi for i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , n, and consider the inverse of the affine chart πiri : Rmi → (Pmi)yiri̸=0, see Subsection 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' We describe the maps ψi from (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='5) in these charts by smooth functions defined on open subsets of Rn, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='8) ϕiri : Rn ⊇ Uiri → Rmi, satisfying ψi := πiri ◦ ϕiri.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' In order to simplify notation, we assume w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='l.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='og.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' ri = 0 and write πi := πi0, ϕi := ϕi0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' In these charts, the combined map ψ of (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='5) is represented by a map ϕ: U → Rm1 × · · · × Rmn, ϕ(x) = (ϕ1(x), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , ϕn(x)) defined on some open subset U ⊆ Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' We view the derivative M(x) := Dxϕ as a matrix of format (m1 + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' + mn) × n with blocks Mi(x) := Dxϕi ∈ Rmi×n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' For 1 ≤ ji ≤ mi, i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , n, we denote by M(x)j1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=',jn the n × n submatrix of M(x) obtained by selecting in the ith block the jith row.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Let x ∈ U be such that [yi] := ψi(x) ∈ (Pmi)y0̸=0 for all i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Then ρm1 · · · ρmn ¯σZ(ψ(x))Jψ(x) ≤ � j1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=',jn | det M(x)j1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=',jn|, where the sum is over the n-tuples (j1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , jn) ∈ [m1] × .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' × [mn].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' From ψi = πi ◦ ϕi we get Dψi = Dπi ◦ Dϕi, where we drop arguments for notational simplicity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Let λi : Ti → R be a linear form on Ti = Tψi(x)Pmi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Then, defining wi := λi ◦ Dπi, λi ◦ Dψi = λi ◦ Dπi ◦ Dϕi = wi ◦ Dϕi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' If we identify λi ◦ Dxψi with a vector in Rn and wi with a vector in Rmi, then we have the matrix product of formats n × � i mi and � i mi × n, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='9) R(x) := \uf8ee \uf8ef\uf8f0 (λ1 ◦ Dxψ1)T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' (λn ◦ Dxψ1)T \uf8f9 \uf8fa\uf8fb = \uf8ee \uf8ef\uf8ef\uf8ef\uf8f0 wT 1 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' 0 0 wT 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' 0 0 wT n \uf8f9 \uf8fa\uf8fa\uf8fa\uf8fb · \uf8ee \uf8ef\uf8f0 M1(x) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Mn(x) \uf8f9 \uf8fa\uf8fb .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='4 tells us that ρm1 · · · ρmn ¯σZ(ψ(x))Jψ(x) = E λi| det R(x))|, where the expectation is over independent standard Gaussian λi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Note that the resuling random vector wi := λi ◦ Dπi is not standard Gaussian anymore.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' However ∥Dπi∥ ≤ 1 by (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='1) and Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='6 below implies that E w2 ij ≤ 1 for the jth component wij of wi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' From Binet-Cauchy, we obtain from (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='9) (det R(x))2 = � j1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=',jn w2 1j1 · · · w2 njn(det M(x)j1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=',jn)2, 10 PETER B¨URGISSER where the sum is over all (j1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , jn) ∈ [m1] × .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' × [mn].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Taking expectations yields E w(det R(x))2 ≤ � j1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=',jn (det M(x)j1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=',jn)2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' We conclude that E w| det R(x))| ≤ � E w(det R(x))2� 1 2 ≤ � j1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=',jn | det M(x)j1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=',jn|, which completes the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' □ Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Let A ∈ Rp×m with ∥A∥ ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' If y ∈ Rp is standard Gaussian, then the random variable z := yA satisfies E |zj|2 ≤ 1 for all j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' From zj = � i yiaij we get z2 j = � i,k yiykaijakj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Hence E z2 j = � i a2 ij.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Finally, � i a2 ij = ∥A(ej)∥2 ≤ ∥A∥2 ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' □ 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Mixed random fewnomial systems The goal here is to provide the proofs of the assertions in the introduction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Let us first introduce some notation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' We assign to a real valued function c: A → R on a finite nonempty subset A ⊆ Rn the real analytic function FA,c : Rn → R (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='1) FA,c(w) := � a∈A c(a)e⟨a,w⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' In the special case where A consists of integer vectors, FA,c arises from the Laurent polynomial fA,c(x) = � a∈A c(a)xa by a substitution: FA,c(w) = fA,c(ew).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Generally, we have the following equivariance property: for g ∈ GL(n, R) and b ∈ Rn, (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='2) FA+b,b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='c(w) = e⟨b,w⟩FA,c(w), Fg(A),g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='c(w) = FA,c(gT w), where (g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='c)(a) := c(g−1a) and b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='c(a) := c(a − b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Suppose now we have n such analytic functions encoded by ci : Ai → R, for i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Throughout, we denote by ti the cardinality of Ai and by Pi its convex hull.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' We are interested in the number N of nondegenerate zeros w ∈ Rn of the system (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='3) FA1,c1(w) = 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , FAn,cn(w) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Our goal is to study the expected number of nondegenerate zeros for random coefficient func- tions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' More specifically, we denote by N(A1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , An) the expectation of N, when all the coeffi- cients ci(a), for i ∈ [n] and ai ∈ Ai, are independent standard Gaussians.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Clearly, N(A1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , An) is invariant under permutations of the Ai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Also, N(A1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , An) = 0 if ti = 1 for some i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' More- over, we have N(A1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , An) = 0 if dim(P1 + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' + Pn) < n, see Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Equation (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='2) implies the following invariance properties (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='4) N(A1 + b1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , An + bn) = N(A1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , An), N(g(A1), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , g(An)) = N(A1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , An), where b1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , bn ∈ Rn and g ∈ GL(n, R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Our main result is Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='1 stated in the introduction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Note that it gives the correct answer N(A1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , An) = 0 if ti = 1 for some i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Example 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' In the case t1 = .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' = tn = 2, the Pi are segments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' If they are linearly independent, P1 + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' + Pn is a parallelepiped with 2n vertices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Thus, Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='1 gives N(A1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , An) ≤ (2/π) n 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' This can be easily verified directly as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Suppose Ai = {ai, bi}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' We claim that N(A1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , An) = 2−n if b1 − a1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , bn − an are linearly independent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' For showing this, by the REAL ZEROS OF MIXED RANDOM FEWNOMIAL SYSTEMS 11 invariance properties (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='4), it suffices to consider the case where Ai = {0, ei}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Then (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='3) amounts to the system ci(0) + ci(ei)ewi = 0, for i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , n, which has a solution iff ci(0)ci(ei) < 0, for all i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' This happens with probability 2−n, hence indeed N(A1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , An) = 2−n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Let us look at a special instance of (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' To the given finite nonempty subsets A1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , An ⊆ Rn, we assign the maps ψi : Rn >0 → P(RAi) ≃ Pmi, ψi(x) := [xai]ai∈Ai, where mi := #Ai − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Recall that Pi denotes the convex hull of Ai and put P := P1 + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' + Pn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' We consider the combined map (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='5) ψ: Rn >0 → Pm1 × · · · × Pmn, ψ(x) := (ψ1(x), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , ψn(x)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' The map ψ is injective iff P is n-dimensional.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Moreover, if P is not n-dimensional, then rankDxψ < n for all x ∈ Rn >0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Assume ψ(exp(w)) = ψ(exp(w′)) for w ̸= w′ ∈ Rn Then there are ci ∈ R such that for all ai ∈ Ai we have ⟨ai, w − w′⟩ = ci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Hence, ⟨x, w − w′⟩ = ci for all xi ∈ Pi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' It follows that ⟨x, w − w′⟩ = c1 + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' + cn for all x ∈ P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Hence dim P < n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Conversely, assume there is a nonzero w ∈ Rn and c ∈ R such that ⟨x, w⟩ = c for all x ∈ P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Then there are ci ∈ R such that ⟨xi, w⟩ = ci for all xi ∈ Pi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' It follows that for any x ∈ Rn >0 and any s ∈ R we have ψi(eswx) = [(esw)aixai]ai∈Ai = [es⟨ai,w⟩xai]a∈Ai = [escixai]a∈Ai = ψi(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Hence ψ is not injective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Moreover, w is in the kernel of the derivative of ψi at x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' □ We denote by Z the image of ψ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Then we can write N(A1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , An) = E g∈G#(Z ∩ g1H1 ∩ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' ∩ gnHn), where the hypersurfaces Hi are defined in (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' By Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='2 and (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='6), this can be expressed as (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='6) N(A1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , An) = (2π)− n 2 ρm1 · · · ρmn � Rn > (¯σZ ◦ ψ)Jψ dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' We make the coordinate change Rn → Rn >0, (w1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , wn) �→ x = (e−w1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , e−wn), which has the absolute Jacobian x1 · · · xn, and obtain (slightly abusing notation) (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='7) � Rn > (¯σZ ◦ ψ)Jψ dx = � Rn x1 · · · xn(¯σZ ◦ ψ)Jψ dw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Recall from Subsection 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='4 that each vertex v of P defines the inner normal cone Cv := P ∗ v .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' We can write (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='8) Rn = � v Cv as the union over the vertices v of P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Moreover, we know that dim(Cv ∩ Cv′) < n for different vertices v, v′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Therefore, we can rewrite (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='7) as the sum � v � Cv x1 · · · xn(¯σZ ◦ ψ)Jψ dw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' over the f0 many vertices v of P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Fix now a vertex v of P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' According to Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='5, there are vertices vi of Pi, for i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , n, satisfying v = v1 + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' + vn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Note that ai ∈ Ai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' 12 PETER B¨URGISSER We define the map ϕi : Rn >0 → RAi\\{vi} by ϕi(x) = (xai−vi)ai∈Ai\\{vi} ∈ RAi\\{vi} ≃ Rmi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Note that ϕi expresses ψi in the affine chart given by P(RAi)yvi ̸=0 → Rai∈Ai\\{vi}, which maps [yai]ai∈Ai to y−1 vi (yai)ai∈Ai\\{vi}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' So we are in the setting of Subsection 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='2 and ϕi is an instance of (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' The rows of the matrix M(x) := Dxϕ are labeled by the disjoint union A1⊔.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='⊔An and M(x) has n columns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' For any n-tuple (a1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , an) with ai ∈ Ai \\{vi}, we denote by M(x)a1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=',an the n×n submatrix of M(x), obtained by selecting from M(x) the rows numbered by a1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , an.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' We apply Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='5 to bound ρm1 · · · ρmn � Cv x1 · · · xn(¯σZ ◦ ψ)Jψ dw ≤ � a1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=',an � Cv x1 · · · xn| det M(x)a1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=',an| dw, where the sum runs over all tuples (a1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , an) with ai ∈ Ai \\ {vi}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' So there are m1 · · · mn many summands.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' To prove Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='1, it is sufficient to show that (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='9) � Cv x1 · · · xn| det M(x)a1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=',an| dw ≤ 1 for each vertex v and each selection (a1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , an).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' The component (row) of the derivative Dxϕi corresponding to ai ∈ Ai \\ {vi} is given by (Dxϕi)ai = xai−vi(ai − vi)diag(x−1 1 , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , x−1 n ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Hence the n × n-submatrix M(x)a1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=',an of M(x) is given by M(x)a1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=',an = diag(xa1−v1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , xan−vn) \uf8ee \uf8ef\uf8f0 a1 − v1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' an − vn \uf8f9 \uf8fa\uf8fb diag(x−1 1 , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , x−1 n ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Therefore, setting bi := ai − vi, we get x1 · · · xn det(M(x)a1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=',an) = xb1+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='+bn det[b1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , bn].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Let us write Πi for the cone of Pi at the vertex vi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' By definition, bi ∈ Π∗ i .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' By Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='5, Π := Π1+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='+Πn equals the cone of the polytope P = P1+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='+Pn at the vertex v = v1+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='+vn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Hence bi ∈ Π∗ i ⊆ Π∗ 1 ∩ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' ∩ Π∗ n = Π∗ = Cv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' We can therefore rewrite the left-hand side of (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='9) as (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='10) � Cv x1 · · · xn| det M(x)a1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=',an| dw = � Cv e−⟨b1+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='+bn,w⟩| det[b1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , bn]| dw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' By Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='4, this is at most 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' This shows claim (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='9) and finishes the proof of Theo- rem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' □ 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Proof of Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' For finite Si ⊆ R, put A := S1 × .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' × Sn, and consider the maps ψi : R>0 → P(RSi), xi �→ [xai i ]ai∈Si, ψ: Rn >0 → P(RA), x �→ [xa]a∈A with images Zi and Z, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' The kinematic formula for real projective space gives (see [9, Cor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='3]) N(Si) = vol(Zi) vol(P1), N(A, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , A) = vol(Z) vol(Pn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' The key insight is that Z is obtained as the image of Z1 × .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' × Zn under the Segre embedding P(RS1) × .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' × P(RSn) → P(RS1 ⊗ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' ⊗ RSn) ≃ P(RA), REAL ZEROS OF MIXED RANDOM FEWNOMIAL SYSTEMS 13 which is well known to be isometric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Therefore, vol(Z) = vol(Z1) · · · vol(Zn), and this completes the proof of Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' □ 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Given is a finite subset A ⊆ Rn with convex hull P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' By Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='2 we can can w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='l.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='o.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' assume that dim P = n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Consider the injective map (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='11) ψ: Rn >0 → P(RA), ψ(x) := [xa]a∈A with image Z ⊆ P(RA).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' The kinematic formula for real projective space [9, Cor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='3] is con- siderably simpler than the one in Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='2, since O(m) acts transitively on the Grassmann manifolds Gr(k, Rm): we have (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='12) N(A, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , A) = vol(Z) vol(Pn) = 1 vol(Pn) � Rn >0 Jψ(x) dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' We now proceed as in the proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' We make the coordinate change x = e−w and decompose the resulting integral according to the decomposition (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='8) of Rn into the full dimensional cones Cv corresponding to vertices v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Thus � Rn >0 Jψ(x) dx = � Rn x1 · · · xnJψ(x) dw = � Cv � Cv x1 · · · xnJψ(x) dw For a fixed vertex v of P, we consider the map ϕ: Rn >0 → RA\\{v} defined by (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='13) ϕ(x) = (xa−v)a∈A\\{v}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Then we have ψ(x) = π(ϕ(x)), where π is the inverse of the chart P(RA)yv̸=0 → RA\\{v}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' It is easy to verify that Jψ(x) ≤ Jϕ(x) using ∥Dϕ(x)π∥ ≤ 1, see (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Le us view M(x) := Dxϕ as a matrix whose rows are labelled by elements of A \\ {v}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' and denote by M(x)a1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=',an the submatrix of M(x) obtained by selecting the rows labelled by the ai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Binet-Cauchy implies that Jϕ(x)2 = det(M(x)T M(x)) = � a1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=',an (det M(x)a1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=',an)2, with the sum running over all n-element subsets {a1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , an} of A\\{v}, of which there are �t−1 n � many.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' This implies Jϕ(x) ≤ � a1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=',an | det M(x)a1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=',an|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' We have arrived at � Cv x1 · · · xnJψ(x) dw ≤ � a1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=',an � Cv x1 · · · xn| det M(x)a1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=',an| dw ≤ �t − 1 n � , where the right-hand inequality follows from Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='4 as in (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' □ 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' The key observation is the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Define for ε > 0 Dε := {x ∈ Rn | ∥x∥ ≥ ε}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Let C ⊆ Rn be a proper cone, d ∈ int(C∗), and ε > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Then lim m→∞ mn � C∩Bε e−m⟨d,w⟩ dw = 0 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Since ∩m≥1Dmε = ∅, basic integration theory implies lim m→∞ � C∩Dmε e−⟨d,u⟩ du = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Making the change of variables u = mw shows the assertion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' □ 14 PETER B¨URGISSER We now observe the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Let U ⊆ Rn >0 be open.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Analogously as for (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='6), one shows that (2π)− n 2 ρm1 · · · ρmn � U x1 · · · xn(¯σZ ◦ ψ)Jψ dw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' equals the expected number of nondegenerate zeros in U of the random system (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' We follow the proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Note that stretching the support does not change the Newton polytopes Pi and P = P1 + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' + Pn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Fix a vertex v of P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' According to Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='5, there are vertices vi of Pi, for i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , n, satisfying v = v1 + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' + vn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Tracing the proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='1, one sees that it is sufficient to show that (compare (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='10)) for any selection a1 ∈ A1 \\ {v1}, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , an ∈ An \\ {vn}, the vectors bi = ai − vi satisfy lim m→∞ � Cv e−m⟨b1+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='+bn,w⟩| det[mb1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , mbn]| dw = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' However, this is a consequence of Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' □ 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Additional comment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' It is instructive to see how (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='12) directly follows from the more general kinematic formula in Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Consider the injective map ψ from (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='11) with image Z ⊆ P(RA).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' We use ψ to define the map (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='14) ψd : Rn >0 → (P(RA))n, x �→ (ψ(x), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , ψ(x)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' The image Zd = {(y, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , y) | y ∈ Z} ⊆ (Pm)n of ψd is the diagonal embedding of Z in the product of projective spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' By Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='2 and (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='6) we have N(A, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , A) = (2π)− n 2 ρn m � Rn >0 (¯σZd ◦ ψd)Jψd dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Via Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='4 below, we indeed conclude that N(A, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , A) = 1 vol(Pn) � Rn >0 Jψ dx = vol(Z) vol(Pn), which is (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='12).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' For x ∈ Rn >0 we have ρn m ¯σZd(ψd(x))Jψd(x) = (2π) n 2 vol(Pn)Jψ(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='4 applied to the map ψd from (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='14) gives (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='15) ρn m ¯σZd(ψd(x))Jψd(x) = E λ1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=',λn ∥(λ1 ◦ Dxψ) ∧ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' ∧ (λn ◦ Dxψ)∥ where the λi are standard Gaussian linear forms on Tψ(x)Pm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Take an isometry Tψ(x)Pm ≃ Rm, view λi ∈ Rm as a vector, and view ∆ := Dxψ as a matrix in Rm×n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' We note that Jψ(x) = � det(∆T ∆).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' The right-hand side of (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='15) can be written as the expectation E λi| det R(x)|, with the matrix (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='16) R(x) := \uf8ee \uf8ef\uf8f0 λT 1 ◦ Dxψ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' λT n ◦ Dxψ \uf8f9 \uf8fa\uf8fb = \uf8ee \uf8ef\uf8f0 λT 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' λT n \uf8f9 \uf8fa\uf8fb · ∆.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' We thus need to prove that (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='17) E λi| det R(x)| = (2π) n 2 vol(Pn) � det(∆T ∆).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' REAL ZEROS OF MIXED RANDOM FEWNOMIAL SYSTEMS 15 In order to show this, by the singular value decomposition, we may assume that ∆ = � D 0 � , where D = diag(σ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' , σn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Note that � det(∆T ∆) = σ1 · · · σn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Then (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='16) can be written as R(x) = ΛD, where Λ ∈ Rn×n is a standard Gaussian square matrix and we get E Λ| det(R(x))| = σ1 · · · σn E w| det Λ|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' It is well known that E Λ| det Λ| = ρnρn−1 · · · ρ1, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=', see [6, Cor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' On the other hand (see [6, Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='25]) ρm = √ 2π vol(Pm−1) vol(Pm) , hence ρnρn−1 · · · ρ1 = (2π) n 2 vol(Pn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' We have thus verified (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='17).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' □ References [1] Mart´ın Avenda˜no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' The number of roots of a lacunary bivariate polynomial on a line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Journal of Symbolic Computation, 44(9):1280–1284, 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' [2] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Bernstein.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' The number of roots of a system of equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Funkcional.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' i Priloˇzen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=', 9(3):1–4, 1975.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' [3] Fr´ed´eric Bihan and Boulos El-Hilany.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' A sharp bound on the number of real intersection points of a sparse plane curve with a line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Journal of Symbolic Computation, 81:88–96, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' [4] Fr´ed´eric Bihan and Frank Sottile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' New fewnomial upper bounds from Gale dual polynomial systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Mosc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=', 7(3):387–407, 573, 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' [5] Ir´en´ee Briquel and Peter B¨urgisser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' The real tau-conjecture is true on average.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Random Structures Algo- rithms, 57(2):279–303, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' [6] Peter B¨urgisser and Felipe Cucker.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Condition, volume 349 of Grundlehren der Mathematischen Wis- senschaften [Fundamental Principles of Mathematical Sciences].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Springer, Heidelberg, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' The geometry of numerical algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' [7] Peter B¨urgisser, Felipe Cucker, and Pierre Lairez.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Rigid continuation paths ii.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' structured systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Preprint arXiv:2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='10997, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' [8] Peter B¨urgisser, Alperen A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Erg¨ur, and Josu´e Tonelli-Cueto.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' On the number of real zeros of random fewno- mials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' SIAM J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Algebra Geom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=', 3(4):721–732, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' [9] Peter B¨urgisser and Antonio Lerario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Probabilistic Schubert calculus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Reine Angew.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=', 760:1–58, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' [10] Ren´e Descartes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' La G´eom´etrie.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Librairie Scientifique A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Hermann, 1886.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Digital reproduction of 2008 by Project Gutenberg (Ebook number: 26400).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' [11] Mathias Drton, Bernd Sturmfels, and Seth Sullivant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Lectures on algebraic statistics, volume 39 of Oberwol- fach Seminars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Birkh¨auser Verlag, Basel, 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' [12] Alan Edelman and Eric Kostlan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' How many zeros of a random polynomial are real?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Bull.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' (N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' ), 32(1):1–37, 1995.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' [13] Jacques Faraut and Adam Kor´anyi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Analysis on symmetric cones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Oxford Mathematical Monographs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' The Clarendon Press, Oxford University Press, New York, 1994.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Oxford Science Publications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' [14] Osman G¨uler.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Barrier functions in interior point methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Oper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=', 21(4):860–885, 1996.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' [15] Bertrand Haas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' A simple counterexample to Kouchnirenko’s conjecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Beitr¨age Algebra Geom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=', 43(1):1–8, 2002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' [16] Fritz Horn and Roy Jackson.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' General mass action kinetics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Arch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Rational Mech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=', 47:81–116, 1972.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' [17] Ralph Howard.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' The kinematic formula in Riemannian homogeneous spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Mem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=', 106(509):vi+69, 1993.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' [18] Gorav Jindal, Anurag Pandey, Himanshu Shukla, and Charilaos Zisopoulos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' How many zeros of a random sparse polynomial are real?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' In ISSAC’20—Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation, pages 273–280.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' ACM, New York, [2020] ©2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' [19] Askold G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Khovanski˘ı.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' A class of systems of transcendental equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Dokl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Akad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Nauk SSSR, 255(4):804– 807, 1980.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' [20] Askold G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Khovanski˘ı.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Fewnomials, volume 88 of Translations of Mathematical Monographs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' American Math- ematical Society, Providence, RI, 1991.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' [21] Pascal Koiran.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Shallow circuits with high-powered inputs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Second Symposium on Innovations in Com- puter Science, ICS, 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' [22] Pascal Koiran, Natacha Portier, and S´ebastien Tavenas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' On the intersection of a sparse curve and a low-degree curve: a polynomial version of the lost theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Discrete Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Geom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=', 53(1):48–63, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' 16 PETER B¨URGISSER [23] Pascal Koiran, Natacha Portier, and S´ebastien Tavenas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' A Wronskian approach to the real τ-conjecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Symbolic Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=', 68(part 2):195–214, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' [24] Anatoli G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Kushnirenko.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Poly`edres de Newton et nombres de Milnor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Invent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=', 32(1):1–31, 1976.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' [25] L´eo Mathis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' The Handbook of Zonoid Calculus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' PhD thesis, SISSA, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' [26] Yurii Nesterov and Arkadii Nemirovskii.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Interior-point polynomial algorithms in convex programming, vol- ume 13 of SIAM Studies in Applied Mathematics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1994.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' [27] Kaitlyn Phillipson and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Maurice Rojas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Fewnomial systems with many roots, and an adelic tau conjecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' In Proceedings of Bellairs workshop on tropical and non-Archimedean geometry (May 6-13, 2011, Barbados), Contemporary Mathematics, volume 605, pages 45–71, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' [28] Rolf Schneider.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Convex bodies: the Brunn-Minkowski theory, volume 151 of Encyclopedia of Mathematics and its Applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Cambridge University Press, Cambridge, expanded edition, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' [29] Frank Sottile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Real solutions to equations from geometry, volume 57 of University Lecture Series.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' American Mathematical Society, Providence, RI, 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' [30] G¨unter M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Ziegler.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Lectures on polytopes, volume 152 of Graduate Texts in Mathematics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Springer-Verlag, New York, 1995.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content=' Institute of Mathematics, Technische Universit¨at Berlin Email address: pbuerg@math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='tu-berlin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} +page_content='de' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29AyT4oBgHgl3EQfb_di/content/2301.00273v1.pdf'} diff --git a/2dFAT4oBgHgl3EQfkh3i/content/tmp_files/2301.08612v1.pdf.txt b/2dFAT4oBgHgl3EQfkh3i/content/tmp_files/2301.08612v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..81a47203fc0650f8b75dfaaf184a3fb752d1129f --- /dev/null +++ b/2dFAT4oBgHgl3EQfkh3i/content/tmp_files/2301.08612v1.pdf.txt @@ -0,0 +1,1544 @@ +ARcode: HPC Application Recognition Through +Image-encoded Monitoring Data +1st Jie Li +Department of Computer Science +Texas Tech University +Lubbock, TX, USA +jie.li@ttu.edu +2nd Brandon Cook +National Energy Research Scientific Computing Center +Lawrence Berkeley National Laboratory +Berkeley, CA, USA +bgcook@lbl.gov +3rd Yong Chen +Department of Computer Science +Texas Tech University +Lubbock, TX, USA +yong.chen@ttu.edu +Abstract—Knowing HPC applications of jobs and analyzing +their performance behavior play important roles in system +management and optimizations. The existing approaches detect +and identify HPC applications through machine learning models. +However, these approaches rely heavily on the manually extracted +features from resource utilization data to achieve high prediction +accuracy. In this study, we propose an innovative application +recognition method, ARcode, which encodes job monitoring +data into images and leverages the automatic feature learning +capability of convolutional neural networks to detect and identify +applications. Our extensive evaluations based on the dataset +collected from a large-scale production HPC system show that +ARcode outperforms the state-of-the-art methodology by up +to 18.87% in terms of accuracy at high confidence thresholds. +For some specific applications (BerkeleyGW and e3sm), ARcode +outperforms by over 20% at a confidence threshold of 0.8. +Index Terms—High Performance Computing, Application De- +tection, Deep Learning, Convolutional Neural Network +I. INTRODUCTION +As HPC systems are approaching the exaFLOP era, the scale +and complexity of HPC systems have increased significantly +over the past few years. Administrators need to understand +not only the performance of the hardware system, but also the +typical applications and their characteristics, such as how they +use the computing resources and how they have been executed +before [1]–[5]. With the increase of computation capability, the +resource contention and energy consumption increase as well. +To improve HPC system efficiency, it is imperative to under- +stand the characteristics of applications and to guide better +resource-aware scheduling policies based on the knowledge +of resource requirements of applications [6]–[8]. Moreover, +emergent misbehaviour is becoming more prevalent due to the +large scale and high utilization [9]. For system administrators +striving to guarantee optimal system performance, detecting +anomalies and potential errors of applications is an essential +task [10]–[12]. +An online detection system that is capable of identifying +applications in real-time, with little or no human intervention, +would be a boon to system management. However, this is a +daunting task. Large-scale HPC systems are generally shared +by a variety of users from different domains. In addition to +traditional large-scale simulation applications (e.g., molecu- +lar dynamics, quantum chemistry applications, and climate +simulations), emerging Machine Learning (ML) and Artificial +Intelligence (AI) applications have become an increasingly +critical part of the workloads on HPC systems. Frequently +used applications and libraries are usually pre-installed on the +system by system administrators. However, administrators do +not necessarily possess the knowledge about the executions +and characteristics of each application. Users could build, +compile and name their own applications that are not shared +with others. In addition, if users do not provide application +information in job submission scripts, it is difficult to know +what applications these jobs belong to. These various use +cases and the imprecise mapping of job names to actual +applications make it difficult to identify applications using +naive approaches. As an example, we examined the application +names derived from the job submission script on Cori and +found that about 42.4% of the names were incorrect. +Advanced methods for detecting and recognizing applica- +tions can be divided into static analysis of binaries and/or +scripts, which can be performed without running a job, and dy- +namic analysis of system logs and performance metrics, which +implies analysis during or after job execution. Early works +explored static analysis of binaries to determine the semantic +similarity between two applications [13], [14]. However, The +complexity of HPC systems has reached a point where static +analysis of the binaries used to run and maintain the detection +system is no longer feasible. This approach is invasive to +users’ data and requires a dedicated binaries collection and +management infrastructure, which is not always of interest for +system administrators. Moreover, even though the binaries are +available, it does not perform well if the same application is +compiled by a different compiler toolchain or optimization +level [15]–[17]. +Collecting and analyzing system logs and performance +metrics are critical to combat performance crisis, and they +are prevalent in HPC systems, although the approach may +vary. Recently, there has been a growing research interest +in automatic detection that relies on extensive performance +metrics and employs ML techniques to identify applica- +tions [18]–[22]. A representative approach proposed by Ates +et al. explored building supervised ML models with statistic +features of monitoring metrics to classify applications [19]. +The classification model relies on thousands of statistical +arXiv:2301.08612v1 [cs.DC] 20 Jan 2023 + +features extracted from hundreds of time-series monitoring +metrics to achieve high prediction accuracy. A major weakness +of this approach is the high-latency responses of the detection +model, and the statistical features are only accurate for repre- +senting the application after the job is finished. In addition, the +performance of feature-based models is highly dependent on +feature engineering; using different features has the potential +to deviate the classification performance [23]. +In this study, we extend the line of performance metrics +based approaches and propose an innovative method called +ARcode (stands for Application Recognition code). It is +an application recognition method utilizing images encoded +from performance monitoring metrics. Specifically, we lever- +age monitoring metrics collected from HPC systems (§II-A) +and encode time-series data to two-dimensional images to +represent the resource usage patterns of HPC executions (or +job signatures for simplicity, discussed in §III-B). We then +build a dataset labelled with application names and train a +Convolutional Neural Network (CNN) to build the classifi- +cation model (§III-C). The contributions of this study are +summarized below: +• Contrary to other studies where datasets are generated +from benchmarks and proxy applications, our dataset is +built from real applications with different input data, +resource allocations and run times, which well reflects the +complex real scenarios. Specifically, we collect monitor- +ing data from a production system and build a dataset of +performance metrics of twelve popular HPC applications +where the application names are labelled. +• Our innovative methodology encodes time-series mon- +itoring data into two-dimensional images, where the +performance metrics are creatively represented in a much +smaller size compared to the original data without losing +important metric variations. The encoded job signatures +can be used not only for application classification and +detection, but also to inspire methods for predicting and +estimating the resource usage of applications. +• We use the CNN techniques and train the CNN model +with the job signatures. The job signatures are generated +from the performance monitoring data, thus do not in- +volve collecting and analyzing users’ private data. The +CNN model, on the other hand, does not require manual +features engineering, making it easier to be tuned and +adopted by any HPC sites. +Through extensive experiments, we find that ARcode +achieved a competitive classification performance in most +cases and outperformed by up to 18.87% at high confidence +thresholds compared to the state-of-the-art methods. When +detecting some specific applications (e.g., BerkeleyGW and +e3sm) with a confidence threshold of 0.8, ARcode is better +than the state-of-the-art methods by over 20% in terms of ac- +curacy. Meanwhile, ARcode retains the temporal information +of the monitoring data and is able to recognize running jobs. +This capability is not available in any state-of-the-art methods. +The details of all these experiment evaluations are discussed +Figure. 1: Workflow of LDMS on Cori +in +§IV. The ARcode model and dataset used in this study +can be found in a separate submission of artifacts. +II. BACKGROUND +In this section, we briefly introduce the Cori system and +how we collect job monitoring data. Then, we describe the +workflow of the monitoring infrastructure being used and +present the available job-level monitoring metrics. +A. The Cori System +Cori1 is a Cray XC40 system at National Energy Research +Scientific Computing Center (NERSC). It consists of 2,388 +Intel Xeon “Haswell” processor nodes and 9,688 Intel Xeon +Phi “Knight’s Landing” (KNL) nodes interconnected on Cray +Aries High-Speed Network, which provides a peak perfor- +mance of about 30 petaflops. Additionally, Cori is equipped +with a large scratch Luster File System that provides 432 +GB/s of performance with a capacity of 28.5 petabytes to +the compute nodes. Cori also has the Cray DataWarp based +Burst Buffer, offering a 1.8 petabytes burst buffer storage with +1.7 TB/s in peak bandwidth performance [24], [25]. With the +mission of accelerating the pace of scientific discovery through +HPC and data analysis, workloads running on the Cori system +cover a wide range of scientific disciplines, including lattice +QCD, materials science, climate research, high energy physics, +astrophysics, and more. +B. Monitoring Workflow +In this study, we utilize the monitoring metrics collected +from the CPU nodes of the NERSC Cori system, where the in- +1https://docs.nersc.gov/systems/cori/ + +Compute Node +Compute Node +LDMS Sampler Daemon +LDMS Sampler Daemon +Haswel +Aggregation Node +LDMS Aggregator Daemon +Parguet +Large Memory Node +2TB of MemoryTABLE I: Selected Monitoring Metrics +Sampler +Metrics +Derived Metrics +Description +cray aries sampler +power +power +Node Power Consumption +syspapi +PAPI TOT INS +IPC (PAPI TOT INS/PAPI TOT TOT) +Instruction Per Cycle +PAPI TOT TOT +meminfo +MemTotal +Mem (MemTotal - MemFree) +Memory Used +MemFree +Figure. 2: Overview of ARcode Design. ARcode encodes the time-series monitoring data into job signatures. In the offline +training phase, ARcode trains the CNN from a labelled job signature dataset. In the running recognition phase, the CNN +model is used to detect the encoded job signature. The CNN model is modified so that it can identify novel applications. +band monitoring tool, LDMS is used [26]. The detailed discus- +sion of how LDMS works on Cori is out of scope of this paper. +In Figure 1, we illustrate its workflow for generating job-level +performance metrics. The workflow includes the following +steps: 1 LDMS samplers on Haswell and KNL nodes (two +partitions in Cori) collect in-band metrics at a pre-configured +frequency; 2 the monitoring data are then sent to aggregation +nodes, where metrics collected from the same sampler are +stored in CSV files under the same folder. Each CSV contains +metrics from multiple nodes and the corresponding metrics for +a job may span multiple CSV files. To improve the usability of +the monitoring data, the NERSC LDMS [27], an LDMS data +processing tool, takes care of the post-processing of CSV files. +3 NERSC LDMS gets job IDs from Slurm sacct and joins +the job IDs with CSV files, and 4 submits these files to large +memory nodes for post-processing, where the same metrics of +the same job are extracted. 5 The post-processed job-level +metrics are saved in parquet files by metric samplers for future +analysis. Compared to raw CSV files, job-level parquet files +significantly improve the availability of monitoring data and +the efficiency of querying job performance metrics. +C. Available Metrics +The available metrics collected through LDMS on HPC +systems depend on the configurations and available samplers +on the hardware platform. As routine tasks of monitoring +the health of the Cori system, 34 different samplers collect +metrics related to I/O, network, CPU counters, memory usage, +power consumption, etc. The total number of metrics collected +through the sampler varies from 12 to 3,016, depending +on the sampler. The granularity of collected metrics is one +second, generating approximately 400MB of monitoring data +per second on a system wide basis. +From the perspective of application recognition, it is +unattractive and impractical to include all of these extensive +monitoring metrics in one model because processing large +amounts of time-series data is compute-intensive and time- +consuming. On the other hand, we envision that the proposed +methodology should be easily adopted by other HPC systems +and the selected metrics should be common even when using +different monitoring infrastructures. Therefore, we select five +of these metrics and derive three representative metrics for +creating job signatures. These three metrics are the power +consumption of the compute node, instruction per cycle (IPC), +and memory used as shown in Table I. These metrics are +expected to be available through the monitoring infrastructure +on a variety of HPC architectures. +III. METRICS ENCODING AND CLASSIFICATION +In this section, we first discuss design considerations and +provide an overview of ARcode design. We then present +the details of encoding monitoring data, including resampling +job metrics, converting 1D time-series data into 2D images, +and encoding multiple traces into a single image. Lastly, we +introduce the CNN architecture for classifying the encoded +images. +A. Design Consideration and Overview +As discussed in §I, existing solutions either perform a static +analysis of binaries and/or scripts or leverage machine learning +methods to extract key features out of extensive monitoring +data to build application prediction and classification models. + +Known App +App1 +App2 +Known App 2 +Known App n +App 3 +App 4 +Unknown Apps +App n(a) Original Power Consumption Trace +(b) Downsampled Trace by Aggregating +(c) Original Power Consumption Trace +(d) Upsampled Trace by Padding +Figure. 3: Resampling traces by aggregating and padding based on the original trace length and the predefined length. Figure +a is the trace longer than the predefined length 128, in which the aggregating function is applied to downsample the trace. +Figure c is a trace shorter than 128, in which the padding is used to upsample the trace. Figure b and d show the corresponding +resampled traces, respectively. +Our approach, ARcode, is similar to the monitoring data +based approaches but with two design considerations: features +learned without human intervention and data retaining tempo- +ral information. +First, current state-of-art application detection models, such +as Taxonomist [19], extract statistical summaries from raw +monitoring data to create a feature vector for machine learning +models, where the classification performance is highly de- +pendent on the quality of the manually constructed features. +To improve the usability, one of our considerations is that +the features of the monitoring traces can be learned without +human intervention. Second, although statistical features are +spatially efficient and lightweight when building detection +models, they lose the temporal information of time-series data, +thus limiting their use case. To improve the extensibility, +the other consideration of our model is to retain temporal +information. So it is able to use part of the monitoring data in +detection, classification, and prediction of the resource usage +of applications. +With these considerations in mind, our proposed approach, +ARcode, encodes entire time-series monitoring data of jobs +into unified-size images and leverages deep learning tech- +niques to learn features. The encoded image, which we named +as job signature, is a representation of monitoring traces that +preserve temporal performance behavior of the job. +As shown in Figure 2, ARcode has two main components: +the monitoring data encoding and the CNN model. The +first component, the monitoring data encoding component, +performs a series of operations on the raw monitoring data. +It creates job signatures encoding the time-series data and +represents the jobs as images. The second component is a CNN +model that is customized to learn features from job signatures +and to classify these job signatures. ARcode operates in two +phases. The first phase is the offline training phase, where +the CNN model is trained from a labelled job signature +dataset. The training phase can be enhanced with transfer +learning [28], where the convolutional layers can be transferred +from a trained job detection model and only the layers that +make predictions need to be trained. The runtime recognition +phase is where ARcode operates to detect and to predict the +applications by job signatures. +Classification model should not be limited to classify +known applications already seen in the training phase. To +make ARcode practically useful, we introduce confidence +thresholds to help identify applications. When the prediction +probability exceeds the defined threshold, ARcode labels +the job with the application name; otherwise, it marks the +observation as unknown, indicating the job is likely to be a +new application. +B. Construction of Job Signature +1) Resampling Traces: To construct job signatures that can +be measured for the similarity between pairs of signatures, it +requires the time series traces to have equal length. Given a +trace, we resample it with a predefined length l. For a trace T +of length n, we create T ′ by sampling the data points from T + +275.00 +Power Consumption (W) +250.00 +225.00 +200.00 +75.00 +150.00 +125.00 +14000 +0 +2000 +4000 +6000 +8000 +10000 +12000 +Timesteps220.00 +Power Consumption (W) +210.00 +200.00 +190.00 +180.00 +170.00 +20 +60 +80 +100 +120 +0 +40 +Timesteps300.00 +Power Consumption (W) +250.00 +200.00 +.50.00 +100.00 +50.00 +0 +10 +20 +30 +40 +50 +Timesteps300.00 +Power Consumption (W) +250.00 +200.00 +.50.00 +100.00 +50.00 +0 +20 +40 +60 +80 +100 +120 +Timesteps(a) Polar Coordinate of the Normalized Trace +(b) Gramian Angular Summation (Left) and Difference (Right) Fields +Figure. 4: Steps of Gramian Angular Field Conversion. Each encoded image has a resolution of 128 × 128. +so that n′ = l, where n′ is the length of the sampled trace T ′. +Note that the predefined length is usually set to a relatively +small value to reduce the compute time when calculating the +similarities. +Considering most jobs on HPC run for hours or even days, +their corresponding monitoring traces are usually longer than +the predefined length, i.e, n > l. In this case, we downsample +the traces. For each set of ⌊n/l⌋ data points, we apply one of +the functions, such as mean, max, min, median, to calculate the +aggregated value. Assuming we set the predefined length to be +120, to resample the power consumption trace of a 10-minute +job (i.e., the trace has 600 timesteps in total), every 5 data +points should be aggregated. Figure 3a and Figure 3b illustrate +the procedure of resampling the power consumption traces of +a job using the mean value. The original trace contains more +than 14,000 timesteps, while after resampling, the trace length +becomes 128 timesteps. +In case that n < l, i.e., the length of a job metric trace is less +than the predefined length l, we upsample the original traces. +Specifically, we add ⌊l/n⌋ paddings between consecutive data +points and fill with the previous value. Figure 3c and Figure 3d +show the traces before and after upsampling. After resampling, +all traces have the length of l, irrespective of the duration of +the job. The corresponding resampled traces T ′ will be used +for further processing. +2) Converting 1D time series to 2D images: As shown +in Figure 3, the monitoring traces and the corresponding +resampled traces are univariate time series. To take advantage +of the feature learning in deep learning architectures, we +convert 1D time series to 2D images. +We utilize the Gramian Angular Field (GAF) to transform +time series into images [29]. Specifically, the time series data +is first normalized or scaled into the range of [−1, 1]. The +normalized time series data is then represented in a polar +coordinate instead of the typical Cartesian coordinate. A Gram +Matrix like operation is applied on the resulting angles to +construct 2D images. +Given a time series trace T = {t1, t2, ..., tn} of n times- +tamps, we rescale T to have the interval [−1, 1] by the equation +below: +˜ti = (ti − max(T)) + (ti − min(T)) +max(T) − min(T) +(1) +The value of the time series and its corresponding timestamp +need to be accounted for so that no information is lost. These +two quantities are expressed with the angle and the radius +in polar coordinates, respectively. Mathematically, the angle +is computed by arccos(˜ti), which lies within [0, π], and the +radius variable is calculated by i/n, which is in [0, 1]. The +point can be expressed in polar coordinates (φi, ri), where: +� +φi = arccos(˜ti), +−1 ≤ ˜ti ≤ 1 +ri = i +n, +0 ≤ i ≤ n +(2) +The encoding function is a composition of bijective func- +tions, producing one and only one result in the polar coordinate +system. In addition, as opposed to Cartesian coordinates, +polar coordinates preserve temporal dependency through the +r coordinate. An example of a trace represented in polar +coordinates is shown in Figure 4a, which is transformed from +the normalized trace of Figure 3d. +The temporal correlations between each pair of data points +(ti, tj) are computed by considering the trigonometric sum- +mation (cos(φi + φj)) or subtraction (cos(φi − φj)), leading +to the Gramian Matrix called Gramian Angular Summation +Field (GASF) or Gramian Angular Difference Field (GADF), +respectively. The GASF is defined as follows: +GASF = +� +���� +cos(φ1 + φ1) +. . . +cos(φ1 + φn) +cos(φ2 + φ1) +. . . +cos(φ2 + φn) +... +... +... +cos(φn + φ1) +. . . +cos(φn + φn) +� +���� +(3) +Through the GASF or GADF conversion, the diagonal Gi,i +contains the original value of the scaled time series, while +Gi,j represents the relative correlation by superposition of +directions with respect to time interval |i − j|. Other details +on time series encoding can be found from [29]. In Figure 4b, + +90° +135° +45° +20.00 +180° +0° +0.25 +0.50 +0.75 +L.00 +225° +315° +270°60 +0 +20 +40 +80 +100 +120 +0 +20 +40 +60 +80 +100 +120 +1.00 +0.00 +-1.00 +120 +0.75 +100 +0.50 +80 +0.25 +0.00 +60 +-0.25 +40 +-0.50 +20 +-0.75 +0 +1.00 +.00 +0 +1we illustrate the encoded 2D images with GASF and GADF +for the trace in Figure 4a. To keep it concise, we use GASF +as the 1D time series conversion algorithm and refer to GASF +as GAF in the following discussion. +3) Encoding Multiple Time Series Traces: The procedure +presented in §III-B2 only converts one monitoring trace to +a 2D image. Since we have multiple monitoring traces cor- +responding to the same job and we do not want to lose the +correlation between each pair of traces. The question becomes +how we can encode multiple time series to a single image such +that a deep learning architecture can understand. To solve this +problem, we are inspired by the concept of RGB channels, +where each RGB channel emphasizes different aspects of the +original image. Similarly, the power consumption trace, IPC +trace, and memory used trace can be considered as the R +channel, G channel, and B channel of the encoded image, +respectively. +The output of GAF conversion is nothing but a 2D matrix +of floating-point numbers that fall in [−1, 1]. To visualize the +job signature, we rescale the GAFs of the above-mentioned +three traces to be in [0, 255] by using the below equation: +� +GAF = ⌊GAF + 1 +2 +∗ 255⌋ +(4) +The � +GAF contains the pixel value of the gray scale image. +When combining � +GAF power, � +GAF ipc, � +GAF mem as three +channels of RGB, we create a single color image. Figure 5 +shows the GAFs of the power, IPC and memory usage of a +job and its corresponding encoded job signature. It is worth +noting that rescaling GAF to the range [0, 255] is only for +the purpose of visualizing the job signature while the original +GAF falling in [−1, 1] can be directly fed in the Convelutional +Neural Network. +It is important to note that the channel-like encoding +methodology is not limited to three channels. Each time series +trace is converted to a l ×l matrix by the procedure presented +in §III-B2. An encoded job signature of three channels is +a l × l × 3 matrix. Encoding one more metric is simply +adding another dimension in the matrix. More formally, a job +signature of c metrics is a l × l × c matrix. Even though it +is not straightforward to be visualized when c is larger than +3, the CNN model can “understand” and analyze the high- +dimensional matrix. +C. Classification Model +Using the methodology presented in §III-B, the monitoring +traces of jobs can be represented in images (i.e., job sig- +natures). Therefore, detecting and identifying applications of +jobs become an image recognition problem. In this subsec- +tion, we first introduce the CNN, a deep learning technique +that has been widely used in image classification problems +and achieved promising results in many domains. Then, we +present the CNN architecture that is specifically customized +for classifying job signatures. +1) Deep learning using CNN: The performance of con- +ventional machine learning techniques depends heavily on +data representation, which requires lots of efforts to design +preprocessing pipeline and feature engineering. Such feature +engineering is labor intensive and lacks the ability to extract +discriminative information from the data [30]. Deep learning, +on the other hand, explores the possibility to feed raw data to +the algorithm and automatically discover the features needed +for detection or classification. The key concept of deep learn- +ing is to transform the representation at a lower level into a +representation at a higher and more abstract level; and with +composition of such transformations, complex functions can +be learned [31]. As a widely-used deep learning technique, +CNNs have been successful in image classification problems. +2) Customized CNN Architecture for Job Signatures: The +CNN architecture for classifying job signatures is designed as +shown in Figure 6, which contains the following customized +layers and parameters: +1. Input layer for job signature: The inputs are job +signatures of encoded multiple time series traces, as presented +in §III-B. The resolution of the job signature is 128 × 128 +and the number of channels equals to the number of traces +encoded in the job signature (i.e., three in our dataset). Note +that for other cases that job signatures encode more than three +monitoring traces, the input shape should be set accordingly. +2. Layers for feature extraction: In our model, we have +three layers of CNN to learn features from the job signature, +each of which contains one convolution layer to extract +features and one pooling layer to reduce the spatial dimension +of the convoluted image. The convolution layer extracts image +features by convolving the job signature with a set of kernels +and produces one feature map for each kernel. We apply +the activation function ReLU on the convoluted features. It +replaces negative values with zero and keeps the positive value. +The output of ReLU will be the input for the pooling layer. +The first convolution layer learns 32 kernels, and the sec- +ond and third convolution layers learn 64 and 128 kernels, +respectively. We set the kernels to be size of 3×3 and use the +same padding in the convolution to maintain the dimension of +output as input. All three pooling layers perform max pooling +that returns the maximum value from the portion of the image +covered by a window of size of 2 × 2. +3. Layers for classification: After going through the feature +extraction layers, the customized CNN model flattens the +final output and feeds it to a regular neural network for +classification. The flattened vector is connected to a fully +connected layer, through which non-linear combinations of +the features can be learned. After passing through the fully +connected layer, we use the softmax activation function in the +last layer to get the probabilities of the input job signature +being in a particular class. +To prevent the CNN model from overfitting and improve the +generalization of the CNN model, we add several dropout lay- +ers in the model to randomly disable neurons during training, +as shown in the dashed red parallelograms in Figure 6. In our + +Figure. 5: Encoding Multiple Time Series Traces into a Job Signature with a Resolution of 128 × 128. +Figure. 6: Customized CNN Architecture for Classifying Job Signatures. +experiments, the dropout rate before the flatten layer and in +the fully-connected layer is set as 30% and 70%, respectively. +IV. EXPERIMENTAL EVALUATION +In this section, we introduce the experimental evaluation +of our proposed classification model on a real-world dataset +collected from the Cori system. Particularly, we first introduce +the dataset built based on the proposed encoding methodology +and then, we compare the performance of our model with the +baseline methods in terms of accuracy. +A. Dataset +To the best of our knowledge, there are no publicly released +monitoring traces with labelled application information col- +lected from production HPC systems. Ates el al. [32] published +a dataset containing the monitoring data of benchmarks and +proxy applications. Google published its cluster traces that do +not have application information [33]. Therefore, in order to +train the CNN model for detecting applications running in +production HPC systems, we built our own dataset. +On Cori system, some other research groups had imple- +mented the job metadata management service, where the +metadata of jobs running on Cori are stored and managed +in a MySQL database. The job metadata has a field named +‘application name’ which is derived from the job submission +script. However, based on our analysis, about 42.4% of derived +names do not reflect the application accurately. Many of them +have names like ‘test’, ‘bugs’, ‘b.sh’, etc. Therefore, to build +a reliable labelled dataset, we select jobs that have accurate +application names through the job metadata service. In addi- +tion, since Cori system has the KNL partition and the Haswell +partition, the monitoring metrics of the same application (even +with same configurations and same input files) running on +different architectures could potentially have large variations. +To avoid discrepancy caused by the architecture, we only focus +on the jobs running on the same architecture and we select +KNL jobs as our dataset. Besides, we discard short jobs that +run for less than 60 seconds since they are likely for testing +purposes. +The +job +IDs +of +the +selected +jobs +are +used +with +NERSC LDMS [27] to obtain the corresponding monitoring +traces. Considering that a job may have multiple steps and +that job steps may correspond to different applications, we +treat the job steps of a job separately. In addition, since a job +may use multiple nodes (nodes are exclusively used by the +job on Cori), we aggregate the monitoring metrics from all +involved nodes and use the average time-series traces to build +the job signature. +We select 23,665 jobs from 12 different applications to build +the job signature dataset after eliminating those jobs that do +not have monitoring metrics (due to data collection errors or +historical traces are purged) and balancing the number of jobs +of each application as much as possible. Details are listed in +Table II. The numbers of allocated nodes for a job vary from +1 to a maximum of 2,048. The BerkeleyGW, Espresso and + +Footunee Lonin: +CNIN Ieyr + JAI NING +CNIN IyEr +128 × 129 x3 +FT X +84 X 04 × B4 +[Poad mps +32 量 $2 x 128 +Potpd mp +L +口 +口 +口0 +20 +40 +60 +80 +100 +120 +20 +40 +60 +80 +100 +120 +20 +40 +60 +80 +100 +120 +0.90 卡 +0.13 +185.00 +0.12 +182.50 +120 - +120 +120 +20 +100 +100 +100 +40 +80 +80 +80 - +60 +09 +60 +80 - +40 +40 +40 - +100 +20 - +M +120 +ol +01 +0 +20 +40 +60 +80 +100 +120 +GAF of Power (Channel R) +GAF of IPC (Channel G) +GAF of Mem (Channel B) +Job SignatureTABLE II: Dataset of Job Signatures +Application +# of Jobs +# of Nodes* +Runtime(s)* +Description +BerkeleyGW +1899 +1 / 2048 +60 / 172867 +For quasiparticle excitations and optical properties of materials. +Espresso +2000 +1 / 2048 +61 / 172858 +For electronic-structure calculations and materials modeling at the nanoscale. +Gromacs +1937 +1 / 64 +61 / 172836 +For simulations of proteins, lipids and nucleic acids. +LAMMPS +1999 +1 / 64 +60 / 172866 +For molecular dynamics with a focus on materials modeling. +NWChem +1992 +1 / 384 +71 / 169209 +For computational chemistry. +VASP +2000 +1 / 128 +69 / 172864 +For “ab-initio” quantum-mechanical molecular dynamics (MD) simulations. +WRF +1860 +1 / 256 +72 / 174608 +for atmospheric research and operational forecasting applications. +aims +2000 +1 / 192 +71 / 172959 +For “ab-initio” molecular simulations. +chroma +1996 +2 / 137 +488 / 147447 +For lattice Quantum Chromodynamics calculations (LQCD). +cp2k +1993 +1 / 128 +60 / 174608 +For quantum chemistry and solid state physics. +e3sm +1989 +1 / 2048 +60 / 173402 +For earth system modeling, simulation and prediction. +su3 +2000 +1 / 36 +65 / 20277 +For lattice Quantum Chromodynamics calculations (LQCD) +*The values on the left and right side of ‘/’ indicate the minimum and maximum values of the corresponding characteristics of the jobs. +s3sm have extremely large-scale jobs where all cores of 2,048 +nodes are used, corresponding to 131,072 physical cores. The +selected jobs also cover a large range of runtime variations. +The shortest job, as defined earlier, runs for only 60 seconds. +The longest job, limited by the Quality of Service of the KNL +partition, runs for 48 hours. The dataset can be found in a +separate submission of artifacts. +It is worth mentioning that, it is up to users to set the resam- +ling length l and define the resolution based on their computing +capability. Nevertheless, the CNN model for images of larger +resolution usually requires more complex architecture and +the time for fine tuning and training the parameters of the +architecture becomes high. In our experiments, we set the +resampling length to be 128 and use a resolution of 128×128 +for job signatures. +B. Baseline Methods +To compare the performance of our proposed CNN model +with state-of-the-art methods for detecting HPC jobs, we +examine several other performance metrics based approaches. +The Power Signature [18] and Taxonomist [19] are two repre- +sentative methods that use statistic features of the time series +monitoring data to build the classification model. The statistics +include the minimum, maximum, mean, standard deviation, +skew, kurtosis and the 5th, 25th, 50th, 75th, 95th percentiles. +Using the same monitoring metrics as ARcode, namely power +consumption, IPC and memory usage of the selected jobs, +we extract statistical features and build several classifiers as +baselines. These classifiers are Random Forest (RF), linear +Support Vector Classifier (Liner-SVC), and non-linear Support +Vector Classifier (SVC). In addition, we include a Random +Forest model that uses only statistical features extracted from +the power consumption trace. All of these models use default +hyperparameters. +C. Experiment Setup +The ARcode and baseline models are trained and evaluated +on a Cori GPU node, where 2 Skylake CPUs, 8 NVIDIA Tesla +V100 GPUs and 384 GB DDR4 memory are provided. The +proposed CNN is implemented using the TensorFlow Keras +library in a Python 3.9 environment. The baseline models are +implemented in Python leveraging scikit-learn library. +Figure. 7: Loss (top) and accuracy (bottom) of the training +and validation data. The vertical dashed line indicates the +determined epoch of 50. +We divide the dataset into 60% for training, 20% for +validation, and 20% for testing. To mitigate overfitting and to +increase the generalization of ARcode model, we determine +the optimal epoch number by examining the loss and accuracy +trends on training and validation data. As shown in Figure 7, +after epoch reaches to 50, the training loss gets lower than +validation loss while the accuracy of validation does not +improve. Therefore, we set epoch to 50. While evaluating the +classification performance on each application, we use ten-fold +stratified cross validation to divide the dataset into ten disjoint +partitions and evaluate model performance with each partition. +We test the classification performance on different con- +fidence thresholds. For each baseline classifier, we use the +one-vs.-rest version of that classifier such that it produces a +set of real-valued prediction scores for its decision instead +of a labeled class. In ARcode model, the softmax function +assigns probabilities of classes in each prediction. We compare +the prediction probabilities with the confidence thresholds to +determine the predicted class. For the prediction score si of +class ci, i ∈ {1, ..., k}, the classifier assigns the label of the +class by the following expression: +� +ci, where si = max(s1, ..., sk), +if si ≥ threshold +unknown, +otherwise +(5) +In other words, when the maximum value of the prediction + +Training +4.00 +Validation +3.00 +S +LoSS +2.00 +1.00 +0.80 - +Accuracy +0.60 +0.40 +- +40 +60 +120 +0 +20 +80 +100 +EpochsFigure. 8: Accuracy of ARcode and baseline classifiers at +different confidence thresholds. The vertical dashed line in- +dicates the confidence threshold (0.4) above which ARcode +outperforms all other classifiers. +Figure. 9: Accuracy of classifiers on each application at a +confidence threshold of 0.8. +scores is larger than the threshold, the class with the largest +score is the predicted class. Otherwise, the classifier labels the +observation with unknown. When the confidence threshold is +0, it is the same with the vanilla multi-class classifier. +D. Experimental Results +We evaluate the capability of ARcode in identifying appli- +cations in this subsection. First, we evaluate the classification +performance on different confidence thresholds and examine +the performance on each application. Then, we assess the +performance of identifying applications that have not been +trained with the models. In addition, since the job signatures +encode temporal information of the monitoring metrics, we use +a subset of the monitoring data to construct partial signatures +to evaluate the ARcode model. +1) Classification Performance: Figure 8 depicts the accu- +racy of ARcode and baseline models on different confidence +thresholds. As we can see from the figure, the Linear-SVC +model has the worst performance at all confidence thresholds. +When the confidence threshold is below 0.4, Random Forest +outperforms all other classifiers, with the highest accuracy +of 93.81% at a confidence threshold of 0. ARcode follows +closely with an accuracy of 89.67%. When the confidence +threshold is above 0.4, the accuracy of Random Forest de- +creases and ARcode has the best performance. At a threshold +of 1.0, the SVC model performs a little better than Random +Figure. 10: Accuracy of ARcode and baseline classifiers on +detecting novel applications at different confidence thresholds. +ARcode achieved the highest accuracy when the confidence +threshold is greater than 0.8. +Forest, but it is still 18.87% worse than ARcode. At a +confidence threshold of 0, the accuracy of Random Forest +on power features is close to ARcode , but it decreases +significantly as the confidence threshold increases. In sum- +mary, the accuracy of all classifier decreases with increasing +confidence thresholds, but the slowest decrease rate is observed +for ARcode. +We further examine the classification performance of +ARcode and Random Forest on each application, as shown +in Figure 9, where we use a confidence threshold of 0.8 +in the experiment. From this figure, we have the following +observations. First, the accuracy of ARcode and Random +Forest are very close in most cases. When detecting Gromacs, +LAMMPS and cp2k, Random Forest performs slightly bet- +ter. Second, for some applications such as BerkeleyGW and +e3sm, ARcode achieves a significantly better accuracy. In +BerkeleyGW classification, the accuracy of Random Forest is +62.06% while ARcode achieves 83.94% accuracy. ARcode +is also 20.21% better than Random Forest in detecting e3sm. +2) Classification on Novel Applications: Considering that +in HPC environments, ‘novel’ applications are more prevalent +than those trained with the classifier, it is appropriate to +define an ‘unknown’ class for all these novel applications. To +be practically useful, the classification system must classify +both known and unknown novel applications. We evaluate +this capability by removing one application from the training +set while keeping the testing set untouched. If the removed +application in the testing set is predicted to be unknown, we +mark it as a correct prediction. +The classification performance for novel applications is +depicted in Figure 10. From this figure, we can observe +that Random Forest has the best prediction accuracy when +the confidence threshold is below 0.8, while ARcode beats +Random Forest once the confidence threshold is greater than +0.8. ARcode, similar to its performance in known application +detection, has relatively stable prediction accuracy across all +confidence thresholds. However, the accuracy of Random +Forest drops significantly in large confidence thresholds. + +100% +80% +60% +Accuracy +40% +ARcode (CNN) +Random Forest +20% +SVC +LinearisvC +Random Forest on Poweri Features! +0% +0.2 +0.0 +0.1 +0.3 +0.4 +0.5 +0.6 +0.7 +0.8 +0.9 +1.0 +Confidence ThresholdARcode(CNN) +Random Forest +100% +80% +Accuracy +60% +40% +20% +0% +aims +WRF +BerkeleyGW Espresso Gromacs LAMMPS NWCHEM +VASP +chroma +cp2k +e3sm +su3 +Applications100% +80% +60% +Accuracy +40% +ARcode (CNN) +Random Forest +20% +SVC +Linearisvc +Random Forest on Poweri Features +0% +0.0 +0.1 +0.2 +0.3 +0.4 +0.5 +0.6 +0.7 +0.8 +0.9 +1.0 +Confidence ThresholdFigure. 11: Accuracy of ARcode on each application using +different channels of the job signature. +Figure. 12: Accuracy of ARcode on each application using +partial job signature. The partial job signatures are all built +from the metrics collected since the startup of jobs. +3) Classification using Single Channel: In our experiment, +ARcode encodes three channels of monitoring data in the +job signature. It is worth knowing whether each channel plays +the same importance in classification and whether we can use +one channel for detection while still achieving high accuracy. +To answer these questions, we train CNN models with each +of these channels individually and analyze their classification +performance. The results are shown in Figure 11. +From the figure we can see that using any of the chan- +nels gives a competitive accuracy when detecting Espresso, +LAMMPS, WRF, and chroma compared to using all channels. +For NWCHEM, the classification accuracy using the memory +channel is significantly better than using the power or IPC +channel. We can also see that all channels are important for +detecting both Gromacs and cp2k with an accuracy improve- +ment of 26.36% and 19.66%, respectively, compared to using +only one of the channels. The memory channel is the most +representative of these channels. In most applications, using +the memory channel in detection has the closest accuracy to +using all channels. +4) Classification using Partial Signatures: The job sig- +nature retains the temporal information of the time-series +monitoring data, and the job signature generated before the +end of the job still holds some of the attributes of the full +job signature. We use the first 25%, 50% and 75% of the +time-series data to create partial job signatures and compare +the detection performance with the full job signature (i.e, +a job signature built from 100% of the monitoring data). +This experiment is performed to evaluate the usability of the +ARcode model for detecting running applications, which is +not available in the statistics-based models. +The results are shown in Figure 12. It is not surprising that +the larger the percentage of encoded data, the better the detec- +tion performance achieved by ARcode. When encoded with +25% of the monitoring data, ARcode achieves a relatively +high accuracy of 77.27% in detecting WRF, but only 17.27% +and 12.88% in detecting cp2k and Espresso, respectively. +When detecting NWCHEM, the full job signature brings +89.79% accuracy; however, the 75% partial job signature +gives only 46.73% accuracy. The improvement from encoding +more data varies from application to application. For example, +encoding 25% more data brings an average improvement of +24.67% for Espresso, but only 4.65% for WRF. +5) Sensitivity to the resampling length: The performance +evaluation described above is based on job signatures with +a resolution of 128 × 128, i.e., the performance metrics are +resampled to a length of 128. It is valuable to have knowledge +of the sensitivity of the classification accuracy in terms of the +resampling length such that an appropriate resolution can be +chosen to achieve a balance between accuracy and training +overhead. To explore this, we further build two job signature +datasets with resampling lengths of 32 and 64, respectively, +and use the same CNN architecture to train these models. +Figure 13 depicts the accuracy (solid lines) and training +time (horizontal dashed lines) of ARcode using different +resampling lengths. Note that the training time is constant +across different thresholds for the same resampling length, as +illustrated by horizontal dashed lines. This is because training +time does not vary according to confidence thresholds, which +are set during the prediction of applications. As illustrated +from the figure, the training times vary significantly among +these three resampling lengths. It is over 185 seconds for +the resampling length of 128. For signatures with resampling +lengths of 64 and 32, it is 80 and 65 seconds, respectively. +Additionally, we can observe from the figure that the higher +resolution it is, the higher prediction accuracy. While the +accuracy improvement from the resampling length of 64 to +128 is not significant (only by 0.5% on average), the accuracy +improvement from the resampling length of 32 to 64 is 3.0% +on average. +This result suggests that 64 is the optimal resampling length +for building job signatures in our experiment, considering the +trade-off between accuracy and training time. Its prediction +accuracy is close to that of the highest resolution signature, but +only uses 43.2% of the training time of the latter. Furthermore, +the data size of the job signature generated with a resolution +of 64 × 64 is only 25% of that with 128 × 128. +V. RELATED WORKS +Significant amount of work has been reported in the lit- +erature on detecting and classifying applications. Identifying +similarities and differences among binary executables was +explored in [13]–[16]. These approaches are limited by the + +ZZIPC +Memory +Power +All +100% +80% +Accuracy +60% +40% +20% +0% +WRF +BerkeleyGWEspresso Gromacs LAMMPS NWCHEM +VASP +aims +chroma +cp2k +e3sm +su3 +Applications25% +75% +100% +50% +Z +100% +80% +Accuracy +60% +40% +20% +0% +WRF +BerkeleyGWEspresso Gromacs LAMMPS NWCHEM +VASP +aims +chroma +cp2k +e3sm +su3 +ApplicationsFigure. 13: Accuracy and training time of ARcode using dif- +ferent resampling lengths. The horizontal dashed lines indicate +the training time. +fact that, they cannot differentiate the same source program +compiled by different compiler toolchains or optimization +levels. To overcome this limitation, Blanket Execution [17] +presented a binary differencing algorithm that compares the +side effects of functions during executation, which is based +on the insight that similar codes have semantically similar +execution behavior. +However, the binary based approach cannot be applied in the +HPC environment, where it is impractical to conduct binary +differencing among hundreds of thousands of executables. In +addition, obtaining and managing binaries of users’ applica- +tions are not always possible for HPC researchers. Instead +of using binaries, Yamamoto et al. [34] used job scripts as +job information to classify applications with text classification +techniques. This approach, however, also requires dedicated +collection and management infrastructures, which are not as +prevalent as monitoring infrastructures for performance metric. +Another line of work aims at characterizing HPC appli- +cations through system logs. Liu et al. extracted features +from combined logs of multiple subsystems to represent +applications and build a machine learning model based on +the eXtreme Gradient Boosting (XGB) algorithm to identify +HPC applications [35]. DeMasi et al. collected and extracted +features from Integrated Performance Monitoring (IPM) per- +formance logs to fingerprint HPC codes [36]. Log analysis is +more common in characterizing subsystem and user behavior, +related works can be found in [37]–[40]. +Monitoring data based application detection has been ex- +plored in [18]–[22]. As a early quantitative study of power +consumption of HPC workloads, Combs et al. [18] studied +the applicability of classifying applications through power +consumption traces. Ramos et al. [21] relied on performance +counters to model, fingerprint and clustering applications. Zou +et al. [20] explored detecting illicit applications in GPU- +accelerated HPC workloads. They used performance counters, +data movement behavior and resources utilization traces to +train machine learning models. Taxonomist [19], proposed +by Ates et al., used over 700 system metrics and a time +window spanning the whole execution to extract statistical +features. They enhanced the classification model such that +unknown applications can be detected. EFD [22] created +key-values pairs that link execution fingerprints of system +metrics to application and input size information to implement +application recognition. Except for using measurements of +system metrics, they also used the metrics name, node ID and +time interval to create fingerprints. +These studies, however, are based on the datasets built from +the monitoring data of benchmarks and proxy applications, +where a relative small range of configurations and input size +are shown in the applications. On the contrary, the model +and experiment results of ARcode are developed and tested +on datasets collected from real applications in a large-scale +production system. In addition, the models of these studies rely +on the manually defined features extracted from time series +monitoring data and some studies utilize the input information +to enhance the detection model. In this work, ARcode allevi- +ates the effort of features engineering and takes advantages of +the capability of features learning in CNN model to detect and +classify encoded monitoring data. Moreover, ARcode retains +the temporal information of time-series performance metrics, +enabling detecting applications before jobs are finished. This +capability bridges a major gap in related works. +VI. CONCLUSION +Existing application detection methodologies on HPC sys- +tems either relies on the data that are not prevalent or require +intensive effort of feature engineering to build high accuracy +models. In this study, we aim to provide a solution that can +be easily used and adopted by any HPC site. We have intro- +duced ARcode, an application recognition framework which +is effective and extensible with the following characteristics: +1) ARcode uses three most common monitoring metrics (i.e., +the power consumption of the compute node, instruction per +cycle, and memory usage) available through the monitoring +infrastructure on diverse HPC architectures. 2) ARcode allevi- +ates the effort of feature engineering by leveraging the feature +learning capability of CNN models. 3) ARcode’s channel-like +encoding method allows easy encoding of additional metrics +in job signatures. 4) ARcode encodes job monitoring data into +images, which translates the application recognition problem +into an image classification problem. Unlike the statistics- +based approaches where the temporal information of monitor- +ing data are lost, the job signature encodes metric variations +over the runtime. Therefore, the job signature generated from +part of monitoring data can still be used in detection, but with +the sacrifice of accuracy. +Although our evaluation is performed on job signatures +generated from three common monitoring metrics, HPC re- +searchers and system administrators can select other represen- +tative metrics and build job signatures to detect and classify +applications with specific characteristics such as CPU intensive +applications and I/O intensive applications. In addition, we +have seen lots of successful cases of applying image recogni- +tion in the medical and automobile industries. Their experience +in training high-accuracy models can be used in our model to +further improve the recognition accuracy. Moreover, encoding + +100% +128 +32 +64 +32 +64 +128 +200 +(accuracy) +(training time) +90% +180 +Time ( +80% +Accuracy +140 +ining +70% +120 +Trai +-100 +60% +-80 +50% +60 +0.0 +0.1 +0.2 +0.3 +0.6 +0.7 +0.8 +0.9 +1.0 +0.4 +0.5 +Confidence Thresholdmonitoring data in job signatures offers a new perspective +of exploring and analyzing the performance monitoring data. +In our future work, we will further explore the use of job +signatures to predict resource usage, detect anomalies, and +identify malicious applications. +REFERENCES +[1] J. Brandt, A. Gentile, J. Mayo, P. Pebay, D. Roe, D. Thompson, and +M. Wong, “Resource monitoring and management with ovis to enable +hpc in cloud computing environments,” in 2009 IEEE International +Symposium on Parallel & Distributed Processing. +IEEE, 2009, pp. +1–8. +[2] W. Allcock, E. Felix, M. Lowe, R. Rheinheimer, and J. Fullop, “Chal- +lenges of hpc monitoring,” in SC’11: Proceedings of 2011 International +Conference for High Performance Computing, Networking, Storage and +Analysis. +IEEE, 2011, pp. 1–6. +[3] W. M. Jones, J. T. Daly, and N. DeBardeleben, “Application monitoring +and checkpointing in hpc: looking towards exascale systems,” in Pro- +ceedings of the 50th Annual Southeast Regional Conference, 2012, pp. +262–267. +[4] T. Evans, W. L. Barth, J. C. Browne, R. L. DeLeon, T. R. Furlani, +S. M. Gallo, M. D. Jones, and A. K. Patra, “Comprehensive resource use +monitoring for hpc systems with tacc stats,” in 2014 First International +Workshop on HPC User Support Tools. +IEEE, 2014, pp. 13–21. +[5] J. Li, G. Ali, N. Nguyen, J. Hass, A. Sill, T. Dang, and Y. Chen, +“Monster: an out-of-the-box monitoring tool for high performance +computing systems,” in 2020 IEEE International Conference on Cluster +Computing (CLUSTER). +IEEE, 2020, pp. 119–129. +[6] H. Shoukourian, T. Wilde, A. Auweter, and A. Bode, “Predicting +the energy and power consumption of strong and weak scaling hpc +applications,” Supercomputing frontiers and innovations, vol. 1, no. 2, +pp. 20–41, 2014. +[7] P.-F. Dutot, Y. Georgiou, D. Glesser, L. Lefevre, M. Poquet, and I. Rais, +“Towards energy budget control in hpc,” in 2017 17th IEEE/ACM Inter- +national Symposium on Cluster, Cloud and Grid Computing (CCGRID). +IEEE, 2017, pp. 381–390. +[8] O. Tuncer, E. Ates, Y. Zhang, A. Turk, J. Brandt, V. J. Leung, M. Egele, +and A. K. Coskun, “Online diagnosis of performance variation in hpc +systems using machine learning,” IEEE Transactions on Parallel and +Distributed Systems, vol. 30, no. 4, pp. 883–896, 2018. +[9] J. Dean, “Large-scale distributed systems at google: Current systems and +future directions,” in The 3rd ACM SIGOPS International Workshop on +Large Scale Distributed Systems and Middleware (LADIS 2009) Tutorial, +2009. +[10] E. Baseman, S. Blanchard, N. DeBardeleben, A. Bonnie, and A. Morrow, +“Interpretable anomaly detection for monitoring of high performance +computing systems,” in Outlier Definition, Detection, and Description +on Demand Workshop at ACM SIGKDD. San Francisco (Aug 2016), +2016. +[11] M. C. Dani, H. Doreau, and S. Alt, “K-means application for anomaly +detection and log classification in hpc,” in International Conference on +Industrial, Engineering and Other Applications of Applied Intelligent +Systems. +Springer, 2017, pp. 201–210. +[12] A. Borghesi, A. Libri, L. Benini, and A. Bartolini, “Online anomaly +detection in hpc systems,” in 2019 IEEE International Conference on +Artificial Intelligence Circuits and Systems (AICAS). +IEEE, 2019, pp. +229–233. +[13] H. Flake, “Structural comparison of executable objects,” in Detection +of intrusions and malware & vulnerability assessment, GI SIG SIDAR +workshop, DIMVA 2004. +Gesellschaft f¨ur Informatik eV, 2004. +[14] T. Dullien and R. Rolles, “Graph-based comparison of executable objects +(english version),” Sstic, vol. 5, no. 1, p. 3, 2005. +[15] D. Gao, M. K. Reiter, and D. Song, “Binhunt: Automatically finding +semantic differences in binary programs,” in International Conference +on Information and Communications Security. +Springer, 2008, pp. +238–255. +[16] M. Bourquin, A. King, and E. Robbins, “Binslayer: accurate comparison +of binary executables,” in Proceedings of the 2nd ACM SIGPLAN +Program Protection and Reverse Engineering Workshop, 2013, pp. 1–10. +[17] M. Egele, M. Woo, P. Chapman, and D. Brumley, “Blanket execution: +Dynamic similarity testing for program binaries and components,” in +23rd {USENIX} Security Symposium ({USENIX} Security 14), 2014, +pp. 303–317. +[18] J. Combs, J. Nazor, R. Thysell, F. Santiago, M. Hardwick, L. Olson, +S. Rivoire, C.-H. Hsu, and S. W. Poole, “Power signatures of high- +performance computing workloads,” in 2014 Energy Efficient Supercom- +puting Workshop. +IEEE, 2014, pp. 70–78. +[19] E. Ates, O. Tuncer, A. Turk, V. J. Leung, J. Brandt, M. Egele, and A. K. +Coskun, “Taxonomist: Application detection through rich monitoring +data,” in European Conference on Parallel Processing. +Springer, 2018, +pp. 92–105. +[20] P. Zou, A. Li, K. Barker, and R. Ge, “Fingerprinting anomalous +computation with rnn for gpu-accelerated hpc machines,” in 2019 +IEEE International Symposium on Workload Characterization (IISWC). +IEEE, 2019, pp. 253–256. +[21] V. Ramos, C. Valderrama, S. X. de Souza, and P. Manneback, “An +accurate tool for modeling, fingerprinting, comparison, and clustering +of parallel applications based on performance counters,” in 2019 IEEE +International Parallel and Distributed Processing Symposium Workshops +(IPDPSW). +IEEE, 2019, pp. 797–804. +[22] T. Jakobsche, N. Lachiche, A. Cavelan, and F. M. Ciorba, “An execution +fingerprint dictionary for hpc application recognition,” in 2021 IEEE +International Conference on Cluster Computing (CLUSTER). +IEEE, +2021, pp. 604–608. +[23] B. Zhao, H. Lu, S. Chen, J. Liu, and D. Wu, “Convolutional neural +networks for time series classification,” Journal of Systems Engineering +and Electronics, vol. 28, no. 1, pp. 162–169, 2017. +[24] Y. He, B. Cook, J. Deslippe, B. Friesen, R. Gerber, R. Hartman-Baker, +A. Koniges, T. Kurth, S. Leak, W.-S. Yang et al., “Preparing nersc +users for cori, a cray xc40 system with intel many integrated cores,” +Concurrency and Computation: Practice and Experience, vol. 30, no. 1, +p. e4291, 2018. +[25] K. Antypas, N. Wright, N. P. Cardo, A. Andrews, and M. Cordery, “Cori: +a cray xc pre-exascale system for nersc,” Cray User Group Proceedings. +Cray, vol. 1, 2014. +[26] A. Agelastos, B. Allan, J. Brandt, P. Cassella, J. Enos, J. Fullop, A. Gen- +tile, S. Monk, N. Naksinehaboon, J. Ogden et al., “The lightweight +distributed metric service: a scalable infrastructure for continuous mon- +itoring of large scale computing systems and applications,” in SC’14: +Proceedings of the International Conference for High Performance +Computing, Networking, Storage and Analysis. +IEEE, 2014, pp. 154– +165. +[27] B. +Cook. +(2021) +NERSC +LDMS +Pipeline. +[Online]. +Available: +https://software.nersc.gov/ldms/nersc-ldms +[28] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans- +actions on knowledge and data engineering, vol. 22, no. 10, pp. 1345– +1359, 2009. +[29] Z. Wang and T. Oates, “Encoding time series as images for visual in- +spection and classification using tiled convolutional neural networks,” in +Workshops at the twenty-ninth AAAI conference on artificial intelligence, +2015. +[30] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A +review and new perspectives,” IEEE transactions on pattern analysis +and machine intelligence, vol. 35, no. 8, pp. 1798–1828, 2013. +[31] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, +no. 7553, pp. 436–444, 2015. +[32] E. Ates, O. Tuncer, A. Turk, V. J. Leung, J. Brandt, M. Egele, and +A. K. Coskun, “Artifact for taxonomist: Application detection through +rich monitoring data,” 2018. +[33] J. Wilkes, “Google cluster-usage traces v3,” Google Inc., Mountain +View, CA, USA, Technical Report, Apr. 2020, posted at https://github. +com/google/cluster-data/blob/master/ClusterData2019.md. +[34] K. Yamamoto, Y. Tsujita, and A. Uno, “Classifying jobs and predicting +applications in hpc systems,” in International Conference on High +Performance Computing. +Springer, 2018, pp. 81–99. +[35] Z. Liu, R. Lewis, R. Kettimuthu, K. Harms, P. Carns, N. Rao, I. Foster, +and M. E. Papka, “Characterization and identification of hpc applications +at leadership computing facility,” in Proceedings of the 34th ACM +International Conference on Supercomputing, 2020, pp. 1–12. +[36] O. DeMasi, T. Samak, and D. H. Bailey, “Identifying hpc codes via +performance logs and machine learning,” in Proceedings of the first +workshop on Changing landscapes in HPC security, 2013, pp. 23–30. +[37] S. Chunduri, S. Parker, P. Balaji, K. Harms, and K. Kumaran, “Char- +acterization of mpi usage on a production supercomputer,” in SC18: +International Conference for High Performance Computing, Networking, +Storage and Analysis. +IEEE, 2018, pp. 386–400. + +[38] S.-H. Lim, H. Sim, R. Gunasekaran, and S. S. Vazhkudai, “Scientific +user behavior and data-sharing trends in a petascale file system,” in +Proceedings of the International Conference for High Performance +Computing, Networking, Storage and Analysis, 2017, pp. 1–12. +[39] G. K. Lockwood, S. Snyder, T. Wang, S. Byna, P. Carns, and N. J. +Wright, “A year in the life of a parallel file system,” in SC18: In- +ternational Conference for High Performance Computing, Networking, +Storage and Analysis. +IEEE, 2018, pp. 931–943. +[40] T. Patel, S. Byna, G. K. Lockwood, and D. Tiwari, “Revisiting i/o be- +havior in large-scale storage systems: the expected and the unexpected,” +in Proceedings of the International Conference for High Performance +Computing, Networking, Storage and Analysis, 2019, pp. 1–13. + diff --git a/2dFAT4oBgHgl3EQfkh3i/content/tmp_files/load_file.txt b/2dFAT4oBgHgl3EQfkh3i/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..023b390ddcb654b51bae1e38fdb248007c312817 --- /dev/null +++ b/2dFAT4oBgHgl3EQfkh3i/content/tmp_files/load_file.txt @@ -0,0 +1,916 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf,len=915 +page_content='ARcode: HPC Application Recognition Through Image-encoded Monitoring Data 1st Jie Li Department of Computer Science Texas Tech University Lubbock, TX, USA jie.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='li@ttu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='edu 2nd Brandon Cook National Energy Research Scientific Computing Center Lawrence Berkeley National Laboratory Berkeley, CA, USA bgcook@lbl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='gov 3rd Yong Chen Department of Computer Science Texas Tech University Lubbock, TX, USA yong.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='chen@ttu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='edu Abstract—Knowing HPC applications of jobs and analyzing their performance behavior play important roles in system management and optimizations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' The existing approaches detect and identify HPC applications through machine learning models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' However, these approaches rely heavily on the manually extracted features from resource utilization data to achieve high prediction accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' In this study, we propose an innovative application recognition method, ARcode, which encodes job monitoring data into images and leverages the automatic feature learning capability of convolutional neural networks to detect and identify applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Our extensive evaluations based on the dataset collected from a large-scale production HPC system show that ARcode outperforms the state-of-the-art methodology by up to 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='87% in terms of accuracy at high confidence thresholds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' For some specific applications (BerkeleyGW and e3sm), ARcode outperforms by over 20% at a confidence threshold of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Index Terms—High Performance Computing, Application De- tection, Deep Learning, Convolutional Neural Network I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' INTRODUCTION As HPC systems are approaching the exaFLOP era, the scale and complexity of HPC systems have increased significantly over the past few years.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Administrators need to understand not only the performance of the hardware system, but also the typical applications and their characteristics, such as how they use the computing resources and how they have been executed before [1]–[5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' With the increase of computation capability, the resource contention and energy consumption increase as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' To improve HPC system efficiency, it is imperative to under- stand the characteristics of applications and to guide better resource-aware scheduling policies based on the knowledge of resource requirements of applications [6]–[8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Moreover, emergent misbehaviour is becoming more prevalent due to the large scale and high utilization [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' For system administrators striving to guarantee optimal system performance, detecting anomalies and potential errors of applications is an essential task [10]–[12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' An online detection system that is capable of identifying applications in real-time, with little or no human intervention, would be a boon to system management.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' However, this is a daunting task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Large-scale HPC systems are generally shared by a variety of users from different domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' In addition to traditional large-scale simulation applications (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=', molecu- lar dynamics, quantum chemistry applications, and climate simulations), emerging Machine Learning (ML) and Artificial Intelligence (AI) applications have become an increasingly critical part of the workloads on HPC systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Frequently used applications and libraries are usually pre-installed on the system by system administrators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' However, administrators do not necessarily possess the knowledge about the executions and characteristics of each application.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Users could build, compile and name their own applications that are not shared with others.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' In addition, if users do not provide application information in job submission scripts, it is difficult to know what applications these jobs belong to.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' These various use cases and the imprecise mapping of job names to actual applications make it difficult to identify applications using naive approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' As an example, we examined the application names derived from the job submission script on Cori and found that about 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='4% of the names were incorrect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Advanced methods for detecting and recognizing applica- tions can be divided into static analysis of binaries and/or scripts, which can be performed without running a job, and dy- namic analysis of system logs and performance metrics, which implies analysis during or after job execution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Early works explored static analysis of binaries to determine the semantic similarity between two applications [13], [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' However, The complexity of HPC systems has reached a point where static analysis of the binaries used to run and maintain the detection system is no longer feasible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' This approach is invasive to users’ data and requires a dedicated binaries collection and management infrastructure, which is not always of interest for system administrators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Moreover, even though the binaries are available, it does not perform well if the same application is compiled by a different compiler toolchain or optimization level [15]–[17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Collecting and analyzing system logs and performance metrics are critical to combat performance crisis, and they are prevalent in HPC systems, although the approach may vary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Recently, there has been a growing research interest in automatic detection that relies on extensive performance metrics and employs ML techniques to identify applica- tions [18]–[22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' A representative approach proposed by Ates et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' explored building supervised ML models with statistic features of monitoring metrics to classify applications [19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' The classification model relies on thousands of statistical arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='08612v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='DC] 20 Jan 2023 features extracted from hundreds of time-series monitoring metrics to achieve high prediction accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' A major weakness of this approach is the high-latency responses of the detection model, and the statistical features are only accurate for repre- senting the application after the job is finished.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' In addition, the performance of feature-based models is highly dependent on feature engineering;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' using different features has the potential to deviate the classification performance [23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' In this study, we extend the line of performance metrics based approaches and propose an innovative method called ARcode (stands for Application Recognition code).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' It is an application recognition method utilizing images encoded from performance monitoring metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Specifically, we lever- age monitoring metrics collected from HPC systems (§II-A) and encode time-series data to two-dimensional images to represent the resource usage patterns of HPC executions (or job signatures for simplicity, discussed in §III-B).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' We then build a dataset labelled with application names and train a Convolutional Neural Network (CNN) to build the classifi- cation model (§III-C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' The contributions of this study are summarized below: Contrary to other studies where datasets are generated from benchmarks and proxy applications, our dataset is built from real applications with different input data, resource allocations and run times, which well reflects the complex real scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Specifically, we collect monitor- ing data from a production system and build a dataset of performance metrics of twelve popular HPC applications where the application names are labelled.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Our innovative methodology encodes time-series mon- itoring data into two-dimensional images, where the performance metrics are creatively represented in a much smaller size compared to the original data without losing important metric variations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' The encoded job signatures can be used not only for application classification and detection, but also to inspire methods for predicting and estimating the resource usage of applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' We use the CNN techniques and train the CNN model with the job signatures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' The job signatures are generated from the performance monitoring data, thus do not in- volve collecting and analyzing users’ private data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' The CNN model, on the other hand, does not require manual features engineering, making it easier to be tuned and adopted by any HPC sites.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Through extensive experiments, we find that ARcode achieved a competitive classification performance in most cases and outperformed by up to 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='87% at high confidence thresholds compared to the state-of-the-art methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' When detecting some specific applications (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=', BerkeleyGW and e3sm) with a confidence threshold of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='8, ARcode is better than the state-of-the-art methods by over 20% in terms of ac- curacy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Meanwhile, ARcode retains the temporal information of the monitoring data and is able to recognize running jobs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' This capability is not available in any state-of-the-art methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' The details of all these experiment evaluations are discussed Figure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 1: Workflow of LDMS on Cori in §IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' The ARcode model and dataset used in this study can be found in a separate submission of artifacts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' BACKGROUND In this section, we briefly introduce the Cori system and how we collect job monitoring data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Then, we describe the workflow of the monitoring infrastructure being used and present the available job-level monitoring metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' The Cori System Cori1 is a Cray XC40 system at National Energy Research Scientific Computing Center (NERSC).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' It consists of 2,388 Intel Xeon “Haswell” processor nodes and 9,688 Intel Xeon Phi “Knight’s Landing” (KNL) nodes interconnected on Cray Aries High-Speed Network, which provides a peak perfor- mance of about 30 petaflops.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Additionally, Cori is equipped with a large scratch Luster File System that provides 432 GB/s of performance with a capacity of 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='5 petabytes to the compute nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Cori also has the Cray DataWarp based Burst Buffer, offering a 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='8 petabytes burst buffer storage with 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='7 TB/s in peak bandwidth performance [24], [25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' With the mission of accelerating the pace of scientific discovery through HPC and data analysis, workloads running on the Cori system cover a wide range of scientific disciplines, including lattice QCD, materials science, climate research, high energy physics, astrophysics, and more.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Monitoring Workflow In this study, we utilize the monitoring metrics collected from the CPU nodes of the NERSC Cori system, where the in- 1https://docs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='nersc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='gov/systems/cori/ Compute Node Compute Node LDMS Sampler Daemon LDMS Sampler Daemon Haswel Aggregation Node LDMS Aggregator Daemon Parguet Large Memory Node 2TB of MemoryTABLE I: Selected Monitoring Metrics Sampler Metrics Derived Metrics Description cray aries sampler power power Node Power Consumption syspapi PAPI TOT INS IPC (PAPI TOT INS/PAPI TOT TOT) Instruction Per Cycle PAPI TOT TOT meminfo MemTotal Mem (MemTotal - MemFree) Memory Used MemFree Figure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 2: Overview of ARcode Design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' ARcode encodes the time-series monitoring data into job signatures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' In the offline training phase, ARcode trains the CNN from a labelled job signature dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' In the running recognition phase, the CNN model is used to detect the encoded job signature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' The CNN model is modified so that it can identify novel applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' band monitoring tool, LDMS is used [26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' The detailed discus- sion of how LDMS works on Cori is out of scope of this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' In Figure 1, we illustrate its workflow for generating job-level performance metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' The workflow includes the following steps: 1 LDMS samplers on Haswell and KNL nodes (two partitions in Cori) collect in-band metrics at a pre-configured frequency;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 2 the monitoring data are then sent to aggregation nodes, where metrics collected from the same sampler are stored in CSV files under the same folder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Each CSV contains metrics from multiple nodes and the corresponding metrics for a job may span multiple CSV files.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' To improve the usability of the monitoring data, the NERSC LDMS [27], an LDMS data processing tool, takes care of the post-processing of CSV files.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 3 NERSC LDMS gets job IDs from Slurm sacct and joins the job IDs with CSV files, and 4 submits these files to large memory nodes for post-processing, where the same metrics of the same job are extracted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 5 The post-processed job-level metrics are saved in parquet files by metric samplers for future analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Compared to raw CSV files, job-level parquet files significantly improve the availability of monitoring data and the efficiency of querying job performance metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Available Metrics The available metrics collected through LDMS on HPC systems depend on the configurations and available samplers on the hardware platform.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' As routine tasks of monitoring the health of the Cori system, 34 different samplers collect metrics related to I/O, network, CPU counters, memory usage, power consumption, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' The total number of metrics collected through the sampler varies from 12 to 3,016, depending on the sampler.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' The granularity of collected metrics is one second, generating approximately 400MB of monitoring data per second on a system wide basis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' From the perspective of application recognition, it is unattractive and impractical to include all of these extensive monitoring metrics in one model because processing large amounts of time-series data is compute-intensive and time- consuming.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' On the other hand, we envision that the proposed methodology should be easily adopted by other HPC systems and the selected metrics should be common even when using different monitoring infrastructures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Therefore, we select five of these metrics and derive three representative metrics for creating job signatures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' These three metrics are the power consumption of the compute node, instruction per cycle (IPC), and memory used as shown in Table I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' These metrics are expected to be available through the monitoring infrastructure on a variety of HPC architectures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' METRICS ENCODING AND CLASSIFICATION In this section, we first discuss design considerations and provide an overview of ARcode design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' We then present the details of encoding monitoring data, including resampling job metrics, converting 1D time-series data into 2D images, and encoding multiple traces into a single image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Lastly, we introduce the CNN architecture for classifying the encoded images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Design Consideration and Overview As discussed in §I, existing solutions either perform a static analysis of binaries and/or scripts or leverage machine learning methods to extract key features out of extensive monitoring data to build application prediction and classification models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Known App App1 App2 Known App 2 Known App n App 3 App 4 Unknown Apps App n(a) Original Power Consumption Trace (b) Downsampled Trace by Aggregating (c) Original Power Consumption Trace (d) Upsampled Trace by Padding Figure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 3: Resampling traces by aggregating and padding based on the original trace length and the predefined length.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Figure a is the trace longer than the predefined length 128, in which the aggregating function is applied to downsample the trace.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Figure c is a trace shorter than 128, in which the padding is used to upsample the trace.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Figure b and d show the corresponding resampled traces, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Our approach, ARcode, is similar to the monitoring data based approaches but with two design considerations: features learned without human intervention and data retaining tempo- ral information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' First, current state-of-art application detection models, such as Taxonomist [19], extract statistical summaries from raw monitoring data to create a feature vector for machine learning models, where the classification performance is highly de- pendent on the quality of the manually constructed features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' To improve the usability, one of our considerations is that the features of the monitoring traces can be learned without human intervention.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Second, although statistical features are spatially efficient and lightweight when building detection models, they lose the temporal information of time-series data, thus limiting their use case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' To improve the extensibility, the other consideration of our model is to retain temporal information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' So it is able to use part of the monitoring data in detection, classification, and prediction of the resource usage of applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' With these considerations in mind, our proposed approach, ARcode, encodes entire time-series monitoring data of jobs into unified-size images and leverages deep learning tech- niques to learn features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' The encoded image, which we named as job signature, is a representation of monitoring traces that preserve temporal performance behavior of the job.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' As shown in Figure 2, ARcode has two main components: the monitoring data encoding and the CNN model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' The first component, the monitoring data encoding component, performs a series of operations on the raw monitoring data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' It creates job signatures encoding the time-series data and represents the jobs as images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' The second component is a CNN model that is customized to learn features from job signatures and to classify these job signatures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' ARcode operates in two phases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' The first phase is the offline training phase, where the CNN model is trained from a labelled job signature dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' The training phase can be enhanced with transfer learning [28], where the convolutional layers can be transferred from a trained job detection model and only the layers that make predictions need to be trained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' The runtime recognition phase is where ARcode operates to detect and to predict the applications by job signatures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Classification model should not be limited to classify known applications already seen in the training phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' To make ARcode practically useful, we introduce confidence thresholds to help identify applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' When the prediction probability exceeds the defined threshold, ARcode labels the job with the application name;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' otherwise, it marks the observation as unknown, indicating the job is likely to be a new application.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Construction of Job Signature 1) Resampling Traces: To construct job signatures that can be measured for the similarity between pairs of signatures, it requires the time series traces to have equal length.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Given a trace, we resample it with a predefined length l.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' For a trace T of length n, we create T ′ by sampling the data points from T 275.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='00 Power Consumption (W) 250.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='00 225.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='00 200.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='00 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='00 150.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='00 125.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='00 14000 0 2000 4000 6000 8000 10000 12000 Timesteps220.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='00 Power Consumption (W) 210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='00 200.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='00 190.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='00 180.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='00 170.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='00 20 60 80 100 120 0 40 Timesteps300.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='00 Power Consumption (W) 250.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='00 200.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='00 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='00 100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='00 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='00 0 10 20 30 40 50 Timesteps300.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='00 Power Consumption (W) 250.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='00 200.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='00 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='00 100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='00 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='00 0 20 40 60 80 100 120 Timesteps(a) Polar Coordinate of the Normalized Trace (b) Gramian Angular Summation (Left) and Difference (Right) Fields Figure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 4: Steps of Gramian Angular Field Conversion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Each encoded image has a resolution of 128 × 128.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' so that n′ = l, where n′ is the length of the sampled trace T ′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Note that the predefined length is usually set to a relatively small value to reduce the compute time when calculating the similarities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Considering most jobs on HPC run for hours or even days, their corresponding monitoring traces are usually longer than the predefined length, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='e, n > l.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' In this case, we downsample the traces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' For each set of ⌊n/l⌋ data points, we apply one of the functions, such as mean, max, min, median, to calculate the aggregated value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Assuming we set the predefined length to be 120, to resample the power consumption trace of a 10-minute job (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=', the trace has 600 timesteps in total), every 5 data points should be aggregated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Figure 3a and Figure 3b illustrate the procedure of resampling the power consumption traces of a job using the mean value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' The original trace contains more than 14,000 timesteps, while after resampling, the trace length becomes 128 timesteps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' In case that n < l, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=', the length of a job metric trace is less than the predefined length l, we upsample the original traces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Specifically, we add ⌊l/n⌋ paddings between consecutive data points and fill with the previous value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Figure 3c and Figure 3d show the traces before and after upsampling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' After resampling, all traces have the length of l, irrespective of the duration of the job.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' The corresponding resampled traces T ′ will be used for further processing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 2) Converting 1D time series to 2D images: As shown in Figure 3, the monitoring traces and the corresponding resampled traces are univariate time series.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' To take advantage of the feature learning in deep learning architectures, we convert 1D time series to 2D images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' We utilize the Gramian Angular Field (GAF) to transform time series into images [29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Specifically, the time series data is first normalized or scaled into the range of [−1, 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' The normalized time series data is then represented in a polar coordinate instead of the typical Cartesian coordinate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' A Gram Matrix like operation is applied on the resulting angles to construct 2D images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Given a time series trace T = {t1, t2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=', tn} of n times- tamps, we rescale T to have the interval [−1, 1] by the equation below: ˜ti = (ti − max(T)) + (ti − min(T)) max(T) − min(T) (1) The value of the time series and its corresponding timestamp need to be accounted for so that no information is lost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' These two quantities are expressed with the angle and the radius in polar coordinates, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Mathematically, the angle is computed by arccos(˜ti), which lies within [0, π], and the radius variable is calculated by i/n, which is in [0, 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' The point can be expressed in polar coordinates (φi, ri), where: � φi = arccos(˜ti), −1 ≤ ˜ti ≤ 1 ri = i n, 0 ≤ i ≤ n (2) The encoding function is a composition of bijective func- tions, producing one and only one result in the polar coordinate system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' In addition, as opposed to Cartesian coordinates, polar coordinates preserve temporal dependency through the r coordinate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' An example of a trace represented in polar coordinates is shown in Figure 4a, which is transformed from the normalized trace of Figure 3d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' The temporal correlations between each pair of data points (ti, tj) are computed by considering the trigonometric sum- mation (cos(φi + φj)) or subtraction (cos(φi − φj)), leading to the Gramian Matrix called Gramian Angular Summation Field (GASF) or Gramian Angular Difference Field (GADF), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' The GASF is defined as follows: GASF = � ���� cos(φ1 + φ1) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' cos(φ1 + φn) cos(φ2 + φ1) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' cos(φ2 + φn) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' cos(φn + φ1) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' cos(φn + φn) � ���� (3) Through the GASF or GADF conversion, the diagonal Gi,i contains the original value of the scaled time series, while Gi,j represents the relative correlation by superposition of directions with respect to time interval |i − j|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Other details on time series encoding can be found from [29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' In Figure 4b, 90° 135° 45° 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='00 180° 0° 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='75 L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='00 225° 315° 270°60 0 20 40 80 100 120 0 20 40 60 80 100 120 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='00 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='00 120 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='75 100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='50 80 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='00 60 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='25 40 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='50 20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='75 0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='00 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='00 0 1we illustrate the encoded 2D images with GASF and GADF for the trace in Figure 4a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' To keep it concise, we use GASF as the 1D time series conversion algorithm and refer to GASF as GAF in the following discussion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 3) Encoding Multiple Time Series Traces: The procedure presented in §III-B2 only converts one monitoring trace to a 2D image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Since we have multiple monitoring traces cor- responding to the same job and we do not want to lose the correlation between each pair of traces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' The question becomes how we can encode multiple time series to a single image such that a deep learning architecture can understand.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' To solve this problem, we are inspired by the concept of RGB channels, where each RGB channel emphasizes different aspects of the original image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Similarly, the power consumption trace, IPC trace, and memory used trace can be considered as the R channel, G channel, and B channel of the encoded image, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' The output of GAF conversion is nothing but a 2D matrix of floating-point numbers that fall in [−1, 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' To visualize the job signature, we rescale the GAFs of the above-mentioned three traces to be in [0, 255] by using the below equation: � GAF = ⌊GAF + 1 2 ∗ 255⌋ (4) The � GAF contains the pixel value of the gray scale image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' When combining � GAF power, � GAF ipc, � GAF mem as three channels of RGB, we create a single color image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Figure 5 shows the GAFs of the power, IPC and memory usage of a job and its corresponding encoded job signature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' It is worth noting that rescaling GAF to the range [0, 255] is only for the purpose of visualizing the job signature while the original GAF falling in [−1, 1] can be directly fed in the Convelutional Neural Network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' It is important to note that the channel-like encoding methodology is not limited to three channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Each time series trace is converted to a l ×l matrix by the procedure presented in §III-B2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' An encoded job signature of three channels is a l × l × 3 matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Encoding one more metric is simply adding another dimension in the matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' More formally, a job signature of c metrics is a l × l × c matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Even though it is not straightforward to be visualized when c is larger than 3, the CNN model can “understand” and analyze the high- dimensional matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Classification Model Using the methodology presented in §III-B, the monitoring traces of jobs can be represented in images (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=', job sig- natures).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Therefore, detecting and identifying applications of jobs become an image recognition problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' In this subsec- tion, we first introduce the CNN, a deep learning technique that has been widely used in image classification problems and achieved promising results in many domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Then, we present the CNN architecture that is specifically customized for classifying job signatures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 1) Deep learning using CNN: The performance of con- ventional machine learning techniques depends heavily on data representation, which requires lots of efforts to design preprocessing pipeline and feature engineering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Such feature engineering is labor intensive and lacks the ability to extract discriminative information from the data [30].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Deep learning, on the other hand, explores the possibility to feed raw data to the algorithm and automatically discover the features needed for detection or classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' The key concept of deep learn- ing is to transform the representation at a lower level into a representation at a higher and more abstract level;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' and with composition of such transformations, complex functions can be learned [31].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' As a widely-used deep learning technique, CNNs have been successful in image classification problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 2) Customized CNN Architecture for Job Signatures: The CNN architecture for classifying job signatures is designed as shown in Figure 6, which contains the following customized layers and parameters: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Input layer for job signature: The inputs are job signatures of encoded multiple time series traces, as presented in §III-B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' The resolution of the job signature is 128 × 128 and the number of channels equals to the number of traces encoded in the job signature (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=', three in our dataset).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Note that for other cases that job signatures encode more than three monitoring traces, the input shape should be set accordingly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Layers for feature extraction: In our model, we have three layers of CNN to learn features from the job signature, each of which contains one convolution layer to extract features and one pooling layer to reduce the spatial dimension of the convoluted image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' The convolution layer extracts image features by convolving the job signature with a set of kernels and produces one feature map for each kernel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' We apply the activation function ReLU on the convoluted features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' It replaces negative values with zero and keeps the positive value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' The output of ReLU will be the input for the pooling layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' The first convolution layer learns 32 kernels, and the sec- ond and third convolution layers learn 64 and 128 kernels, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' We set the kernels to be size of 3×3 and use the same padding in the convolution to maintain the dimension of output as input.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' All three pooling layers perform max pooling that returns the maximum value from the portion of the image covered by a window of size of 2 × 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Layers for classification: After going through the feature extraction layers, the customized CNN model flattens the final output and feeds it to a regular neural network for classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' The flattened vector is connected to a fully connected layer, through which non-linear combinations of the features can be learned.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' After passing through the fully connected layer, we use the softmax activation function in the last layer to get the probabilities of the input job signature being in a particular class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' To prevent the CNN model from overfitting and improve the generalization of the CNN model, we add several dropout lay- ers in the model to randomly disable neurons during training, as shown in the dashed red parallelograms in Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' In our Figure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 5: Encoding Multiple Time Series Traces into a Job Signature with a Resolution of 128 × 128.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Figure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 6: Customized CNN Architecture for Classifying Job Signatures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' experiments, the dropout rate before the flatten layer and in the fully-connected layer is set as 30% and 70%, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' EXPERIMENTAL EVALUATION In this section, we introduce the experimental evaluation of our proposed classification model on a real-world dataset collected from the Cori system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Particularly, we first introduce the dataset built based on the proposed encoding methodology and then, we compare the performance of our model with the baseline methods in terms of accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Dataset To the best of our knowledge, there are no publicly released monitoring traces with labelled application information col- lected from production HPC systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Ates el al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' [32] published a dataset containing the monitoring data of benchmarks and proxy applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Google published its cluster traces that do not have application information [33].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Therefore, in order to train the CNN model for detecting applications running in production HPC systems, we built our own dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' On Cori system, some other research groups had imple- mented the job metadata management service, where the metadata of jobs running on Cori are stored and managed in a MySQL database.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' The job metadata has a field named ‘application name’ which is derived from the job submission script.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' However, based on our analysis, about 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='4% of derived names do not reflect the application accurately.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Many of them have names like ‘test’, ‘bugs’, ‘b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='sh’, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Therefore, to build a reliable labelled dataset, we select jobs that have accurate application names through the job metadata service.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' In addi- tion, since Cori system has the KNL partition and the Haswell partition, the monitoring metrics of the same application (even with same configurations and same input files) running on different architectures could potentially have large variations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' To avoid discrepancy caused by the architecture, we only focus on the jobs running on the same architecture and we select KNL jobs as our dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Besides, we discard short jobs that run for less than 60 seconds since they are likely for testing purposes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' The job IDs of the selected jobs are used with NERSC LDMS [27] to obtain the corresponding monitoring traces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Considering that a job may have multiple steps and that job steps may correspond to different applications, we treat the job steps of a job separately.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' In addition, since a job may use multiple nodes (nodes are exclusively used by the job on Cori), we aggregate the monitoring metrics from all involved nodes and use the average time-series traces to build the job signature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' We select 23,665 jobs from 12 different applications to build the job signature dataset after eliminating those jobs that do not have monitoring metrics (due to data collection errors or historical traces are purged) and balancing the number of jobs of each application as much as possible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Details are listed in Table II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' The numbers of allocated nodes for a job vary from 1 to a maximum of 2,048.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' The BerkeleyGW, Espresso and Footunee Lonin: CNIN Ieyr JAI NING CNIN IyEr 128 × 129 x3 FT X 84 X 04 × B4 [Poad mps 32 量 $2 x 128 Potpd mp L 口 口 口0 20 40 60 80 100 120 20 40 60 80 100 120 20 40 60 80 100 120 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='90 卡 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='13 185.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='12 182.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='50 120 - 120 120 20 100 100 100 40 80 80 80 - 60 09 60 80 - 40 40 40 - 100 20 - M 120 ol 01 0 20 40 60 80 100 120 GAF of Power (Channel R) GAF of IPC (Channel G) GAF of Mem (Channel B) Job SignatureTABLE II: Dataset of Job Signatures Application # of Jobs # of Nodes* Runtime(s)* Description BerkeleyGW 1899 1 / 2048 60 / 172867 For quasiparticle excitations and optical properties of materials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Espresso 2000 1 / 2048 61 / 172858 For electronic-structure calculations and materials modeling at the nanoscale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Gromacs 1937 1 / 64 61 / 172836 For simulations of proteins, lipids and nucleic acids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' LAMMPS 1999 1 / 64 60 / 172866 For molecular dynamics with a focus on materials modeling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' NWChem 1992 1 / 384 71 / 169209 For computational chemistry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' VASP 2000 1 / 128 69 / 172864 For “ab-initio” quantum-mechanical molecular dynamics (MD) simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' WRF 1860 1 / 256 72 / 174608 for atmospheric research and operational forecasting applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' aims 2000 1 / 192 71 / 172959 For “ab-initio” molecular simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' chroma 1996 2 / 137 488 / 147447 For lattice Quantum Chromodynamics calculations (LQCD).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' cp2k 1993 1 / 128 60 / 174608 For quantum chemistry and solid state physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' e3sm 1989 1 / 2048 60 / 173402 For earth system modeling, simulation and prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' su3 2000 1 / 36 65 / 20277 For lattice Quantum Chromodynamics calculations (LQCD) The values on the left and right side of ‘/’ indicate the minimum and maximum values of the corresponding characteristics of the jobs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' s3sm have extremely large-scale jobs where all cores of 2,048 nodes are used, corresponding to 131,072 physical cores.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' The selected jobs also cover a large range of runtime variations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' The shortest job, as defined earlier, runs for only 60 seconds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' The longest job, limited by the Quality of Service of the KNL partition, runs for 48 hours.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' The dataset can be found in a separate submission of artifacts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' It is worth mentioning that, it is up to users to set the resam- ling length l and define the resolution based on their computing capability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Nevertheless, the CNN model for images of larger resolution usually requires more complex architecture and the time for fine tuning and training the parameters of the architecture becomes high.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' In our experiments, we set the resampling length to be 128 and use a resolution of 128×128 for job signatures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Baseline Methods To compare the performance of our proposed CNN model with state-of-the-art methods for detecting HPC jobs, we examine several other performance metrics based approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' The Power Signature [18] and Taxonomist [19] are two repre- sentative methods that use statistic features of the time series monitoring data to build the classification model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' The statistics include the minimum, maximum, mean, standard deviation, skew, kurtosis and the 5th, 25th, 50th, 75th, 95th percentiles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Using the same monitoring metrics as ARcode, namely power consumption, IPC and memory usage of the selected jobs, we extract statistical features and build several classifiers as baselines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' These classifiers are Random Forest (RF), linear Support Vector Classifier (Liner-SVC), and non-linear Support Vector Classifier (SVC).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' In addition, we include a Random Forest model that uses only statistical features extracted from the power consumption trace.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' All of these models use default hyperparameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Experiment Setup The ARcode and baseline models are trained and evaluated on a Cori GPU node, where 2 Skylake CPUs, 8 NVIDIA Tesla V100 GPUs and 384 GB DDR4 memory are provided.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' The proposed CNN is implemented using the TensorFlow Keras library in a Python 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='9 environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' The baseline models are implemented in Python leveraging scikit-learn library.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Figure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 7: Loss (top) and accuracy (bottom) of the training and validation data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' The vertical dashed line indicates the determined epoch of 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' We divide the dataset into 60% for training, 20% for validation, and 20% for testing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' To mitigate overfitting and to increase the generalization of ARcode model, we determine the optimal epoch number by examining the loss and accuracy trends on training and validation data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' As shown in Figure 7, after epoch reaches to 50, the training loss gets lower than validation loss while the accuracy of validation does not improve.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Therefore, we set epoch to 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' While evaluating the classification performance on each application, we use ten-fold stratified cross validation to divide the dataset into ten disjoint partitions and evaluate model performance with each partition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' We test the classification performance on different con- fidence thresholds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' For each baseline classifier, we use the one-vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='-rest version of that classifier such that it produces a set of real-valued prediction scores for its decision instead of a labeled class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' In ARcode model, the softmax function assigns probabilities of classes in each prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' We compare the prediction probabilities with the confidence thresholds to determine the predicted class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' For the prediction score si of class ci, i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=', k}, the classifier assigns the label of the class by the following expression: � ci, where si = max(s1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=', sk), if si ≥ threshold unknown, otherwise (5) In other words, when the maximum value of the prediction Training 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='00 Validation 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='00 S LoSS 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='00 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='80 - Accuracy 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='60 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='40 40 60 120 0 20 80 100 EpochsFigure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 8: Accuracy of ARcode and baseline classifiers at different confidence thresholds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' The vertical dashed line in- dicates the confidence threshold (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='4) above which ARcode outperforms all other classifiers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Figure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 9: Accuracy of classifiers on each application at a confidence threshold of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' scores is larger than the threshold, the class with the largest score is the predicted class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Otherwise, the classifier labels the observation with unknown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' When the confidence threshold is 0, it is the same with the vanilla multi-class classifier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Experimental Results We evaluate the capability of ARcode in identifying appli- cations in this subsection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' First, we evaluate the classification performance on different confidence thresholds and examine the performance on each application.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Then, we assess the performance of identifying applications that have not been trained with the models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' In addition, since the job signatures encode temporal information of the monitoring metrics, we use a subset of the monitoring data to construct partial signatures to evaluate the ARcode model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 1) Classification Performance: Figure 8 depicts the accu- racy of ARcode and baseline models on different confidence thresholds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' As we can see from the figure, the Linear-SVC model has the worst performance at all confidence thresholds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' When the confidence threshold is below 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='4, Random Forest outperforms all other classifiers, with the highest accuracy of 93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='81% at a confidence threshold of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' ARcode follows closely with an accuracy of 89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='67%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' When the confidence threshold is above 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='4, the accuracy of Random Forest de- creases and ARcode has the best performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' At a threshold of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='0, the SVC model performs a little better than Random Figure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 10: Accuracy of ARcode and baseline classifiers on detecting novel applications at different confidence thresholds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' ARcode achieved the highest accuracy when the confidence threshold is greater than 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Forest, but it is still 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='87% worse than ARcode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' At a confidence threshold of 0, the accuracy of Random Forest on power features is close to ARcode , but it decreases significantly as the confidence threshold increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' In sum- mary, the accuracy of all classifier decreases with increasing confidence thresholds, but the slowest decrease rate is observed for ARcode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' We further examine the classification performance of ARcode and Random Forest on each application, as shown in Figure 9, where we use a confidence threshold of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='8 in the experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' From this figure, we have the following observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' First, the accuracy of ARcode and Random Forest are very close in most cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' When detecting Gromacs, LAMMPS and cp2k, Random Forest performs slightly bet- ter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Second, for some applications such as BerkeleyGW and e3sm, ARcode achieves a significantly better accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' In BerkeleyGW classification, the accuracy of Random Forest is 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='06% while ARcode achieves 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='94% accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' ARcode is also 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='21% better than Random Forest in detecting e3sm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 2) Classification on Novel Applications: Considering that in HPC environments, ‘novel’ applications are more prevalent than those trained with the classifier, it is appropriate to define an ‘unknown’ class for all these novel applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' To be practically useful, the classification system must classify both known and unknown novel applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' We evaluate this capability by removing one application from the training set while keeping the testing set untouched.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' If the removed application in the testing set is predicted to be unknown, we mark it as a correct prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' The classification performance for novel applications is depicted in Figure 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' From this figure, we can observe that Random Forest has the best prediction accuracy when the confidence threshold is below 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='8, while ARcode beats Random Forest once the confidence threshold is greater than 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' ARcode, similar to its performance in known application detection, has relatively stable prediction accuracy across all confidence thresholds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' However, the accuracy of Random Forest drops significantly in large confidence thresholds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 100% 80% 60% Accuracy 40% ARcode (CNN) Random Forest 20% SVC LinearisvC Random Forest on Poweri Features!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 0% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='0 Confidence ThresholdARcode(CNN) Random Forest 100% 80% Accuracy 60% 40% 20% 0% aims WRF BerkeleyGW Espresso Gromacs LAMMPS NWCHEM VASP chroma cp2k e3sm su3 Applications100% 80% 60% Accuracy 40% ARcode (CNN) Random Forest 20% SVC Linearisvc Random Forest on Poweri Features 0% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='0 Confidence ThresholdFigure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 11: Accuracy of ARcode on each application using different channels of the job signature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Figure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 12: Accuracy of ARcode on each application using partial job signature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' The partial job signatures are all built from the metrics collected since the startup of jobs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 3) Classification using Single Channel: In our experiment, ARcode encodes three channels of monitoring data in the job signature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' It is worth knowing whether each channel plays the same importance in classification and whether we can use one channel for detection while still achieving high accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' To answer these questions, we train CNN models with each of these channels individually and analyze their classification performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' The results are shown in Figure 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' From the figure we can see that using any of the chan- nels gives a competitive accuracy when detecting Espresso, LAMMPS, WRF, and chroma compared to using all channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' For NWCHEM, the classification accuracy using the memory channel is significantly better than using the power or IPC channel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' We can also see that all channels are important for detecting both Gromacs and cp2k with an accuracy improve- ment of 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='36% and 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='66%, respectively, compared to using only one of the channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' The memory channel is the most representative of these channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' In most applications, using the memory channel in detection has the closest accuracy to using all channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 4) Classification using Partial Signatures: The job sig- nature retains the temporal information of the time-series monitoring data, and the job signature generated before the end of the job still holds some of the attributes of the full job signature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' We use the first 25%, 50% and 75% of the time-series data to create partial job signatures and compare the detection performance with the full job signature (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='e, a job signature built from 100% of the monitoring data).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' This experiment is performed to evaluate the usability of the ARcode model for detecting running applications, which is not available in the statistics-based models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' The results are shown in Figure 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' It is not surprising that the larger the percentage of encoded data, the better the detec- tion performance achieved by ARcode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' When encoded with 25% of the monitoring data, ARcode achieves a relatively high accuracy of 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='27% in detecting WRF, but only 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='27% and 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='88% in detecting cp2k and Espresso, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' When detecting NWCHEM, the full job signature brings 89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='79% accuracy;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' however, the 75% partial job signature gives only 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='73% accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' The improvement from encoding more data varies from application to application.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' For example, encoding 25% more data brings an average improvement of 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='67% for Espresso, but only 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='65% for WRF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 5) Sensitivity to the resampling length: The performance evaluation described above is based on job signatures with a resolution of 128 × 128, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=', the performance metrics are resampled to a length of 128.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' It is valuable to have knowledge of the sensitivity of the classification accuracy in terms of the resampling length such that an appropriate resolution can be chosen to achieve a balance between accuracy and training overhead.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' To explore this, we further build two job signature datasets with resampling lengths of 32 and 64, respectively, and use the same CNN architecture to train these models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Figure 13 depicts the accuracy (solid lines) and training time (horizontal dashed lines) of ARcode using different resampling lengths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Note that the training time is constant across different thresholds for the same resampling length, as illustrated by horizontal dashed lines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' This is because training time does not vary according to confidence thresholds, which are set during the prediction of applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' As illustrated from the figure, the training times vary significantly among these three resampling lengths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' It is over 185 seconds for the resampling length of 128.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' For signatures with resampling lengths of 64 and 32, it is 80 and 65 seconds, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Additionally, we can observe from the figure that the higher resolution it is, the higher prediction accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' While the accuracy improvement from the resampling length of 64 to 128 is not significant (only by 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='5% on average), the accuracy improvement from the resampling length of 32 to 64 is 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='0% on average.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' This result suggests that 64 is the optimal resampling length for building job signatures in our experiment, considering the trade-off between accuracy and training time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Its prediction accuracy is close to that of the highest resolution signature, but only uses 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='2% of the training time of the latter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Furthermore, the data size of the job signature generated with a resolution of 64 × 64 is only 25% of that with 128 × 128.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' RELATED WORKS Significant amount of work has been reported in the lit- erature on detecting and classifying applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Identifying similarities and differences among binary executables was explored in [13]–[16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' These approaches are limited by the ZZIPC Memory Power All 100% 80% Accuracy 60% 40% 20% 0% WRF BerkeleyGWEspresso Gromacs LAMMPS NWCHEM VASP aims chroma cp2k e3sm su3 Applications25% 75% 100% 50% Z 100% 80% Accuracy 60% 40% 20% 0% WRF BerkeleyGWEspresso Gromacs LAMMPS NWCHEM VASP aims chroma cp2k e3sm su3 ApplicationsFigure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 13: Accuracy and training time of ARcode using dif- ferent resampling lengths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' The horizontal dashed lines indicate the training time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' fact that, they cannot differentiate the same source program compiled by different compiler toolchains or optimization levels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' To overcome this limitation, Blanket Execution [17] presented a binary differencing algorithm that compares the side effects of functions during executation, which is based on the insight that similar codes have semantically similar execution behavior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' However, the binary based approach cannot be applied in the HPC environment, where it is impractical to conduct binary differencing among hundreds of thousands of executables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' In addition, obtaining and managing binaries of users’ applica- tions are not always possible for HPC researchers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Instead of using binaries, Yamamoto et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' [34] used job scripts as job information to classify applications with text classification techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' This approach, however, also requires dedicated collection and management infrastructures, which are not as prevalent as monitoring infrastructures for performance metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Another line of work aims at characterizing HPC appli- cations through system logs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Liu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' extracted features from combined logs of multiple subsystems to represent applications and build a machine learning model based on the eXtreme Gradient Boosting (XGB) algorithm to identify HPC applications [35].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' DeMasi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' collected and extracted features from Integrated Performance Monitoring (IPM) per- formance logs to fingerprint HPC codes [36].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Log analysis is more common in characterizing subsystem and user behavior, related works can be found in [37]–[40].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Monitoring data based application detection has been ex- plored in [18]–[22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' As a early quantitative study of power consumption of HPC workloads, Combs et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' [18] studied the applicability of classifying applications through power consumption traces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Ramos et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' [21] relied on performance counters to model, fingerprint and clustering applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Zou et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' [20] explored detecting illicit applications in GPU- accelerated HPC workloads.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' They used performance counters, data movement behavior and resources utilization traces to train machine learning models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Taxonomist [19], proposed by Ates et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=', used over 700 system metrics and a time window spanning the whole execution to extract statistical features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' They enhanced the classification model such that unknown applications can be detected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' EFD [22] created key-values pairs that link execution fingerprints of system metrics to application and input size information to implement application recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Except for using measurements of system metrics, they also used the metrics name, node ID and time interval to create fingerprints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' These studies, however, are based on the datasets built from the monitoring data of benchmarks and proxy applications, where a relative small range of configurations and input size are shown in the applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' On the contrary, the model and experiment results of ARcode are developed and tested on datasets collected from real applications in a large-scale production system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' In addition, the models of these studies rely on the manually defined features extracted from time series monitoring data and some studies utilize the input information to enhance the detection model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' In this work, ARcode allevi- ates the effort of features engineering and takes advantages of the capability of features learning in CNN model to detect and classify encoded monitoring data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Moreover, ARcode retains the temporal information of time-series performance metrics, enabling detecting applications before jobs are finished.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' This capability bridges a major gap in related works.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' CONCLUSION Existing application detection methodologies on HPC sys- tems either relies on the data that are not prevalent or require intensive effort of feature engineering to build high accuracy models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' In this study, we aim to provide a solution that can be easily used and adopted by any HPC site.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' We have intro- duced ARcode, an application recognition framework which is effective and extensible with the following characteristics: 1) ARcode uses three most common monitoring metrics (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=', the power consumption of the compute node, instruction per cycle, and memory usage) available through the monitoring infrastructure on diverse HPC architectures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 2) ARcode allevi- ates the effort of feature engineering by leveraging the feature learning capability of CNN models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 3) ARcode’s channel-like encoding method allows easy encoding of additional metrics in job signatures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 4) ARcode encodes job monitoring data into images, which translates the application recognition problem into an image classification problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Unlike the statistics- based approaches where the temporal information of monitor- ing data are lost, the job signature encodes metric variations over the runtime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Therefore, the job signature generated from part of monitoring data can still be used in detection, but with the sacrifice of accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Although our evaluation is performed on job signatures generated from three common monitoring metrics, HPC re- searchers and system administrators can select other represen- tative metrics and build job signatures to detect and classify applications with specific characteristics such as CPU intensive applications and I/O intensive applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' In addition, we have seen lots of successful cases of applying image recogni- tion in the medical and automobile industries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Their experience in training high-accuracy models can be used in our model to further improve the recognition accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Moreover, encoding 100% 128 32 64 32 64 128 200 (accuracy) (training time) 90% 180 Time ( 80% Accuracy 140 ining 70% 120 Trai 100 60% 80 50% 60 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='5 Confidence Thresholdmonitoring data in job signatures offers a new perspective of exploring and analyzing the performance monitoring data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' In our future work, we will further explore the use of job signatures to predict resource usage, detect anomalies, and identify malicious applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' REFERENCES [1] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Brandt, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Gentile, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Mayo, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Pebay, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Roe, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Thompson, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Wong, “Resource monitoring and management with ovis to enable hpc in cloud computing environments,” in 2009 IEEE International Symposium on Parallel & Distributed Processing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' IEEE, 2009, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 1–8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' [2] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Allcock, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Felix, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Lowe, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Rheinheimer, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Fullop, “Chal- lenges of hpc monitoring,” in SC’11: Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' IEEE, 2011, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 1–6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' [3] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Jones, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Daly, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' DeBardeleben, “Application monitoring and checkpointing in hpc: looking towards exascale systems,” in Pro- ceedings of the 50th Annual Southeast Regional Conference, 2012, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 262–267.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' [4] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Evans, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Barth, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Browne, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' DeLeon, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Furlani, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Gallo, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Jones, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Patra, “Comprehensive resource use monitoring for hpc systems with tacc stats,” in 2014 First International Workshop on HPC User Support Tools.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' IEEE, 2014, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 13–21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' [5] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Li, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Ali, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Nguyen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Hass, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Sill, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Dang, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Chen, “Monster: an out-of-the-box monitoring tool for high performance computing systems,” in 2020 IEEE International Conference on Cluster Computing (CLUSTER).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' IEEE, 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 119–129.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' [6] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Shoukourian, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Wilde, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Auweter, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Bode, “Predicting the energy and power consumption of strong and weak scaling hpc applications,” Supercomputing frontiers and innovations, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 1, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 20–41, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' [7] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='-F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Dutot, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Georgiou, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Glesser, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Lefevre, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Poquet, and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Rais, “Towards energy budget control in hpc,” in 2017 17th IEEE/ACM Inter- national Symposium on Cluster, Cloud and Grid Computing (CCGRID).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' IEEE, 2017, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 381–390.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' [8] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Tuncer, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Ates, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Zhang, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Turk, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Brandt, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Leung, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Egele, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Coskun, “Online diagnosis of performance variation in hpc systems using machine learning,” IEEE Transactions on Parallel and Distributed Systems, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 30, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 883–896, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' [9] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Dean, “Large-scale distributed systems at google: Current systems and future directions,” in The 3rd ACM SIGOPS International Workshop on Large Scale Distributed Systems and Middleware (LADIS 2009) Tutorial, 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' [10] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Baseman, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Blanchard, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' DeBardeleben, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Bonnie, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Morrow, “Interpretable anomaly detection for monitoring of high performance computing systems,” in Outlier Definition, Detection, and Description on Demand Workshop at ACM SIGKDD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' San Francisco (Aug 2016), 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' [11] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Dani, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Doreau, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Alt, “K-means application for anomaly detection and log classification in hpc,” in International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Springer, 2017, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 201–210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' [12] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Borghesi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Libri, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Benini, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Bartolini, “Online anomaly detection in hpc systems,” in 2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' IEEE, 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 229–233.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' [13] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Flake, “Structural comparison of executable objects,” in Detection of intrusions and malware & vulnerability assessment, GI SIG SIDAR workshop, DIMVA 2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Gesellschaft f¨ur Informatik eV, 2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' [14] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Dullien and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Rolles, “Graph-based comparison of executable objects (english version),” Sstic, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 5, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 1, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 3, 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' [15] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Gao, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Reiter, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Song, “Binhunt: Automatically finding semantic differences in binary programs,” in International Conference on Information and Communications Security.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Springer, 2008, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 238–255.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' [16] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Bourquin, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' King, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Robbins, “Binslayer: accurate comparison of binary executables,” in Proceedings of the 2nd ACM SIGPLAN Program Protection and Reverse Engineering Workshop, 2013, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 1–10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' [17] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Egele, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Woo, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Chapman, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Brumley, “Blanket execution: Dynamic similarity testing for program binaries and components,” in 23rd {USENIX} Security Symposium ({USENIX} Security 14), 2014, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 303–317.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' [18] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Combs, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Nazor, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Thysell, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Santiago, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Hardwick, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Olson, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Rivoire, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Hsu, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Poole, “Power signatures of high- performance computing workloads,” in 2014 Energy Efficient Supercom- puting Workshop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' IEEE, 2014, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 70–78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' [19] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Ates, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Tuncer, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Turk, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Leung, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Brandt, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Egele, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Coskun, “Taxonomist: Application detection through rich monitoring data,” in European Conference on Parallel Processing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Springer, 2018, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 92–105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' [20] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Zou, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Li, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Barker, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Ge, “Fingerprinting anomalous computation with rnn for gpu-accelerated hpc machines,” in 2019 IEEE International Symposium on Workload Characterization (IISWC).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' IEEE, 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 253–256.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' [21] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Ramos, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Valderrama, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' de Souza, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Manneback, “An accurate tool for modeling, fingerprinting, comparison, and clustering of parallel applications based on performance counters,” in 2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' IEEE, 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 797–804.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' [22] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Jakobsche, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Lachiche, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Cavelan, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Ciorba, “An execution fingerprint dictionary for hpc application recognition,” in 2021 IEEE International Conference on Cluster Computing (CLUSTER).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' IEEE, 2021, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 604–608.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' [23] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Zhao, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Lu, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Chen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Liu, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Wu, “Convolutional neural networks for time series classification,” Journal of Systems Engineering and Electronics, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 28, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 162–169, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' [24] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' He, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Cook, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Deslippe, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Friesen, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Gerber, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Hartman-Baker, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Koniges, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Kurth, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Leak, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Yang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=', “Preparing nersc users for cori, a cray xc40 system with intel many integrated cores,” Concurrency and Computation: Practice and Experience, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 30, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 1, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' e4291, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' [25] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Antypas, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Wright, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Cardo, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Andrews, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Cordery, “Cori: a cray xc pre-exascale system for nersc,” Cray User Group Proceedings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Cray, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 1, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' [26] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Agelastos, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Allan, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Brandt, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Cassella, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Enos, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Fullop, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Gen- tile, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Monk, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Naksinehaboon, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Ogden et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=', “The lightweight distributed metric service: a scalable infrastructure for continuous mon- itoring of large scale computing systems and applications,” in SC’14: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' IEEE, 2014, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 154– 165.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' [27] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Cook.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' (2021) NERSC LDMS Pipeline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Available: https://software.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='nersc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='gov/ldms/nersc-ldms [28] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Pan and Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Yang, “A survey on transfer learning,” IEEE Trans- actions on knowledge and data engineering, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 22, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 10, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 1345– 1359, 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' [29] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Wang and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Oates, “Encoding time series as images for visual in- spection and classification using tiled convolutional neural networks,” in Workshops at the twenty-ninth AAAI conference on artificial intelligence, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' [30] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Bengio, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Courville, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Vincent, “Representation learning: A review and new perspectives,” IEEE transactions on pattern analysis and machine intelligence, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 35, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 8, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 1798–1828, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' [31] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' LeCun, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Bengio, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Hinton, “Deep learning,” nature, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 521, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 7553, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 436–444, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' [32] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Ates, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Tuncer, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Turk, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Leung, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Brandt, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Egele, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Coskun, “Artifact for taxonomist: Application detection through rich monitoring data,” 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' [33] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Wilkes, “Google cluster-usage traces v3,” Google Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=', Mountain View, CA, USA, Technical Report, Apr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 2020, posted at https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' com/google/cluster-data/blob/master/ClusterData2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='md.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' [34] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Yamamoto, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Tsujita, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Uno, “Classifying jobs and predicting applications in hpc systems,” in International Conference on High Performance Computing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Springer, 2018, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 81–99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' [35] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Liu, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Lewis, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Kettimuthu, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Harms, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Carns, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Rao, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Foster, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Papka, “Characterization and identification of hpc applications at leadership computing facility,” in Proceedings of the 34th ACM International Conference on Supercomputing, 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 1–12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' [36] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' DeMasi, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Samak, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Bailey, “Identifying hpc codes via performance logs and machine learning,” in Proceedings of the first workshop on Changing landscapes in HPC security, 2013, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 23–30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' [37] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Chunduri, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Parker, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Balaji, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Harms, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Kumaran, “Char- acterization of mpi usage on a production supercomputer,” in SC18: International Conference for High Performance Computing, Networking, Storage and Analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' IEEE, 2018, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 386–400.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' [38] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Lim, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Sim, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Gunasekaran, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Vazhkudai, “Scientific user behavior and data-sharing trends in a petascale file system,” in Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, 2017, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 1–12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' [39] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Lockwood, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Snyder, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Wang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Byna, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Carns, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Wright, “A year in the life of a parallel file system,” in SC18: In- ternational Conference for High Performance Computing, Networking, Storage and Analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' IEEE, 2018, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 931–943.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' [40] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Patel, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Byna, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Lockwood, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' Tiwari, “Revisiting i/o be- havior in large-scale storage systems: the expected and the unexpected,” in Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} +page_content=' 1–13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf'} diff --git a/6dFJT4oBgHgl3EQflizf/content/tmp_files/2301.11584v1.pdf.txt b/6dFJT4oBgHgl3EQflizf/content/tmp_files/2301.11584v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..00559281757ee0e8d64e9508bea3cee789cd39b1 --- /dev/null +++ b/6dFJT4oBgHgl3EQflizf/content/tmp_files/2301.11584v1.pdf.txt @@ -0,0 +1,1959 @@ +Robust variance-regularized risk minimization +with concomitant scaling +Matthew J. Holland +Osaka University +Abstract +Under losses which are potentially heavy-tailed, we consider the task of minimizing sums +of the loss mean and standard deviation, without trying to accurately estimate the variance. +By modifying a technique for variance-free robust mean estimation to fit our problem +setting, we derive a simple learning procedure which can be easily combined with standard +gradient-based solvers to be used in traditional machine learning workflows. Empirically, +we verify that our proposed approach, despite its simplicity, performs as well or better +than even the best-performing candidates derived from alternative criteria such as CVaR +or DRO risks on a variety of datasets. +Contents +1 +Introduction +2 +2 +Background +3 +2.1 +Robust mean estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +3 +2.2 +Good-enough ancillary scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . +4 +2.3 +A bridge between two problems . . . . . . . . . . . . . . . . . . . . . . . . . . . +5 +2.4 +Overview of contributions and limitations . . . . . . . . . . . . . . . . . . . . . +6 +3 +Theory +7 +3.1 +Links to the mean-SD objective . . . . . . . . . . . . . . . . . . . . . . . . . . . +7 +3.2 +Guiding the optimal threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . +8 +3.3 +Deriving an algorithm using finite-sample theory . . . . . . . . . . . . . . . . . +8 +3.4 +Stationary points of mean-variance . . . . . . . . . . . . . . . . . . . . . . . . . +10 +3.5 +Comparison with dual form of DRO risk . . . . . . . . . . . . . . . . . . . . . . +11 +4 +Empirical analysis +11 +4.1 +Simulated noisy classification on the plane . . . . . . . . . . . . . . . . . . . . . +12 +4.2 +Classification on real datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . +12 +A Technical appendix +18 +A.1 Basic facts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +18 +A.2 Convexity and smoothness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +19 +B Additional proofs +20 +C Empirical test appendix +27 +1 +arXiv:2301.11584v1 [stat.ML] 27 Jan 2023 + +1 +Introduction +Traditionally, the “textbook definition” of a statistical machine learning problem is formulated +in terms of making decisions which minimize the expected value of a random loss [9, 27, 35]. +More precisely, the traditional setup has us minimize Eµ L(h) with respect to a decision h, +where we denote random losses as L(h) ..= ℓ(h; Z), with a random data point Z ∼ µ, and ℓ(·) +is a loss function assigning real values to (decision, data) pairs. This problem class is very +general in that it covers a wide range of learning problems both supervised and unsupervised, +but it is limited in the sense that it only aspired to be optimal on average, with no guarantees +for other aspects of performance such as loss deviations, resilience to worst-case examples and +distribution shift, sub-population disparity, and class-balanced error. While it is sometimes +possible to account for these issues by modifying the base loss function ℓ (e.g., logit-adjusted +softmax cross-entropy for balanced error [26]), there is a growing literature looking at prin- +cipled, systematic modifications to the “risk,” i.e., a non-random numerical property of the +distribution of L(h) to be optimized in h, leaving the base loss ℓ(·) fixed. Some prominent +examples are weighted sums of loss quantiles [25], distributionally robust optimization (DRO) +risk [13], conditional value-at-risk (CVaR) [7], tilted risk [20], and more general optimized +certainty equivalent (OCE) risks [19], among others. It is well-known that many risks can be +expressed in terms of location-deviation sums, with the canonical example being a weighted +sum of the loss mean and standard deviation (or variance) [31, §2]. We refer the reader to some +recent surveys [14, 16, 32] for more general background on developments in learning criteria. +In this work, the criterion of interest is the mean loss regularized by standard deviation +(SD), when losses are allowed to be heavy-tailed. More formally, we allow for heavy tails in +the sense that all we assume is that the second moment Eµ|L(h)|2 is finite, and the ultimate +objective of interest is the mean-SD criterion +MSµ(h; λ) ..= Eµ L(h) + +� +λ Vµ L(h) +(1) +with loss variance denoted by Vµ L ..= Eµ(L − Eµ L)2, and weighting parameter λ ≥ 0. This +mean-SD objective (1) and its mean-variance counterpart have a long history in the literature +on decision making under uncertainty, including the influential work of Markowitz [23] on +optimal portfolio selection. In the context of machine learning, it is well-known that one can +obtain “fast rate” bounds on the expected loss when variance is small (see [11, §1]), though the +problem of actually ensuring that loss deviations are sufficiently small is an entirely separate +matter. In this direction, Maurer and Pontil [24] bound the (population) expected loss using a +weighted sum of the sample mean and standard deviation. Their “sample variance penalized” +objective is convenient to compute and can be used to guarantee fast rates in theory, but a +lack of convexity makes it hard to minimize in practice. A convex approximation is developed +by Duchi and Namkoong [11], who show that a sub-class of (empirical) DRO risks can be used +to approximate the sample mean-SD objective, again yielding fast rates when the (population) +variance is small enough. The critical limitation to this approach is poor guarantees under +heavy-tailed losses; while we gain in terms of convexity, the empirical DRO risk of [11] is at least +as sensitive to outliers as the naive empirical objective (i.e., directly minimizing the sample +mean and SD), which is already known to result in highly sub-optimal performance guarantees +under heavy tails [5, 10, 15]. Recent work by Zhai et al. [36] studies a natural strategy for +robustifying the DRO objective (called DORO), which discards a specified fraction of the +largest losses. While the impact of outliers can be reduced under the right setting of DORO, +their approach is limited to non-negative losses, and the impact that such one-sided trimming +has on the resulting mean-SD sum, our ultimate object of interest, is unknown. +2 + +With this context in mind, in this paper we propose a new approach to robustly minimize +the objective (1) under heavy-tailed losses, without a priori knowledge of anything but the +fact that variance is finite. Our key technique is based on extending a convex program of Sun +[34] from one-dimensional mean estimation to our mean-variance objective MSµ(h; λ) under +general losses. After some motivating background points in §2.1–§2.2, we describe our basic +approach and summarize our contributions in §2.3–§2.4. Theoretical analysis comes in §3, and +based upon formal properties of the proposed objective function, we derive a general-purpose +procedure summarized in Algorithm 1, and tested empirically in §4. +Our main finding is +that the simple algorithm we derive works remarkably well on both simulated and real-world +datasets without any fine-tuning, despite sacrificing the convexity enjoyed by procedures based +on criteria such as CVaR and DRO. Software and notebooks to reproduce all results in this +paper are provided in an online repository.1 +2 +Background +Before we describe our proposed approach to the mean-SD task described in §1, we start with +a much simpler problem, namely the task of robust mean estimation. This will allow us to +highlight key technical points from the literature which provide both conceptual and technical +context for our proposal. Key points from the existing literature are introduced in §2.1–§2.2, +and building upon this we introduce our method in §2.3–§2.4. +2.1 +Robust mean estimation +Let X be a random variable. For the moment, our goal will be to construct an accurate empirical +estimate of the mean Eµ X, assuming only that the variance Vµ X = Eµ X2 − (Eµ X)2 is both +defined and finite. We assume access to an independent and identically distributed (IID) sample +X1, . . . , Xn. Since higher-order moments may be infinite, the tails of X may be “heavy” and +decidedly non-Gaussian, causing problems for the usual empirical mean. This problem setting +is now very well-understood; see Lugosi and Mendelson [22] for an authoritative reference. +One very well-known approach is to use M-estimators [18], namely to design an estimator +An ≈ Eµ X satisfying +An ∈ arg min +a∈R +b +n +n +� +i=1 +ρ +�Xi − a +b +� +(2) +where ρ: R → R+ is a function that is approximately quadratic near zero, but grows more +slowly in the limit, i.e., large deviations are penalized in a sub-quadratic manner, where “large” +is relative to the scaling parameter b > 0, used to control bias. When ρ(·) is convex, differen- +tiable, and the solution set is non-empty, the condition (2) is equivalent to +1 +n +n +� +i=1 +ρ′ +�Xi − An +b +� += 0 +(3) +and when the derivative ρ′(·) is bounded such that +− log(1 + −x + γx2) ≤ ρ′(x) ≤ log(1 + x + γx2), +x ∈ R +(4) +for some constant 0 < γ < ∞, then the analytical approach of Catoni [6] tells us that when b2 +scales with Vµ X/n, the deviations |An − Eµ X| enjoy sub-Gaussian tails, namely upper bounds +1https://github.com/feedbackward/bdd-mv +3 + +-2 +0 +2 +2 +0 +2 +-2 +0 +2 +′ +-2 +0 +2 +′′ +Figure 1: From left to right, we plot the graphs of ρ(·), ρ′(·), and ρ′′(·) with ρ as in (6). In the middle plot, +the dotted curves represent the upper (blue) and lower (dark pink) bounds in (4) with γ = 1. +of the order O( +� +log(1/δ) Vµ X/n) with probability at least 1 − δ. Under these weak assump- +tions, such guarantees are essentially optimal [10]. While a very important result, for practical +purposes, the need for knowledge of Vµ X is a significant limitation, since without finite higher- +order moments, it is not plausible to obtain variance estimates with analogous sub-Gaussian +guarantees (e.g., impossibility results of [10]). There do exist other robust estimators such +as median-of-means [22, §2.1] which do not require variance information, and this illustrates +the fact that knowledge of the variance is sufficient, although not necessary, for sub-Gaussian +mean estimation under heavy tails. +2.2 +Good-enough ancillary scaling +Since sub-Gaussian estimates of the variance Vµ X are not possible under our weak assump- +tions, it is natural to ask whether there exists a middle-ground, namely whether or not it is +possible to construct a (data-driven) procedure for setting the scale b > 0 in (2) which is “good +enough” in the sense that the resulting An is sub-Gaussian, even though the scale itself cannot +be. An initial (affirmative) answer to this question was given in recent work by Sun [34], whose +basic idea we briefly review here, with some slight re-formulation for readability and additional +generality. +Essentially, the underlying idea in [34] is to utilize the convexity of ρ in (2), and to solve +for both a ∈ R and b > 0 simultaneously, while penalizing b in such a way as to encourage +scaling which is “good enough” as mentioned. More precisely, the empirical objective +�Sn(a, b) ..= βb + b +n +n +� +i=1 +ρ +�Xi − a +b +� +(5) +plays a central role, where 0 < β < 1 is a parameter we can control, and ρ is fixed as +ρ(x) = +� +x2 + 1 − 1, +x ∈ R +(6) +which is differentiable, and satisfies the Catoni condition (4) with γ = 1 (see Figure 1). If we +fix b > 0, then the solution sets (in a) of both �Sn(a, b) and b × �Sn(a, b) are identical, and it +should be noted that the re-scaled map x �→ b2ρ(x/b) = b +√ +x2 + b2 − b2 closely approximates +x �→ x2/2 as b grows large (Figure 2), and is well-known as the “pseudo Huber” or “smooth +Huber” function, where b acts as a smoothing parameter.2 +When considering the joint objective �Sn(a, b), from the computational side, one important +fact is that this function is convex on R × (0, ∞) (see Lemma 8). From the statistical side of +2Barron [2, §1] gives a summary of this and related functions from the perspective of loss function design. +This is not the only smoothed variant of the classic Huber function [17], see for example Rey [29, §6.4.4]. +4 + +1 +0 +1 +0.0 +0.2 +0.4 +x +b2 (x/b) +0.1 +2.0 +b value +Figure 2: Graphs of the smooth Huber function, with ρ as in (6), over a range of smoothing parameters. For +visual comparison, the graph of x �→ x2/2 is plotted with a thick dashed green curve. +things, the solutions +(An, Bn) ∈ arg min +a∈R,b>0 +�Sn(a, b) +(7) +are such that under certain regularity conditions, the deviations |An − Eµ X| are nearly optimal +(sub-Gaussian, up to poly-logarithmic factors) [34, §3.3].3 The corresponding Bn of course +cannot give us sub-Gaussian estimates of the variance under such weak assumptions, but it +does scale in a desirable way [34, §3.2], and when bias is mitigated by setting β sufficiently small +given the sample size n, the resulting Bn is good enough to provide such guarantees for An, +which is the ultimate goal anyways. By taking on a slightly more difficult optimization problem, +it is possible to get away with not having prior knowledge or sub-Gaussian estimates of the +variance. We use this basic insight as a stepping stone to our approach for learning algorithms +charged with selecting a decision h such that the loss L(h) has a small mean-variance. +2.3 +A bridge between two problems +To develop our proposal, we now return to the more general learning setup, where the test +data is a random vector Z ∼ µ, test loss is L(h) ..= ℓ(h; Z), and we have n IID training +points Z1, . . . , Zn yielding losses Li(·) ..= ℓ(·; Zi), i ∈ [n]. If our goal was to simply minimize +the traditional risk Eµ L(h) over h ∈ H under heavy-tailed losses, then in principle we could +extend the approach of §2.2 to robustly estimate the test risk using +(An(h), Bn(h)) ∈ arg min +a∈R,b>0 +� +βb + b +n +n +� +i=1 +ρ +�Li(h) − a +b +�� +(8) +and design a learning algorithm using (8) as follows: +Hn ∈ arg min +h∈H +An(h). +(9) +Under some regularity conditions, the machinery of Brownlees et al. [5] could then be combined +with pointwise concentration inequalities in [34] to control the tails of Eµ L(Hn) under just finite +loss variance. Our goal however is not to minimize the expected loss, but rather the mean-SD +sum (1). Furthermore, the bi-level program inherent in (9) is not computationally congenial +from the perspective of large-scale machine learning tasks. To ease the computational burden +3Strictly speaking, the objective used in [34] is �Sn(a, b)/β, but all key results easily translate to our setup. +5 + +while at the same time building a bridge between these two problems, we consider a new +objective function taking the form +�Cn(h; a, b) ..= αa + βb + λb +n +n +� +i=1 +ρ +�Li(h) − a +b +� +(10) +with parameters α ≥ 0 and β ≥ 0. We call (10) the modified Sun-Huber objective, since ρ is +fixed as (6), and this form plays a special role in our analysis. Compared with that of (9), +this objective is a simple function of h, and gradient-based minimizers can be easily applied +assuming the underlying loss ℓ(·) is sufficiently smooth. On the other hand, it is “biased” in +the sense that it penalizes not just the loss location (whenever α > 0), but the loss scale as well +(whenever β > 0). Intuitively, some kind of deviation-driven “bias” is precisely what we need +from the standpoint of minimizing the mean-SD objective MSµ(h; λ), but it is not immediately +clear how this objective relates to �Cn(h; a, b), and it is equally unclear if we can just plug this +new objective into standard machine learning workflows (e.g., using stochastic gradient-based +optimizers) and achieve the desired effect without a prohibitive amount of manual tuning. +2.4 +Overview of contributions and limitations +With our basic idea described and some key questions raised, we summarize the central points +that characterize the rest of this paper, and also highlight the limitations of this work. Broadly +speaking, the new proposal here is a class of empirical “risk” minimizers, namely any learning +algorithm which minimizes the new empirical objective (10). More explicitly, this refers to all +procedures which returns a triplet satisfying +(Hn, An, Bn) ∈ +arg min +h∈H,a∈R,b>0 +�Cn(h; a, b) +(11) +where H denotes a set of feasible decisions, and we note that each element of this class is +characterized by the settings of α, β, and λ used to define �Cn. In analogy with the strat- +egy employed in §2.2, we do not expect An and Bn to provide sub-Gaussian estimates; we +simply hope that these estimates are good enough to ensure the mean-SD is smaller and/or +better-behaved when compared to standard benchmarks such as mean-based empirical risk +minimization (ERM) and DRO-based algorithms. Theoretically, we are interested in identify- +ing links between the proposed objective �Cn and loss properties such as Eµ L(h) and Vµ L(h), +with particular emphasis on how the settings of α, β, and λ influence such links. +Our main theory-driven contribution is the derivation of a principled approach to determine +�Cn (i.e., set α and β), before seeing any training data, in such a way that we can balance between +“biased but robust” ρ-based deviations and “unbiased but outlier-sensitive” squared deviations +that arise in the loss variance. Details are in §3.1–§3.3, and a concise procedure is summarized +in Algorithm 1. We do not, however, consider the behavior of MSµ(Hn; λ) for a particular +implementation of (11) (e.g., SGD) from a theoretical viewpoint; the implementation is left +abstract. This is where the empirical analysis of §4 comes in. We provide evidence using +simulated and real data that our procedure can be quite useful, even using a rudimentary +implementation where we wrap base loss objects and naively pass them to standard stochastic +gradient-based learning routines, with no manual tweaking of parameters. +6 + +3 +Theory +3.1 +Links to the mean-SD objective +We would like to make the connection between the proposed objective (10) and the ultimate +objective (1) a bit more transparent. To do this, we will make use of the population version of +�Cn, denoted henceforth by Cµ and defined as +Cµ(h; a, b) ..= αa + βb + λb Eµ ρ +�L(h) − a +b +� +. +(12) +Let us fix the decision h and threshold a, paying close attention to the optimal value of the +scale b, denoted here by bµ(h, a). More explicitly, consider any positive real number satisfying +bµ(h, a) ∈ arg min +b>0 +Cµ(h; a, b). +(13) +While it is not explicit in our notation, the optimal scale in (13) depends critically on the +value of β. Intuitively, a smaller value of β leads to a weaker penalty for taking b large, thus +encouraging a larger value of bµ(h, a). In fact, one can show that viewing bµ(h, a) as a function +of the parameter β, in the limit we have (proof in §B) +lim +β→0+ bµ(h, a) = ∞. +(14) +Combining this with the fact that +lim +b→∞ b Eµ ρ +�L(h) − a +b +� += 0 +(15) +also holds (proof in §B), by re-scaling to avoid trivial limits we can obtain a result which +sharply bounds the proposed learning criterion at the optimal scale using the square root of +quadratic deviations, thereby establishing a clear link to the desired mean-SD objective (1). +Proposition 1. Let H be such that Eµ|L(h)|2 < ∞ for each h ∈ H. If we set α = α(β) such +that α(β)/√β → �α ∈ [0, ∞) as β → 0+, then in this limit, with appropriate re-scaling the +scale-optimized learning criteria can be bounded above and below as +�αa + (1/2) +� +λ Eµ(L(h) − a)2 ≤ lim +β→0+ min +b>0 +Cµ(h; a, b) +√β +≤ �αa + 4 +� +λ Eµ(L(h) − a)2 +for any choice of threshold a ∈ R and weight α ≥ 0. +In the special case where a = Eµ L(h) and �α > 0, we naturally recover mean-SD sums akin to +those studied in an ERM framework by Maurer and Pontil [24] and those bounded from above +using convex surrogates by Duchi and Namkoong [11]. +Of course in practice, we will only ever be working with fixed values of β, and the entire +point of introducing new criteria (namely �Cn and Cµ) was to give us some control over how +sensitive our objective is to loss tails. The following result makes the nature of this control +(through β) more transparent. +Proposition 2. Let H and L(h) be as stated in Proposition 1. Letting bµ(h, a) be as specified +in (13), we define a Bernoulli random variable +I(h; a) ..= I {|L(h) − a| ≤ bµ(h, a)} +7 + +for any choice of h ∈ H and a ∈ R. The optimal scale can then be bounded by +λ +4β Eµ I(h; a)(L(h) − a)2 ≤ b2 +µ(h, a) ≤ λ +2β Eµ(L(h) − a)2 +for any choice of 0 < β < λ and a ∈ R. +While it is difficult to pin down exactly how bµ(h, a) changes as a function of β, Proposition 2 +clearly shows us the appealing property that optimal scale induced by the proposed objective +function essentially falls between the (tail-sensitive) quadratic deviations and a (tail-insensitive) +truncated variant, with the truncation threshold loosening as β shrinks. +3.2 +Guiding the optimal threshold +Since the preceding Propositions 1–2 both hold for any choice of threshold a ∈ R, they clearly +hold when both a and b are optimal, i.e., when a and b are set as +(aµ(h), bµ(h)) ∈ arg min +a∈R,b>0 +Cµ(h; a, b). +(16) +In particular, using first-order conditions, the inclusion (16) is equivalent to the following two +equalities holding at once: +Eµ +� +� +L(h) − aµ(h) +� +(L(h) − aµ(h))2 + b2µ(h) +� +� = α, +Eµ +� +� +bµ(h) +� +(L(h) − aµ(h))2 + b2µ(h) +� +� = 1 − β/λ. +(17) +Given the context of our analysis in §3.1, let us consider the effect of taking β towards zero. +For any non-trivial random loss, the second equality asks that bµ(h) grow without bound as +β → 0+, while |aµ(h)| must be either bounded or grow slower than bµ(h). On the other hand, +if α is too large (i.e., α > 1) then the first equality will be impossible to satisfy. In addition to +taking 0 < α < 1, note that if we multiply both sides of the first equality in (17) by bµ(h) and +apply Proposition 2, then under this optimality condition we must have +Eµ +� +� +� +� +L(h) − aµ(h) +� +(L(h)−aµ(h) +bµ(h) +)2 + 1 +� +� +� +� ≤ α +� +λ +2β Eµ(L(h) − aµ(h))2. +(18) +With this inequality in place, we adopt the following strategy: encourage the optimal location +to converge as aµ(h) → Eµ L(h) when β → 0+. Since λ > 0 is assumed to be fixed in advance, +the only way to ensure this using (18) is to set α = α(β) such that +lim +β→0+ +α(β) +√β = 0. +(19) +While (19) gives us a rather clear condition for determining α given β, we still do not have a +principled setting for β. This point will be treated in the following sub-section. +3.3 +Deriving an algorithm using finite-sample theory +To complement the preceding analysis and discussion centered around the population objective +(12), we now return to the empirical objective function �Cn(h; a, b) introduced in (10). We +maintain the running assumption that the training data Z1, . . . , Zn are an IID sample from µ, +8 + +and thus the losses Li(h), i = 1, . . . , n are independent given any fixed h. With h and b > 0 +fixed for the moment, we will now take a closer look at the optimal (empirical) threshold that +arises from this objective function, namely any random variable An(h, b) satisfying +An(h, b) ∈ arg min +a∈R +�Cn(h; a, b). +(20) +Using the property (4) of the smooth Huber-like function ρ, we can demonstrate how data- +driven thresholds satisfying (20) are concentrated at a point near the expected loss, where α +and b play a key role in how close this point is to the mean. +Proposition 3 (Concentration at a shifted location). Taking 0 ≤ α < 1, b > 0, and 0 < δ < 1, +with large enough n it is always possible to satisfy the condition +4α +λ ≤ 4 +�Vµ L(h) +b2 ++ log(2/δ) +n +� +≤ 1 − 4α +λ , +and when this condition is satisfied, the data-driven threshold An(h, b) in (20) satisfies +����An(h, b) − +� +Eµ L(h) − 2α +λ b +����� ≤ 2 +�Vµ L(h) +b ++ b log(2/δ) +n +� +with probability no less than 1 − δ. +This result can be seen as an extension of [34, Prop. 3.1] for the function (5) used in mean +estimation to our generalized learning problem, although we use a different proof strategy +which does not require strong convexity of �Cn (with respect to a). +With Proposition 3 established, conventional wisdom might incline one to pursue a O(1/√n) +rate in the upper bound; in this case, setting β ∝ 1/n is a natural strategy since Proposition +2 tells us that for the population objective, the optimal setting of b scales with +� +λ/β. While +this is natural from the perspective of tight concentration bounds for An(h, b), we argue that a +different strategy is more appropriate when we actually consider how (Hn, An, Bn) will behave +in the full joint optimization (11). The most obvious reason for this is that the joint objective +lacks convexity and smoothness, as the following result summarizes. +Proposition 4 (Joint objective is non-convex and non-smooth). Even when H is a compact +convex set and the base loss function ℓ(·; Z) is convex, the mapping (h, a, b) �→ �Cn is not convex +in general, and is non-smooth in the sense that its gradient is not Lipschitz continuous on +H × R × (0, ∞). +In consideration of Proposition 4, standard complexity results for typical optimizers such as +stochastic gradient descent to achieve a ε-stationary point are on the order of O(ε−4); see +Davis and Drusvyatskiy [8] for example.4 +With this in mind, setting β ∝ 1/n to achieve +O(ε−2) sample complexity for error bounds of An(h, b) seems superfluous if in the end the +dominant complexity for solving the ultimate problem (11) will be of the order O(ε−4). As +such, in order to match this rate, the more natural strategy is to set β ∝ 1/√n, or more +precisely to set +β = β0 +√n +(21) +where β0 > 0 is a constant used to ensure 0 < β < λ. This, coupled with α(β) = β to satisfy +(19) from the previous sub-section, is our proposed setting to determine (α, β) (and thus �Cn) +using just knowledge of n, and without having observed any data points. This procedure is +summarized in Algorithm 1, and will be the subject of empirical analysis later in §4. +4Even if the objective were smooth, the same rates are typical; see for example Ghadimi and Lan [12]. +9 + +Algorithm 1 Modified Sun-Huber +Inputs: data Z1, . . . , Zn and parameter λ > 0. +Set: β = β0/√n, with β0 such that 0 < β < λ. +{Based on (21).} +Set: α = β. +{Satisfies (19).} +Minimize: �Cn(h; a, b) in (h, a, b) using α and β as above. +3.4 +Stationary points of mean-variance +Having established links between the proposed objective and the mean-SD objective, we next +consider the mean-variance objective +MVµ(h) ..= Eµ L(h) + Vµ L(h). +(22) +This quantity can be expressed as the minimum value of a convex function, namely we have +MVµ(h) = min +a∈R +� +a + Eµ(L(h) − a)2 + 1 +2 +� += aMV(h) + Eµ(L(h) − aMV(h))2 + 1 +2 +(23) +where on the right-most side we have set aMV(h) ..= Eµ L(h)−1. Assuming the underlying loss +is differentiable, the gradient with respect to h can be written as +MV′ +µ(h) = Eµ L′(h) + Eµ L(h) L′(h) − Eµ L(h) Eµ L′(h) += Eµ L′(h) + Eµ (L(h) − Eµ L(h)) L′(h) += Eµ (L(h) − (Eµ L(h) − 1)) L′(h) +which implies a stationarity condition of +MV′ +µ(h) = 0 ⇐⇒ Eµ (L(h) − (Eµ L(h) − 1)) L′(h) = 0. +(24) +Similarly, the partial derivative of the learning criterion (12) taken with respect to h is +∂ +∂h Cµ(h; a, b) = Eµ +� +L(h) − a +� +(L(h) − a)2 + b2 +� +L′(h) +and thus multiplying both sides by b > 0, we obtain a simple stationarity condition of +∂ +∂h Cµ(h; a, b) = 0 ⇐⇒ Eµ +� +� +L(h) − a +� +(L(h)−a +b +)2 + 1 +� +� L′(h) = 0. +(25) +With the right threshold setting, obviously the two conditions become very similar as b grows +large. The following result makes this precise. +Proposition 5. Let loss function ℓ and data distribution µ be such that the random vector +L(h) L′(h) is integrable and has a norm with finite mean, i.e., Eµ∥L(h) L′(h)∥ < ∞ for some +choice of h ∈ H. Then, for any a ∈ R, defining +f(h; a) ..= lim +b→∞ b ∂ +∂h Cµ(h; a, b) +(26) +the stationary points of the mean-variance objective are related to those of the proposed objective +(12) through the following equivalence: +f(h; aMV(h)) = 0 ⇐⇒ +∂ +∂h MVµ(h) = 0 +where MVµ(h) is as defined in (22). +10 + +1.0 +0.5 +0.0 +0.5 +1.0 +0.0 +0.5 +1.0 +Figure 3: Graph of the Legendre transform ρ∗ as given in (28) over (−1, 1). +3.5 +Comparison with dual form of DRO risk +Some readers may notice that the proposed (population) objective (12) looks quite similar to +the dual form of DRO risks: +DROµ(h; β) ..= +inf +a∈R,b>0 +� +a + βb + b Eµ φ∗ +�L(h) − a +b +�� +(27) +where φ∗ is the Legendre-Fenchel convex conjugate φ∗(x) ..= supu∈R[xu − φ(u)] induced by a +function φ : R → R, assumed to be convex and lower semi-continuous, with φ(1) = 0 and +φ(x) = ∞ whenever x < 0 (cf. [33, §3.2]). Given this similarity, one might ask whether or not +some form of DRO risk can be reverse engineered from our proposed objective. Taking up this +point briefly, we first note that the conjugate of ρ given by (6) is +ρ∗(x) ..= sup +u∈R +[xu − ρ(u)] = sup +u∈R +� +xu − +� +u2 + 1 + 1 +� +. +From the non-negative nature of ρ, clearly ρ∗(0) = −ρ(0) = 0. For x ̸= 0, note that taking the +derivative of concave function u �→ xu − ρ(u) and setting it to zero, we obtain the first-order +optimality conditions +u +√ +u2 + 1 = x ⇐⇒ +sign(x) +� +1 + 1/u2 = x ⇐⇒ +1 +x2 = 1 + 1/u2 ⇐⇒ u = +sign(x) +� +1/x2 − 1. +Plugging this solution in whenever |x| < 1 and doing a bit of algebra readily yields the simple +closed-form expression +ρ∗(x) = +� +� +� +x2 +√ +1−x2 + 1 − +1 +√ +1−x2 , +if 0 ≤ |x| < 1 +∞, +else. +(28) +As can be readily observed from both (28) and Figure 3, this function does not satisfy any +of the requirements placed on φ except convexity, and thus despite the similar form, the non- +monotonic nature of ρ is in sharp contrast with monotonicity of typical cases of φ∗ that arise +in the DRO literature (e.g. [3, §3]), and does not readily imply a “primal” DRO objective that +can be recovered using ρ∗. +4 +Empirical analysis +Our investigation in the previous section led us to Algorithm 1, giving us a principled and +precise strategy to construct the objective function �Cn, but leaving the actual minimization +procedure abstract. +Here we make this concrete by implementing a simple gradient-based +minimizer of this objective, and comparing this procedure with natural benchmarks from the +literature. +11 + +4.1 +Simulated noisy classification on the plane +As a simplified and controlled setting to start with, we generate random data points on the +plane which are mostly linearly separable, save for a single distant outlier (Figure 4). Before +we consider off-sample generalization, here we focus simply on the training loss distribution +properties as a function of algorithm iterations. +Experiment setup +We generate n = 100 training data points using two Gaussian distri- +butions on the plane to represent two classes, with each class having the same number of +points. +We choose a single point uniformly at random, and perturb it by multiplying the +scalar -10. We compare our proposed procedure (denoted “Modified Sun-Huber”) with three +alternatives: traditional mean-based empirical risk minimization (denoted “Vanilla ERM”), +conditional value-at-risk (CVaR) [7], and the well-studied χ2-DRO risk [11, 13]. In light of +Algorithm 1, we set λ = log(n)/√n > β = β0/√n, and try a variety of β0 values just for +reference. For all the aforementioned methods, we set the base loss ℓ(·) to the usual binary +logistic loss (linear model), and run (batch) gradient descent on the empirical risk objectives +implied by each of these methods (see §C for details), with a fixed step size of 0.01 over 15,000 +iterations. Alternative settings of step size and iteration number were not tested. All methods +are initialized at the same point, shown in Figure 4. +Results and discussion +In Figure 5, we show the empirical mean-SD trajectories for the +base loss, over algorithm iterations (log10 scale), for each method of interest. Using our no- +tation, this is the sample version of MSµ(h; λ) in (1), with λ = 1 fixed. All methods besides +vanilla ERM have multiple settings that were tested, and the results for each are distinguished +using curves of different color. Our method tests different values of β0, CVaR tests different +quantile levels, and DRO tests different robustness levels (details in §C). Since Vanilla ERM +is designed to optimize the average loss, it is perhaps not surprising that it fails in terms of +the mean-SD objective. On the other hand, the proposed method (for any choice of β0) is as +good or better than all the competing methods. As a basic sanity check, in Figure 6 we also +consider the error rate (average zero-one loss) and model norm trajectories over iterations for +each method. For each method, we plot just one trajectory, namely the one achieving the best +final error rate. While our method is not designed to minimize the average loss and typical +surrogate theory does not apply, we find that the error rate is surprisingly good, albeit with +slower convergence than the other methods. Note also how the error rate for CVaR matches +that of Vanilla ERM; this is in fact the CVaR setting with the worst final mean-SD value. On +the other hand, the proposed method performs well from both perspectives at once. +4.2 +Classification on real datasets +We proceed to experiments using real-world datasets, some of which are orders of magnitude +larger than the simple setup given in §4.1, and which include multi-class classification tasks. +Experiment setup +We make use of four well-known datasets, all available from online +repositories: adult,5 australian,6 cifar10,7 and fashion_mnist.8 For multi-class datasets, +we extend the binary logistic loss to the usual multi-class logistic regression loss under a linear +5https://archive.ics.uci.edu/ml/datasets/Adult +6https://archive.ics.uci.edu/ml/datasets/statlog+(australian+credit+approval) +7https://www.cs.toronto.edu/~kriz/cifar.html +8https://github.com/zalandoresearch/fashion-mnist +12 + +model, with one linear model for each class. Features for all datasets are normalized to [0, 1], +with one-hot representations of categorical features. The learning algorithms being compared +here are the same as described in §4.1, except that now we implement each method using +mini-batch stochastic gradient descent (batch size 32), and do 30 epochs (i.e., 30 passes over +the training data). In addition, our proposed “Modified Sun-Huber” method performs almost +identically for the range of β0 values tested in §4.1, and thus we have simply fixed β0 = 0.9, so +there is only one trajectory curve this time. On the other hand, we now try a range of step sizes +for each method, choosing the best step size in terms of average (base) loss value on validation +data for each method. We run five independent trials, and for each trial we randomly re-shuffle +the dataset, taking 80% for training, 10% for validation (used to select step sizes), and 10% +for final testing. +Results and discussion +Our main results are shown in Figure 7, where once again we +plot the trajectory of the mean-SD objective, but this time computed on test data, and given +as a function of epoch number, rather than individual iterations. +Since there are multiple +trials, the curves drawn represent averages taken over trials, and the lightly shaded region +above/below each curve shows standard deviation over trials. Perhaps surprisingly, the very +simple implementation of our proposed Algorithm 1 (fixed step size, no regularization) works +remarkably well on a number of datasets. From the perspective of mean-SD minimization, +for three our of four datasets, the proposed method is far better than Vanilla ERM, and as +good or better than even the best settings of CVaR and DRO viewed after the fact. Regarding +the sub-standard performance observed on fashion_mnist, detailed analysis shows that more +fine-tuned settings of α and β can readily bring the method up to par; the non-convex and non- +smooth nature of �Cn naturally means that some tasks will require more careful settings than +are captured by our Algorithm 1, and indeed will take explicit account of the optimizer to be +used. We leave both the theoretical grounding and empirical testing of such optimizer-aligned +mean-SD minimizers for future work. +13 + +Figure 4: 2D classification example from §4.1. The red line represents the initial value used by each method. +102 +1 +2 +Vanilla ERM +102 +Modified Sun-Huber +102 +CVaR +102 +2-DRO risk +0.1 +0.9 +0.0 +0.8 +0.0 +0.3 +Mean + SD (2D classification with outliers) +Figure 5: Trajectory of the (empirical) mean-SD objective (1) over iterations. Colors correspond to different +choices from each class: β0 for Modified Sun-Huber, quantile level for CVaR, and constraint level for DRO. +101 +103 +0.0 +0.2 +0.4 +Error rate +101 +103 +0 +2 +4 +Norm +Trajectory with best final error rate +Vanilla ERM +Modified Sun-Huber +CVaR +2-DRO risk +Figure 6: +From each method class, we show the classification error rate and Euclidean norm trajectories +corresponding to the setting that achieved the best error rate after the final iteration. +14 + +0 +20 +0.7 +0.8 +Vanilla ERM +0 +20 +Modified Sun-Huber +0 +20 +CVaR risk +0 +20 +2-DRO risk +Mean + SD (dataset: adult) +0 +20 +0.8 +1.0 +Vanilla ERM +0 +20 +Modified Sun-Huber +0 +20 +CVaR risk +0 +20 +2-DRO risk +Mean + SD (dataset: australian) +0 +20 +2.5 +3.0 +3.5 +Vanilla ERM +0 +20 +Modified Sun-Huber +0 +20 +CVaR risk +0 +20 +2-DRO risk +Mean + SD (dataset: cifar10) +0 +20 +1.5 +2.0 +2.5 +Vanilla ERM +0 +20 +Modified Sun-Huber +0 +20 +CVaR risk +0 +20 +2-DRO risk +Mean + SD (dataset: fashion_mnist) +Figure 7: Mean-SD trajectories on real-world datasets as described in §4.2, given as a function of epochs and +averaged over multiple independent trials. Coloring for CVaR and DRO is analogous to that of Figure 5. +15 + +References +[1] Ash, R. B. and Doléans-Dade, C. A. (2000). Probability and Measure Theory. Academic +Press, 2nd edition. +[2] Barron, J. T. (2019). A general and adaptive robust loss function. In Proceedings of the +IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 4331–4339. +[3] Ben-Tal, A., Den Hertog, D., De Waegenaere, A., Melenberg, B., and Rennen, G. (2013). +Robust solutions of optimization problems affected by uncertain probabilities. Management +Science, 59(2):341–357. +[4] Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambridge University Press. +[5] Brownlees, C., Joly, E., and Lugosi, G. (2015). Empirical risk minimization for heavy-tailed +losses. The Annals of Statistics, 43(6):2507–2536. +[6] Catoni, O. (2012). Challenging the empirical mean and empirical variance: a deviation +study. Annales de l’Institut Henri Poincaré, Probabilités et Statistiques, 48(4):1148–1185. +[7] Curi, S., Levy, K. Y., Jegelka, S., and Krause, A. (2020). Adaptive sampling for stochastic +risk-averse learning. In Advances in Neural Information Processing Systems 33 (NeurIPS +2020), pages 1036–1047. +[8] Davis, D. and Drusvyatskiy, D. (2019). Stochastic model-based minimization of weakly +convex functions. SIAM Journal on Optimization, 29(1):207–239. +[9] Devroye, L., Györfi, L., and Lugosi, G. (1996). A Probabilistic Theory of Pattern Recogni- +tion. Springer. +[10] Devroye, L., Lerasle, M., Lugosi, G., and Oliveira, R. I. (2016). +Sub-Gaussian mean +estimators. The Annals of Statistics, 44(6):2695–2725. +[11] Duchi, J. and Namkoong, H. (2019). Variance-based regularization with convex objectives. +Journal of Machine Learning Research, 20(68):1–55. +[12] Ghadimi, S. and Lan, G. (2013). Stochastic first- and zeroth-order methods for nonconvex +stochastic programming. SIAM Journal on Optimization, 23(4):2341–2368. +[13] Hashimoto, T. B., Srivastava, M., Namkoong, H., and Liang, P. (2018). Fairness with- +out demographics in repeated loss minimization. In Proceedings of the 35th International +Conference on Machine Learning (ICML), volume 80 of Proceedings of Machine Learning +Research, pages 1929–1938. +[14] Holland, M. J. and Tanabe, K. (2022). Learning criteria going beyond the usual risk. +arXiv preprint arXiv:2110.04996v2. +[15] Hsu, D. and Sabato, S. (2016). Loss minimization and parameter estimation with heavy +tails. Journal of Machine Learning Research, 17(18):1–40. +[16] Hu, S., Wang, X., and Lyu, S. (2022). +Rank-based decomposable losses in machine +learning: A survey. arXiv preprint arXiv:2207.08768v1. +[17] Huber, P. J. (1964). Robust estimation of a location parameter. The Annals of Mathe- +matical Statistics, 35(1):73–101. +16 + +[18] Huber, P. J. and Ronchetti, E. M. (2009). Robust Statistics. John Wiley & Sons, 2nd +edition. +[19] Lee, J., Park, S., and Shin, J. (2020). Learning bounds for risk-sensitive learning. In +Advances in Neural Information Processing Systems 33 (NeurIPS 2020), pages 13867–13879. +[20] Li, T., Beirami, A., Sanjabi, M., and Smith, V. (2021). Tilted empirical risk minimization. +In The 9th International Conference on Learning Representations (ICLR). +[21] Luenberger, D. G. (1969). Optimization by Vector Space Methods. John Wiley & Sons. +[22] Lugosi, G. and Mendelson, S. (2019). Mean estimation and regression under heavy-tailed +distributions: A survey. Foundations of Computational Mathematics, 19(5):1145–1190. +[23] Markowitz, H. (1952). Portfolio selection. Journal of Finance, 7(1):77–91. +[24] Maurer, A. and Pontil, M. (2009). +Empirical Bernstein bounds and sample variance +penalization. In Proceedings of the 22nd Conference on Learning Theory (COLT). +[25] Medina, A. M. and Yang, S. (2021). Robust unsupervised learning via L-statistic mini- +mization. In 38th International Conference on Machine Learning (ICML), volume 139 of +Proceedings of Machine Learning Research, pages 7524–7533. +[26] Menon, A. K., Jayasumana, S., Rawat, A. S., Jain, H., Veit, A., and Kumar, S. (2021). +Long-tail learning via logit adjustment. In The 9th International Conference on Learning +Representations (ICLR). +[27] Mohri, M., Rostamizadeh, A., and Talwalkar, A. (2012). Foundations of Machine Learn- +ing. MIT Press. +[28] Nesterov, Y. (2004). Introductory Lectures on Convex Optimization: A Basic Course. +Springer. +[29] Rey, W. J. J. (1983). +Introduction to Robust and Quasi-Robust Statistical Methods. +Springer. +[30] Rockafellar, R. T. and Uryasev, S. (2000). +Optimization of conditional value-at-risk. +Journal of Risk, 2:21–42. +[31] Rockafellar, R. T. and Uryasev, S. (2013). +The fundamental risk quadrangle in risk +management, optimization and statistical estimation. Surveys in Operations Research and +Management Science, 18(1-2):33–53. +[32] Royset, J. O. (2022). Risk-adaptive approaches to learning and decision making: A survey. +arXiv preprint arXiv:2212.00856. +[33] Shapiro, A. (2017). Distributionally robust stochastic programming. SIAM Journal on +Optimization, 27(4):2258–2275. +[34] Sun, Q. (2021). Do we need to estimate the variance in robust mean estimation? arXiv +preprint arXiv:2107.00118v1. +[35] Vapnik, V. N. (1999). The Nature of Statistical Learning Theory. Statistics for Engineering +and Information Science. Springer, 2nd edition. +17 + +[36] Zhai, R., Dan, C., Kolter, J. Z., and Ravikumar, P. (2021). DORO: Distributional and +outlier robust optimization. In 38th International Conference on Machine Learning (ICML), +volume 139 of Proceedings of Machine Learning Research, pages 12345–12355. +A +Technical appendix +A.1 +Basic facts +Assuming ρ is defined as in (6), let us consider the function +f(x, a, b) ..= αa + βb + bρ +�x − a +b +� +(29) += αa + βb + +� +(x − a)2 + b2 − b +(30) += αa + +� +(x − a)2 + b2 − (1 − β)b. +(31) +The partial derivatives are as follows. +∂xf(x, a, b) = +x − a +� +(x − a)2 + b2 +(32) +∂af(x, a, b) = α − +x − a +� +(x − a)2 + b2 +(33) +∂bf(x, a, b) = +b +� +(x − a)2 + b2 − (1 − β) +(34) +The corresponding second derivatives are as follows. +∂2 +xf(x, a, b) = +1 +� +(x − a)2 + b2 − +(x − a)2 +((x − a)2 + b2)3/2 = +b2 +((x − a)2 + b2)3/2 +(35) +∂2 +af(x, a, b) = +1 +� +(x − a)2 + b2 − +(x − a)2 +((x − a)2 + b2)3/2 = +b2 +((x − a)2 + b2)3/2 +(36) +∂2 +b f(x, a, b) = +1 +� +(x − a)2 + b2 − +b2 +((x − a)2 + b2)3/2 = +(x − a)2 +((x − a)2 + b2)3/2 +(37) +The remaining elements of the Hessian of f(x, a, b) follow easily, given as follows. +∂a∂xf(x, a, b) = +−1 +� +(x − a)2 + b2 + +(x − a)2 +((x − a)2 + b2)3/2 = +−b2 +((x − a)2 + b2)3/2 +(38) +∂b∂xf(x, a, b) = +−b(x − a) +((x − a)2 + b2)3/2 +(39) +∂b∂af(x, a, b) = +b(x − a) +((x − a)2 + b2)3/2 +(40) +Lemma 6 (Useful inequalities). +1 +1 + x ≤ 1 − x +2, +0 ≤ x ≤ 1. +(41) +(1 + x)c ≥ 1 + cx, +x ≥ −1, c ∈ R \ (0, 1). +(42) +18 + +A.2 +Convexity and smoothness +Lemma 7. The map x �→ 1/√1 + x is convex on [0, ∞). +Lemma 8 (Properties of partial objective). With ρ as in (6) and β ≥ 0, the function +(x, b) �→ βb + bρ +�x +b +� +is convex and (1 + max{1 − β, β})-Lipschitz (in ∥·∥1) on R × (0, ∞), but its gradient is not +(globally) Lipschitz, and thus the function is not smooth.9 +Proof of Lemma 8. For notational convenience, setting 0 < β < 1, let us denote +g(x, b) ..= βb + bρ(x/b), +x ∈ R, b > 0 +with ρ as in (6). From the partial derivatives (32) and (34), it is clear that we have +−1 ≤ ∂xg(x, b) ≤ 1, +−(1 − β) ≤ ∂bg(x, b) ≤ β +when evaluated at any choice of x ∈ R and b > 0. It follows that the gradient norm can be +bounded as +∥∇g(x, b)∥1 ≤ 1 + max{(1 − β), β} +and thus g(·) is Lipschitz continuous in ∥·∥1 (and also ∥·∥2).10 +Next, let us denote the Hessian of g(·) evaluated at (x, b) by H. Basic calculus gives us the +simple form +H ..= +1 +(x2 + b2)3/2 +� +b2 +−xb +−xb +x2 +� +and for any pair of real values u = (u1, u2), we have +⟨Hu, u⟩ = +1 +(x2 + b2)3/2 (u1b − u2x)2 ≥ 0. +(43) +Since this holds for any choice of x ∈ R and b > 0, the Hessian is thus positive semi-definite, +implying that g(·) is (jointly) convex [28, Thm. 2.1.4]. +On the other hand, the function g(·) is not smooth. To see this, first note that having +chosen any u such that ∥u∥ ≤ 1, we have that the (operator) norm is bounded below as +∥H∥ = sup +∥u′∥≤1 +� +sup +∥u′′∥≤1 +⟨Hu′, u′′⟩ +� +≥ ⟨Hu, u⟩. +Then, as a concrete example, consider setting x = b, with u = (u1, u2) such that u1 ̸= u2. +Recalling the lower bound (43), we have +∥H∥ ≥ +b2 +(2b2)3/2 (u1 − u2)2 = (u1 − u2)2 +( +√ +2)3b +→ ∞ +in the limit as b → 0+. +As such, the gradient of g(·) cannot be Lipschitz continuous on +R × (0, ∞), and thus g(·) is not smooth [28, Thm. 2.1.6]. +9We prove that the Hessian’s norm is unbounded, which implies (via Nesterov [28, Thm. 2.1.6]) that the +convex function of interest cannot be smooth. +10That bounded gradients imply Lipschitz continuity is a general fact on linear spaces [21, §7.3, Prop. 2]. +19 + +B +Additional proofs +Proof of Proposition 1. To begin, note that the function +b �→ b Eµ ρ +�L(h) − a +b +� += Eµ +�� +(L(h) − a)2 + b2 − b +� +(44) +is monotonic (non-increasing) on (0, ∞) (follows clearly from (34)). We will use this property +moving forward. Recalling the upper and lower bounds of Proposition 2, we re-write them as +clo(β) +β +≤ b2 +µ(h, a) ≤ chi +β +(45) +using the shorthand notation +clo(β) ..= λ +4 Eµ I(h; a)(L(h) − a)2 +chi ..= λ +2 Eµ(L(h) − a)2 +and noting that while chi is free of β, clo(β) depends on β through the definition of I(h; a). +Fixing 0 < β < λ for now and recalling the form of Cµ in (12), the preceding bounds (45) and +monotonicity of (44) can be used to obtain a lower bound of the form +min +b>0 Cµ(h; a, b) ≥ αa + +� +βclo(β) + λ√chi Eµ +� +� +� +(L(h) − a)2 +chi ++ 1 +β − +� +1 +β +� +� . +(46) +Using the fact (14) and applying dominated convergence [1, Thm. 1.6.9], in the limit we have +lim +β→0+ clo(β) = λ +4 Eµ(L(h) − a)2. +Dividing both sides of (46) by √β, setting α = α(β) as in the proposition statement, and +taking the limit as β → 0+, we obtain +lim +β→0+ min +b>0 +Cµ(h; a, b) +√β +≥ �αa + +� +λ +4 Eµ(L(h) − a)2 + λ Eµ(L(h) − a)2 +2√chi += �αa + +� +λ +4 Eµ(L(h) − a)2 + +� +λ +2 Eµ(L(h) − a)2 += �αa + +�1 +2 + 1 +√ +2 +� � +λ Eµ(L(h) − a)2. +The first inequality uses the fact that for any c > 0, we have +√ +cx + x2 − x → c/2 as x → ∞, +and also uses dominated convergence. The remaining equalities just follow from plugging in +the definition of chi and cleaning up terms. This proves the desired lower bound. +As for the upper bound of interest, a perfectly analogous argument can be applied. Using +Proposition 2 again and taking β small enough that +clo(β) ≥ chi/4 +(47) +20 + +holds (always possible), we can obtain upper bounds of the form +min +b>0 Cµ(h; a, b) ≤ αa + +� +βchi + λ +� +clo(β) Eµ +�� +(L(h) − a)2 +clo(β) ++ 1 +β − +� +1 +β +� +≤ αa + +� +βchi + λ√chi Eµ +� +� +� +4(L(h) − a)2 +chi ++ 1 +β − +� +1 +β +� +� +(48) +noting that the latter inequality (48) follows from using (47) as well as clo(β) ≤ chi. As with +the lower bound argument in the preceding paragraph, we set α = α(β), divide both sides by +√β, and take the limit as β → 0+. This results in +lim +β→0+ min +b>0 +Cµ(h; a, b) +√β +≤ �αa + +� +λ +2 Eµ(L(h) − a)2 + 2λ Eµ(L(h) − a)2 +√chi += �αa + +� +λ +2 Eµ(L(h) − a)2 + 2 +� +2λ Eµ(L(h) − a)2 += �αa + +� +2 +√ +2 + 1 +√ +2 +� � +λ Eµ(L(h) − a)2 +which gives us the desired upper bound. The bounds given in the proposition statement are +slightly looser, but more readable. +Proof of Proposition 2. We adapt key elements of the scale control used by Sun [34, §2] to our +setting. We start by looking at first-order conditions for optimality of b > 0. First, note that +∂ +∂b Cµ(h; a, b) = β + λ ∂ +∂b +� +Eµ +� +(L(h) − a)2 + b2 − b +� += β + λ Eµ +� +b +� +(L(h) − a)2 + b2 +� +− λ. +As such, it follows that +Eµ +� +b +� +(L(h) − a)2 + b2 +� += 1 − β/λ +(49) +is equivalent to ∂b Cµ(h; a, b) = 0. Obviously, the left-hand side of (49) is non-negative for all +b ≥ 0 and bounded above by 1 for all b ≥ 0, a ∈ R, and h ∈ H. Thus (49) can only hold for +0 ≤ β ≤ λ. Using convexity (Lemma 7) and Jensen’s inequality [1, Thm. 6.3.5], we have +Eµ +� +b +� +(L(h) − a)2 + b2 +� += Eµ +� +� +1 +� +(L(h)−a +b +)2 + 1 +� +� ≥ +� +� +1 +� +Eµ(L(h)−a +b +)2 + 1 +� +� +and thus whenever (49) holds, we know that +(1 − β/λ)2 ≥ +1 +Eµ(L(h)−a +b +)2 + 1 +must also hold. Re-arranging terms, we see that this implies +b2 ≤ (1 − β/λ)2 Eµ(L(h) − a)2 +1 − (1 − β/λ)2 +. +21 + +For readability, set η ..= β/λ, and note that since +(1 − η)2 +1 − (1 − η)2 = (1 − η)2 +2η − η2 = +(1 − η)2 +2η(1 − η/2) ≤ (1 − η)2 +2η(1 − η) ≤ 1 +2η +we can obtain the cleaner (but looser) upper bound +b2 ≤ Eµ(L(h) − a)2 +2η += λ +2β Eµ(L(h) − a)2 +for any choice of 0 < β ≤ λ and a ∈ R. Since the first-order condition (49) is necessary for +optimality [28, Thm. 1.2.1], it follows that +b2 +µ(h, a) ≤ Eµ(L(h) − a)2 +2β +(50) +which is the desired upper bound. +Considering a lower bound next, note first that using the concavity of x �→ √x on R+, +another application of Jensen’s inequality gives us +Eµ +� +b +� +(L(h) − a)2 + b2 +� += Eµ +� +b2 +(L(h) − a)2 + b2 ≤ +� +� +� +�Eµ +� +1 +(L(h)−a +b +)2 + 1 +� +. +(51) +Using the inequality 1/(x + 1) ≤ 1 − x/2 for all 0 ≤ x ≤ 1 ((41) in Lemma 6), this suggests +a natural event to use as a condition. +More precisely, writing E ..= I {|L(h) − a| ≤ b} for +readability, note that we have +1 +(L(h)−a +b +)2 + 1 += +1 − E +(L(h)−a +b +)2 + 1 ++ +E +(L(h)−a +b +)2 + 1 +≤ +1 − E +(L(h)−a +b +)2 + 1 ++ E +� +1 − 1 +2 +�L(h) − a +b +�2� += +� +1 − E +(L(h)−a +b +)2 + 1 ++ E +� +� +�� +� +≤1 +−E +2 +�L(h) − a +b +�2 +. +Taking expectation and utilizing (51), whenever (49) holds, we have +1 − β/λ = Eµ +� +b +� +(L(h) − a)2 + b2 +� +≤ +� +1 − Eµ +E +2 +�L(h) − a +b +�2 +. +(52) +With this established, note that via helper inequality (42), for any β ≤ λ we have +(1 − β/λ)2 ≥ 1 − 2β/λ +and thus in light of (52), we may conclude that +1 − 2β/λ ≤ 1 − Eµ +E +2 +�L(h) − a +b +�2 +which implies +λ +4β Eµ E(h; a, b)(L(h) − a)2 ≤ b2 +22 + +noting that we have written E(h; a, b) to emphasize the dependence on h, a, and b. Once again +since the first-order condition (49) is necessary for optimality, we may conclude that +λ +4β Eµ E(h; a, bµ(h, a))(L(h) − a)2 ≤ b2 +µ(h, a) +(53) +which is the remaining desired inequality. +Proof of the limit (14). Recall from the proof of Proposition 2 the first-order optimality con- +dition (49), which is satisfied by any solution bµ(h, a) given by (13), i.e., we have +Eµ +� +� +bµ(h, a) +� +(L(h) − a)2 + (bµ(h, a))2 +� +� = 1 − β/λ +(54) +for any 0 < β ≤ λ. Defining g(β) ..= 1 − β/λ and taking any 0 < β2 < β1 ≤ λ, clearly we have +g(β1) < g(β2) and thus using the equality (54), we must have that bµ(h, a; β2) ≥ bµ(h, a; β1), +otherwise it would result in a contradiction of (54). Using this monotonicity, clearly +E(h; a, bµ(h, a; β1)) ≤ E(h; a, bµ(h, a; β2)) +and thus +Eµ E(h; a, bµ(h, a; β1))(L(h) − a)2 ≤ E(h; a, bµ(h, a; β2))(L(h) − a)2. +Applying this to the lower bound in Proposition 2, we have +lim inf +β→0+ b2 +µ(h, a) ≥ lim +β→0+ +λ +4β Eµ I(h; a)(L(h) − a)2 = ∞ +as desired. +Proof of the limit (15). Note that we can easily bound the random variable of interest as +0 ≤ bρ +�L(h) − a +b +� += +� +(L(h) − a)2 + b2 − b ≤ |L(h) − a| +(55) +for any choice of 0 < b < ∞. Some straightforward calculus shows that +lim +b→∞ bρ +�L(h) − a +b +� += 0 +in a pointwise sense. Since the upper bound in (55) is µ-integrable by assumption, a simple +application of dominated convergence [1, Thm. 1.6.9] yields +lim +b→∞ b Eµ ρ +�L(h) − a +b +� += Eµ +� +lim +b→∞ bρ +�L(h) − a +b +�� += 0 +as desired. +23 + +Proof of Proposition 3. From condition (20), since any solution must also be a stationary point +[28, Thm. 1.2.1], we know that An ..= An(h, b) must satisfy the first-order condition +λ +n +n +� +i=1 +ρ′ +�Li(h) − An +b +� += α +which is equivalent to +b +n +n +� +i=1 +ρ′ +�Li(h) − An +b +� += α +λb. +(56) +Next we make use of the argument developed by Catoni [6, §2]. First note that fixing any +a ∈ R and b > 0, we have +E exp +� n +� +i=1 +ρ′ +�Li(h) − a +b +�� += E +� n +� +i=1 +exp +� +ρ′ +�Li(h) − a +b +��� += +n +� +i=1 +Ei exp +� +ρ′ +�Li(h) − a +b +�� +≤ +n +� +i=1 +Ei +� +1 + Li(h) − a +b ++ γ +b2 (Li(h) − a)2 +� += +�Eµ L(h) − a +b ++ γ +b2 Eµ(L(h) − a)2 +�n +≤ exp +�n +b (Eµ L(h) − a) + nγ +b2 Eµ(L(h) − a)2 +� +. +(57) +The second equality above follows from the independence of the training data, and the first +inequality uses the upper bound in (4), which is satisfied by ρ given in (6) with γ = 1, though +we leave γ as is to illustrate how more general results are obtained. The third equality just uses +the fact that the training data is an IID sample from µ, and the final inequality culminating +in (57) just uses the bound 1 + x ≤ exp(x). Using Markov’s inequality and taking 0 < δ < 1, +it is straightforward to show that (57) implies a 1 − δ event (over the draw of Z1, . . . , Zn) in +which we have +n +� +i=1 +ρ′ +�Li(h) − a +b +� +≤ n +b (Eµ L(h) − a) + nγ +b2 Eµ(L(h) − a)2 + log(1/δ). +Multiplying both sides by b/n, on the same “good” event, we have +b +n +n +� +i=1 +ρ′ +�Li(h) − a +b +� +≤ Eµ L(h) − a + γ +b Eµ(L(h) − a)2 + b log(1/δ) +n += Eµ L(h) − a + γ +b +� +Vµ L(h) + (Eµ L(h) − a)2� ++ b log(1/δ) +n +(58) +where (58) follows from expanding the quadratic term and doing some algebra. +With the +equality (56) in mind, subtracting a constant from both sides of (58), note that we equivalently +have +b +n +n +� +i=1 +ρ′ +�Li(h) − a +b +� +− α +λb ≤ p(a) +(59) +24 + +where we have defined +p(a) ..= Eµ L(h) − a + γ +b +� +Vµ L(h) + (Eµ L(h) − a)2� ++ b log(1/δ) +n +− α +λb +(60) +for readability. Note that p(·) in (60) is a polynomial of degree 2, and can be written as +p(a) = ua2 + va + w +(61) +with coefficients defined as +u ..= γ +b +v ..= (−1) +� +1 + 2γ Eµ L(h) +b +� +w ..= Eµ L(h) + γ +b Eµ|L(h)|2 + b log(1/δ) +n +− α +λb. +This polynomial has real roots whenever v2 − 4uw ≥ 0, and some algebra shows that this is +equivalent to +0 ≤ D ≤ 1, where D ..= 4 +��γ +b +�2 +Vµ L(h) + γ log(1/δ) +n +− γα +λ +� +. +(62) +Assuming this holds, denoting by a+ the smallest root of p(·), i.e., the smallest of satisfying +p(a+) = 0, the critical fact of interest to us is that An ≤ a+ on the good event of (59). This is +valid due to two facts: first, the left-hand side of (59) is a decreasing function of a; second, due +to (56), we know that An is a root of the left-hand side of (59). With this key fact in hand, +using the quadratic formula we have +An ≤ a+ += Eµ L(h) + b +2γ +� +1 − +√ +1 − D +� += Eµ L(h) + b +2γ +� +1 − +√ +1 − D +� � +1 + +√ +1 − D +� +� +1 + +√ +1 − D +� += Eµ L(h) + b +2γ +D +� +1 + +√ +1 − D +� +≤ Eµ L(h) + b +2γ D. +Taking the two ends of this inequality chain together and expanding D, we have +An ≤ Eµ L(h) − 2(α/λ)b + 2 +�γ +b Vµ L(h) + b log(1/δ) +n +� +(63) +with probability no less than 1 − δ, assuming that n, b, and α are such that 0 ≤ D ≤ 1 holds. +This gives us the desired upper bound. +To obtain a lower bound, a perfectly analogous argument can be applied. First, using the +lower bound in (4) and the fact that ρ′(−x) = −ρ′(x), we know that +ρ′ +�a − Li(h) +b +� +≤ log +� +1 + a − Li(h) +b ++ γ +b2 (a − Li(h))2 +� +(64) +25 + +for any a ∈ R, b > 0, and i ∈ [n]. Plugging this inequality (64) into an argument analogous to +the chain of inequalities that led to (58) earlier, it is clear that again on an event of probability +no less than 1 − δ, we have +b +n +n +� +i=1 +ρ′ +�a − Li(h) +b +� +≤ a − Eµ L(h) + γ +b +� +Vµ L(h) + (Eµ L(h) − a)2� ++ b log(1/δ) +n +. +(65) +Once again the upper bound we can bound this using a polynomial of degree 2, namely +b +n +n +� +i=1 +ρ′ +�a − Li(h) +b +� ++ α +λb ≤ q(a) +(66) +where we have defined +q(a) ..= a − Eµ L(h) + γ +b +� +Vµ L(h) + (Eµ L(h) − a)2� ++ b log(1/δ) +n ++ α +λb. +(67) +Now, since An is a root of the left-hand side of (66) viewed as a function of a, and this function +is monotonically increasing, it is evident that denoting the largest root of q(·) (when it exists) +by a−, we have An ≥ a−, a lower bound in contrast to the An ≤ a+ upper bound used earlier. +For completeness, we write this polynomial as +q(a) = u′a2 + v′a + w′ +(68) +with coefficients +u′ ..= γ +b +v′ ..= +� +1 − 2γ Eµ L(h) +b +� +w′ ..= (−1) Eµ L(h) + γ +b Eµ|L(h)|2 + b log(1/δ) +n ++ α +λb. +We have two real roots whenever +1 ≥ D′ ..= 4 +��γ +b +�2 +Vµ L(h) + γ log(1/δ) +n ++ γα +λ +� +(69) +holds, and thus we obtain a high probability lower bound on An as follows: +An ≥ a− += Eµ L(h) − b +2γ +� +1 − +√ +1 − D′ +� +≥ Eµ L(h) − b +2γ D′. +Expanding D′ gives us the lower bound +An ≥ Eµ L(h) − 2(α/λ)b − 2 +�γ +b Vµ L(h) + b log(1/δ) +n +� +(70) +with probability no less than 1 − δ, as desired. +26 + +Let us conclude this proof by organizing the technical assumptions. First of all, for the +two quadratics used in the preceding bounds, we require both (62) and (69) to hold. It is +straightforward to verify that having these conditions both hold is equivalent to the following: +4γα +λ +≤ 4 +��γ +b +�2 +Vµ L(h) + γ log(1/δ) +n +� +≤ 1 − 4γα +λ . +(71) +As such, whenever α, δ, and b are such that (71) holds, using a union bound, it follows that +with probability no less than 1 − 2δ, we have a bound on +|An − (Eµ L(h) − 2(α/λ)b)| ≤ 2 +�γ +b Vµ L(h) + b log(1/δ) +n +� +as desired. The proposition statement takes a cleaner form since we have γ = 1. +Proof of Proposition 4. The lack of convexity follows from the fact that the composition of +two convex functions need not be convex when the outermost function is non-monotonic (see +for example Boyd and Vandenberghe [4, Ch. 3]), and the lack of smoothness follows a fortiori +from Lemma 8. +C +Empirical test appendix +For reference, we give the population versions of the CVaR and χ2-DRO criteria used in the +empirical tests of §4. First, it is well known (see Rockafellar and Uryasev [30]) that CVaR at +quantile level ξ can be represented as +CVaRµ(h; ξ) = inf +a∈R +� +a + +1 +1 − ξ Eµ (L(h) − a)+ +� +(72) +where (x)+ ..= max{0, x}. Similarly, DRO risk based on the Cressie-Read family of divergence +functions is formulated (for any c > 1) using +DROµ(h; η) = inf +a∈R +� +a + (1 + c(c − 1)η)1/c � +Eµ (L(h) − a)c∗ ++ +�1/c∗� +(73) +where c∗ ..= c/(c − 1), and χ2-DRO is the special case where c = 2 [11, 13, 36]. The different +“robustness levels” mentioned in §4 correspond to a re-parameterized quantity �η ∈ (0, 1), +related to η by the equality η = (1/(1 − �η) − 1)/2. Just as our �Cn(h; a, b) is solved jointly in +(h, a, b), our empirical tests minimize the empirical versions of (72) and (73) jointly in (h, a). +27 + diff --git a/6dFJT4oBgHgl3EQflizf/content/tmp_files/load_file.txt b/6dFJT4oBgHgl3EQflizf/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..61c3dec3d72f86752b51156ee5334adff66eb924 --- /dev/null +++ b/6dFJT4oBgHgl3EQflizf/content/tmp_files/load_file.txt @@ -0,0 +1,1131 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf,len=1130 +page_content='Robust variance-regularized risk minimization with concomitant scaling Matthew J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Holland Osaka University Abstract Under losses which are potentially heavy-tailed, we consider the task of minimizing sums of the loss mean and standard deviation, without trying to accurately estimate the variance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' By modifying a technique for variance-free robust mean estimation to fit our problem setting, we derive a simple learning procedure which can be easily combined with standard gradient-based solvers to be used in traditional machine learning workflows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Empirically, we verify that our proposed approach, despite its simplicity, performs as well or better than even the best-performing candidates derived from alternative criteria such as CVaR or DRO risks on a variety of datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Contents 1 Introduction 2 2 Background 3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='1 Robust mean estimation .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' 3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='2 Good-enough ancillary scaling .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' 4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='3 A bridge between two problems .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' 5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='4 Overview of contributions and limitations .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' 6 3 Theory 7 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='1 Links to the mean-SD objective .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' 7 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='2 Guiding the optimal threshold .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' 8 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='3 Deriving an algorithm using finite-sample theory .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' 8 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='4 Stationary points of mean-variance .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' 10 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='5 Comparison with dual form of DRO risk .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' 11 4 Empirical analysis 11 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='1 Simulated noisy classification on the plane .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' 12 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='2 Classification on real datasets .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' 12 A Technical appendix 18 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='1 Basic facts .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' 18 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='2 Convexity and smoothness .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' 19 B Additional proofs 20 C Empirical test appendix 27 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='11584v1 [stat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='ML] 27 Jan 2023 1 Introduction Traditionally, the “textbook definition” of a statistical machine learning problem is formulated in terms of making decisions which minimize the expected value of a random loss [9, 27, 35].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' More precisely, the traditional setup has us minimize Eµ L(h) with respect to a decision h, where we denote random losses as L(h) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='.= ℓ(h;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Z), with a random data point Z ∼ µ, and ℓ(·) is a loss function assigning real values to (decision, data) pairs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' This problem class is very general in that it covers a wide range of learning problems both supervised and unsupervised, but it is limited in the sense that it only aspired to be optimal on average, with no guarantees for other aspects of performance such as loss deviations, resilience to worst-case examples and distribution shift, sub-population disparity, and class-balanced error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' While it is sometimes possible to account for these issues by modifying the base loss function ℓ (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=', logit-adjusted softmax cross-entropy for balanced error [26]), there is a growing literature looking at prin- cipled, systematic modifications to the “risk,” i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=', a non-random numerical property of the distribution of L(h) to be optimized in h, leaving the base loss ℓ(·) fixed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Some prominent examples are weighted sums of loss quantiles [25], distributionally robust optimization (DRO) risk [13], conditional value-at-risk (CVaR) [7], tilted risk [20], and more general optimized certainty equivalent (OCE) risks [19], among others.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' It is well-known that many risks can be expressed in terms of location-deviation sums, with the canonical example being a weighted sum of the loss mean and standard deviation (or variance) [31, §2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' We refer the reader to some recent surveys [14, 16, 32] for more general background on developments in learning criteria.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' In this work, the criterion of interest is the mean loss regularized by standard deviation (SD), when losses are allowed to be heavy-tailed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' More formally, we allow for heavy tails in the sense that all we assume is that the second moment Eµ|L(h)|2 is finite, and the ultimate objective of interest is the mean-SD criterion MSµ(h;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' λ) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='.= Eµ L(h) + � λ Vµ L(h) (1) with loss variance denoted by Vµ L .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='.= Eµ(L − Eµ L)2, and weighting parameter λ ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' This mean-SD objective (1) and its mean-variance counterpart have a long history in the literature on decision making under uncertainty, including the influential work of Markowitz [23] on optimal portfolio selection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' In the context of machine learning, it is well-known that one can obtain “fast rate” bounds on the expected loss when variance is small (see [11, §1]), though the problem of actually ensuring that loss deviations are sufficiently small is an entirely separate matter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' In this direction, Maurer and Pontil [24] bound the (population) expected loss using a weighted sum of the sample mean and standard deviation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Their “sample variance penalized” objective is convenient to compute and can be used to guarantee fast rates in theory, but a lack of convexity makes it hard to minimize in practice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' A convex approximation is developed by Duchi and Namkoong [11], who show that a sub-class of (empirical) DRO risks can be used to approximate the sample mean-SD objective, again yielding fast rates when the (population) variance is small enough.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' The critical limitation to this approach is poor guarantees under heavy-tailed losses;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' while we gain in terms of convexity, the empirical DRO risk of [11] is at least as sensitive to outliers as the naive empirical objective (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=', directly minimizing the sample mean and SD), which is already known to result in highly sub-optimal performance guarantees under heavy tails [5, 10, 15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Recent work by Zhai et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' [36] studies a natural strategy for robustifying the DRO objective (called DORO), which discards a specified fraction of the largest losses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' While the impact of outliers can be reduced under the right setting of DORO, their approach is limited to non-negative losses, and the impact that such one-sided trimming has on the resulting mean-SD sum, our ultimate object of interest, is unknown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' 2 With this context in mind, in this paper we propose a new approach to robustly minimize the objective (1) under heavy-tailed losses, without a priori knowledge of anything but the fact that variance is finite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Our key technique is based on extending a convex program of Sun [34] from one-dimensional mean estimation to our mean-variance objective MSµ(h;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' λ) under general losses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' After some motivating background points in §2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='1–§2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='2, we describe our basic approach and summarize our contributions in §2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='3–§2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Theoretical analysis comes in §3, and based upon formal properties of the proposed objective function, we derive a general-purpose procedure summarized in Algorithm 1, and tested empirically in §4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Our main finding is that the simple algorithm we derive works remarkably well on both simulated and real-world datasets without any fine-tuning, despite sacrificing the convexity enjoyed by procedures based on criteria such as CVaR and DRO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Software and notebooks to reproduce all results in this paper are provided in an online repository.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='1 2 Background Before we describe our proposed approach to the mean-SD task described in §1, we start with a much simpler problem, namely the task of robust mean estimation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' This will allow us to highlight key technical points from the literature which provide both conceptual and technical context for our proposal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Key points from the existing literature are introduced in §2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='1–§2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='2, and building upon this we introduce our method in §2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='3–§2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='1 Robust mean estimation Let X be a random variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' For the moment, our goal will be to construct an accurate empirical estimate of the mean Eµ X, assuming only that the variance Vµ X = Eµ X2 − (Eµ X)2 is both defined and finite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' We assume access to an independent and identically distributed (IID) sample X1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' , Xn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Since higher-order moments may be infinite, the tails of X may be “heavy” and decidedly non-Gaussian, causing problems for the usual empirical mean.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' This problem setting is now very well-understood;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' see Lugosi and Mendelson [22] for an authoritative reference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' One very well-known approach is to use M-estimators [18], namely to design an estimator An ≈ Eµ X satisfying An ∈ arg min a∈R b n n � i=1 ρ �Xi − a b � (2) where ρ: R → R+ is a function that is approximately quadratic near zero, but grows more slowly in the limit, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=', large deviations are penalized in a sub-quadratic manner, where “large” is relative to the scaling parameter b > 0, used to control bias.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' When ρ(·) is convex, differen- tiable, and the solution set is non-empty, the condition (2) is equivalent to 1 n n � i=1 ρ′ �Xi − An b � = 0 (3) and when the derivative ρ′(·) is bounded such that − log(1 + −x + γx2) ≤ ρ′(x) ≤ log(1 + x + γx2), x ∈ R (4) for some constant 0 < γ < ∞, then the analytical approach of Catoni [6] tells us that when b2 scales with Vµ X/n, the deviations |An − Eµ X| enjoy sub-Gaussian tails, namely upper bounds 1https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='com/feedbackward/bdd-mv 3 2 0 2 2 0 2 2 0 2 ′ 2 0 2 ′′ Figure 1: From left to right, we plot the graphs of ρ(·), ρ′(·), and ρ′′(·) with ρ as in (6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' In the middle plot, the dotted curves represent the upper (blue) and lower (dark pink) bounds in (4) with γ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' of the order O( � log(1/δ) Vµ X/n) with probability at least 1 − δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Under these weak assump- tions, such guarantees are essentially optimal [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' While a very important result, for practical purposes, the need for knowledge of Vµ X is a significant limitation, since without finite higher- order moments, it is not plausible to obtain variance estimates with analogous sub-Gaussian guarantees (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=', impossibility results of [10]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' There do exist other robust estimators such as median-of-means [22, §2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='1] which do not require variance information, and this illustrates the fact that knowledge of the variance is sufficient, although not necessary, for sub-Gaussian mean estimation under heavy tails.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='2 Good-enough ancillary scaling Since sub-Gaussian estimates of the variance Vµ X are not possible under our weak assump- tions, it is natural to ask whether there exists a middle-ground, namely whether or not it is possible to construct a (data-driven) procedure for setting the scale b > 0 in (2) which is “good enough” in the sense that the resulting An is sub-Gaussian, even though the scale itself cannot be.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' An initial (affirmative) answer to this question was given in recent work by Sun [34], whose basic idea we briefly review here, with some slight re-formulation for readability and additional generality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Essentially, the underlying idea in [34] is to utilize the convexity of ρ in (2), and to solve for both a ∈ R and b > 0 simultaneously, while penalizing b in such a way as to encourage scaling which is “good enough” as mentioned.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' More precisely, the empirical objective �Sn(a, b) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='.= βb + b n n � i=1 ρ �Xi − a b � (5) plays a central role, where 0 < β < 1 is a parameter we can control, and ρ is fixed as ρ(x) = � x2 + 1 − 1, x ∈ R (6) which is differentiable, and satisfies the Catoni condition (4) with γ = 1 (see Figure 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' If we fix b > 0, then the solution sets (in a) of both �Sn(a, b) and b × �Sn(a, b) are identical, and it should be noted that the re-scaled map x �→ b2ρ(x/b) = b √ x2 + b2 − b2 closely approximates x �→ x2/2 as b grows large (Figure 2), and is well-known as the “pseudo Huber” or “smooth Huber” function, where b acts as a smoothing parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='2 When considering the joint objective �Sn(a, b), from the computational side, one important fact is that this function is convex on R × (0, ∞) (see Lemma 8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' From the statistical side of 2Barron [2, §1] gives a summary of this and related functions from the perspective of loss function design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' This is not the only smoothed variant of the classic Huber function [17], see for example Rey [29, §6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' 4 1 0 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='4 x b2 (x/b) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='1 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='0 b value Figure 2: Graphs of the smooth Huber function, with ρ as in (6), over a range of smoothing parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' For visual comparison, the graph of x �→ x2/2 is plotted with a thick dashed green curve.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' things, the solutions (An, Bn) ∈ arg min a∈R,b>0 �Sn(a, b) (7) are such that under certain regularity conditions, the deviations |An − Eµ X| are nearly optimal (sub-Gaussian, up to poly-logarithmic factors) [34, §3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='3 The corresponding Bn of course cannot give us sub-Gaussian estimates of the variance under such weak assumptions, but it does scale in a desirable way [34, §3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='2], and when bias is mitigated by setting β sufficiently small given the sample size n, the resulting Bn is good enough to provide such guarantees for An, which is the ultimate goal anyways.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' By taking on a slightly more difficult optimization problem, it is possible to get away with not having prior knowledge or sub-Gaussian estimates of the variance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' We use this basic insight as a stepping stone to our approach for learning algorithms charged with selecting a decision h such that the loss L(h) has a small mean-variance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='3 A bridge between two problems To develop our proposal, we now return to the more general learning setup, where the test data is a random vector Z ∼ µ, test loss is L(h) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='.= ℓ(h;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Z), and we have n IID training points Z1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' , Zn yielding losses Li(·) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='.= ℓ(·;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Zi), i ∈ [n].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' If our goal was to simply minimize the traditional risk Eµ L(h) over h ∈ H under heavy-tailed losses, then in principle we could extend the approach of §2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='2 to robustly estimate the test risk using (An(h), Bn(h)) ∈ arg min a∈R,b>0 � βb + b n n � i=1 ρ �Li(h) − a b �� (8) and design a learning algorithm using (8) as follows: Hn ∈ arg min h∈H An(h).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' (9) Under some regularity conditions, the machinery of Brownlees et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' [5] could then be combined with pointwise concentration inequalities in [34] to control the tails of Eµ L(Hn) under just finite loss variance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Our goal however is not to minimize the expected loss, but rather the mean-SD sum (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Furthermore, the bi-level program inherent in (9) is not computationally congenial from the perspective of large-scale machine learning tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' To ease the computational burden 3Strictly speaking, the objective used in [34] is �Sn(a, b)/β, but all key results easily translate to our setup.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' 5 while at the same time building a bridge between these two problems, we consider a new objective function taking the form �Cn(h;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' a, b) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='.= αa + βb + λb n n � i=1 ρ �Li(h) − a b � (10) with parameters α ≥ 0 and β ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' We call (10) the modified Sun-Huber objective, since ρ is fixed as (6), and this form plays a special role in our analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Compared with that of (9), this objective is a simple function of h, and gradient-based minimizers can be easily applied assuming the underlying loss ℓ(·) is sufficiently smooth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' On the other hand, it is “biased” in the sense that it penalizes not just the loss location (whenever α > 0), but the loss scale as well (whenever β > 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Intuitively, some kind of deviation-driven “bias” is precisely what we need from the standpoint of minimizing the mean-SD objective MSµ(h;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' λ), but it is not immediately clear how this objective relates to �Cn(h;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' a, b), and it is equally unclear if we can just plug this new objective into standard machine learning workflows (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=', using stochastic gradient-based optimizers) and achieve the desired effect without a prohibitive amount of manual tuning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='4 Overview of contributions and limitations With our basic idea described and some key questions raised, we summarize the central points that characterize the rest of this paper, and also highlight the limitations of this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Broadly speaking, the new proposal here is a class of empirical “risk” minimizers, namely any learning algorithm which minimizes the new empirical objective (10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' More explicitly, this refers to all procedures which returns a triplet satisfying (Hn, An, Bn) ∈ arg min h∈H,a∈R,b>0 �Cn(h;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' a, b) (11) where H denotes a set of feasible decisions, and we note that each element of this class is characterized by the settings of α, β, and λ used to define �Cn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' In analogy with the strat- egy employed in §2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='2, we do not expect An and Bn to provide sub-Gaussian estimates;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' we simply hope that these estimates are good enough to ensure the mean-SD is smaller and/or better-behaved when compared to standard benchmarks such as mean-based empirical risk minimization (ERM) and DRO-based algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Theoretically, we are interested in identify- ing links between the proposed objective �Cn and loss properties such as Eµ L(h) and Vµ L(h), with particular emphasis on how the settings of α, β, and λ influence such links.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Our main theory-driven contribution is the derivation of a principled approach to determine �Cn (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=', set α and β), before seeing any training data, in such a way that we can balance between “biased but robust” ρ-based deviations and “unbiased but outlier-sensitive” squared deviations that arise in the loss variance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Details are in §3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='1–§3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='3, and a concise procedure is summarized in Algorithm 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' We do not, however, consider the behavior of MSµ(Hn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' λ) for a particular implementation of (11) (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=', SGD) from a theoretical viewpoint;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' the implementation is left abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' This is where the empirical analysis of §4 comes in.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' We provide evidence using simulated and real data that our procedure can be quite useful, even using a rudimentary implementation where we wrap base loss objects and naively pass them to standard stochastic gradient-based learning routines, with no manual tweaking of parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' 6 3 Theory 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='1 Links to the mean-SD objective We would like to make the connection between the proposed objective (10) and the ultimate objective (1) a bit more transparent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' To do this, we will make use of the population version of �Cn, denoted henceforth by Cµ and defined as Cµ(h;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' a, b) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='.= αa + βb + λb Eµ ρ �L(h) − a b � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' (12) Let us fix the decision h and threshold a, paying close attention to the optimal value of the scale b, denoted here by bµ(h, a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' More explicitly, consider any positive real number satisfying bµ(h, a) ∈ arg min b>0 Cµ(h;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' a, b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' (13) While it is not explicit in our notation, the optimal scale in (13) depends critically on the value of β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Intuitively, a smaller value of β leads to a weaker penalty for taking b large, thus encouraging a larger value of bµ(h, a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' In fact, one can show that viewing bµ(h, a) as a function of the parameter β, in the limit we have (proof in §B) lim β→0+ bµ(h, a) = ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' (14) Combining this with the fact that lim b→∞ b Eµ ρ �L(h) − a b � = 0 (15) also holds (proof in §B), by re-scaling to avoid trivial limits we can obtain a result which sharply bounds the proposed learning criterion at the optimal scale using the square root of quadratic deviations, thereby establishing a clear link to the desired mean-SD objective (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Let H be such that Eµ|L(h)|2 < ∞ for each h ∈ H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' If we set α = α(β) such that α(β)/√β → �α ∈ [0, ∞) as β → 0+, then in this limit, with appropriate re-scaling the scale-optimized learning criteria can be bounded above and below as �αa + (1/2) � λ Eµ(L(h) − a)2 ≤ lim β→0+ min b>0 Cµ(h;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' a, b) √β ≤ �αa + 4 � λ Eµ(L(h) − a)2 for any choice of threshold a ∈ R and weight α ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' In the special case where a = Eµ L(h) and �α > 0, we naturally recover mean-SD sums akin to those studied in an ERM framework by Maurer and Pontil [24] and those bounded from above using convex surrogates by Duchi and Namkoong [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Of course in practice, we will only ever be working with fixed values of β, and the entire point of introducing new criteria (namely �Cn and Cµ) was to give us some control over how sensitive our objective is to loss tails.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' The following result makes the nature of this control (through β) more transparent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Let H and L(h) be as stated in Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Letting bµ(h, a) be as specified in (13), we define a Bernoulli random variable I(h;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' a) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='.= I {|L(h) − a| ≤ bµ(h, a)} 7 for any choice of h ∈ H and a ∈ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' The optimal scale can then be bounded by λ 4β Eµ I(h;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' a)(L(h) − a)2 ≤ b2 µ(h, a) ≤ λ 2β Eµ(L(h) − a)2 for any choice of 0 < β < λ and a ∈ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' While it is difficult to pin down exactly how bµ(h, a) changes as a function of β, Proposition 2 clearly shows us the appealing property that optimal scale induced by the proposed objective function essentially falls between the (tail-sensitive) quadratic deviations and a (tail-insensitive) truncated variant, with the truncation threshold loosening as β shrinks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='2 Guiding the optimal threshold Since the preceding Propositions 1–2 both hold for any choice of threshold a ∈ R, they clearly hold when both a and b are optimal, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=', when a and b are set as (aµ(h), bµ(h)) ∈ arg min a∈R,b>0 Cµ(h;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' a, b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' (16) In particular, using first-order conditions, the inclusion (16) is equivalent to the following two equalities holding at once: Eµ � � L(h) − aµ(h) � (L(h) − aµ(h))2 + b2µ(h) � � = α, Eµ � � bµ(h) � (L(h) − aµ(h))2 + b2µ(h) � � = 1 − β/λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' (17) Given the context of our analysis in §3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='1, let us consider the effect of taking β towards zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' For any non-trivial random loss, the second equality asks that bµ(h) grow without bound as β → 0+, while |aµ(h)| must be either bounded or grow slower than bµ(h).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' On the other hand, if α is too large (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=', α > 1) then the first equality will be impossible to satisfy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' In addition to taking 0 < α < 1, note that if we multiply both sides of the first equality in (17) by bµ(h) and apply Proposition 2, then under this optimality condition we must have Eµ � � � � L(h) − aµ(h) � (L(h)−aµ(h) bµ(h) )2 + 1 � � � � ≤ α � λ 2β Eµ(L(h) − aµ(h))2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' (18) With this inequality in place, we adopt the following strategy: encourage the optimal location to converge as aµ(h) → Eµ L(h) when β → 0+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Since λ > 0 is assumed to be fixed in advance, the only way to ensure this using (18) is to set α = α(β) such that lim β→0+ α(β) √β = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' (19) While (19) gives us a rather clear condition for determining α given β, we still do not have a principled setting for β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' This point will be treated in the following sub-section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='3 Deriving an algorithm using finite-sample theory To complement the preceding analysis and discussion centered around the population objective (12), we now return to the empirical objective function �Cn(h;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' a, b) introduced in (10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' We maintain the running assumption that the training data Z1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' , Zn are an IID sample from µ, 8 and thus the losses Li(h), i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' , n are independent given any fixed h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' With h and b > 0 fixed for the moment, we will now take a closer look at the optimal (empirical) threshold that arises from this objective function, namely any random variable An(h, b) satisfying An(h, b) ∈ arg min a∈R �Cn(h;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' a, b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' (20) Using the property (4) of the smooth Huber-like function ρ, we can demonstrate how data- driven thresholds satisfying (20) are concentrated at a point near the expected loss, where α and b play a key role in how close this point is to the mean.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Proposition 3 (Concentration at a shifted location).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Taking 0 ≤ α < 1, b > 0, and 0 < δ < 1, with large enough n it is always possible to satisfy the condition 4α λ ≤ 4 �Vµ L(h) b2 + log(2/δ) n � ≤ 1 − 4α λ , and when this condition is satisfied, the data-driven threshold An(h, b) in (20) satisfies ����An(h, b) − � Eµ L(h) − 2α λ b ����� ≤ 2 �Vµ L(h) b + b log(2/δ) n � with probability no less than 1 − δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' This result can be seen as an extension of [34, Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='1] for the function (5) used in mean estimation to our generalized learning problem, although we use a different proof strategy which does not require strong convexity of �Cn (with respect to a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' With Proposition 3 established, conventional wisdom might incline one to pursue a O(1/√n) rate in the upper bound;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' in this case, setting β ∝ 1/n is a natural strategy since Proposition 2 tells us that for the population objective, the optimal setting of b scales with � λ/β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' While this is natural from the perspective of tight concentration bounds for An(h, b), we argue that a different strategy is more appropriate when we actually consider how (Hn, An, Bn) will behave in the full joint optimization (11).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' The most obvious reason for this is that the joint objective lacks convexity and smoothness, as the following result summarizes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Proposition 4 (Joint objective is non-convex and non-smooth).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Even when H is a compact convex set and the base loss function ℓ(·;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Z) is convex, the mapping (h, a, b) �→ �Cn is not convex in general, and is non-smooth in the sense that its gradient is not Lipschitz continuous on H × R × (0, ∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' In consideration of Proposition 4, standard complexity results for typical optimizers such as stochastic gradient descent to achieve a ε-stationary point are on the order of O(ε−4);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' see Davis and Drusvyatskiy [8] for example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='4 With this in mind, setting β ∝ 1/n to achieve O(ε−2) sample complexity for error bounds of An(h, b) seems superfluous if in the end the dominant complexity for solving the ultimate problem (11) will be of the order O(ε−4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' As such, in order to match this rate, the more natural strategy is to set β ∝ 1/√n, or more precisely to set β = β0 √n (21) where β0 > 0 is a constant used to ensure 0 < β < λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' This, coupled with α(β) = β to satisfy (19) from the previous sub-section, is our proposed setting to determine (α, β) (and thus �Cn) using just knowledge of n, and without having observed any data points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' This procedure is summarized in Algorithm 1, and will be the subject of empirical analysis later in §4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' 4Even if the objective were smooth, the same rates are typical;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' see for example Ghadimi and Lan [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' 9 Algorithm 1 Modified Sun-Huber Inputs: data Z1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' , Zn and parameter λ > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Set: β = β0/√n, with β0 such that 0 < β < λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' {Based on (21).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='} Set: α = β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' {Satisfies (19).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='} Minimize: �Cn(h;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' a, b) in (h, a, b) using α and β as above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='4 Stationary points of mean-variance Having established links between the proposed objective and the mean-SD objective, we next consider the mean-variance objective MVµ(h) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='.= Eµ L(h) + Vµ L(h).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' (22) This quantity can be expressed as the minimum value of a convex function, namely we have MVµ(h) = min a∈R � a + Eµ(L(h) − a)2 + 1 2 � = aMV(h) + Eµ(L(h) − aMV(h))2 + 1 2 (23) where on the right-most side we have set aMV(h) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='.= Eµ L(h)−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Assuming the underlying loss is differentiable, the gradient with respect to h can be written as MV′ µ(h) = Eµ L′(h) + Eµ L(h) L′(h) − Eµ L(h) Eµ L′(h) = Eµ L′(h) + Eµ (L(h) − Eµ L(h)) L′(h) = Eµ (L(h) − (Eµ L(h) − 1)) L′(h) which implies a stationarity condition of MV′ µ(h) = 0 ⇐⇒ Eµ (L(h) − (Eµ L(h) − 1)) L′(h) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' (24) Similarly, the partial derivative of the learning criterion (12) taken with respect to h is ∂ ∂h Cµ(h;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' a, b) = Eµ � L(h) − a � (L(h) − a)2 + b2 � L′(h) and thus multiplying both sides by b > 0, we obtain a simple stationarity condition of ∂ ∂h Cµ(h;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' a, b) = 0 ⇐⇒ Eµ � � L(h) − a � (L(h)−a b )2 + 1 � � L′(h) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' (25) With the right threshold setting, obviously the two conditions become very similar as b grows large.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' The following result makes this precise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Let loss function ℓ and data distribution µ be such that the random vector L(h) L′(h) is integrable and has a norm with finite mean, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=', Eµ∥L(h) L′(h)∥ < ∞ for some choice of h ∈ H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Then, for any a ∈ R, defining f(h;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' a) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='.= lim b→∞ b ∂ ∂h Cµ(h;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' a, b) (26) the stationary points of the mean-variance objective are related to those of the proposed objective (12) through the following equivalence: f(h;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' aMV(h)) = 0 ⇐⇒ ∂ ∂h MVµ(h) = 0 where MVµ(h) is as defined in (22).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' 10 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='0 Figure 3: Graph of the Legendre transform ρ∗ as given in (28) over (−1, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='5 Comparison with dual form of DRO risk Some readers may notice that the proposed (population) objective (12) looks quite similar to the dual form of DRO risks: DROµ(h;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' β) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='.= inf a∈R,b>0 � a + βb + b Eµ φ∗ �L(h) − a b �� (27) where φ∗ is the Legendre-Fenchel convex conjugate φ∗(x) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='.= supu∈R[xu − φ(u)] induced by a function φ : R → R, assumed to be convex and lower semi-continuous, with φ(1) = 0 and φ(x) = ∞ whenever x < 0 (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' [33, §3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='2]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Given this similarity, one might ask whether or not some form of DRO risk can be reverse engineered from our proposed objective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Taking up this point briefly, we first note that the conjugate of ρ given by (6) is ρ∗(x) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='.= sup u∈R [xu − ρ(u)] = sup u∈R � xu − � u2 + 1 + 1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' From the non-negative nature of ρ, clearly ρ∗(0) = −ρ(0) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' For x ̸= 0, note that taking the derivative of concave function u �→ xu − ρ(u) and setting it to zero, we obtain the first-order optimality conditions u √ u2 + 1 = x ⇐⇒ sign(x) � 1 + 1/u2 = x ⇐⇒ 1 x2 = 1 + 1/u2 ⇐⇒ u = sign(x) � 1/x2 − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Plugging this solution in whenever |x| < 1 and doing a bit of algebra readily yields the simple closed-form expression ρ∗(x) = � � � x2 √ 1−x2 + 1 − 1 √ 1−x2 , if 0 ≤ |x| < 1 ∞, else.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' (28) As can be readily observed from both (28) and Figure 3, this function does not satisfy any of the requirements placed on φ except convexity, and thus despite the similar form, the non- monotonic nature of ρ is in sharp contrast with monotonicity of typical cases of φ∗ that arise in the DRO literature (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' [3, §3]), and does not readily imply a “primal” DRO objective that can be recovered using ρ∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' 4 Empirical analysis Our investigation in the previous section led us to Algorithm 1, giving us a principled and precise strategy to construct the objective function �Cn, but leaving the actual minimization procedure abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Here we make this concrete by implementing a simple gradient-based minimizer of this objective, and comparing this procedure with natural benchmarks from the literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' 11 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='1 Simulated noisy classification on the plane As a simplified and controlled setting to start with, we generate random data points on the plane which are mostly linearly separable, save for a single distant outlier (Figure 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Before we consider off-sample generalization, here we focus simply on the training loss distribution properties as a function of algorithm iterations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Experiment setup We generate n = 100 training data points using two Gaussian distri- butions on the plane to represent two classes, with each class having the same number of points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' We choose a single point uniformly at random, and perturb it by multiplying the scalar -10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' We compare our proposed procedure (denoted “Modified Sun-Huber”) with three alternatives: traditional mean-based empirical risk minimization (denoted “Vanilla ERM”), conditional value-at-risk (CVaR) [7], and the well-studied χ2-DRO risk [11, 13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' In light of Algorithm 1, we set λ = log(n)/√n > β = β0/√n, and try a variety of β0 values just for reference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' For all the aforementioned methods, we set the base loss ℓ(·) to the usual binary logistic loss (linear model), and run (batch) gradient descent on the empirical risk objectives implied by each of these methods (see §C for details), with a fixed step size of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='01 over 15,000 iterations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Alternative settings of step size and iteration number were not tested.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' All methods are initialized at the same point, shown in Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Results and discussion In Figure 5, we show the empirical mean-SD trajectories for the base loss, over algorithm iterations (log10 scale), for each method of interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Using our no- tation, this is the sample version of MSµ(h;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' λ) in (1), with λ = 1 fixed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' All methods besides vanilla ERM have multiple settings that were tested, and the results for each are distinguished using curves of different color.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Our method tests different values of β0, CVaR tests different quantile levels, and DRO tests different robustness levels (details in §C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Since Vanilla ERM is designed to optimize the average loss, it is perhaps not surprising that it fails in terms of the mean-SD objective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' On the other hand, the proposed method (for any choice of β0) is as good or better than all the competing methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' As a basic sanity check, in Figure 6 we also consider the error rate (average zero-one loss) and model norm trajectories over iterations for each method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' For each method, we plot just one trajectory, namely the one achieving the best final error rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' While our method is not designed to minimize the average loss and typical surrogate theory does not apply, we find that the error rate is surprisingly good, albeit with slower convergence than the other methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Note also how the error rate for CVaR matches that of Vanilla ERM;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' this is in fact the CVaR setting with the worst final mean-SD value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' On the other hand, the proposed method performs well from both perspectives at once.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='2 Classification on real datasets We proceed to experiments using real-world datasets, some of which are orders of magnitude larger than the simple setup given in §4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='1, and which include multi-class classification tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Experiment setup We make use of four well-known datasets, all available from online repositories: adult,5 australian,6 cifar10,7 and fashion_mnist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='8 For multi-class datasets, we extend the binary logistic loss to the usual multi-class logistic regression loss under a linear 5https://archive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='ics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='uci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='edu/ml/datasets/Adult 6https://archive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='ics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='uci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='edu/ml/datasets/statlog+(australian+credit+approval) 7https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='toronto.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='edu/~kriz/cifar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='html 8https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='com/zalandoresearch/fashion-mnist 12 model, with one linear model for each class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Features for all datasets are normalized to [0, 1], with one-hot representations of categorical features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' The learning algorithms being compared here are the same as described in §4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='1, except that now we implement each method using mini-batch stochastic gradient descent (batch size 32), and do 30 epochs (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=', 30 passes over the training data).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' In addition, our proposed “Modified Sun-Huber” method performs almost identically for the range of β0 values tested in §4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='1, and thus we have simply fixed β0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='9, so there is only one trajectory curve this time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' On the other hand, we now try a range of step sizes for each method, choosing the best step size in terms of average (base) loss value on validation data for each method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' We run five independent trials, and for each trial we randomly re-shuffle the dataset, taking 80% for training, 10% for validation (used to select step sizes), and 10% for final testing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Results and discussion Our main results are shown in Figure 7, where once again we plot the trajectory of the mean-SD objective, but this time computed on test data, and given as a function of epoch number, rather than individual iterations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Since there are multiple trials, the curves drawn represent averages taken over trials, and the lightly shaded region above/below each curve shows standard deviation over trials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Perhaps surprisingly, the very simple implementation of our proposed Algorithm 1 (fixed step size, no regularization) works remarkably well on a number of datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' From the perspective of mean-SD minimization, for three our of four datasets, the proposed method is far better than Vanilla ERM, and as good or better than even the best settings of CVaR and DRO viewed after the fact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Regarding the sub-standard performance observed on fashion_mnist, detailed analysis shows that more fine-tuned settings of α and β can readily bring the method up to par;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' the non-convex and non- smooth nature of �Cn naturally means that some tasks will require more careful settings than are captured by our Algorithm 1, and indeed will take explicit account of the optimizer to be used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' We leave both the theoretical grounding and empirical testing of such optimizer-aligned mean-SD minimizers for future work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' 13 Figure 4: 2D classification example from §4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' The red line represents the initial value used by each method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' 102 1 2 Vanilla ERM 102 Modified Sun-Huber 102 CVaR 102 2-DRO risk 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='3 Mean + SD (2D classification with outliers) Figure 5: Trajectory of the (empirical) mean-SD objective (1) over iterations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Colors correspond to different choices from each class: β0 for Modified Sun-Huber, quantile level for CVaR, and constraint level for DRO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' 101 103 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='4 Error rate 101 103 0 2 4 Norm Trajectory with best final error rate Vanilla ERM Modified Sun-Huber CVaR 2-DRO risk Figure 6: From each method class, we show the classification error rate and Euclidean norm trajectories corresponding to the setting that achieved the best error rate after the final iteration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' 14 0 20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='8 Vanilla ERM 0 20 Modified Sun-Huber 0 20 CVaR risk 0 20 2-DRO risk Mean + SD (dataset: adult) 0 20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='0 Vanilla ERM 0 20 Modified Sun-Huber 0 20 CVaR risk 0 20 2-DRO risk Mean + SD (dataset: australian) 0 20 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='5 Vanilla ERM 0 20 Modified Sun-Huber 0 20 CVaR risk 0 20 2-DRO risk Mean + SD (dataset: cifar10) 0 20 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='5 Vanilla ERM 0 20 Modified Sun-Huber 0 20 CVaR risk 0 20 2-DRO risk Mean + SD (dataset: fashion_mnist) Figure 7: Mean-SD trajectories on real-world datasets as described in §4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='2, given as a function of epochs and averaged over multiple independent trials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Coloring for CVaR and DRO is analogous to that of Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' 15 References [1] Ash, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' and Doléans-Dade, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' (2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Probability and Measure Theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Academic Press, 2nd edition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' [2] Barron, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' A general and adaptive robust loss function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 4331–4339.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' [3] Ben-Tal, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=', Den Hertog, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=', De Waegenaere, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=', Melenberg, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=', and Rennen, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Robust solutions of optimization problems affected by uncertain probabilities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Management Science, 59(2):341–357.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' [4] Boyd, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' and Vandenberghe, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' (2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Convex Optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Cambridge University Press.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' [5] Brownlees, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=', Joly, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=', and Lugosi, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Empirical risk minimization for heavy-tailed losses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' The Annals of Statistics, 43(6):2507–2536.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' [6] Catoni, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Challenging the empirical mean and empirical variance: a deviation study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Annales de l’Institut Henri Poincaré, Probabilités et Statistiques, 48(4):1148–1185.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' [7] Curi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=', Levy, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=', Jegelka, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=', and Krause, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Adaptive sampling for stochastic risk-averse learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' In Advances in Neural Information Processing Systems 33 (NeurIPS 2020), pages 1036–1047.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' [8] Davis, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' and Drusvyatskiy, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Stochastic model-based minimization of weakly convex functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' SIAM Journal on Optimization, 29(1):207–239.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' [9] Devroye, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=', Györfi, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=', and Lugosi, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' (1996).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' A Probabilistic Theory of Pattern Recogni- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Springer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' [10] Devroye, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=', Lerasle, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=', Lugosi, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=', and Oliveira, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Sub-Gaussian mean estimators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' The Annals of Statistics, 44(6):2695–2725.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' [11] Duchi, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' and Namkoong, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Variance-based regularization with convex objectives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Journal of Machine Learning Research, 20(68):1–55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' [12] Ghadimi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' and Lan, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Stochastic first- and zeroth-order methods for nonconvex stochastic programming.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' SIAM Journal on Optimization, 23(4):2341–2368.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' [13] Hashimoto, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=', Srivastava, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=', Namkoong, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=', and Liang, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Fairness with- out demographics in repeated loss minimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' In Proceedings of the 35th International Conference on Machine Learning (ICML), volume 80 of Proceedings of Machine Learning Research, pages 1929–1938.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' [14] Holland, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' and Tanabe, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Learning criteria going beyond the usual risk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' arXiv preprint arXiv:2110.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='04996v2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' [15] Hsu, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' and Sabato, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Loss minimization and parameter estimation with heavy tails.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Journal of Machine Learning Research, 17(18):1–40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' [16] Hu, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=', Wang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=', and Lyu, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Rank-based decomposable losses in machine learning: A survey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' arXiv preprint arXiv:2207.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='08768v1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' [17] Huber, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' (1964).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Robust estimation of a location parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' The Annals of Mathe- matical Statistics, 35(1):73–101.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' 16 [18] Huber, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' and Ronchetti, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Robust Statistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' John Wiley & Sons, 2nd edition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' [19] Lee, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=', Park, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=', and Shin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Learning bounds for risk-sensitive learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' In Advances in Neural Information Processing Systems 33 (NeurIPS 2020), pages 13867–13879.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' [20] Li, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=', Beirami, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=', Sanjabi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=', and Smith, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Tilted empirical risk minimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' In The 9th International Conference on Learning Representations (ICLR).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' [21] Luenberger, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' (1969).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Optimization by Vector Space Methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' John Wiley & Sons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' [22] Lugosi, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' and Mendelson, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Mean estimation and regression under heavy-tailed distributions: A survey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Foundations of Computational Mathematics, 19(5):1145–1190.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' [23] Markowitz, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' (1952).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Portfolio selection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Journal of Finance, 7(1):77–91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' [24] Maurer, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' and Pontil, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Empirical Bernstein bounds and sample variance penalization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' In Proceedings of the 22nd Conference on Learning Theory (COLT).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' [25] Medina, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' and Yang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Robust unsupervised learning via L-statistic mini- mization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' In 38th International Conference on Machine Learning (ICML), volume 139 of Proceedings of Machine Learning Research, pages 7524–7533.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' [26] Menon, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=', Jayasumana, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=', Rawat, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=', Jain, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=', Veit, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=', and Kumar, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Long-tail learning via logit adjustment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' In The 9th International Conference on Learning Representations (ICLR).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' [27] Mohri, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=', Rostamizadeh, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=', and Talwalkar, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Foundations of Machine Learn- ing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' MIT Press.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' [28] Nesterov, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' (2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Introductory Lectures on Convex Optimization: A Basic Course.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Springer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' [29] Rey, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' (1983).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Introduction to Robust and Quasi-Robust Statistical Methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Springer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' [30] Rockafellar, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' and Uryasev, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' (2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Optimization of conditional value-at-risk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Journal of Risk, 2:21–42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' [31] Rockafellar, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' and Uryasev, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' The fundamental risk quadrangle in risk management, optimization and statistical estimation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Surveys in Operations Research and Management Science, 18(1-2):33–53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' [32] Royset, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Risk-adaptive approaches to learning and decision making: A survey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' arXiv preprint arXiv:2212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='00856.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' [33] Shapiro, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Distributionally robust stochastic programming.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' SIAM Journal on Optimization, 27(4):2258–2275.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' [34] Sun, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Do we need to estimate the variance in robust mean estimation?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' arXiv preprint arXiv:2107.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='00118v1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' [35] Vapnik, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' (1999).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' The Nature of Statistical Learning Theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Statistics for Engineering and Information Science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Springer, 2nd edition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' 17 [36] Zhai, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=', Dan, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=', Kolter, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=', and Ravikumar, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' DORO: Distributional and outlier robust optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' In 38th International Conference on Machine Learning (ICML), volume 139 of Proceedings of Machine Learning Research, pages 12345–12355.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' A Technical appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='1 Basic facts Assuming ρ is defined as in (6), let us consider the function f(x, a, b) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='.= αa + βb + bρ �x − a b � (29) = αa + βb + � (x − a)2 + b2 − b (30) = αa + � (x − a)2 + b2 − (1 − β)b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' (31) The partial derivatives are as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' ∂xf(x, a, b) = x − a � (x − a)2 + b2 (32) ∂af(x, a, b) = α − x − a � (x − a)2 + b2 (33) ∂bf(x, a, b) = b � (x − a)2 + b2 − (1 − β) (34) The corresponding second derivatives are as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' ∂2 xf(x, a, b) = 1 � (x − a)2 + b2 − (x − a)2 ((x − a)2 + b2)3/2 = b2 ((x − a)2 + b2)3/2 (35) ∂2 af(x, a, b) = 1 � (x − a)2 + b2 − (x − a)2 ((x − a)2 + b2)3/2 = b2 ((x − a)2 + b2)3/2 (36) ∂2 b f(x, a, b) = 1 � (x − a)2 + b2 − b2 ((x − a)2 + b2)3/2 = (x − a)2 ((x − a)2 + b2)3/2 (37) The remaining elements of the Hessian of f(x, a, b) follow easily, given as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' ∂a∂xf(x, a, b) = −1 � (x − a)2 + b2 + (x − a)2 ((x − a)2 + b2)3/2 = −b2 ((x − a)2 + b2)3/2 (38) ∂b∂xf(x, a, b) = −b(x − a) ((x − a)2 + b2)3/2 (39) ∂b∂af(x, a, b) = b(x − a) ((x − a)2 + b2)3/2 (40) Lemma 6 (Useful inequalities).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' 1 1 + x ≤ 1 − x 2, 0 ≤ x ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' (41) (1 + x)c ≥ 1 + cx, x ≥ −1, c ∈ R \\ (0, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' (42) 18 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='2 Convexity and smoothness Lemma 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' The map x �→ 1/√1 + x is convex on [0, ∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Lemma 8 (Properties of partial objective).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' With ρ as in (6) and β ≥ 0, the function (x, b) �→ βb + bρ �x b � is convex and (1 + max{1 − β, β})-Lipschitz (in ∥·∥1) on R × (0, ∞), but its gradient is not (globally) Lipschitz, and thus the function is not smooth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='9 Proof of Lemma 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' For notational convenience, setting 0 < β < 1, let us denote g(x, b) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='.= βb + bρ(x/b), x ∈ R, b > 0 with ρ as in (6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' From the partial derivatives (32) and (34), it is clear that we have −1 ≤ ∂xg(x, b) ≤ 1, −(1 − β) ≤ ∂bg(x, b) ≤ β when evaluated at any choice of x ∈ R and b > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' It follows that the gradient norm can be bounded as ∥∇g(x, b)∥1 ≤ 1 + max{(1 − β), β} and thus g(·) is Lipschitz continuous in ∥·∥1 (and also ∥·∥2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='10 Next, let us denote the Hessian of g(·) evaluated at (x, b) by H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Basic calculus gives us the simple form H .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='.= 1 (x2 + b2)3/2 � b2 −xb −xb x2 � and for any pair of real values u = (u1, u2), we have ⟨Hu, u⟩ = 1 (x2 + b2)3/2 (u1b − u2x)2 ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' (43) Since this holds for any choice of x ∈ R and b > 0, the Hessian is thus positive semi-definite, implying that g(·) is (jointly) convex [28, Thm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' On the other hand, the function g(·) is not smooth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' To see this, first note that having chosen any u such that ∥u∥ ≤ 1, we have that the (operator) norm is bounded below as ∥H∥ = sup ∥u′∥≤1 � sup ∥u′′∥≤1 ⟨Hu′, u′′⟩ � ≥ ⟨Hu, u⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Then, as a concrete example, consider setting x = b, with u = (u1, u2) such that u1 ̸= u2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Recalling the lower bound (43), we have ∥H∥ ≥ b2 (2b2)3/2 (u1 − u2)2 = (u1 − u2)2 ( √ 2)3b → ∞ in the limit as b → 0+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' As such, the gradient of g(·) cannot be Lipschitz continuous on R × (0, ∞), and thus g(·) is not smooth [28, Thm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' 9We prove that the Hessian’s norm is unbounded, which implies (via Nesterov [28, Thm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='6]) that the convex function of interest cannot be smooth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' 10That bounded gradients imply Lipschitz continuity is a general fact on linear spaces [21, §7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='3, Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' 2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' 19 B Additional proofs Proof of Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' To begin, note that the function b �→ b Eµ ρ �L(h) − a b � = Eµ �� (L(h) − a)2 + b2 − b � (44) is monotonic (non-increasing) on (0, ∞) (follows clearly from (34)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' We will use this property moving forward.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Recalling the upper and lower bounds of Proposition 2, we re-write them as clo(β) β ≤ b2 µ(h, a) ≤ chi β (45) using the shorthand notation clo(β) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='.= λ 4 Eµ I(h;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' a)(L(h) − a)2 chi .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='.= λ 2 Eµ(L(h) − a)2 and noting that while chi is free of β, clo(β) depends on β through the definition of I(h;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Fixing 0 < β < λ for now and recalling the form of Cµ in (12), the preceding bounds (45) and monotonicity of (44) can be used to obtain a lower bound of the form min b>0 Cµ(h;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' a, b) ≥ αa + � βclo(β) + λ√chi Eµ � � � (L(h) − a)2 chi + 1 β − � 1 β � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' (46) Using the fact (14) and applying dominated convergence [1, Thm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='9], in the limit we have lim β→0+ clo(β) = λ 4 Eµ(L(h) − a)2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Dividing both sides of (46) by √β, setting α = α(β) as in the proposition statement, and taking the limit as β → 0+, we obtain lim β→0+ min b>0 Cµ(h;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' a, b) √β ≥ �αa + � λ 4 Eµ(L(h) − a)2 + λ Eµ(L(h) − a)2 2√chi = �αa + � λ 4 Eµ(L(h) − a)2 + � λ 2 Eµ(L(h) − a)2 = �αa + �1 2 + 1 √ 2 � � λ Eµ(L(h) − a)2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' The first inequality uses the fact that for any c > 0, we have √ cx + x2 − x → c/2 as x → ∞, and also uses dominated convergence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' The remaining equalities just follow from plugging in the definition of chi and cleaning up terms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' This proves the desired lower bound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' As for the upper bound of interest, a perfectly analogous argument can be applied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Using Proposition 2 again and taking β small enough that clo(β) ≥ chi/4 (47) 20 holds (always possible), we can obtain upper bounds of the form min b>0 Cµ(h;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' a, b) ≤ αa + � βchi + λ � clo(β) Eµ �� (L(h) − a)2 clo(β) + 1 β − � 1 β � ≤ αa + � βchi + λ√chi Eµ � � � 4(L(h) − a)2 chi + 1 β − � 1 β � � (48) noting that the latter inequality (48) follows from using (47) as well as clo(β) ≤ chi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' As with the lower bound argument in the preceding paragraph, we set α = α(β), divide both sides by √β, and take the limit as β → 0+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' This results in lim β→0+ min b>0 Cµ(h;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' a, b) √β ≤ �αa + � λ 2 Eµ(L(h) − a)2 + 2λ Eµ(L(h) − a)2 √chi = �αa + � λ 2 Eµ(L(h) − a)2 + 2 � 2λ Eµ(L(h) − a)2 = �αa + � 2 √ 2 + 1 √ 2 � � λ Eµ(L(h) − a)2 which gives us the desired upper bound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' The bounds given in the proposition statement are slightly looser, but more readable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Proof of Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' We adapt key elements of the scale control used by Sun [34, §2] to our setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' We start by looking at first-order conditions for optimality of b > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' First, note that ∂ ∂b Cµ(h;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' a, b) = β + λ ∂ ∂b � Eµ � (L(h) − a)2 + b2 − b � = β + λ Eµ � b � (L(h) − a)2 + b2 � − λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' As such, it follows that Eµ � b � (L(h) − a)2 + b2 � = 1 − β/λ (49) is equivalent to ∂b Cµ(h;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' a, b) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Obviously, the left-hand side of (49) is non-negative for all b ≥ 0 and bounded above by 1 for all b ≥ 0, a ∈ R, and h ∈ H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Thus (49) can only hold for 0 ≤ β ≤ λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Using convexity (Lemma 7) and Jensen’s inequality [1, Thm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='5], we have Eµ � b � (L(h) − a)2 + b2 � = Eµ � � 1 � (L(h)−a b )2 + 1 � � ≥ � � 1 � Eµ(L(h)−a b )2 + 1 � � and thus whenever (49) holds, we know that (1 − β/λ)2 ≥ 1 Eµ(L(h)−a b )2 + 1 must also hold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Re-arranging terms, we see that this implies b2 ≤ (1 − β/λ)2 Eµ(L(h) − a)2 1 − (1 − β/λ)2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' 21 For readability, set η .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='.= β/λ, and note that since (1 − η)2 1 − (1 − η)2 = (1 − η)2 2η − η2 = (1 − η)2 2η(1 − η/2) ≤ (1 − η)2 2η(1 − η) ≤ 1 2η we can obtain the cleaner (but looser) upper bound b2 ≤ Eµ(L(h) − a)2 2η = λ 2β Eµ(L(h) − a)2 for any choice of 0 < β ≤ λ and a ∈ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Since the first-order condition (49) is necessary for optimality [28, Thm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='1], it follows that b2 µ(h, a) ≤ Eµ(L(h) − a)2 2β (50) which is the desired upper bound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Considering a lower bound next, note first that using the concavity of x �→ √x on R+, another application of Jensen’s inequality gives us Eµ � b � (L(h) − a)2 + b2 � = Eµ � b2 (L(h) − a)2 + b2 ≤ � � � �Eµ � 1 (L(h)−a b )2 + 1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' (51) Using the inequality 1/(x + 1) ≤ 1 − x/2 for all 0 ≤ x ≤ 1 ((41) in Lemma 6), this suggests a natural event to use as a condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' More precisely, writing E .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='.= I {|L(h) − a| ≤ b} for readability, note that we have 1 (L(h)−a b )2 + 1 = 1 − E (L(h)−a b )2 + 1 + E (L(h)−a b )2 + 1 ≤ 1 − E (L(h)−a b )2 + 1 + E � 1 − 1 2 �L(h) − a b �2� = � 1 − E (L(h)−a b )2 + 1 + E � � �� � ≤1 −E 2 �L(h) − a b �2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Taking expectation and utilizing (51), whenever (49) holds, we have 1 − β/λ = Eµ � b � (L(h) − a)2 + b2 � ≤ � 1 − Eµ E 2 �L(h) − a b �2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' (52) With this established, note that via helper inequality (42), for any β ≤ λ we have (1 − β/λ)2 ≥ 1 − 2β/λ and thus in light of (52), we may conclude that 1 − 2β/λ ≤ 1 − Eµ E 2 �L(h) − a b �2 which implies λ 4β Eµ E(h;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' a, b)(L(h) − a)2 ≤ b2 22 noting that we have written E(h;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' a, b) to emphasize the dependence on h, a, and b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Once again since the first-order condition (49) is necessary for optimality, we may conclude that λ 4β Eµ E(h;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' a, bµ(h, a))(L(h) − a)2 ≤ b2 µ(h, a) (53) which is the remaining desired inequality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Proof of the limit (14).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Recall from the proof of Proposition 2 the first-order optimality con- dition (49), which is satisfied by any solution bµ(h, a) given by (13), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=', we have Eµ � � bµ(h, a) � (L(h) − a)2 + (bµ(h, a))2 � � = 1 − β/λ (54) for any 0 < β ≤ λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Defining g(β) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='.= 1 − β/λ and taking any 0 < β2 < β1 ≤ λ, clearly we have g(β1) < g(β2) and thus using the equality (54), we must have that bµ(h, a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' β2) ≥ bµ(h, a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' β1), otherwise it would result in a contradiction of (54).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Using this monotonicity, clearly E(h;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' a, bµ(h, a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' β1)) ≤ E(h;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' a, bµ(h, a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' β2)) and thus Eµ E(h;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' a, bµ(h, a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' β1))(L(h) − a)2 ≤ E(h;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' a, bµ(h, a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' β2))(L(h) − a)2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Applying this to the lower bound in Proposition 2, we have lim inf β→0+ b2 µ(h, a) ≥ lim β→0+ λ 4β Eµ I(h;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' a)(L(h) − a)2 = ∞ as desired.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Proof of the limit (15).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Note that we can easily bound the random variable of interest as 0 ≤ bρ �L(h) − a b � = � (L(h) − a)2 + b2 − b ≤ |L(h) − a| (55) for any choice of 0 < b < ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Some straightforward calculus shows that lim b→∞ bρ �L(h) − a b � = 0 in a pointwise sense.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Since the upper bound in (55) is µ-integrable by assumption, a simple application of dominated convergence [1, Thm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='9] yields lim b→∞ b Eµ ρ �L(h) − a b � = Eµ � lim b→∞ bρ �L(h) − a b �� = 0 as desired.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' 23 Proof of Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' From condition (20), since any solution must also be a stationary point [28, Thm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='1], we know that An .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='.= An(h, b) must satisfy the first-order condition λ n n � i=1 ρ′ �Li(h) − An b � = α which is equivalent to b n n � i=1 ρ′ �Li(h) − An b � = α λb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' (56) Next we make use of the argument developed by Catoni [6, §2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' First note that fixing any a ∈ R and b > 0, we have E exp � n � i=1 ρ′ �Li(h) − a b �� = E � n � i=1 exp � ρ′ �Li(h) − a b ��� = n � i=1 Ei exp � ρ′ �Li(h) − a b �� ≤ n � i=1 Ei � 1 + Li(h) − a b + γ b2 (Li(h) − a)2 � = �Eµ L(h) − a b + γ b2 Eµ(L(h) − a)2 �n ≤ exp �n b (Eµ L(h) − a) + nγ b2 Eµ(L(h) − a)2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' (57) The second equality above follows from the independence of the training data, and the first inequality uses the upper bound in (4), which is satisfied by ρ given in (6) with γ = 1, though we leave γ as is to illustrate how more general results are obtained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' The third equality just uses the fact that the training data is an IID sample from µ, and the final inequality culminating in (57) just uses the bound 1 + x ≤ exp(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Using Markov’s inequality and taking 0 < δ < 1, it is straightforward to show that (57) implies a 1 − δ event (over the draw of Z1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' , Zn) in which we have n � i=1 ρ′ �Li(h) − a b � ≤ n b (Eµ L(h) − a) + nγ b2 Eµ(L(h) − a)2 + log(1/δ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Multiplying both sides by b/n, on the same “good” event, we have b n n � i=1 ρ′ �Li(h) − a b � ≤ Eµ L(h) − a + γ b Eµ(L(h) − a)2 + b log(1/δ) n = Eµ L(h) − a + γ b � Vµ L(h) + (Eµ L(h) − a)2� + b log(1/δ) n (58) where (58) follows from expanding the quadratic term and doing some algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' With the equality (56) in mind, subtracting a constant from both sides of (58), note that we equivalently have b n n � i=1 ρ′ �Li(h) − a b � − α λb ≤ p(a) (59) 24 where we have defined p(a) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='.= Eµ L(h) − a + γ b � Vµ L(h) + (Eµ L(h) − a)2� + b log(1/δ) n − α λb (60) for readability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Note that p(·) in (60) is a polynomial of degree 2, and can be written as p(a) = ua2 + va + w (61) with coefficients defined as u .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='.= γ b v .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='.= (−1) � 1 + 2γ Eµ L(h) b � w .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='.= Eµ L(h) + γ b Eµ|L(h)|2 + b log(1/δ) n − α λb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' This polynomial has real roots whenever v2 − 4uw ≥ 0, and some algebra shows that this is equivalent to 0 ≤ D ≤ 1, where D .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='.= 4 ��γ b �2 Vµ L(h) + γ log(1/δ) n − γα λ � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' (62) Assuming this holds, denoting by a+ the smallest root of p(·), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=', the smallest of satisfying p(a+) = 0, the critical fact of interest to us is that An ≤ a+ on the good event of (59).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' This is valid due to two facts: first, the left-hand side of (59) is a decreasing function of a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' second, due to (56), we know that An is a root of the left-hand side of (59).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' With this key fact in hand, using the quadratic formula we have An ≤ a+ = Eµ L(h) + b 2γ � 1 − √ 1 − D � = Eµ L(h) + b 2γ � 1 − √ 1 − D � � 1 + √ 1 − D � � 1 + √ 1 − D � = Eµ L(h) + b 2γ D � 1 + √ 1 − D � ≤ Eµ L(h) + b 2γ D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Taking the two ends of this inequality chain together and expanding D, we have An ≤ Eµ L(h) − 2(α/λ)b + 2 �γ b Vµ L(h) + b log(1/δ) n � (63) with probability no less than 1 − δ, assuming that n, b, and α are such that 0 ≤ D ≤ 1 holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' This gives us the desired upper bound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' To obtain a lower bound, a perfectly analogous argument can be applied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' First, using the lower bound in (4) and the fact that ρ′(−x) = −ρ′(x), we know that ρ′ �a − Li(h) b � ≤ log � 1 + a − Li(h) b + γ b2 (a − Li(h))2 � (64) 25 for any a ∈ R, b > 0, and i ∈ [n].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Plugging this inequality (64) into an argument analogous to the chain of inequalities that led to (58) earlier, it is clear that again on an event of probability no less than 1 − δ, we have b n n � i=1 ρ′ �a − Li(h) b � ≤ a − Eµ L(h) + γ b � Vµ L(h) + (Eµ L(h) − a)2� + b log(1/δ) n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' (65) Once again the upper bound we can bound this using a polynomial of degree 2, namely b n n � i=1 ρ′ �a − Li(h) b � + α λb ≤ q(a) (66) where we have defined q(a) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='.= a − Eµ L(h) + γ b � Vµ L(h) + (Eµ L(h) − a)2� + b log(1/δ) n + α λb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' (67) Now, since An is a root of the left-hand side of (66) viewed as a function of a, and this function is monotonically increasing, it is evident that denoting the largest root of q(·) (when it exists) by a−, we have An ≥ a−, a lower bound in contrast to the An ≤ a+ upper bound used earlier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' For completeness, we write this polynomial as q(a) = u′a2 + v′a + w′ (68) with coefficients u′ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='.= γ b v′ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='.= � 1 − 2γ Eµ L(h) b � w′ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='.= (−1) Eµ L(h) + γ b Eµ|L(h)|2 + b log(1/δ) n + α λb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' We have two real roots whenever 1 ≥ D′ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='.= 4 ��γ b �2 Vµ L(h) + γ log(1/δ) n + γα λ � (69) holds, and thus we obtain a high probability lower bound on An as follows: An ≥ a− = Eµ L(h) − b 2γ � 1 − √ 1 − D′ � ≥ Eµ L(h) − b 2γ D′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Expanding D′ gives us the lower bound An ≥ Eµ L(h) − 2(α/λ)b − 2 �γ b Vµ L(h) + b log(1/δ) n � (70) with probability no less than 1 − δ, as desired.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' 26 Let us conclude this proof by organizing the technical assumptions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' First of all, for the two quadratics used in the preceding bounds, we require both (62) and (69) to hold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' It is straightforward to verify that having these conditions both hold is equivalent to the following: 4γα λ ≤ 4 ��γ b �2 Vµ L(h) + γ log(1/δ) n � ≤ 1 − 4γα λ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' (71) As such, whenever α, δ, and b are such that (71) holds, using a union bound, it follows that with probability no less than 1 − 2δ, we have a bound on |An − (Eµ L(h) − 2(α/λ)b)| ≤ 2 �γ b Vµ L(h) + b log(1/δ) n � as desired.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' The proposition statement takes a cleaner form since we have γ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Proof of Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' The lack of convexity follows from the fact that the composition of two convex functions need not be convex when the outermost function is non-monotonic (see for example Boyd and Vandenberghe [4, Ch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' 3]), and the lack of smoothness follows a fortiori from Lemma 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' C Empirical test appendix For reference, we give the population versions of the CVaR and χ2-DRO criteria used in the empirical tests of §4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' First, it is well known (see Rockafellar and Uryasev [30]) that CVaR at quantile level ξ can be represented as CVaRµ(h;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' ξ) = inf a∈R � a + 1 1 − ξ Eµ (L(h) − a)+ � (72) where (x)+ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='.= max{0, x}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Similarly, DRO risk based on the Cressie-Read family of divergence functions is formulated (for any c > 1) using DROµ(h;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' η) = inf a∈R � a + (1 + c(c − 1)η)1/c � Eµ (L(h) − a)c∗ + �1/c∗� (73) where c∗ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content='.= c/(c − 1), and χ2-DRO is the special case where c = 2 [11, 13, 36].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' The different “robustness levels” mentioned in §4 correspond to a re-parameterized quantity �η ∈ (0, 1), related to η by the equality η = (1/(1 − �η) − 1)/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' Just as our �Cn(h;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' a, b) is solved jointly in (h, a, b), our empirical tests minimize the empirical versions of (72) and (73) jointly in (h, a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} +page_content=' 27' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFJT4oBgHgl3EQflizf/content/2301.11584v1.pdf'} diff --git a/8tFJT4oBgHgl3EQfnyx6/content/tmp_files/2301.11593v1.pdf.txt b/8tFJT4oBgHgl3EQfnyx6/content/tmp_files/2301.11593v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..3bd40ba368cf2e508f128c1538f07551311f6133 --- /dev/null +++ b/8tFJT4oBgHgl3EQfnyx6/content/tmp_files/2301.11593v1.pdf.txt @@ -0,0 +1,1890 @@ +arXiv:2301.11593v1 [math.AG] 27 Jan 2023 +THE DONOVAN–WEMYSS CONJECTURE VIA THE +TRIANGULATED AUSLANDER–IYAMA CORRESPONDENCE +GUSTAVO JASSO, BERNHARD KELLER, AND FERNANDO MURO +Abstract. We provide an outline of the proof of the Donovan–Wemyss Con- +jecture in the context of the Homological Minimal Model Program for three- +folds. The proof relies on results of August, of Hua and the second-named au- +thor, Wemyss, and on the Triangulated Auslander–Iyama Correspondence—a +recent result by the first- and third-named authors. +Contents +Introduction +1 +1. +Preliminaries +2 +2. +The Derived Donovan–Wemyss Conjecture +7 +3. +Uniqueness of the 2Z-derived contraction algebra +8 +4. +Concluding remarks +20 +References +23 +Introduction +We work over the field C of complex numbers. A compound Du Val (=cDV) +singularity is a complete local hypersurface +R ∼= C�x, y, z, t� +(f + tg) , +where C�x, y, z�/(f) is a Kleinian surface singularity and g ∈ C�x, y, z, t� is arbi- +trary. Introduced by Reid in the early 1980s [Rei83], cDV singularities form an +important class of three-dimensional singularities in birational geometry and play +a significant role in the Minimal Model Program (MMP) for threefolds [KM98, +Sec. 5.3] as well as in the Homological MMP [Wem18]. +We refer the reader +to [Aug19, Ch. 1] and [Wem21] for introductions to the subject. +This note is concerned with the following geometric situation: Let R be an iso- +lated cDV singularity and p: X → Spec(R) a crepant resolution, that is p is a +proper birational map with smooth source such that the pullback of the dualising +sheaf of Spec(R) along f is the dualising sheaf of X. It follows that Spec(R) has +a unique singular point m and the (reduced) exceptional fibre p−1(m) = �n +i=1 Ci is +a union of curves, with Ci ∼= P1 +C [VdB04, Lemma 3.4.1]. To these data, Donovan +and Wemyss [DW16, DW19] associate a (basic, connected) finite-dimensional alge- +bra Λcon = Λcon(p), the contraction algebra of p, which represents the functor of +‘simultaneous non-commutative deformations’ of the reduced exceptional fibre. By +construction, Λcon is a Cn-augmented algebra, and hence in particular determines +the number n of irreducible components of the exceptional fibre. The contraction +2020 Mathematics Subject Classification. Primary 14E30; Secondary 13D03. +Key words and phrases. Minimal model program; compound Du Val singularity; crepant res- +olution; contraction algebra; Hochschild cohomology; Auslander correspondence. +1 + +2 +G. JASSO, B. KELLER, AND F. MURO +algebra encodes a surprising amount of information stemming from the given geo- +metric setup. For example, when p contracts a single curve, the contraction algebra +recovers known invariants such as Reid’s width [Rei83] and the Gopakumar–Vafa +invariants [Kat08], see [Tod15]. Neither the dimension nor the Gabriel quiver of +contraction algebras suffice for differentiating cDV singularities [DW16, Table 2]. +In fact, it is well-known that there are continuous families of pairwise non isomor- +phic cDV singularities (that is ‘cDV singularities have moduli’). Notwithstanding, +at the risk of stating the obvious, let us point out that the contraction algebra is +equiped with crucial data in the form of the multiplication law and that this law +is essential in recovering the above mentioned invariants. Equipped with their al- +gebra structure, contraction algebras distinguish between non-isomorphic isolated +cDV singularities that admit a crepant resolution in all known examples. These +considerations motivate the following remarkable conjecture. +Conjecture A (Donovan and Wemyss [DW16]). Let R1 and R2 be isolated cDV +singularities with crepant resolutions +p1 : X1 → Spec(R1) +and +p2 : X2 → Spec(R2). +Then, the contraction algebras Λcon(p1) and Λcon(p2) are derived equivalent if and +only if there is an isomorphism of algebras R1 ∼= R2. +The original conjecture was formulated only in the case of single-curve contrac- +tions; algebraically, this corresponds to the case where the contraction algebras are +local and thus derived equivalence reduces to mere isomorphism of algebras since +contraction algebras are basic, see [Zim14, Prop. 6.7.4] for example. In the above +form, which allows for contracting multiple curves, the conjecture appeared in print +in [Aug20, Conj. 1.3]. +That the contraction algebras of a given isolated cDV singularity are derived +equivalent follows by combining results from Wemyss [Wem18] and Dugas [Dug15]. +In this note we provide an outline of the proof of the remaining part of Conjecture A. +This proof first appeared in the appendix to [JM22] written by the second-named +author where it is explained how the conjecture follows by combining previous +results of August [Aug20] and [HK18] with the Triangulated Auslander–Iyama Co- +rrespondence—the main result in [JM22]. For the sake of concreteness, we restrict +ourselves to the specific context of the conjecture, with the understanding that +most concepts and results that are presented here are but special cases of a much +more general theory that the reader can find in the original sources. We hope that +this sacrifice in generality makes the proof of the conjecture accessible to a broader +readership. +Acknowledgements. The authors thank Michael Wemyss and Zheng Hua for in- +teresting conversations and email exchanges; in addition, they thank M. W. for sug- +gesting the terminology ‘2Z-derived contraction algebra’ used in these proceedings. +The third-named author is algo grateful to Matt Booth for answering questions. +Financial +support. F. +M. +was +partially +supported +by +grants +PID2020- +117971GB-C21 +funded +by +MCIN/AEI/10.13039/501100011033, +US-1263032 +(US/JUNTA/FEDER, UE), and P20 01109 (JUNTA/FEDER, UE). +1. Preliminaries +In this section we collect preliminary definitions and results that are needed in +our proof of Conjecture A. We use freely the theories of differential graded cate- +gories [Kel94, Kel06] and A∞-categories [LH03]. We denote the derived category +of an algebra or, more generally, a DG algebra A by D(A); the perfect derived + +THE DONOVAN–WEMYSS CONJECTURE +3 +category of A, that is the full subcategory of D(A) spanned by its compact objects, +is denoted by Dc(A). All (DG) modules are right (DG) modules. +1.1. 2Z-cluster tilting objects. Let T be a triangulated category whose underly- +ing additive category is Krull–Schmidt and has finite-dimensional morphism spaces. +Definition 1.1.1 ([IY08, GKO13]). A basic1 object T ∈ T is 2-cluster tilting if the +following conditions hold: +(1) The object T is rigid: T(T, T [1]) = 0. +(2) For each object X ∈ T there exists a triangle T1 → T0 → X → T1[1] with +T0, T1 ∈ add(T ), where add(T ) is the smallest additive subcategory of T +containing T that is closed under direct summands. +We say that T is 2Z-cluster tilting if it is 2-cluster tilting and T ∼= T [2]. +Remark 1.1.2. Clearly, if T ∈ T is a 2- or 2Z-cluster tilting object, then T generates +T as a triangulated category with split idempotents (which is to say that T is a +classical generator of T). In particular, if the triangulated category T is algebraic2 +then there exists a DG algebra A and an equivalence of triangulated categories +T +∼ +−→ Dc(A), +T �−→ A. +Remark 1.1.3. Given a basic 2-cluster tilting object T ∈ T, one can produce a new +such object by a procedure called mutation that, in a nutshell, replaces a single +indecomposable direct summand of T by a new one, see [IY08] for a precise defini- +tion. This process, which can be iterated, is an important reason for introducing +2-cluster tilting objects into the framework of the Homological MMP, see [Wem18] +and compare with Section 1.3. +Remark 1.1.4. In general, 2Z-cluster tilting objects are not invariant under mu- +tation (however, see [HI11, Sec. 4]). In the context of the Homological MMP this +problem does not occur since the notions of 2- and 2Z-cluster tilting object coincide, +see Section 1.2. +1.2. Maximal Cohen–Macaulay modules and singularity categories. Let +R be an isolated cDV singularity and +CM(R) := {M ∈ mod(R)| depth(M) = dim(R)} +be the category of maximal Cohen–Macaulay R-modules [Yos90, LW12]. The cate- +gory CM(R) is a Frobenius exact category and, therefore, the stable category CM(R) +has an induced structure of a triangulated category; moreover, there is a canonical +equivalence of triangulated categories +CM(R) +∼ +−→ Dsg(R) := Db(mod(R))/ Kb(proj(R)), +where Dsg(R) is the singularity category of R, see [Buc21] for details. We record +the following facts for later use: +• [Yos90, Prop. 1.18] Since R is complete local, CM(R) ≃ Dsg(R) is a Krull– +Schmidt category with finite-dimensional morphism spaces. +• [Aus78] Since R is 3-dimensional, CM(R) ≃ Dsg(R) is a 2-Calabi–Yau tri- +angulated category [Kon98, Kel08], that is there is a natural isomorphism +DHom(X, Y ) +≃ +−→ Hom(Y, X[2]), +X, Y ∈ CM(R) ≃ Dsg(R), +where V �→ DV denotes the passage to the C-linear dual. +1An object in a Krull–Schmidt additive category is basic if all of its indecomposable direct +summands have multiplicity one. +2A triangulated category is algebraic if it is equivalent—as a triangulated category—to the +stable category of a Frobenius exact category [Kel94]. + +4 +G. JASSO, B. KELLER, AND F. MURO +• [Eis80] Since R is a hypersurface, CM(R) ≃ Dsg(R) is a 2-periodic triangu- +lated category, that is there is an isomorphism of exact functors [2] ∼= 1. +In particular, the notions of 2- and 2Z-cluster tilting object coincide in this +context. +• The endomorphism algebra of any basic object X in CM(R) ≃ Dsg(R) is +a symmetric algebra. +This is an immediate consequence of the natural +isomorphisms +Hom(X, X) ∼= D Hom(X, X[2]) ∼= D Hom(X, X) . +We also consider the DG category Dsg(R)dg, which is defined as the DG quo- +tient [Kel99, Dri04] of the canonical DG enhancements of the triangulated cate- +gories Db(mod(R)) and Kb(proj(R)). By construction, +H0(Dsg(R)dg) = Dsg(R). +1.3. Contraction algebras via 2Z-cluster tilting objects. Let R be an isolated +cDV singularity and p: X → Spec(R) a crepant resolution. As explained in the +introduction, to this geometric setup Donovan and Wemyss associate a basic finite- +dimensional algebra Λcon = Λcon(p). We recall an alternative construction of the +algebra Λcon that is more adapted to the methods we utilise in this note. Given p +as above, a theorem of Van den Bergh [VdB04] furnishes a tilting bundle +OX ⊕ N = OX ⊕ N(p) ∈ coh(X) +and Wemyss proves [Wem18] that there is an isomorphism of algebras +Λcon ∼= EndR(N) +between the contraction algebra of p and the stable endomorphism algebra of +N := H0(N) ∈ CM(R). Remarkably, when viewed as an object of the triangulated +category CM(R), the R-module N is a 2Z-cluster tilting object. Conversely, given +a 2Z-cluster tilting object T ∈ CM(R), there exists a crepant resolution of Spec(R) +whose associated contraction algebra is isomorphic to EndR(T ). We summarise the +previous discussion in the following theorem.3 +Theorem 1.3.1 ([Wem18]). Let R be an isolated cDV singularity and assume +that Spec(R) admits a crepant resolution. Then, the contraction algebras of R are +precisely the endomorphism algebras of 2Z-cluster tilting objects in the triangulated +category CM(R) ≃ Dsg(R). +The following theorem of August reduces Conjecture A from a derived equiv- +alence to an isomorphism problem. +The proof leverages the characterisation of +contraction algebras provided by Theorem 1.3.1. +Theorem 1.3.2 ([Aug20, Thm. 1.4]). Let R be an isolated cDV singularity and +assume that Spec(R) admits a crepant resolution. The contraction algebras of R +form a single and complete derived equivalence class of basic algebras. +Corollary 1.3.3. Let R1 and R2 be isolated cDV singularities with crepant reso- +lutions +p1 : X1 → Spec(R1) +and +p2 : X2 → Spec(R2) +and corresponding contraction algebras Λ1 = Λcon(p1) and Λ2 = Λcon(p2). If the +algebras Λ1 and Λ2 are derived equivalent, then there exists a contraction algebra +Λ of R2 such that Λ ∼= Λ1. +3Wemyss proves even more: Up to isomorphism on both sides, crepant resolutions of R cor- +respond bijectively to (basic) 2Z-cluster tilting objects in Dsg(R). In particular, the number of +isomorphism classes of 2Z-cluster tilting objects in Dsg(R) if finite, for the number of minimal +models of Spec(R) is finite [KM87]. + +THE DONOVAN–WEMYSS CONJECTURE +5 +1.4. Hochschild cohomology. Let A be a graded algebra. +The bigraded +Hochschild cochain complex has components +Cp,q(A, A) := HomC +� +A⊗p, A(q) +� +, +p ≥ 0, q ∈ Z, +where V �→ V (1) is the (vertical) degree shift of graded vector spaces, equipped +with the Hochschild differential x �→ ∂(x) of bidegree (1, 0), see [Mur20] for the +precise definition, related structure (described below) and sign conventions. The +first degree is called horizontal or Hochschild degree and the second is the vertical +or internal degree; the sum of both is the total degree and we denote it by |x| (we +also use this notation for the degree of an element in a singly-graded vector space). +The component of total degree n of the Hochschild complex is +� +p+q=n +Cp,q(A, A) . +The Hochschild complex is equipped with a brace algebra structure, consisting +of operations called braces (which we do not describe explicitly here) +C•,∗(A, A)⊗n+1 +−→ C•,∗(A, A) , +x0 ⊗ x1 ⊗ · · · ⊗ xn �−→ x0{x1, . . . , xn}, +that are defined for all n ≥ 1, and satisfy the brace relation +x{y1, . . . , yp}{z1, . . . , zq} += +� +0≤i1≤j1≤···≤ip≤jp≤q +(−1)ǫ{z1, . . . , zi1, y1{zi1+1, . . . , zj1}, zj1+1, . . . +. . . , zip, yq{zip+1, . . . , zjp}, zjp+1, . . . , zq}. +Above, ǫ reflects the Koszul sign rule with respect to the total degree shifted by +−1. Brace operations have horizontal degree −n and vertical degree 0 and the +n-th brace operation vanishes when x0 has horizontal degree < n. The Hochschild +complex is a bigraded associative algebra equipped with the cup-product +x · y = (−1)|x|−1m2{x, y}, +where m2 ∈ C2,0(A, A) is, up to a sign, the multiplication in the graded algebra A. +The Hochschild complex also has the structure of a (horizontally-shifted) graded +Lie algebra, with Lie bracket +[x, y] = x{y} − (−1)(|x|−1)(|y|−1)y{x} +of horizontal degree −1 and vertical degree 0. The Hochschild differential is given +by +∂(x) = [m2, x] +and satisfies the corresponding Leibniz rules with respect to the previous associative +product and Lie bracket. +The relation between brace operations, the Hochschild differential and the cup +product are encoded in the following straightforward consequences of the brace +relation. + +6 +G. JASSO, B. KELLER, AND F. MURO +Lemma 1.4.1. The following formula holds for all n ≥ 1: +∂(x0{x1, . . . , xn}) = ∂(x0){x1, . . . , xn} ++ +n +� +i=1 +(−1) +�i−1 +j=0 |xj|−ix0{x1, . . . , ∂(xi), . . . , xn} ++ (−1)|x0|−1+|x0||x1|x1 · x0{x2, . . . , xn−1} ++ +n−1 +� +i=1 +(−1) +�i +j=0 |xi|−i−1x0{x1, . . . , xi · xi+1, . . . , xn} ++ (−1) +�n−1 +j=0 |xj|−n−1x0{x1, . . . , xn−1} · xn. +Lemma 1.4.2. The following formula holds for all n ≥ 1: +(x · y){z1, . . . , zn} = +n +� +i=0 +(−1)|y| �i +j=1(|zi|−1)x{z1, . . . , zi} · y{zi+1, . . . , zn}. +Lemma 1.4.1 for n = 1 proves that the induced associative product in Hochschild +cohomology +HH•,∗(A, A) = H•,∗(C•,∗(A, A)) +(the cohomology of the Hochschild complex) is graded commutative with respect to +the total degree. This products satisfies the following compatibility relation with +the (horizontally shifted) Lie algebra structure, +[x, y · z] = [x, y] · z + (−1)(|x|−1)|y|y · [x, z], +and hence Hochschild cohomology is a Gernstenhaber algebra. For this we use both +Lemmas 1.4.1 and 1.4.2, for n = 2 and n = 1 respectively. The Hochschild complex +C•,∗(A, M) and Hochschild cohomology HH•,∗(A, M) are defined, more generally, +for M an A-bimodule, but it does not have any multiplicative structure in this +general case. For the existence of a graded associative algebra structure it suffices +that M be an associative algebra in A-bimodules, see also [Mur22, Sec. 1]. +1.5. Minimal A∞-algebras. We now describe minimal A∞-algebras and their +morphisms in terms of the Hochschild complex. A minimal A∞-algebra structure +on a graded algebra A is a Hochschild cochain +m = (0, 0, 0, m3, . . . , mn, . . . ) ∈ C•,∗(A, A) +of total degree 2 such that the Maurer–Cartan equation +(1.5.1) +∂(m) + m{m} = ∂(m) + 1 +2[m, m] = 0 +is satisfied. The pair (A, m) is also denoted +(A, m3, . . . , mn, . . . ). +If g : A′ → A is a graded algebra isomorphism, then +m ∗ g = (0, 0, 0, g−1m3g⊗3, . . . , g−1mng⊗n, . . . ) +is a minimal A∞-algebra structure on A′. If +m′ = (0, 0, 0, m′ +3, . . . , m′ +n, . . . ) ∈ C•,∗(A, A) +is another minimal A∞-algebra structure on A, an A∞-isomorphism with identity +linear part +f : (A, m) −→ (A, m′) +is a Hochschild cochain +f = (0, 0, f2, f3, . . . , fn, . . . ) ∈ C•,∗(A, A) + +THE DONOVAN–WEMYSS CONJECTURE +7 +of total degree 1 such that the following Hochschild cochain vanishes +(1.5.2) +∂(f) + f · f + +� +r≥0 +m′{f, r. . ., f} − m − f{m}. +More generally, an A∞-isomorphism between minimal A∞-algebras +f : (A, m) −→ (A′, m′) +consists of an isomorphism of graded algebras +f1 : A −→ A′ +and a Hochschild cochain +(0, 0, f2, f3, . . . , fn, . . . ) ∈ C•,∗(A, A′) +of total degree 1 such that +(0, 0, f −1 +1 f2, f −1 +1 f3, . . . , f −1 +1 fn, . . . ): (A, m) −→ (A, m′ ∗ f1) +is an A∞-isomorphism with identity linear part. +2. The Derived Donovan–Wemyss Conjecture +In this section we discuss one of the main results in [HK18]—crucial to our proof +of the Dononvan–Wemyss conjecture—and explain how it implies a derived version +of the conjecture (Corollary 2.2.4). +2.1. 2Z-derived contraction algebras. By means of the equivalence of triangu- +lated categories CM(R) ≃ Dsg(R), the contraction algebra associated to a crepant +resolution p of an isolated cDV singularity can be promoted to the DG algebra +Λcon = Λcon(p) := REnd(N) +given by the derived endomorphism algebra of the corresponding 2Z-cluster tilt- +ing object N = N(p) ∈ Dsg(R)dg. By construction H0(Λcon) ∼= Λcon and, as a +consequence of the 2-periodicity of the singularity category of R, +H•(Λcon) ∼= Λcon[ı±1] = Λcon ⊗C C[ı±1], +|ı| = −2. +We refer to the DG algebra Λcon as the 2Z-derived contraction algebra of p. The +(soft) non-positive truncation Λ≤0 +con = τ ≤0Λcon of Λcon is quasi-isomorphic to the +derived contraction algebra of p considered for example in [Boo19, Boo21, HK18], +and there is an isomorphism of graded algebras +H•(Λ≤0 +con) ∼= Λcon[ı] = Λcon ⊗C C[ı], +|ı| = −2. +The 2Z-derived contraction algebra Λcon is a localisation of Λ≤0 +con (see [Boo21, +Thms. 6.4.6 and 7.2.3] and [HK18, Thm. 4.17]) and Λcon can also be interpreted +as a non-connective variant of Λ≤0 +con. +Notice also that, since 2Z-cluster tilting objects are in particular classical gen- +erators, there is a canonical quasi-equivalence of DG categories +Dc(Λcon)dg +∼ +−→ Dsg(R)dg +that induces an equivalence of triangulated categories +Dc(Λcon) +∼ +−→ Dsg(R). +Although we do not need this fact in the sequel, we mention that there is an +equivalence of triangulated categories4 [HK18, Lemma 5.12] +C(Λ≤0 +con) := Dc(Λ≤0 +con)/ Dfd(Λ≤0 +con) ≃ Dsg(R), +4For a DG algebra A, we denote by Dfd(A) the full subcategory of D(A) spanned by the DG +A-modules with finite-dimensional total cohomology. + +8 +G. JASSO, B. KELLER, AND F. MURO +that is compatible with the canonical DG enhancements on either side. The cate- +gory C(Λ≤0 +con) is known as the Amiot cluster category of Λ≤0 +con [Ami07] and, indeed, +establishing a link between birational geometry and the theory of cluster categories +was one of the objectives in [HK18]. +2.2. The Derived Donovan–Wemyss Conjecture. The following theorem of +Hua and the second-named author settles a derived version of Conjecture A. +Theorem 2.2.1 ([HK18, Thm. 5.9]). Let R = C�x, y, z, t�/(f) be an isolated cDV +singularity. Then, there is an isomorphism of algebras +HH0(Dsg(R)dg) ∼= +C�x, y, z, t� +(f, ∂xf, ∂yf, ∂zf, ∂tf) +between the 0-th Hochschild cohomology of the DG category Dsg(R)dg and the Tyu- +rina algebra of R. In particular, if R′ is a further isolated cDV singularity such +that the DG categories Dsg(R)dg and Dsg(R′)dg are quasi-equivalent, then there is +an isomorphism of algebras R ∼= R′. +Remark 2.2.2. The proof of Theorem 2.2.1 relies on a comparison result [Kel18, +Kel19] between the singular Hochschild cohomology (=Hochschild–Tate cohomol- +ogy) of R and the Hochschild cohomology of the DG category Dsg(R)dg. +The +appearance of the Tyurina algebra stems from an earlier result of the Buenos Aires +Cyclic Homology Group [GGRV92, Thm. 3.2.7]. That the Tyurina algebra, together +with the dimension of R, determines the isomorphism type of the singularity is a +theorem of Mather and Yau [MY82]. +Remark 2.2.3. In [Dyc11], Dyckerhoff shows that the 0-th Hochschild cohomology +of Dsg(R)dg—viewed as a Z/2-graded DG category—is isomorphic to the Milnor +algebra +C�x, y, z, t� +(∂xf, ∂yf, ∂zf, ∂tf) +of the singularity (which does not determine the isomorphism type of the singularity, +even if one knows the dimension). Thus, in Theorem 2.2.1 it is crucial to consider +Dsg(R)dg as a Z-graded DG category. +Corollary 2.2.4 (Derived Donovan–Wemyss Conjecture). Let R1 and R2 be iso- +lated cDV singularities with crepant resolutions +p1 : X1 → Spec(R1) +and +p2 : X2 → Spec(R2). +If the 2Z-derived contraction algebras Λcon(p1) and Λcon(p2) are quasi-isomorphic, +then there is an isomorphism of algebras R1 ∼= R2. +Proof. Indeed, if the DG algebras Λcon(p1) and Λcon(p2) are quasi-isomorphic, then +the DG categories +Dc(Λcon(p1))dg ≃ Dsg(R1)dg +and +Dc(Λcon(p2))dg ≃ Dsg(R2)dg +are quasi-equivalent. Theorem 2.2.1 then implies the existence of an isomorphism +of algebras R1 ∼= R2. +□ +3. Uniqueness of the 2Z-derived contraction algebra +In this section we prove that 2Z-derived contraction algebras are determined +up to quasi-isomorphism by their zeroth cohomology plus a minimal amount of +additional algebraic data (see Corollary 3.4.6 for the precise statement). Before +that, we formulate a closely related result (Theorem 3.1.1) that states that two 2Z- +derived contraction algebras whose zeroth cohomologies are isomorphic as algebras +must be quasi-isomorphic, and use this result to prove Conjecture A. + +THE DONOVAN–WEMYSS CONJECTURE +9 +3.1. Proof of the Donovan–Wemyss Conjecture. In view of Corollaries 1.3.3 +and 2.2.4, Conjecture A is an immediate consequence of the following theorem, the +proof of which is given in Section 3.4. +Theorem 3.1.1. Let R1 and R2 be isolated cDV singularities with crepant resolu- +tions +p1 : X1 → Spec(R1) +and +p2 : X2 → Spec(R2). +If the contraction algebras Λ(p1) and Λ(p2) are isomorphic, then the 2Z-derived +contraction algebras Λcon(p1) and Λcon(p2) are quasi-isomorphic. +Remark +3.1.2. +Theorem 3.1.1 +is +a +special +case +of +[JM22, +Thm. +5.1.10], +see Section 4.2. +Proof of Conjecture A using Theorem 3.1.1. Let R1 and R2 be isolated cDV sin- +gularities with crepant resolutions +p1 : X1 → Spec(R1) +and +p2 : X2 → Spec(R2) +whose corresponding contraction algebras Λcon(p1) and Λcon(p2) are derived equiva- +lent. In view of Corollaries 1.3.3 and 2.2.4, we may and we will assume that Λcon(p1) +and Λcon(p2) are isomorphic and hence, by Theorem 3.1.1, the 2Z-derived contrac- +tion algebras Λcon(p1) and Λcon(p2) are quasi-isomorphic. Finally, Corollary 2.2.4 +yields the desired algebra isomorphism R1 ∼= R2. +□ +3.2. The restricted universal Massey product. The proof of Theorem 3.1.1 +makes use of an invariant of the 2Z-derived contraction algebra, a certain Hochschild +cohomology class of bidegree (4, −2) that we call the restricted universal Massey +product. As we explain below, this invariant is induced by the first possibly non- +trivial higher operation on a minimal A∞-algebra model of the 2Z-derived contrac- +tion algebra. +Setting 3.2.1. Fix an isolated cDV singularity R that admits a crepant resolution +p: X → Spec(R), and let Λ = Λcon(p) be the corresponding 2Z-derived contraction +algebra so that H0(Λ) ∼= Λ = Λcon(p) is the contraction algebra defined by Donovan +and Wemyss. For simplicity, we treat the isomorphism of graded algebras +H•(Λ) ∼= Λ[ı±1] = Λ ⊗C C[ı±1], +|ı| = −2, +as an identification. +Kadeishvili’s Homotopy Transfer Theorem [Kad82] provides us with a minimal +A∞-algebra structure, unique up to A∞-isomorphism with identity linear part, +B = (Λ[ı±1], m3, m4, m5, · · · ) +on the cohomology algebra Λ[ı±1]. Since Λ[ı±1] is concentrated in even degrees and, +by definition, +mn : Λ[ı±1]⊗n −→ Λ[ı±1] +is a morphism of degree 2 − n, we conclude that mn = 0 whenever n is odd. We +write +B = (Λ[ı±1], m4, m6, m8, · · · ) +as a way to record this observation. We refer to B as a minimal (A∞-algebra) +model of the DG algebra Λ and fix it for the rest of the section. +Remark 3.2.2. The passage from DG to A∞-algebras is a matter of technical +convenience: The homotopy theories of non-unital DG and of A∞-algebras are +equivalent, [LV12, Thm. 11.4.8]. In particular, two non-unital DG algebras are +quasi-isomorphic if and only if their minimal models are A∞-isomorphic [LV12, +Thms. 11.4.9 and 10.3.10]. Here, we are exclusively interested in unital DG algebras, + +10 +G. JASSO, B. KELLER, AND F. MURO +but this is not a problem since by [Mur14, Prop. 6.2] two unital DG algebras are +quasi-isomorphic as non-unital DG algebras if and only if they are quasi-isomorphic +as unital DG algebras. +Consider now the bigraded Hochschild cochain complex +Cp,q� +Λ[ı±1], Λ[ı±1] +� := HomC +� +Λ[ı±1]⊗p, Λ[ı±1](q) +� +, +p ≥ 0, q ∈ Z, +recalled in Section 1.4. Since m3 = 0, the A∞-equations imply that ∂(m4) = 0 +([LH03, Lemme B.4.1]); hence we obtain a class +(3.2.3) +{m4} = +� +mΛ +4 +� +∈ HH4,−2� +Λ[ı±1], Λ[ı±1] +� +that we call the universal Massey product (of length 4). It follows from the definition +of A∞-morphism ([LH03, Lemme B.4.2]) that the class {m4} does not depend on +the choice of minimal model for Λ and hence the universal Massey product can and +will be regarded as an invariant of the latter DG algebra. +Consider now the graded-algebra morphism j : Λ ֒→ Λ[ı±1] given by the inclusion +of the degree 0 part. The morphism j induces a restriction morphism on Hochschild +cohomology5 +j∗: HH•,∗� +Λ[ı±1], Λ[ı±1] +� +−→ HH•,∗� +Λ, Λ[ı±1] +� +, +where the space on the right is the Hochschild cohomology of Λ, viewed as a graded +algebra concentrated in degree 0, with coefficients in the graded Λ-bimodule Λ[ı±1]. +In particular, since the degree −2 component Λ · ı of Λ[ı±1] is isomorphic to the +diagonal Λ-bimodule, we obtain a class +(3.2.4) +j∗{m4} = j∗� +mΛ +4 +� +∈ HH4,−2� +Λ, Λ[ı±1] +� += HH4(Λ, Λ · ı) = Ext4 +Λe(Λ, Λ) , +where Λe = Λ ⊗C Λop is the eveloping algebra of Λ; we call the class j∗{m4} +the restricted universal Massey product (of length 4) and, as with the unrestricted +version, we regard it as an invariant of the 2Z-derived contraction algebra Λ. Notice +also that the previous discussion applies verbatim to any DG algebra A whose +cohomology is isomorphic to the graded algebra Λ[ı±1], so that we may associate +to A its restricted universal Massey product j∗� +mA +4 +� +. +The following theorem is the first main step towards the proof of Theorem 3.1.1. +Theorem 3.2.5. The restricted universal Massey product j∗{m4}, when viewed as +an element of the space Ext4 +Λe(Λ, Λ) of Yoneda extensions of Λ-bimodules, can be +represented by an exact sequence +0 → Λ → P3 → P2 → P1 → P0 → Λ → 0 +with projective middle terms. In particular, Ω4 +Λe(Λ) ∼= Λ in the stable category of +Λ-bimodules. +Proof. The first claim is a special case of [JM22, Cor. 4.5.17]. Indeed, by definition, +the 2Z-derived contraction algebra Λ is the derived endomorphism algebra of a 2Z- +cluster tilting object in Dc(Λ) ≃ Dsg(R), which is one of the equivalent conditions +in loc. cit. The second claim follows immediately from the first. +□ +Remark 3.2.6. The proof of [JM22, Cor. 4.5.17], and hence that of Theorem 3.2.5, is +non-trivial. In the special case of the contraction algebra, it is possible that detailed +knowledge of the first non-trivial higher operation m4 of some minimal model of +the 2Z-derived contraction algebra allows for establishig the desired property of the +restricted universal Massey product j∗{m4} directly. The approach taken in [JM22], +which deals with an abstract and more general situation, rather leverages the fact +that Λ is the endomorphism algebra of a 2Z-cluster tilting object T ∈ Dsg(R). +5In fact, the morphism j∗ is surjective, see [JM22, Prop. 4.6.9] and take σ = 1 and d = 2 +(which is even and hence no signs occur in the formulas therein). + +THE DONOVAN–WEMYSS CONJECTURE +11 +The upshot is that the additive closure add(T ) of T has an induced structure of a +so-called 4-angulated category, that is add(T ) is equipped with a natural class of +diagrams □GKO, called 4-angles, of the form6 +T1 → T2 → T3 → T4 → T1[2] +that satisfies axioms analogous to those of triangulated categories [GKO13]. On +the other hand, an extension of Λ-bimodules +0 → Λ → P3 → P2 → P1 → P0 → Λ → 0 +with P0, P1, P2 projective-injective (but perhaps not P3) that represents the class +j∗{m4} ∈ Ext4 +Λe(Λ, Λ) yields a class of 4-angles □j∗{m4} defined in terms of certain +exactness properties [Ami07, Lin19]; the class □j∗{m4} is a priori not known to +form a 4-angulation of add(T ). The crux of the argument is then to prove that +□GKO = □j∗{m4} +so that the class □j∗{m4} is indeed a 4-angulation of add(T ); this agreement relies +on a delicate analysis of the relationship between Toda brackets, Massey products +and the classes □GKO and □j∗{m4}. Finally, in view of the exactness properties +defining the class □j∗{m4} (now known to be 4-angulation), a theorem of Auslander +and Reiten [AR91] for detecting projective bimodules implies that P3 must be a +projective Λ-bimodule, which is what Theorem 3.2.5 claims. The reader is referred +to [JM22] for details. +Recall that the contraction algebra is Frobenius (in fact, symmetric). Conse- +quently, its enveloping algebra is also a Frobenius algebra and we may consider the +Hochschild–Tate cohomology +HH•,∗� +Λ, Λ[ı±1] +� := Ext•,∗ +Λe +� +Λ, Λ[ı±1] +� +defined in terms of the extension spaces in the stable category of graded Λ- +bimodules; thus, +HH>0,∗� +Λ, Λ[ı±1] +� += HH>0,∗� +Λ, Λ[ı±1] +� +and there is a surjection +HH0,∗� +Λ, Λ[ı±1] +� +։ HH0,∗� +Λ, Λ[ı±1] +� +. +The multiplication on Λ[ı±1] endows HH•,∗� +Λ, Λ[ı±1] +� +with the structure of a bi- +graded algebra, see [Mur22, Sec. 5] for details. +Corollary 3.2.7. The restricted universal Massey product j∗{m4}, when viewed +as an element of the Hochschild–Tate cohomology HH•,∗� +Λ, Λ[ı±1] +� +, is a unit. +Proof. Immediate from Theorem 3.2.5 and [Mur22, Prop. 5.7 and Rmk. 5.8], which +characterises the units in HH•,∗� +Λ, Λ[ı±1] +� +of positive Hochschild (=horizontal) de- +gree. +□ +Remark 3.2.8. In Corollary 3.2.7 it is essential to pass from Hochschild to +Hochschild–Tate cohomology in order to have units of positive Hochschild degree. +6Recall that [2] ∼ += 1 in Dsg(R). + +12 +G. JASSO, B. KELLER, AND F. MURO +3.3. Hochschild cohomology of the graded contraction algebra. In this +section we compute the Hochschild cohomology of the graded algebra +Λcon[ı±1] = Λ[ı±1] = Λ ⊗C C[ı±1], +|ı| = −2, +that we call graded contraction algebra, in terms of the Hochschild cohomology of +the Dononvan–Wemyss contraction algebra Λcon = Λ. +First, notice that ı lies in the (graded) centre of Λ[ı±1], which is +Z(Λ[ı±1]) = HH0,∗� +Λ[ı±1], Λ[ı±1] +� +; +hence +ı ∈ HH0,−2� +Λ[ı±1], Λ[ı±1] +� +. +We introduce the fractional Euler derivation +¯δ ∈ C1,0� +Λ[ı±1], Λ[ı±1] +� +, +which acts by the formula +¯δ : a �−→ |a| +2 a, +where we observe that |a| +2 is an integer since Λ[ı±1] is concentrated in even degrees. +It is a cocycle with cohomology class +δ ∈ HH1,0� +Λ[ı±1], Λ[ı±1] +� +. +Proposition 3.3.1. The following statements hold: +(1) There is an isomorphism of graded commutative algebras +HH•,∗� +Λ[ı±1], Λ[ı±1] +� ∼= HH•(Λ, Λ) [ı±1, δ]. +The graded Lie algebra structure on the right hand side is induced by the +(usual) Lie algebra structure on HH•,∗(Λ, Λ) by setting +[ı, HH•(Λ, Λ)] = 0, +[ı, ı] = 0, +[δ, HH•(Λ, Λ)] = 0, +[δ, ı] = −ı. +(2) There is an isomorphism of graded algebras +HH•,∗� +Λ, Λ[ı±1] +� ∼= HH•(Λ, Λ) [ı±1]. +Moreover, the morphism +j∗ : HH•,∗� +Λ[ı±1], Λ[ı±1] +� +−→ HH•,∗� +Λ, Λ[ı±1] +� +induced by the inclusion j : Λ ֒→ Λ[ı±1] of the degree 0 part is the apparent +natural projection with kernel the graded ideal generated by δ. +(3) There is an isomorphism of graded algebras +HH•,∗� +Λ, Λ[ı±1] +� ∼= HH•(Λ, Λ) [ı±1]. +Furthermore, the comparison map +HH•,∗� +Λ, Λ[ı±1] +� +−→ HH•,∗� +Λ, Λ[ı±1] +� +is the apparent extension of the comparison map HH•(Λ, Λ) → HH•(Λ, Λ). +Proof. All of the forthcoming claims follow from the proof of [JM22, Prop. 4.6.9] +for σ = 1Λ and d = 2. +(1) The Hochschild complex C•,∗� +Λ[ı±1], Λ[ı±1] +� +contains the subcomplex +C•,∗ +C[ı±1] +� +Λ[ı±1], Λ[ı±1] +� +of C[ı±1]-linear cochains; this subcomplex is also an associative subalgebra and a +Lie subalgebra of the C-linear Hochschild complex. +The composite +C•,∗ +C[ı±1] +� +Λ[ı±1], Λ[ı±1] +� +i֒→ C•,∗� +Λ[ı±1], Λ[ı±1] +� +j∗ +−→ C•,∗� +Λ, Λ[ı±1] +� +, + +THE DONOVAN–WEMYSS CONJECTURE +13 +of the inclusion of the C[ı±1]-linear Hochschild cochains into the C-linear ones with +the restriction of scalars along the inclusion j : Λ ֒→ Λ[ı±1] of the degree 0 part is +an isomorphism of DG algebras. The target, unlike the source, does not a priori +carry any Lie algebra structure. Nevertheless, there is an obvious isomorphism of +DG algebras +C•,∗� +Λ, Λ[ı±1] +� ∼= C•(Λ, Λ) [ı±1] +that we regard as an identification, and the composite isomorphism +C•,∗ +C[ı±1] +� +Λ[ı±1], Λ[ı±1] +� ∼= C•(Λ, Λ) [ı±1] +is also a Lie algebra map when we regard the target as a Lie algebra extension of +C•(Λ, Λ) with ı a central element (in the Lie-algebra sense). +The morphism +C•,∗� +Λ[ı±1], Λ[ı±1] +� +−→ C•(Λ, Λ) [ı±1, ¯δ], +x �−→ j∗(x) − ı−1 · j∗([x, ı]) · ¯δ, +is a quasi-isomorphism of DG algebras with quasi-inverse +C•(Λ, Λ) [ı±1] ⊕ C•(Λ, Λ) [ı±1] · ¯δ −→ C•,∗� +Λ[ı±1], Λ[ı±1] +� +, +x + y · ¯δ �−→ i(x) + i(y) · ¯δ. +(The latter is just a morphism of complexes since ¯δ2 ̸= 0 in the target, it only +vanishes in cohomology.) +In fact, the relevant composite equals the identity of +C•(Λ, Λ) [ı±1, ¯δ]. +The Lie bracket formulas in the statement of the proposition +follow from the definition of the fractional Euler class, C[ı±1]-linear cochains and +degree considerations. +(2) The statement follows easily from the previous computations. +(3) The statement is consequece of the fact that HH•,∗(Λ, Λ) is obtained from +HH•,∗(Λ, Λ) by inverting any element of +HH4(Λ, Λ) = Ext4 +Λe(Λ, Λ) +representing the 4-periodicty of Λ, and similarly when the coefficients lie in Λ[ı±1]. +□ +Below, we use the isomorphisms in Proposition 3.3.1 as identifications. +Corollary 3.3.2. Let u ∈ HH4(Λ, Λ) be a unit. There exists a unique Hochschild +class +m ∈ HH4,−2� +Λ[ı±1], Λ[ı±1] +� +such that +j∗(m) = u · ı, +1 +2[m, m] = 0. +Proof. The first equation in the statement is equivalent to m being of the form +(3.3.3) +m = (u + x · δ) · ı +for some x ∈ HH3(Λ, Λ). Using the relations in a Gerstenhaber algebra, the second +equation is equivalent to +0 = ([u, u] − 2u · x) · ı2 − 2[x, u] · ı2 · δ. +This means that both summands must vanish. For the first one, this is equivalent +to +x = 1 +2u−1[u, u]. +This is takes place in the piece of HH•(Λ, Λ) that agrees with HH•(Λ, Λ), and is +compatible with the second summand since +0 = 1 +2[[u, u], u] = [ux, u] = u[x, u] − [u, u]x = u[x, u] − u−1[u, u]2 = u[x, u], + +14 +G. JASSO, B. KELLER, AND F. MURO +so [x, u] = 0. The first step follows from the graded Jacobi identity and we also +use that [u, u]2 = 0 since [u, u] has odd total degree and Hochschild cohomology is +graded commutative. +□ +The following result should be compared with equation (3.3.3); its proof is similar +to that of Corollary 3.3.2. +Corollary 3.3.4. Let u ∈ HH4(Λ, Λ) be a unit such that [u, u] = 0. Given +(x + y · δ) · ıq ∈ HHp,−2q� +Λ[ı±1], Λ[ı±1] +� +with p ≥ 2, x ∈ HHp(Λ, Λ) and y ∈ HHp−1(Λ, Λ), if [u · ı, (x + y · δ) · ıq] = 0 then +(x + y · δ) · ıq = [u · ı, u−1 · δ · x · ıq−1]. +We obtain the following more precise information on a minimal A∞-model of the +2Z-derived contraction algebra. +Proposition 3.3.5. The 2Z-derived contraction algebra has a minimal A∞-model +(Λ[ı±1], m4, m6, · · · ) +such that mn is C[ı±1]-linear for all n ≥ 4. In particular, {m4} = u · ı for some +unit u ∈ HH4(Λ, Λ) satisfying [u, u] = 0. +Proof. The first part follows from [HK18]. +The rest is a direct consecuence of +Proposition 3.3.1 and the fact that [{m4}, {m4}] = 0, which follows from (1.5.1). +□ +3.4. Proof of Theorem 3.1.1. The introduction of the restricted universal +Massey product of Λ is justified by the following result and the subsequent corol- +lary. Theorem 3.4.1 is an immediate consequence of [JM22, Thm. B], and the latter +theorem is obtained an application of the obstruction theory for the existence of +A∞-structures developed by the third-named author in [Mur20]. In this note we +give a direct proof of Theorem 3.4.1 that leverages our detailed knowledge of the +relationship between the Hochschild cohomology of the contraction algebra and +that if its graded variant (see Section 3.3), although part of the techniques used to +prove [JM22, Thm. B] are utilised in some guise. +Theorem 3.4.1. Let A be a DG algebra such that H•(A) = Λ[ı±1] as graded +algebras. If +j∗� +mA +4 +� += j∗� +mΛ +4 +� +∈ HH•,∗� +Λ, Λ[ı±1] +� +, +then A is quasi-isomorphic to the 2Z-derived contraction algebra Λ via a quasi-iso- +morphism that induces the identity in cohomology. +Proof. Let +(Λ[ı±1], m4, m6, . . . ) +be a minimal model for the 2Z-derived contraction algebra as in Proposition 3.3.5, +and +(Λ[ı±1], m′ +4, m′ +6, . . . ) +a minimal model for A. Inductively, we will construct an A∞-isomorphism with +identity linear part +f = (0, 0, 0, f3, 0, f5, . . . ): (Λ[ı±1], m4, m6, . . . ) −→ (Λ[ı±1], m′ +4, m′ +6, . . . ), +and this clearly suffices to prove the claim. Notice that, necessarily, f2n = 0 for all +n ≥ 0 since Λ[ı±1] is concentrated in even degrees. +We proceed as follows. For all n ≥ 0 we define a Hochschild cochain of total +degree 1 +f (n) = (0, 0, 0, f (n) +3 +, 0, . . . , f (n) +2n+1, 0, . . . ) + +THE DONOVAN–WEMYSS CONJECTURE +15 +such that f (n) coincides with f (n−1) up to Hochschild degree 2n − 2 and +(3.4.2)n +∂(f (n)) + f (n) · f (n) + +� +r≥0 +m′{f (n), r. . ., f (n)} − m − f (n){m} +vanishes up to Hochschild degree 2n + 2. If we achieve this goal, then we can take +f = (0, 0, 0, f (3) +3 , 0, . . . , f (n) +2n−3, 0, . . . ). +Indeed, f coincides with f (n) up to Hochschild degree 2n − 2, so (1.5.2) coincides +with (3.4.2)n up to Hochschild degree 2n − 1. In particular (1.5.2) vanishes up to +Hochschild degree 2n − 1 for all n ≥ 0. Therefore (1.5.2) fully vanishes, so f is +indeed an A∞-isomorphism with identity linear part. +We start with f (0) = 0. +With this choice, (3.4.2)0 clearly vanishes up to +Hochschild degree 2. +Below, when defining f (n) we will only specify f (n) +2n−1 and f (n) +2n+1 since in smaller +Hochschild degrees they are determined by f (n−1) and in higher Hochschild degrees +they are irrelevant. Moreover, we will also use that (3.4.2)n−1 and (3.4.2)n agree +(and hence both vanish) up to Hochschild degree 2n − 1. +Since j∗{m4} = j∗{m′ +4}, then {m4} = {m′ +4} by Corollary 3.3.2, so there exists +f (1) +3 +such that +(3.4.3) +∂(f (1) +3 ) + m′ +4 − m4 = 0. +This proves that (3.4.2)1 vanishes up to Hochschild degree 4. +Assume we have constructed up to f (n−1) for some n ≥ 2. Let us see how to +construct f (n). We know by [LH03, Lemme B.4.2] that the Hochschild degree 2n+2 +part of (3.4.2)n−1, that we simply denote by a, is an obstruction cocycle (∂(a) = 0) +which vanishes in cohomology if and only if there exists f (n) +2n+1 such that, taking +f (n) +2n−1 = f (n−1) +2n−1 , (3.4.2)n vanishes up to Hochschild degree 2n + 2. Indeed, any +f (n) +2n+1 such that a + ∂(f (n) +2n+1) = 0 would do. We claim that +(3.4.4) +[m4, a] + ∂(b − f n−1 +3 +{a}) +vanishes, where b is the Hochschild degree 2n + 4 part of (3.4.2)n−1. We prove this +claim below. Now, we deduce from Proposition 3.3.5 and Corollary 3.3.4 that there +exist Hochschild cochains c2n−1 and c2n+1 such that +a + ∂(c2n+1) + [m4, c2n−1] = 0, +∂(c2n−1) = 0. +If we set +f (n) +2n−1 = f (n−1) +2n−1 + c2n−1, +f (n) +2n+1 = +� +c5 + f (1) +3 {c3} − 1 +2c3{c3}, +n = 2; +c2n+1 + f3{c2n−1}, +n > 2; +we complete the induction step since the Hochschild degree 2n part of (3.4.2)n is, +∂(c2n−1) = 0, +and its Hochschild degree 2n + 2 part is, for n = 2, +a + ∂ +� +c5 + f (1) +3 {c3} − 1 +2c3{c3} +� ++ c3 · c3 + m′ +4{c3} − c3{m4} += a + ∂(c5) + ∂ +� +f (1) +3 +� +{c3} + f (1) +3 {∂(c3)} + m′ +4{c3} − c3{m4} += a + ∂(c5) + (m4 − m′ +4){c3} + m′ +4{c3} − c3{m4} += a + ∂(c5) + [m4, c3] = 0, + +16 +G. JASSO, B. KELLER, AND F. MURO +where we use that ∂(c3{c3}) = 2c3 · c3 by Lemma 1.4.1, and for n > 2, +a + ∂ +� +c2n+1 + f3{c2n−1} +� ++ m′ +4{c2n−1} − c2n−1{m4} += a + ∂(c2n+1) + ∂ +� +f (n−1) +3 +� +{c2n−1} + f (n−1) +3 +{∂(c2n−1)} + m′ +4{c2n−1} − c2n−1{m4} += a + ∂(c2n+1) + (m4 − m′ +4){c2n−1} + m′ +4{c2n−1} − c2n−1{m4} += a + ∂(c2n+1) + [m4, c2n−1] = 0. +We finish the proof with the vanishing of (3.4.4). In what follows, let us write +Ξ = (3.4.2)n−1 and f = f (n−1), so as not to overload notation. Note that (3.4.4) is +the Hochschild degree 2n + 5 part of +(3.4.5) +[m, Ξ] + ∂(Ξ − f{Ξ}). +This cochain vanishes in Hochschild degrees < 2n + 5. +We now start a series of computations. We number most terms for bookkeeping +purposes. In the first equation we use Lemma 1.4.1, +∂(Ξ) = +1 +∂(f) · f − +2 +f · ∂f + +3 +� +r≥0 +∂(m′){f, r. . ., f} +− +4 +� +r≥1 +r +� +i=1 +m′{f, i−1 +. . ., ∂(f), r−i +. . ., f} +− +5 +� +r≥1 +f · m′{f, r−1 +. . ., f} − +6 +� +r≥2 +r−1 +� +i=1 +m′{f, i−1 +. . ., f 2, r−i−1 +. . . , f} ++ +7 +� +r≥1 +m′{f, r−1 +. . ., f} · f − +8 +∂(m) − +9 +∂(f){m} − +10 +f{∂(m)} + +11 +f · m − +12 +m · f +Since m and m′ are A∞-algebra structures, +8 = −m{m}, +10 = −f{m{m}}, +3 = − +� +r≥0 +m′{m′}{f, r. . ., f} += − +� +r≥0 +� +0≤i≤j≤r +m′{f, +i. . ., m′{f, j−i +. . ., f}, r−j +. . ., f}, += − +13 +� +r≥0 +m′{m′{f, r. . ., f}} − +14 +� +r≥1 +� +0≤i≤j≤r +j−i 0 to replace the +complementarity constraints (5f)-(5g)-(5h) by the smooth approximations: Xiκi = +µenx, Siνi = µem, Uλ = µenu (en being the vector of all ones of dimension n). The +resulting (smooth) system of nonlinear equations can be solved iteratively using New- +ton method, where at each iteration, the descent direction is updated by solving the +following augmented linear system: +� +��� +W + Σp +0 +G⊤ +H⊤ +0 +Σs +0 +I +G +0 +0 +0 +H +I +0 +0 +� +��� +� +��� +pd +ps +py +pz +� +��� = − +� +��� +r1 +r2 +r3 +r4 +� +��� +(6) +with r1 = +� +∇xf + G⊤ +x y + H⊤ +x z − µX−1enx +∇uf + G⊤ +u y + H⊤ +u z − µU−1enu +� +, r2 = z − µS−1em, r3 = g(x, u), r4 = +h(x, u) + s. The primal descent direction pd decomposes as pd = (px1, · · · , pxN, pu). +2.2.2. Block angular structure +The linear system (6) is sparse and symmetric indefinite, and can be factorized using +the Bunch-Kaufman algorithm. However, it is often beneficial to exploit its block- +angular structure. Indeed, both the Hessian of the Lagrangian and the Jacobians have +5 + +a block-angular structure, given as +W = +� +���� +Wx1x1 +Wx1u +... +... +WxNxN +WxNu +Wux1 +. . . +WuxN +Wuu +� +���� , +G = +� +�� +G1 +x1 +G1 +u +... +... +GN +xN +GN +u +� +�� . +By reordering the linear system (6), we can expose the block-angular structure of the +KKT system as: +� +���� +A1 +B⊤ +1 +... +... +AN +B⊤ +N +B1 +. . . +BN +A0 +� +���� +(7) +with +A0 = Wuu, +Ai = +� +��� +Wxixi + Σxi +0 +G⊤ +xi +H⊤ +xi +0 +Σsi +0 +I +Gxi +0 +0 +0 +Hxi +I +0 +0 +� +��� , +Bi = +� +� +Wxiu +(Gi +u)⊤ +(Hi +u)⊤ +� +� +⊤ +. +The block-angular structure (7) can be exploited to solve the KKT linear system in +parallel using a Schur complement approach. In that case, the submatrices Ai can be +factorized independently to assemble the Schur complement in parallel [8]. +2.3. Condensation and reduction +Instead of reordering the augmented KKT system (6) as a block angular matrix (7), +we propose an alternative approach based on successive condensation and reduction +of the KKT system, following the method introduced in [31]. If the structure is well- +defined, we show that we can condense the KKT system (6) to a dense matrix with +size nu × nu in two steps: first, by removing the inequality constraints in (6), then by +exploiting the structure of the equality constraints to reduce the condensed system to +a dense matrix. The condensation and reduction steps are illustrated in Figure 1. +2.3.1. Condensation step +The condensation step allows reducing the size of the KKT system drastically if the +number of inequality constraints is large1. +Proposition 2.1 (Condensed KKT system). The linear system (6) is equivalent to +� +K + Σp +G⊤ +G +0 +� � +pd +py +� += − +� +r1 + H⊤(Σsr4 − r2) +r3 +� +, +(8) +where K ∈ R(Nnx+nu)×(Nnx+nu) is the condensed matrix K := W + H⊤ΣsH. The +1It is equivalent to the normal equations in linear programming [30, Chapter 16, p.412] +6 + +Figure 1.. Successive reductions for a block-structured nonlinear problem with N = 3: Aug- +mented system (6), Condensed system (8), Reduced system (11). +descent directions ps and pz are recovered as +� +pz = Σs +� +Hpd + r4 +� +− r2 , +ps = −Σ−1 +s +� +r2 + pz +� +. +(9) +Proof. See [31, Theorem 2.2]. +The condensed matrix K inherits the block-angular structure of the Hessian of the +Lagrangian W. +Proposition 2.2. The condensed matrix K = W +H⊤ΣsH has a block-angular struc- +ture, given as +K = +� +���� +Kx1x1 +Kx1u +... +... +KxNxN +KxNu +Kux1 +. . . +KuxN +Kuu +� +���� +(10) +where we have defined the condensed blocks Kxixi := Wxixi + (Hi +xi)⊤ΣsiHi +xi, Kuxi := +Wuxi + (Hi +u)⊤ΣsiHi +xi and Kuu := Wuu + �N +i=1(Hi +u)⊤ΣsiHi +u. +Proof. This is proved by induction. +2.3.2. Reduction step +In addition, we can exploit the structure of the equality constraints g1, · · · , gN to +further reduce the size of the linear system (8) down to a dense matrix with size +nu × nu. Equation (10) exhibits the structure w.r.t. the state x and the control u, we +7 + +3755 x 3755 +1193 x 1193 +107 x 107rewrite as such the condensed KKT system (8) as +� +����������� +Kx1x1 +Kx1u +(G1 +x1)⊤ +... +... +... +KxNxN +KxNu +(GN +xN)⊤ +Kux1 +. . . +KuxN +Kuu +(G1 +u)⊤ +. . . +(G1 +u)⊤ +G1 +x1 +G1 +u +... +... +GN +xN +GN +u +� +����������� +� +����������� +px1... +pxN +pu +p1 +y... +pN +y +� +����������� += − +� +���������� +ˆr1 +1... +ˆrN +1 +ˆr2 +ˆr1 +3... +ˆrN +3 +� +���������� +, +where we have renamed the right-hand-side in (8) as ˆr. +Proposition 2.3 (Reduction). Assume that for all i = 1, · · · , N the Jacobian matri- +ces Gi +x ∈ Rnx×nx are invertible. Then the linear system (8) is equivalent to +ˆKuu pu = −ˆr2 + +N +� +i=1 +� +(Gi +u)⊤(Gi +x)−⊤ˆri +1 + +� +Kuxi − (Gi +u)⊤(Gi +x)−⊤Kxixi +� +(Gi +x)−1ˆri +3 +� +(11) +with ˆKuu := Z⊤KZ and Z ∈ R(nu+Nnx)×nu is the reduction operator defined as +Z = +� +���� +−(G1 +x)−1G1 +u +... +−(GN +x )−1GN +u +I +� +���� . +(12) +The descent directions px and py are recovered as +� +pi +x = −(Gi +x)−1� +ˆri +3 + Gi +upu +� +pi +y = −(Gi +x)−⊤� +ˆri +1 + Kxixipi +x + Kxiupu +� +. +(13) +Proof. See [31, Theorem 2.1]. +The reduction (11) is equivalent to a Schur complement approach applied to the +condensed KKT system (8). In Proposition (2.1), we have shown that the condensed +matrix K has a block-angular structure. The associated condensed KKT system (8) +is also inheriting a block-angular structure in the form of (7), where the blocks are +given by +A0 = Kuu , +Ai = +� +Kxixi +(Gi +x)⊤ +Gi +x +0 +� +, +Bi = +� +Kxiu +Gi +u +�⊤ +. +(14) +Proposition 2.4. Assume that for each i = 1, · · · , N the Jacobian Gi +x is invertible. +Let Suu = A0 − �N +i=1 BiA−1 +i B⊤ +i +be the Schur complement associated to the block- +angular system (7) with the matrices (Ai, Bi) defined in (14). Then, the Schur com- +plement Suu is equal to the reduced matrix �Kuu defined in (11): Suu = Z⊤KZ. +8 + +Proof. First, note that if the Jacobian Gi +x is invertible, then the block matrix Ai +defined in (14) is also invertible, with +A−1 +i += +� +0 +(Gi +x)−1 +(Gi +x)−⊤ +−(Gi +x)−⊤Kxixi(Gi +x)−1 +� +. +(15) +Using (14)-(15), we expand the expression of the terms in the sum constituting the +Schur complement Suu: +BiA−1 +i B⊤ +i = +� +Kuxi +(Gi +u)⊤� � +0 +(Gi +x)−1 +(Gi +x)−⊤ +−(Gi +x)−⊤Kxixi(Gi +x)−1 +� � +Kxiu +Gi +u +� +, += (Gi +u)⊤(Gi +x)−⊤Kxiu + Kuxi(Gi +x)−1(Gi +u) − (Gi +u)⊤(Gi +x)−⊤Kxixi(Gi +x)−1Gi +u . +Hence, the Schur complement Suu = A0 − �N +i=1 BiA−1 +i B⊤ +i expands as +Suu = Kuu − +N +� +i=1 +� +(Gi +u)⊤(Gi +x)−⊤Kxiu + Kuxi(Gi +x)−1(Gi +u) − (Gi +u)⊤(Gi +x)−⊤Kxixi(Gi +x)−1Gi +u +� += Z⊤KZ . +We recover the expression of the reduced matrix �Kuu in Proposition 2.3. +2.4. Discussion +Hence, we can interpret the reduction step as a Schur complement approach. Forming +the Schur complement has always been the bottleneck when solving distributed block +angular problems in parallel [8, 26]. Its reduction operation involves large memory +transfers between the processes, with the number of transfers being on the order +of O(log(p)), where p is the number of processes. Due to the quasi-shared memory +architecture on GPUs, the reduction can be implemented efficiently [31]. In the next +section, we propose to extend [31] to assemble the reduced matrix �Kuu using two levels +of parallelism, using both MPI and CUDA, thus reducing the reliance on distributed +memory. +3. Parallel implementation +In the previous section, we have detailed the structure of block-angular nonlinear +programs and presented the condensation and reduction steps for the KKT system. +The loose coupling between the blocks is favorable for parallelizing the evaluation of +the derivatives and the solution of the block-angular KKT system. Globally, we can +distribute the computation on different processes using MPI (coarse parallelism). Lo- +cally, we can further streamline the computation using GPU accelerators (fine-grained +parallelism). This paradigm, with its two levels of parallelism, is directly in line with +what is currently offered by the new exascale architectures, where each node has 4 to +8 GPUs, all sharing a unified memory for fast communication. We present in §3.1 how +we streamline the evaluation of the model using automatic differentiation, and in §3.2 +how we parallelize the solution of the KKT system. +9 + +3.1. Parallel automatic-differentiation +First, we present how to evaluate the model in parallel using automatic differentiation +[18]. We illustrate the procedure in Figure 2. The goal of the algorithm is to streamline +the evaluation of the N scenarios on N/M GPUs, M being the number of scenarios +evaluated locally on each GPU (we suppose here that N is a multiple of M). +root +g1, · · · , g4 +g13, · · · , g16 +g1 +g4 +· · · +g13 +g16 +· · · +· · · +· · · +Figure 2.. Parallel evaluation of the derivatives for g1, · · · gN on 4 GPUs: we have a total of +N = 16 scenarios, each GPU evaluating M = 16/4 = 4 scenarios locally. +3.1.1. Local parallelism +The first level of parallelism streamlines the evaluation of the model on SIMD/GPU +devices. We have designed our implementation to run entirely on the GPU device, to +avoid any data transfer between the host and the device. +3.1.1.1. Block evaluation. We suppose that the nonlinear functions (fi, gi, hi) +share the same structure, its expressions yielding the same Abstract Syntax Tree (AST) +for all i = 1, · · · , M. We illustrate the block evaluation on a simple abstract tree, but +the reasoning extends to more complicated structures. We suppose that for all i, the +functions fi, gi, hi depend linearly on a nonlinear basis matrix ψ : Rnx × Rnu → Rnb: +that is, there exists three sparse matrices Lf, Lg, Lh such that +fi(xi, u) = Lfψ(xi, u) , +gi(xi, u) = Lgψ(xi, u) , +hi(xi, u) = Lhψ(xi, u) . +(16) +Suppose we aim to evaluate the M functions g1, · · · , gM in batch for the states +x1, · · · , xM. The structure (16) is directly amenable for SIMD evaluation. We de- +note by XM = (x1, · · · , xM) ∈ Rnx×M the dense matrix obtained by concatenat- +ing the M states together. By using a proper GPU kernel or a parallel modeler, +we can evaluate the basis in a SIMD fashion and build the matrix Ψ(XM, u) := +� +ψ(x1, u), · · · , ψ(xM, u) +� +∈ Rnb×M. Then, evaluating the functions g1, · · · , gM simul- +taneously translates to the evaluation of one SpMM product: +� +g1(x1, u), · · · , gM(xM, u) +� += LgΨ(XM, u) ∈ Rnx×M . +(17) +The total memory required in the two successive operations is O((nx + nb) × M), and +depends linearly on the number of blocks M. We note the SpMM operations are generally +implemented efficiently in the vendor library (cusparse for CUDA, rocSPARSE for +AMDGPU). +10 + +3.1.1.2. First-order derivatives. Suppose that for a given i we have a differen- +tiable implementation gbi : Rnd → Rnx associated to the function gi. We aim to +evaluate the Jacobian-matrix products (∇gi)D for p tangents encoded in a matrix +D ∈ Rnd×p using forward-mode AD and operator overloading. This operation trans- +lates to propagating forward a vector of dual numbers. Denoting by d ∈ Dnd +p +the dual +number encoding the p tangents stored in D, evaluating (∇gi)D simply amounts to +call gbi(d) and extract the results in the dual numbers returned as a result. As Gi +is sparse, we can apply the technique of Jacobian coloring [18] to compress the inde- +pendent columns of the sparse matrix Gi and reduces the number of required seeding +tangents p needed to evaluate the full Jacobian. +Suppose now we want to evaluate the sparse Jacobians G1, · · · , GM in batch. As +the functions gi are based on the same AST, their respective Jacobians G1, · · · , GM +are sharing the same sparsity pattern. By seeding a matrix of dual numbers DM = +(d1, · · · , dM) ∈ Dnd×M +p +, we can use the same operation as (17) to streamline the +evaluation of the M Jacobian-vector products using the SIMD kernel Ψ(·) and SpMM +operations: +� +gb1(d1), · · · , gbM(dM) +� +:= LgΨ(DM) ∈ Dnx×M +p +. +(18) +Once the results are evaluated, it remains to uncompress the dual outputs to build +the M sparse Jacobians G1, · · · , GM. Hence, we can streamline the evaluation of the +Jacobian along with the number of tangents p and the number of blocks M. This comes +at the expense of increasing memory usage to O((nx + nb + nd) × M × p) (to store the +dual matrices associated to the input, the intermediate basis Ψ and the output). +3.1.1.3. Second-order derivatives. The evaluation of the second-order deriva- +tives follows the same procedure, using forward-over-reverse AD. For each i, we sup- +pose available an adjoint function adj gbi : Rnd × Rnx → Rnd which for any pri- +mal x ∈ Rnd and adjoint y ∈ Rnx evaluates the Jacobian-transpose vector product +(Gi(x))⊤y (reverse-mode). Using forward-mode AD on top of adj gbi, we can compute +the second-order derivatives y⊤∇2gi(x)V for p directions V by calling adj gbi(x, y). +Using Hessian coloring, we can compress the independent columns of the sparse matrix +y⊤∇2g(x) and reduce the number of seeding tangents p required to evaluate the full +Hessian. We note that in general obtaining an adjoint adj gbi running in parallel is +nontrivial due to potential race conditions incurred by the control flow reversal of the +original code. +Computing the Hessian y⊤∇2gi(x) in parallel for i = 1, · · · M amounts to defining +two matrices of dual numbers XM = (X1, · · · , XM) ∈ Dnd×M +p +, Y M = (y1, · · · , yM) ∈ +Dnx×M +p +and evaluate ∇Ψ(XM)⊤L⊤ +g Y M. The dual outputs are uncompressed to build +the M sparse Hessians (as the sparsity pattern of the Hessians is different than those +of the Jacobians, the matrix XM employed here is different than the one used in (18)). +The total memory required to store the duals is O((2nx +nd +nb)×M ×p). For more +details, we refer to the vector forward mode as described in [18]. +3.1.2. Global parallelism +Now, if we have several GPUs at our disposal, we can push the parallelism further +by distributing the evaluations using multiprocessing and a Message Passing Interface +(MPI) library. Coming back at our original problem (2), we illustrate in Figure 2 how to +dispatch the evaluation of the N nonlinear constraints g1, · · · , gN (the same reasoning +11 + +applies to the objectives f1, · · · , fN and the inequality constraints h1, · · · , hN). We use +the streamlined implementation described in the previous subsection to evaluate the +constraints in a batch of size M: the first GPU evaluates the constraints g1, · · · , gM, +the second GPU evaluates gM+1, · · · , g2M, and so on. In total, the evaluation of the +N constraints requires N/M GPUs (if M = 1, each GPU evaluate one constraint; if +M = N, we use only one GPU evaluating all the constraints). +The implementation has been designed to minimize the communication between +the different processes: each batch g1, · · · , gM stores the data it needs locally, the only +data exchange with the other processes being the vector of input and the vector of +output. In addition, we will see in the next section we do not have to transfer the first- +and second-order information if a parallel linear solver is being used. +3.2. Parallel KKT solver +By exploiting the block-angular structure of the KKT system, we can solve the New- +ton step in parallel using a Schur complement approach. The challenge lies in the +computation of the Schur complement matrix S = A0 − �N +i=1 BiA−1 +i B⊤ +i . Each prod- +uct BiA−1 +i B⊤ +i requires the factorization of the matrix Ai and the solution of a linear +system with multiple (sparse) right-hand-side A−1 +i Bi. State-of-the-art methods are +evaluating the Schur complement using an incomplete augmented factorization ap- +plied on the auxiliary matrix +� +Ai +B⊤ +i +Bi +0 +� +, as currently implemented in the Pardiso +linear solver [33]. Here, we use an alternative approach building on the reduced KKT +system §2.3.2 (equivalent to the Schur complement approach). As the reduction can +be streamlined on GPU accelerators [31], this approach can assemble the Schur com- +plement in parallel using CUDA-aware MPI. We illustrate the parallel computation of +the Schur complement in Figure 3. +root +(Assembling) +K, G +K, G +K, G +K, G +AD +AD +AD +AD +ˆK1:4 +uu +ˆK5:8 +uu +ˆK9:12 +uu +ˆK13:16 +uu +(Reduction) +Z⊤KZ +Z⊤KZ +Z⊤KZ +Z⊤KZ +MPI AllReduce ++ +(Schur compl.) +ˆKuu +Figure 3.. Parallel computation of the Schur complement. +Assembling the sparse matrices. Using the procedure introduced in §3.1.1, we +evaluate locally the Jacobians G1, · · · , GM the Jacobians H1, · · · , HM and the Hes- +sians W 1, · · · , W M. Using dedicated kernels, we uncompress the results in the block- +12 + +angular sparse Jacobians +G1:M +x += +� +�� +G1 +x1 +... +GM +xM +� +�� , G1:M +u += +� +�� +G1 +u... +GM +u +� +�� , H1:M = +� +�� +H1 +x1 +H1 +u +... +... +HM +xM +HM +u +� +�� , +and sparse Hessian +W 1:M = +� +���� +Wx1x1 +Wx1u +... +... +WxMxM +WxMu +Wux1 +. . . +WuxM +Wuu +� +���� . +Once the sparse matrices are obtained, we recover the condensed matrix K1:M = +W 1:M + (H1:M)⊤Σ(H1:M) (Proposition 2.1) using one SpGEMM operation and we fac- +torize the matrix G1:M +x +using a sparse LU factorization (potentially running in batch +as the matrices G1 +x1, · · · , GM +xM are sharing the same sparsity pattern). Once the ma- +trix G1:M +x +is factorized as PG1:M +x +Q = LU (P, Q being two permutation matrices), +computing (G1:M +x +)−1b translates to two backsolves (SpSV) and two matrix-vector mul- +tiplications (SpMV), as (G1:M +x +)−1b = QU−1L−1Pb. +Local reduction. Once the sparse matrices are built, we evaluate locally the reduced +matrix �K1:M +uu +on the GPU, using div(nu, nbatch) + 1 matrix-matrix product �K1:M +uu V +(with V ∈ Rnu×nbatch a dense matrix encoding nbatch vectors of the Cartesian basis of +Rnu). The evaluation of one batched matrix-matrix product �K1:M +uu V = (Z⊤K1:MZ)V +proceeds in three steps +(1) Solve Tx = −(G1:M +x +)−1(G1:M +u +V ). +(2) Evaluate +� +Lx +Lu +� +:= +� +K1:M +xx +K1:M +xu +K1:M +ux +K1:M +uu +� � +Tx +V +� +. +(3) Set �K1:M +uu V = Lu − G1:M +u +(G1:M +x +)−⊤Lx. +In total, we need 2 SpSM and 3 SpMM operations in the first step, 1 SpMM in the second +step, and 2 SpSM and 3 SpMM operations in the third step, giving a total of 4 SpSM +and 7 SpMM operations. More than the computation, the reduction is limited by the +memory, as we have to store the three buffers Lx, Tx, Tu with a total size of (2M × +nx + nu) × nbatch. If nx is too large, it is in our interest to reduce M (by using more +GPUs) or to reduce nbatch (at the expense of computing more matrix-matrix product +�K1:M +uu V ). +Global reduction. Once we obtain the locally reduced matrices �KnM+1:(n+1)M +uu +for n = 0, · · · , N/M − 1, we can assemble the global reduced matrix +�Kuu = +�N/M−1 +n=0 +�KnM+1:(n+1)M +uu +using one all reduce (MPI Allreduce) operation. The size of +the reduced matrix �Kuu is nu × nu, hence limiting the memory transfer required in +the algorithm. +13 + +3.3. Discussion +We have presented a practical way to assemble the Schur complement on multi-GPU +architectures. The parallelism occurs both at the local level (SIMD evaluations on the +GPUs) and at the global level (distributed computation with MPI). The algorithm +has the advantage of assembling the sparse Jacobians and Hessians only locally, as +the reduction occurs before proceeding to the memory transfer with MPI Allreduce. +The reduced matrix has a dimension nu × nu, which compresses the memory transfer +significantly if the number of degrees of freedom nu is small. However, this comes at the +expense of storing a vector of dual numbers (whose memory is linearly proportional +to the number of blocks M evaluated locally and the number of tangents p being +employed to evaluate the sparse derivatives) and additional buffers in the reduction +algorithm. In the next section, we will test an implementation of the algorithm on +CUDA GPUs, and show that the algorithm is practical. +4. Numerical results +We demonstrate the capabilities of the algorithm we introduced in Section §3 on the +supercomputer Polaris, using CUDA-aware MPI to dispatch the solution on multiple +GPUs. We present in §4.1 the stochastic optimal power flow problem, and give in §4.2 +detailed assessments of the algorithms we have introduced earlier in §3. Eventually, +we present in §4.3 a benchmark comparing our parallel solution algorithm with a +state-of-the-art solution method running on the CPU. +4.1. Settings +4.1.1. Case study: the block-structured optimal power flow +The stochastic optimal power flow problem aims at finding an optimal dispatch for the +generators u. The solution u should minimize the operational costs while satisfying the +physical constraints (power flow equations g(x, u) = 0, here playing the role of the state +equations) and operational constraints (line flow constraints h(x, u) ≤ 0) on a given +set of scenarios. Each scenario is assigned given load parameters (energy demands) and +potential contingencies (line tripping). The values of the state x depend on the local +scenario we are in, the state x being the recourse variable in our case. As such, the +problem has a partially separable structure as introduced in Problem (2), the control +u being shared across all scenarios. We refer to [7] for the original presentation of the +stochastic optimal power flow problem and to [8, 23, 24, 26] for practical algorithms +solving the stochastic optimal power flow problem (some also focus on the multistage +setting, which is not covered in this article). For our benchmark, we look at reference +instances provided by MATPOWER [47], whose characteristics are detailed in Table 1. +We recall that in our case, the size of the Schur complement matrix ˆKuu is given by +the number of controls nu. +4.1.2. Implementation +The algorithm has been implemented entirely in Julia 1.8. The Schur complement +approach has been developed as an extension of the nonlinear optimization solver +MadNLP [41], using CUDA-aware MPI as provided in [6]. We have used the package +14 + +Name +#bus +#lines +#gen +nx +nu +case118 +118 +186 +54 +181 +107 +case1354pegase +1,354 +1,991 +260 +2,447 +519 +case2869pegase +2,869 +4,582 +510 +5,227 +1,019 +case9241pegase +9,241 +16,049 +1,445 +17,036 +2,889 +Table 1.. MATPOWER instances used in the benchmark. +ExaPF as a nonlinear modeler for the optimal power flow problem. All the results +presented here have been generated on the supercomputer Polaris equipped with a +total of 560 nodes, each node having with 1 CPU and 4 A100 GPUs. +4.2. Assessment of the parallel implementation +4.2.1. Assessing the performance of the parallel automatic differentation +We first assess the performance of the parallel automatic differentiation we introduced +in §3.1 in a multi-GPU setting. We compare the performance we obtain with a CPU +implementation. We use case1354pegase as a representative instance, and display the +time spent in the automatic differentiation as we increase the total number of scenarios +N. The results are displayed in Figure 4. +We observe that the computation time depends linearly on the number of scenarios, +as expected. For N = 8, it is not worthwhile dispatching the evaluation on multiple +GPUs as the problem is small enough to be evaluated on a single GPU. For N = 512, +the evaluation time is 12.3s on the CPU, compared to 0.50, 0.41, 0.31, and 0.28s using +1, 2, 4 and 8 GPUs, respectively. Hence, we get a 40x speed-up when evaluating the +derivatives in a multi-GPU setting, and it is not worthwhile to use more than 4 GPUs +(one node). +8 +16 +32 +64 +128 +256 +512 +N scenarios +10 +1 +100 +101 +Evaluation time [s] +case1354pegase +CPU +1 GPUs +2 GPUs +4 GPUs +8 GPUs +Figure 4.. Time spent to evaluate the model and its derivatives with automatic differentiation. +15 + +4.2.2. Assessing the performance of the parallel KKT solver +We proceed to the same performance analysis to assess the performance of the parallel +KKT solver detailed in §3.2. We compare the time required to evaluate the full solution +of the KKT system afresh (including reduction time, factorization time and backsolve +time) on case1354pegase as we increase the number of scenarios N. As a reference, +we give the time taken by the sparse linear solvers HSL MA27 (single-threaded) and +HSL MA57 (multi-threaded). The results are displayed in Figure 5. +On the left, we display the evolution of the time spent in the linear solver as we +increase the number of scenarios. For N = 512, we observe that we get a linear speed- +up as we increase the number of GPUs: using 8 GPUs, the parallel KKT solver is +40x faster than using HSL MA27 on the CPU. Interestingly, we observe that HSL +MA57 is not faster than HSL MA27, despite being multithreaded. This is consistent +with the observation made in [42], and illustrates the difficulty of parallelizing ef- +fectively the sparse LDL factorization (Bunch-Kaufman). On the right, we display a +performance profile detailing the time spent in MA27 and the parallel KKT solver on +case1354pegase with N = 512 scenarios. We observe that most of the time in HSL +MA27 is spent on factorizing the sparse augmented KKT system (6). On the other +side, the factorization of the dense reduced matrix ˆKuu is trivial using LAPACK on +the GPU; the bottleneck in the parallel KKT solver is the reduction algorithm itself. +Fortunately, the reduction algorithm can run in parallel: we get a linear speed-up as +we increase the number of GPUs used in the reduction algorithm. +8 +16 +32 +64 +128 +256 +512 +N scenarios +10 +1 +100 +101 +Time [s] +Linear solver time against N +ma27 +ma57 +1 GPUs +2 GPUs +4 GPUs +8 GPUs +ma27 +1 GPU +2 GPUs +4 GPUs +8 GPUs +0 +2 +4 +6 +8 +Time [s] +Performance profile for N = 512 +Factorization +Backsolve +Reduction +Figure 5.. Time spent to solve the KKT system for case1354pegase. +4.2.3. Assessing the memory consumption +We have observed in §3.1 that the total memory required to store the duals is O((2nx+ +nd + nb) × M × p), with M being the number of scenarios stored locally (M = N on +1 GPU, M = N/2 on 2 GPUs) and p the number of tangents. We display in Table 2 +the memory taken by the automatic differentiation backend and by the parallel KKT +solver for case1354pegase as we increase the number of scenarios N. We note that +storing the duals is expensive in terms of memory, with up to 10.9GB for N = 512 on +one GPU (as a reference, each NVIDIA A100 GPU on Polaris has 40GB of memory +available). By evaluating the model on different processes with MPI, we can split the +memory consumption on the different GPUs we are using, leading to better use of the +resource at our disposal. +16 + +1 GPU +2 GPUs +N +AD +KKT solver +AD +KKT solver +8 +171.1 +92.3 +85.5 +48.1 +16 +342.2 +181.5 +171.1 +93.1 +32 +684.3 +360.0 +342.2 +183.2 +64 +1,368.7 +716.8 +684.3 +363.2 +128 +2,737.3 +1,430.5 +1,368.7 +723.4 +256 +5,474.7 +2,858.0 +2,737.3 +1,443.6 +512 +10,949.3 +5,712.8 +5,474.7 +2,884.1 +Table 2.. Memory consumption in MB +4.3. Parallel solution of the block-structured OPF problem +We analyze the parallel performance of our implementation on block-structured OPF +problems. +4.3.1. Assessing the parallel performance w.r.t. the number of scenarios +First, we are interested in the scaling of the parallel algorithm in relation to the total +number of scenarios N. We consider the case118 instance, and increase the number +of scenarios N from 8 up to 2,048. For each N, we solve the block-structured OPF +problem with MadNLP using our parallel KKT solver, and we compare with the +performance we obtained with HSL MA27. The results are displayed in Figure 6. We +observe that the solver HSL MA27 is initially faster than our parallel KKT solver, as +the problem is too small to benefit from parallelism. However, as soon as N ≥ 16 the +parallel KKT solver becomes competitive with HSL MA27. The relative performance is +improving as we increase the number of scenarios N: for N = 512, we get a 68x speed- +up when using 8 GPUs, compared to the reference HSL MA27 (10.4s versus 712s). +Interestingly, using 2 nodes (=8 GPUs) does not lead to any speed-up compared to +a single node (=4 GPUs) if N ≤ 256; this setting is attractive only when the size of +the problem becomes sufficiently large (N ≥ 1024) to compensate for the additional +memory exchange. +4.3.2. Assessing the parallel performance w.r.t. the size of the problem +Second, we increase the size of the problems. We set a fixed number of scenarios +N = 8, and look at the time to solution for case1354pegase, case2869pegase and +case9241pegase. We detail the respective dimension of each problem in Table 3. We +display the results in Figure 7, and give the detailed benchmark in Table 4. On the +left (a), we display the total time required to find the solution of the three instances as +a function of the number of GPUs; on the right (b), we show the performance profile +associated to case9241pegase. In (a), we observe that overall the parallel algorithm is +faster than the CPU implementation. The parallel algorithm scales well as we increase +the number of GPUs we are using, the parallel algorithm being 35x faster than the +reference when using 8 GPUs to solve case9241pegase. In (b), we detail the time +17 + +8 +16 +32 +64 +128 +256 +512 +1,024 2,048 +N scenarios +100 +101 +102 +103 +Time to solution [s] +case118 +ma27 (CPU) +polaris (1 GPUs) +polaris (2 GPUs) +polaris (4 GPUs) +polaris (8 GPUs) +Figure 6.. Time to solve the block-structured OPF problem case118 as a function of the +number of scenarios N. +spent in the different operations for case9241pegase: the time spent to factorize the +Schur complement with Lapack (using cusolve) is constant as the size of the Schur +complement remains the same as we increase the number of GPUs. We observe that +the time spent in the AD decreases linearly with the number of GPUs exploited, but +the relative time spent in AD is negligible (less than 5% of the total time). Most of +the time is spent in the parallel reduction, as discussed earlier in §4.2.2. +N +nvar +ncon +ˆKuu (mb) +1354pegase +8 +20,095 +53,520 +2.1 +2869pegase +8 +42,835 +119,216 +7.9 +9241pegase +8 +139,177 +404,640 +63.7 +1354pegase +512 +1,253,383 +4,425,280 +2.1 +Table 3.. Dimension of the instances we have used in our benchmark. +4.3.3. Assessing the parallel performance on a very large-scale instance +We finish our numerical experiments by solving a very large-scale instance: +case1354pegase with N = 512 scenarios. The dimension of the resulting optimization +problem is displayed in Table 3: the problem has more than 1 million variables, and 4 +millions constraints. We solve this instance on resp. 1 node, 2, 4 and 8 nodes (resp. 4, +8, 16 and 32 GPUs). The results are displayed in Figure 8. We observe that the scaling +is almost perfect when we use 2 nodes (8 GPUs) instead of a single node (4 GPUs) +but we do not observe the same behavior when we increase the number of nodes to 4 +and 8. On that instance, the gain we get when using 8 nodes (32 GPUs) is marginal +18 + +CPU +1 GPU +2 GPU +4 GPU +8 GPU +100 +101 +102 +103 +Time to solution [s] +Benchmark +1354pegase +2849pegase +9241pegase +1 GPU +2 GPUs +4 GPUs +8 GPUs +10 +1 +100 +101 +102 +Time [s] +Performance profile, 9241pegase +Total time +linear scaling +AD +Factorization +Figure 7.. For a fixed number of scenarios N = 8, (a) total time spent solving the block- +OPF case1354pegase, case2869pegase and case9241pegase with MadNLP (b) performance +profile for case9241pegase with varying number of GPUs. +1354pegase +2869pegase +9241pegase +#it +AD +KKT +Tot. +#it +AD +KKT +Tot. +#it +AD +KKT +Tot. +CPU +44 +2.6 +4.2 +7.0 +77 +11.9 +27.4 +40.3 +136 +205.6 +771.8 +984.1 +1 GPU +44 +0.3 +1.8 +2.1 +93 +1.1 +11.7 +12.8 +98 +5.5 +112.3 +117.8 +2 GPUs +44 +0.3 +1.1 +1.4 +93 +0.8 +7.4 +8.2 +98 +3.4 +56.8 +60.2 +4 GPUs +44 +0.3 +1.0 +1.3 +93 +0.8 +5.7 +6.5 +98 +2.3 +35.8 +38.1 +8 GPUs +44 +0.2 +1.0 +1.2 +93 +0.6 +5.1 +5.7 +98 +1.4 +26.4 +27.7 +Table 4.. Detailed results +compared to when using 4 nodes (16 GPUs): the solving time only decreases from +67s to 58s. This corroborate our observations: it is better to pack all the computa- +tion on a single node to use four A100 GPUs connected together via unified memory +(NVLINK has a transfer rate of 600GB/s). When we have to use more than 2 nodes, +the memory transfers are more involved as they have to pass through the network of +the supercomputer. +5. Conclusion +We show promising results for leveraging massively parallel SIMD architectures like +GPUs for block-structured nonlinear programs. The parallelism is applied to both the +derivative evaluation and the solution of the KKT linear system. The main operation +in the KKT algorithm is the assembling of the Schur complement, the factorization of +the dense Schur complement being fast to carry on the GPU. +At all levels, the method benefits significantly from the massive parallelism, achiev- +ing a speedup of around 40 for the derivatives compared to a sequential CPU im- +plementation. The speedup is very application dependent, not least on the Hessian +coloring and the problem’s structure. The assembling of the Schur complement is bot- +tlenecked by a distributed reduction operation bound by the interconnect’s latency +and throughput between GPUs. Current, so-called super nodes with multiple GPUs +19 + +4 +8 +16 +32 +#GPUs +102 +3 × 101 +4 × 101 +6 × 101 +2 × 102 +Time to solution [s] +Benchmark 1354pegase (N=512) +Measured +linear scaling +Figure 8.. Solving case1354pegase with N = 512 +connected via fast networks like NVLINK greatly accelerate this operation. Lastly, our +method is limited by the memory capacity of the GPU accelerators as it grows linearly +with the number of problem blocks. In the context of ACOPF we are confident that +upcoming GPUs will provide enough memory to solve a large number of scenarios in +parallel, even for the largest grid instances (e.g., Eastern Interconnection with 70,000 +nodes). +With the upcoming release of the Aurora supercomputer, these SIMD architectures +will allow new science in regimes that were impossible with previous CPU architec- +tures. +Acknowledgment +This material was based upon work supported by the U.S. Department of Energy, Of- +fice of Science, Office of Advanced Scientific Computing Research (ASCR) under Con- +tract DE-AC02-06CH11347 and by NSF through award CNS-1545046. The authors +gratefully acknowledge the funding support from the Applied Mathematics Program +within the U.S. Department of Energy’s (DOE) Office of Advanced Scientific Com- +puting Research (ASCR) as part of the project ExaSGD. This research used resources +of the Argonne Leadership Computing Facility, which is a DOE Office of Science User +Facility supported under Contract DE-AC02-06CH11357. +References +[1] Amestoy, P. R., Duff, I. S., and L’excellent, J.-Y. (2000). Multifrontal parallel distributed +symmetric and unsymmetric solvers. Computer methods in applied mechanics and engineer- +ing, 184(2-4):501–520. +[2] Birge, J. R. and Qi, L. (1988). +Computing block-angular Karmarkar projections with +applications to stochastic programming. Management science, 34(12):1472–1479. +[3] Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G., +20 + +Paszke, A., VanderPlas, J., Wanderman-Milne, S., and Zhang, Q. (2018). JAX: composable +transformations of Python+NumPy programs. +[4] B¨ucker, H. M., Lang, B., an Mey, D., and Bischof, C. H. (2001). Bringing together auto- +matic differentiation and OpenMP. In Proceedings of the 15th international conference on +Supercomputing, pages 246–251. +[5] Bussieck, M. R. and Meeraus, A. (2004). General algebraic modeling system (GAMS). In +Modeling languages in mathematical optimization, pages 137–157. Springer. +[6] Byrne, S., Wilcox, L. C., and Churavy, V. (2021). MPI. jl: Julia bindings for the Message +Passing Interface. In Proceedings of the JuliaCon Conferences, volume 1, page 68. +[7] Capitanescu, F., Ramos, J. M., Panciatici, P., Kirschen, D., Marcolini, A. M., Platbrood, +L., and Wehenkel, L. (2011). +State-of-the-art, challenges, and future trends in security +constrained optimal power flow. Electric power systems research, 81(8):1731–1741. +[8] Chiang, N., Petra, C. G., and Zavala, V. M. (2014). Structured nonconvex optimization +of large-scale energy systems using PIPS-NLP. In 2014 Power Systems Computation Con- +ference, pages 1–7. IEEE. +[9] Choi, I. C. and Goldfarb, D. (1993). Exploiting special structure in a primal—dual path- +following algorithm. Mathematical Programming, 58(1):33–52. +[10] Colombo, M., Grothey, A., Hogg, J., Woodsend, K., and Gondzio, J. (2009). A structure- +conveying modelling language for mathematical and stochastic programming. Mathematical +Programming Computation, 1(4):223–247. +[11] DeMiguel, V. and Nogales, F. J. (2008). On decomposition methods for a class of partially +separable nonlinear programs. Mathematics of Operations Research, 33(1):119–139. +[12] Duff, I. S. (2004). MA57—a code for the solution of sparse symmetric definite and indef- +inite systems. ACM Transactions on Mathematical Software (TOMS), 30(2):118–144. +[13] Duff, I. S. and Van Der Vorst, H. A. (1999). Developments and trends in the parallel +solution of linear systems. Parallel Computing, 25(13-14):1931–1970. +[14] Dunning, I., Huchette, J., and Lubin, M. (2017). JuMP: A modeling language for math- +ematical optimization. SIAM review, 59(2):295–320. +[15] Fourer, R., Gay, D. M., and Kernighan, B. W. (1990). A modeling language for mathe- +matical programming. Management Science, 36(5):519–554. +[16] Gondzio, J. and Grothey, A. (2009). Exploiting structure in parallel implementation of +interior point methods for optimization. Computational Management Science, 6(2):135–160. +[17] Gondzio, J. and Sarkissian, R. (2003). Parallel interior-point solver for structured linear +programs. Mathematical Programming, 96(3):561–584. +[18] Griewank, A. and Walther, A. (2008). Evaluating derivatives: principles and techniques +of algorithmic differentiation. SIAM. +[19] Hovland, P. and Bischof, C. (1998). Automatic differentiation for message-passing parallel +programs. In Proceedings of the First Merged International Parallel Processing Symposium +and Symposium on Parallel and Distributed Processing, pages 98–104. IEEE. +[20] Hovland, P. D. (1997). Automatic differentiation of parallel programs. University of Illinois +at Urbana-Champaign. +[21] Huchette, J., Lubin, M., and Petra, C. (2014). Parallel algebraic modeling for stochas- +tic optimization. In 2014 First Workshop for High Performance Technical Computing in +Dynamic Languages, pages 29–35. IEEE. +[22] Jessup, E. R., Yang, D., and Zenios, S. A. (1994). Parallel factorization of structured +matrices arising in stochastic programming. SIAM journal on Optimization, 4(4):833–846. +[23] Kardoˇs, J., Kourounis, D., and Schenk, O. (2019). Two-level parallel augmented Schur +complement interior-point algorithms for the solution of security constrained optimal power +flow problems. IEEE Transactions on power systems, 35(2):1340–1350. +[24] Kardoˇs, J., Kourounis, D., and Schenk, O. (2020). Structure-exploiting interior point +methods. In Parallel Algorithms in Computational Science and Engineering, pages 63–93. +Springer. +[25] Kardoˇs, J., Kourounis, D., Schenk, O., and Zimmerman, R. (2022). Beltistos: A robust +interior point method for large-scale optimal power flow problems. Electric Power Systems +21 + +Research, 212:108613. +[26] Lubin, M., Petra, C. G., Anitescu, M., and Zavala, V. (2011). Scalable stochastic opti- +mization of complex energy systems. In SC’11: Proceedings of 2011 International Conference +for High Performance Computing, Networking, Storage and Analysis, pages 1–10. IEEE. +[27] Moses, W. S., Churavy, V., Paehler, L., H¨uckelheim, J., Narayanan, S. H. K., Schanen, M., +and Doerfert, J. (2021). Reverse-mode automatic differentiation and optimization of GPU +kernels via Enzyme. In Proceedings of the International Conference for High Performance +Computing, Networking, Storage and Analysis, pages 1–16. +[28] Nash, S. G. and Sofer, A. (1989). Block truncated-Newton methods for parallel optimiza- +tion. Mathematical Programming, 45(1):529–546. +[29] Nash, S. G. and Sofer, A. (1991). A general-purpose parallel algorithm for unconstrained +optimization. SIAM Journal on Optimization, 1(4):530–547. +[30] Nocedal, J. and Wright, S. J. (2006). Numerical optimization. Springer series in operations +research. Springer, New York, 2nd edition. +[31] Pacaud, F., Shin, S., Schanen, M., Maldonado, D. A., and Anitescu, M. (2022). +Ac- +celerating condensed interior-point methods on SIMD/GPU architectures. arXiv preprint +arXiv:2203.11875. +[32] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., +Gimelshein, N., Antiga, L., et al. (2019). Pytorch: An imperative style, high-performance +deep learning library. Advances in neural information processing systems, 32. +[33] Petra, C. G., Schenk, O., Lubin, M., and G¨artner, K. (2014). An augmented incomplete +factorization approach for computing the Schur complement in stochastic optimization. +SIAM Journal on Scientific Computing, 36(2):C139–C162. +[34] Rodriguez, J. S., Parker, R., Laird, C. D., Nicholson, B., Siirola, J. D., and Bynum, M. +(2021). Scalable parallel nonlinear optimization with PyNumero and Parapint. Optimization +Online. +[35] Ruszczynski, A. (1993). +Interior point methods in stochastic programming. +Working +paper. +[36] Saad, Y. (1980). +On the rates of convergence of the Lanczos and the block-Lanczos +methods. SIAM Journal on Numerical Analysis, 17(5):687–706. +[37] Schanen, M., Gilbert, F., Petra, C. G., and Anitescu, M. (2018). Toward multiperiod +ac-based contingency constrained optimal power flow at large scale. In 2018 Power Systems +Computation Conference (PSCC), pages 1–7. IEEE. +[38] Schenk, O. and G¨artner, K. (2004). Solving unsymmetric sparse systems of linear equa- +tions with PARDISO. Future Generation Computer Systems, 20(3):475–487. +[39] Schnabel, R. B. (1985). Parallel computing in optimization. In Computational Mathe- +matical Programming, pages 357–381. Springer. +[40] Schnabel, R. B. (1995). A view of the limitations, opportunities, and challenges in parallel +nonlinear optimization. Parallel computing, 21(6):875–905. +[41] Shin, S., Coffrin, C., Sundar, K., and Zavala, V. M. (2021). Graph-based modeling and +decomposition of energy infrastructures. IFAC-PapersOnLine, 54(3):693–698. +[42] Tasseff, B., Coffrin, C., W¨achter, A., and Laird, C. (2019). Exploring benefits of lin- +ear solver parallelism on modern nonlinear optimization applications. +arXiv preprint +arXiv:1909.08104. +[43] Watson, J.-P., Woodruff, D. L., and Hart, W. E. (2012). PySP: modeling and solving +stochastic programs in python. Mathematical Programming Computation, 4(2):109–149. +[44] Word, D. P., Kang, J., Akesson, J., and Laird, C. D. (2014). Efficient parallel solution +of large-scale nonlinear dynamic optimization problems. Computational Optimization and +Applications, 59(3):667–688. +[45] Zavala, V. M., Laird, C. D., and Biegler, L. T. (2008). +Interior-point decomposition +approaches for parallel solution of large-scale nonlinear parameter estimation problems. +Chemical Engineering Science, 63(19):4834–4845. +[46] Zhu, Y., Word, D., Siirola, J., and Laird, C. D. (2009). Exploiting modern computing +architectures for efficient large-scale nonlinear programming. In Computer Aided Chemical +22 + +Engineering, volume 27, pages 783–788. Elsevier. +[47] Zimmerman, R. D., Murillo-S´anchez, C. E., and Thomas, R. J. (2010). MATPOWER: +Steady-state operations, planning, and analysis tools for power systems research and edu- +cation. IEEE Transactions on Power Systems, 26(1):12–19. +Government License: The submitted manuscript +has been created by UChicago Argonne, LLC, +Operator of Argonne National Laboratory (“Ar- +gonne”). Argonne, a U.S. Department of Energy +Office of Science laboratory, is operated under +Contract No. DE-AC02-06CH11357. The U.S. +Government retains for itself, and others acting +on its behalf, a paid-up nonexclusive, irrevoca- +ble worldwide license in said article to repro- +duce, prepare derivative works, distribute copies +to the public, and perform publicly and display +publicly, by or on behalf of the Government. +The Department of Energy will provide pub- +lic access to these results of federally sponsored +research in accordance with the DOE Public +Access Plan. http://energy.gov/downloads/doe- +public-access-plan. +23 + diff --git a/99E4T4oBgHgl3EQfDgse/content/tmp_files/load_file.txt b/99E4T4oBgHgl3EQfDgse/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..260a7cbd729afe1812842da6610982bc4ebf0be9 --- /dev/null +++ b/99E4T4oBgHgl3EQfDgse/content/tmp_files/load_file.txt @@ -0,0 +1,1007 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf,len=1006 +page_content='Parallel Interior-Point Solver for Block-Structured Nonlinear Programs on SIMD/GPU Architectures Fran¸cois Pacauda, Michel Schanenb, Sungho Shinb, Daniel Adrian Maldonadob, Mihai Anitescub a Centre Automatique et Syst`emes, Mines Paris - PSL, Paris, France;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' b Mathematics and Computer Science Department, Argonne National Laboratory, Lemont, USA ARTICLE HISTORY Compiled January 13, 2023 ABSTRACT We investigate how to port the standard interior-point method to new exascale architectures for block-structured nonlinear programs with state equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Compu- tationally, we decompose the interior-point algorithm into two successive operations: the evaluation of the derivatives and the solution of the associated Karush-Kuhn- Tucker (KKT) linear system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Our method accelerates both operations using two levels of parallelism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' First, we distribute the computations on multiple processes using coarse parallelism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Second, each process uses a SIMD/GPU accelerator lo- cally to accelerate the operations using fine-grained parallelism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' The KKT system is reduced by eliminating the inequalities and the state variables from the corre- sponding equations, to a dense matrix encoding the sensitivities of the problem’s degrees of freedom, drastically minimizing the memory exchange.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' We demonstrate the method’s capability on the supercomputer Polaris, a testbed for the future exas- cale Aurora system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Each node is equipped with four GPUs, a setup amenable to our two-level approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Our experiments on the stochastic optimal power flow problem show that the method can achieve a 50x speed-up compared to the state-of-the-art method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Introduction Solving complex engineering problems often resorts to the solution of large-scale block- structured nonlinear programs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' As such, there has been a long interest in designing efficient nonlinear optimization algorithms, particularly by using parallel computing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Parallelism can happen at two levels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' At first, coarse parallelism splits the program into large computational chunks, usually dispatched to multiple processors using a message-passing interface in distributed memory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' In this paradigm, the parallel al- gorithm is designed to minimize the communication between the different processes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' In a complementary direction, fine-grained parallelism breaks down the program into small tasks, fast to compute in shared memory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' This method requires a large num- ber of processors to be efficient, and it is usually better on SIMD architectures with low communication overhead, as provided by Graphical Processing Units (GPUs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' In the mathematical optimization community, coarse parallelism has traditionally been used to solve large-scale block-structured optimization problems, as encountered in dynamic or stochastic nonlinear programs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' On the contrary, fine-grained parallelism has gained attraction only recently, with the renewed interests for machine learning arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='04869v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='OC] 12 Jan 2023 applications and stochastic gradient algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' In this work, we combine coarse and fine-grained parallelism to solve block-structured nonlinear problems on new exascale architectures, where the solution algorithm is streamlined on different GPUs using CUDA-aware MPI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Literature review In his pioneering work [39, 40], Robert Schnabel identified three practical approaches to run optimization algorithms in parallel: (i) parallelize the function evaluations;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' (ii) parallelize the linear algebra;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' and (iii) parallelize the optimization algorithm itself.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' The first attempt to parallelize the evaluations has been to streamline the com- putation of the derivatives using finite-differences [29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Soon, it has been noted that parallelizing the forward pass in automatic differentiation (AD) is also straightforward, provided that we can propagate the tangents (encoding the first-order sensitivity) in parallel [20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Unfortunately, doing the same in the reverse pass is not trivial, as ad- joining a mutable code leads to race conditions (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', every read becomes a write operation).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' This has led to extensive research on adapting automatic differentiation to parallel environments [4, 19, 27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Now, most state-of-the-art differentiable tools em- ploy a Domain Specific Language (DSL) constraining the user to specific differentiable operations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' In particular, this approach has been adopted mainly in machine learning, leading to the development of fast AD libraries efficiently generating the derivatives efficiently on hardware accelerators such as GPUs or TPUs [3, 32].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' The parallelization of linear algebra is usually more involved, as most large-scale op- timization methods fall back on the solution of sparse indefinite Karush-Kuhn-Tucker (KKT) systems [30].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' In the 1980s, preliminary results were obtained by running itera- tive methods in parallel, using block-Krylov [36] or block-truncated Newton methods [28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' However, block iterative algorithms are quickly limited by the lack of generic preconditioners for KKT systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' The 1990s witnessed the emergence of the interior- point methods (IPM), together with the development of large-scale sparse direct linear solvers [12, 38].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' In IPM, a significant portion of the time is spent solving a sequence of (indefinite) KKT systems, hence the method directly benefits from efficient sparse linear solvers able to run in parallel [1, 13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' In the 2000s, it was shown that, for block- structured optimization problems as we consider here, the layout of the optimization problem can be exploited further in a Schur complement approach to solve the Newton step in parallel [2, 9, 17, 22, 33, 44, 45].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' These developments led to the development of mature decomposition-based parallel nonlinear solvers for scenario-based problems in the 2010s [8, 16, 34, 41, 46].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Eventually, running an optimization algorithm fully in parallel generally requires a subtle combination of (i) and (ii), often devolving to a software engineering problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' The challenge is to evaluate the derivatives and solve the resulting KKT system each in parallel;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' all this while minimizing the communication between the different processes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' This has led to the development of different prototypes for MPI-parallel modelers [10, 21, 34, 43], most of them extending a specific AD backend [5, 14, 15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Such approaches have been successfully applied to solve large-scale block-structured nonlinear problems, as encountered in stochastic programming and dynamic optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' 2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Contributions In this article, we introduce a new parallel algorithm to solve block-structured non- linear programs involving state equations on exascale supercomputers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Our algorithm uses the parallel interior-point solver MadNLP [41], using two layers of parallelism to streamline both the evaluation of the derivatives and the solution of the KKT system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' This framework targets new exascale supercomputers, where each node is assigned to multiple GPUs connected with a unified memory (designed to have fast memory exchange between the different GPUs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' We demonstrate the capability of the algorithm on scenario-based power flow prob- lems (block-OPF), here formulated as two-stage stochastic nonlinear programs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' The scenarios can be stochastic or represent contingencies (which can be interpreted as stochastic outcomes with uniform distribution), as is the case of the very widely used security-constrained AC optimal power flow (SC-ACOPF) problem [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' SC-ACOPF is one of the core analyses undertaken in the planning, operational planning, and real- time operation of transmission systems [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' SC-ACOPF is run several times a day by many operators in the US and the world.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' For brevity, we will refer to such problems as stochastic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' The block structure of such problems is given by the different scenarios associ- ated with the stochastic problem, leading to potential parallelism in both the evalu- ation of the derivatives and the solution of the resulting block-angular KKT system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' The parallel solution of the block-OPF problem with a Schur complement approach has been studied extensively both with PIPS-NLP [8, 37] (multiprocessing) and with Beltistos [23, 25] (multiprocessing + factorization of the dense Schur complement on the GPU).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Compared to the state-of-the-art solver Beltistos, our approach carries out almost all computation on the GPUs including a global CUDA-aware MPI reduction, from the evaluation of the derivatives to the assembling of the Schur complement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' We test our implementation on the pre-exascale supercomputer Polaris, where each node is equipped with 4 A100 GPUs, and we solve block-OPF problems with up to 9,251 nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Problem statement In systems engineering, it is common to encounter optimization problems with rela- tively few degrees of freedom – ”controls”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Then, the goal is to appropriately fix the values for the degrees of freedom, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', by minimizing a given operational cost while satisfying the physical equations of the problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' In that context, the internal state of the system is described by a state variable x ∈ Rnx, whose values depend on the cur- rent controls u ∈ Rnu associated with the problem’s degrees of freedom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' If the problem is well-posed, this translates to the state equation g(x, u) = 0, where the function g exhibits the physical structure of the problem (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', a differential equation encoding a dynamics, or a nonlinear network flow associated with static balance equations).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' When the system faces uncertainties, it is often appropriate to choose a control u feasible under a finite set of conditions (or scenarios).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' That is, the control u must satisfy N different state equations gi(xi, u) = 0 for all i = 1, · · · , N, (1) 3 where the state xi now depend on the current scenario i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' The variables xi can be assim- ilated into a recourse variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' The N functions g1, · · · , gN define the block structure of the problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Block-structured nonlinear programs In addition to satisfying the N state equations (1), we aim at minimizing the average operating costs on the N different scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' The corresponding problem formulates as a two-stage nonlinear program, which, in our case, is a nonlinear program with partially separable structure [11]: min x1,··· ,xN, u N � i=1 fi(xi, u) s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' � � � � � xi ≥ 0 , u ≥ 0 gi(xi, u) = 0 , hi(xi, u) ≤ 0 , ∀i = 1, · · · , N , (2) with fi : Rnx × Rnu → R, gi : Rnx × Rnu → Rnx, hi : Rnx × Rnu → Rm smooth functions encoding the objective, the state equations, and the operational constraints, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' We note that the number of variables (N × nx + nu) and constraints (N × (m + nx)) are linearly proportional to the number of blocks N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' In addition, if we introduce local control variables u1, · · · , uN with the additional coupling constraint u1 = · · · = uN = u, we get a problem with a separable structure, solvable using the primal decomposition method;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' at the expense of increasing the search space [11, 35].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' By introducing slack variables s1, · · · , sN, we rewrite (2) in standard form: min x1,··· ,xN, s1,··· ,sN, u N � i=1 fi(xi, u) s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' � � � � � u ≥ 0 , xi ≥ 0 , si ≥ 0 gi(xi, u) = 0 , hi(xi, u) + si = 0 , ∀i = 1, · · · , N .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' (3) We define yi ∈ Rnx the multipliers (or adjoints) associated to the equality con- straints gi(xi, u) = 0, zi ∈ Rm the multipliers associated to the operational constraints hi(xi, u) + si = 0, as well as λ, κi, νi the three multipliers associated to the respective bound constraints u ≥ 0, xi ≥ 0, si ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' The Lagrangian associated to (3) is: L(x, u, s;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' y, z, λ, µ, ν) := N � i=1 � fi(xi, u) + y⊤ i gi(xi, u) + z⊤ i � hi(xi, u) + si � − κixi − νisi � − λu , (4) with x := (x1, · · · , xN), s := (s1, · · · , sN), y := (y1, · · · , yN), z := (z1, · · · , zN).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' To simplify the notations, we define the extended objective function and the extended constraints: f(x, u) := � i=1 fi(xi, u) , g(x, u) := � �� g1(x1, u) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' gN(xN, u) � �� , h(x, u) := � �� h1(x1, u) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' hN(xN, u) � �� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' 4 We assume the functions f, g, h are twice differentiable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' We denote H = ∂(x,u)h(x, u) ∈ RNm×(Nnx+nu) Jacobian of the inequality cons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' G = ∂(x,u)g(x, u) ∈ RNnx×(Nnx+nu) Jacobian of the equality cons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' W = ∇2 (x,u)L(x, u, s;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' ·) ∈ R(Nnx+nu)×(Nnx+nu) Hessian of Lagrangian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Interior-point method The interior-point method (IPM) [30, Chapter 19] is a classical approach to solve (3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' KKT system The Karush-Kuhn-Tucker (KKT) equations associated to (3) can be expressed as ∇xfi + (Gi x)⊤yi + (Hi x)⊤zi − κi = 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' ∀i = 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' · · · ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' N (5a) N � i=1 � ∇ufi + (Gi u)⊤yi + (Hi u)⊤zi � − λ = 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' (coupling) (5b) zi − νi = 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' ∀i = 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' · · · ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' N (5c) gi(xi,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' u) = 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' ∀i = 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' · · · ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' N (5d) hi(xi,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' u) + si = 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' ∀i = 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' · · · ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' N (5e) Xiκi = 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' (xi,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' κi) ≥ 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' ∀i = 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' · · · ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' N (5f) Siνi = 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' (si,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' νi) ≥ 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' ∀i = 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' · · · ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' N (5g) Uλ = 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' (u,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' λ) ≥ 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' (5h) where U = diag(u),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Xi = diag(xi),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Si = diag(si).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' The interior-point method uses a homotopy parameter µ > 0 to replace the complementarity constraints (5f)-(5g)-(5h) by the smooth approximations: Xiκi = µenx, Siνi = µem, Uλ = µenu (en being the vector of all ones of dimension n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' The resulting (smooth) system of nonlinear equations can be solved iteratively using New- ton method, where at each iteration, the descent direction is updated by solving the following augmented linear system: � ��� W + Σp 0 G⊤ H⊤ 0 Σs 0 I G 0 0 0 H I 0 0 � ��� � ��� pd ps py pz � ��� = − � ��� r1 r2 r3 r4 � ��� (6) with r1 = � ∇xf + G⊤ x y + H⊤ x z − µX−1enx ∇uf + G⊤ u y + H⊤ u z − µU−1enu � , r2 = z − µS−1em, r3 = g(x, u), r4 = h(x, u) + s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' The primal descent direction pd decomposes as pd = (px1, · · · , pxN, pu).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Block angular structure The linear system (6) is sparse and symmetric indefinite, and can be factorized using the Bunch-Kaufman algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' However, it is often beneficial to exploit its block- angular structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Indeed, both the Hessian of the Lagrangian and the Jacobians have 5 a block-angular structure, given as W = � ���� Wx1x1 Wx1u .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' WxNxN WxNu Wux1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' WuxN Wuu � ���� , G = � �� G1 x1 G1 u .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' GN xN GN u � �� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' By reordering the linear system (6), we can expose the block-angular structure of the KKT system as: � ���� A1 B⊤ 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' AN B⊤ N B1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' BN A0 � ���� (7) with A0 = Wuu, Ai = � ��� Wxixi + Σxi 0 G⊤ xi H⊤ xi 0 Σsi 0 I Gxi 0 0 0 Hxi I 0 0 � ��� , Bi = � � Wxiu (Gi u)⊤ (Hi u)⊤ � � ⊤ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' The block-angular structure (7) can be exploited to solve the KKT linear system in parallel using a Schur complement approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' In that case, the submatrices Ai can be factorized independently to assemble the Schur complement in parallel [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Condensation and reduction Instead of reordering the augmented KKT system (6) as a block angular matrix (7), we propose an alternative approach based on successive condensation and reduction of the KKT system, following the method introduced in [31].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' If the structure is well- defined, we show that we can condense the KKT system (6) to a dense matrix with size nu × nu in two steps: first, by removing the inequality constraints in (6), then by exploiting the structure of the equality constraints to reduce the condensed system to a dense matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' The condensation and reduction steps are illustrated in Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Condensation step The condensation step allows reducing the size of the KKT system drastically if the number of inequality constraints is large1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='1 (Condensed KKT system).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' The linear system (6) is equivalent to � K + Σp G⊤ G 0 � � pd py � = − � r1 + H⊤(Σsr4 − r2) r3 � , (8) where K ∈ R(Nnx+nu)×(Nnx+nu) is the condensed matrix K := W + H⊤ΣsH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' The 1It is equivalent to the normal equations in linear programming [30, Chapter 16, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='412] 6 Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='. Successive reductions for a block-structured nonlinear problem with N = 3: Aug- mented system (6), Condensed system (8), Reduced system (11).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' descent directions ps and pz are recovered as � pz = Σs � Hpd + r4 � − r2 , ps = −Σ−1 s � r2 + pz � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' (9) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' See [31, Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' The condensed matrix K inherits the block-angular structure of the Hessian of the Lagrangian W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' The condensed matrix K = W +H⊤ΣsH has a block-angular struc- ture, given as K = � ���� Kx1x1 Kx1u .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' KxNxN KxNu Kux1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' KuxN Kuu � ���� (10) where we have defined the condensed blocks Kxixi := Wxixi + (Hi xi)⊤ΣsiHi xi, Kuxi := Wuxi + (Hi u)⊤ΣsiHi xi and Kuu := Wuu + �N i=1(Hi u)⊤ΣsiHi u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' This is proved by induction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Reduction step In addition, we can exploit the structure of the equality constraints g1, · · · , gN to further reduce the size of the linear system (8) down to a dense matrix with size nu × nu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Equation (10) exhibits the structure w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' the state x and the control u, we 7 3755 x 3755 1193 x 1193 107 x 107rewrite as such the condensed KKT system (8) as � ����������� Kx1x1 Kx1u (G1 x1)⊤ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' KxNxN KxNu (GN xN)⊤ Kux1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' KuxN Kuu (G1 u)⊤ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' (G1 u)⊤ G1 x1 G1 u .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' GN xN GN u � ����������� � ����������� px1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' pxN pu p1 y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' pN y � ����������� = − � ���������� ˆr1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' ˆrN 1 ˆr2 ˆr1 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' ˆrN 3 � ���������� , where we have renamed the right-hand-side in (8) as ˆr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='3 (Reduction).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Assume that for all i = 1, · · · , N the Jacobian matri- ces Gi x ∈ Rnx×nx are invertible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Then the linear system (8) is equivalent to ˆKuu pu = −ˆr2 + N � i=1 � (Gi u)⊤(Gi x)−⊤ˆri 1 + � Kuxi − (Gi u)⊤(Gi x)−⊤Kxixi � (Gi x)−1ˆri 3 � (11) with ˆKuu := Z⊤KZ and Z ∈ R(nu+Nnx)×nu is the reduction operator defined as Z = � ���� −(G1 x)−1G1 u .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' −(GN x )−1GN u I � ���� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' (12) The descent directions px and py are recovered as � pi x = −(Gi x)−1� ˆri 3 + Gi upu � pi y = −(Gi x)−⊤� ˆri 1 + Kxixipi x + Kxiupu � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' (13) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' See [31, Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' The reduction (11) is equivalent to a Schur complement approach applied to the condensed KKT system (8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' In Proposition (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='1), we have shown that the condensed matrix K has a block-angular structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' The associated condensed KKT system (8) is also inheriting a block-angular structure in the form of (7), where the blocks are given by A0 = Kuu , Ai = � Kxixi (Gi x)⊤ Gi x 0 � , Bi = � Kxiu Gi u �⊤ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' (14) Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Assume that for each i = 1, · · · , N the Jacobian Gi x is invertible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Let Suu = A0 − �N i=1 BiA−1 i B⊤ i be the Schur complement associated to the block- angular system (7) with the matrices (Ai, Bi) defined in (14).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Then, the Schur com- plement Suu is equal to the reduced matrix �Kuu defined in (11): Suu = Z⊤KZ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' 8 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' First, note that if the Jacobian Gi x is invertible, then the block matrix Ai defined in (14) is also invertible, with A−1 i = � 0 (Gi x)−1 (Gi x)−⊤ −(Gi x)−⊤Kxixi(Gi x)−1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' (15) Using (14)-(15), we expand the expression of the terms in the sum constituting the Schur complement Suu: BiA−1 i B⊤ i = � Kuxi (Gi u)⊤� � 0 (Gi x)−1 (Gi x)−⊤ −(Gi x)−⊤Kxixi(Gi x)−1 � � Kxiu Gi u � , = (Gi u)⊤(Gi x)−⊤Kxiu + Kuxi(Gi x)−1(Gi u) − (Gi u)⊤(Gi x)−⊤Kxixi(Gi x)−1Gi u .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Hence, the Schur complement Suu = A0 − �N i=1 BiA−1 i B⊤ i expands as Suu = Kuu − N � i=1 � (Gi u)⊤(Gi x)−⊤Kxiu + Kuxi(Gi x)−1(Gi u) − (Gi u)⊤(Gi x)−⊤Kxixi(Gi x)−1Gi u � = Z⊤KZ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' We recover the expression of the reduced matrix �Kuu in Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Discussion Hence, we can interpret the reduction step as a Schur complement approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Forming the Schur complement has always been the bottleneck when solving distributed block angular problems in parallel [8, 26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Its reduction operation involves large memory transfers between the processes, with the number of transfers being on the order of O(log(p)), where p is the number of processes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Due to the quasi-shared memory architecture on GPUs, the reduction can be implemented efficiently [31].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' In the next section, we propose to extend [31] to assemble the reduced matrix �Kuu using two levels of parallelism, using both MPI and CUDA, thus reducing the reliance on distributed memory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Parallel implementation In the previous section, we have detailed the structure of block-angular nonlinear programs and presented the condensation and reduction steps for the KKT system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' The loose coupling between the blocks is favorable for parallelizing the evaluation of the derivatives and the solution of the block-angular KKT system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Globally, we can distribute the computation on different processes using MPI (coarse parallelism).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Lo- cally, we can further streamline the computation using GPU accelerators (fine-grained parallelism).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' This paradigm, with its two levels of parallelism, is directly in line with what is currently offered by the new exascale architectures, where each node has 4 to 8 GPUs, all sharing a unified memory for fast communication.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' We present in §3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='1 how we streamline the evaluation of the model using automatic differentiation, and in §3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='2 how we parallelize the solution of the KKT system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' 9 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Parallel automatic-differentiation First, we present how to evaluate the model in parallel using automatic differentiation [18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' We illustrate the procedure in Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' The goal of the algorithm is to streamline the evaluation of the N scenarios on N/M GPUs, M being the number of scenarios evaluated locally on each GPU (we suppose here that N is a multiple of M).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' root g1, · · · , g4 g13, · · · , g16 g1 g4 · · g13 g16 · · · · · · Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='. Parallel evaluation of the derivatives for g1, · · · gN on 4 GPUs: we have a total of N = 16 scenarios, each GPU evaluating M = 16/4 = 4 scenarios locally.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Local parallelism The first level of parallelism streamlines the evaluation of the model on SIMD/GPU devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' We have designed our implementation to run entirely on the GPU device, to avoid any data transfer between the host and the device.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Block evaluation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' We suppose that the nonlinear functions (fi, gi, hi) share the same structure, its expressions yielding the same Abstract Syntax Tree (AST) for all i = 1, · · · , M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' We illustrate the block evaluation on a simple abstract tree, but the reasoning extends to more complicated structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' We suppose that for all i, the functions fi, gi, hi depend linearly on a nonlinear basis matrix ψ : Rnx × Rnu → Rnb: that is, there exists three sparse matrices Lf, Lg, Lh such that fi(xi, u) = Lfψ(xi, u) , gi(xi, u) = Lgψ(xi, u) , hi(xi, u) = Lhψ(xi, u) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' (16) Suppose we aim to evaluate the M functions g1, · · · , gM in batch for the states x1, · · · , xM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' The structure (16) is directly amenable for SIMD evaluation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' We de- note by XM = (x1, · · · , xM) ∈ Rnx×M the dense matrix obtained by concatenat- ing the M states together.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' By using a proper GPU kernel or a parallel modeler, we can evaluate the basis in a SIMD fashion and build the matrix Ψ(XM, u) := � ψ(x1, u), · · · , ψ(xM, u) � ∈ Rnb×M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Then, evaluating the functions g1, · · · , gM simul- taneously translates to the evaluation of one SpMM product: � g1(x1, u), · · · , gM(xM, u) � = LgΨ(XM, u) ∈ Rnx×M .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' (17) The total memory required in the two successive operations is O((nx + nb) × M), and depends linearly on the number of blocks M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' We note the SpMM operations are generally implemented efficiently in the vendor library (cusparse for CUDA, rocSPARSE for AMDGPU).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' 10 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' First-order derivatives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Suppose that for a given i we have a differen- tiable implementation gbi : Rnd → Rnx associated to the function gi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' We aim to evaluate the Jacobian-matrix products (∇gi)D for p tangents encoded in a matrix D ∈ Rnd×p using forward-mode AD and operator overloading.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' This operation trans- lates to propagating forward a vector of dual numbers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Denoting by d ∈ Dnd p the dual number encoding the p tangents stored in D, evaluating (∇gi)D simply amounts to call gbi(d) and extract the results in the dual numbers returned as a result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' As Gi is sparse, we can apply the technique of Jacobian coloring [18] to compress the inde- pendent columns of the sparse matrix Gi and reduces the number of required seeding tangents p needed to evaluate the full Jacobian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Suppose now we want to evaluate the sparse Jacobians G1, · · · , GM in batch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' As the functions gi are based on the same AST, their respective Jacobians G1, · · · , GM are sharing the same sparsity pattern.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' By seeding a matrix of dual numbers DM = (d1, · · · , dM) ∈ Dnd×M p , we can use the same operation as (17) to streamline the evaluation of the M Jacobian-vector products using the SIMD kernel Ψ(·) and SpMM operations: � gb1(d1), · · · , gbM(dM) � := LgΨ(DM) ∈ Dnx×M p .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' (18) Once the results are evaluated, it remains to uncompress the dual outputs to build the M sparse Jacobians G1, · · · , GM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Hence, we can streamline the evaluation of the Jacobian along with the number of tangents p and the number of blocks M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' This comes at the expense of increasing memory usage to O((nx + nb + nd) × M × p) (to store the dual matrices associated to the input, the intermediate basis Ψ and the output).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Second-order derivatives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' The evaluation of the second-order deriva- tives follows the same procedure, using forward-over-reverse AD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' For each i, we sup- pose available an adjoint function adj gbi : Rnd × Rnx → Rnd which for any pri- mal x ∈ Rnd and adjoint y ∈ Rnx evaluates the Jacobian-transpose vector product (Gi(x))⊤y (reverse-mode).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Using forward-mode AD on top of adj gbi, we can compute the second-order derivatives y⊤∇2gi(x)V for p directions V by calling adj gbi(x, y).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Using Hessian coloring, we can compress the independent columns of the sparse matrix y⊤∇2g(x) and reduce the number of seeding tangents p required to evaluate the full Hessian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' We note that in general obtaining an adjoint adj gbi running in parallel is nontrivial due to potential race conditions incurred by the control flow reversal of the original code.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Computing the Hessian y⊤∇2gi(x) in parallel for i = 1, · · · M amounts to defining two matrices of dual numbers XM = (X1, · · · , XM) ∈ Dnd×M p , Y M = (y1, · · · , yM) ∈ Dnx×M p and evaluate ∇Ψ(XM)⊤L⊤ g Y M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' The dual outputs are uncompressed to build the M sparse Hessians (as the sparsity pattern of the Hessians is different than those of the Jacobians, the matrix XM employed here is different than the one used in (18)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' The total memory required to store the duals is O((2nx +nd +nb)×M ×p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' For more details, we refer to the vector forward mode as described in [18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Global parallelism Now, if we have several GPUs at our disposal, we can push the parallelism further by distributing the evaluations using multiprocessing and a Message Passing Interface (MPI) library.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Coming back at our original problem (2), we illustrate in Figure 2 how to dispatch the evaluation of the N nonlinear constraints g1, · · · , gN (the same reasoning 11 applies to the objectives f1, · · · , fN and the inequality constraints h1, · · · , hN).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' We use the streamlined implementation described in the previous subsection to evaluate the constraints in a batch of size M: the first GPU evaluates the constraints g1, · · · , gM, the second GPU evaluates gM+1, · · · , g2M, and so on.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' In total, the evaluation of the N constraints requires N/M GPUs (if M = 1, each GPU evaluate one constraint;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' if M = N, we use only one GPU evaluating all the constraints).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' The implementation has been designed to minimize the communication between the different processes: each batch g1, · · · , gM stores the data it needs locally, the only data exchange with the other processes being the vector of input and the vector of output.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' In addition, we will see in the next section we do not have to transfer the first- and second-order information if a parallel linear solver is being used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Parallel KKT solver By exploiting the block-angular structure of the KKT system, we can solve the New- ton step in parallel using a Schur complement approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' The challenge lies in the computation of the Schur complement matrix S = A0 − �N i=1 BiA−1 i B⊤ i .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Each prod- uct BiA−1 i B⊤ i requires the factorization of the matrix Ai and the solution of a linear system with multiple (sparse) right-hand-side A−1 i Bi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' State-of-the-art methods are evaluating the Schur complement using an incomplete augmented factorization ap- plied on the auxiliary matrix � Ai B⊤ i Bi 0 � , as currently implemented in the Pardiso linear solver [33].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Here, we use an alternative approach building on the reduced KKT system §2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='2 (equivalent to the Schur complement approach).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' As the reduction can be streamlined on GPU accelerators [31], this approach can assemble the Schur com- plement in parallel using CUDA-aware MPI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' We illustrate the parallel computation of the Schur complement in Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' root (Assembling) K, G K, G K, G K, G AD AD AD AD ˆK1:4 uu ˆK5:8 uu ˆK9:12 uu ˆK13:16 uu (Reduction) Z⊤KZ Z⊤KZ Z⊤KZ Z⊤KZ MPI AllReduce + (Schur compl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=') ˆKuu Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='. Parallel computation of the Schur complement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Assembling the sparse matrices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Using the procedure introduced in §3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='1, we evaluate locally the Jacobians G1, · · · , GM the Jacobians H1, · · · , HM and the Hes- sians W 1, · · · , W M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Using dedicated kernels, we uncompress the results in the block- 12 angular sparse Jacobians G1:M x = � �� G1 x1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' GM xM � �� , G1:M u = � �� G1 u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' GM u � �� , H1:M = � �� H1 x1 H1 u .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' HM xM HM u � �� , and sparse Hessian W 1:M = � ���� Wx1x1 Wx1u .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' WxMxM WxMu Wux1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' WuxM Wuu � ���� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Once the sparse matrices are obtained, we recover the condensed matrix K1:M = W 1:M + (H1:M)⊤Σ(H1:M) (Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='1) using one SpGEMM operation and we fac- torize the matrix G1:M x using a sparse LU factorization (potentially running in batch as the matrices G1 x1, · · · , GM xM are sharing the same sparsity pattern).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Once the ma- trix G1:M x is factorized as PG1:M x Q = LU (P, Q being two permutation matrices), computing (G1:M x )−1b translates to two backsolves (SpSV) and two matrix-vector mul- tiplications (SpMV), as (G1:M x )−1b = QU−1L−1Pb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Local reduction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Once the sparse matrices are built, we evaluate locally the reduced matrix �K1:M uu on the GPU, using div(nu, nbatch) + 1 matrix-matrix product �K1:M uu V (with V ∈ Rnu×nbatch a dense matrix encoding nbatch vectors of the Cartesian basis of Rnu).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' The evaluation of one batched matrix-matrix product �K1:M uu V = (Z⊤K1:MZ)V proceeds in three steps (1) Solve Tx = −(G1:M x )−1(G1:M u V ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' (2) Evaluate � Lx Lu � := � K1:M xx K1:M xu K1:M ux K1:M uu � � Tx V � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' (3) Set �K1:M uu V = Lu − G1:M u (G1:M x )−⊤Lx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' In total, we need 2 SpSM and 3 SpMM operations in the first step, 1 SpMM in the second step, and 2 SpSM and 3 SpMM operations in the third step, giving a total of 4 SpSM and 7 SpMM operations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' More than the computation, the reduction is limited by the memory, as we have to store the three buffers Lx, Tx, Tu with a total size of (2M × nx + nu) × nbatch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' If nx is too large, it is in our interest to reduce M (by using more GPUs) or to reduce nbatch (at the expense of computing more matrix-matrix product �K1:M uu V ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Global reduction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Once we obtain the locally reduced matrices �KnM+1:(n+1)M uu for n = 0, · · · , N/M − 1, we can assemble the global reduced matrix �Kuu = �N/M−1 n=0 �KnM+1:(n+1)M uu using one all reduce (MPI Allreduce) operation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' The size of the reduced matrix �Kuu is nu × nu, hence limiting the memory transfer required in the algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' 13 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Discussion We have presented a practical way to assemble the Schur complement on multi-GPU architectures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' The parallelism occurs both at the local level (SIMD evaluations on the GPUs) and at the global level (distributed computation with MPI).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' The algorithm has the advantage of assembling the sparse Jacobians and Hessians only locally, as the reduction occurs before proceeding to the memory transfer with MPI Allreduce.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' The reduced matrix has a dimension nu × nu, which compresses the memory transfer significantly if the number of degrees of freedom nu is small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' However, this comes at the expense of storing a vector of dual numbers (whose memory is linearly proportional to the number of blocks M evaluated locally and the number of tangents p being employed to evaluate the sparse derivatives) and additional buffers in the reduction algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' In the next section, we will test an implementation of the algorithm on CUDA GPUs, and show that the algorithm is practical.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Numerical results We demonstrate the capabilities of the algorithm we introduced in Section §3 on the supercomputer Polaris, using CUDA-aware MPI to dispatch the solution on multiple GPUs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' We present in §4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='1 the stochastic optimal power flow problem, and give in §4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='2 detailed assessments of the algorithms we have introduced earlier in §3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Eventually, we present in §4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='3 a benchmark comparing our parallel solution algorithm with a state-of-the-art solution method running on the CPU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Settings 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Case study: the block-structured optimal power flow The stochastic optimal power flow problem aims at finding an optimal dispatch for the generators u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' The solution u should minimize the operational costs while satisfying the physical constraints (power flow equations g(x, u) = 0, here playing the role of the state equations) and operational constraints (line flow constraints h(x, u) ≤ 0) on a given set of scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Each scenario is assigned given load parameters (energy demands) and potential contingencies (line tripping).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' The values of the state x depend on the local scenario we are in, the state x being the recourse variable in our case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' As such, the problem has a partially separable structure as introduced in Problem (2), the control u being shared across all scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' We refer to [7] for the original presentation of the stochastic optimal power flow problem and to [8, 23, 24, 26] for practical algorithms solving the stochastic optimal power flow problem (some also focus on the multistage setting, which is not covered in this article).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' For our benchmark, we look at reference instances provided by MATPOWER [47], whose characteristics are detailed in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' We recall that in our case, the size of the Schur complement matrix ˆKuu is given by the number of controls nu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Implementation The algorithm has been implemented entirely in Julia 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' The Schur complement approach has been developed as an extension of the nonlinear optimization solver MadNLP [41], using CUDA-aware MPI as provided in [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' We have used the package 14 Name #bus #lines #gen nx nu case118 118 186 54 181 107 case1354pegase 1,354 1,991 260 2,447 519 case2869pegase 2,869 4,582 510 5,227 1,019 case9241pegase 9,241 16,049 1,445 17,036 2,889 Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='. MATPOWER instances used in the benchmark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' ExaPF as a nonlinear modeler for the optimal power flow problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' All the results presented here have been generated on the supercomputer Polaris equipped with a total of 560 nodes, each node having with 1 CPU and 4 A100 GPUs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Assessment of the parallel implementation 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Assessing the performance of the parallel automatic differentation We first assess the performance of the parallel automatic differentiation we introduced in §3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='1 in a multi-GPU setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' We compare the performance we obtain with a CPU implementation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' We use case1354pegase as a representative instance, and display the time spent in the automatic differentiation as we increase the total number of scenarios N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' The results are displayed in Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' We observe that the computation time depends linearly on the number of scenarios, as expected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' For N = 8, it is not worthwhile dispatching the evaluation on multiple GPUs as the problem is small enough to be evaluated on a single GPU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' For N = 512, the evaluation time is 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='3s on the CPU, compared to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='50, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='41, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='31, and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='28s using 1, 2, 4 and 8 GPUs, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Hence, we get a 40x speed-up when evaluating the derivatives in a multi-GPU setting, and it is not worthwhile to use more than 4 GPUs (one node).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' 8 16 32 64 128 256 512 N scenarios 10 1 100 101 Evaluation time [s] case1354pegase CPU 1 GPUs 2 GPUs 4 GPUs 8 GPUs Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='. Time spent to evaluate the model and its derivatives with automatic differentiation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' 15 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Assessing the performance of the parallel KKT solver We proceed to the same performance analysis to assess the performance of the parallel KKT solver detailed in §3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' We compare the time required to evaluate the full solution of the KKT system afresh (including reduction time, factorization time and backsolve time) on case1354pegase as we increase the number of scenarios N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' As a reference, we give the time taken by the sparse linear solvers HSL MA27 (single-threaded) and HSL MA57 (multi-threaded).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' The results are displayed in Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' On the left, we display the evolution of the time spent in the linear solver as we increase the number of scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' For N = 512, we observe that we get a linear speed- up as we increase the number of GPUs: using 8 GPUs, the parallel KKT solver is 40x faster than using HSL MA27 on the CPU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Interestingly, we observe that HSL MA57 is not faster than HSL MA27, despite being multithreaded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' This is consistent with the observation made in [42], and illustrates the difficulty of parallelizing ef- fectively the sparse LDL factorization (Bunch-Kaufman).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' On the right, we display a performance profile detailing the time spent in MA27 and the parallel KKT solver on case1354pegase with N = 512 scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' We observe that most of the time in HSL MA27 is spent on factorizing the sparse augmented KKT system (6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' On the other side, the factorization of the dense reduced matrix ˆKuu is trivial using LAPACK on the GPU;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' the bottleneck in the parallel KKT solver is the reduction algorithm itself.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Fortunately, the reduction algorithm can run in parallel: we get a linear speed-up as we increase the number of GPUs used in the reduction algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' 8 16 32 64 128 256 512 N scenarios 10 1 100 101 Time [s] Linear solver time against N ma27 ma57 1 GPUs 2 GPUs 4 GPUs 8 GPUs ma27 1 GPU 2 GPUs 4 GPUs 8 GPUs 0 2 4 6 8 Time [s] Performance profile for N = 512 Factorization Backsolve Reduction Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='. Time spent to solve the KKT system for case1354pegase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Assessing the memory consumption We have observed in §3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='1 that the total memory required to store the duals is O((2nx+ nd + nb) × M × p), with M being the number of scenarios stored locally (M = N on 1 GPU, M = N/2 on 2 GPUs) and p the number of tangents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' We display in Table 2 the memory taken by the automatic differentiation backend and by the parallel KKT solver for case1354pegase as we increase the number of scenarios N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' We note that storing the duals is expensive in terms of memory, with up to 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='9GB for N = 512 on one GPU (as a reference, each NVIDIA A100 GPU on Polaris has 40GB of memory available).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' By evaluating the model on different processes with MPI, we can split the memory consumption on the different GPUs we are using, leading to better use of the resource at our disposal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' 16 1 GPU 2 GPUs N AD KKT solver AD KKT solver 8 171.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='1 92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='3 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='5 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='1 16 342.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='2 181.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='5 171.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='1 93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='1 32 684.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='3 360.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='0 342.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='2 183.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='2 64 1,368.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='7 716.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='8 684.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='3 363.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='2 128 2,737.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='3 1,430.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='5 1,368.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='7 723.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='4 256 5,474.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='7 2,858.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='0 2,737.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='3 1,443.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='6 512 10,949.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='3 5,712.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='8 5,474.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='7 2,884.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='1 Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='. Memory consumption in MB 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Parallel solution of the block-structured OPF problem We analyze the parallel performance of our implementation on block-structured OPF problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Assessing the parallel performance w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' the number of scenarios First, we are interested in the scaling of the parallel algorithm in relation to the total number of scenarios N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' We consider the case118 instance, and increase the number of scenarios N from 8 up to 2,048.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' For each N, we solve the block-structured OPF problem with MadNLP using our parallel KKT solver, and we compare with the performance we obtained with HSL MA27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' The results are displayed in Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' We observe that the solver HSL MA27 is initially faster than our parallel KKT solver, as the problem is too small to benefit from parallelism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' However, as soon as N ≥ 16 the parallel KKT solver becomes competitive with HSL MA27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' The relative performance is improving as we increase the number of scenarios N: for N = 512, we get a 68x speed- up when using 8 GPUs, compared to the reference HSL MA27 (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='4s versus 712s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Interestingly, using 2 nodes (=8 GPUs) does not lead to any speed-up compared to a single node (=4 GPUs) if N ≤ 256;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' this setting is attractive only when the size of the problem becomes sufficiently large (N ≥ 1024) to compensate for the additional memory exchange.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Assessing the parallel performance w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' the size of the problem Second, we increase the size of the problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' We set a fixed number of scenarios N = 8, and look at the time to solution for case1354pegase, case2869pegase and case9241pegase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' We detail the respective dimension of each problem in Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' We display the results in Figure 7, and give the detailed benchmark in Table 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' On the left (a), we display the total time required to find the solution of the three instances as a function of the number of GPUs;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' on the right (b), we show the performance profile associated to case9241pegase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' In (a), we observe that overall the parallel algorithm is faster than the CPU implementation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' The parallel algorithm scales well as we increase the number of GPUs we are using, the parallel algorithm being 35x faster than the reference when using 8 GPUs to solve case9241pegase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' In (b), we detail the time 17 8 16 32 64 128 256 512 1,024 2,048 N scenarios 100 101 102 103 Time to solution [s] case118 ma27 (CPU) polaris (1 GPUs) polaris (2 GPUs) polaris (4 GPUs) polaris (8 GPUs) Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='. Time to solve the block-structured OPF problem case118 as a function of the number of scenarios N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' spent in the different operations for case9241pegase: the time spent to factorize the Schur complement with Lapack (using cusolve) is constant as the size of the Schur complement remains the same as we increase the number of GPUs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' We observe that the time spent in the AD decreases linearly with the number of GPUs exploited, but the relative time spent in AD is negligible (less than 5% of the total time).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Most of the time is spent in the parallel reduction, as discussed earlier in §4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' N nvar ncon ˆKuu (mb) 1354pegase 8 20,095 53,520 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='1 2869pegase 8 42,835 119,216 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='9 9241pegase 8 139,177 404,640 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='7 1354pegase 512 1,253,383 4,425,280 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='1 Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='. Dimension of the instances we have used in our benchmark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Assessing the parallel performance on a very large-scale instance We finish our numerical experiments by solving a very large-scale instance: case1354pegase with N = 512 scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' The dimension of the resulting optimization problem is displayed in Table 3: the problem has more than 1 million variables, and 4 millions constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' We solve this instance on resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' 1 node, 2, 4 and 8 nodes (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' 4, 8, 16 and 32 GPUs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' The results are displayed in Figure 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' We observe that the scaling is almost perfect when we use 2 nodes (8 GPUs) instead of a single node (4 GPUs) but we do not observe the same behavior when we increase the number of nodes to 4 and 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' On that instance, the gain we get when using 8 nodes (32 GPUs) is marginal 18 CPU 1 GPU 2 GPU 4 GPU 8 GPU 100 101 102 103 Time to solution [s] Benchmark 1354pegase 2849pegase 9241pegase 1 GPU 2 GPUs 4 GPUs 8 GPUs 10 1 100 101 102 Time [s] Performance profile, 9241pegase Total time linear scaling AD Factorization Figure 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='. For a fixed number of scenarios N = 8, (a) total time spent solving the block- OPF case1354pegase, case2869pegase and case9241pegase with MadNLP (b) performance profile for case9241pegase with varying number of GPUs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' 1354pegase 2869pegase 9241pegase #it AD KKT Tot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' #it AD KKT Tot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' #it AD KKT Tot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' CPU 44 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='6 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='2 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='0 77 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='9 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='4 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='3 136 205.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='6 771.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='8 984.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='1 1 GPU 44 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='8 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='1 93 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='1 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='7 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='8 98 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='5 112.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='3 117.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='8 2 GPUs 44 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='4 93 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='8 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='4 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='2 98 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='4 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='8 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='2 4 GPUs 44 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='3 93 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='8 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='7 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='5 98 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='3 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='8 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='1 8 GPUs 44 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='2 93 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='6 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='1 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='7 98 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='4 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='4 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='7 Table 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='. Detailed results compared to when using 4 nodes (16 GPUs): the solving time only decreases from 67s to 58s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' This corroborate our observations: it is better to pack all the computa- tion on a single node to use four A100 GPUs connected together via unified memory (NVLINK has a transfer rate of 600GB/s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' When we have to use more than 2 nodes, the memory transfers are more involved as they have to pass through the network of the supercomputer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Conclusion We show promising results for leveraging massively parallel SIMD architectures like GPUs for block-structured nonlinear programs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' The parallelism is applied to both the derivative evaluation and the solution of the KKT linear system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' The main operation in the KKT algorithm is the assembling of the Schur complement, the factorization of the dense Schur complement being fast to carry on the GPU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' At all levels, the method benefits significantly from the massive parallelism, achiev- ing a speedup of around 40 for the derivatives compared to a sequential CPU im- plementation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' The speedup is very application dependent, not least on the Hessian coloring and the problem’s structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' The assembling of the Schur complement is bot- tlenecked by a distributed reduction operation bound by the interconnect’s latency and throughput between GPUs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Current, so-called super nodes with multiple GPUs 19 4 8 16 32 #GPUs 102 3 × 101 4 × 101 6 × 101 2 × 102 Time to solution [s] Benchmark 1354pegase (N=512) Measured linear scaling Figure 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='. Solving case1354pegase with N = 512 connected via fast networks like NVLINK greatly accelerate this operation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Lastly, our method is limited by the memory capacity of the GPU accelerators as it grows linearly with the number of problem blocks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' In the context of ACOPF we are confident that upcoming GPUs will provide enough memory to solve a large number of scenarios in parallel, even for the largest grid instances (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', Eastern Interconnection with 70,000 nodes).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' With the upcoming release of the Aurora supercomputer, these SIMD architectures will allow new science in regimes that were impossible with previous CPU architec- tures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Acknowledgment This material was based upon work supported by the U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Department of Energy, Of- fice of Science, Office of Advanced Scientific Computing Research (ASCR) under Con- tract DE-AC02-06CH11347 and by NSF through award CNS-1545046.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' The authors gratefully acknowledge the funding support from the Applied Mathematics Program within the U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Department of Energy’s (DOE) Office of Advanced Scientific Com- puting Research (ASCR) as part of the project ExaSGD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' This research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' References [1] Amestoy, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', Duff, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', and L’excellent, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' (2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Multifrontal parallel distributed symmetric and unsymmetric solvers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Computer methods in applied mechanics and engineer- ing, 184(2-4):501–520.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' [2] Birge, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' and Qi, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' (1988).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Computing block-angular Karmarkar projections with applications to stochastic programming.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Management science, 34(12):1472–1479.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' [3] Bradbury, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', Frostig, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', Hawkins, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', Johnson, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', Leary, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', Maclaurin, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', Necula, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', 20 Paszke, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', VanderPlas, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', Wanderman-Milne, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', and Zhang, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' JAX: composable transformations of Python+NumPy programs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' [4] B¨ucker, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', Lang, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', an Mey, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', and Bischof, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' (2001).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Bringing together auto- matic differentiation and OpenMP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' In Proceedings of the 15th international conference on Supercomputing, pages 246–251.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' [5] Bussieck, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' and Meeraus, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' (2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' General algebraic modeling system (GAMS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' In Modeling languages in mathematical optimization, pages 137–157.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Springer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' [6] Byrne, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', Wilcox, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', and Churavy, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' MPI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' jl: Julia bindings for the Message Passing Interface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' In Proceedings of the JuliaCon Conferences, volume 1, page 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' [7] Capitanescu, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', Ramos, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', Panciatici, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', Kirschen, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', Marcolini, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', Platbrood, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', and Wehenkel, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' State-of-the-art, challenges, and future trends in security constrained optimal power flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Electric power systems research, 81(8):1731–1741.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' [8] Chiang, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', Petra, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', and Zavala, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Structured nonconvex optimization of large-scale energy systems using PIPS-NLP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' In 2014 Power Systems Computation Con- ference, pages 1–7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' IEEE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' [9] Choi, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' and Goldfarb, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' (1993).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Exploiting special structure in a primal—dual path- following algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Mathematical Programming, 58(1):33–52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' [10] Colombo, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', Grothey, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', Hogg, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', Woodsend, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', and Gondzio, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' A structure- conveying modelling language for mathematical and stochastic programming.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Mathematical Programming Computation, 1(4):223–247.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' [11] DeMiguel, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' and Nogales, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' On decomposition methods for a class of partially separable nonlinear programs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Mathematics of Operations Research, 33(1):119–139.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' [12] Duff, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' (2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' MA57—a code for the solution of sparse symmetric definite and indef- inite systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' ACM Transactions on Mathematical Software (TOMS), 30(2):118–144.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' [13] Duff, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' and Van Der Vorst, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' (1999).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Developments and trends in the parallel solution of linear systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Parallel Computing, 25(13-14):1931–1970.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' [14] Dunning, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', Huchette, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', and Lubin, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' JuMP: A modeling language for math- ematical optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' SIAM review, 59(2):295–320.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' [15] Fourer, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', Gay, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', and Kernighan, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' (1990).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' A modeling language for mathe- matical programming.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Management Science, 36(5):519–554.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' [16] Gondzio, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' and Grothey, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Exploiting structure in parallel implementation of interior point methods for optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Computational Management Science, 6(2):135–160.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' [17] Gondzio, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' and Sarkissian, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' (2003).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Parallel interior-point solver for structured linear programs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Mathematical Programming, 96(3):561–584.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' [18] Griewank, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' and Walther, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Evaluating derivatives: principles and techniques of algorithmic differentiation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' SIAM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' [19] Hovland, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' and Bischof, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' (1998).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Automatic differentiation for message-passing parallel programs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' In Proceedings of the First Merged International Parallel Processing Symposium and Symposium on Parallel and Distributed Processing, pages 98–104.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' IEEE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' [20] Hovland, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' (1997).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Automatic differentiation of parallel programs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' University of Illinois at Urbana-Champaign.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' [21] Huchette, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', Lubin, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', and Petra, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Parallel algebraic modeling for stochas- tic optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' In 2014 First Workshop for High Performance Technical Computing in Dynamic Languages, pages 29–35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' IEEE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' [22] Jessup, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', Yang, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', and Zenios, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' (1994).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Parallel factorization of structured matrices arising in stochastic programming.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' SIAM journal on Optimization, 4(4):833–846.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' [23] Kardoˇs, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', Kourounis, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', and Schenk, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Two-level parallel augmented Schur complement interior-point algorithms for the solution of security constrained optimal power flow problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' IEEE Transactions on power systems, 35(2):1340–1350.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' [24] Kardoˇs, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', Kourounis, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', and Schenk, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Structure-exploiting interior point methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' In Parallel Algorithms in Computational Science and Engineering, pages 63–93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Springer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' [25] Kardoˇs, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', Kourounis, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', Schenk, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', and Zimmerman, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Beltistos: A robust interior point method for large-scale optimal power flow problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Electric Power Systems 21 Research, 212:108613.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' [26] Lubin, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', Petra, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', Anitescu, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', and Zavala, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Scalable stochastic opti- mization of complex energy systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' In SC’11: Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis, pages 1–10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' IEEE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' [27] Moses, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', Churavy, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', Paehler, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', H¨uckelheim, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', Narayanan, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', Schanen, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', and Doerfert, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Reverse-mode automatic differentiation and optimization of GPU kernels via Enzyme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, pages 1–16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' [28] Nash, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' and Sofer, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' (1989).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Block truncated-Newton methods for parallel optimiza- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Mathematical Programming, 45(1):529–546.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' [29] Nash, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' and Sofer, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' (1991).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' A general-purpose parallel algorithm for unconstrained optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' SIAM Journal on Optimization, 1(4):530–547.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' [30] Nocedal, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' and Wright, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Numerical optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Springer series in operations research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Springer, New York, 2nd edition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' [31] Pacaud, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', Shin, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', Schanen, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', Maldonado, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', and Anitescu, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Ac- celerating condensed interior-point methods on SIMD/GPU architectures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' arXiv preprint arXiv:2203.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='11875.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' [32] Paszke, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', Gross, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', Massa, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', Lerer, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', Bradbury, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', Chanan, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', Killeen, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', Lin, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', Gimelshein, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', Antiga, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Pytorch: An imperative style, high-performance deep learning library.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Advances in neural information processing systems, 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' [33] Petra, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', Schenk, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', Lubin, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', and G¨artner, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' An augmented incomplete factorization approach for computing the Schur complement in stochastic optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' SIAM Journal on Scientific Computing, 36(2):C139–C162.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' [34] Rodriguez, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', Parker, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', Laird, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', Nicholson, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', Siirola, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', and Bynum, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Scalable parallel nonlinear optimization with PyNumero and Parapint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Optimization Online.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' [35] Ruszczynski, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' (1993).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Interior point methods in stochastic programming.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Working paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' [36] Saad, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' (1980).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' On the rates of convergence of the Lanczos and the block-Lanczos methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' SIAM Journal on Numerical Analysis, 17(5):687–706.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' [37] Schanen, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', Gilbert, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', Petra, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', and Anitescu, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Toward multiperiod ac-based contingency constrained optimal power flow at large scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' In 2018 Power Systems Computation Conference (PSCC), pages 1–7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' IEEE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' [38] Schenk, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' and G¨artner, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' (2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Solving unsymmetric sparse systems of linear equa- tions with PARDISO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Future Generation Computer Systems, 20(3):475–487.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' [39] Schnabel, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' (1985).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Parallel computing in optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' In Computational Mathe- matical Programming, pages 357–381.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Springer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' [40] Schnabel, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' (1995).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' A view of the limitations, opportunities, and challenges in parallel nonlinear optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Parallel computing, 21(6):875–905.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' [41] Shin, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', Coffrin, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', Sundar, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', and Zavala, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Graph-based modeling and decomposition of energy infrastructures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' IFAC-PapersOnLine, 54(3):693–698.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' [42] Tasseff, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', Coffrin, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', W¨achter, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', and Laird, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Exploring benefits of lin- ear solver parallelism on modern nonlinear optimization applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' arXiv preprint arXiv:1909.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='08104.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' [43] Watson, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', Woodruff, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', and Hart, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' PySP: modeling and solving stochastic programs in python.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Mathematical Programming Computation, 4(2):109–149.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' [44] Word, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', Kang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', Akesson, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', and Laird, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Efficient parallel solution of large-scale nonlinear dynamic optimization problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Computational Optimization and Applications, 59(3):667–688.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' [45] Zavala, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', Laird, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', and Biegler, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Interior-point decomposition approaches for parallel solution of large-scale nonlinear parameter estimation problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Chemical Engineering Science, 63(19):4834–4845.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' [46] Zhu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', Word, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', Siirola, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', and Laird, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Exploiting modern computing architectures for efficient large-scale nonlinear programming.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' In Computer Aided Chemical 22 Engineering, volume 27, pages 783–788.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Elsevier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' [47] Zimmerman, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', Murillo-S´anchez, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=', and Thomas, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' MATPOWER: Steady-state operations, planning, and analysis tools for power systems research and edu- cation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' IEEE Transactions on Power Systems, 26(1):12–19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Government License: The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory (“Ar- gonne”).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Argonne, a U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Department of Energy Office of Science laboratory, is operated under Contract No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' DE-AC02-06CH11357.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' The U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevoca- ble worldwide license in said article to repro- duce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' The Department of Energy will provide pub- lic access to these results of federally sponsored research in accordance with the DOE Public Access Plan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' http://energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content='gov/downloads/doe- public-access-plan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} +page_content=' 23' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E4T4oBgHgl3EQfDgse/content/2301.04869v1.pdf'} diff --git a/9tFLT4oBgHgl3EQfCC72/content/tmp_files/2301.11974v1.pdf.txt b/9tFLT4oBgHgl3EQfCC72/content/tmp_files/2301.11974v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..4327113616ba8a730c1092e49a3d3ce35fac1867 --- /dev/null +++ b/9tFLT4oBgHgl3EQfCC72/content/tmp_files/2301.11974v1.pdf.txt @@ -0,0 +1,2684 @@ +arXiv:2301.11974v1 [math.OC] 27 Jan 2023 +Augmenting Bi-objective Branch and Bound +by Scalarization-Based Information +Julius Bauß∗ and Michael Stiglmayr +University of Wuppertal, School of Mathematics and Natural Sciences, +IMACM, Gaußstr. 20, 42119 Wuppertal, Germany +{bauss,stiglmayr}@math.uni-wuppertal.de +While Branch and Bound based algorithms are a standard approach to solve single- +objective (mixed-)integer optimization problems, multi-objective Branch and Bound meth- +ods are only rarely applied compared to the predominant objective space methods. In this +paper we propose modifications to increase the performance of multi-objective Branch +and Bound algorithms by utilizing scalarization-based information. We use the hypervol- +ume indicator as a measure for the gap between lower and upper bound set to implement +a multi-objective best-first strategy. By adaptively solving scalarizations in the root node +to integer optimality we improve both, upper and lower bound set. The obtained lower +bound can then be integrated into the lower bounds of all active nodes, while the deter- +mined solution is added to the upper bound set. Numerical experiments show that the +number of investigated nodes can be significantly reduced by up to 83% and the total +computation time can be reduced by up to 80%. +Keywords: multi-objective optimization, mult-iobjective branch and bound, integer pro- +gramming, hypervolume indicator +1 Introduction +Many optimization problems occurring in real-word applications include a conflict of interests and +goals, or secondary objectives, in a word, they are multi-objective. Thus, there is (in general) not +one solution that optimizes all objectives at once. Following the a posteriori paradigm of decision +making, we aim at determining the set of so-called efficient solutions or the images, the so-called +non-dominated points, which cannot be improved in one objective without deterioration in at least +one other objective. Thus, efficient solutions are reasonable choices for decision makers. +As we are considering specifically bi-objective integer linear programs and their solution with +multi-objective Branch and Bound methods, the following literature survey will also focus on this +and closely related topics. A comprehensive introduction to multi-objective optimization in general +is given, e.g., in Steuer (1986); Ehrgott (2005). +Solution approaches for multi-objective optimization problems are often categorized in: objective +space and decision space methods. Objective space methods scalarize the underlying problem, i. e., +it is replaced by a series of single-objective problems to determine successively the set of efficient +∗Corresponding author +1 + +solutions. +In the case of multi-objective integer programming, these scalarized problems can be +solved with commercial integer programming solvers like CPLEX or Gurobi. The utilization of these +optimized, single-criteria solvers are a major advantage and one of the reasons why those methods +are predominant in multi-objective optimization. +There are numerous objective space methods and a popular one is the ε-constraint method that +was introduced for two objectives by Haimes et al. (1971). In every iteration the first objective is +optimized with an updated constraint to ensure an improvement regarding the second objective. In +Laumanns et al. (2006) an extension to three and more objectives is presented. Many approaches +based on the ε-constraint method have been published in the last decades, for example Boland et al. +(2017) and Kirlik and Sayın (2014) combine the method with reduction of dimension in the tri- +respectively multi-dimensional case. +The weighted sum scalarization is an objective space method based on the optimization of a +weighted sum of the objective functions using non-negative weights. +Note that not all efficient +solutions can be determined as optimal solutions of the weighted sum scalarization using suit- +able weights (see, e. g. Aneja and Nair, 1979). +Efficient solutions which can be obtained by us- +ing weighted sum scalarization are denoted as supported efficicent and their corresponding non- +dominated points are located on the boundary of the convex hull of feasible image points. Extensions +of the weighted sum method to the multi-objective case are proposed in Przybylski et al. (2010a), +Özpeynirci and Köksalan (2010), Bö¸kler and Mutzel (2015), and Przybylski et al. (2019). +Ulungu and Teghem (1995) introduced the so-called two-phase method for bi-objective problems. +In the first phase the extreme supported non-dominated points are generated with an algorithm sim- +ilar to the initial weighted sum approach. In the second phase the remaining non-dominated points +are generated by searching in triangles defined by two consecutive extreme supported non-dominated +points. In Przybylski et al. (2008) and Tuyttens et al. (2000) problem specific algorithms are sug- +gested for the second phase, while in Przybylski et al. (2010b) a two-phase method for problems +with more than two objectives is proposed. +The augmented weighted Tchebycheff method, first presented in Steuer and Choo (1983), mini- +mizes the augmented weighted Tchebycheff distance between a predefined reference point and the +set of feasible image points. Dächert et al. (2012) suggested an adaptive choice of the augmentation +term for the bi-objective case. +In Boland et al. (2015a), Boland et al. (2015b) (for the bi-objective case), Dächert and Klamroth +(2014), and Klamroth et al. (2015) (for the tri- respectively multi-objective case) search region split- +ting methods are proposed. In this class of objective space methods, the search region (based on the +already determined non-dominated points) is splitted into so-called search zones on which scalariza- +tions are solved indpendently. +Besides their advantages, objective space methods share a shortcoming: In each iteration a scalar- +ized integer program is solved from scratch. Even though in some objective space methods starting +solutions can be transfered from previous iterations, a large number of very similar problems has +to be solved. In order to avoid this effort, decision space methods, mainly the Branch and Bound +method, have been increasingly investigated in the recent years. +Klein and Hannan (1982) developed one of the first Branch and Bound algorithms for multi- +objective integeger programs with a typical one tree structure. In Kiziltan and Yucaoğlu (1983) a +general Branch and Bound framework for multi-objective integer programs with binary variables +is presented. Ulungu and Teghem (1997) and Visée et al. (1998) proposed problem specific Branch +and Bound approaches for bi-objective Knapsack problems, where the latter approach is integrated +in a two-phase method. +Mavrotas and Diakoulaki (1998) extend the Branch and Bound approach to multi-objective mixed +integer programs. Parts of the algorithm are refined in Mavrotas and Diakoulaki (2005). In Vincent et al. +(2013) this algorithm is improved and it is shown that the original algorithm is not correct because +the final dominance test is incomplete. +In Belotti et al. (2012) a Branch and Bound method is +presented that can handle bi-objective mixed integer programs with continious variables in both +objective functions. +2 + +The Branch and Bound method proposed in Sourd and Spanjaard (2008) uses a set of points as +lower bound instead of just using a single point. Furthermore hyperplanes are used to fathom nodes +by dominance. In Stidsen et al. (2014) this idea is continued. They use hyperplanes as a lower +bound set that are generated by solving weighted sum scalarizations. Additionally they present +the so-called Pareto branching and the slicing technique. With Pareto branching it is possible to +divide the objective space to possibly ignore parts of it in specific nodes. +Slicing partitions the +objective space in equally large parts and a respective slice can be fathomed if it is dominated by +an already found integer point. +In Stidsen and Andersen (2018) this algorithm is improved and +an approach to parallelize the algorithm is presented. Based on this, the idea Pareto branching is +further investigated in Parragh and Tricoire (2019) and Gadegaard et al. (2019) for the bi-objective +case and Forget et al. (2022) for the tri-objective case. A self-contained survey of multi-objective +Branch and Bound approaches is given in Przybylski and Gandibleux (2017). +In this paper we present a bi-objective Branch and Bound algorithm that is augmented by +scalarization-based information. We make use of optimized single-objective solvers for scalar in- +teger programs and integrate the resulting information into the bi-objective Branch and Bound by +improving lower and upper bounds. Furthermore, we propose a new adaptive node selection strategy, +which relies on objective space information. In our numerical analysis we show the effectiveness of +these improvements by comparing them with a generic multi-objective Branch and Bound algorithm, +which we use as our baseline algorithm. +The remainder of the article is organized as follows: In Section 2, we introduce notations and def- +initions for multi-objective optimization. In Section 3, we present a general multi-objective Branch +and Bound framework and its key components. Furthermore, we describe a specific (however stan- +dard) multi-objective Branch and Bound algorithm, which will be used as baseline implementation +in our numerical tests. In Section 4, we present augmentations of the multi-objective Branch and +Bound, that utilize objective space information to improve the node selection as well as the compu- +tation of upper and lower bounds. We provide numerical results in Section 5 and in Section 6, we +outline conclusions and outlooks for further research. +2 Preliminaries +We introduce a general multi-objective integer linear program which can be written in the form: +min +� +z1(x), . . . , zp(x) +�⊤ +s.t. +A x ≤ b +x ≥ 0 +x ∈ Zn. +(MOILP) +Thereby, z(x) := (z1(x), . . . , zp(x))⊤ = C ·x ∈ Rp (with p ≥ 2) denotes the objective function vector, +with C ∈ Rp×n the matrix of objective coefficients. The set of feasible solutions X := {x ∈ Zn : A ≤ +b, x ≥ 0} is a subset of the decision space Rn, while its image Y := {C x: x ∈ X} is a subset of the +objective space Rp. +We use the Pareto concept of optimality which relies on the componentwise order. Let y1, y2 ∈ Rp, +then we define the corresponding dominance relations as follows: +• y1 ≦ y2, i.e., y1 weakly dominates y2 if y1 +k ≤ y2 +k for k = 1, ..., p, +• y1 < y2, i.e., y1 strictly dominates y2 if y1 +k < y2 +k for k = 1, ..., p, +• y1 ≤ y2, i.e., y1 dominates y2 if y1 ≤ y2 and y1 ̸= y2. +A feasible solution x ∈ X is called efficient if there is no other solution ˆx ∈ X dominating it, i.e., +z(ˆx) ≤ z(x). A feasible solution x ∈ X is called weakly efficient if there is no ˆx ∈ X such that +z(ˆx) < z(x). The set of efficient solutions is denoted by XE. By YN = {z(x) ∈ Y : x ∈ XE} we +3 + +denote the set of the non-dominated points in the objective space. Moreover, for any set Q ⊆ Rp +we denote by QN the set of its non-dominated points (i.e., q ∈ QN +⇐⇒ ∄q′ ∈ Q: q′ ≤ q). For a +comprehensive introduction to multi-objective optimization see, e. g., Ehrgott (2005). +In this article we consider a minimal complete set as solution of a multi-objective optimization +problem. A minimal complete set denotes the set of all non-dominated points YN and one efficient +solution for each non-dominated point. See Serafini (1987) for a comparison of solution concepts in +multi-objective optimization. +A standard solution approach in multi-objective optimization is the weighted sum scalarization +given in (WSλ). +min WSλ(x) := λ⊤z(x) = +p +� +i=1 +λi zi(x) +s.t. x ∈ X +(WSλ) +Obviously, every optimal solution of the weighted sum scalarization for λ ∈ Rp +> := {λ ∈ Rp : λ > 0} +is efficient for (MOILP). However, in general not all efficient solutions are optimal solutions of a +corresponding weighted sum problem. An efficient solution x′ ∈ XE is called supported if there is a +weighting vector λ′ ∈ Rp +> such that x′ is optimal for (WSλ) for λ = λ′, otherwise x′ is unsupported. +Note that the non-dominated points corresponding to supported efficient solutions are located on +the boundary of the convex hull of Y , while the unsupported non-dominated points are located in +its (relative) interior. +As already mentioned in the introduction the computation of upper and lower bounds on the +non-dominated set is a crucial component of any multi-objective Branch and Bound algorithm. The +tightest componentwise upper and lower bounds of YN are the ideal point yI and the Nadir point +yN given by: +yI +k = min +y∈Y yk +and +yN +k = max +y∈YN yk +for k = 1, . . . p. +Obviously, yI ≦ y ≦ yN holds for every y ∈ YN, i.e.; YN is contained in the hyperbox spanned by +the corner points yI and yN. However, these single point bounds are in general very weak except for +the degenerate case of yI = yN. This motivates to consider bound sets instead of bounds consisting +of a single point. We will rely on the definition of bound sets proposed in Ehrgott and Gandibleux +(2007). Let Rp +≧ := {y ∈ Rp : y ≧ 0}, then +• A lower bound set L ⊂ Rp for YN is a +– Rp +≧-closed (i.e., the set L + Rp +≧ is closed), +– Rp +≧-bounded (i.e., there exists a y ∈ Rp such that L ⊂ y + Rp +≧) +– stable set (i.e., L ⊂ (L + Rp +≧)N), +such that YN ⊂ (L + Rp +≧). +• An upper bound set U ⊂ Rp for YN is a +– Rp +≧-closed, +– Rp +≧-bounded, +– stable sets, +such that YN ⊂ cl +� +(U + Rp +≧)∁� +. +The upper bound and lower bound that we will define for our branch and bound framework in +Section 3 will suit these definitions. We say a lower bound L is weakly dominated by an upper +bound U if for all l ∈ L there exists an u ∈ U such that u ≦ l. +4 + +In the following we restrict ourselves to bi-objective binary linear optimization problems, i. e., +problems with two linear objective functions and variables x ∈ {0, 1}n: +min +z(x) = +� +z1(x), z2(x) +�⊤ +s.t. +A x ≤ b +x ∈ {0, 1}n. +(BO01LP) +3 A Generic Multi-objective Branch and Bound Framework +In this section we present a generic multi-objective Branch and Bound framework, which we specify +and augment by using scalarization based information in the then following sections. +Branch and Bound methods follow a “divide and conquer” paradigm. A problem that is too hard +to be solved directly, is divided into smaller and thus easier subproblems. Thereby, subproblems are +associated with nodes in a tree data structure according to their descent, i.e., node i is a descendant +node of node j iff the feasible set of the subprobem associated with node i is a subset of the feasible +set of the subproblem associated with node j. The corresponding subproblems of the child nodes are +created by subdividing the feasible set of the corresponding (sub)problem of the parent node. Starting +with the root node, to which the original optimization problem is associated, the algorithm selects in +each iteration one active node and updates its lower bound and upper bound. Then the active node +can be fathomed if the corresponding subproblem is either solved or irrelevant for the determination +of a minimal complete set. If we cannot prune we subdivide the corresponding problem into new +subproblems and create corresponding child nodes (branching). For a more detailed introduction +and survey of multi-objective Branch and Bound algorithms see Przybylski and Gandibleux (2017). +A recent survey of single-objective Branch and Bound frameworks is given e.g. in Morrison et al. +(2016). In the following we specify the lower bound, upper bound, branching rule and node selection +we use in our framework. +Lower bound: +Lower bound sets are often determined by solving relaxations of the respective +subproblem. Like in the single-objective case, the most frequently used relaxations are linear and +convex relaxations. In order to solve the linear relaxation we are using in our framework, we apply +Benson’s outer approximation algorithm (Benson, 1998). The algorithm is initiated with a lower +bound, which is improved in every iteration by generating cuts. Due to the outer approximation +structure the algorithm can be aborted at any time returning a valid lower bound. +Alternatively, linear (or convex) relaxations can be obtained using a dichotomic scheme (see, for +example, Aneja and Nair, 1979; Özpeynirci and Köksalan, 2010; Przybylski et al., 2010a). +Upper bound: +The upper bound set, in the following denoted by U, is stored in the form of a so- +called incumbent list. Throughout the run of the algorithm, it contains all integer feasible solutions +and their corresponding outcome vectors that are not dominated by another feasible solution found +so far. In every iteration the extreme supported solutions of the computed lower bound sets are +checked for integer feasibility. An integer feasible solution ¯x ∈ X is then appended to the incumbent +list, if there is no x ∈ U dominating ¯x, i. e., C(x) ≤ C(¯x). If a new solution ¯x is added to the +incumbent list U all solutions x ∈ U which are dominated by ¯x (C(¯x) ≤ C(x)) are removed from +it. Note that an update of the incubent list requires a subsequent update of the list of local upper +bounds. A detailed description of local upper bounds, their computation and update in an arbitrary +number of criteria is given in Klamroth et al. (2015). In this framework we start with an empty +upper bound set. However, it is also possible to initialize the incumbent list by heuristic methods, or +by solving scalarizations like, e.g., in the two-phase method (Ulungu and Teghem, 1995; Visée et al., +1998). +U ⊎ {¯x} := +� +U +if ∃x ∈ U : C(x) ≤ C(¯x) +{¯x} ∪ {x ∈ U : C(¯x) ≰ C(x)} +otherwise +5 + +Node selection: +In every iteration of the algorithm an unexplored node is selected from the tree of +subproblems. This node is called active node. The order in which the nodes of the tree are considered +has a significant impact on the number of created nodes that have to be explored and thus on the +computation time. +Two types of strategies need to be distinguished: static strategies and dynamic strategies. The two +most common examples of static strategies are the depth-first strategy and the breadth-first strategy. +Most multi-objective Branch and Bound algorithms in literature follow a depth-first strategy. Thus, +we use this strategy for our baseline implementation as well. +In contrast to the single-objective case, dynamic node selection strategies are rarely applied in the +multi-objective case. The usage of dynamic strategies for the choice of the active node can be seen +in (Stidsen et al., 2014), (Belotti et al., 2012) and (Jesus et al., 2021), for example. +Fathoming: +In order to avoid the total enumeration of all feasible solutions, nodes are fathomed +if the respective subproblem is either solved to optimality or does not contain solutions which are +necessary to determine a minimal complete set. In particular, there are three different situations in +which a node can be fathomed: +i) Fathoming by infeasibility: If the LP-relaxation of a subproblem is infeasible then the corre- +sponding subproblem is infeasible as well, since the feasible set of the subproblem is a subset +of the feasible set of its relaxation. +ii) Fathoming by optimality: Similar to the single-objective case we can fathom a node by opti- +mality if the lower bound L is equal to the upper bound U. This implies the subproblem is +solved to optimality and the associated node must not be subdiveded further. However, this +can happen in the multi-objective case only if the lower and upper bound consist of the same +single point, namely the ideal point. +iii) Fathoming by dominance: A node can be fathomed by dominance if all feasible solutions of this +subproblem are dominated by points in the incumbent list. In order to check dominance for all +feasible outcome vectors of a subproblem we compare the lower bound L of the corresponding +node to the current upper bound U. If for all l ∈ L there is a point in the incumbent list u ∈ U +with u ≦ l then all feasible points in the subtree are dominated by the current incumbent list. +In other words, if there is no local upper bound defined by U above the computed lower bound +the node can be fathomed by dominance. +Branching: +As mentioned in the beginning of this section, one of the key aspects of Branch and +Bound is iterative subdivision into smaller subproblems. Thereby subproblems are associated with +nodes in a tree, such that the subproblem associated to a child node is obtained by one branching +step. Since we consider binary optimization problems (BO01LP), we can divide a (sub)problem into +two new subproblems by fixing a specific variable to 0 and respectively to 1 in the other subproblem. +This results in a binary Branch and Bound tree. +The branching rule determines which variable is selected as branching variable in each iteration. +Thereby, one distinguishes between static and dynamic strategies. Static strategies determine an +order of the variables in advance. In each iteration of the algorithm the next variable in this list is +used as branching variable. With dynamic strategies the branching variable is selected by consid- +ering information obtained from previous iterations, i.e., from the solution of (linear) relaxations of +(sub)problems. +The basic idea of static strategies for single-objective problems is to sort the variables, beginning +with the most promising according to the objective function values (see, e. g., (Kellerer et al., 2004)). +However, this cannot be easily extended to the multi-objective case due to conflicting objective +functions. Nevertheless there are some approaches to extend static strategies to the multi-objective +case (see for example (Ulungu and Teghem, 1997) and (Bazgan et al., 2009)). +6 + +In contrast to most of the published papers which apply static strategies we use a dynamic strategy +as proposed in Belotti et al. (2012). By solving the linear relaxation of a (sub)problem we obtain +the lower bound set L. For all extreme points of L we check how often a variable is fractional in the +corresponding solutions. As branching variable we choose the one which is most often fractional. +4 Using Objective Space Information in Multi-objective Branch +and Bound +In this section, we propose modifications which improve the computational efficiency of bi-objective +Branch and Bound algorithms in two critical aspects. +One of the weaknesses of multi-objective +Branch and Bound as compared to its single-objective counterpart is the bounding procedure. While +any feasible solution ¯x ∈ X dominates w.r.t. one (linear) objective a half-space in decision space (i.e., +{x ∈ Rn : c⊤x ≥ c⊤¯x}), the set of feasible solutions which are dominated by a solution ¯x in p ≥ 2 +objective functions (C ∈ Rp×n) forms a cone {x ∈ Rn : C x ≧ C ¯x}. The cone of dominated solutions +is smaller the more the objective functions are in conflict, leading also to a larger number of efficient +solutions. This implies that a significant part of the Branch and Bound tree has to be enumerated +and only a small number of branches can be pruned by dominance. Despite of this general problem +in multi-objective optimization, this asks for good bounding procedures to avoid the unnecessary +evaluation of dominated branches. This however, requires good solutions in the incumbent list as +well as tight lower bounds. +In order to achieve this, we suggest a new branching strategy and the hybridization of Branch and +Bound with objective space methods. We determine scalarized subproblems adapted to the state of +the Branch and Bound and solve these to integer optimality. +4.1 Branching Strategy +The branching strategy comprises two subsequent decisions: the choice of the active node and its +branching into subproblems, i. e. the decision on which variable the subproblem is branched. This +second step is denoted as branching rule. We discuss these two steps together since the order in +which the nodes are considered has a significant impact on the branched variable. Instead of the +static depth- or breadth-first we use a dynamic node selection strategy, while we rely on the most +fractional rule as branching rule. +The basic idea of our strategy is quite simple and a natural extension of choosing the largest gap +in the single-objective case (see, for example, Dechter and Pearl, 1985). For every created node we +compute the approximate hypervolume gap between lower and upper bound. We use the definition of +hypervolume proposed in Zitzler and Thiele (1999). In every iteration we choose the node with the +largest hypervolume gap as active node (cf. Jesus et al. (2021)). Note that when a node is created +during the branching process, the approximated hypervolume gap of the parent node is assigned to +it. We distinguish two variants of the hypervolume gap: the total hypervolume gap and the local +hypervolume gap. While the total hypervolume gap measures the volume of the search region, i. e. +the volume between lower and upper bound set, the local hypervolume gap approach considers only +the volume of the largest search zone, i. e. the gap between a local upper bound and the lower bound +set. For a more detailed definition of search regions and search zones we refer to Klamroth et al. +(2015). +Figure 1 illustrates the two different approaches. Here, z1, . . . , z4 ∈ K ⊂ U are points of the +incumbent list and lu1, . . . , lu3 are their corresponding local upper bounds, where K is a subset +of the incumbent list containing just the points above the lower bound of node ¯n. The green line +represents the lower bound. Figure 1a shows how to measure the total hypervolume gap of a node ¯n, +in the following denoted by thg(¯n). For this approach we consider the approximated search region +of the corresponding node. Since there is a natural order in the bi-objective case, it is possible to +consider the approximated search zone of the first local upper bound, i.e. the local upper bound +7 + +z1 +z2 +lu1 +lu2 +lu3 +z1 +z2 +z3 +z4 +(a) +z1 +z2 +A +lu1 +lu2 +lu3 +z1 +z2 +z3 +z4 +(b) +z1 +z2 +B +lu1 +lu2 +lu3 +z1 +z2 +z3 +z4 +(c) +z1 +z2 +C +lu1 +lu2 +lu3 +z1 +z2 +z3 +z4 +(d) +Figure 1: Example of computation of the two different approximated hypervolume gap approaches. +8 + +with the smallest z1-value. Therefore we define the two spanning points, which, together with the +corresponding local upper bound, define a triangle. The spanning points of a local upper bound lu +are defined by spi(lu) := {l ∈ L: l3−i = lu3−i}, i = 1, 2. So, the approximate hypervolume gap of lu +is given by +hg(lu) := 1 +2 +��sp1(lu)1 − lu1 +�� · +��sp2(lu)2 − lu2 +��. +For the remaining local upper bounds we compute the hypervolume of slices as shown in the illus- +tration. The hypervolume of the slice of lui, i = 1, . . . , |K| − 1 is defined as +sl(lui) := +��zi +2 − sp2(lui−1)2 +�� + +��lui +2 − sp2(lui)2 +�� +2 +· +��zi +1 − lui +1 +��. +So, the total (approximated) hypervolume gap, which is assigned to node ¯n, is given by +thg(¯n) := hg(lu1) + sl(lu2) + . . . + sl(lu|K|−1). +The Figures 1b, 1c and 1d show the computation of the local hypervolume gap. The local hyper- +volume gap of a node ¯n is considered as the largest approximated hypervolume gap of a local upper +bound corresponding to points in K. Therefore, the the local hypervolume gap, which is assigned +to node ¯n, is defined by +lhg(¯n) := +max +i=1,...,|K|−1hg(lui). +In the given example, B is the largest approximated hypervolume and therefore is assigned to node +¯n. +Note that in our presented algorithms in Section 4.2 the local upper bound is initialized with the +point (∞, ∞)⊤. Therefore, it is possible to apply the new branching strategies immediately at the +beginning of the algorithm. Obviously, this approximation may neglect significantly large parts of +the search regions and search zones. However, the idea of the approximated hypervolume gap eases +computation and saves time. The efficiency of these new dynamic branching strategies is shown in +Section 5. +4.2 Augmenting Branch and Bound with IP Scalarizations +In this subsection, we introduce a method to incorporate scalarizations into Branch and Bound. We +build a hybrid Branch and Bound algorithm combining the partial enumeration of decision space +with objective space information by solving scalarizations to integer optimality. +An integer optimal solution ¯x of a scalarization can be used to update upper and lower bound. +Obviously, the corresponding image point z(¯x) can be added to the incumbent list. Moreover, a +scalarizing function and its optimal solution ¯x define a level set, which can be included in the lower +bound set for all descendant nodes. In order to utilize these improved lower bounds in all nodes we +solve the IP scalarizations in the root node. +4.2.1 Using Weighted Sum Scalarization +During the run of the Branch and Bound algorithm, a strategy triggers the IP solution of weighted +sum scalarizations in the root node. Thus, we solve problem (WSλ) for for adaptively chosen values +of λ ∈ R2 +>. Although we solve the IP scalarization in the root node the parameter λ is gained from +the currently active node. Thereby, λ is determined by the largest approximated local hypervolume +gap in the active node. This gap is spanned by two points in the incumbent list together with their +local upper bound. Note that these points spanning the largest gap are already determined if the +local hypervolume gap branching strategy is applied. The corresponding value of λ is determined by +computing the normal to the hyperplane that is defined by those two points. Once λ is obtained, +we can solve problem (WSλ) with a single-objective integer linear programming solver. Let ¯xλ be +9 + +the optimal solution of the weighted sum scalarization with weighting vector λ, then z(¯xλ) is a +supported non-dominated point of (BO01LP). Thus, we can add this point to the incumbent list (if +it was not found in previous iterations) and filter the resulting list for non-dominance. Moreover, +the solution of integer scalarizations can also be used to tighten the lower bound set, since the level +set {z ∈ R2 : λ⊤z = WSλ(¯xλ)} provides the valid inequality λ⊤z(x) ≥ WSλ(¯xλ) for all x ∈ X. +z1 +z2 +lu1 +lu2 +lu3 +z1 +z2 +z3 +z4 +z(¯xλ) +(a) +z1 +z2 +lu4 +lu5 +z1 +z5 +z4 +(b) +z1 +z2 +lu4 +lu5 +z1 +z5 +z4 +(c) +z1 +z2 +lu4 +lu5 +z1 +z5 +z4 +(d) +Figure 2: Example of updating the lower and upper bound with the usage of the weighted sum +scalarization. +Figure 2 illustrates the update of the lower and upper bound set. In Figure 2a, z1, . . . , z4 indicate +points that are currently in the incumbent list U¸ and lu1, . . . , lu3 are the corresponding local upper +bounds. +The point z(¯xλ) is obtained by solving a weighted sum scalarization (WSλ) to integer +optimality. Since the new point is not contained in the incumbent list so far, we can update the +upper bound as it is shown in Figure 2b. The new incumbent list then reads as U := {z(¯xλ)} ∪ {z ∈ +U : z(¯xλ) � z}. Moreover, the lower bound set L can be updated by integrating the blue hyperplane +into the lower bound set, i. e. L := {z ∈ L + R2 +≧ : λ⊤z ≥ WS(¯xλ)}N as it is shown in Figure 2c and +2d. In this situation, both —the lower and upper bound— are updated, which is not the case in +10 + +general. +The example illustrates the benefits of hybridizing multi-objective Branch and Bound with IP +scalarizations. Due to weak bounding, nodes may not be fathomed by dominance even if they do +not contain additional non-dominated points. The tighter upper bound increases the probability of +fathoming a node by dominance in later iterations of the algorithm. Also, the lower bound might be +improved. Since we are solving an IP scalarization in the root node, the obtained optimal level set is +a valid inequality for all subproblems. We combine our new branching strategy and the augmentation +with IP scalarizations to our first hybrid Branch and Bound approach. +Hybrid Branch and Bound Algorithm using Weighted Sum Scalarization +• Lower bound: linear relaxation +• Upper bound: incumbent list +• Node selection: node with the largest total/local hypervolume gap +• Branching rule: most fractional +• Adaptively solve weighted sum scalarizations in the root node to integer optimality to improve +lower and upper bounds by objective space information +Instead of using a static depth-first strategy (as in the general Branch and Bound framework in +Section 3) we apply the dynamic strategy based on the hypervolume gap (c.f. Section 4.1). Even +though the extreme points of the lower bound sets might be updated by the weighted sum scalar- +ization, the branching variable is selected based on the original lower bounds. This is due to the +fact that the preimages of such intersection points of IP scalarizations and the lower bound set +are in general not available. Note that the weighted sum IP scalarizations are included adaptively +into the Branch and Bound. The description of their algorithmic control, however, is postponed to +Section 4.3. +In order to conclude the description of the proposed hybrid Branch and Bound algorithm using +weighted sum scalarizations, we want to briefly discuss its advantages and shortcomings. Firstly, it +is easy to determine the scalarization parameter λ and to integrate the hyperplane into the lower +bound set. Its advantage, however, is that the lower bound remains convex. Therefore, the check +for fathoming by dominance remains intuitive. Unfortunately, the weighted sum scalarization can +only find supported efficient solutions and the lower bound cannot be improved beyond the convex +hull of YN. This motivates us to consider in the following the augmented weighted Tchebycheff +scalarization, a scalarization approach which can determine also unsupported efficient solutions. +4.2.2 Using Augmented Weighted Tchebycheff Scalarization +We start by defining the weighted Tchebycheff norm: Let wi > 0, i = 1, . . . , p be positive weights +with �p +i=1 wi = 1. Then the weighted Tchebycheff norm of a vector z ∈ Rp is defined by +∥z∥w +∞ := max +i=1,...,p +� +wi |zi| +� +. +(1) +So, the weighted Tchebycheff scalarization of a multi-objective optimization problem (MOILP) with +respect to a given reference point s ∈ Rp can be written as: +min +� +∥z(x) − s∥w +∞ : x ∈ X +� +. +(2) +If the reference point is chosen such that s < z(x) for all x ∈ X, every efficient solution can be deter- +mined as optimal solution of the weighted Tchebycheff scalarization (2) by variation of w ∈ Rp ++ (see, +e.g., Miettinen, 1998). Nevertheless, optimal solutions of the weighted Tchebycheff scalarization cor- +respond in general only to weakly efficient solutions of the multi-objective problem (Steuer and Choo, +1983; Miettinen, 1998). This shortcoming is compensated by an additive augmentation term in the +augmented weighted Tchebycheff norm +∥z∥w +τ := ∥z∥w +∞ + τ ∥z∥1 , +(3) +11 + +where ∥z∥1 = |z1| + . . . + |zp| denotes the L1-norm, wi ≥ 0, i = 1, . . . , p, �p +i=1 wi = 1 and τ > +0. +Steuer and Choo (1983) proposed the augmented weighted Tchebycheff scalarization given in +(AWT w +τ ). +min AWT w +τ (x) := ∥z(x) − s∥w +τ +s.t. x ∈ X +(AWT w +τ ) +Thereby, the augmentation term makes the augmented weighted Tchebycheff norm a strongly mono- +tone norm and thus the objective function of (AWT w +τ ) a strongly increasing achievement scalar- +izing function (Miettinen, 1998). Consequently, every optimal solution of (AWT w +τ ) is efficient for +(MOILP). +Note that an appropriate choice of the parameter τ is difficult in general. On the one hand, too +small values of τ may lead to numerical difficulties. On the other hand, non-supported efficient +solutions might be suboptimal for (AWT w +τ ) if the value of τ is too large. However, for bi-objective +integer programming Dächert et al. (2012) propose an adaptive method to determine an optimal +value of τ. We use this proposed parameters w1, w2 and τ for our method. +As a reference point s we use the local ideal point of two adjacent non-dominated points. Since the +augmented weighted Tchebycheff scalarization can only determine non-dominated points (and the +corresponding efficient solutions) which are (strictly) dominated by the reference point, we obtain a +non-dominated point in this box. +The goal to improve the lower bound set beyond the convex hull of non-dominated points is the +motivation to solve augmented weighted Tchebycheff scalarizations to integer optimality. Figure +3 shows an example how such an update of the bounds could look like. Here, z1 and z2 are two +known non-dominated points (obtained with the weighted sum IP scalarization). +Point z3 is a +non-supported non-dominated point that has not been found yet in Figure 3a. By using the local +ideal point of z1 and z2 as the reference point s, Figure 3b illustrates how the non-dominated point +z3 is found by applying the augmented weighted Tchebycheff scalarization. In Figure 3c and 3d +the resulting improvements of the lower and upper bound are shown. Obviously the lower bound +is improved beyond the convex hull of YN. We now define our second hybrid Branch and Bound +approach: +Hybrid Branch and Bound Algorithm using augmented weighted Tchebycheff Scalarization +• Lower bound: linear relaxation +• Upper bound: incumbent list +• Node selection: node with the biggest total/local hypervolume gap +• Branching rule: most fractional +• Adaptively solve weighted sum and augmented weighted Tchebycheff scalarizations in the root +node to integer optimality to improve lower and upper bounds by objective space information +Additionally to the weighted sum scalarization, we use the augmented weighted Tchebycheff scalar- +ization. Since two adjacent non-dominated points are required as input of the augmented weighted +Tchebycheff scalarization, we cannot rely on points in the incumbent list, which are only non- +dominated so far. In fact, we apply augmented weighted Tchebycheff IP scalarizations only to boxes +spanned by points obtained as optimal solutions of the weighted sum scalarization. Thus, we do not +rely on parameters from the currently active node, but solve the augmented weighted Tchebycheff +scalarization in the largest area defined by two adjacent known non-dominated points. +When using augmented weighted Tchebycheff IP scalarizations, the lower bound can become +tighter than the convex hull of the set of non-dominated points, which reduces the area where +new non-dominated points can be found. Additionally, we can find non-supported non-dominated +points in early stages of the algorithm. This improves the upper bound in the beginning resulting +in a higher chance of fathoming a node by dominance. However, this also implies that the lower +12 + +z1 +z2 +z1 +z2 +z3 +lu1 +(a) +z1 +z2 +z1 +z2 +z3 +lu1 +s +(b) +z1 +z2 +z1 +z2 +z3 +lu2 +lu3 +s +(c) +z1 +z2 +z1 +z2 +z3 +lu2 +lu3 +(d) +Figure 3: Example of updating the lower and upper bound with the usage of the augmented weighted +Tchebycheff scalarization. +bound gets non-convex in general, which makes the fathoming tests significantly harder, and the +lower bound improves only locally. +4.3 Algorithmic Control of IP Scalarizations +In the previous subsections we did not specify when to solve IP scalarizations, which implies a sig- +nificant computational cost itself. However, this might be the most crucial part within the presented +methods. Obviously, we aim at gaining as much information as possible by solving IP scalarizations. +More objective space information will lead to tighter bounds that reduce the number of created +nodes, due to a higher probability of fathoming by dominance and smaller search zones. Moreover, a +reduced number of created nodes will reduce the total computation time. At the same time, solving +overly many IP scalarizations will have a negative impact on the computation time. Furthermore, +at a certain point the lower and upper bound will not improve anymore when solving additional IP +13 + +scalarizations. +So, there exists a trade-off between the reduction of the number of created subproblems and the +decrease of the computation time. The difficulty is to find an appropriate condition to trigger an IP +scalarization. Obviously, solving IP scalarizations more frequently in the beginning of the Branch +and Bound algorithm is very promising. +The earlier the lower and upper bounds are improved +the more nodes might be fathomed. Moreover, solving the IP scalarization when the active node +has weak bounds will lead to stronger improvements than in later stages of the algorithm. This +is complemented by our adaptive branching strategy, which tends to select subproblems with weak +lower bounds first. +The hybrid Branch and Bound algorithm using augmented weighted Tchebycheff scalarization +entails also another problem. The augmented weighted Tchebycheff scalarization improves the lower +bound just locally. If we use this scalarization at the beginning of the algorithm instead of the +weighted sum scalarization, this could lead to an increase of created nodes. Once again, the intuitive +idea is to start with the weighted sum IP scalarization more frequently in the beginning of the +algorithm. This ensures that the lower bound improves globally at early stages of the Branch and +Bound. The augmented weighted Tchebycheff scalarization should be used in later stages of the +algorithm to find non-supported non-dominated points and to improve the lower bound locally. The +efficiency of this idea and other approaches will be shown in the next section where we present +numerical test results. +5 Numerical Results +All algorithms were implemented in Julia 1.7.1 and the linear relaxations were solved with Bensolve +2.1. The numerical tests were executed on a single core of a 3.20 GHz Intel® Core™ i7-8700 CPU +processor in a computer with 32 GB RAM, running under openSUSE linux Leap 15.3. +We present numerical results of our new approaches and compare them to the general Branch +and Bound framework presented in Section 3 which we use as baseline implementation. We consider +three different types of problems: knapsack problems, assignment problems and discrete facility +location problems. Multiple combinations of parameter settings are used to solve these test problems. +Thereby, we compare the average number of explored nodes, the average number of solved IPs and +the average computation time for 20 instances per problem size. The different evaluated approaches +are +• the generic bi-objective Branch and Bouch (BB), +• bi-objective Branch and Bound using the local (BS1) respectively global (BS2) hypervolume +gap as node selection criterion, +• hybrid Branch and Bound including weighted sum IP scalarizations (WS), and +• different combinations of the hybrid Branch and Bound algorithm using weighted sum IP scalar- +ization (M1.α.β) and hybrid Branch and Bound algorithm using weighted sum and augmented +weighted Tchebycheff IP scalarization (M2.α.β.γ). +The parameter α ∈ {1, 2, 3} controls how often IP scalarizations are applied. Since the algorithmic +control of IP scalarization is selected for each value of α problem dependent, it is described in +detail in the following subsections. However, the larger the parameter α is chosen, the fewer IP +scalarizations are applied. With β we distinguish between the local (β = 1) and the global (β = 2) +hypervolume gap strategy. In the hybrid Branch and Bound algorithm using augmented weighted +Tchebycheff scalarization we also distinguish between integrating the objective space information +of the augmented weighted Tchebycheff into the lower bound (γ = 1) or not (γ = 2). Note that +the tested parameter values are not optimized but have shown to provide good results on our test +instances. +14 + +5.1 Bi-objective Multidimensional Knapsack Problems +We consider bi-objective, multidimensional knapsack problems with one, two and three linear re- +strictions (i. e. m = 1, 2, 3). For every problem size we randomly generate 20 instances of the form +max +n +� +i=1 +ck +i xi +k = 1, 2 +s.t. +n +� +i=1 +wi xi ≤ b +n +� +i=1 +vij xi ≤ dj +j = 1, ..., m − 1 +x ∈ {0, 1}n +with ck +i ∈ [50, 100], wi ∈ [5, 15], b = 5 n, vij ∈ [5, 15] and dj = +� r n +2 +� +with r ∈ [5, 15]. Depending on +the parameter α we specify when and how often IP scalarizations are solved. In M1.1.β and WS +we apply the weighted sum scalarization every 10-th iterations. In M1.2.β we apply it every 10-th +iteration but only within the first n2 iterations. In M1.3.β we apply the weighted sum scalarization +every 10-th iteration within the first n2/3 iterations, every n-th iteration within the next n2/3 +iterations and every 2n-th iteration within the third n2/3 iterations. In M2.1.β.γ we apply the +weighted sum scalarization every 10-th iteration and every 50-th iteration the augmented weighted +Tchebycheff scalarization is used instead. In M2.2.β.γ we operate like in M1.2.β but after the first +n2 iterations we apply the augmented weighted Tchebycheff scalarization every 50-th iteration. In +M2.3.β.γ we operate like in M1.3.β but after the first n2 iterations we apply the augmented weighted +Tchebycheff scalarization every 50-th iteration. If a scalarization cannot be applied or the same IP +scalarization has already been solved before, no IP scalarization is solved in that iteration. +First of all, we notice that our branching strategies have a huge impact on the number of explored +nodes and the computation time in knapsack problems. We observe that in general the local hyper- +volume gap strategy works better than the global hypervolume gap strategy. With the local strategy +we can reduce the number of explored nodes by up to 76% (Table 1c and 2b) and the computation +time by up to 73% (Table 1c). Although the local strategy works better the global hypervolume +gap strategy has also a significant impact. The number of explored nodes can be reduced by up to +58% (Table 2c) and the computation time by up to 52% (Table 2c). The number of nodes and the +computation time is reduced in all our approaches and we can notice that combinations with the +local hypervolume strategy work better. +By limiting the number of solved weighted sum IPs (i. e. in M1.2.β, M1.3.β, M2.2.β.γ and +M2.3.β.γ) we notice two consequences. The number of nodes increases while the number of solved +IPs decreases. Although the number of nodes (and thus the number of considered subproblems) is +increasing, the total computation time decreases. This implies that the reduced computation time +to solve IP scalarizations compensates the increase of nodes, which results in a trade-off between the +number of explored nodes and the computation time. Another interesting aspect can be observed in +M2.α.β.1 and M2.α.β.2. The computation time can be reduced if we do not integrate the augmented +weighted Tchebycheff objective level set into the lower bound. This can be explained by the fact that +the lower bound improvements of augmented weighted Tchebycheff are only local and do not com- +pensate the computation time needed to integrate the information. The intuitive assumption that +the number of explored nodes will then rise significantly is false. So, both our branching strategies +work better, if we do not consider the local updates of the lower bound. +We can reach a reduction of the explored nodes by up to 83% (Table 2b) and a reduction of the +computation time by up to 80% (Table 2b) in the best case. The strategies M2.1.1.1 and M2.1.1.2 +seem to work best for knapsack problems. In most cases these two strategies have the largest impact +on the number of explored nodes. Nevertheless, M2.1.1.2 achieves for all instance sizes the best +computation times, since computation time is saved by not integrating the augmented weighted +15 + +knapsack problem, m = 1, n = 50 +version +nodes +time (s) +solved +IPs +BB +27916.3 +18.153 +0.0 +BS1 +11788.1 +8.339 +0.0 +WS +14270.7 +10.507 +33.75 +M1.1.1 +10789.7 +8.452 +26.4 +M1.2.1 +10793.5 +8.188 +21.2 +M1.3.1 +10795.7 +8.116 +17.95 +M2.1.1.1 +9888.5 +10.873 +48.7 +M2.2.1.1 +10140.3 +9.437 +32.65 +M2.3.1.1 +10521.0 +8.774 +25.65 +M2.1.1.2 +9840.1 +8.396 +45.55 +M2.2.1.2 +10130.6 +8.422 +32.35 +M2.3.1.2 +10401.8 +8.288 +26.25 +BS2 +16739.8 +11.397 +0.0 +M1.1.2 +11026.3 +8.861 +26.1 +M1.2.2 +11024.5 +8.860 +19.85 +M1.3.2 +11047.4 +8.645 +16.05 +M2.1.2.1 +10071.8 +10.907 +45.85 +M2.2.2.1 +10421.4 +9.587 +31.8 +M2.3.2.1 +10583.2 +9.448 +24.45 +M2.1.2.2 +9994.1 +8.940 +46.65 +M2.2.2.2 +10413.4 +8.820 +32.55 +M2.3.2.2 +10568.9 +8.727 +25.15 +(a) Knapsack problem with m = 1 constraint +and n = 50 variables +knapsack problem, m = 1, n = 80 +version +nodes +time (s) +solved +IPs +BB +153938.9 +186.330 +0.0 +BS1 +36392.0 +50.952 +0.0 +WS +58825.7 +79.545 +54.0 +M1.1.1 +34337.7 +50.431 +41.65 +M1.2.1 +34333.9 +50.312 +33.1 +M1.3.1 +34307.1 +50.505 +26.35 +M2.1.1.1 +31643.7 +81.625 +100.2 +M2.2.1.1 +32708.9 +68.939 +76.2 +M2.3.1.1 +32986.3 +69.848 +63.6 +M2.1.1.2 +31274.5 +46.721 +102.85 +M2.2.1.2 +32795.7 +48.576 +76.3 +M2.3.1.2 +33025.8 +48.358 +63.4 +BS2 +90976.0 +116.847 +0.0 +M1.1.2 +39745.1 +59.321 +45.25 +M1.2.2 +40083.2 +59.350 +31.2 +M1.3.2 +39918.1 +58.999 +24.5 +M2.1.2.1 +31905.8 +80.505 +99.7 +M2.2.2.1 +34496.9 +79.444 +84.0 +M2.3.2.1 +34571.7 +72.955 +65.15 +M2.1.2.2 +32074.9 +48.510 +104.85 +M2.2.2.2 +34169.8 +51.464 +87.15 +M2.3.2.2 +34943.3 +51.887 +63.1 +(b) Knapsack problem with m = 1 constraint +and n = 80 variables +knapsack problem, m = 1, n = 100 +version +nodes +time (s) +solved +IPs +BB +297345.3 +484.676 +0.0 +BS1 +68920.5 +128.967 +0.0 +WS +128080.8 +224.587 +66.95 +M1.1.1 +67369.1 +128.665 +54.1 +M1.2.1 +67370.1 +128.924 +39.95 +M1.3.1 +67353.3 +128.993 +32.9 +M2.1.1.1 +58214.2 +198.683 +156.85 +M2.2.1.1 +61533.1 +179.516 +123.0 +M2.3.1.1 +62127.3 +177.621 +104.55 +M2.1.1.2 +58151.3 +112.575 +158.1 +M2.2.1.2 +61490.6 +118.600 +120.1 +M2.3.1.2 +61762.6 +118.306 +108.65 +BS2 +187306.9 +318.524 +0.0 +M1.1.2 +73766.2 +144.684 +54.75 +M1.2.2 +74065.4 +144.677 +37.9 +M1.3.2 +73865.0 +144.306 +31.0 +M2.1.2.1 +59512.7 +200.754 +158.05 +M2.2.2.1 +64489.2 +192.211 +127.0 +M2.3.2.1 +64330.5 +187.803 +114.65 +M2.1.2.2 +60470.8 +118.479 +157.75 +M2.2.2.2 +64943.8 +127.428 +123.5 +M2.3.2.2 +64711.1 +126.525 +113.5 +(c) Knapsack problem with m = 1 constraint +and n = 100 variables +knapsack problem, m = 2, n = 50 +version +nodes +time (s) +solved +IPs +BB +32655.6 +25.8684 +0.0 +BS1 +10982.3 +9.6578 +0.0 +WS +14180.9 +13.1749 +33.25 +M1.1.1 +9784.7 +9.5159 +26.6 +M1.2.1 +9782.5 +9.2684 +19.65 +M1.3.1 +9791.1 +9.1580 +14.85 +M2.1.1.1 +8900.7 +12.6639 +47.75 +M2.2.1.1 +9407.5 +11.5112 +34.5 +M2.3.1.1 +9507.5 +11.0256 +24.8 +M2.1.1.2 +8892.9 +9.2702 +47.0 +M2.2.1.2 +9370.2 +9.2053 +33.05 +M2.3.1.2 +9484.3 +9.1161 +24.75 +BS2 +15639.2 +13.1246 +0.0 +M1.1.2 +10665.3 +10.8423 +28.5 +M1.2.2 +10671.3 +10.5141 +19.4 +M1.3.2 +10854.2 +10.5765 +15.7 +M2.1.2.1 +9045.3 +12.8916 +48.9 +M2.2.2.1 +9629.7 +12.1913 +34.9 +M2.3.2.1 +9814.7 +11.6068 +28.1 +M2.1.2.2 +9030.0 +9.5854 +48.2 +M2.2.2.2 +9608.5 +9.7621 +36.05 +M2.3.2.2 +9787.6 +9.6722 +28.35 +(d) Knapsack problem with m = 2 constraints +and n = 50 variables +Table 1: Numerical results of the bi-objective, multidimensional knapsack problems +16 + +knapsack problem, m = 2, n = 80 +version +nodes +time (s) +solved +IPs +BB +159911.4 +287.925 +0.0 +BS1 +41092.0 +88.121 +0.0 +WS +63215.0 +130.338 +55.0 +M1.1.1 +37799.1 +82.654 +43.9 +M1.2.1 +37835.8 +82.544 +30.55 +M1.3.1 +37811.3 +82.369 +24.75 +M2.1.1.1 +31615.0 +115.164 +102.55 +M2.2.1.1 +34772.5 +102.965 +72.5 +M2.3.1.1 +35127.1 +100.706 +60.6 +M2.1.1.2 +31590.2 +69.290 +104.7 +M2.2.1.2 +34977.7 +77.063 +72.45 +M2.3.1.2 +35170.3 +77.279 +61.3 +BS2 +115223.3 +224.926 +0.0 +M1.1.2 +43581.8 +97.039 +47.8 +M1.2.2 +43744.8 +97.874 +29.1 +M1.3.2 +45481.1 +102.689 +23.45 +M2.1.2.1 +32388.8 +116.173 +106.25 +M2.2.2.1 +36453.2 +120.161 +78.3 +M2.3.2.1 +35942.7 +116.972 +69.05 +M2.1.2.2 +33264.8 +74.207 +104.75 +M2.2.2.2 +36578.1 +81.915 +77.2 +M2.3.2.2 +35505.1 +77.971 +69.55 +(a) Knapsack problem with m = 2 constraints +and n = 80 variables +knapsack problem, m = 2, n = 100 +version +nodes +time (s) +solved +IPs +BB +428526.3 +1074.21 +0.0 +BS1 +100962.6 +326.98 +0.0 +WS +166108.1 +464.71 +67.25 +M1.1.1 +98831.5 +323.54 +54.8 +M1.2.1 +99313.5 +325.32 +38.95 +M1.3.1 +98770.6 +322.65 +32.6 +M2.1.1.1 +69951.9 +402.48 +149.35 +M2.2.1.1 +73433.8 +379.33 +119.6 +M2.3.1.1 +73424.7 +371.63 +102.95 +M2.1.1.2 +70172.3 +212.40 +153.15 +M2.2.1.2 +72824.8 +219.73 +121.55 +M2.3.1.2 +73651.5 +221.96 +107.5 +BS2 +271110.8 +720.46 +0.0 +M1.1.2 +113605.9 +381.46 +57.45 +M1.2.2 +117188.3 +394.57 +36.45 +M1.3.2 +113665.3 +378.63 +29.85 +M2.1.2.1 +70603.0 +404.28 +150.8 +M2.2.2.1 +77836.0 +400.18 +121.4 +M2.3.2.1 +76818.2 +399.89 +110.8 +M2.1.2.2 +72316.9 +219.91 +148.4 +M2.2.2.2 +78135.2 +240.57 +121.3 +M2.3.2.2 +77073.0 +235.49 +112.45 +(b) Knapsack problem with m = 2 constraints +and n = 100 variables +knapsack problem, m = 3, n = 50 +version +nodes +time (s) +solved +IPs +BB +54430.4 +51.5026 +0.0 +BS1 +15260.1 +17.9276 +0.0 +WS +18112.9 +20.5208 +36.2 +M1.1.1 +13522.4 +16.8431 +28.8 +M1.2.1 +13530.7 +16.4735 +19.0 +M1.3.1 +13576.5 +16.4442 +14.95 +M2.1.1.1 +12345.3 +22.1289 +51.15 +M2.2.1.1 +12973.5 +19.7592 +34.5 +M2.3.1.1 +13014.0 +19.6348 +28.8 +M2.1.1.2 +12241.1 +16.1190 +53.55 +M2.2.1.2 +12934.3 +16.2933 +35.15 +M2.3.1.2 +12908.3 +16.1009 +30.35 +BS2 +22597.3 +24.5736 +0.0 +M1.1.2 +14645.7 +18.6425 +29.55 +M1.2.2 +14573.2 +18.0521 +16.75 +M1.3.2 +14597.0 +17.9793 +14.5 +M2.1.2.1 +12617.9 +22.3518 +54.65 +M2.2.2.1 +13324.9 +20.7655 +33.4 +M2.3.2.1 +13252.3 +20.4366 +30.55 +M2.1.2.2 +12682.4 +16.8670 +56.65 +M2.2.2.2 +13180.2 +16.7601 +33.6 +M2.3.2.2 +13274.4 +16.8497 +32.15 +(c) Knapsack problem with m = 3 constraints +and n = 50 variables +knapsack problem, m = 3, n = 80 +version +nodes +time (s) +solved +IPs +BB +263971.6 +724.999 +0.0 +BS1 +81609.9 +287.899 +0.0 +WS +121360.8 +376.247 +56.4 +M1.1.1 +80406.5 +282.897 +47.35 +M1.2.1 +79971.5 +279.885 +32.2 +M1.3.1 +80089.6 +279.686 +26.55 +M2.1.1.1 +54187.1 +340.389 +115.7 +M2.2.1.1 +55915.9 +328.411 +85.45 +M2.3.1.1 +58486.8 +330.347 +66.9 +M2.1.1.2 +53396.0 +164.755 +116.0 +M2.2.1.2 +56572.6 +174.131 +86.25 +M2.3.1.2 +57452.9 +176.657 +67.85 +BS2 +140681.4 +390.578 +0.0 +M1.1.2 +92175.8 +334.414 +50.45 +M1.2.2 +96339.3 +350.148 +29.05 +M1.3.2 +96099.5 +348.915 +24.0 +M2.1.2.1 +54119.5 +349.261 +112.5 +M2.2.2.1 +59379.8 +344.899 +89.1 +M2.3.2.1 +60326.6 +349.874 +74.15 +M2.1.2.2 +54595.6 +176.090 +119.65 +M2.2.2.2 +62851.9 +211.373 +88.9 +M2.3.2.2 +61200.8 +205.413 +76.6 +(d) Knapsack problem with m = 3 constraints +and n = 80 variables +Table 2: Numerical results of the bi-objective, multidimensional knapsack problems +17 + +Tchebycheff objective space information into the lower bound. Note that with rising numbers of +variables and constraints the hybridization techniques have larger impact on the performance of the +Branch and Bound algorithm. +5.2 Bi-objective Assignment Problems +We consider bi-objective assignment problems having n = ℓ2 variables, +max +ℓ +� +i=1 +ℓ +� +j=1 +ck +ij xij +k = 1, 2 +s.t. +ℓ +� +i=1 +xij = 1 +j = 1, ..., ℓ +ℓ +� +j=1 +xij = 1 +i = 1, ..., ℓ +x ∈ {0, 1}ℓ×ℓ +where the cost coefficients ck +ij ∈ [50, 100]. The algorithmic strategy for the solution of IP scalariza- +tions depending on the value of the parameter α is chosen similarly to the previous case of knapsack +problems. However, we adapt the boundaries due to the different number of nodes to explore in as- +signment problems. In M1.1.β weighted sum scalarizations are solved every 10-th iteration to integer +optimality. In M1.2.β we apply the weighted sum every 10-th iteration within the first n·ℓ iterations. +In M1.3.β we apply the weighted sum every 10-th iteration within the first n · ℓ/3 iterations, every +ℓ-th iteration in the next n · ℓ/3 iterations and every n-th iteration in the third n · ℓ/3 iterations. +For M.2.α.β.γ we use the same algorithmic strategy as in hybrid Branch and Bound for knapsack +problems. If a scalarization cannot be applied or an IP with identical objective function has been +solved prior, no IP is solved in that iteration. +Due to the total unimodularity of the assignment problem, the weighted sum scalarizations do in +general not improve the lower bound sets of subproblems. However, in situations where the weighted +sum IP scalarization generates a supported efficient solution, whose corresponding non-dominated +point is not an extreme point of the lower bound set, the local upper bounds move closer to the lower +bound set. This reduces the gap between upper and lower bound and may lead to a decrease of the +explored subproblems. Note that this update of the upper bound set may also have the contrary +effect (the number of considered subproblems increases), since it can change the order in which the +subproblems are considered. Nevertheless, the weighted sum IP scalarizations are necessary to find +non-dominated points on which the augmented weighted Tchebycheff scalarization can be applied. +Our branching strategies have a significant impact on the number of explored nodes and the +computation time. Again, the local hypervolume gap performs better than the global hypervolume +gap strategy. With the local strategy we can reduce the number of explored nodes by up to 39% +(Table 3c) and the computation time by up to 33% (Table 3c). Using the global hypervolume gap +strategy we can reduce the number of explored nodes by up to 12% (Table 3b) and the computation +time by up to 12% (Table 3b). We reach a reduction of the explored nodes by up to 46% (Table 3d) +and a reduction of the computation time by up to 42% (Table 3d), in the best case. Again, the +strategies M2.1.1.1 and M2.1.1.2 seem to work the best for assignment problems in terms of explored +nodes. Nevertheless, M2.1.1.2 leads to a better computation time which can be explained by the +same argument as before. Furthermore, strategy BS1 works very well and is able to compete with +the previously mentioned strategies with respect to number of nodes and computation time without +solving a single IP scalarization. +18 + +assignment problem, n = 100 +version +nodes +time (s) +solved +IPs +BB +3117.0 +5.1507 +0.0 +BS1 +2422.2 +4.1182 +0.0 +WS +3117.0 +5.2631 +19.2 +M1.1.1 +2425.1 +4.1937 +13.95 +M1.2.1 +2425.1 +4.1564 +11.95 +M1.3.1 +2425.1 +4.1996 +8.4 +M2.1.1.1 +2418.2 +4.4063 +19.8 +M2.2.1.1 +2420.5 +4.2726 +14.4 +M2.3.1.1 +2419.5 +4.2242 +9.65 +M2.1.1.2 +2420.5 +4.3474 +19.9 +M2.2.1.2 +2420.5 +4.2014 +14.55 +M2.3.1.2 +2423.0 +4.2055 +9.8 +BS2 +2948.9 +4.9644 +0.0 +M1.1.2 +2519.8 +4.4349 +14.1 +M1.2.2 +2518.7 +4.4211 +11.05 +M1.3.2 +2516.2 +4.4203 +7.65 +M2.1.2.1 +2499.7 +4.6173 +20.4 +M2.2.2.1 +2518.7 +4.4661 +12.2 +M2.3.2.1 +2516.2 +4.4214 +8.35 +M2.1.2.2 +2498.1 +4.5400 +19.55 +M2.2.2.2 +2518.7 +4.4451 +12.25 +M2.3.2.2 +2516.2 +4.3972 +8.4 +(a) Assignment problem with n = 100 variables +assignment problem, n = 144 +version +nodes +time (s) +solved +IPs +BB +9661.9 +28.2667 +0.0 +BS1 +6255.4 +18.9362 +0.0 +WS +9610.8 +28.1363 +33.35 +M1.1.1 +6274.5 +18.9323 +22.3 +M1.2.1 +6274.5 +18.9869 +14.3 +M1.3.1 +6274.5 +18.9318 +9.85 +M2.1.1.1 +6210.9 +20.0216 +46.0 +M2.2.1.1 +6279.9 +19.4670 +23.55 +M2.3.1.1 +6271.2 +19.1542 +12.65 +M2.1.1.2 +6171.0 +19.4994 +43.6 +M2.2.1.2 +6261.5 +19.2851 +24.65 +M2.3.1.2 +6270.5 +18.8676 +12.45 +BS2 +8448.0 +24.7742 +0.0 +M1.1.2 +6781.8 +20.6825 +24.05 +M1.2.2 +6779.4 +20.5940 +13.25 +M1.3.2 +6734.2 +20.4270 +9.3 +M2.1.2.1 +6472.8 +20.8732 +44.1 +M2.2.2.1 +6724.2 +20.6838 +16.8 +M2.3.2.1 +6682.3 +20.4212 +12.6 +M2.1.2.2 +6500.3 +20.2536 +42.55 +M2.2.2.2 +6737.7 +20.5214 +16.75 +M2.3.2.2 +6689.0 +20.3987 +12.95 +(b) Assignment problem with n = 144 variables +assignment problem, n = 225 +version +nodes +time (s) +solved +IPs +BB +26810.5 +160.712 +0.0 +BS1 +16142.2 +107.909 +0.0 +WS +26810.5 +163.666 +46.85 +M1.1.1 +16150.0 +107.842 +32.8 +M1.2.1 +16151.2 +109.687 +19.7 +M1.3.1 +16164.7 +109.073 +12.05 +M2.1.1.1 +15424.1 +111.181 +87.4 +M2.2.1.1 +15964.3 +110.004 +43.05 +M2.3.1.1 +16112.2 +110.372 +19.5 +M2.1.1.2 +15554.1 +106.748 +89.5 +M2.2.1.2 +16008.4 +107.641 +41.35 +M2.3.1.2 +16106.5 +109.735 +19.25 +BS2 +24566.2 +152.341 +0.0 +M1.1.2 +17499.1 +117.481 +34.15 +M1.2.2 +17591.4 +118.804 +16.75 +M1.3.2 +17287.8 +116.681 +11.3 +M2.1.2.1 +16095.7 +115.012 +85.8 +M2.2.2.1 +17048.8 +116.275 +31.55 +M2.3.2.1 +17093.3 +117.976 +17.75 +M2.1.2.2 +16183.0 +110.920 +79.55 +M2.2.2.2 +17104.7 +117.885 +32.2 +M2.3.2.2 +17070.0 +117.557 +16.65 +(c) Assignment problem with n = 225 variables +assignment problem, n = 324 +version +nodes +time (s) +solved +IPs +BB +76643.0 +798.644 +0.0 +BS1 +47311.6 +527.471 +0.0 +WS +75179.2 +786.036 +61.75 +M1.1.1 +47327.0 +530.055 +47.75 +M1.2.1 +47332.8 +523.562 +21.9 +M1.3.1 +47375.6 +524.610 +15.25 +M2.1.1.1 +40978.0 +477.927 +157.5 +M2.2.1.1 +43760.5 +497.812 +82.0 +M2.3.1.1 +44343.9 +499.678 +52.35 +M2.1.1.2 +41294.4 +457.120 +159.05 +M2.2.1.2 +43864.6 +487.051 +81.25 +M2.3.1.2 +44499.7 +489.744 +52.05 +BS2 +69042.4 +723.853 +0.0 +M1.1.2 +49367.5 +565.719 +48.45 +M1.2.2 +49053.0 +553.130 +22.95 +M1.3.2 +49221.4 +554.594 +15.2 +M2.1.2.1 +41840.5 +489.647 +150.2 +M2.2.2.1 +45621.0 +520.469 +67.15 +M2.3.2.1 +46915.9 +533.692 +39.35 +M2.1.2.2 +42726.6 +474.220 +156.15 +M2.2.2.2 +45901.6 +513.111 +67.05 +M2.3.2.2 +46902.8 +526.440 +43.45 +(d) Assignment problem with n = 324 variables +Table 3: Numerical results of the bi-objective assignment problems +19 + +5.3 Bi-objective Discrete Facility Location Problems +We consider discrete facility location problems of the form +max +ℓ +� +i=1 +q +� +j=1 +ck +ij xij + +q +� +j=1 +f k +j yj +k = 1, 2 +s.t. +q +� +j=1 +xij ≤ 1 +i = 1, ..., ℓ +xij ≤ yj +i = 1, ..., ℓ, j = 1, ..., q +x ∈ {0, 1}ℓ×q +y ∈ {0, 1}q +where ℓ is the number of customers and q the number of facilities. We randomly generate coordinates +of ℓ customers and q facilities in a square with length 200. The costs of the first objective function +correspond to the l1-distances between the customers and facilities, while the costs of the second +objective function are randomly generated (i. e. c2 +ij ∈ [1, 200]) and f k +j ∈ [200, 400]. The number +of variables is n = (ℓ + 1) q. +We restrict the numerical tests to problems where the number of +facilities is 20% of the number of customers. Again, we need to specify when and how often integer +scalarizations are applied: We use the same methods as before but adapt the boundaries due to the +different number of nodes to explore in discrete facility location problems. In M1.1.β we apply the +weighted sum IP scalarization every 10-th iteration. In M1.2.β we apply the weighted sum every +10-th iteration within the first n2/4 iterations. In M1.3.β we apply the weighted sum scalarization +every 10-th iteration in the first n2/4 iterations, every n/2-th iteration in the next n2/4 iterations +and every n-th iteration in the third n2/4 iterations. In M.2.α.β.γ we operate analogous to the +methods used for knapsack and assignment problems. If a scalarization cannot be applied or an IP +with identical objective function has been solved prior, no IP is solved in that iteration. +Again, both new branching strategies have an impact on the number of explored nodes and the +computation time. The local strategy, once more, leads to better results, namely reduction of the +explored nodes by up to 52% (Table 4d) and reduction of the computation time by up to 45% +(Table 4d). With the global hypervolume gap strategy we can reach a reduction of the explored +nodes by up to 24% (Table 4d) and a reduction of the computation time by up to 21% (Table 4d). +In the best case we can reach a reduction of the explored nodes by up to 57% (Table 4d) and of +the computation time by up to 50% (Table 4d). Once again, M2.1.1.2 seems to be the best choice +with respect to the number of explored nodes and with a rising number of variables it is also the +best choice regarding the computation time. With a smaller number of variables, BS1 leads to good +results with respect to both aspects without solving a single IP. +5.4 Summary +In all of the three tested problem classes (knapsack, assignment, discrete facility location) a signif- +icant reduction of the number of explored nodes and the computation time can be realized with +all presented combinations of the hybrid Branch and Bound approach. With increasing problem +size (number of variables) the impact of the presented augmentations increases. Furthermore, the +approaches perform better on problems where the gap between YN and the solution of the linear +relaxation is larger compared to totally unimodular problems. +The local hypervolume gap strategy for the node selection outperforms the global hypervolume gap +strategy in our numerical tests. A reason for this is that in the global hypervolume gap strategy many +small search zones can add up to a large gap although the lower bound might be quite close to the non- +dominated points. The local hypervolume gap strategy chooses the node with the largest search zone, +which has the biggest potential to reduce this gap. Moreover, the local hypervolume gap strategy +aims at an uniform distribution of points in the incumbent list. In our numerical test, M2.1.1.2 turn +20 + +facility location problem, n = 48 +version +nodes +time (s) +solved +IPs +BB +1431.1 +1.0851 +0.0 +BS1 +999.8 +0.7640 +0.0 +WS +1431.1 +1.4550 +15.35 +M1.1.1 +1000.2 +0.8354 +10.95 +M1.2.1 +1000.2 +0.8219 +8.8 +M1.3.1 +1000.2 +0.8243 +6.95 +M2.1.1.1 +999.7 +0.9361 +13.2 +M2.2.1.1 +1000.2 +0.8361 +9.85 +M2.3.1.1 +1000.2 +0.8079 +7.85 +M2.1.1.2 +999.3 +0.8536 +12.8 +M2.2.1.2 +1000.2 +0.8182 +9.85 +M2.3.1.2 +1000.2 +0.8037 +7.85 +BS2 +1268.6 +0.9714 +0.0 +M1.1.2 +1041.8 +0.8654 +12.3 +M1.2.2 +1041.8 +0.8527 +9.35 +M1.3.2 +1041.8 +0.8592 +7.35 +M2.1.2.1 +1036.5 +0.9722 +15.65 +M2.2.2.1 +1041.8 +0.8761 +10.25 +M2.3.2.1 +1041.8 +0.8735 +7.6 +M2.1.2.2 +1034.6 +0.9678 +15.1 +M2.2.2.2 +1041.8 +0.8843 +10.4 +M2.3.2.2 +1041.8 +0.8654 +7.6 +(a) Facility location problem with 15 customers +and 3 facilities +facility location problem, n = 84 +version +nodes +time (s) +solved +IPs +BB +7949.1 +12.6393 +0.0 +BS1 +4626.7 +7.9303 +0.0 +WS +7490.2 +12.2058 +35.0 +M1.1.1 +4627.2 +8.1249 +26.45 +M1.2.1 +4627.2 +8.1149 +18.2 +M1.3.1 +4626.4 +8.0610 +13.85 +M2.1.1.1 +4527.8 +9.2394 +49.0 +M2.2.1.1 +4601.6 +8.4311 +26.45 +M2.3.1.1 +4610.4 +8.2569 +18.9 +M2.1.1.2 +4526.1 +8.4415 +45.3 +M2.2.1.2 +4591.1 +8.1289 +24.25 +M2.3.1.2 +4605.2 +8.1312 +19.8 +BS2 +7084.4 +11.5822 +0.0 +M1.1.2 +4873.8 +8.7719 +26.35 +M1.2.2 +4874.8 +8.7534 +17.45 +M1.3.2 +4894.1 +8.7031 +12.6 +M2.1.2.1 +4673.6 +9.5755 +49.65 +M2.2.2.1 +4832.0 +8.9275 +23.6 +M2.3.2.1 +4812.8 +8.8050 +17.4 +M2.1.2.2 +4628.9 +8.7019 +46.15 +M2.2.2.2 +4825.9 +8.7491 +24.4 +M2.3.2.2 +4807.5 +8.5984 +17.5 +(b) Facility location problem with 20 customers +and 4 facilities +facility location problem, n = 130 +version +nodes +time (s) +solved +IPs +BB +17461.9 +51.6307 +0.0 +BS1 +10684.0 +34.5157 +0.0 +WS +16795.9 +50.9317 +51.35 +M1.1.1 +10753.9 +35.4356 +37.1 +M1.2.1 +10753.9 +35.2764 +25.5 +M1.3.1 +10753.9 +35.1007 +19.15 +M2.1.1.1 +10104.4 +38.3909 +89.65 +M2.2.1.1 +10678.1 +35.7434 +39.35 +M2.3.1.1 +10722.3 +35.6262 +27.7 +M2.1.1.2 +10103.0 +34.5003 +85.95 +M2.2.1.2 +10691.2 +35.3730 +39.05 +M2.3.1.2 +10718.6 +35.1690 +27.45 +BS2 +15474.7 +46.5130 +0.0 +M1.1.2 +11548.8 +38.4891 +39.3 +M1.2.2 +11601.4 +38.5848 +24.6 +M1.3.2 +11535.1 +38.2917 +18.0 +M2.1.2.1 +10684.3 +39.8639 +81.5 +M2.2.2.1 +11381.8 +39.1988 +37.15 +M2.3.2.1 +11336.0 +38.7754 +28.45 +M2.1.2.2 +10695.5 +36.9098 +78.25 +M2.2.2.2 +11341.6 +38.2646 +39.55 +M2.3.2.2 +11352.1 +38.0063 +25.9 +(c) Facility location problem with 25 customers +and 5 facilites +facility location problem, n = 186 +version +nodes +time (s) +solved +IPs +BB +67369.3 +373.238 +0.0 +BS1 +31844.1 +203.145 +0.0 +WS +62192.8 +349.741 +69.95 +M1.1.1 +32106.6 +206.244 +53.05 +M1.2.1 +32097.9 +206.851 +33.4 +M1.3.1 +32148.5 +207.199 +23.75 +M2.1.1.1 +28384.2 +224.486 +186.8 +M2.2.1.1 +31074.5 +218.314 +101.15 +M2.3.1.1 +32004.8 +209.608 +50.1 +M2.1.1.2 +28558.8 +186.010 +172.7 +M2.2.1.2 +30946.4 +202.329 +97.75 +M2.3.1.2 +32011.8 +207.715 +47.5 +BS2 +50759.0 +292.344 +0.0 +M1.1.2 +35150.1 +230.687 +55.5 +M1.2.2 +35789.8 +233.967 +30.8 +M1.3.2 +35255.0 +233.163 +21.95 +M2.1.2.1 +29704.3 +230.016 +172.65 +M2.2.2.1 +33959.7 +236.351 +81.75 +M2.3.2.1 +34228.0 +233.553 +50.2 +M2.1.2.2 +30412.6 +202.719 +167.4 +M2.2.2.2 +34511.8 +229.970 +69.95 +M2.3.2.2 +34405.0 +229.021 +47.1 +(d) Facility location problem with 30 customers +and 6 facilities +Table 4: Numerical results of the bi-objective integer facility location problem +21 + +out to be the best choice in most cases with respect to the number of explored nodes and computation +time. In this version, we use the local hypervolume gap strategy for the choice of the active node, +every 10-th iteration the weighted sum IP scalarization is applied and every 50-th iteration we +apply the augmented weighted Tchebycheff scalarization instead. Futhermore, the objective space +information gained by the augmented weighted Tchebycheff scalarization is not used to update the +lower bound set, since its local improvements do not compensate the increased computation time. +Although we need to solve more IPs than in most other approaches, the computation time is the +lowest compared to the others. So, using the augmented weighted Tchebycheff scalarization in the +beginning of the Branch and Bound works best. Due to the likelihood of finding non-supported non- +dominated points in the early stages of the algorithm, the upper bound can be further improved. +This results to a higher probability of fathoming a node by dominance. Nevertheless, with version +BS1 we also achive a remarkable reduction in terms of the number of explored nodes and computation +time by using the local hypervolume gap strategy for node selection. +6 Conclusion and Outlook +In this paper, we propose two approaches to incorporate objective space information in bi-objective +Branch and Bound. By using the local or global (approximated) hypervolume gap as a node selection +criterion, we adapt the run of the Branch and Bound algorithm to the problem instance. Additionally, +we adaptively solve scalarizations to integer optimality to improve the lower and the upper bound +set by the obtained objective space information. Our numerical results show the effectiveness of +both approaches and in particular of their combination. The dynamic branching rule based on the +local (approximated) hypervolume gap has large impact on the number of explored subproblems, +is compuationally efficient and can be easily integrated in other multi-objective Branch and Bound +algorithms. +While we tested in this paper the individual contributions of our augmentations on a generic +bi-objective Branch and Bound, we will continue to extend our ideas to multiple dimensions and +integrate them into a competetive multi-objective Branch and Bound framework. Particularly in +higher dimensions, it may be promising to combine our approaches with objective space branching. +Acknowledgment +The authors thankfully acknowledge financial support by Deutsche Forschungsgemeinschaft, project +number KL 1076/11-1. +References +Y. P. Aneja and K. P. K. Nair. Bicriteria transportation problem. Management Science, 25(1): +73–78, 1979. doi: 10.1287/mnsc.25.1.73. +C. Bazgan, H. Hugot, and D. Vanderpooten. Solving efficiently the 0–1 multi-objective knapsack +problem. Computers & Operations Research, 36(1):260–279, 2009. doi: 10.1016/j.cor.2007.09.009. +P. Belotti, B. Soylu, and M. M. Wiecek. A branch-and-bound algorithm for biobjective mixed-integer +programs. Technical report, https://optimization-online.org/?p=12266, 2012. +H. P. Benson. An outer approximation algorithm for generating all efficient extreme points in the +outcome set of a multiple objective linear programming problem. Journal of Global Optimization, +13(1):1–24, 1998. doi: 10.1023/A:1008215702611. +22 + +N. Boland, H. Charkhgard, and M. Savelsbergh. A criterion space search algorithm for biobjective +integer programming: The balanced box method. INFORMS Journal on Computing, 27(4):735– +754, 2015a. doi: 10.1287/ijoc.2015.0657. +N. Boland, H. Charkhgard, and M. Savelsbergh. A criterion space search algorithm for biobjective +mixed integer programming: The triangle splitting method. INFORMS Journal on Computing, +27(4):597–618, 2015b. doi: 10.1287/ijoc.2015.0646. +N. Boland, H. Charkhgard, and M. Savelsbergh. The quadrant shrinking method: A simple and +efficient algorithm for solving tri-objective integer programs. European Journal of Operational +Research, 260(3):873–885, 2017. doi: 10.1016/j.ejor.2016.03.035. +F. Bö¸kler and P. Mutzel. Output-sensitive algorithms for enumerating the extreme nondominated +points of multiobjective combinatorial optimization problems. In Algorithms - ESA 2015, pages +288–299. Springer Berlin Heidelberg, Berlin Heidelberg, 2015. doi: 10.1007/978-3-662-48350-3_25. +K. Dächert and K. Klamroth. +A linear bound on the number of scalarizations needed to solve +discrete tricriteria optimization problems. Journal of Global Optimization, 61(4):643–676, 2014. +doi: 10.1007/s10898-014-0205-z. +K. Dächert, J. Gorski, and K. Klamroth. An augmented weighted Tchebycheff method with adap- +tively chosen parameters for discrete bicriteria optimization problems. Computers & Operations +Research, 39(12):2929–2943, 2012. doi: 10.1016/j.cor.2012.02.021. +R. Dechter and J. Pearl. Generalized best-first search strategies and the optimality of A∗. Journal +of the ACM, 32(3):505–536, 1985. doi: 10.1145/3828.3830. +M. Ehrgott. Multicriteria Optimization. Springer, Berlin Heidelberg, 2005. ISBN 978-3-540-21398-7. +doi: 10.1007/3-540-27659-9. +M. Ehrgott and X. Gandibleux. Bound sets for biobjective combinatorial optimization problems. +Computers & Operations Research, 34(9):2674–2694, 2007. doi: 10.1016/j.cor.2005.10.003. +N. Forget, S. L. Gadegaard, K. Klamroth, L. R. Nielsen, and A. Przybylski. Branch-and-bound and +objective branching with three or more objectives. Computers & Operations Research, 148:106012, +dec 2022. doi: 10.1016/j.cor.2022.106012. +S. L. Gadegaard, L. R. Nielsen, and M. Ehrgott. +Bi-objective branch-and-cut algorithms based +on LP relaxation and bound sets. INFORMS Journal on Computing, 31(4):790–804, 2019. doi: +10.1287/ijoc.2018.0846. +Y. Haimes, L. Lasdon, and D. Wismer. On a bicriterion formation of the problems of integrated +system identification and system optimization. IEEE Transactions on Systems, Man, and Cyber- +netics, pages 296–297, 1971. doi: 10.1109/TSMC.1971.4308298. +A. D. Jesus, L. Paquete, B. Derbel, and A. Liefooghe. On the design and anytime performance +of indicator-based branch and bound for multi-objective combinatorial optimization. +In Pro- +ceedings of the Genetic and Evolutionary Computation Conference, Lille, 2021. ACM. +doi: +10.1145/3449639.3459360. +H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer, Berlin Heidelberg, 2004. +doi: 10.1007/978-3-540-24777-7. +G. Kirlik and S. Sayın. A new algorithm for generating all nondominated solutions of multiobjective +discrete optimization problems. European Journal of Operational Research, 232(3):479–488, 2014. +doi: 10.1016/j.ejor.2013.08.001. +23 + +G. Kiziltan and E. Yucaoğlu. An algorithm for multiobjective zero-one linear programming. Man- +agement Science, 29(12):1444–1453, 1983. doi: 10.1287/mnsc.29.12.1444. +K. Klamroth, R. Lacour, and D. Vanderpooten. On the representation of the search region in multi- +objective optimization. European Journal of Operational Research, 245(3):767–778, 2015. doi: +10.1016/j.ejor.2015.03.031. +D. Klein and E. Hannan. An algorithm for the multiple objective integer linear programming prob- +lem. European Journal of Operational Research, 9(4):378–385, 1982. doi: 10.1016/0377-2217(82) +90182-5. +M. Laumanns, L. Thiele, and E. Zitzler. +An efficient, adaptive parameter variation scheme for +metaheuristics based on the epsilon-constraint method. European Journal of Operational Research, +169(3):932–942, 2006. doi: 10.1016/j.ejor.2004.08.029. +G. Mavrotas and D. Diakoulaki. A branch and bound algorithm for mixed zero-one multiple objective +linear programming. European Journal of Operational Research, 107(3):530–541, 1998. doi: 10. +1016/s0377-2217(97)00077-5. +G. Mavrotas and D. Diakoulaki. Multi-criteria branch and bound: A vector maximization algorithm +for mixed 0-1 multiple objective linear programming. Applied Mathematics and Computation, 171 +(1):53–71, 2005. doi: 10.1016/j.amc.2005.01.038. +K. Miettinen. Nonlinear Multiobjective Optimization. Springer, New York, 1998. ISBN 0792382781. +doi: 10.1007/978-1-4615-5563-6. +D. R. Morrison, S. H. Jacobson, J. J. Sauppe, and E. C. Sewell. Branch-and-bound algorithms: A +survey of recent advances in searching, branching, and pruning. Discrete Optimization, 19:79–102, +2016. doi: 10.1016/j.disopt.2016.01.005. +Ö. Özpeynirci and M. Köksalan. An exact algorithm for finding extreme supported nondominated +points of multiobjective mixed integer programs. Management Science, 56(12):2302–2315, 2010. +doi: 10.1287/mnsc.1100.1248. +S. N. Parragh and F. Tricoire. Branch-and-bound for bi-objective integer programming. INFORMS +Journal on Computing, 31(4):805–822, 2019. doi: 10.1287/ijoc.2018.0856. +A. Przybylski and X. Gandibleux. Multi-objective branch and bound. European Journal of Opera- +tional Research, 260(3):856–872, 2017. doi: 10.1016/j.ejor.2017.01.032. +A. Przybylski, X. Gandibleux, and M. Ehrgott. Two phase algorithms for the bi-objective assignment +problem. European Journal of Operational Research, 185(2):509–533, 2008. doi: 10.1016/j.ejor. +2006.12.054. +A. Przybylski, X. Gandibleux, and M. Ehrgott. A recursive algorithm for finding all nondominated +extreme points in the outcome set of a multiobjective integer programme. INFORMS Journal on +Computing, 22(3):371–386, 2010a. doi: 10.1287/ijoc.1090.0342. +A. Przybylski, X. Gandibleux, and M. Ehrgott. A two phase method for multi-objective integer +programming and its application to the assignment problem with three objectives. Discrete Opti- +mization, 7(3):149–165, 2010b. doi: 10.1016/j.disopt.2010.03.005. +A. Przybylski, K. Klamroth, and R. Lacour. A simple and efficient dichotomic search algorithm for +multi-objective mixed integer linear programs, 2019. +P. Serafini. Some considerations about computational complexity for multi objective combinatorial +problems. In Recent Advances and Historical Development of Vector Optimization, pages 222–232. +Springer Berlin Heidelberg, Berlin Heidelberg, 1987. doi: 10.1007/978-3-642-46618-2_15. +24 + +F. Sourd and O. Spanjaard. A multiobjective branch-and-bound framework: Application to the +biobjective spanning tree problem. INFORMS Journal on Computing, 20(3):472–484, 2008. doi: +10.1287/ijoc.1070.0260. +R. E. Steuer. Multiple Criteria Optimization: Theory, Computation and Application. John Wiley, +New York, 1986. ISBN 978-0894643934. doi: 10.1002/oca.4660100109. +R. E. Steuer and E.-U. Choo. An interactive weighted Tchebycheff procedure for multiple objective +programming. Mathematical Programming, 26(3):326–344, 1983. doi: 10.1007/BF02591870. +T. Stidsen and K. A. Andersen. A hybrid approach for biobjective optimization. Discrete Optimiza- +tion, 28:89–114, 2018. doi: 10.1016/j.disopt.2018.02.001. +T. Stidsen, K. A. Andersen, and B. Dammann. +A branch and bound algorithm for a class of +biobjective mixed integer programs. Management Science, 60(4):1009–1032, 2014. doi: 10.1287/ +mnsc.2013.1802. +D. Tuyttens, J. Teghem, P. Fortemps, and K. V. Nieuwenhuyze. Performance of the mosa method +for the bicriteria assignment problem. Journal of Heuristics, 6(3):295–310, 2000. doi: 10.1023/a: +1009670112978. +E. Ulungu and J. Teghem. The two phases method: An efficient procedure to solve bi-objective +combinatorial optimization problems. Foundations of Computing and Decision Sciences, 20:149– +156, 1995. +E. Ulungu and J. Teghem. +Solving multi-objective knapsack problem by a branch-and-bound +procedure. +In Multicriteria Analysis, pages 269–278. Springer, Berlin Heidelberg, 1997. +doi: +10.1007/978-3-642-60667-0_26. +T. Vincent, F. Seipp, S. Ruzika, A. Przybylski, and X. Gandibleux. Multiple objective branch and +bound for mixed 0-1 linear programming: Corrections and improvements for the biobjective case. +Computers & Operations Research, 40(1):498–509, 2013. doi: 10.1016/j.cor.2012.08.003. +M. Visée, J. Teghem, M. Pirlot, and E. Ulungu. Two-phases method and branch and bound proce- +dures to solve the bi–objective knapsack problem. Journal of Global Optimization, 12(2):139–155, +1998. doi: 10.1023/A:1008258310679. +E. Zitzler and L. Thiele. Multiobjective evolutionary algorithms: a comparative case study and the +strength pareto approach. IEEE Transactions on Evolutionary Computation, 3(4):257–271, 1999. +doi: 10.1109/4235.797969. +25 + diff --git a/9tFLT4oBgHgl3EQfCC72/content/tmp_files/load_file.txt b/9tFLT4oBgHgl3EQfCC72/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..de948b630995611c89618e230f11452eb9b49a2b --- /dev/null +++ b/9tFLT4oBgHgl3EQfCC72/content/tmp_files/load_file.txt @@ -0,0 +1,2975 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf,len=2974 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='11974v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='OC] 27 Jan 2023 Augmenting Bi-objective Branch and Bound by Scalarization-Based Information Julius Bauß∗ and Michael Stiglmayr University of Wuppertal, School of Mathematics and Natural Sciences, IMACM, Gaußstr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' 20, 42119 Wuppertal, Germany {bauss,stiglmayr}@math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='uni-wuppertal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='de While Branch and Bound based algorithms are a standard approach to solve single- objective (mixed-)integer optimization problems, multi-objective Branch and Bound meth- ods are only rarely applied compared to the predominant objective space methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' In this paper we propose modifications to increase the performance of multi-objective Branch and Bound algorithms by utilizing scalarization-based information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' We use the hypervol- ume indicator as a measure for the gap between lower and upper bound set to implement a multi-objective best-first strategy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' By adaptively solving scalarizations in the root node to integer optimality we improve both, upper and lower bound set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' The obtained lower bound can then be integrated into the lower bounds of all active nodes, while the deter- mined solution is added to the upper bound set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Numerical experiments show that the number of investigated nodes can be significantly reduced by up to 83% and the total computation time can be reduced by up to 80%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Keywords: multi-objective optimization, mult-iobjective branch and bound, integer pro- gramming, hypervolume indicator 1 Introduction Many optimization problems occurring in real-word applications include a conflict of interests and goals, or secondary objectives, in a word, they are multi-objective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Thus, there is (in general) not one solution that optimizes all objectives at once.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Following the a posteriori paradigm of decision making, we aim at determining the set of so-called efficient solutions or the images, the so-called non-dominated points, which cannot be improved in one objective without deterioration in at least one other objective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Thus, efficient solutions are reasonable choices for decision makers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' As we are considering specifically bi-objective integer linear programs and their solution with multi-objective Branch and Bound methods, the following literature survey will also focus on this and closely related topics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' A comprehensive introduction to multi-objective optimization in general is given, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=', in Steuer (1986);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Ehrgott (2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Solution approaches for multi-objective optimization problems are often categorized in: objective space and decision space methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Objective space methods scalarize the underlying problem, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=', it is replaced by a series of single-objective problems to determine successively the set of efficient ∗Corresponding author 1 solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' In the case of multi-objective integer programming, these scalarized problems can be solved with commercial integer programming solvers like CPLEX or Gurobi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' The utilization of these optimized, single-criteria solvers are a major advantage and one of the reasons why those methods are predominant in multi-objective optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' There are numerous objective space methods and a popular one is the ε-constraint method that was introduced for two objectives by Haimes et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' (1971).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' In every iteration the first objective is optimized with an updated constraint to ensure an improvement regarding the second objective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' In Laumanns et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' (2006) an extension to three and more objectives is presented.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Many approaches based on the ε-constraint method have been published in the last decades, for example Boland et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' (2017) and Kirlik and Sayın (2014) combine the method with reduction of dimension in the tri- respectively multi-dimensional case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' The weighted sum scalarization is an objective space method based on the optimization of a weighted sum of the objective functions using non-negative weights.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Note that not all efficient solutions can be determined as optimal solutions of the weighted sum scalarization using suit- able weights (see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Aneja and Nair, 1979).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Efficient solutions which can be obtained by us- ing weighted sum scalarization are denoted as supported efficicent and their corresponding non- dominated points are located on the boundary of the convex hull of feasible image points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Extensions of the weighted sum method to the multi-objective case are proposed in Przybylski et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' (2010a), Özpeynirci and Köksalan (2010), Bö¸kler and Mutzel (2015), and Przybylski et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Ulungu and Teghem (1995) introduced the so-called two-phase method for bi-objective problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' In the first phase the extreme supported non-dominated points are generated with an algorithm sim- ilar to the initial weighted sum approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' In the second phase the remaining non-dominated points are generated by searching in triangles defined by two consecutive extreme supported non-dominated points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' In Przybylski et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' (2008) and Tuyttens et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' (2000) problem specific algorithms are sug- gested for the second phase, while in Przybylski et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' (2010b) a two-phase method for problems with more than two objectives is proposed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' The augmented weighted Tchebycheff method, first presented in Steuer and Choo (1983), mini- mizes the augmented weighted Tchebycheff distance between a predefined reference point and the set of feasible image points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Dächert et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' (2012) suggested an adaptive choice of the augmentation term for the bi-objective case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' In Boland et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' (2015a), Boland et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' (2015b) (for the bi-objective case), Dächert and Klamroth (2014), and Klamroth et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' (2015) (for the tri- respectively multi-objective case) search region split- ting methods are proposed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' In this class of objective space methods, the search region (based on the already determined non-dominated points) is splitted into so-called search zones on which scalariza- tions are solved indpendently.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Besides their advantages, objective space methods share a shortcoming: In each iteration a scalar- ized integer program is solved from scratch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Even though in some objective space methods starting solutions can be transfered from previous iterations, a large number of very similar problems has to be solved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' In order to avoid this effort, decision space methods, mainly the Branch and Bound method, have been increasingly investigated in the recent years.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Klein and Hannan (1982) developed one of the first Branch and Bound algorithms for multi- objective integeger programs with a typical one tree structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' In Kiziltan and Yucaoğlu (1983) a general Branch and Bound framework for multi-objective integer programs with binary variables is presented.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Ulungu and Teghem (1997) and Visée et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' (1998) proposed problem specific Branch and Bound approaches for bi-objective Knapsack problems, where the latter approach is integrated in a two-phase method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Mavrotas and Diakoulaki (1998) extend the Branch and Bound approach to multi-objective mixed integer programs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Parts of the algorithm are refined in Mavrotas and Diakoulaki (2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' In Vincent et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' (2013) this algorithm is improved and it is shown that the original algorithm is not correct because the final dominance test is incomplete.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' In Belotti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' (2012) a Branch and Bound method is presented that can handle bi-objective mixed integer programs with continious variables in both objective functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' 2 The Branch and Bound method proposed in Sourd and Spanjaard (2008) uses a set of points as lower bound instead of just using a single point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Furthermore hyperplanes are used to fathom nodes by dominance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' In Stidsen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' (2014) this idea is continued.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' They use hyperplanes as a lower bound set that are generated by solving weighted sum scalarizations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Additionally they present the so-called Pareto branching and the slicing technique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' With Pareto branching it is possible to divide the objective space to possibly ignore parts of it in specific nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Slicing partitions the objective space in equally large parts and a respective slice can be fathomed if it is dominated by an already found integer point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' In Stidsen and Andersen (2018) this algorithm is improved and an approach to parallelize the algorithm is presented.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Based on this, the idea Pareto branching is further investigated in Parragh and Tricoire (2019) and Gadegaard et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' (2019) for the bi-objective case and Forget et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' (2022) for the tri-objective case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' A self-contained survey of multi-objective Branch and Bound approaches is given in Przybylski and Gandibleux (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' In this paper we present a bi-objective Branch and Bound algorithm that is augmented by scalarization-based information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' We make use of optimized single-objective solvers for scalar in- teger programs and integrate the resulting information into the bi-objective Branch and Bound by improving lower and upper bounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Furthermore, we propose a new adaptive node selection strategy, which relies on objective space information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' In our numerical analysis we show the effectiveness of these improvements by comparing them with a generic multi-objective Branch and Bound algorithm, which we use as our baseline algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' The remainder of the article is organized as follows: In Section 2, we introduce notations and def- initions for multi-objective optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' In Section 3, we present a general multi-objective Branch and Bound framework and its key components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Furthermore, we describe a specific (however stan- dard) multi-objective Branch and Bound algorithm, which will be used as baseline implementation in our numerical tests.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' In Section 4, we present augmentations of the multi-objective Branch and Bound, that utilize objective space information to improve the node selection as well as the compu- tation of upper and lower bounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' We provide numerical results in Section 5 and in Section 6, we outline conclusions and outlooks for further research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' 2 Preliminaries We introduce a general multi-objective integer linear program which can be written in the form: min � z1(x), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' , zp(x) �⊤ s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' A x ≤ b x ≥ 0 x ∈ Zn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' (MOILP) Thereby, z(x) := (z1(x), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' , zp(x))⊤ = C ·x ∈ Rp (with p ≥ 2) denotes the objective function vector, with C ∈ Rp×n the matrix of objective coefficients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' The set of feasible solutions X := {x ∈ Zn : A ≤ b, x ≥ 0} is a subset of the decision space Rn, while its image Y := {C x: x ∈ X} is a subset of the objective space Rp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' We use the Pareto concept of optimality which relies on the componentwise order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Let y1, y2 ∈ Rp, then we define the corresponding dominance relations as follows: y1 ≦ y2, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=', y1 weakly dominates y2 if y1 k ≤ y2 k for k = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=', p, y1 < y2, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=', y1 strictly dominates y2 if y1 k < y2 k for k = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=', p, y1 ≤ y2, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=', y1 dominates y2 if y1 ≤ y2 and y1 ̸= y2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' A feasible solution x ∈ X is called efficient if there is no other solution ˆx ∈ X dominating it, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=', z(ˆx) ≤ z(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' A feasible solution x ∈ X is called weakly efficient if there is no ˆx ∈ X such that z(ˆx) < z(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' The set of efficient solutions is denoted by XE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' By YN = {z(x) ∈ Y : x ∈ XE} we 3 denote the set of the non-dominated points in the objective space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Moreover, for any set Q ⊆ Rp we denote by QN the set of its non-dominated points (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=', q ∈ QN ⇐⇒ ∄q′ ∈ Q: q′ ≤ q).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' For a comprehensive introduction to multi-objective optimization see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=', Ehrgott (2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' In this article we consider a minimal complete set as solution of a multi-objective optimization problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' A minimal complete set denotes the set of all non-dominated points YN and one efficient solution for each non-dominated point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' See Serafini (1987) for a comparison of solution concepts in multi-objective optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' A standard solution approach in multi-objective optimization is the weighted sum scalarization given in (WSλ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' min WSλ(x) := λ⊤z(x) = p � i=1 λi zi(x) s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' x ∈ X (WSλ) Obviously, every optimal solution of the weighted sum scalarization for λ ∈ Rp > := {λ ∈ Rp : λ > 0} is efficient for (MOILP).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' However, in general not all efficient solutions are optimal solutions of a corresponding weighted sum problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' An efficient solution x′ ∈ XE is called supported if there is a weighting vector λ′ ∈ Rp > such that x′ is optimal for (WSλ) for λ = λ′, otherwise x′ is unsupported.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Note that the non-dominated points corresponding to supported efficient solutions are located on the boundary of the convex hull of Y , while the unsupported non-dominated points are located in its (relative) interior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' As already mentioned in the introduction the computation of upper and lower bounds on the non-dominated set is a crucial component of any multi-objective Branch and Bound algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' The tightest componentwise upper and lower bounds of YN are the ideal point yI and the Nadir point yN given by: yI k = min y∈Y yk and yN k = max y∈YN yk for k = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Obviously, yI ≦ y ≦ yN holds for every y ∈ YN, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' YN is contained in the hyperbox spanned by the corner points yI and yN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' However, these single point bounds are in general very weak except for the degenerate case of yI = yN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' This motivates to consider bound sets instead of bounds consisting of a single point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' We will rely on the definition of bound sets proposed in Ehrgott and Gandibleux (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Let Rp ≧ := {y ∈ Rp : y ≧ 0}, then A lower bound set L ⊂ Rp for YN is a – Rp ≧-closed (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=', the set L + Rp ≧ is closed), – Rp ≧-bounded (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=', there exists a y ∈ Rp such that L ⊂ y + Rp ≧) – stable set (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=', L ⊂ (L + Rp ≧)N), such that YN ⊂ (L + Rp ≧).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' An upper bound set U ⊂ Rp for YN is a – Rp ≧-closed, – Rp ≧-bounded, – stable sets, such that YN ⊂ cl � (U + Rp ≧)∁� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' The upper bound and lower bound that we will define for our branch and bound framework in Section 3 will suit these definitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' We say a lower bound L is weakly dominated by an upper bound U if for all l ∈ L there exists an u ∈ U such that u ≦ l.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' 4 In the following we restrict ourselves to bi-objective binary linear optimization problems, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=', problems with two linear objective functions and variables x ∈ {0, 1}n: min z(x) = � z1(x), z2(x) �⊤ s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' A x ≤ b x ∈ {0, 1}n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' (BO01LP) 3 A Generic Multi-objective Branch and Bound Framework In this section we present a generic multi-objective Branch and Bound framework, which we specify and augment by using scalarization based information in the then following sections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Branch and Bound methods follow a “divide and conquer” paradigm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' A problem that is too hard to be solved directly, is divided into smaller and thus easier subproblems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Thereby, subproblems are associated with nodes in a tree data structure according to their descent, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=', node i is a descendant node of node j iff the feasible set of the subprobem associated with node i is a subset of the feasible set of the subproblem associated with node j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' The corresponding subproblems of the child nodes are created by subdividing the feasible set of the corresponding (sub)problem of the parent node.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Starting with the root node, to which the original optimization problem is associated, the algorithm selects in each iteration one active node and updates its lower bound and upper bound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Then the active node can be fathomed if the corresponding subproblem is either solved or irrelevant for the determination of a minimal complete set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' If we cannot prune we subdivide the corresponding problem into new subproblems and create corresponding child nodes (branching).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' For a more detailed introduction and survey of multi-objective Branch and Bound algorithms see Przybylski and Gandibleux (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' A recent survey of single-objective Branch and Bound frameworks is given e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' in Morrison et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' In the following we specify the lower bound, upper bound, branching rule and node selection we use in our framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Lower bound: Lower bound sets are often determined by solving relaxations of the respective subproblem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Like in the single-objective case, the most frequently used relaxations are linear and convex relaxations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' In order to solve the linear relaxation we are using in our framework, we apply Benson’s outer approximation algorithm (Benson, 1998).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' The algorithm is initiated with a lower bound, which is improved in every iteration by generating cuts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Due to the outer approximation structure the algorithm can be aborted at any time returning a valid lower bound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Alternatively, linear (or convex) relaxations can be obtained using a dichotomic scheme (see, for example, Aneja and Nair, 1979;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Özpeynirci and Köksalan, 2010;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Przybylski et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=', 2010a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Upper bound: The upper bound set, in the following denoted by U, is stored in the form of a so- called incumbent list.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Throughout the run of the algorithm, it contains all integer feasible solutions and their corresponding outcome vectors that are not dominated by another feasible solution found so far.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' In every iteration the extreme supported solutions of the computed lower bound sets are checked for integer feasibility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' An integer feasible solution ¯x ∈ X is then appended to the incumbent list, if there is no x ∈ U dominating ¯x, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=', C(x) ≤ C(¯x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' If a new solution ¯x is added to the incumbent list U all solutions x ∈ U which are dominated by ¯x (C(¯x) ≤ C(x)) are removed from it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Note that an update of the incubent list requires a subsequent update of the list of local upper bounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' A detailed description of local upper bounds, their computation and update in an arbitrary number of criteria is given in Klamroth et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' In this framework we start with an empty upper bound set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' However, it is also possible to initialize the incumbent list by heuristic methods, or by solving scalarizations like, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=', in the two-phase method (Ulungu and Teghem, 1995;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Visée et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=', 1998).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' U ⊎ {¯x} := � U if ∃x ∈ U : C(x) ≤ C(¯x) {¯x} ∪ {x ∈ U : C(¯x) ≰ C(x)} otherwise 5 Node selection: In every iteration of the algorithm an unexplored node is selected from the tree of subproblems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' This node is called active node.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' The order in which the nodes of the tree are considered has a significant impact on the number of created nodes that have to be explored and thus on the computation time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Two types of strategies need to be distinguished: static strategies and dynamic strategies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' The two most common examples of static strategies are the depth-first strategy and the breadth-first strategy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Most multi-objective Branch and Bound algorithms in literature follow a depth-first strategy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Thus, we use this strategy for our baseline implementation as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' In contrast to the single-objective case, dynamic node selection strategies are rarely applied in the multi-objective case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' The usage of dynamic strategies for the choice of the active node can be seen in (Stidsen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=', 2014), (Belotti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=', 2012) and (Jesus et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=', 2021), for example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Fathoming: In order to avoid the total enumeration of all feasible solutions, nodes are fathomed if the respective subproblem is either solved to optimality or does not contain solutions which are necessary to determine a minimal complete set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' In particular, there are three different situations in which a node can be fathomed: i) Fathoming by infeasibility: If the LP-relaxation of a subproblem is infeasible then the corre- sponding subproblem is infeasible as well, since the feasible set of the subproblem is a subset of the feasible set of its relaxation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' ii) Fathoming by optimality: Similar to the single-objective case we can fathom a node by opti- mality if the lower bound L is equal to the upper bound U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' This implies the subproblem is solved to optimality and the associated node must not be subdiveded further.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' However, this can happen in the multi-objective case only if the lower and upper bound consist of the same single point, namely the ideal point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' iii) Fathoming by dominance: A node can be fathomed by dominance if all feasible solutions of this subproblem are dominated by points in the incumbent list.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' In order to check dominance for all feasible outcome vectors of a subproblem we compare the lower bound L of the corresponding node to the current upper bound U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' If for all l ∈ L there is a point in the incumbent list u ∈ U with u ≦ l then all feasible points in the subtree are dominated by the current incumbent list.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' In other words, if there is no local upper bound defined by U above the computed lower bound the node can be fathomed by dominance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Branching: As mentioned in the beginning of this section, one of the key aspects of Branch and Bound is iterative subdivision into smaller subproblems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Thereby subproblems are associated with nodes in a tree, such that the subproblem associated to a child node is obtained by one branching step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Since we consider binary optimization problems (BO01LP), we can divide a (sub)problem into two new subproblems by fixing a specific variable to 0 and respectively to 1 in the other subproblem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' This results in a binary Branch and Bound tree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' The branching rule determines which variable is selected as branching variable in each iteration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Thereby, one distinguishes between static and dynamic strategies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Static strategies determine an order of the variables in advance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' In each iteration of the algorithm the next variable in this list is used as branching variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' With dynamic strategies the branching variable is selected by consid- ering information obtained from previous iterations, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=', from the solution of (linear) relaxations of (sub)problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' The basic idea of static strategies for single-objective problems is to sort the variables, beginning with the most promising according to the objective function values (see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=', (Kellerer et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=', 2004)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' However, this cannot be easily extended to the multi-objective case due to conflicting objective functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Nevertheless there are some approaches to extend static strategies to the multi-objective case (see for example (Ulungu and Teghem, 1997) and (Bazgan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=', 2009)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' 6 In contrast to most of the published papers which apply static strategies we use a dynamic strategy as proposed in Belotti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' By solving the linear relaxation of a (sub)problem we obtain the lower bound set L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' For all extreme points of L we check how often a variable is fractional in the corresponding solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' As branching variable we choose the one which is most often fractional.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' 4 Using Objective Space Information in Multi-objective Branch and Bound In this section, we propose modifications which improve the computational efficiency of bi-objective Branch and Bound algorithms in two critical aspects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' One of the weaknesses of multi-objective Branch and Bound as compared to its single-objective counterpart is the bounding procedure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' While any feasible solution ¯x ∈ X dominates w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' one (linear) objective a half-space in decision space (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=', {x ∈ Rn : c⊤x ≥ c⊤¯x}), the set of feasible solutions which are dominated by a solution ¯x in p ≥ 2 objective functions (C ∈ Rp×n) forms a cone {x ∈ Rn : C x ≧ C ¯x}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' The cone of dominated solutions is smaller the more the objective functions are in conflict, leading also to a larger number of efficient solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' This implies that a significant part of the Branch and Bound tree has to be enumerated and only a small number of branches can be pruned by dominance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Despite of this general problem in multi-objective optimization, this asks for good bounding procedures to avoid the unnecessary evaluation of dominated branches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' This however, requires good solutions in the incumbent list as well as tight lower bounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' In order to achieve this, we suggest a new branching strategy and the hybridization of Branch and Bound with objective space methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' We determine scalarized subproblems adapted to the state of the Branch and Bound and solve these to integer optimality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 Branching Strategy The branching strategy comprises two subsequent decisions: the choice of the active node and its branching into subproblems, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' the decision on which variable the subproblem is branched.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' This second step is denoted as branching rule.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' We discuss these two steps together since the order in which the nodes are considered has a significant impact on the branched variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Instead of the static depth- or breadth-first we use a dynamic node selection strategy, while we rely on the most fractional rule as branching rule.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' The basic idea of our strategy is quite simple and a natural extension of choosing the largest gap in the single-objective case (see, for example, Dechter and Pearl, 1985).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' For every created node we compute the approximate hypervolume gap between lower and upper bound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' We use the definition of hypervolume proposed in Zitzler and Thiele (1999).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' In every iteration we choose the node with the largest hypervolume gap as active node (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Jesus et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' (2021)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Note that when a node is created during the branching process, the approximated hypervolume gap of the parent node is assigned to it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' We distinguish two variants of the hypervolume gap: the total hypervolume gap and the local hypervolume gap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' While the total hypervolume gap measures the volume of the search region, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' the volume between lower and upper bound set, the local hypervolume gap approach considers only the volume of the largest search zone, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' the gap between a local upper bound and the lower bound set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' For a more detailed definition of search regions and search zones we refer to Klamroth et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Figure 1 illustrates the two different approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Here, z1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' , z4 ∈ K ⊂ U are points of the incumbent list and lu1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' , lu3 are their corresponding local upper bounds, where K is a subset of the incumbent list containing just the points above the lower bound of node ¯n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' The green line represents the lower bound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Figure 1a shows how to measure the total hypervolume gap of a node ¯n, in the following denoted by thg(¯n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' For this approach we consider the approximated search region of the corresponding node.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Since there is a natural order in the bi-objective case, it is possible to consider the approximated search zone of the first local upper bound, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' the local upper bound 7 z1 z2 lu1 lu2 lu3 z1 z2 z3 z4 (a) z1 z2 A lu1 lu2 lu3 z1 z2 z3 z4 (b) z1 z2 B lu1 lu2 lu3 z1 z2 z3 z4 (c) z1 z2 C lu1 lu2 lu3 z1 z2 z3 z4 (d) Figure 1: Example of computation of the two different approximated hypervolume gap approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' 8 with the smallest z1-value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Therefore we define the two spanning points, which, together with the corresponding local upper bound, define a triangle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' The spanning points of a local upper bound lu are defined by spi(lu) := {l ∈ L: l3−i = lu3−i}, i = 1, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' So, the approximate hypervolume gap of lu is given by hg(lu) := 1 2 ��sp1(lu)1 − lu1 �� · ��sp2(lu)2 − lu2 ��.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' For the remaining local upper bounds we compute the hypervolume of slices as shown in the illus- tration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' The hypervolume of the slice of lui, i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' , |K| − 1 is defined as sl(lui) := ��zi 2 − sp2(lui−1)2 �� + ��lui 2 − sp2(lui)2 �� 2 ��zi 1 − lui 1 ��.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' So, the total (approximated) hypervolume gap, which is assigned to node ¯n, is given by thg(¯n) := hg(lu1) + sl(lu2) + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' + sl(lu|K|−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' The Figures 1b, 1c and 1d show the computation of the local hypervolume gap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' The local hyper- volume gap of a node ¯n is considered as the largest approximated hypervolume gap of a local upper bound corresponding to points in K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Therefore, the the local hypervolume gap, which is assigned to node ¯n, is defined by lhg(¯n) := max i=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=',|K|−1hg(lui).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' In the given example, B is the largest approximated hypervolume and therefore is assigned to node ¯n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Note that in our presented algorithms in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 the local upper bound is initialized with the point (∞, ∞)⊤.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Therefore, it is possible to apply the new branching strategies immediately at the beginning of the algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Obviously, this approximation may neglect significantly large parts of the search regions and search zones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' However, the idea of the approximated hypervolume gap eases computation and saves time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' The efficiency of these new dynamic branching strategies is shown in Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 Augmenting Branch and Bound with IP Scalarizations In this subsection, we introduce a method to incorporate scalarizations into Branch and Bound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' We build a hybrid Branch and Bound algorithm combining the partial enumeration of decision space with objective space information by solving scalarizations to integer optimality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' An integer optimal solution ¯x of a scalarization can be used to update upper and lower bound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Obviously, the corresponding image point z(¯x) can be added to the incumbent list.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Moreover, a scalarizing function and its optimal solution ¯x define a level set, which can be included in the lower bound set for all descendant nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' In order to utilize these improved lower bounds in all nodes we solve the IP scalarizations in the root node.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 Using Weighted Sum Scalarization During the run of the Branch and Bound algorithm, a strategy triggers the IP solution of weighted sum scalarizations in the root node.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Thus, we solve problem (WSλ) for for adaptively chosen values of λ ∈ R2 >.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Although we solve the IP scalarization in the root node the parameter λ is gained from the currently active node.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Thereby, λ is determined by the largest approximated local hypervolume gap in the active node.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' This gap is spanned by two points in the incumbent list together with their local upper bound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Note that these points spanning the largest gap are already determined if the local hypervolume gap branching strategy is applied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' The corresponding value of λ is determined by computing the normal to the hyperplane that is defined by those two points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Once λ is obtained, we can solve problem (WSλ) with a single-objective integer linear programming solver.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Let ¯xλ be 9 the optimal solution of the weighted sum scalarization with weighting vector λ, then z(¯xλ) is a supported non-dominated point of (BO01LP).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Thus, we can add this point to the incumbent list (if it was not found in previous iterations) and filter the resulting list for non-dominance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Moreover, the solution of integer scalarizations can also be used to tighten the lower bound set, since the level set {z ∈ R2 : λ⊤z = WSλ(¯xλ)} provides the valid inequality λ⊤z(x) ≥ WSλ(¯xλ) for all x ∈ X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' z1 z2 lu1 lu2 lu3 z1 z2 z3 z4 z(¯xλ) (a) z1 z2 lu4 lu5 z1 z5 z4 (b) z1 z2 lu4 lu5 z1 z5 z4 (c) z1 z2 lu4 lu5 z1 z5 z4 (d) Figure 2: Example of updating the lower and upper bound with the usage of the weighted sum scalarization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Figure 2 illustrates the update of the lower and upper bound set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' In Figure 2a, z1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' , z4 indicate points that are currently in the incumbent list U¸ and lu1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' , lu3 are the corresponding local upper bounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' The point z(¯xλ) is obtained by solving a weighted sum scalarization (WSλ) to integer optimality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Since the new point is not contained in the incumbent list so far, we can update the upper bound as it is shown in Figure 2b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' The new incumbent list then reads as U := {z(¯xλ)} ∪ {z ∈ U : z(¯xλ) � z}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Moreover, the lower bound set L can be updated by integrating the blue hyperplane into the lower bound set, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' L := {z ∈ L + R2 ≧ : λ⊤z ≥ WS(¯xλ)}N as it is shown in Figure 2c and 2d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' In this situation, both —the lower and upper bound— are updated, which is not the case in 10 general.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' The example illustrates the benefits of hybridizing multi-objective Branch and Bound with IP scalarizations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Due to weak bounding, nodes may not be fathomed by dominance even if they do not contain additional non-dominated points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' The tighter upper bound increases the probability of fathoming a node by dominance in later iterations of the algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Also, the lower bound might be improved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Since we are solving an IP scalarization in the root node, the obtained optimal level set is a valid inequality for all subproblems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' We combine our new branching strategy and the augmentation with IP scalarizations to our first hybrid Branch and Bound approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='Hybrid Branch and Bound Algorithm using Weighted Sum Scalarization ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='Lower bound: linear relaxation ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='Upper bound: incumbent list ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='Node selection: node with the largest total/local hypervolume gap ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='Branching rule: most fractional ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='Adaptively solve weighted sum scalarizations in the root node to integer optimality to improve ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='lower and upper bounds by objective space information ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='Instead of using a static depth-first strategy (as in the general Branch and Bound framework in ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='Section 3) we apply the dynamic strategy based on the hypervolume gap (c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Even though the extreme points of the lower bound sets might be updated by the weighted sum scalar- ization, the branching variable is selected based on the original lower bounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' This is due to the fact that the preimages of such intersection points of IP scalarizations and the lower bound set are in general not available.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Note that the weighted sum IP scalarizations are included adaptively into the Branch and Bound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' The description of their algorithmic control, however, is postponed to Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' In order to conclude the description of the proposed hybrid Branch and Bound algorithm using weighted sum scalarizations, we want to briefly discuss its advantages and shortcomings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Firstly, it is easy to determine the scalarization parameter λ and to integrate the hyperplane into the lower bound set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Its advantage, however, is that the lower bound remains convex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Therefore, the check for fathoming by dominance remains intuitive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Unfortunately, the weighted sum scalarization can only find supported efficient solutions and the lower bound cannot be improved beyond the convex hull of YN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' This motivates us to consider in the following the augmented weighted Tchebycheff scalarization, a scalarization approach which can determine also unsupported efficient solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 Using Augmented Weighted Tchebycheff Scalarization We start by defining the weighted Tchebycheff norm: Let wi > 0, i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' , p be positive weights with �p i=1 wi = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Then the weighted Tchebycheff norm of a vector z ∈ Rp is defined by ∥z∥w ∞ := max i=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=',p � wi |zi| � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' (1) So, the weighted Tchebycheff scalarization of a multi-objective optimization problem (MOILP) with respect to a given reference point s ∈ Rp can be written as: min � ∥z(x) − s∥w ∞ : x ∈ X � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' (2) If the reference point is chosen such that s < z(x) for all x ∈ X, every efficient solution can be deter- mined as optimal solution of the weighted Tchebycheff scalarization (2) by variation of w ∈ Rp + (see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=', Miettinen, 1998).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Nevertheless, optimal solutions of the weighted Tchebycheff scalarization cor- respond in general only to weakly efficient solutions of the multi-objective problem (Steuer and Choo, 1983;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Miettinen, 1998).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' This shortcoming is compensated by an additive augmentation term in the augmented weighted Tchebycheff norm ∥z∥w τ := ∥z∥w ∞ + τ ∥z∥1 , (3) 11 where ∥z∥1 = |z1| + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' + |zp| denotes the L1-norm, wi ≥ 0, i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' , p, �p i=1 wi = 1 and τ > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Steuer and Choo (1983) proposed the augmented weighted Tchebycheff scalarization given in (AWT w τ ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' min AWT w τ (x) := ∥z(x) − s∥w τ s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' x ∈ X (AWT w τ ) Thereby, the augmentation term makes the augmented weighted Tchebycheff norm a strongly mono- tone norm and thus the objective function of (AWT w τ ) a strongly increasing achievement scalar- izing function (Miettinen, 1998).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Consequently, every optimal solution of (AWT w τ ) is efficient for (MOILP).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Note that an appropriate choice of the parameter τ is difficult in general.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' On the one hand, too small values of τ may lead to numerical difficulties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' On the other hand, non-supported efficient solutions might be suboptimal for (AWT w τ ) if the value of τ is too large.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' However, for bi-objective integer programming Dächert et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' (2012) propose an adaptive method to determine an optimal value of τ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' We use this proposed parameters w1, w2 and τ for our method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' As a reference point s we use the local ideal point of two adjacent non-dominated points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Since the augmented weighted Tchebycheff scalarization can only determine non-dominated points (and the corresponding efficient solutions) which are (strictly) dominated by the reference point, we obtain a non-dominated point in this box.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' The goal to improve the lower bound set beyond the convex hull of non-dominated points is the motivation to solve augmented weighted Tchebycheff scalarizations to integer optimality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Figure 3 shows an example how such an update of the bounds could look like.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Here, z1 and z2 are two known non-dominated points (obtained with the weighted sum IP scalarization).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Point z3 is a non-supported non-dominated point that has not been found yet in Figure 3a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' By using the local ideal point of z1 and z2 as the reference point s, Figure 3b illustrates how the non-dominated point z3 is found by applying the augmented weighted Tchebycheff scalarization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' In Figure 3c and 3d the resulting improvements of the lower and upper bound are shown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Obviously the lower bound is improved beyond the convex hull of YN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' We now define our second hybrid Branch and Bound ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='approach: ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='Hybrid Branch and Bound Algorithm using augmented weighted Tchebycheff Scalarization ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='Lower bound: linear relaxation ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='Upper bound: incumbent list ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='Node selection: node with the biggest total/local hypervolume gap ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='Branching rule: most fractional ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='Adaptively solve weighted sum and augmented weighted Tchebycheff scalarizations in the root ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='node to integer optimality to improve lower and upper bounds by objective space information ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='Additionally to the weighted sum scalarization,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' we use the augmented weighted Tchebycheff scalar- ization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Since two adjacent non-dominated points are required as input of the augmented weighted Tchebycheff scalarization, we cannot rely on points in the incumbent list, which are only non- dominated so far.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' In fact, we apply augmented weighted Tchebycheff IP scalarizations only to boxes spanned by points obtained as optimal solutions of the weighted sum scalarization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Thus, we do not rely on parameters from the currently active node, but solve the augmented weighted Tchebycheff scalarization in the largest area defined by two adjacent known non-dominated points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' When using augmented weighted Tchebycheff IP scalarizations, the lower bound can become tighter than the convex hull of the set of non-dominated points, which reduces the area where new non-dominated points can be found.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Additionally, we can find non-supported non-dominated points in early stages of the algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' This improves the upper bound in the beginning resulting in a higher chance of fathoming a node by dominance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' However, this also implies that the lower 12 z1 z2 z1 z2 z3 lu1 (a) z1 z2 z1 z2 z3 lu1 s (b) z1 z2 z1 z2 z3 lu2 lu3 s (c) z1 z2 z1 z2 z3 lu2 lu3 (d) Figure 3: Example of updating the lower and upper bound with the usage of the augmented weighted Tchebycheff scalarization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' bound gets non-convex in general, which makes the fathoming tests significantly harder, and the lower bound improves only locally.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3 Algorithmic Control of IP Scalarizations In the previous subsections we did not specify when to solve IP scalarizations, which implies a sig- nificant computational cost itself.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' However, this might be the most crucial part within the presented methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Obviously, we aim at gaining as much information as possible by solving IP scalarizations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' More objective space information will lead to tighter bounds that reduce the number of created nodes, due to a higher probability of fathoming by dominance and smaller search zones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Moreover, a reduced number of created nodes will reduce the total computation time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' At the same time, solving overly many IP scalarizations will have a negative impact on the computation time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Furthermore, at a certain point the lower and upper bound will not improve anymore when solving additional IP 13 scalarizations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' So, there exists a trade-off between the reduction of the number of created subproblems and the decrease of the computation time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' The difficulty is to find an appropriate condition to trigger an IP scalarization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Obviously, solving IP scalarizations more frequently in the beginning of the Branch and Bound algorithm is very promising.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' The earlier the lower and upper bounds are improved the more nodes might be fathomed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Moreover, solving the IP scalarization when the active node has weak bounds will lead to stronger improvements than in later stages of the algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' This is complemented by our adaptive branching strategy, which tends to select subproblems with weak lower bounds first.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' The hybrid Branch and Bound algorithm using augmented weighted Tchebycheff scalarization entails also another problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' The augmented weighted Tchebycheff scalarization improves the lower bound just locally.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' If we use this scalarization at the beginning of the algorithm instead of the weighted sum scalarization, this could lead to an increase of created nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Once again, the intuitive idea is to start with the weighted sum IP scalarization more frequently in the beginning of the algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' This ensures that the lower bound improves globally at early stages of the Branch and Bound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' The augmented weighted Tchebycheff scalarization should be used in later stages of the algorithm to find non-supported non-dominated points and to improve the lower bound locally.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' The efficiency of this idea and other approaches will be shown in the next section where we present numerical test results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' 5 Numerical Results All algorithms were implemented in Julia 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 and the linear relaxations were solved with Bensolve 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' The numerical tests were executed on a single core of a 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='20 GHz Intel® Core™ i7-8700 CPU processor in a computer with 32 GB RAM, running under openSUSE linux Leap 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' We present numerical results of our new approaches and compare them to the general Branch and Bound framework presented in Section 3 which we use as baseline implementation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' We consider three different types of problems: knapsack problems, assignment problems and discrete facility location problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Multiple combinations of parameter settings are used to solve these test problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Thereby, we compare the average number of explored nodes, the average number of solved IPs and the average computation time for 20 instances per problem size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' The different evaluated approaches are the generic bi-objective Branch and Bouch (BB), bi-objective Branch and Bound using the local (BS1) respectively global (BS2) hypervolume gap as node selection criterion, hybrid Branch and Bound including weighted sum IP scalarizations (WS), and different combinations of the hybrid Branch and Bound algorithm using weighted sum IP scalar- ization (M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='β) and hybrid Branch and Bound algorithm using weighted sum and augmented weighted Tchebycheff IP scalarization (M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='γ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' The parameter α ∈ {1, 2, 3} controls how often IP scalarizations are applied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Since the algorithmic control of IP scalarization is selected for each value of α problem dependent, it is described in detail in the following subsections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' However, the larger the parameter α is chosen, the fewer IP scalarizations are applied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' With β we distinguish between the local (β = 1) and the global (β = 2) hypervolume gap strategy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' In the hybrid Branch and Bound algorithm using augmented weighted Tchebycheff scalarization we also distinguish between integrating the objective space information of the augmented weighted Tchebycheff into the lower bound (γ = 1) or not (γ = 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Note that the tested parameter values are not optimized but have shown to provide good results on our test instances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' 14 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 Bi-objective Multidimensional Knapsack Problems We consider bi-objective, multidimensional knapsack problems with one, two and three linear re- strictions (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' m = 1, 2, 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' For every problem size we randomly generate 20 instances of the form max n � i=1 ck i xi k = 1, 2 s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' n � i=1 wi xi ≤ b n � i=1 vij xi ≤ dj j = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=', m − 1 x ∈ {0, 1}n with ck i ∈ [50, 100], wi ∈ [5, 15], b = 5 n, vij ∈ [5, 15] and dj = � r n 2 � with r ∈ [5, 15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Depending on the parameter α we specify when and how often IP scalarizations are solved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' In M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='β and WS we apply the weighted sum scalarization every 10-th iterations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' In M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='β we apply it every 10-th iteration but only within the first n2 iterations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' In M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='β we apply the weighted sum scalarization every 10-th iteration within the first n2/3 iterations, every n-th iteration within the next n2/3 iterations and every 2n-th iteration within the third n2/3 iterations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' In M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='γ we apply the weighted sum scalarization every 10-th iteration and every 50-th iteration the augmented weighted Tchebycheff scalarization is used instead.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' In M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='γ we operate like in M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='β but after the first n2 iterations we apply the augmented weighted Tchebycheff scalarization every 50-th iteration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' In M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='γ we operate like in M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='β but after the first n2 iterations we apply the augmented weighted Tchebycheff scalarization every 50-th iteration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' If a scalarization cannot be applied or the same IP scalarization has already been solved before, no IP scalarization is solved in that iteration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' First of all, we notice that our branching strategies have a huge impact on the number of explored nodes and the computation time in knapsack problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' We observe that in general the local hyper- volume gap strategy works better than the global hypervolume gap strategy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' With the local strategy we can reduce the number of explored nodes by up to 76% (Table 1c and 2b) and the computation time by up to 73% (Table 1c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Although the local strategy works better the global hypervolume gap strategy has also a significant impact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' The number of explored nodes can be reduced by up to 58% (Table 2c) and the computation time by up to 52% (Table 2c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' The number of nodes and the computation time is reduced in all our approaches and we can notice that combinations with the local hypervolume strategy work better.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' By limiting the number of solved weighted sum IPs (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' in M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='β, M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='β, M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='γ and M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='γ) we notice two consequences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' The number of nodes increases while the number of solved IPs decreases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Although the number of nodes (and thus the number of considered subproblems) is increasing, the total computation time decreases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' This implies that the reduced computation time to solve IP scalarizations compensates the increase of nodes, which results in a trade-off between the number of explored nodes and the computation time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Another interesting aspect can be observed in M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 and M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' The computation time can be reduced if we do not integrate the augmented weighted Tchebycheff objective level set into the lower bound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' This can be explained by the fact that the lower bound improvements of augmented weighted Tchebycheff are only local and do not com- pensate the computation time needed to integrate the information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' The intuitive assumption that the number of explored nodes will then rise significantly is false.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' So, both our branching strategies work better, if we do not consider the local updates of the lower bound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' We can reach a reduction of the explored nodes by up to 83% (Table 2b) and a reduction of the computation time by up to 80% (Table 2b) in the best case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' The strategies M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 and M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 seem to work best for knapsack problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' In most cases these two strategies have the largest impact on the number of explored nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Nevertheless, M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 achieves for all instance sizes the best computation times, since computation time is saved by not integrating the augmented weighted 15 knapsack problem, m = 1, n = 50 version nodes time (s) solved IPs BB 27916.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='153 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 BS1 11788.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='339 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 WS 14270.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='7 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='507 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='75 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 10789.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='7 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='452 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='4 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 10793.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='188 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 10795.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='7 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='116 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='95 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 9888.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='873 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='7 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 10140.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='437 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='65 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 10521.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='774 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='65 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 9840.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='396 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='55 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 10130.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='6 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='422 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='35 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 10401.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='288 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='25 BS2 16739.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='397 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 11026.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='861 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 11024.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='860 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='85 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 11047.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='4 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='645 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='05 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 10071.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='907 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='85 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 10421.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='4 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='587 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 10583.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='448 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='45 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 9994.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='940 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='65 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 10413.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='4 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='820 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='55 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 10568.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='9 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='727 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='15 (a) Knapsack problem with m = 1 constraint and n = 50 variables knapsack problem, m = 1, n = 80 version nodes time (s) solved IPs BB 153938.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='9 186.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='330 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 BS1 36392.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='952 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 WS 58825.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='7 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='545 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 34337.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='7 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='431 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='65 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 34333.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='9 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='312 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 34307.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='505 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='35 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 31643.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='7 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='625 100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 32708.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='9 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='939 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 32986.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='848 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='6 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 31274.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='721 102.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='85 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 32795.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='7 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='576 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 33025.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='358 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='4 BS2 90976.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 116.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='847 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 39745.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='321 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='25 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 40083.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='350 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 39918.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='999 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 31905.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='505 99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='7 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 34496.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='9 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='444 84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 34571.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='7 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='955 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='15 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 32074.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='9 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='510 104.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='85 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 34169.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='464 87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='15 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 34943.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='887 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 (b) Knapsack problem with m = 1 constraint and n = 80 variables knapsack problem, m = 1, n = 100 version nodes time (s) solved IPs BB 297345.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3 484.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='676 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 BS1 68920.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5 128.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='967 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 WS 128080.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8 224.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='587 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='95 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 67369.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 128.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='665 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 67370.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 128.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='924 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='95 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 67353.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3 128.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='993 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='9 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 58214.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 198.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='683 156.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='85 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 61533.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 179.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='516 123.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 62127.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3 177.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='621 104.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='55 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 58151.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3 112.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='575 158.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 61490.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='6 118.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='600 120.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 61762.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='6 118.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='306 108.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='65 BS2 187306.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='9 318.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='524 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 73766.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 144.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='684 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='75 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 74065.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='4 144.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='677 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='9 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 73865.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 144.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='306 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 59512.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='7 200.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='754 158.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='05 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 64489.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 192.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='211 127.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 64330.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5 187.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='803 114.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='65 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 60470.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8 118.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='479 157.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='75 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 64943.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8 127.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='428 123.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 64711.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 126.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='525 113.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5 (c) Knapsack problem with m = 1 constraint and n = 100 variables knapsack problem, m = 2, n = 50 version nodes time (s) solved IPs BB 32655.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='6 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8684 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 BS1 10982.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='6578 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 WS 14180.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='9 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1749 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='25 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 9784.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='7 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5159 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='6 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 9782.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2684 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='65 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 9791.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1580 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='85 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 8900.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='7 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='6639 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='75 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 9407.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5112 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 9507.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0256 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 8892.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='9 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2702 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 9370.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2053 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='05 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 9484.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1161 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='75 BS2 15639.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1246 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 10665.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8423 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 10671.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5141 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='4 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 10854.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5765 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='7 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 9045.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8916 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='9 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 9629.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='7 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1913 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='9 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 9814.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='7 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='6068 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 9030.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5854 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 9608.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='7621 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='05 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 9787.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='6 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='6722 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='35 (d) Knapsack problem with m = 2 constraints and n = 50 variables Table 1: Numerical results of the bi-objective, multidimensional knapsack problems 16 knapsack problem, m = 2, n = 80 version nodes time (s) solved IPs BB 159911.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='4 287.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='925 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 BS1 41092.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 88.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='121 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 WS 63215.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 130.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='338 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 37799.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='654 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='9 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 37835.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='544 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='55 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 37811.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='369 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='75 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 31615.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 115.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='164 102.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='55 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 34772.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5 102.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='965 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 35127.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='706 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='6 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 31590.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='290 104.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='7 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 34977.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='7 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='063 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='45 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 35170.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='279 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3 BS2 115223.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3 224.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='926 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 43581.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='039 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 43744.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='874 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 45481.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 102.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='689 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='45 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 32388.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8 116.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='173 106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='25 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 36453.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 120.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='161 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 35942.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='7 116.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='972 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='05 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 33264.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='207 104.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='75 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 36578.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='915 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 35505.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='971 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='55 (a) Knapsack problem with m = 2 constraints and n = 80 variables knapsack problem, m = 2, n = 100 version nodes time (s) solved IPs BB 428526.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3 1074.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='21 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 BS1 100962.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='6 326.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='98 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 WS 166108.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 464.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='71 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='25 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 98831.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5 323.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='54 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 99313.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5 325.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='32 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='95 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 98770.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='6 322.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='65 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='6 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 69951.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='9 402.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='48 149.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='35 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 73433.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8 379.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='33 119.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='6 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 73424.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='7 371.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='63 102.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='95 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 70172.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3 212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='40 153.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='15 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 72824.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8 219.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='73 121.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='55 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 73651.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5 221.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='96 107.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5 BS2 271110.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8 720.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='46 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 113605.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='9 381.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='46 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='45 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 117188.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3 394.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='57 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='45 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 113665.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3 378.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='63 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='85 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 70603.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 404.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='28 150.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 77836.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 400.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='18 121.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='4 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 76818.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 399.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='89 110.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 72316.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='9 219.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='91 148.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='4 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 78135.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 240.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='57 121.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 77073.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 235.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='49 112.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='45 (b) Knapsack problem with m = 2 constraints and n = 100 variables knapsack problem, m = 3, n = 50 version nodes time (s) solved IPs BB 54430.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='4 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5026 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 BS1 15260.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='9276 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 WS 18112.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='9 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5208 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 13522.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='4 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8431 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 13530.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='7 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='4735 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 13576.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='4442 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='95 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 12345.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1289 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='15 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 12973.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='7592 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 13014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='6348 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 12241.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1190 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='55 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 12934.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2933 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='15 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 12908.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1009 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='35 BS2 22597.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5736 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 14645.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='7 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='6425 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='55 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 14573.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0521 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='75 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 14597.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='9793 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 12617.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='9 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3518 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='65 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 13324.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='9 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='7655 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='4 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 13252.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='4366 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='55 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 12682.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='4 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8670 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='65 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 13180.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='7601 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='6 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 13274.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='4 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8497 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='15 (c) Knapsack problem with m = 3 constraints and n = 50 variables knapsack problem, m = 3, n = 80 version nodes time (s) solved IPs BB 263971.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='6 724.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='999 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 BS1 81609.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='9 287.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='899 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 WS 121360.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8 376.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='247 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='4 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 80406.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5 282.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='897 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='35 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 79971.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5 279.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='885 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 80089.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='6 279.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='686 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='55 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 54187.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 340.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='389 115.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='7 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 55915.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='9 328.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='411 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='45 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 58486.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8 330.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='347 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='9 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 53396.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 164.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='755 116.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 56572.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='6 174.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='131 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='25 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 57452.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='9 176.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='657 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='85 BS2 140681.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='4 390.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='578 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 92175.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8 334.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='414 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='45 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 96339.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3 350.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='148 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='05 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 96099.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5 348.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='915 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 54119.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5 349.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='261 112.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 59379.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8 344.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='899 89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 60326.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='6 349.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='874 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='15 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 54595.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='6 176.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='090 119.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='65 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 62851.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='9 211.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='373 88.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='9 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 61200.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8 205.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='413 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='6 (d) Knapsack problem with m = 3 constraints and n = 80 variables Table 2: Numerical results of the bi-objective, multidimensional knapsack problems 17 Tchebycheff objective space information into the lower bound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Note that with rising numbers of variables and constraints the hybridization techniques have larger impact on the performance of the Branch and Bound algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 Bi-objective Assignment Problems We consider bi-objective assignment problems having n = ℓ2 variables, max ℓ � i=1 ℓ � j=1 ck ij xij k = 1, 2 s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' ℓ � i=1 xij = 1 j = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=', ℓ ℓ � j=1 xij = 1 i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=', ℓ x ∈ {0, 1}ℓ×ℓ where the cost coefficients ck ij ∈ [50, 100].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' The algorithmic strategy for the solution of IP scalariza- tions depending on the value of the parameter α is chosen similarly to the previous case of knapsack problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' However, we adapt the boundaries due to the different number of nodes to explore in as- signment problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' In M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='β weighted sum scalarizations are solved every 10-th iteration to integer optimality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' In M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='β we apply the weighted sum every 10-th iteration within the first n·ℓ iterations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' In M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='β we apply the weighted sum every 10-th iteration within the first n · ℓ/3 iterations, every ℓ-th iteration in the next n · ℓ/3 iterations and every n-th iteration in the third n · ℓ/3 iterations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' For M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='γ we use the same algorithmic strategy as in hybrid Branch and Bound for knapsack problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' If a scalarization cannot be applied or an IP with identical objective function has been solved prior, no IP is solved in that iteration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Due to the total unimodularity of the assignment problem, the weighted sum scalarizations do in general not improve the lower bound sets of subproblems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' However, in situations where the weighted sum IP scalarization generates a supported efficient solution, whose corresponding non-dominated point is not an extreme point of the lower bound set, the local upper bounds move closer to the lower bound set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' This reduces the gap between upper and lower bound and may lead to a decrease of the explored subproblems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Note that this update of the upper bound set may also have the contrary effect (the number of considered subproblems increases), since it can change the order in which the subproblems are considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Nevertheless, the weighted sum IP scalarizations are necessary to find non-dominated points on which the augmented weighted Tchebycheff scalarization can be applied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Our branching strategies have a significant impact on the number of explored nodes and the computation time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Again, the local hypervolume gap performs better than the global hypervolume gap strategy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' With the local strategy we can reduce the number of explored nodes by up to 39% (Table 3c) and the computation time by up to 33% (Table 3c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Using the global hypervolume gap strategy we can reduce the number of explored nodes by up to 12% (Table 3b) and the computation time by up to 12% (Table 3b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' We reach a reduction of the explored nodes by up to 46% (Table 3d) and a reduction of the computation time by up to 42% (Table 3d), in the best case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Again, the strategies M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 and M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 seem to work the best for assignment problems in terms of explored nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Nevertheless, M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 leads to a better computation time which can be explained by the same argument as before.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Furthermore, strategy BS1 works very well and is able to compete with the previously mentioned strategies with respect to number of nodes and computation time without solving a single IP scalarization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' 18 assignment problem, n = 100 version nodes time (s) solved IPs BB 3117.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1507 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 BS1 2422.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1182 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 WS 3117.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2631 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 2425.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1937 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='95 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 2425.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1564 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='95 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 2425.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1996 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='4 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 2418.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='4063 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 2420.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2726 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='4 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 2419.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2242 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='65 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 2420.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3474 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='9 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 2420.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2014 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='55 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 2423.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2055 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8 BS2 2948.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='9 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='9644 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 2519.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='4349 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 2518.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='7 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='4211 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='05 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 2516.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='4203 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='65 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 2499.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='7 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='6173 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='4 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 2518.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='7 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='4661 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 2516.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='4214 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='35 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 2498.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5400 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='55 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 2518.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='7 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='4451 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='25 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 2516.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3972 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='4 (a) Assignment problem with n = 100 variables assignment problem, n = 144 version nodes time (s) solved IPs BB 9661.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='9 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2667 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 BS1 6255.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='4 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='9362 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 WS 9610.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1363 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='35 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 6274.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='9323 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 6274.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='9869 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 6274.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='9318 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='85 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 6210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='9 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0216 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 6279.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='9 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='4670 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='55 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 6271.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1542 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='65 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 6171.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='4994 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='6 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 6261.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2851 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='65 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 6270.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8676 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='45 BS2 8448.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='7742 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 6781.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='6825 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='05 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 6779.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='4 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5940 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='25 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 6734.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='4270 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 6472.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8732 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 6724.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='6838 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 6682.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='4212 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='6 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 6500.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2536 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='55 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 6737.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='7 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5214 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='75 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 6689.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3987 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='95 (b) Assignment problem with n = 144 variables assignment problem, n = 225 version nodes time (s) solved IPs BB 26810.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5 160.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='712 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 BS1 16142.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 107.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='909 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 WS 26810.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5 163.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='666 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='85 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 16150.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 107.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='842 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 16151.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 109.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='687 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='7 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 16164.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='7 109.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='073 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='05 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 15424.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='181 87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='4 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 15964.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3 110.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='004 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='05 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 16112.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 110.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='372 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 15554.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='748 89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 16008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='4 107.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='641 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='35 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 16106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5 109.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='735 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='25 BS2 24566.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 152.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='341 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 17499.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 117.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='481 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='15 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 17591.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='4 118.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='804 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='75 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 17287.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8 116.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='681 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 16095.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='7 115.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='012 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 17048.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8 116.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='275 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='55 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 17093.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3 117.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='976 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='75 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 16183.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 110.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='920 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='55 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 17104.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='7 117.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='885 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 17070.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 117.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='557 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='65 (c) Assignment problem with n = 225 variables assignment problem, n = 324 version nodes time (s) solved IPs BB 76643.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 798.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='644 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 BS1 47311.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='6 527.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='471 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 WS 75179.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 786.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='036 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='75 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 47327.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 530.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='055 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='75 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 47332.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8 523.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='562 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='9 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 47375.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='6 524.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='610 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='25 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 40978.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 477.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='927 157.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 43760.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5 497.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='812 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 44343.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='9 499.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='678 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='35 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 41294.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='4 457.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='120 159.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='05 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 43864.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='6 487.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='051 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='25 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 44499.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='7 489.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='744 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='05 BS2 69042.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='4 723.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='853 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 49367.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5 565.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='719 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='45 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 49053.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 553.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='130 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='95 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 49221.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='4 554.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='594 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 41840.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5 489.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='647 150.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 45621.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 520.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='469 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='15 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 46915.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='9 533.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='692 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='35 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 42726.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='6 474.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='220 156.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='15 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 45901.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='6 513.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='111 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='05 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 46902.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8 526.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='440 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='45 (d) Assignment problem with n = 324 variables Table 3: Numerical results of the bi-objective assignment problems 19 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3 Bi-objective Discrete Facility Location Problems We consider discrete facility location problems of the form max ℓ � i=1 q � j=1 ck ij xij + q � j=1 f k j yj k = 1, 2 s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' q � j=1 xij ≤ 1 i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=', ℓ xij ≤ yj i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=', ℓ, j = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=', q x ∈ {0, 1}ℓ×q y ∈ {0, 1}q where ℓ is the number of customers and q the number of facilities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' We randomly generate coordinates of ℓ customers and q facilities in a square with length 200.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' The costs of the first objective function correspond to the l1-distances between the customers and facilities, while the costs of the second objective function are randomly generated (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' c2 ij ∈ [1, 200]) and f k j ∈ [200, 400].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' The number of variables is n = (ℓ + 1) q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' We restrict the numerical tests to problems where the number of facilities is 20% of the number of customers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Again, we need to specify when and how often integer scalarizations are applied: We use the same methods as before but adapt the boundaries due to the different number of nodes to explore in discrete facility location problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' In M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='β we apply the weighted sum IP scalarization every 10-th iteration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' In M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='β we apply the weighted sum every 10-th iteration within the first n2/4 iterations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' In M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='β we apply the weighted sum scalarization every 10-th iteration in the first n2/4 iterations, every n/2-th iteration in the next n2/4 iterations and every n-th iteration in the third n2/4 iterations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' In M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='γ we operate analogous to the methods used for knapsack and assignment problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' If a scalarization cannot be applied or an IP with identical objective function has been solved prior, no IP is solved in that iteration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Again, both new branching strategies have an impact on the number of explored nodes and the computation time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' The local strategy, once more, leads to better results, namely reduction of the explored nodes by up to 52% (Table 4d) and reduction of the computation time by up to 45% (Table 4d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' With the global hypervolume gap strategy we can reach a reduction of the explored nodes by up to 24% (Table 4d) and a reduction of the computation time by up to 21% (Table 4d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' In the best case we can reach a reduction of the explored nodes by up to 57% (Table 4d) and of the computation time by up to 50% (Table 4d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Once again, M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 seems to be the best choice with respect to the number of explored nodes and with a rising number of variables it is also the best choice regarding the computation time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' With a smaller number of variables, BS1 leads to good results with respect to both aspects without solving a single IP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='4 Summary In all of the three tested problem classes (knapsack, assignment, discrete facility location) a signif- icant reduction of the number of explored nodes and the computation time can be realized with all presented combinations of the hybrid Branch and Bound approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' With increasing problem size (number of variables) the impact of the presented augmentations increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Furthermore, the approaches perform better on problems where the gap between YN and the solution of the linear relaxation is larger compared to totally unimodular problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' The local hypervolume gap strategy for the node selection outperforms the global hypervolume gap strategy in our numerical tests.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' A reason for this is that in the global hypervolume gap strategy many small search zones can add up to a large gap although the lower bound might be quite close to the non- dominated points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' The local hypervolume gap strategy chooses the node with the largest search zone, which has the biggest potential to reduce this gap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Moreover, the local hypervolume gap strategy aims at an uniform distribution of points in the incumbent list.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' In our numerical test, M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 turn 20 facility location problem, n = 48 version nodes time (s) solved IPs BB 1431.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0851 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 BS1 999.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='7640 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 WS 1431.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='4550 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='35 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 1000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8354 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='95 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 1000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8219 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 1000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8243 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='95 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 999.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='9361 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 1000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8361 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='85 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 1000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8079 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='85 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 999.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8536 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 1000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8182 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='85 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 1000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8037 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='85 BS2 1268.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='9714 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 1041.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8654 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 1041.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8527 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='35 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 1041.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8592 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='35 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 1036.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='9722 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='65 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 1041.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8761 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='25 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 1041.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8735 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='6 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 1034.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='9678 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 1041.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8843 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='4 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 1041.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8654 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='6 (a) Facility location problem with 15 customers and 3 facilities facility location problem, n = 84 version nodes time (s) solved IPs BB 7949.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='6393 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 BS1 4626.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='7 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='9303 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 WS 7490.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2058 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 4627.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1249 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='45 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 4627.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1149 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 4626.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='4 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0610 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='85 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 4527.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2394 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 4601.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='6 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='4311 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='45 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 4610.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='4 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2569 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='9 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 4526.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='4415 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 4591.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1289 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='25 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 4605.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1312 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8 BS2 7084.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='4 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5822 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 4873.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='7719 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='35 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 4874.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='7534 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='45 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 4894.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='7031 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='6 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 4673.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='6 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5755 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='65 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 4832.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='9275 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='6 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 4812.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8050 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='4 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 4628.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='9 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='7019 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='15 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 4825.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='9 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='7491 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='4 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 4807.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5984 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5 (b) Facility location problem with 20 customers and 4 facilities facility location problem, n = 130 version nodes time (s) solved IPs BB 17461.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='9 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='6307 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 BS1 10684.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5157 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 WS 16795.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='9 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='9317 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='35 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 10753.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='9 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='4356 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 10753.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='9 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2764 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 10753.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='9 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1007 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='15 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 10104.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='4 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3909 89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='65 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 10678.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='7434 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='35 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 10722.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='6262 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='7 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 10103.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5003 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='95 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 10691.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3730 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='05 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 10718.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='6 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1690 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='45 BS2 15474.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='7 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5130 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 11548.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='4891 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 11601.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='4 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5848 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='6 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 11535.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2917 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 10684.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8639 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 11381.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1988 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='15 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 11336.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='7754 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='45 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 10695.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='9098 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='25 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 11341.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='6 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2646 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='55 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 11352.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0063 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='9 (c) Facility location problem with 25 customers and 5 facilites facility location problem, n = 186 version nodes time (s) solved IPs BB 67369.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3 373.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='238 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 BS1 31844.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 203.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='145 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 WS 62192.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8 349.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='741 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='95 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 32106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='6 206.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='244 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='05 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 32097.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='9 206.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='851 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='4 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 32148.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5 207.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='199 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='75 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 28384.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 224.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='486 186.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 31074.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5 218.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='314 101.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='15 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 32004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8 209.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='608 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 28558.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8 186.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='010 172.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='7 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 30946.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='4 202.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='329 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='75 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 32011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8 207.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='715 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5 BS2 50759.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 292.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='344 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 35150.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 230.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='687 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='5 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 35789.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8 233.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='967 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8 M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 35255.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 233.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='163 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='95 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 29704.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3 230.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='016 172.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='65 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 33959.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='7 236.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='351 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='75 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 34228.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 233.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='553 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 30412.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='6 202.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='719 167.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='4 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 34511.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='8 229.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='970 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='95 M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2 34405.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0 229.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='021 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1 (d) Facility location problem with 30 customers and 6 facilities Table 4: Numerical results of the bi-objective integer facility location problem 21 out to be the best choice in most cases with respect to the number of explored nodes and computation time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' In this version, we use the local hypervolume gap strategy for the choice of the active node, every 10-th iteration the weighted sum IP scalarization is applied and every 50-th iteration we apply the augmented weighted Tchebycheff scalarization instead.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Futhermore, the objective space information gained by the augmented weighted Tchebycheff scalarization is not used to update the lower bound set, since its local improvements do not compensate the increased computation time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Although we need to solve more IPs than in most other approaches, the computation time is the lowest compared to the others.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' So, using the augmented weighted Tchebycheff scalarization in the beginning of the Branch and Bound works best.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Due to the likelihood of finding non-supported non- dominated points in the early stages of the algorithm, the upper bound can be further improved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' This results to a higher probability of fathoming a node by dominance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Nevertheless, with version BS1 we also achive a remarkable reduction in terms of the number of explored nodes and computation time by using the local hypervolume gap strategy for node selection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' 6 Conclusion and Outlook In this paper, we propose two approaches to incorporate objective space information in bi-objective Branch and Bound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' By using the local or global (approximated) hypervolume gap as a node selection criterion, we adapt the run of the Branch and Bound algorithm to the problem instance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Additionally, we adaptively solve scalarizations to integer optimality to improve the lower and the upper bound set by the obtained objective space information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Our numerical results show the effectiveness of both approaches and in particular of their combination.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' The dynamic branching rule based on the local (approximated) hypervolume gap has large impact on the number of explored subproblems, is compuationally efficient and can be easily integrated in other multi-objective Branch and Bound algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' While we tested in this paper the individual contributions of our augmentations on a generic bi-objective Branch and Bound, we will continue to extend our ideas to multiple dimensions and integrate them into a competetive multi-objective Branch and Bound framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Particularly in higher dimensions, it may be promising to combine our approaches with objective space branching.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Acknowledgment The authors thankfully acknowledge financial support by Deutsche Forschungsgemeinschaft, project number KL 1076/11-1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' References Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Aneja and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Nair.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Bicriteria transportation problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Management Science, 25(1): 73–78, 1979.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1287/mnsc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Bazgan, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Hugot, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Vanderpooten.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Solving efficiently the 0–1 multi-objective knapsack problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Computers & Operations Research, 36(1):260–279, 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='cor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Belotti, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Soylu, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Wiecek.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' A branch-and-bound algorithm for biobjective mixed-integer programs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Technical report, https://optimization-online.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='org/?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='p=12266, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Benson.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' An outer approximation algorithm for generating all efficient extreme points in the outcome set of a multiple objective linear programming problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Journal of Global Optimization, 13(1):1–24, 1998.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1023/A:1008215702611.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' 22 N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Boland, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Charkhgard, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Savelsbergh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' A criterion space search algorithm for biobjective integer programming: The balanced box method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' INFORMS Journal on Computing, 27(4):735– 754, 2015a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1287/ijoc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0657.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Boland, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Charkhgard, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Savelsbergh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' A criterion space search algorithm for biobjective mixed integer programming: The triangle splitting method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' INFORMS Journal on Computing, 27(4):597–618, 2015b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1287/ijoc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0646.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Boland, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Charkhgard, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Savelsbergh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' The quadrant shrinking method: A simple and efficient algorithm for solving tri-objective integer programs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' European Journal of Operational Research, 260(3):873–885, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='ejor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='03.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='035.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Bö¸kler and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Mutzel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Output-sensitive algorithms for enumerating the extreme nondominated points of multiobjective combinatorial optimization problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' In Algorithms - ESA 2015, pages 288–299.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Springer Berlin Heidelberg, Berlin Heidelberg, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1007/978-3-662-48350-3_25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Dächert and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Klamroth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' A linear bound on the number of scalarizations needed to solve discrete tricriteria optimization problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Journal of Global Optimization, 61(4):643–676, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1007/s10898-014-0205-z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Dächert, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Gorski, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Klamroth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' An augmented weighted Tchebycheff method with adap- tively chosen parameters for discrete bicriteria optimization problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Computers & Operations Research, 39(12):2929–2943, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='cor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='02.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Dechter and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Pearl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Generalized best-first search strategies and the optimality of A∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Journal of the ACM, 32(3):505–536, 1985.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1145/3828.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3830.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Ehrgott.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Multicriteria Optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Springer, Berlin Heidelberg, 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' ISBN 978-3-540-21398-7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1007/3-540-27659-9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Ehrgott and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Gandibleux.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Bound sets for biobjective combinatorial optimization problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Computers & Operations Research, 34(9):2674–2694, 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='cor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Forget, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Gadegaard, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Klamroth, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Nielsen, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Przybylski.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Branch-and-bound and objective branching with three or more objectives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Computers & Operations Research, 148:106012, dec 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='cor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='106012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Gadegaard, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Nielsen, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Ehrgott.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Bi-objective branch-and-cut algorithms based on LP relaxation and bound sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' INFORMS Journal on Computing, 31(4):790–804, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1287/ijoc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0846.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Haimes, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Lasdon, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Wismer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' On a bicriterion formation of the problems of integrated system identification and system optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' IEEE Transactions on Systems, Man, and Cyber- netics, pages 296–297, 1971.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1109/TSMC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1971.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='4308298.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Jesus, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Paquete, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Derbel, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Liefooghe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' On the design and anytime performance of indicator-based branch and bound for multi-objective combinatorial optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' In Pro- ceedings of the Genetic and Evolutionary Computation Conference, Lille, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' ACM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1145/3449639.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='3459360.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Kellerer, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Pferschy, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Pisinger.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Knapsack Problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Springer, Berlin Heidelberg, 2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1007/978-3-540-24777-7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Kirlik and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Sayın.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' A new algorithm for generating all nondominated solutions of multiobjective discrete optimization problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' European Journal of Operational Research, 232(3):479–488, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='ejor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' 23 G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Kiziltan and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Yucaoğlu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' An algorithm for multiobjective zero-one linear programming.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Man- agement Science, 29(12):1444–1453, 1983.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1287/mnsc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1444.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Klamroth, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Lacour, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Vanderpooten.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' On the representation of the search region in multi- objective optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' European Journal of Operational Research, 245(3):767–778, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='ejor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='03.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='031.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Klein and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Hannan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' An algorithm for the multiple objective integer linear programming prob- lem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' European Journal of Operational Research, 9(4):378–385, 1982.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1016/0377-2217(82) 90182-5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Laumanns, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Thiele, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Zitzler.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' An efficient, adaptive parameter variation scheme for metaheuristics based on the epsilon-constraint method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' European Journal of Operational Research, 169(3):932–942, 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='ejor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='029.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Mavrotas and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Diakoulaki.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' A branch and bound algorithm for mixed zero-one multiple objective linear programming.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' European Journal of Operational Research, 107(3):530–541, 1998.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' 1016/s0377-2217(97)00077-5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Mavrotas and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Diakoulaki.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Multi-criteria branch and bound: A vector maximization algorithm for mixed 0-1 multiple objective linear programming.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Applied Mathematics and Computation, 171 (1):53–71, 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='amc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='038.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Miettinen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Nonlinear Multiobjective Optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Springer, New York, 1998.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' ISBN 0792382781.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1007/978-1-4615-5563-6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Morrison, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Jacobson, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Sauppe, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Sewell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Branch-and-bound algorithms: A survey of recent advances in searching, branching, and pruning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Discrete Optimization, 19:79–102, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='disopt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Ö.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Özpeynirci and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Köksalan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' An exact algorithm for finding extreme supported nondominated points of multiobjective mixed integer programs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Management Science, 56(12):2302–2315, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1287/mnsc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1248.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Parragh and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Tricoire.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Branch-and-bound for bi-objective integer programming.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' INFORMS Journal on Computing, 31(4):805–822, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1287/ijoc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0856.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Przybylski and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Gandibleux.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Multi-objective branch and bound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' European Journal of Opera- tional Research, 260(3):856–872, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='ejor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='032.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Przybylski, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Gandibleux, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Ehrgott.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Two phase algorithms for the bi-objective assignment problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' European Journal of Operational Research, 185(2):509–533, 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='ejor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='054.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Przybylski, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Gandibleux, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Ehrgott.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' A recursive algorithm for finding all nondominated extreme points in the outcome set of a multiobjective integer programme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' INFORMS Journal on Computing, 22(3):371–386, 2010a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1287/ijoc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1090.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0342.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Przybylski, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Gandibleux, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Ehrgott.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' A two phase method for multi-objective integer programming and its application to the assignment problem with three objectives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Discrete Opti- mization, 7(3):149–165, 2010b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='disopt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='03.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Przybylski, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Klamroth, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Lacour.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' A simple and efficient dichotomic search algorithm for multi-objective mixed integer linear programs, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Serafini.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Some considerations about computational complexity for multi objective combinatorial problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' In Recent Advances and Historical Development of Vector Optimization, pages 222–232.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Springer Berlin Heidelberg, Berlin Heidelberg, 1987.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1007/978-3-642-46618-2_15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' 24 F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Sourd and O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Spanjaard.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' A multiobjective branch-and-bound framework: Application to the biobjective spanning tree problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' INFORMS Journal on Computing, 20(3):472–484, 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1287/ijoc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1070.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='0260.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Steuer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Multiple Criteria Optimization: Theory, Computation and Application.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' John Wiley, New York, 1986.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' ISBN 978-0894643934.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1002/oca.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='4660100109.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Steuer and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='-U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Choo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' An interactive weighted Tchebycheff procedure for multiple objective programming.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Mathematical Programming, 26(3):326–344, 1983.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1007/BF02591870.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Stidsen and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Andersen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' A hybrid approach for biobjective optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Discrete Optimiza- tion, 28:89–114, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='disopt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='02.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Stidsen, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Andersen, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Dammann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' A branch and bound algorithm for a class of biobjective mixed integer programs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Management Science, 60(4):1009–1032, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1287/ mnsc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1802.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Tuyttens, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Teghem, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Fortemps, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Nieuwenhuyze.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Performance of the mosa method for the bicriteria assignment problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Journal of Heuristics, 6(3):295–310, 2000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1023/a: 1009670112978.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Ulungu and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Teghem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' The two phases method: An efficient procedure to solve bi-objective combinatorial optimization problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Foundations of Computing and Decision Sciences, 20:149– 156, 1995.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Ulungu and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Teghem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Solving multi-objective knapsack problem by a branch-and-bound procedure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' In Multicriteria Analysis, pages 269–278.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Springer, Berlin Heidelberg, 1997.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1007/978-3-642-60667-0_26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Vincent, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Seipp, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Ruzika, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Przybylski, and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Gandibleux.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Multiple objective branch and bound for mixed 0-1 linear programming: Corrections and improvements for the biobjective case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Computers & Operations Research, 40(1):498–509, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='cor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Visée, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Teghem, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Pirlot, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Ulungu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Two-phases method and branch and bound proce- dures to solve the bi–objective knapsack problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Journal of Global Optimization, 12(2):139–155, 1998.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1023/A:1008258310679.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Zitzler and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Thiele.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' IEEE Transactions on Evolutionary Computation, 3(4):257–271, 1999.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='1109/4235.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content='797969.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} +page_content=' 25' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfCC72/content/2301.11974v1.pdf'} diff --git a/BNE3T4oBgHgl3EQfTwqq/content/tmp_files/2301.04445v1.pdf.txt b/BNE3T4oBgHgl3EQfTwqq/content/tmp_files/2301.04445v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..68d41b9c9adafd3ef3b67e961d8ab0d0dbc935aa --- /dev/null +++ b/BNE3T4oBgHgl3EQfTwqq/content/tmp_files/2301.04445v1.pdf.txt @@ -0,0 +1,1153 @@ +MNRAS 000, 1–10 (2023) +Preprint 12 January 2023 +Compiled using MNRAS LATEX style file v3.0 +Hi intensity mapping with MeerKAT: forecast for delay power spectrum +measurement using interferometer mode +Ming Zhang +ID1, Yichao Li +ID1★, Jing-Fei Zhang +ID1, Xin Zhang +ID1,2,3† +1Key Laboratory of Cosmology and Astrophysics (Liaoning Province) & Department of Physics, College of Sciences, Northeastern University, Shenyang 110819, China +2Key Laboratory of Data Analytics and Optimization for Smart Industry (Ministry of Education), Northeastern University, Shenyang 110819, China +3National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang 110819, China +12 January 2023 +ABSTRACT +Neutral hydrogen (Hi) intensity mapping (IM) survey is generally regarded as a promising tool to explore the expansion history +of the universe. In this work, we investigate the capability of MeerKAT Hi IM observation with interferometric mode to estimate +the power spectrum and constrain cosmological parameters in typical dark energy models. Besides, a novel approach of ‘delay +spectrum’ is employed, which can achieve separating the weak Hi signal from the foreground in the frequency space. We find +that the different survey fields have a great influence on the fractional errors on power spectrum Δ𝑃/𝑃 in a limited observational +time 10 h. With the integration time increasing from 10 h to 10000 h, Δ𝑃/𝑃 becomes distinctly smaller until the cosmic +variance begins to dominate. In the total 10000 h observation, the lower Δ𝑃/𝑃 in low 𝑘 can be achieved when tracking 100 +points for MeerKAT L-band and 10 points for MeerKAT UHF-band. Through simulating 10000 h Hi IM survey, we obtain +𝜎(Ωm) = 0.044 and 𝜎(𝐻0) = 2.8 km s−1 Mpc−1 with MeerKAT L-band, which are worse than the results of 𝜎(Ωm) = 0.028 +and 𝜎(𝐻0) = 2.0 km s−1 Mpc−1 with MeerKAT UHF-band in the ΛCDM model. However, in the 𝑤CDM and CPL models, +MeerKAT shows a limited capability of constraining dark-energy equation of state, even though combined with Planck data. Our +analysis is shown to be a useful guide for the near future MeerKAT observations in Hi IM survey. +Key words: techniques: interferometric – cosmology: large scale structure of Universe – cosmology: cosmological parameters +– radio lines: general +1 INTRODUCTION +In the last two decades, the accurate measurement of the cosmic +microwave background (CMB) brings us to the era of precision cos- +mology. Another promising method for reaching precision cosmol- +ogy is the cosmic large scale structure (LSS) survey. At present, the +cosmic LSS survey has made significant progress with galaxy red- +shift survey in constraining cosmological parameters, e.g. the 2dF +Galaxy Redshift Survey (Colless et al. 2001; Cole et al. 2005), the +6dF Galaxy Survey (Jones et al. 2009; Beutler et al. 2011), the Wig- +gleZ Dark Energy Survey (Blake et al. 2011; Drinkwater et al. 2010), +the Baryon Oscillation Spectroscopic Survey (Alam et al. 2017) and +the Dark Energy Survey (DES) (Abbott et al. 2018). In addition, the +next generation galaxy survey targeting at even larger and deeper +universe, such as Dark Energy Spectroscopic Instrument (Dey et al. +2019), Large Synoptic Survey Telescope (Ivezić et al. 2019; Chisari +et al. 2019) and Euclid (Amendola et al. 2018), will significantly +improve the measurement precision in the near future. +Besides, neutral hydrogen (Hi) is widely regarded as a promising +tracer of the underlying dark matter distribution of the late Universe. +Hi can be detected with radio telescope via its 21 cm line which +★ E-mail: liyichao@mail.neu.edu.cn +† E-mail: zhangxin@mail.neu.edu.cn +arises from the spin-flip transition of ground state hydrogen atom. +Nevertheless, it is known that detecting Hi signal in individual galaxy +at higher redshfit requires good angular resolution and sensitivity, +which relies on large radio interferometer in the near future, such as +Square Kilometre Array (SKA). However, Hi survey of the cosmic +LSS can be quickly carried out using existing radio telescopes via +the intensity mapping (IM) methodology, which observes the total +Hi intensity of the galaxies in a voxel (Battye et al. 2004; McQuinn +et al. 2006; Loeb & Wyithe 2008; Chang et al. 2008; Wyithe et al. +2008; Bagla et al. 2010; Seo et al. 2010; Lidz et al. 2011; Ansari +et al. 2012). A variety of related studies show that Hi IM survey has a +great performance in cosmology studies, e.g. constraints on the basic +and dark-energy cosmological parameters (Pritchard & Loeb 2012; +Bull et al. 2015; Pourtsidou et al. 2017; Olivari et al. 2018; Obuljen +et al. 2018; Sprenger et al. 2019; Xu et al. 2018; Cheng et al. 2020; +Xu & Zhang 2020; Jin et al. 2020; Xiao et al. 2021; Zhang et al. +2021; Jin et al. 2021; Wu & Zhang 2022; Scelfo et al. 2022; Berti +et al. 2022; Wu et al. 2022a,b), primordial non-Gaussianity (Camera +et al. 2013; Xu et al. 2015; Li & Ma 2017; Ballardini et al. 2019; +Karagiannis et al. 2020; Cunnington et al. 2020; Karagiannis et al. +2021; Viljoen et al. 2021) and neutrino mass (Villaescusa-Navarro +et al. 2015; Zhang et al. 2020). +Hi IM LSS detection was first reported by measuring the cross- +correlation function between the Hi map observed with Green Bank +© 2023 The Authors +arXiv:2301.04445v1 [astro-ph.CO] 11 Jan 2023 + +2 +M. Zhang et al. +Telescope (GBT) and the DEEP2 optical redshift survey (Chang +et al. 2010). The cross-correlation power spectrum between Hi IM +survey and optical galaxy survey was also detected with the GBT +and the WiggleZ Dark Energy Survey (Masui et al. 2013). Anderson +et al. (2018) reported the results of Hi IM maps cross-correlated with +2dF galaxy survey. Tramonte & Ma (2020) presented the feasibility +of measuring Hi maps with Parkes radio telescope and 2dF galaxy +survey. A cross-correlation signal detected with Parkes Hi IM and +WiggleZ redshift data was discussed in Li et al. (2021a). Wolz et al. +(2022) gave a joint analysis of GBT IM and eBOSS survey. To date, +the auto-correlation power spectrum is still not detected because of +systematics and foreground contamination. +Several large radio telescopes or interferometers, such as Five +hundred-meter Aperture Spherical radio Telescope (FAST; Nan +et al. 2011), Baryon acoustic oscillations In Neutral Gas Obser- +vations (BINGO; Dickinson 2014; Wuensche et al. 2020) and SKA +(Maartens et al. 2015; Bacon et al. 2020), are built or planned for +Hi survey, which are expected to detect the auto-correlation power +spectrum. In addition, interferometers have inherent advantages of +being less sensitive to systematics, which can be regarded as a com- +plementary approach to single-dish IM experiments. The smallest +𝑘-modes accessible to an interferometer is determined by the short- +est baselines. Therefore, a compacted radio interferometer array is +required for probing the cosmic LSS, especially for the scales of +baryon acoustic oscillation (BAO). To date, several interferometers, +such as Canadian Hydrogen Intensity Mapping Experiment (CHIME; +Bandura et al. 2014), Hydrogen Intensity and Real-time Analysis eX- +periment (HIRAX; Newburgh et al. 2016) and Tianlai (Chen 2012; +Wu et al. 2021), are designed with short baselines to probe the BAO. +Besides, the MeerKAT radio telescope array with 64 dish anten- +nas of 13.5 m diameter is a precursor of SKA, which is located in +the Northern Cape Province of South Africa. MeerKAT has already +been operating and producing preliminary results (Pourtsidou 2018; +Wang et al. 2021; Knowles et al. 2021; Terni de Gregory et al. 2021; +de Villiers & Cotton 2022). The MeerKAT Large Area Synoptic +Survey (MeerKLASS; Santos et al. 2017; Irfan et al. 2021) proposed +Hi IM with single-dish mode (Li et al. 2021b; Wang et al. 2021) +and reported the cross-correlation power spectrum detection with +the optical galaxy survey (Cunnington et al. 2022). In addition, the +small field deep surveys using MeerKAT interferometric mode, such +as the MeerKAT International GHz Tiered Extragalactic Exploration +(MIGHTEE; Jarvis et al. 2018; Paul et al. 2021; Maddox, N. et al. +2021), also provided the Hi cube. In this paper, we investigate the +performance of Hi IM survey in measuring power spectrum using +MeerKAT interferometric mode with different survey strategies and +forecast the constraints on cosmological parameters in typical dark +energy models including ΛCDM, 𝑤CDM and CPL models (Cheval- +lier & Polarski 2001; Linder 2003). +In this work, it is worth mentioning that we employ a novel ap- +proach, i.e. the ‘delay spectrum’ analysis, which is first applied in the +PAPER observation (Parsons & Backer 2009). It is known that the +cosmic Hi signal is contaminated by the bright foreground emissions +in the same frequency ranges, such as the synchrotron and free-free +emission from the Galaxy and extra-galactic point sources. Gen- +erally, the foreground contamination components have the smooth +frequency spectra, which can be separated from the cosmic Hi fluc- +tuation in the ‘delay spectrum’ space (Parsons et al. 2012; Liu et al. +2014a,b; Liu & Shaw 2020). +This paper is organized as follows. In Section 2, we provide the de- +tailed description of estimating Hi signal power spectrum, MeerKAT +survey strategy and its system noise, foregrounds and shot noise. In +Section 3, we present the constraint results of the power spectrum +and cosmological parameters. Finally, the conclusion is given in Sec- +tion 4. In our simulation, we assume a flat ΛCDM model and keep +all cosmological parameters fixed to Planck 2018 results (Aghanim +et al. 2020). +2 METHODOLOGY +2.1 Hi delay spectrum +Hi IM observation directly measures Hi brightness temperature. The +sky brightness temperature can be defined as +𝑇(𝜽, 𝜈) = ¯𝑇(𝜈)[1 + Δ𝑇(𝜽, 𝜈)] , +(1) +where 𝜽 is the position vector on the sky, 𝜈 is the observation fre- +quency, ¯𝑇(𝜈) and Δ𝑇(𝜽, 𝜈) denote the isotropic and fluctuating com- +ponents of the Hi brightness temperature distribution, respectively. +Radio interferometers detect Hi signals by measuring their visi- +bilities, which are the cross-correlation signals between each pair of +antennas. Assuming the flat-sky approximation, the visibility for a +pair of antennae is given by +𝑉(𝒖, 𝜈) = +∫ +𝐴(𝜽, 𝜈)Δ𝑇(𝜽, 𝜈)𝑒−𝑖2𝜋𝒖·𝜽𝑑Ω , +(2) +where 𝒖 = 𝜈𝒃/𝑐 is the baseline vector in units of wavelength, cor- +responding to each antenna pair, where 𝒃 is the baseline vector in +physical units and 𝑐 is the speed of light. 𝐴(𝜽, 𝜈) denotes the primary +beam response of the telescope in the direction of 𝜽 and dΩ repre- +sents the solid angle element. The visibility function can be Fourier +transferred to the ‘delay spectrum’ space, +˜𝑉(𝒖, 𝜏) = +∫ +𝑉(𝒖, 𝜈)𝑒−𝑖2𝜋𝜈𝜏d𝜈, +(3) +where 𝜏 = 1/𝛿𝜈 is the corresponding delay of frequency interval 𝛿𝜈. +Following McQuinn et al. (2006), Parsons et al. (2012) and Liu & +Shaw (2020), Hi power spectrum can be obtained from measured +visibilities in the form of ‘delay spectrum’ +𝑃D(𝑘⊥, 𝑘 ∥) ≡ 𝐴𝑒 +𝜆2𝐵 +𝑟2𝑟𝜈 +𝐵 +�� ˜𝑉(𝒖, 𝜏) +��2 +� 𝜆2 +2𝑘B +�2 +, +(4) +where 𝐴𝑒 and 𝐵 are the effective antenna area and bandwidth, re- +spectively, 𝜆 denotes the wavelength at the center of the band, 𝑟 is +the comoving distance to the redshift 𝑧 corresponding to 𝜆, 𝑟𝜈 is the +comoving width along the line-of-sight (LoS) corresponding to the +redshift range determined by 𝐵, and 𝑘B is the Boltzmann constant. +Here, 𝑘⊥ and 𝑘 ∥ are the Fourier wave vectors perpendicular and par- +allel to the LoS, respectively. They are related to the interferometric +variables via +𝑘⊥ = 2𝜋|𝒖| +𝑟 +; +𝑘 ∥ = 2𝜋𝜏𝜈21𝐻(𝑧) +𝑐(1 + 𝑧)2 +. +(5) +where 𝜈21 = 1420 MHz is the rest-frame frequency of the 21 cm line. +𝐻(𝑧) denotes the Hubble parameter as a function of redshift 𝑧. +There are various advantages of this ‘delay spectrum’ method +(Parsons et al. 2012; Vedantham et al. 2012; Paul et al. 2016). The +different spectral behaviors between Hi signal and foreground make +it possible to isolate the latter in the Fourier space. In addition, the +Fourier conjugate variable is associated with the LoS cosmological +distance, therefore the ‘delay spectrum’ constructed in this method +can recover the cosmological 3D Hi power spectrum (Parsons et al. +2012; Liu et al. 2014a,b). +MNRAS 000, 1–10 (2023) + +Hi delay spectrum with MeerKAT interferometer mode +3 +2.2 Hi signal power spectrum +The mean sky brightness temperature of Hi 21 cm emission can be +given by (Santos et al. 2015, 2017) +¯𝑇𝑏(𝑧) ≈ 566ℎ +� 𝐻0 +𝐻(𝑧) +� � ΩHi(𝑧) +0.003 +� +(1 + 𝑧)2 𝜇K , +(6) +where 𝐻0 = 100ℎ km s−1 Mpc−1 is the Hubble constant, ΩHi(𝑧) is +the fractional density of Hi, which can be written as +ΩHi(𝑧) = +𝜌Hi(𝑧) +𝜌𝑐,0(1 + 𝑧)3 , +(7) +where 𝜌𝑐,0 is the critical density today and the proper Hi density is +calculated by +𝜌Hi(𝑧) = +∫ 𝑀max +𝑀min +d𝑀 d𝑛 +d𝑀 (𝑀, 𝑧)𝑀Hi(𝑀, 𝑧) , +(8) +where 𝑀 denotes the dark matter halo mass, d𝑛/d𝑀 is the proper +halo mass function and 𝑀Hi(𝑀, 𝑧) denotes the Hi mass in a halo of +mass 𝑀 at redshift 𝑧. Throughout this paper, we assume a simple +power-law model of the halo mass following Santos et al. (2015), +i.e., 𝑀Hi(𝑀) = 𝐴𝑀 𝛼 with 𝐴 ∼ 220 and 𝛼 = 0.6 that can fit both +low- and high-redshift observations within reasonable accuracy. +Considering the redshift space distortion (RSD) effect (Kaiser +1987), Hi signal power spectrum can be written as +𝑃Hi(𝑘, 𝜇, 𝑧) = ¯𝑇2 +𝑏 (𝑧)𝐹RSD(𝑘, 𝜇)𝑃(𝑘, 𝑧) , +(9) +where 𝜇 ≡ +𝑘 ∥/𝑘 and the matter power spectrum 𝑃(𝑘, 𝑧) += +𝐷2(𝑧)𝑃(𝑘, 𝑧 = 0) with 𝐷(𝑧) being the growth factor and 𝑃(𝑘, 𝑧 = 0) +being the matter power spectrum at z = 0 which can be obtained by +CAMB (Lewis et al. 2000). 𝐹RSD(𝑘, 𝜇) represents the RSD effect, and +its form can be expressed as +𝐹RSD(𝑘, 𝜇) = +� +𝑏2 +Hi(𝑧) + 𝑓 𝜇2�2 +exp +� +−𝑘2𝜇2𝜎2 +NL +� +. +(10) +Here 𝑏Hi(𝑧) is the Hi bias, written as +𝑏Hi(𝑧) = 𝜌−1 +Hi (𝑧) +∫ 𝑀max +𝑀min +d𝑀 d𝑛 +d𝑀 𝑀Hi(𝑀, 𝑧)𝑏(𝑀, 𝑧), +(11) +where 𝑏(𝑀, 𝑧) is the halo bias. 𝑓 ≡ dln𝐷/dln𝑎 is the linear growth +rate with 𝑎 being the scale factor. 𝜎NL is the nonlinear dispersion +scale with a middling value of 𝜎NL = 7Mpc. In this paper, for con- +venience, ΩHi(𝑧) and 𝑏Hi(𝑧) are employed with the fitting functions +following Santos et al. (2017). +2.3 MeerKAT noise power spectrum +The total thermal noise power spectrum can be written as (Bull et al. +2015) +𝑃N(𝑘, 𝜇, 𝑧) = 𝑟2(𝑧)𝑟𝜈(𝑧) +𝑇2sys𝜆4 +𝑛pol𝜈21𝑡int𝐴2𝑒𝑛(𝒖) +, +(12) +where 𝑛pol = 2 denotes the number of polarization. 𝑡int is the inte- +gration time. The ratio of MeerKAT effective aperture and system +temperature, 𝐴𝑒/𝑇sys, is frequency dependent. Currently, there are +two frequency bands available for observation, i.e., the L-band (900– +1700 MHz) and the UHF-band (580–1000 MHz). Because of the +serious RFI contamination in the L-band frequency range, only the +frequency range of 900–1200 MHz (0.18 < 𝑧 < 0.58) is used in our +analysis. The full UHF-band is used in this analysis, corresponding +500 +750 +1000 +1250 +1500 +ν [MHz] +0 +2 +4 +6 +8 +10 +Ae/T sys [m2/K] +MeerKAT L-band +MeerKAT UHF-band +Figure 1. The sensitivity designs for MeerKAT receivers, shown as 𝐴𝑒/𝑇sys +for L-band and UHF-band. +to 0.42 < 𝑧 < 1.45. In Fig. 1, we show 𝐴𝑒/𝑇sys for L-band and +UHF-band.1 +Here 𝑛(𝒖) is the baseline density referring to the detailed 𝑢𝑣 +coverage of a particular observation in the 𝑢𝑣 plane. We employ the +actual MeerKAT antenna coordinates and track the COSMOS field +(RA=10h01m, Dec=+02d12m) following Paul et al. (2021). In a strict +sense, 𝑛(𝒖) is also a function of frequency. We break the frequency +range into a couple of Δ𝜈 = 60 MHz sub-bands. The 𝑢𝑣 coverage is +assumed to be uniform within each sub-band and simulated according +to the center frequency of each sub-band. The simulated 𝑢𝑣 coverage +corresponding to the sub-bands in L-band centering at 𝑧 = 0.3 and +in UHF-band centering at 𝑧 = 1.2 are shown in left and right panels +of Fig. 2, respectively. For both cases, we assume 10 h tracking +observation of the COSMOS field spanning over two days (the start +time is 14:15 and 13:33 at UTC, respectively). The 𝑢𝑣 plane is +segmented on to a discrete grid with cell size Δ𝑢 = Δ𝑣 = 60𝜆. The +color represents the number of 𝑢𝑣 points within the grid. It is clear +that there are more samples in the short 𝑢𝑣 distance region at low +frequency band than high frequency band. +Because of the uniform 𝑢𝑣 coverage assumption across the sub- +band, the baseline density 𝑛(𝒖) and the corresponding total thermal +noise power spectrum 𝑃N are only the functions of 𝑘⊥. According to +Eq. (5), 𝑘⊥ is proportional to the 𝑢𝑣 distance, i.e. |𝒖| = +√ +𝑢2 + 𝑣2. The +circular averaged 𝑢𝑣 coverage within a |𝒖| shell of width Δ|𝒖| = 100𝜆 +are shown in Fig. 3, where the left panel shows the distribution +corresponding to the sub-bands centering at 𝑧 = 0.3 and the right +panel shows the one centering at 𝑧 = 1.2. Since |𝑘⊥| is proportional +to the 𝑢𝑣 distance, the more densely populated 𝑢𝑣 points at smaller +distance mean the higher sensitivity at the smaller |𝑘⊥| modes. +It is known that the 𝑢𝑣 coverage also depends on the pointing direc- +tion. In order to investigate the influence of the different sky zones, +we also show in Fig. 3 the numbers of 𝑢𝑣 points with 10 h track- +ing at different declinations: Dec = +30◦, +02◦, −30◦, −60◦, −90◦ +respectively. The case of Dec = +02◦ is the same as tracking the +COSMOS field and the case of Dec = −30◦ corresponds to tracking +a field that the transit line passes near Zenith the MeerKAT site. It +is obvious that when the field is targeted farther from the zenith, the +number of short baselines rises substantially for both the L-band and +1 http://public.ska.ac.za/meerkat/meerkat-schedule +MNRAS 000, 1–10 (2023) + +4 +M. Zhang et al. +Figure 2. The distribution of baselines on a two-dimensional (2D) 𝑢𝑣 plane for 10 h tracking of the COSMOS field with sub-bands in MeerKAT L-band centering +at 𝑧 = 0.3 (left panel) and in UHF-band centering at 𝑧 = 1.2 (right panel). The 𝑢𝑣 plane is segmented on to a discrete grid with cell-size Δ𝑢 = Δ𝑣 = 60𝜆. The +color signifies the number of 𝑢𝑣 points on the grid. +Figure 3. The average number of baselines as a function of 𝑢𝑣 distance, |𝒖| = +√ +𝑢2 + 𝑣2, with bin size of Δ|𝒖| = 100𝜆, for 10 h tracking with sub-bands in +MeerKAT L-band centering at 𝑧 = 0.3 (left panel) and in UHF-band centering at 𝑧 = 1.2 (right panel). +UHF-band, which potentially increases the sensitivity at the smaller +|𝑘⊥| modes. +2.4 The foreground wedge and shot noise +The foreground contamination, which is several orders of magnitude +stronger than Hi signal, is the major challenge in recovering the Hi +LSS. Since foreground spectrum is smooth across frequency chan- +nels, it only contaminates the power spectrum close to the smallest +𝑘 ∥. However, the property of the interferometer response function +will cause foreground leakage into the high-𝑘⊥ modes. Therefore, +we exclude the 𝑘⊥–𝑘 ∥ space modes within the foreground wedge +(Datta et al. 2010; Morales et al. 2012; Liu et al. 2014a,b; Pober +2015; Seo & Hirata 2016) that can be expressed as +𝑘 ∥ < 𝑟(𝑧)𝐻(𝑧) sin(𝜃) +𝑐(1 + 𝑧) +𝑘⊥ , +(13) +where 𝜃 denotes the field of view of the interferometer. +In addition, shot noise needs to be taken into account in Hi IM +survey. Because of Poisson fluctuations in halo number, the shot +noise power spectrum is written as (Bull et al. 2015) +𝑃shot +Hi (𝑧) = +� ¯𝑇𝑏(𝑧) +𝜌Hi(𝑧) +�2 ∫ 𝑀max +𝑀min +d𝑀 d𝑛 +d𝑀 𝑀2 +Hi(𝑀) . +(14) +Here Hi mass model is consistent with the description in the Hi +signal power spectrum. Since shot noise is very low according to our +calculation, it makes a very small contribution to the total noise. +3 RESULTS +In this section, we present the results of Hi IM survey analysis. In +Section 3.1, we give a detailed analysis of the power spectrum in the +different survey strategies. The relative errors on the BAO features +and the constraints on cosmological parameters in different dark +energy models are showed in Section 3.2. +MNRAS 000, 1–10 (2023) + +uv coverage at z = 0.3 for RA=10:00:28.60 Dec=2:12:21.0 +104 +10 +103 +5 +(Y) +0 +102 +101 +-10 +-15 +100 +-10 +0 +10 +u (k入)uv coverage at z = 1.2 for RA=10:00:28.60 Dec=2:12:21.0 +104 +10 +103 +5 +0 +102 +5 +101 +-10 +-15 +100 +-10 +0 +10 +u (k入)5000 +Dec=十30° +Dec=-90° +4000 +Number of u points +Dec=+02° +Dec=-60° +3000 +Dec=-30° +L-band +2000 +1000 +102 +103 +10 +u distance in ^ (z = 0.312000 +Dec=±30° +10000 +Dec=-90° +Dec=+02° +S +Dec=-60° +8000 +Dec=-30° +UHF-band +TO +6000 +4000 +2000 +0 +102 +103 +10 +uv distance in ^ (z = 1.2Hi delay spectrum with MeerKAT interferometer mode +5 +(a) Hi power spectrum +(b) Total power spectrum +Figure 4. 2D power spectrum at 𝑧 = 0.3. Left panel: Hi signal power spectrum 𝑃Hi. Right panel: Total power spectrum 𝑃tot with MeerKAT L-band 10 h +observation. +(a) Hi power spectrum +(b) Total power spectrum +Figure 5. 2D power spectrum at 𝑧 = 1.2. Left panel: Hi signal power spectrum 𝑃Hi. Right panel: Total power spectrum 𝑃tot with MeerKAT UHF-band 10 h +observation. +3.1 Power spectrum estimation +The Hi LSS carries a significant quantity of cosmic information. +However, it is extremely weak comparing to the brilliant foreground +contamination. The 2D Hi power spectrum 𝑃Hi at 𝑧 = 0.3 (for +MeerKAT L-band) is shown in the left panel of Fig. 4. The scales +available for Hi IM in interferometric mode observation are limited +by the detailed configuration. In summary, the scales for Hi IM survey +are: +𝑘min +∥ += 2𝜋/(𝑟𝜈Δ𝜈/𝜈21), +𝑘max +∥ += 1/𝜎NL, +𝑘min +⊥ += 2𝜋|𝒖|min/𝑟, +𝑘max +⊥ += 2𝜋|𝒖|max/𝑟. +(15) +In principle, only the scales between minimum and maximum can be +probed by a certain instrument, and the sensitivity to scales depends +on the 𝑢𝑣 coverage. Adopting only 10 h observation, the total power +spectrum 𝑃tot at the same redshift, which consists of the contributions +of Hi signal, MeerKAT thermal noise, foregrounds and shot noise, +is shown in the right panel of Fig. 4. +The power spectrum at 𝑧 = 1.2 (for MeerKAT UHF-band) are +shown in Fig. 5, where the Hi power spectrum 𝑃Hi is in the left panel +and the total power spectrum 𝑃tot is in the right panel, respectively. +Note that, in the right panel of Fig. 5, the brown part denotes the +foreground wedge. We find that Hi signal is completely covered by +the thermal noise and foregrounds for both MeerKAT L-band and +UHF-band, which makes it difficult to obtain Hi signal directly. +The Hi detection is quantified with the relative error of the power +spectrum +� Δ𝑃 +𝑃 +�2 += +� +1 +8𝜋2𝑉bin +∫ +𝑘2d𝑘d𝜇 +� 𝑃Hi(𝑘, 𝜇) +𝑃tot(𝑘, 𝜇) +�2�−1 +, +(16) +where 𝑉bin = 𝑆area𝑟2𝑟𝜈 Δ𝜈 +𝜈21 is the survey volume of each redshift bin +with the survey area 𝑆area = 𝜋 +� +1 +2 +𝜆 +13.5𝑚 +�2 � +180 +𝜋 +�2 +. +Firstly, we investigate the influence on the 𝑃(𝑘) error when track- +ing the source at the different declinations. As is shown in Fig. 3, +when tracking the source at Dec = +30◦, +02◦, −30◦, −60◦, −90◦, +completely different numbers of 𝑢𝑣 points are obtained, e.g. there are +more 𝑢𝑣 points in the shorter 𝑢𝑣 distance for the case of Dec = +30◦. +In the top panel of Fig. 6, the relative errors of power spectrum with +different tracking declinations are shown in different colors. For all +the cases, we assume 10 h observation time. The results with L-band +and UHF-band are shown in solid and dashed lines, respectively. +Here, we divide the whole range of 𝑘 into 10 logarithmic bins. It is +clear that the power spectrum uncertainty is reduced by more than +MNRAS 000, 1–10 (2023) + +104 +10-1 +102 +ku [Mpc-1] +6 × 10-2 +100 +4 × 10-2 +10-2 +3 × 10-2 +100 +10' +102 +k [Mpc-1]107 +10-1 +105 +ku [Mpc-1] +6 × 10-2 +103 +4 × 10-2 +3 × 102 +101 +10° +10 +102 +k [Mpc-1]104 +10-1 +102 +ku [Mpc-1] +100 +10-2 +10- +100 +101 +k[Mpc-1]107 +10-1 +105 +ku [Mpc-1] +103 +100 +101 +10 +10 +k}[Mpc-1]6 +M. Zhang et al. +10−1 +100 +k [Mpc−1] +100 +101 +102 +∆P/P +10 hours +L-band at Dec=+30◦ +L-band at Dec=+02◦ +L-band at Dec=−30◦ +L-band at Dec=−60◦ +L-band at Dec=−90◦ +UHF-band at Dec=+30◦ +UHF-band at Dec=+02◦ +UHF-band at Dec=−30◦ +UHF-band at Dec=−60◦ +UHF-band at Dec=−90◦ +10−1 +100 +101 +102 +k [Mpc−1] +10−2 +100 +102 +104 +106 +∆P/P +1 point +L-band 10 hours +L-band 100 hours +L-band 1000 hours +L-band 10000 hours +UHF-band 10 hours +UHF-band 100 hours +UHF-band 1000 hours +UHF-band 10000 hours +10−1 +100 +101 +102 +k [Mpc−1] +10−2 +10−1 +100 +101 +102 +103 +104 +∆P/P +10000 hours +L-band 1 point +L-band 10 points +L-band 100 points +L-band 1000 points +UHF-band 1 point +UHF-band 10 points +UHF-band 100 points +UHF-band 1000 points +Figure 6. Fractional errors on 𝑃(𝑘) obtained with MeerKAT L-band and UHF-band. Top panel: 10 h observations at the different declinations. Middle panel: +Different observation times of tracking the COSMOS field. Bottom panel: Tracking different numbers of points in a 10000 h observation. +MNRAS 000, 1–10 (2023) + +Hi delay spectrum with MeerKAT interferometer mode +7 +0.00 +0.25 +0.50 +0.75 +1.00 +1.25 +1.50 +z +10−2 +10−1 +100 +σ(DA)/DA +L-band 10 points +UHF-band 100 points +0.00 +0.25 +0.50 +0.75 +1.00 +1.25 +1.50 +z +10−1 +100 +101 +σ(H)/H +L-band 10 points +UHF-band 100 points +0.00 +0.25 +0.50 +0.75 +1.00 +1.25 +1.50 +z +10−1 +100 +101 +σ(fσ8)/(fσ8) +L-band 10 points +UHF-band 100 points +Figure 7. Fractional errors on 𝐷𝐴(𝑧), 𝐻 (𝑧) and 𝑓 𝜎8(𝑧) obtained with MeerKAT L-band and UHF-band. +a factor of two when tracking Dec = +30◦ compared to tracking +Dec = −30◦ or Dec = −60◦. The results show that, with limited +observation time, the tracking declination has a obvious influence on +the results of the constraints on the power spectrum. +Next, in order to assess the influence of integration time, we in- +crease the integration time by assuming observations on the same +field at the same local sidereal time as the existing data on different +days, which means that we obtain the same 𝑢𝑣 points from multiple +days coherently to increase the sensitivity of the same 𝑘 modes. In +addition to the current 10 h observation, we further consider 100, +1000 and 10000 h observations. In the middle panel of Fig. 6, we +show the fractional errors on the power spectrum 𝑃(𝑘) for 10, 100, +1000 and 10000 hours observation of tracking the COSMOS field +with MeerKAT L-band (in blue) and UHF-band (in red). The results +with different integration times are shown with different color satu- +rations. It can be seen that, compared to L-band, using the UHF-band +could measure smaller 𝑘 modes down to ∼ 0.1, which makes it pos- +sible to detect cosmological LSS on the larger scales. In addition, it +is expected that the lower Δ𝑃/𝑃 can be obtained with the observa- +tion time increasing as is shown in the middle panel of Fig. 6. With +MeerKAT UHF-band 10 h observation, the value of Δ𝑃/𝑃 could +reach 1 roughly. The values of Δ𝑃/𝑃 are distinctly reduced when +tracking 1000 h, approximately reaching 0.1. However, we find that +when the integration time increases from 1000 h to 10000 h, the +reduction of Δ𝑃/𝑃 is not significant at low 𝑘. It is mainly because +the cosmic variance, which is limited by the survey volume, plays +the dominating role. +Therefore, we consider tracking multiple points equally in the total +10000 h observation. In this case, compared to tracking one point +with 10000 h, the survey volume 𝑉bin and the thermal noise power +spectrum 𝑃N are increased by a factor of the number of points 𝑁. +In our analysis, we calculate the additional fractional error on 𝑃(𝑘) +for 𝑁 = 10, 100 and 1000 in the 10000 h observation, as shown +in the bottom panel of Fig. 6. In order to constrain cosmological +parameters, we expect to obtain lower Δ𝑃/𝑃 in low 𝑘. We find that +the lower values of Δ𝑃/𝑃 in low 𝑘 are obtained when tracking 100 +points for MeerKAT L-band in the total 10000 h observation, while +tracking 10 points for MeerKAT UHF-band. Therefore, we employ +these two survey strategies for MeerKAT L-band and UHF-band, +respectively, in the next subsection. +3.2 Cosmological parameters +In this subsection, we explore the capability of MeerKAT Hi IM +survey with interferometer mode of constraining cosmological pa- +rameters using the Fisher matrix method. Given the power spectrum +measurement at a given redshift, the Fisher matrix for a set of ob- +servables {𝑝} can be written as +𝐹𝑖 𝑗 = +1 +8𝜋2𝑉bin +∫ 1 +−1 +d𝜇 +∫ 𝑘max +𝑘min +𝑘2d𝑘 𝜕𝑃tot +𝜕𝑝𝑖 +𝜕𝑃tot +𝜕𝑝 𝑗 +. +(17) +Here, we take the set of observables as {𝐷 𝐴(𝑧𝑖), 𝐻(𝑧𝑖), 𝑓 𝜎8(𝑧𝑖), +𝑏𝜎8(𝑧𝑖), 𝜎NL} in each redshift bin 𝑧𝑖. The nuisance parameters +𝑏𝜎8(𝑧𝑖) and 𝜎NL can be marginalized by selecting the submatrix of +𝐹−1 +𝑖 𝑗 with only the appropriate columns and rows. Therefore, we can +derive the measurement errors on 𝐷 𝐴(𝑧), 𝐻(𝑧) and 𝑓 𝜎8(𝑧). +For MeerKAT L-band (900-1200 MHz) and UHF-band (580-1000 +MHz), we divide these frequency bands into some bins with equal +bandwidth Δ𝜈 = 60 MHz and then obtain the estimates for the +measurement errors on observables in the corresponding redshift +bins. We plot the fractional measurement errors on 𝐷 𝐴(𝑧), 𝐻(𝑧) +and 𝑓 𝜎8(𝑧) with MeerKAT 10000 h observation in Fig. 7. We find +that the survey with interferometer mode has a better measurement +on 𝐷 𝐴(𝑧), of which the fractional errors can reach roughly 10% +for MeerKAT L-band and UHF-band. Comparatively speaking, the +fractional measurement errors on 𝐻(𝑧) and 𝑓 𝜎8(𝑧) seem slightly +larger, though MeerKAT UHF-band preforms slightly better than +MeerKAT L-band. +Next, from the cosmological measurements on 𝐷 𝐴(𝑧), 𝐻(𝑧) and +𝑓 𝜎8(𝑧), we can constrain the various dark enenrgy models, including +the ΛCDM, 𝑤CDM and CPL models, by performing a Markov Chain +Monte Carlo (MCMC) analysis. The 1𝜎 errors of the cosmological +parameters are summarized in Table 1. In addition, The 1𝜎 and +2𝜎 posterior distribution contours for cosmological parameters are +shown in Figs. 8–10. +In the flat ΛCDM model, we obtain 𝜎(Ωm) = 0.044 and 𝜎(𝐻0) = +2.8 km s−1 Mpc−1 with MeerKAT L-band and 𝜎(Ωm) = 0.028 +and 𝜎(𝐻0) = 2.0 km s−1 Mpc−1 with MeerKAT UHF-band. We +find that UHF-band performs better than L-band in constraining +Ωm and 𝐻0. Recently, Cunnington (2022) gave a result of 𝐻0 = +69.1+8.4 +−5.7 km s−1 Mpc−1 with MeerKAT UHF-band 4000 h survey +with single-dish mode. It is found that we give a better constraint +on 𝐻0 with MeerKAT UHF-band interferometric mode although we +use a longer observational time of 10000 h. In comparison with other +radio telescopes, MeerKAT L-band and BINGO perform similarly, +while MeerKAT UHF-band performs nearly as well as FAST in +constraining Ωm and 𝐻0 in the flat ΛCDM model (Wu & Zhang +2022). Compared to the Stage-III dark energy experiments, such as +DES, we find that MeerKAT UHF-band gives a smaller error on Ωm +than DES with Ωm = 0.339+0.032 +−0.031 in the ΛCDM model (Abbott et al. +2020). +In the 𝑤CDM model, in order to help break the parameter degen- +MNRAS 000, 1–10 (2023) + +8 +M. Zhang et al. +Table 1. The 1𝜎 errors of the cosmological parameters in the ΛCDM, 𝑤CDM, and CPL models using MeerKAT L-band and UHF-band or in combination +with Planck data. Note that here 𝐻0 is in units of km s−1 Mpc−1. +Error +ΛCDM +𝑤CDM +CPL +L-band +UHF-band +Planck+L-band +Planck+UHF-band +Planck+L-band +Planck+UHF-band +𝜎(Ωm) +0.044 +0.028 +0.030 +0.024 +0.092 +0.046 +𝜎(𝐻0) +2.8 +2.0 +3.5 +2.6 +6.1 +4.1 +𝜎(𝑤) +− +− +0.12 +0.08 +− +− +𝜎(𝑤0) +− +− +− +− +1.1 +0.6 +𝜎(𝑤𝑎) +− +− +− +− +4.3 +2.0 +0.2 +0.3 +0.4 +0.5 +Ωm +60 +65 +70 +75 +H0 [km s−1 Mpc−1] +L-band +UHF-band +Figure 8. Constraints on Ωm and 𝐻0 with MeerKAT L-band and UHF-band +in the ΛCDM model. +eracy, we combine the BAO data from MeerKAT IM with Planck +TT,TE,EE+lowE power spectrum (Aghanim et al. 2020) in the +MCMC analysis. The 1𝜎 and 2𝜎 measurement error contours for +Ωm, 𝐻0 and dark-energy equation of state parameter 𝑤 are shown in +Fig. 9. We obtain 𝜎(Ωm) = 0.030, 𝜎(𝐻0) = 3.5 km s−1 Mpc−1 +and 𝜎(𝑤) = 0.12 with Planck+L-band and 𝜎(Ωm) = 0.024, +𝜎(𝐻0) = 2.6 km s−1 Mpc−1 and 𝜎(𝑤) = 0.08 with Planck+UHF- +band. It can be seen that MeerKAT UHF-band combined with Planck +data gives tighter constraints on cosmological parameters in the +𝑤CDM model, with the conclusion the same as in the ΛCDM model. +For dark energy, we find that MeerKAT has a very limited capability +of constraining 𝑤, and the error on 𝑤 is still larger even though in +combination with Planck data. +Finally, we forecast the constraints on cosmological parameters +in the CPL model. The 1𝜎 and 2𝜎 measurement error contours are +shown in Fig. 10. We focus on the DE equation of state parameters 𝑤0 +and 𝑤𝑎. We obtain 𝜎(𝑤0) = 1.1 and 𝜎(𝑤𝑎) = 4.3 with Planck+L- +band, and 𝜎(𝑤0) = 0.6 and 𝜎(𝑤𝑎) = 2.0 with Planck+MeerKAT +UHF-band. Note that dark energy dominates the evolution of the +universe in the redshift range of 𝑧 ≲ 0.4. MeerKAT L-band has +a very limited constraining power for dark energy at the range of +0.18 < 𝑧 < 0.58, and MeerKAT UHF-band only surveys at the range +of 0.42 < 𝑧 < 1.45. Therefore, MeerKAT in interferometer mode +−1.5 +−1.0 +w +0.2 +0.3 +0.4 +Ωm +60 +70 +80 +H0 [km s−1 Mpc−1] +60 +70 +80 +H0 [km s−1 Mpc−1] +0.3 +0.4 +Ωm +Planck+L-band +Planck+UHF-band +Figure 9. Constraints on Ωm, 𝐻0 and 𝑤 with MeerKAT L-band and UHF- +band in combination with Planck data in the 𝑤CDM model. +cannot give stringent constraints on dark energy. But we still keep +optimistic since the precise measurements on dark energy would be +achieved by the future larger radio telescopes, such as HIRAX and +SKA (Wu & Zhang 2022; Wu et al. 2022a,b). +4 CONCLUSIONS +In this work, we give a detailed analysis on measuring the Hi IM +delay power spectrum using the MeerKAT interferometer mode. We +also discuss the capability of MeerKAT interferometer mode of con- +straining cosmological parameters. +We use the Fisher matrix method to estimate the Hi power spec- +trum with MeerKAT IM observation. We find that the different survey +fields have the distinct impacts on determining the power spectrum +errors in the limited observational time of 10 hours. As the obser- +vational time increases from 10 h to 10000 h, the power spectrum +errors are reduced evidently until the cosmic variance begins to dom- +inate. We also discuss the different survey strategies and find that the +lower fractional errors on power spectrum at low 𝑘 are obtained when +tracking 100 points for L-band and tracking 10 points for UHF-band +in a total 10000 h observation. +We obtain the measurement errors on 𝐷 𝐴(𝑧), 𝐻(𝑧) and 𝑓 𝜎8(𝑧) +MNRAS 000, 1–10 (2023) + +Hi delay spectrum with MeerKAT interferometer mode +9 +−2 +0 +2 +w0 +0.2 +0.4 +0.6 +Ωm +50 +60 +70 +80 +H0 [km s−1 Mpc−1] +−10 +−5 +0 +wa +−10 +−5 +0 +wa +50 +60 +70 +80 +H0 [km s−1 Mpc−1] +0.4 +0.6 +Ωm +Planck+L-band +Planck+UHF-band +Figure 10. Constraints on Ωm, 𝐻0, 𝑤0 and 𝑤𝑎 with MeerKAT L-band and +UHF-band in combination with Planck data in the CPL model. +by using the Fisher matrix, and then use these measurements to +constrain cosmological parameters in typical dark energy models, in- +cluding ΛCDM, 𝑤CDM and CPL models, by performing the MCMC +analysis. We obtain 𝜎(Ωm) = 0.028 and 𝜎(𝐻0) = 2.0 km s−1 +Mpc−1 with MeerKAT UHF-band which are better than the results +of 𝜎(Ωm) = 0.044 and 𝜎(𝐻0) = 2.8 km s−1 Mpc−1 with MeerKAT +L-band in the ΛCDM model. However, MeerKAT has a very limited +constraining power for dark-energy equation of state, such as 𝑤 in +the 𝑤CDM model and 𝑤0 and 𝑤𝑎 in the CPL model, even though in +combination with Planck data. +Though MeerKAT L-band and UHF-band Hi IM surveys in in- +terferometer mode have a very limited constraining power for dark +energy, our analysis still provide a useful guide for the near future +MeerKAT survey. It is expected that the future larger radio telescope +arrays, such as SKA, will have a much better and powerful perfor- +mance on cosmological research. In addition, MeerKAT baselines +are not short enough for detecting large cosmological scales, but the +measurements with MeerKAT interferometer mode on these scales +are still very useful in detecting Hi content of galaxies, obtaining the +cross-correlation between Hi content and star formation rates (Wolz +et al. 2016), constraining warm dark matter (Carucci et al. 2015) and +breaking the degeneracy between ΩHi and 𝑏Hi (Chen et al. 2021). +These aspects deserve further detailed investigations in the future. +ACKNOWLEDGEMENTS +We thank Peng-Ju Wu and Li-Yang Gao for helpful discussions. +This work was supported by the National SKA Program of China +(Grants Nos. 2022SKA0110200 and 2022SKA0110203) and the Na- +tional Natural Science Foundation of China (Grants Nos. 11975072, +11875102, and 11835009). +DATA AVAILABILITY +The data underlying this article will be shared on reasonable request +to the corresponding author. +REFERENCES +Abbott T. M. C., et al., 2018, Phys. Rev. D, 98, 043526 +Abbott T. M. C., et al., 2020, Phys. Rev. D, 102, 023509 +Aghanim N., et al., 2020, Astron. Astrophys., 641, A6 +Alam S., et al., 2017, Mon. Not. Roy. Astron. Soc., 470, 2617 +Amendola L., et al., 2018, Living Rev. Rel., 21, 2 +Anderson C. J., et al., 2018, Mon. Not. Roy. Astron. Soc., 476, 3382 +Ansari R., et al., 2012, Astron. Astrophys., 540, A129 +Bacon D. J., et al., 2020, Publ. Astron. Soc. Austral., 37, e007 +Bagla J. S., Khandai N., Datta K. K., 2010, Mon. Not. Roy. Astron. Soc., 407, +567 +Ballardini M., Matthewson W. L., Maartens R., 2019, Mon. Not. Roy. Astron. +Soc., 489, 1950 +Bandura K., et al., 2014, Proc. SPIE Int. Soc. Opt. Eng., 9145, 22 +Battye R. A., Davies R. D., Weller J., 2004, Mon. Not. Roy. Astron. Soc., +355, 1339 +Berti M., Spinelli M., Haridasu B. S., Viel M., Silvestri A., 2022, JCAP, 01, +018 +Beutler F., et al., 2011, Mon. Not. Roy. Astron. Soc., 416, 3017 +Blake C., et al., 2011, Mon. Not. Roy. Astron. Soc., 418, 1707 +Bull P., Ferreira P. G., Patel P., Santos M. G., 2015, Astrophys. J., 803, 21 +Camera S., Santos M. G., Ferreira P. G., Ferramacho L., 2013, Phys. Rev. +Lett., 111, 171302 +Carucci I. P., Villaescusa-Navarro F., Viel M., Lapi A., 2015, JCAP, 07, 047 +Chang T.-C., Pen U.-L., Peterson J. B., McDonald P., 2008, Phys. Rev. Lett., +100, 091303 +Chang T.-C., Pen U.-L., Bandura K., Peterson J. B., 2010, Nature, 466, 463 +Chen X., 2012, Int. J. Mod. Phys. Conf. Ser., 12, 256 +Chen Z., Wolz L., Spinelli M., Murray S. G., 2021, Mon. Not. Roy. Astron. +Soc., 502, 5259 +Cheng G., Ma Y.-Z., Wu F., Zhang J., Chen X., 2020, Phys. Rev. D, 102, +043517 +Chevallier M., Polarski D., 2001, Int. J. Mod. Phys. D, 10, 213 +Chisari N. E., et al., 2019, Astrophys. J. Suppl., 242, 2 +Cole S., et al., 2005, Mon. Not. Roy. Astron. Soc., 362, 505 +Colless M., et al., 2001, Mon. Not. Roy. Astron. Soc., 328, 1039 +Cunnington S., 2022, Mon. Not. Roy. Astron. Soc., 512, 2408 +Cunnington S., Camera S., Pourtsidou A., 2020, Mon. Not. Roy. Astron. Soc., +499, 4054 +Cunnington S., et al., 2022, arXiv e-prints, p. arXiv:2206.01579 +Datta A., Bowman J. D., Carilli C. L., 2010, Astrophys. J., 724, 526 +Dey A., et al., 2019, Astron. J., 157, 168 +Dickinson C., 2014, in 49th Rencontres de Moriond on Cosmology. pp 139– +142 (arXiv:1405.7936) +Drinkwater M. J., et al., 2010, Mon. Not. Roy. Astron. Soc., 401, 1429 +Irfan M. O., et al., 2021, Mon. Not. Roy. Astron. Soc., 509, 4923 +Ivezić v., et al., 2019, Astrophys. J., 873, 111 +Jarvis M. J., et al., 2018, PoS, MeerKAT2016, 006 +Jin S.-J., He D.-Z., Xu Y., Zhang J.-F., Zhang X., 2020, JCAP, 03, 051 +Jin S.-J., Wang L.-F., Wu P.-J., Zhang J.-F., Zhang X., 2021, Phys. Rev. D, +104, 103507 +Jones D. H., et al., 2009, Mon. Not. Roy. Astron. Soc., 399, 683 +Kaiser N., 1987, Mon. Not. Roy. Astron. Soc., 227, 1 +Karagiannis D., Slosar A., Liguori M., 2020, JCAP, 11, 052 +Karagiannis D., Fonseca J., Maartens R., Camera S., 2021, Phys. Dark Univ., +32, 100821 +Knowles K., et al., 2021, Mon. Not. Roy. Astron. Soc., 504, 1749 +Lewis A., Challinor A., Lasenby A., 2000, Astrophys. J., 538, 473 +Li Y.-C., Ma Y.-Z., 2017, Phys. Rev. D, 96, 063525 +Li L., Staveley-Smith L., Rhee J., 2021a, Res. Astron. Astrophys., 21, 030 +Li Y., Santos M. G., Grainge K., Harper S., Wang J., 2021b, MNRAS, 501, +4344 +Lidz A., Furlanetto S. R., Oh S. P., Aguirre J., Chang T.-C., Dore O., Pritchard +J. R., 2011, Astrophys. J., 741, 70 +Linder E. V., 2003, Phys. Rev. Lett., 90, 091301 +Liu A., Shaw J. R., 2020, Publ. Astron. Soc. Pac., 132, 062001 +Liu A., Parsons A. R., Trott C. M., 2014a, Phys. Rev. D, 90, 023018 +MNRAS 000, 1–10 (2023) + +10 +M. Zhang et al. +Liu A., Parsons A. R., Trott C. M., 2014b, Phys. Rev. D, 90, 023019 +Loeb A., Wyithe S., 2008, Phys. Rev. Lett., 100, 161301 +Maartens R., Abdalla F. B., Jarvis M., Santos M. G., 2015, PoS, AASKA14, +016 +Maddox, N. et al., 2021, A&A, 646, A35 +Masui K. W., et al., 2013, Astrophys. J. Lett., 763, L20 +McQuinn M., Zahn O., Zaldarriaga M., Hernquist L., Furlanetto S. R., 2006, +Astrophys. J., 653, 815 +Morales M. F., Hazelton B., Sullivan I., Beardsley A., 2012, Astrophys. J., +752, 137 +Nan R., et al., 2011, Int. J. Mod. Phys. D, 20, 989 +Newburgh L. B., et al., 2016, Proc. SPIE Int. Soc. Opt. Eng., 9906, 99065X +Obuljen A., Castorina E., Villaescusa-Navarro F., Viel M., 2018, JCAP, 05, +004 +Olivari L. C., Dickinson C., Battye R. A., Ma Y.-Z., Costa A. A., Remazeilles +M., Harper S., 2018, Mon. Not. Roy. Astron. Soc., 473, 4242 +Parsons A. R., Backer D. C., 2009, Astron. J., 138, 219 +Parsons A. R., Pober J. C., Aguirre J. E., Carilli C. L., Jacobs D. C., Moore +D. F., 2012, Astrophys. J., 756, 165 +Paul S., et al., 2016, Astrophys. J., 833, 213 +Paul S., Santos M. G., Townsend J., Jarvis M. J., Maddox N., Collier J. D., +Frank B. S., Taylor R., 2021, Mon. Not. Roy. Astron. Soc., 505, 2039 +Pober J. C., 2015, Mon. Not. Roy. Astron. Soc., 447, 1705 +Pourtsidou A., 2018, PoS, MeerKAT2016, 037 +Pourtsidou A., Bacon D., Crittenden R., 2017, Mon. Not. Roy. Astron. Soc., +470, 4251 +Pritchard J. R., Loeb A., 2012, Rept. Prog. Phys., 75, 086901 +Santos M. G., et al., 2015, PoS, AASKA14, 019 +Santos M. G., et al., 2017, in MeerKAT Science: On the Pathway to the SKA. +(arXiv:1709.06099) +Scelfo G., Spinelli M., Raccanelli A., Boco L., Lapi A., Viel M., 2022, JCAP, +01, 004 +Seo H.-J., Hirata C. M., 2016, Mon. Not. Roy. Astron. Soc., 456, 3142 +Seo H.-J., Dodelson S., Marriner J., Mcginnis D., Stebbins A., Stoughton C., +Vallinotto A., 2010, Astrophys. J., 721, 164 +Sprenger T., Archidiacono M., Brinckmann T., Clesse S., Lesgourgues J., +2019, JCAP, 02, 047 +Terni de Gregory B., et al., 2021, Mon. Not. Roy. Astron. Soc., 504, 2924 +Tramonte D., Ma Y.-Z., 2020, Mon. Not. Roy. Astron. Soc., 498, 5916 +Vedantham H., Shankar N. U., Subrahmanyan R., 2012, Astrophys. J., 745, +176 +Viljoen J.-A., Fonseca J., Maartens R., 2021, JCAP, 11, 010 +Villaescusa-Navarro F., Bull P., Viel M., 2015, Astrophys. J., 814, 146 +Wang J., et al., 2021, Mon. Not. Roy. Astron. Soc., 505, 3698 +Wolz L., Tonini C., Blake C., Wyithe J. S. B., 2016, Mon. Not. Roy. Astron. +Soc., 458, 3399 +Wolz L., et al., 2022, Mon. Not. Roy. Astron. Soc., 510, 3495 +Wu P.-J., Zhang X., 2022, JCAP, 01, 060 +Wu F., et al., 2021, Mon. Not. Roy. Astron. Soc., 506, 3455 +Wu P.-J., Shao Y., Jin S.-J., Zhang X., 2022a, arXiv e-prints, p. +arXiv:2202.09726 +Wu P.-J., Li Y., Zhang J.-F., Zhang X., 2022b, arXiv e-prints, p. +arXiv:2212.07681 +Wuensche C. A., et al., 2020, Exper. Astron., 50, 125 +Wyithe S., Loeb A., Geil P., 2008, Mon. Not. Roy. Astron. Soc., 383, 1195 +Xiao L., Costa A. A., Wang B., 2021, Mon. Not. Roy. Astron. Soc., 510, 1495 +Xu Y., Zhang X., 2020, Sci. China Phys. Mech. Astron., 63, 270431 +Xu Y., Wang X., Chen X., 2015, Astrophys. J., 798, 40 +Xu X., Ma Y.-Z., Weltman A., 2018, Phys. Rev. D, 97, 083504 +Zhang J.-F., Wang B., Zhang X., 2020, Sci. China Phys. Mech. Astron., 63, +280411 +Zhang M., Wang B., Wu P.-J., Qi J.-Z., Xu Y., Zhang J.-F., Zhang X., 2021, +Astrophys. J., 918, 56 +de Villiers M. S., Cotton W. D., 2022, Astron. J., 163, 135 +This paper has been typeset from a TEX/LATEX file prepared by the author. +MNRAS 000, 1–10 (2023) + diff --git a/BNE3T4oBgHgl3EQfTwqq/content/tmp_files/load_file.txt b/BNE3T4oBgHgl3EQfTwqq/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..bc8f508817fb24eac44ec9e0de39ba4707e7b425 --- /dev/null +++ b/BNE3T4oBgHgl3EQfTwqq/content/tmp_files/load_file.txt @@ -0,0 +1,1316 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf,len=1315 +page_content='MNRAS 000, 1–10 (2023) Preprint 12 January 2023 Compiled using MNRAS LATEX style file v3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='0 Hi intensity mapping with MeerKAT: forecast for delay power spectrum measurement using interferometer mode Ming Zhang ID1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Yichao Li ID1★,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Jing-Fei Zhang ID1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Xin Zhang ID1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='3† 1Key Laboratory of Cosmology and Astrophysics (Liaoning Province) & Department of Physics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' College of Sciences,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Northeastern University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Shenyang 110819,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' China 2Key Laboratory of Data Analytics and Optimization for Smart Industry (Ministry of Education),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Northeastern University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Shenyang 110819,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' China 3National Frontiers Science Center for Industrial Intelligence and Systems Optimization,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Northeastern University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Shenyang 110819,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' China 12 January 2023 ABSTRACT Neutral hydrogen (Hi) intensity mapping (IM) survey is generally regarded as a promising tool to explore the expansion history of the universe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' In this work, we investigate the capability of MeerKAT Hi IM observation with interferometric mode to estimate the power spectrum and constrain cosmological parameters in typical dark energy models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Besides, a novel approach of ‘delay spectrum’ is employed, which can achieve separating the weak Hi signal from the foreground in the frequency space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' We find that the different survey fields have a great influence on the fractional errors on power spectrum Δ𝑃/𝑃 in a limited observational time 10 h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' With the integration time increasing from 10 h to 10000 h, Δ𝑃/𝑃 becomes distinctly smaller until the cosmic variance begins to dominate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' In the total 10000 h observation, the lower Δ𝑃/𝑃 in low 𝑘 can be achieved when tracking 100 points for MeerKAT L-band and 10 points for MeerKAT UHF-band.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Through simulating 10000 h Hi IM survey, we obtain 𝜎(Ωm) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='044 and 𝜎(𝐻0) = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='8 km s−1 Mpc−1 with MeerKAT L-band, which are worse than the results of 𝜎(Ωm) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='028 and 𝜎(𝐻0) = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='0 km s−1 Mpc−1 with MeerKAT UHF-band in the ΛCDM model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' However, in the 𝑤CDM and CPL models, MeerKAT shows a limited capability of constraining dark-energy equation of state, even though combined with Planck data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Our analysis is shown to be a useful guide for the near future MeerKAT observations in Hi IM survey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Key words: techniques: interferometric – cosmology: large scale structure of Universe – cosmology: cosmological parameters – radio lines: general 1 INTRODUCTION In the last two decades, the accurate measurement of the cosmic microwave background (CMB) brings us to the era of precision cos- mology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Another promising method for reaching precision cosmol- ogy is the cosmic large scale structure (LSS) survey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' At present, the cosmic LSS survey has made significant progress with galaxy red- shift survey in constraining cosmological parameters, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' the 2dF Galaxy Redshift Survey (Colless et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2001;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Cole et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2005), the 6dF Galaxy Survey (Jones et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2009;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Beutler et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2011), the Wig- gleZ Dark Energy Survey (Blake et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2011;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Drinkwater et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2010), the Baryon Oscillation Spectroscopic Survey (Alam et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2017) and the Dark Energy Survey (DES) (Abbott et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' In addition, the next generation galaxy survey targeting at even larger and deeper universe, such as Dark Energy Spectroscopic Instrument (Dey et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2019), Large Synoptic Survey Telescope (Ivezić et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Chisari et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2019) and Euclid (Amendola et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2018), will significantly improve the measurement precision in the near future.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Besides, neutral hydrogen (Hi) is widely regarded as a promising tracer of the underlying dark matter distribution of the late Universe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Hi can be detected with radio telescope via its 21 cm line which ★ E-mail: liyichao@mail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='neu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='cn † E-mail: zhangxin@mail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='neu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='cn arises from the spin-flip transition of ground state hydrogen atom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Nevertheless, it is known that detecting Hi signal in individual galaxy at higher redshfit requires good angular resolution and sensitivity, which relies on large radio interferometer in the near future, such as Square Kilometre Array (SKA).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' However, Hi survey of the cosmic LSS can be quickly carried out using existing radio telescopes via the intensity mapping (IM) methodology, which observes the total Hi intensity of the galaxies in a voxel (Battye et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2004;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' McQuinn et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2006;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Loeb & Wyithe 2008;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Chang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2008;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Wyithe et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2008;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Bagla et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2010;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Seo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2010;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Lidz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2011;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Ansari et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' A variety of related studies show that Hi IM survey has a great performance in cosmology studies, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' constraints on the basic and dark-energy cosmological parameters (Pritchard & Loeb 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Bull et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Pourtsidou et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Olivari et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Obuljen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Sprenger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Xu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Cheng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Xu & Zhang 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Jin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Xiao et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Zhang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Jin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Wu & Zhang 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Scelfo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Berti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Wu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2022a,b), primordial non-Gaussianity (Camera et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Xu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Li & Ma 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Ballardini et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Karagiannis et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Cunnington et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Karagiannis et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Viljoen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2021) and neutrino mass (Villaescusa-Navarro et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Zhang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Hi IM LSS detection was first reported by measuring the cross- correlation function between the Hi map observed with Green Bank © 2023 The Authors arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='04445v1 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='CO] 11 Jan 2023 2 M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Zhang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Telescope (GBT) and the DEEP2 optical redshift survey (Chang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' The cross-correlation power spectrum between Hi IM survey and optical galaxy survey was also detected with the GBT and the WiggleZ Dark Energy Survey (Masui et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Anderson et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' (2018) reported the results of Hi IM maps cross-correlated with 2dF galaxy survey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Tramonte & Ma (2020) presented the feasibility of measuring Hi maps with Parkes radio telescope and 2dF galaxy survey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' A cross-correlation signal detected with Parkes Hi IM and WiggleZ redshift data was discussed in Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' (2021a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Wolz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' (2022) gave a joint analysis of GBT IM and eBOSS survey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' To date, the auto-correlation power spectrum is still not detected because of systematics and foreground contamination.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Several large radio telescopes or interferometers, such as Five hundred-meter Aperture Spherical radio Telescope (FAST;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Nan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2011), Baryon acoustic oscillations In Neutral Gas Obser- vations (BINGO;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Dickinson 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Wuensche et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2020) and SKA (Maartens et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Bacon et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2020), are built or planned for Hi survey, which are expected to detect the auto-correlation power spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' In addition, interferometers have inherent advantages of being less sensitive to systematics, which can be regarded as a com- plementary approach to single-dish IM experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' The smallest 𝑘-modes accessible to an interferometer is determined by the short- est baselines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Therefore, a compacted radio interferometer array is required for probing the cosmic LSS, especially for the scales of baryon acoustic oscillation (BAO).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' To date, several interferometers, such as Canadian Hydrogen Intensity Mapping Experiment (CHIME;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Bandura et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2014), Hydrogen Intensity and Real-time Analysis eX- periment (HIRAX;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Newburgh et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2016) and Tianlai (Chen 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Wu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2021), are designed with short baselines to probe the BAO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Besides, the MeerKAT radio telescope array with 64 dish anten- nas of 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='5 m diameter is a precursor of SKA, which is located in the Northern Cape Province of South Africa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' MeerKAT has already been operating and producing preliminary results (Pourtsidou 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Knowles et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Terni de Gregory et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' de Villiers & Cotton 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' The MeerKAT Large Area Synoptic Survey (MeerKLASS;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Santos et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Irfan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2021) proposed Hi IM with single-dish mode (Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2021b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2021) and reported the cross-correlation power spectrum detection with the optical galaxy survey (Cunnington et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' In addition, the small field deep surveys using MeerKAT interferometric mode, such as the MeerKAT International GHz Tiered Extragalactic Exploration (MIGHTEE;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Jarvis et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Paul et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Maddox, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2021), also provided the Hi cube.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' In this paper, we investigate the performance of Hi IM survey in measuring power spectrum using MeerKAT interferometric mode with different survey strategies and forecast the constraints on cosmological parameters in typical dark energy models including ΛCDM, 𝑤CDM and CPL models (Cheval- lier & Polarski 2001;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Linder 2003).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' In this work, it is worth mentioning that we employ a novel ap- proach, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' the ‘delay spectrum’ analysis, which is first applied in the PAPER observation (Parsons & Backer 2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' It is known that the cosmic Hi signal is contaminated by the bright foreground emissions in the same frequency ranges, such as the synchrotron and free-free emission from the Galaxy and extra-galactic point sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Gen- erally, the foreground contamination components have the smooth frequency spectra, which can be separated from the cosmic Hi fluc- tuation in the ‘delay spectrum’ space (Parsons et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Liu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2014a,b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Liu & Shaw 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' This paper is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' In Section 2, we provide the de- tailed description of estimating Hi signal power spectrum, MeerKAT survey strategy and its system noise, foregrounds and shot noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' In Section 3, we present the constraint results of the power spectrum and cosmological parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Finally, the conclusion is given in Sec- tion 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' In our simulation, we assume a flat ΛCDM model and keep all cosmological parameters fixed to Planck 2018 results (Aghanim et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2 METHODOLOGY 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='1 Hi delay spectrum Hi IM observation directly measures Hi brightness temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' The sky brightness temperature can be defined as 𝑇(𝜽, 𝜈) = ¯𝑇(𝜈)[1 + Δ𝑇(𝜽, 𝜈)] , (1) where 𝜽 is the position vector on the sky, 𝜈 is the observation fre- quency, ¯𝑇(𝜈) and Δ𝑇(𝜽, 𝜈) denote the isotropic and fluctuating com- ponents of the Hi brightness temperature distribution, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Radio interferometers detect Hi signals by measuring their visi- bilities, which are the cross-correlation signals between each pair of antennas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Assuming the flat-sky approximation, the visibility for a pair of antennae is given by 𝑉(𝒖, 𝜈) = ∫ 𝐴(𝜽, 𝜈)Δ𝑇(𝜽, 𝜈)𝑒−𝑖2𝜋𝒖·𝜽𝑑Ω , (2) where 𝒖 = 𝜈𝒃/𝑐 is the baseline vector in units of wavelength, cor- responding to each antenna pair, where 𝒃 is the baseline vector in physical units and 𝑐 is the speed of light.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 𝐴(𝜽, 𝜈) denotes the primary beam response of the telescope in the direction of 𝜽 and dΩ repre- sents the solid angle element.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' The visibility function can be Fourier transferred to the ‘delay spectrum’ space, ˜𝑉(𝒖, 𝜏) = ∫ 𝑉(𝒖, 𝜈)𝑒−𝑖2𝜋𝜈𝜏d𝜈, (3) where 𝜏 = 1/𝛿𝜈 is the corresponding delay of frequency interval 𝛿𝜈.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Following McQuinn et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' (2006), Parsons et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' (2012) and Liu & Shaw (2020),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Hi power spectrum can be obtained from measured visibilities in the form of ‘delay spectrum’ 𝑃D(𝑘⊥,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 𝑘 ∥) ≡ 𝐴𝑒 𝜆2𝐵 𝑟2𝑟𝜈 𝐵 �� ˜𝑉(𝒖,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 𝜏) ��2 � 𝜆2 2𝑘B �2 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' (4) where 𝐴𝑒 and 𝐵 are the effective antenna area and bandwidth,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' re- spectively,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 𝜆 denotes the wavelength at the center of the band,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 𝑟 is the comoving distance to the redshift 𝑧 corresponding to 𝜆,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 𝑟𝜈 is the comoving width along the line-of-sight (LoS) corresponding to the redshift range determined by 𝐵,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' and 𝑘B is the Boltzmann constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Here, 𝑘⊥ and 𝑘 ∥ are the Fourier wave vectors perpendicular and par- allel to the LoS, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' They are related to the interferometric variables via 𝑘⊥ = 2𝜋|𝒖| 𝑟 ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 𝑘 ∥ = 2𝜋𝜏𝜈21𝐻(𝑧) 𝑐(1 + 𝑧)2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' (5) where 𝜈21 = 1420 MHz is the rest-frame frequency of the 21 cm line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 𝐻(𝑧) denotes the Hubble parameter as a function of redshift 𝑧.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' There are various advantages of this ‘delay spectrum’ method (Parsons et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Vedantham et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Paul et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' The different spectral behaviors between Hi signal and foreground make it possible to isolate the latter in the Fourier space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' In addition, the Fourier conjugate variable is associated with the LoS cosmological distance, therefore the ‘delay spectrum’ constructed in this method can recover the cosmological 3D Hi power spectrum (Parsons et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Liu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2014a,b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' MNRAS 000, 1–10 (2023) Hi delay spectrum with MeerKAT interferometer mode 3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='2 Hi signal power spectrum The mean sky brightness temperature of Hi 21 cm emission can be given by (Santos et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2015, 2017) ¯𝑇𝑏(𝑧) ≈ 566ℎ � 𝐻0 𝐻(𝑧) � � ΩHi(𝑧) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='003 � (1 + 𝑧)2 𝜇K , (6) where 𝐻0 = 100ℎ km s−1 Mpc−1 is the Hubble constant, ΩHi(𝑧) is the fractional density of Hi, which can be written as ΩHi(𝑧) = 𝜌Hi(𝑧) 𝜌𝑐,0(1 + 𝑧)3 , (7) where 𝜌𝑐,0 is the critical density today and the proper Hi density is calculated by 𝜌Hi(𝑧) = ∫ 𝑀max 𝑀min d𝑀 d𝑛 d𝑀 (𝑀, 𝑧)𝑀Hi(𝑀, 𝑧) , (8) where 𝑀 denotes the dark matter halo mass, d𝑛/d𝑀 is the proper halo mass function and 𝑀Hi(𝑀, 𝑧) denotes the Hi mass in a halo of mass 𝑀 at redshift 𝑧.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Throughout this paper, we assume a simple power-law model of the halo mass following Santos et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' (2015), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 𝑀Hi(𝑀) = 𝐴𝑀 𝛼 with 𝐴 ∼ 220 and 𝛼 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='6 that can fit both low- and high-redshift observations within reasonable accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Considering the redshift space distortion (RSD) effect (Kaiser 1987), Hi signal power spectrum can be written as 𝑃Hi(𝑘, 𝜇, 𝑧) = ¯𝑇2 𝑏 (𝑧)𝐹RSD(𝑘, 𝜇)𝑃(𝑘, 𝑧) , (9) where 𝜇 ≡ 𝑘 ∥/𝑘 and the matter power spectrum 𝑃(𝑘, 𝑧) = 𝐷2(𝑧)𝑃(𝑘, 𝑧 = 0) with 𝐷(𝑧) being the growth factor and 𝑃(𝑘, 𝑧 = 0) being the matter power spectrum at z = 0 which can be obtained by CAMB (Lewis et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 𝐹RSD(𝑘, 𝜇) represents the RSD effect, and its form can be expressed as 𝐹RSD(𝑘, 𝜇) = � 𝑏2 Hi(𝑧) + 𝑓 𝜇2�2 exp � −𝑘2𝜇2𝜎2 NL � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' (10) Here 𝑏Hi(𝑧) is the Hi bias, written as 𝑏Hi(𝑧) = 𝜌−1 Hi (𝑧) ∫ 𝑀max 𝑀min d𝑀 d𝑛 d𝑀 𝑀Hi(𝑀, 𝑧)𝑏(𝑀, 𝑧), (11) where 𝑏(𝑀, 𝑧) is the halo bias.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 𝑓 ≡ dln𝐷/dln𝑎 is the linear growth rate with 𝑎 being the scale factor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 𝜎NL is the nonlinear dispersion scale with a middling value of 𝜎NL = 7Mpc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' In this paper, for con- venience, ΩHi(𝑧) and 𝑏Hi(𝑧) are employed with the fitting functions following Santos et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='3 MeerKAT noise power spectrum The total thermal noise power spectrum can be written as (Bull et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2015) 𝑃N(𝑘, 𝜇, 𝑧) = 𝑟2(𝑧)𝑟𝜈(𝑧) 𝑇2sys𝜆4 𝑛pol𝜈21𝑡int𝐴2𝑒𝑛(𝒖) , (12) where 𝑛pol = 2 denotes the number of polarization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 𝑡int is the inte- gration time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' The ratio of MeerKAT effective aperture and system temperature, 𝐴𝑒/𝑇sys, is frequency dependent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Currently, there are two frequency bands available for observation, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', the L-band (900– 1700 MHz) and the UHF-band (580–1000 MHz).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Because of the serious RFI contamination in the L-band frequency range, only the frequency range of 900–1200 MHz (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='18 < 𝑧 < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='58) is used in our analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' The full UHF-band is used in this analysis, corresponding 500 750 1000 1250 1500 ν [MHz] 0 2 4 6 8 10 Ae/T sys [m2/K] MeerKAT L-band MeerKAT UHF-band Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' The sensitivity designs for MeerKAT receivers, shown as 𝐴𝑒/𝑇sys for L-band and UHF-band.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='42 < 𝑧 < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 1, we show 𝐴𝑒/𝑇sys for L-band and UHF-band.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='1 Here 𝑛(𝒖) is the baseline density referring to the detailed 𝑢𝑣 coverage of a particular observation in the 𝑢𝑣 plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' We employ the actual MeerKAT antenna coordinates and track the COSMOS field (RA=10h01m, Dec=+02d12m) following Paul et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' In a strict sense, 𝑛(𝒖) is also a function of frequency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' We break the frequency range into a couple of Δ𝜈 = 60 MHz sub-bands.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' The 𝑢𝑣 coverage is assumed to be uniform within each sub-band and simulated according to the center frequency of each sub-band.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' The simulated 𝑢𝑣 coverage corresponding to the sub-bands in L-band centering at 𝑧 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='3 and in UHF-band centering at 𝑧 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='2 are shown in left and right panels of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' For both cases, we assume 10 h tracking observation of the COSMOS field spanning over two days (the start time is 14:15 and 13:33 at UTC, respectively).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' The 𝑢𝑣 plane is segmented on to a discrete grid with cell size Δ𝑢 = Δ𝑣 = 60𝜆.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' The color represents the number of 𝑢𝑣 points within the grid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' It is clear that there are more samples in the short 𝑢𝑣 distance region at low frequency band than high frequency band.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Because of the uniform 𝑢𝑣 coverage assumption across the sub- band, the baseline density 𝑛(𝒖) and the corresponding total thermal noise power spectrum 𝑃N are only the functions of 𝑘⊥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' According to Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' (5), 𝑘⊥ is proportional to the 𝑢𝑣 distance, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' |𝒖| = √ 𝑢2 + 𝑣2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' The circular averaged 𝑢𝑣 coverage within a |𝒖| shell of width Δ|𝒖| = 100𝜆 are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 3, where the left panel shows the distribution corresponding to the sub-bands centering at 𝑧 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='3 and the right panel shows the one centering at 𝑧 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Since |𝑘⊥| is proportional to the 𝑢𝑣 distance, the more densely populated 𝑢𝑣 points at smaller distance mean the higher sensitivity at the smaller |𝑘⊥| modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' It is known that the 𝑢𝑣 coverage also depends on the pointing direc- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' In order to investigate the influence of the different sky zones, we also show in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 3 the numbers of 𝑢𝑣 points with 10 h track- ing at different declinations: Dec = +30◦, +02◦, −30◦, −60◦, −90◦ respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' The case of Dec = +02◦ is the same as tracking the COSMOS field and the case of Dec = −30◦ corresponds to tracking a field that the transit line passes near Zenith the MeerKAT site.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' It is obvious that when the field is targeted farther from the zenith, the number of short baselines rises substantially for both the L-band and 1 http://public.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='ska.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='za/meerkat/meerkat-schedule MNRAS 000, 1–10 (2023) 4 M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Zhang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' The distribution of baselines on a two-dimensional (2D) 𝑢𝑣 plane for 10 h tracking of the COSMOS field with sub-bands in MeerKAT L-band centering at 𝑧 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='3 (left panel) and in UHF-band centering at 𝑧 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='2 (right panel).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' The 𝑢𝑣 plane is segmented on to a discrete grid with cell-size Δ𝑢 = Δ𝑣 = 60𝜆.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' The color signifies the number of 𝑢𝑣 points on the grid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' The average number of baselines as a function of 𝑢𝑣 distance, |𝒖| = √ 𝑢2 + 𝑣2, with bin size of Δ|𝒖| = 100𝜆, for 10 h tracking with sub-bands in MeerKAT L-band centering at 𝑧 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='3 (left panel) and in UHF-band centering at 𝑧 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='2 (right panel).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' UHF-band, which potentially increases the sensitivity at the smaller |𝑘⊥| modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='4 The foreground wedge and shot noise The foreground contamination, which is several orders of magnitude stronger than Hi signal, is the major challenge in recovering the Hi LSS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Since foreground spectrum is smooth across frequency chan- nels, it only contaminates the power spectrum close to the smallest 𝑘 ∥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' However, the property of the interferometer response function will cause foreground leakage into the high-𝑘⊥ modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Therefore, we exclude the 𝑘⊥–𝑘 ∥ space modes within the foreground wedge (Datta et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2010;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Morales et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Liu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2014a,b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Pober 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Seo & Hirata 2016) that can be expressed as 𝑘 ∥ < 𝑟(𝑧)𝐻(𝑧) sin(𝜃) 𝑐(1 + 𝑧) 𝑘⊥ , (13) where 𝜃 denotes the field of view of the interferometer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' In addition, shot noise needs to be taken into account in Hi IM survey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Because of Poisson fluctuations in halo number, the shot noise power spectrum is written as (Bull et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2015) 𝑃shot Hi (𝑧) = � ¯𝑇𝑏(𝑧) 𝜌Hi(𝑧) �2 ∫ 𝑀max 𝑀min d𝑀 d𝑛 d𝑀 𝑀2 Hi(𝑀) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' (14) Here Hi mass model is consistent with the description in the Hi signal power spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Since shot noise is very low according to our calculation, it makes a very small contribution to the total noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 3 RESULTS In this section, we present the results of Hi IM survey analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' In Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='1, we give a detailed analysis of the power spectrum in the different survey strategies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' The relative errors on the BAO features and the constraints on cosmological parameters in different dark energy models are showed in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' MNRAS 000, 1–10 (2023) uv coverage at z = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='3 for RA=10:00:28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='60 Dec=2:12:21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='0 104 10 103 5 (Y) 0 102 101 10 15 100 10 0 10 u (k入)uv coverage at z = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='2 for RA=10:00:28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='60 Dec=2:12:21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='0 104 10 103 5 0 102 5 101 10 15 100 10 0 10 u (k入)5000 Dec=十30° Dec=-90° 4000 Number of u points Dec=+02° Dec=-60° 3000 Dec=-30° L-band 2000 1000 102 103 10 u distance in ^ (z = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='312000 Dec=±30° 10000 Dec=-90° Dec=+02° S Dec=-60° 8000 Dec=-30° UHF-band TO 6000 4000 2000 0 102 103 10 uv distance in ^ (z = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='2Hi delay spectrum with MeerKAT interferometer mode 5 (a) Hi power spectrum (b) Total power spectrum Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2D power spectrum at 𝑧 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Left panel: Hi signal power spectrum 𝑃Hi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Right panel: Total power spectrum 𝑃tot with MeerKAT L-band 10 h observation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' (a) Hi power spectrum (b) Total power spectrum Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2D power spectrum at 𝑧 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Left panel: Hi signal power spectrum 𝑃Hi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Right panel: Total power spectrum 𝑃tot with MeerKAT UHF-band 10 h observation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='1 Power spectrum estimation The Hi LSS carries a significant quantity of cosmic information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' However, it is extremely weak comparing to the brilliant foreground contamination.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' The 2D Hi power spectrum 𝑃Hi at 𝑧 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='3 (for MeerKAT L-band) is shown in the left panel of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' The scales available for Hi IM in interferometric mode observation are limited by the detailed configuration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' In summary, the scales for Hi IM survey are: 𝑘min ∥ = 2𝜋/(𝑟𝜈Δ𝜈/𝜈21), 𝑘max ∥ = 1/𝜎NL, 𝑘min ⊥ = 2𝜋|𝒖|min/𝑟, 𝑘max ⊥ = 2𝜋|𝒖|max/𝑟.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' (15) In principle, only the scales between minimum and maximum can be probed by a certain instrument, and the sensitivity to scales depends on the 𝑢𝑣 coverage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Adopting only 10 h observation, the total power spectrum 𝑃tot at the same redshift, which consists of the contributions of Hi signal, MeerKAT thermal noise, foregrounds and shot noise, is shown in the right panel of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' The power spectrum at 𝑧 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='2 (for MeerKAT UHF-band) are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 5, where the Hi power spectrum 𝑃Hi is in the left panel and the total power spectrum 𝑃tot is in the right panel, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Note that, in the right panel of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 5, the brown part denotes the foreground wedge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' We find that Hi signal is completely covered by the thermal noise and foregrounds for both MeerKAT L-band and UHF-band, which makes it difficult to obtain Hi signal directly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' The Hi detection is quantified with the relative error of the power spectrum � Δ𝑃 𝑃 �2 = � 1 8𝜋2𝑉bin ∫ 𝑘2d𝑘d𝜇 � 𝑃Hi(𝑘, 𝜇) 𝑃tot(𝑘, 𝜇) �2�−1 , (16) where 𝑉bin = 𝑆area𝑟2𝑟𝜈 Δ𝜈 𝜈21 is the survey volume of each redshift bin with the survey area 𝑆area = 𝜋 � 1 2 𝜆 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='5𝑚 �2 � 180 𝜋 �2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Firstly, we investigate the influence on the 𝑃(𝑘) error when track- ing the source at the different declinations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' As is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 3, when tracking the source at Dec = +30◦, +02◦, −30◦, −60◦, −90◦, completely different numbers of 𝑢𝑣 points are obtained, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' there are more 𝑢𝑣 points in the shorter 𝑢𝑣 distance for the case of Dec = +30◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' In the top panel of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 6, the relative errors of power spectrum with different tracking declinations are shown in different colors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' For all the cases, we assume 10 h observation time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' The results with L-band and UHF-band are shown in solid and dashed lines, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Here, we divide the whole range of 𝑘 into 10 logarithmic bins.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=" It is clear that the power spectrum uncertainty is reduced by more than MNRAS 000, 1–10 (2023) 104 10-1 102 ku [Mpc-1] 6 × 10-2 100 4 × 10-2 10-2 3 × 10-2 100 10' 102 k [Mpc-1]107 10-1 105 ku [Mpc-1] 6 × 10-2 103 4 × 10-2 3 × 102 101 10° 10 102 k [Mpc-1]104 10-1 102 ku [Mpc-1] 100 10-2 10- 100 101 k[Mpc-1]107 10-1 105 ku [Mpc-1] 103 100 101 10 10 k}[Mpc-1]6 M." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Zhang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='10−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='k [Mpc−1] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='101 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='102 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='∆P/P ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='10 hours ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='L-band at Dec=+30◦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='L-band at Dec=+02◦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='L-band at Dec=−30◦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='L-band at Dec=−60◦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='L-band at Dec=−90◦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='UHF-band at Dec=+30◦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='UHF-band at Dec=+02◦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='UHF-band at Dec=−30◦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='UHF-band at Dec=−60◦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='UHF-band at Dec=−90◦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='10−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='101 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='102 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='k [Mpc−1] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='10−2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='102 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='104 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='106 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='∆P/P ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='1 point ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='L-band 10 hours ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='L-band 100 hours ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='L-band 1000 hours ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='L-band 10000 hours ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='UHF-band 10 hours ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='UHF-band 100 hours ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='UHF-band 1000 hours ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='UHF-band 10000 hours ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='10−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='101 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='102 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='k [Mpc−1] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='10−2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='10−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='101 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='102 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='103 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='104 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='∆P/P ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='10000 hours ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='L-band 1 point ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='L-band 10 points ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='L-band 100 points ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='L-band 1000 points ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='UHF-band 1 point ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='UHF-band 10 points ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='UHF-band 100 points ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='UHF-band 1000 points ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Fractional errors on 𝑃(𝑘) obtained with MeerKAT L-band and UHF-band.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Top panel: 10 h observations at the different declinations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Middle panel: Different observation times of tracking the COSMOS field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Bottom panel: Tracking different numbers of points in a 10000 h observation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' MNRAS 000, 1–10 (2023) Hi delay spectrum with MeerKAT interferometer mode 7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='75 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='00 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='25 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='50 z 10−2 10−1 100 σ(DA)/DA L-band 10 points UHF-band 100 points 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='75 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='00 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='25 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='50 z 10−1 100 101 σ(H)/H L-band 10 points UHF-band 100 points 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='75 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='00 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='25 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='50 z 10−1 100 101 σ(fσ8)/(fσ8) L-band 10 points UHF-band 100 points Figure 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Fractional errors on 𝐷𝐴(𝑧), 𝐻 (𝑧) and 𝑓 𝜎8(𝑧) obtained with MeerKAT L-band and UHF-band.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' a factor of two when tracking Dec = +30◦ compared to tracking Dec = −30◦ or Dec = −60◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' The results show that, with limited observation time, the tracking declination has a obvious influence on the results of the constraints on the power spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Next, in order to assess the influence of integration time, we in- crease the integration time by assuming observations on the same field at the same local sidereal time as the existing data on different days, which means that we obtain the same 𝑢𝑣 points from multiple days coherently to increase the sensitivity of the same 𝑘 modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' In addition to the current 10 h observation, we further consider 100, 1000 and 10000 h observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' In the middle panel of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 6, we show the fractional errors on the power spectrum 𝑃(𝑘) for 10, 100, 1000 and 10000 hours observation of tracking the COSMOS field with MeerKAT L-band (in blue) and UHF-band (in red).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' The results with different integration times are shown with different color satu- rations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' It can be seen that, compared to L-band, using the UHF-band could measure smaller 𝑘 modes down to ∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='1, which makes it pos- sible to detect cosmological LSS on the larger scales.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' In addition, it is expected that the lower Δ𝑃/𝑃 can be obtained with the observa- tion time increasing as is shown in the middle panel of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' With MeerKAT UHF-band 10 h observation, the value of Δ𝑃/𝑃 could reach 1 roughly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' The values of Δ𝑃/𝑃 are distinctly reduced when tracking 1000 h, approximately reaching 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' However, we find that when the integration time increases from 1000 h to 10000 h, the reduction of Δ𝑃/𝑃 is not significant at low 𝑘.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' It is mainly because the cosmic variance, which is limited by the survey volume, plays the dominating role.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Therefore, we consider tracking multiple points equally in the total 10000 h observation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' In this case, compared to tracking one point with 10000 h, the survey volume 𝑉bin and the thermal noise power spectrum 𝑃N are increased by a factor of the number of points 𝑁.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' In our analysis, we calculate the additional fractional error on 𝑃(𝑘) for 𝑁 = 10, 100 and 1000 in the 10000 h observation, as shown in the bottom panel of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' In order to constrain cosmological parameters, we expect to obtain lower Δ𝑃/𝑃 in low 𝑘.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' We find that the lower values of Δ𝑃/𝑃 in low 𝑘 are obtained when tracking 100 points for MeerKAT L-band in the total 10000 h observation, while tracking 10 points for MeerKAT UHF-band.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Therefore, we employ these two survey strategies for MeerKAT L-band and UHF-band, respectively, in the next subsection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='2 Cosmological parameters In this subsection, we explore the capability of MeerKAT Hi IM survey with interferometer mode of constraining cosmological pa- rameters using the Fisher matrix method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Given the power spectrum measurement at a given redshift, the Fisher matrix for a set of ob- servables {𝑝} can be written as 𝐹𝑖 𝑗 = 1 8𝜋2𝑉bin ∫ 1 −1 d𝜇 ∫ 𝑘max 𝑘min 𝑘2d𝑘 𝜕𝑃tot 𝜕𝑝𝑖 𝜕𝑃tot 𝜕𝑝 𝑗 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' (17) Here, we take the set of observables as {𝐷 𝐴(𝑧𝑖), 𝐻(𝑧𝑖), 𝑓 𝜎8(𝑧𝑖), 𝑏𝜎8(𝑧𝑖), 𝜎NL} in each redshift bin 𝑧𝑖.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' The nuisance parameters 𝑏𝜎8(𝑧𝑖) and 𝜎NL can be marginalized by selecting the submatrix of 𝐹−1 𝑖 𝑗 with only the appropriate columns and rows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Therefore, we can derive the measurement errors on 𝐷 𝐴(𝑧), 𝐻(𝑧) and 𝑓 𝜎8(𝑧).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' For MeerKAT L-band (900-1200 MHz) and UHF-band (580-1000 MHz), we divide these frequency bands into some bins with equal bandwidth Δ𝜈 = 60 MHz and then obtain the estimates for the measurement errors on observables in the corresponding redshift bins.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' We plot the fractional measurement errors on 𝐷 𝐴(𝑧), 𝐻(𝑧) and 𝑓 𝜎8(𝑧) with MeerKAT 10000 h observation in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' We find that the survey with interferometer mode has a better measurement on 𝐷 𝐴(𝑧), of which the fractional errors can reach roughly 10% for MeerKAT L-band and UHF-band.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Comparatively speaking, the fractional measurement errors on 𝐻(𝑧) and 𝑓 𝜎8(𝑧) seem slightly larger, though MeerKAT UHF-band preforms slightly better than MeerKAT L-band.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Next, from the cosmological measurements on 𝐷 𝐴(𝑧), 𝐻(𝑧) and 𝑓 𝜎8(𝑧), we can constrain the various dark enenrgy models, including the ΛCDM, 𝑤CDM and CPL models, by performing a Markov Chain Monte Carlo (MCMC) analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' The 1𝜎 errors of the cosmological parameters are summarized in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' In addition, The 1𝜎 and 2𝜎 posterior distribution contours for cosmological parameters are shown in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 8–10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' In the flat ΛCDM model, we obtain 𝜎(Ωm) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='044 and 𝜎(𝐻0) = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='8 km s−1 Mpc−1 with MeerKAT L-band and 𝜎(Ωm) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='028 and 𝜎(𝐻0) = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='0 km s−1 Mpc−1 with MeerKAT UHF-band.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' We find that UHF-band performs better than L-band in constraining Ωm and 𝐻0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Recently, Cunnington (2022) gave a result of 𝐻0 = 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='1+8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='4 −5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='7 km s−1 Mpc−1 with MeerKAT UHF-band 4000 h survey with single-dish mode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' It is found that we give a better constraint on 𝐻0 with MeerKAT UHF-band interferometric mode although we use a longer observational time of 10000 h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' In comparison with other radio telescopes, MeerKAT L-band and BINGO perform similarly, while MeerKAT UHF-band performs nearly as well as FAST in constraining Ωm and 𝐻0 in the flat ΛCDM model (Wu & Zhang 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Compared to the Stage-III dark energy experiments, such as DES, we find that MeerKAT UHF-band gives a smaller error on Ωm than DES with Ωm = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='339+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='032 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='031 in the ΛCDM model (Abbott et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' In the 𝑤CDM model, in order to help break the parameter degen- MNRAS 000, 1–10 (2023) 8 M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Zhang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' The 1𝜎 errors of the cosmological parameters in the ΛCDM, 𝑤CDM, and CPL models using MeerKAT L-band and UHF-band or in combination with Planck data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Note that here 𝐻0 is in units of km s−1 Mpc−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Error ΛCDM 𝑤CDM CPL L-band UHF-band Planck+L-band Planck+UHF-band Planck+L-band Planck+UHF-band 𝜎(Ωm) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='044 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='028 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='030 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='024 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='092 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='046 𝜎(𝐻0) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='8 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='6 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='1 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='1 𝜎(𝑤) − − 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='12 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='08 − − 𝜎(𝑤0) − − − − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='6 𝜎(𝑤𝑎) − − − − 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='5 Ωm 60 65 70 75 H0 [km s−1 Mpc−1] L-band UHF-band Figure 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Constraints on Ωm and 𝐻0 with MeerKAT L-band and UHF-band in the ΛCDM model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' eracy, we combine the BAO data from MeerKAT IM with Planck TT,TE,EE+lowE power spectrum (Aghanim et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2020) in the MCMC analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' The 1𝜎 and 2𝜎 measurement error contours for Ωm, 𝐻0 and dark-energy equation of state parameter 𝑤 are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' We obtain 𝜎(Ωm) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='030, 𝜎(𝐻0) = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='5 km s−1 Mpc−1 and 𝜎(𝑤) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='12 with Planck+L-band and 𝜎(Ωm) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='024, 𝜎(𝐻0) = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='6 km s−1 Mpc−1 and 𝜎(𝑤) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='08 with Planck+UHF- band.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' It can be seen that MeerKAT UHF-band combined with Planck data gives tighter constraints on cosmological parameters in the 𝑤CDM model, with the conclusion the same as in the ΛCDM model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' For dark energy, we find that MeerKAT has a very limited capability of constraining 𝑤, and the error on 𝑤 is still larger even though in combination with Planck data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Finally, we forecast the constraints on cosmological parameters in the CPL model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' The 1𝜎 and 2𝜎 measurement error contours are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' We focus on the DE equation of state parameters 𝑤0 and 𝑤𝑎.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' We obtain 𝜎(𝑤0) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='1 and 𝜎(𝑤𝑎) = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='3 with Planck+L- band, and 𝜎(𝑤0) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='6 and 𝜎(𝑤𝑎) = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='0 with Planck+MeerKAT UHF-band.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Note that dark energy dominates the evolution of the universe in the redshift range of 𝑧 ≲ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' MeerKAT L-band has a very limited constraining power for dark energy at the range of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='18 < 𝑧 < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='58, and MeerKAT UHF-band only surveys at the range of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='42 < 𝑧 < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Therefore, MeerKAT in interferometer mode −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='5 −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='0 w 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='4 Ωm 60 70 80 H0 [km s−1 Mpc−1] 60 70 80 H0 [km s−1 Mpc−1] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='4 Ωm Planck+L-band Planck+UHF-band Figure 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Constraints on Ωm, 𝐻0 and 𝑤 with MeerKAT L-band and UHF- band in combination with Planck data in the 𝑤CDM model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' cannot give stringent constraints on dark energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' But we still keep optimistic since the precise measurements on dark energy would be achieved by the future larger radio telescopes, such as HIRAX and SKA (Wu & Zhang 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Wu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2022a,b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 4 CONCLUSIONS In this work, we give a detailed analysis on measuring the Hi IM delay power spectrum using the MeerKAT interferometer mode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' We also discuss the capability of MeerKAT interferometer mode of con- straining cosmological parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' We use the Fisher matrix method to estimate the Hi power spec- trum with MeerKAT IM observation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' We find that the different survey fields have the distinct impacts on determining the power spectrum errors in the limited observational time of 10 hours.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' As the obser- vational time increases from 10 h to 10000 h, the power spectrum errors are reduced evidently until the cosmic variance begins to dom- inate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' We also discuss the different survey strategies and find that the lower fractional errors on power spectrum at low 𝑘 are obtained when tracking 100 points for L-band and tracking 10 points for UHF-band in a total 10000 h observation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' We obtain the measurement errors on 𝐷 𝐴(𝑧), 𝐻(𝑧) and 𝑓 𝜎8(𝑧) MNRAS 000, 1–10 (2023) Hi delay spectrum with MeerKAT interferometer mode 9 −2 0 2 w0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='6 Ωm 50 60 70 80 H0 [km s−1 Mpc−1] −10 −5 0 wa −10 −5 0 wa 50 60 70 80 H0 [km s−1 Mpc−1] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='6 Ωm Planck+L-band Planck+UHF-band Figure 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Constraints on Ωm, 𝐻0, 𝑤0 and 𝑤𝑎 with MeerKAT L-band and UHF-band in combination with Planck data in the CPL model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' by using the Fisher matrix, and then use these measurements to constrain cosmological parameters in typical dark energy models, in- cluding ΛCDM, 𝑤CDM and CPL models, by performing the MCMC analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' We obtain 𝜎(Ωm) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='028 and 𝜎(𝐻0) = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='0 km s−1 Mpc−1 with MeerKAT UHF-band which are better than the results of 𝜎(Ωm) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='044 and 𝜎(𝐻0) = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='8 km s−1 Mpc−1 with MeerKAT L-band in the ΛCDM model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' However, MeerKAT has a very limited constraining power for dark-energy equation of state, such as 𝑤 in the 𝑤CDM model and 𝑤0 and 𝑤𝑎 in the CPL model, even though in combination with Planck data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Though MeerKAT L-band and UHF-band Hi IM surveys in in- terferometer mode have a very limited constraining power for dark energy, our analysis still provide a useful guide for the near future MeerKAT survey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' It is expected that the future larger radio telescope arrays, such as SKA, will have a much better and powerful perfor- mance on cosmological research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' In addition, MeerKAT baselines are not short enough for detecting large cosmological scales, but the measurements with MeerKAT interferometer mode on these scales are still very useful in detecting Hi content of galaxies, obtaining the cross-correlation between Hi content and star formation rates (Wolz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2016), constraining warm dark matter (Carucci et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2015) and breaking the degeneracy between ΩHi and 𝑏Hi (Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' These aspects deserve further detailed investigations in the future.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' ACKNOWLEDGEMENTS We thank Peng-Ju Wu and Li-Yang Gao for helpful discussions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' This work was supported by the National SKA Program of China (Grants Nos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 2022SKA0110200 and 2022SKA0110203) and the Na- tional Natural Science Foundation of China (Grants Nos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' 11975072, 11875102, and 11835009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' DATA AVAILABILITY The data underlying this article will be shared on reasonable request to the corresponding author.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' REFERENCES Abbott T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2018, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' D, 98, 043526 Abbott T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2020, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' D, 102, 023509 Aghanim N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2020, Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 641, A6 Alam S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2017, Mon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Roy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 470, 2617 Amendola L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2018, Living Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Rel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 21, 2 Anderson C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2018, Mon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Roy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 476, 3382 Ansari R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2012, Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 540, A129 Bacon D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2020, Publ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Austral.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 37, e007 Bagla J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Khandai N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Datta K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2010, Mon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Roy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 407, 567 Ballardini M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Matthewson W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Maartens R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2019, Mon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Roy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 489, 1950 Bandura K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2014, Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' SPIE Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Eng.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 9145, 22 Battye R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Davies R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Weller J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2004, Mon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Roy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 355, 1339 Berti M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Spinelli M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Haridasu B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Viel M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Silvestri A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2022, JCAP, 01, 018 Beutler F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2011, Mon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Roy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 416, 3017 Blake C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2011, Mon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Roy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 418, 1707 Bull P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Ferreira P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Patel P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Santos M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2015, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 803, 21 Camera S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Santos M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Ferreira P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Ferramacho L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2013, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 111, 171302 Carucci I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Villaescusa-Navarro F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Viel M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Lapi A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2015, JCAP, 07, 047 Chang T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Pen U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='-L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Peterson J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', McDonald P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2008, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 100, 091303 Chang T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Pen U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='-L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Bandura K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Peterson J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2010, Nature, 466, 463 Chen X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2012, Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 12, 256 Chen Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Wolz L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Spinelli M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Murray S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2021, Mon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Roy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 502, 5259 Cheng G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Ma Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='-Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Wu F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Zhang J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Chen X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2020, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' D, 102, 043517 Chevallier M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Polarski D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2001, Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' D, 10, 213 Chisari N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2019, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Suppl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 242, 2 Cole S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2005, Mon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Roy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 362, 505 Colless M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2001, Mon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Roy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 328, 1039 Cunnington S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2022, Mon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Roy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 512, 2408 Cunnington S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Camera S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Pourtsidou A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2020, Mon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Roy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 499, 4054 Cunnington S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2022, arXiv e-prints, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' arXiv:2206.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='01579 Datta A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Bowman J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Carilli C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2010, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 724, 526 Dey A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2019, Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 157, 168 Dickinson C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2014, in 49th Rencontres de Moriond on Cosmology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' pp 139– 142 (arXiv:1405.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='7936) Drinkwater M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2010, Mon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Roy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 401, 1429 Irfan M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2021, Mon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Roy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 509, 4923 Ivezić v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2019, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 873, 111 Jarvis M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2018, PoS, MeerKAT2016, 006 Jin S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='-J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', He D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='-Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Xu Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Zhang J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='-F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Zhang X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2020, JCAP, 03, 051 Jin S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='-J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Wang L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='-F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Wu P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='-J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Zhang J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='-F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Zhang X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2021, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' D, 104, 103507 Jones D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2009, Mon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Roy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 399, 683 Kaiser N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 1987, Mon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Roy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 227, 1 Karagiannis D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Slosar A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Liguori M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2020, JCAP, 11, 052 Karagiannis D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Fonseca J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Maartens R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Camera S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2021, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Dark Univ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 32, 100821 Knowles K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2021, Mon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Roy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 504, 1749 Lewis A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Challinor A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Lasenby A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2000, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 538, 473 Li Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Ma Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='-Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2017, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' D, 96, 063525 Li L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Staveley-Smith L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Rhee J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2021a, Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 21, 030 Li Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Santos M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Grainge K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Harper S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Wang J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2021b, MNRAS, 501, 4344 Lidz A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Furlanetto S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Oh S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Aguirre J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Chang T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Dore O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Pritchard J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2011, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 741, 70 Linder E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2003, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 90, 091301 Liu A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Shaw J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2020, Publ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Pac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 132, 062001 Liu A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Parsons A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Trott C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2014a, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' D, 90, 023018 MNRAS 000, 1–10 (2023) 10 M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Zhang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Liu A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Parsons A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Trott C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2014b, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' D, 90, 023019 Loeb A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Wyithe S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2008, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 100, 161301 Maartens R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Abdalla F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Jarvis M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Santos M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2015, PoS, AASKA14, 016 Maddox, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2021, A&A, 646, A35 Masui K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2013, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 763, L20 McQuinn M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Zahn O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Zaldarriaga M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Hernquist L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Furlanetto S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2006, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 653, 815 Morales M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Hazelton B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Sullivan I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Beardsley A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2012, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 752, 137 Nan R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2011, Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' D, 20, 989 Newburgh L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2016, Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' SPIE Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Eng.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 9906, 99065X Obuljen A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Castorina E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Villaescusa-Navarro F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Viel M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2018, JCAP, 05, 004 Olivari L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Dickinson C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Battye R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Ma Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='-Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Costa A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Remazeilles M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Harper S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2018, Mon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Roy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 473, 4242 Parsons A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Backer D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2009, Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 138, 219 Parsons A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Pober J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Aguirre J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Carilli C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Jacobs D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Moore D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2012, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 756, 165 Paul S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2016, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 833, 213 Paul S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Santos M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Townsend J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Jarvis M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Maddox N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Collier J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Frank B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Taylor R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2021, Mon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Roy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 505, 2039 Pober J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2015, Mon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Roy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 447, 1705 Pourtsidou A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2018, PoS, MeerKAT2016, 037 Pourtsidou A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Bacon D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Crittenden R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2017, Mon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Roy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 470, 4251 Pritchard J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Loeb A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2012, Rept.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Prog.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 75, 086901 Santos M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2015, PoS, AASKA14, 019 Santos M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2017, in MeerKAT Science: On the Pathway to the SKA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' (arXiv:1709.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='06099) Scelfo G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Spinelli M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Raccanelli A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Boco L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Lapi A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Viel M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2022, JCAP, 01, 004 Seo H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='-J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Hirata C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2016, Mon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Roy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 456, 3142 Seo H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='-J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Dodelson S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Marriner J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Mcginnis D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Stebbins A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Stoughton C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Vallinotto A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2010, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 721, 164 Sprenger T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Archidiacono M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Brinckmann T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Clesse S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Lesgourgues J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2019, JCAP, 02, 047 Terni de Gregory B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2021, Mon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Roy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 504, 2924 Tramonte D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Ma Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='-Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2020, Mon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Roy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 498, 5916 Vedantham H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Shankar N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Subrahmanyan R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2012, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 745, 176 Viljoen J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='-A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Fonseca J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Maartens R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2021, JCAP, 11, 010 Villaescusa-Navarro F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Bull P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Viel M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2015, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 814, 146 Wang J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2021, Mon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Roy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 505, 3698 Wolz L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Tonini C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Blake C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Wyithe J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2016, Mon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Roy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 458, 3399 Wolz L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2022, Mon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Roy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 510, 3495 Wu P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='-J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Zhang X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2022, JCAP, 01, 060 Wu F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2021, Mon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Roy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 506, 3455 Wu P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='-J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Shao Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Jin S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='-J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Zhang X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2022a, arXiv e-prints, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' arXiv:2202.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='09726 Wu P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='-J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Li Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Zhang J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='-F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Zhang X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2022b, arXiv e-prints, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' arXiv:2212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='07681 Wuensche C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2020, Exper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 50, 125 Wyithe S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Loeb A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Geil P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2008, Mon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Roy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 383, 1195 Xiao L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Costa A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Wang B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2021, Mon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Roy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 510, 1495 Xu Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Zhang X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2020, Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' China Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Mech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 63, 270431 Xu Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Wang X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Chen X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2015, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 798, 40 Xu X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Ma Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='-Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Weltman A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2018, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' D, 97, 083504 Zhang J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='-F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Wang B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Zhang X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2020, Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' China Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Mech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 63, 280411 Zhang M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Wang B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Wu P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='-J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Qi J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='-Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Xu Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Zhang J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content='-F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Zhang X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2021, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 918, 56 de Villiers M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', Cotton W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 2022, Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=', 163, 135 This paper has been typeset from a TEX/LATEX file prepared by the author.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} +page_content=' MNRAS 000, 1–10 (2023)' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNE3T4oBgHgl3EQfTwqq/content/2301.04445v1.pdf'} diff --git a/ENFRT4oBgHgl3EQfAze2/content/tmp_files/2301.13463v1.pdf.txt b/ENFRT4oBgHgl3EQfAze2/content/tmp_files/2301.13463v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..3e34bf5d676f65d77a53e3e98230dbb2ee8f06d8 --- /dev/null +++ b/ENFRT4oBgHgl3EQfAze2/content/tmp_files/2301.13463v1.pdf.txt @@ -0,0 +1,974 @@ +arXiv:2301.13463v1 [hep-ph] 31 Jan 2023 +Higgs production at next generation e+e− colliders +Deniz YILMAZ1∗, Mehmet SAHIN2, Dogukan Hazar YAVUZ1 +1Physics Engineering Department, Ankara University, Ankara,Turkey +2Department of Computer Engineering, Usak University, Usak,Turkey +February 1, 2023 +Abstract +In this study, Higgs production processes, Higgsstrahlung and vector boson (W and Z) fusion +processes, were investigated for four different future lepton colliders (CEPC, ILC, CLIC, and FCC- +ee). The cross sections for each production process and corresponding backgrounds were calculated +considering the ISR and beamstrahlung effects. Various cuts and the b-tagging method were used +to reduce the background. +Finally, the number of events for each collider was determined, and +significance calculations were performed. In our calculations, high event numbers were obtained for +all four colliders for the Higgsstrahlung, W, and Z fusion process. This shows that electron-positron +colliders will play an important role in future Higgs physics research. +1 +Introduction +The discovery of the Higgs boson at the Large Hadron Collider (LHC) [1, 2] confirmed the electroweak +symmetry breaking mechanism of the Standard Model (SM) [3, 4, 5, 6]. However, there is still some +unknown about the observed Higgs boson: is it the fundamental scalar of the SM, or a more complex +object, or part of an extended Higgs sector? Studying the properties of the Higgs boson at the LHC +and in future colliders is crucial to understanding its true nature. Up to now, some properties of the +Higgs boson have been measured at the LHC with an accuracy of about 10% [7, 8, 9, 10]. Although the +LHC Run 2 to be developed will examine it with higher data, because of the complexity of the internal +structure of the proton, the LHC will not be sensitive enough to examine the properties of Higgs. +Electron-positron colliders, which will be installed to precisely measure the properties of the Higgs +particle, have unique capabilities for the measurement of Higgs boson parameters, including the Higgs +total cross section, decay width, branching ratios, Higgs width, and determination of Higgs couplings. +Therefore, today, four e+e− colliders are being designed to study the properties of the Higgs boson +and other standard model (SM) particles with high precision: the International Linear Collider (ILC) +[11], with a center of mass energy of 250 – 500 GeV, Compact Linear Collider (CLIC) [12] with center +of mass energies of 380 – 1500 – 3000 GeV, Circular Electron Positron Collider (CEPC) with center of +mass energies between 90 and 250 GeV [13] and the Future e+e− Circular Collider (FCC-ee) [14], which +will be located in a new tunnel at CERN at 240 GeV center of mass energy. The main beam parameters +of these colliders [11, 12, 13, 14] are given in Table 1. The integrated luminosities given here are annual +values. +Table 1: The main collider parameters +Parameters +CEPC +FCC-ee +ILC +CLIC +Center of mass energy (GeV) +240 +240 +250 +500 +380 +1500 +3000 +Number of particles per bunch (1010) +15 +18 +2 +2 +0.52 +0.37 +0.37 +Horizontal beam size at IP (σx) (µm) +20.9 +13.7 +0.516 +0.474 +0.149 +0.06 +0.04 +Vertical beam size at IP (σy) (nm) +60 +36 +7.66 +5.86 +2.9 +1.5 +1 +Bunch length (mm) +4.4 +5.3 +0.3 +0.3 +0.07 +0.044 +0.044 +Luminosity (105pb−1 ) +6 +17 +1.35 +1.8 +1.5 +3.7 +5.9 +In the electron-positron collider, Higgs bosons are produced by the Higgsstrahlung and vector boson +(W and Z) fusion processes [15, 16, 17, 18, 19, 20, 21]. In this study, these three processes were examined +∗dyilmaz@eng.ankara.edu.tr +1 + +Figure 1: The Feynmann diagrams of the Higgs production processes +and calculations were performed using CalcHEP [22, 23]. In the electron-positron collider, it is important +to consider the effects of ISR and Beamstrahlung [24, 25]. The parameters listed in Table 1 were used +to calculate the ISR and the beamstraghlung effects. In section 2 cross sections are given for these three +processes. Section 3 provides signal and background analyses, the number of events for each collider, and +the significance calculations. Finally, conclusion is provided in the section 4. +2 +Higgs Production at the electron - positron colliders +The main production processes of Higgs at the e+e− colliders are the Higgsstrahlung and W/Z fusion +mechanisms given below, as shown in Figure 1. +Higgs − strahlung +e+e− → ZH +Wfusion +e+e− → νeνeH +Zfusion +e+e− → e+e−H +The cross section for the Higgsstrahlung process can be written as +σ(e+e− → ZH) = G2 +F M 4 +Z +96πs (η2 +e + a2 +e)κ1/2 κ + 12M 2 +Z/s +(1 − M 2 +Z/s)2 +(1) +where ae = −1, ηe = −1 + 4sin2θW are the Z charges of the electron and κ = (1 − (MH + MZ)2/s)(1 − +(MH − MZ)2/s) is the usual two particle phase space function. The total cross section for the vector +boson fusion mechanism is +σ(e+e− → V V → llH) = G2 +F m4 +V +64 +√ +2π3 +� 1 +xH +dx +� 1 +x +dyT (x, y) +[1 + (y − x)/xV ]2 . +(2) +T (x, y) = (2x +y3 − 3x + 1 +y2 ++ x + 2 +y +− 1)[ +z +z + 1 − log(z + 1)] + xz2(1 − y) +y3(z + 1) , +where V denotes the vector bosons W or Z and xH = m2 +H/s, xV = m2 +V /s and z = y(x − xH)/xxV (√s +is the center-of-mass energy) [26]. +200 +250 +300 +350 +400 +450 +500 +√s [GeV] +0 +0,05 +0,1 +0,15 +0,2 +0,25 +σ [pb] +Higgsstrahlung +W Fusion +Z Fusion +Figure 2: The cross sections of the Higgs production mechanisms as a function of center-of-mass energy. +2 + +200 +250 +300 +350 +400 +450 +500 +√s [GeV] +0,05 +0,1 +0,15 +0,2 +0,25 +σ [pb] +CEPC +ILC +FCC-ee +CLIC +Higgsstrahlung +200 +250 +300 +350 +400 +450 +500 +√s [GeV] +0,01 +0,02 +0,03 +0,04 +0,05 +0,06 +0,07 +σ [pb] +CEPC +ILC +FCC-ee +CLIC +W Fusion +200 +250 +300 +350 +400 +450 +500 +√s [GeV] +0,001 +0,002 +0,003 +0,004 +0,005 +0,006 +0,007 +σ [pb] +CEPC +ILC +FCC-ee +CLIC +Z Fusion +Figure 3: The cross section comparison for Higgsstrahlung, W Fusion and Z Fusion processes for four +e+e−colliders. +The behavior of the production cross-sections of the Higgs boson calculated by the Higgsstrahlung +and the W/Z fusion mechanisms using the CalcHEP simulation program, depending on the center of +mass energy, are shown in Figure 2 and Figure 3. The relevant production cross sections as a function of +the center of mass energy are shown in Figure 2. As shown in Figure 2, the Higgsstrahlung suppresses the +vector boson production processes for moderate values of the energy due to the additional electroweak +coupling. With the increase in energy, the cross sections of the vector boson procecesses increase log- +arithmically and become dominant. At a center of mass energy of about 250 GeV, Higgs bosons are +predominantly produced from the ZH process as seen in the same figure. In the Figure 3, the cross +sections are shown as a function of the center of mass energy for each production mechanisms for four +electron-positron colliders with the ISR and the beamstrahlung effects of each colliders. +3 +Signal and Background Analyses +Because the Higgs boson’s decay rate to bb is greater than the decay rate to other quarks and leptons +[27, 28, 29, 30, 31], the bb decay mode of Higgs (H −→ bb) is considered in all production processes in +this study. Since the cross sections of the background processes corresponding to the leptonic decays of +the Z boson are less than the background cross sections corresponding to the other decays, the leptonic +decays of the Z boson in the Higgsstrahlung process are taken into account. The signal processes are +given below. +Signal 1: +Higgsstrahlung +e+e− → ZH → llbb +Zfusion +e+e− → e+e−bb +Signal 2: +Wfusion +e+e− → νeνebb +3 + +Here, l and l are e−, µ− and e+, µ+, respectively. The corresponding background processes analysed here +are as follows: +For signal 1: +i) +e+e− → ZZ → llJJ, +ii) +e+e− → e+e−Z → e+e−JJ, +iii) +e+e− → tt → W +JW −J → llJJνlνl, +For signal 2: +e+e− → JJ, +here, J represents the quark and antiquark: J = d, d, u, u, s, s, c, c, b, b. The transverse momentum (PT ), +pseudo rapidity (η) and invariant mass (Minv) distributions of the final state particles were investigated +by using CalcHEP program in order to find the cut values to distinguish the signal from the background +in the FCC-ee collider with a center of mass energy of 240 GeV. The background iii process corresponding +to Signal 1 is not included in the calculations for 240 GeV, as it starts to contribute at 350 GeV and +greater center of mass energies. Because the transverse momentum, pseudo rapidity, and invariant mass +distributions of the final state particles in the signal and background processes will exhibit similar behavior +for other colliders, the cut values obtained can be used for CEPC, ILC, and CLIC. Transverse momentum +distribution plots for the final state particles of signal 1 and the corresponding background processes i +and ii are shown in Figure 4, while the graphs of signal 2 are shown in Figure 5. As can be seen from +Figure 4 and 5, when a transverse momentum cut of 35 GeV is applied to the e−, e+, µ−, µ+, and two +jets (J) in the final state particles of signal 1 and signal 2 and the corresponding background processes, +the signal will almost not change, but the background will be significantly reduced. +Pseudorapidity plots for signal 1, signal 2, and the corresponding backgrounds are shown in Figure +6 and 7. As can be seen from the figures, cut regions of −2.5 < ηJ,J < 2.5, −2.5 < ηe−,e+ < 2.5, +−2.5 < ηµ−,µ+ < 2.5 will be appropriate for e−, e+, µ−, µ+ and two jets (J) in the final state particles +of signal 1 and signal 2 and the corresponding background processes. +10-5 +10-4 +10-3 +10-2 +10-1 +100 +101 + 0 + 20 + 40 + 60 + 80 + 100 + 120 + 140 +√s=240 GeV +(1/σ)dσ/dpT (1/GeV) +pT (GeV) +signal 1 +background i +background ii +10-5 +10-4 +10-3 +10-2 +10-1 +100 +101 + 0 + 20 + 40 + 60 + 80 + 100 + 120 + 140 +√s=240 GeV +(1/σ)dσ/dpT (1/GeV) +pT (GeV) +signal 1 +background i +10-5 +10-4 +10-3 +10-2 +10-1 +100 +101 + 0 + 20 + 40 + 60 + 80 + 100 + 120 + 140 +√s=240 GeV +(1/σ)dσ/dpT (1/GeV) +pT (GeV) +signal 1 +background i +background ii +Figure 4: Transverse momentum distribution plots for the e−/e+ (upper left ), µ−/µ+ (upper right) +and J/J (bottom) final state particles of signal 1 and the corresponding bacground processes in FCC-ee +collider with 240 GeV center of mass energy. +4 + +10-5 +10-4 +10-3 +10-2 +10-1 +100 +101 + 0 + 20 + 40 + 60 + 80 + 100 + 120 + 140 +√s=240 GeV +(1/σ)dσ/dpT (1/GeV) +pT (GeV) +signal 2 +background +Figure 5: Transverse momentum distribution plots for the b/b and J/J final state particles of signal 2 +and the corresponding bacground processes in FCC-ee collider with 240 GeV center of mass energy. +An Emiss +T +cut value of >15 GeV was also used for neutrinos in our calculations. +Invariant mass distribution plots for signal 1, signal 2 and their corresponding background processes +are shown in Figure 8. As can be seen from the figures, in the calculations, it would be appropriate to +exclude the 80 GeV < Minv(e−, e+) <100 GeV and 80 GeV < Minv(µ−, µ+) < 100 GeV regions for the +ll final states in signal and background processes. In addition, only the 115 GeV < Minv(J, J) <135 +GeV region was included in the calculations for two final jet states in the signal and background pro- +cesses. These included and excluded invariant mass regions allow the signal to be distinguished from the +background. +In addition to these cut values, the separation cuts of ∆R(l, J) >0.5 and ∆R(l, J) >0.5 distinguish +the final state leptons and antileptons from the jets, while the ∆R(J, J) >0.5 separation cut was used to +distinguish the final state jets from each other. +10-5 +10-4 +10-3 +10-2 +10-1 +100 +101 +-6 +-4 +-2 + 0 + 2 + 4 + 6 +√s=240 GeV +(1/σ)dσ/dη +ηe +signal 1 +background i +background ii +10-5 +10-4 +10-3 +10-2 +10-1 +100 +101 +-6 +-4 +-2 + 0 + 2 + 4 + 6 +√s=240 GeV +(1/σ)dσ/dη +ηµ +signal 1 +background i +10-5 +10-4 +10-3 +10-2 +10-1 +100 +101 +-6 +-4 +-2 + 0 + 2 + 4 + 6 +√s=240 GeV +(1/σ)dσ/dη +ηJ +signal 1 +background i +background ii +Figure 6: Pseudorapidity distribution plots for the e−/e+ (upper left ), µ−/µ+ (upper right) and J/J +(bottom) final state particles of signal 1 and the corresponding bacground processes in FCC-ee collider +with 240 GeV center of mass energy. +5 + +10-5 +10-4 +10-3 +10-2 +10-1 +100 +101 +-6 +-4 +-2 + 0 + 2 + 4 + 6 +√s=240 GeV +(1/σ)dσ/dη +ηJ +signal 2 +background +Figure 7: Pseudorapidity distribution plots for the b/b and J/J final state particles of signal 2 and the +corresponding bacground processes in FCC-ee collider with 240 GeV center of mass energy. +All the cut values obtained are listed in Table 2, and these cut values were used in the calculations for +the four colliders. In addition to the cut values in Table 2, because the Higgs boson decays to bb in our +signal processes, it is possible to further reduce the background cross section value using the b-tagging +method [27]: 68% is used for the b-tagging identification rate, and a 1% ratio is used for misidentification +rate with light quarks as b quarks. +The following equation is used to calculate the significance of the +10-8 +10-6 +10-4 +10-2 +100 + 0 + 25 + 50 + 75 + 100 + 125 + 150 + 175 + 200 + 225 + 250 +√s=240 GeV +dσ/dMinv (pb/GeV) +Minv (GeV) +signal Z(e-,e+) +signal h(b, b-) +background Z(e-,e+) +background γ(e-,e+) +background Z(J,J) +10-8 +10-6 +10-4 +10-2 +100 + 0 + 25 + 50 + 75 + 100 + 125 + 150 + 175 + 200 + 225 + 250 +√s=240 GeV +(1/σ)dσ/dMinv (1/GeV) +Minv (GeV) +signal h(b,b-) +background Z(J,J)) +Figure 8: Invariant mass plots for the signal 1 (left) and signal 2 (right) and the corresponding bacground +processes in FCC-ee collider with 240 GeV center of mass energy. +obtained data: +S = +� +2((s + b) ln(1 + s/b) − s) +(3) +where s and b represent signal and background events, respectively [32]. Cross-sections, event rates, and +significance values were calculated for the signal and background processes using the cut values in Table 2, +Table 2: Cut values +Emiss +T +(νl, νl) > 15 GeV +PT (l, l) > 35 GeV +PT (J) > 35 GeV +-2.5 < η(l, l) < 2.5 +-2.5 < η(J) < 2.5 +80 GeV < Minv(l, l) < 100 GeV region is excluded +115 GeV< Minv(J, J) < 135 GeV region is included +∆R(l, J) > 0.5 +∆R(l, J) > 0.5 +∆R(J, J) > 0.5 +6 + +Table 3: Cross sections, number of events and the significance values for CEPC. +Colliders +Processes +Sg CS +(pb) +Bg CS +(pb) +L +(pb−1) +No. SgE +No.BgE +S +CEPC +(240 GeV) +Signal 1 +9.91×10−5 +2.38×10−4 +6×105 +59.5 +142.8 +4.7 +Signal 1 +(with b-tagging) +6.72×10−5 +3.68×10−5 +40.32 +22.08 +7 +Signal 2 +1.24×10−2 +5.22×10−1 +7440 +313200 +13.24 +Signal 2 +(with b-tagging) +8.45×10−3 +7.17×10−2 +5070 +43020 +23.98 +b-tagging method, and nominal integrated luminosity given in Table 1. The event rates and significance +values of the signals and corresponding backgrounds are obtained for four future lepton colliders. The +numerical results are given in Table 3-6. The abbreviations used in the tables are: Sg CS (signal cross- +section), Bg CS ( background cross-section),L (integrated luminosity), No. SgE (number of signal events) +and No. BgE (number of background events). +4 +Conclusion +After the discovery of the Higgs particle, precise measurements of the Higgs properties became an im- +portant step forward for future research in particle physics. Electron positron colliders to be installed +for this purpose have unique capabilities for the measurement of Higgs boson parameters, including the +Higgs total cross section of production processes, decay width, branching rates and determination of +Higgs couplings. In this study, the Higgsstrahlung and W and Z fusion processes were examined, and the +data obtained are presented in graphs and tables for four different electron-positron colliders. The pro- +duction cross-sections for each process and additionally cross-sections for various final state backgrounds +were calculated. In the calculations, we attempted to reduce the background by transverse momentum, +pseudo rapidity, invariant mass, cone-angle constraints, and the b-tagging method. Significance calcula- +tions were performed by determining the number of events related to the production processes and the +background for each collider. The values are listed in Table 3-6. +When the results are examined in Table 5 , it is seen that the desired significance value for Signal 1 +cannot be reached at the luminosity value given for ILC – 250 GeV. For Signal 1 processes to be observed +in the ILC-250 GeV, the collider needs to accumulate data for a longer period of time. Again, at the end +of one year, it was seen that the statistical significance value of 5σ would be reached after the b-tagging +method for the Signal 1 processes in the CEPC collider. Therefore, the CEPC collider will enable the +properties of the Higgs boson to be investigated precisely through Signal 1 processes. It is seen that at +the end of 1 year in the FCC-ee collider, a significance value of 7.95 will be reached without b-tagging and +a high significance value of 11.9 can be reached by using b-tagging. This shows that FCC-ee will be more +advantageous than ILC-250 GeV and CEPC 250 GeV colliders for investigating Higgs boson properties +through the Signal 1 group around these center of mass energies (240-250 GeV). In the ILC-500 GeV +and CLIC-380-1500-3000 GeV colliders, results well above the desired significance value can be obtained +for signal 1 processes, even without the b-tagging. Therefore, the properties of the Higgs boson through +Signal 1 processes can be studied with precision in colliders other than the ILC-250 GeV collider. Since +the results obtained for the Signal 2 process are greater than 5 significance values, the properties of the +Table 4: Cross sections, number of events and the significance values for FCC-ee. +Colliders +Processes +Sg CS +(pb) +Bg CS +(pb) +L +(pb−1) +No. SgE +No.BgE +S +FCC-ee +(240 GeV) +Signal 1 +9.98×10−5 +2.36×10−4 +1.7×106 +169.7 +401.2 +7.95 +Signal 1 +(with b-tagging) +6.79×10−5 +3.67×10−5 +115.4 +62.4 +11.9 +Signal 2 +1.25×10−2 +5.37×10−1 +21250 +912900 +22.15 +Signal 2 +(with b-tagging) +8.53×10−3 +7.38×10−2 +14501 +125460 +40.18 +7 + +Table 5: Cross sections, number of events and the significance values for ILC. +Colliders +Processes +Sg CS +(pb) +Bg CS +(pb) +L +(pb−1) +No. SgE +No.BgE +S +ILC +(250 GeV) +Signal 1 +1.33×10−4 +2.9×10−4 +1.35×105 +17.95 +39.15 +2.68 +Signal 1 +(with b-tagging) +9.04×10−5 +4.34×10−5 +12.2 +5.86 +4.03 +Signal 2 +1.3×10−2 +5.33×10−1 +1755 +71955 +6.51 +Signal 2 +(with b-tagging) +8.82×10−3 +7.32×10−2 +1190 +9882 +11.74 +ILC +(500 GeV) +Signal 1 +1.41×10−3 +1.7×10−3 +1.8×105 +253.8 +306 +12.98 +Signal 1 +(with b-tagging) +9.57×10−4 +3.32×10−4 +172.3 +59.8 +16.88 +Signal 2 +2.86×10−2 +1.13×10−1 +5148 +20340 +34.71 +Signal 2 +(with b-tagging) +1.94×10−2 +1.56×10−2 +3492 +2808 +56.54 +Table 6: Cross sections, number of events and the significance values for CLIC. +Colliders +Processes +Sg CS +(pb) +Bg CS +(pb) +L +(pb−1) +No. SgE +No.BgE +S +CLIC +(380 GeV) +Signal 1 +6.44×10−4 +1.08×10−3 +1.5×105 +96.6 +162 +6.98 +Signal 1 +(with b-tagging) +4.38×10−4 +2.53×10−4 +65.7 +37.95 +8.76 +Signal 2 +1.7×10−2 +2.11×10−1 +2550 +31650 +14.14 +Signal 2 +(with b-tagging) +1.16×10−2 +2.9×10−2 +1740 +4350 +24.86 +CLIC +(1500 GeV) +Signal 1 +1.95×10−3 +1.47×10−3 +3.7×105 +721.5 +543.9 +26.34 +Signal 1 +(with b-tagging) +1.32×10−3 +2.34×10−4 +488.4 +86.58 +36.64 +Signal 2 +1.03×10−1 +9.22×10−3 +38110 +3411 +362 +Signal 2 +(with b-tagging) +6.99×10−2 +1.27×10−3 +25863 +470 +400 +CLIC +(3000 GeV) +Signal 1 +6.01×10−4 +8.47×10−4 +5.9×105 +355 +499.7 +14.38 +Signal 1 +(with b-tagging) +4.09×10−4 +1.32×10−4 +241 +77.8 +20.44 +Signal 2 +1.61×10−1 +2.72×10−3 +94990 +1605 +776 +Signal 2 +(with b-tagging) +1.09×10−1 +3.74×10−4 +64310 +221 +777 +Higgs boson can be studied precisely for all colliders through this channel. +As a result, in future lepton colliders, the Higgs boson can be observed with high event rates via +Higgsstrahlung, W and Z fusion. Thus, electron–positron colliders can precisely measure the properties +of the Higgs boson. +Acknowledgment +We would like to thank Professor Dr Inanc Sahin for his suggestions. +8 + +References +[1] G. Aad et al. [ATLAS], “Observation of a new particle in the search for the Standard +Model Higgs boson with the ATLAS detector at the LHC,” Phys. Lett. B 716 (2012) 1-29, +arXiv:hep-ex/1207.7214. +[2] S. Chatrchyan et al. [CMS], “Observation of a New Boson at a Mass of 125 GeV with the CMS +Experiment at the LHC,” Phys. Lett. B 716(2012) 30-61, arXiv:hep-ex/1207.7235 +[3] P. +W. +Higgs, +“Broken +Symmetries +and +the +Masses +of +Gauge +Bosons,” +Phys. Rev. Lett. 13 (1964) 508-509 +[4] P. W. Higgs, “Broken symmetries, massless particles and gauge fields,” Phys. Lett. 12(1964) 132-133 +[5] F. Englert and R. Brout, +“Broken Symmetry and the Mass of Gauge Vector Mesons,” +Phys. Rev. Lett. 13 (1964) 321-323 +[6] G. S. Guralnik, C. R. Hagen and T. W. B. Kibble, “Global Conservation Laws and Massless Parti- +cles,” Phys. Rev. Lett. 13 (1964) 585-587 +[7] S. Dittmaier et al. [LHC Higgs Cross Section Working Group], “Handbook of LHC Higgs Cross +Sections: 1. Inclusive Observables,” ,arXiv:hep-ph/1101.0593. +[8] S. Dittmaier, C. Mariotti, G. Passarino, R. Tanaka, S. Alekhin, J. Alwall, E. A. Bagnaschi, A. Banfi, +J. Bl¨umlein and S. Bolognesi, et al. “Handbook of LHC Higgs Cross Sections: 2. Differential Distri- +butions,” ,arXiv:hep-ph/1201.3084. +[9] S. Heinemeyer et al. [LHC Higgs Cross Section Working Group], “Handbook of LHC Higgs Cross +Sections: 3. Higgs Properties,” ,arXiv:hep-ph/1307.1347. +[10] D. de Florian et al. [LHC Higgs Cross Section Working Group], “Handbook of LHC Higgs Cross +Sections: 4. Deciphering the Nature of the Higgs Sector,” ,arXiv:hep-ph/1610.07922. +[11] L. Evans et al. [Linear Collide], “The International Linear Collider Machine Staging Report 2017,” +arXiv:physics.acc-ph/1711.00568 . +[12] M. J. Boland et al. [CLIC and CLICdp], “Updated baseline for a staged Compact Linear Collider,” +CERN 004 (2016) arXiv:physics.acc-ph/1608.07537 . +[13] [CEPC +Study +Group], +“CEPC +Conceptual +Design +Report: +Volume +1 +- +Accelerator,” +arXiv:physics.acc-ph/1809.00285 . +[14] A. Abada et al. [FCC], “FCC Physics Opportunities: Future Circular Collider Conceptual Design +Report Volume 1,” Eur. Phys. J. C 79(2019) no.6, 474 +[15] D. R. T. Jones and S. T. Petcov, “Heavy Higgs Bosons at LEP,” Phys. Lett. B 84 (1979) 440-444, +[16] D. A. Dicus and S. S. D. Willenbrock, “Higgs Bosons From Vector Boson Fusion in e+e−, ep and pp +Collisions,” Phys. Rev. D 32 (1985) 1642, +[17] G. +Altarelli, +B. +Mele +and +F. +Pitolli, +“Heavy +Higgs +Production +at +Future +Colliders,” +Nucl. Phys. B 287 (1987) 205-224, +[18] W. Kilian, M. Kramer and P. M. Zerwas, “Higgsstrahlung and W W fusion in e+ e- collisions,” +Phys. Lett. B 373 (1996) 135-140, arXiv:hep-ph/9512355. +[19] K. i. Hikasa, “Heavy Higgs Production in e+e− and e−e− Collisions,” Phys. Lett. B 164 (1985) 385 +[20] X. Mo, G. Li, M. Q. Ruan and X. C. Lou, “Physics cross sections and event generation of e+e− +annihilations at the CEPC,” Chin. Phys. C 40 (2016), no.3, 033001, arXiv:hep-ex/1505.01008. +[21] Y. Zhang, “WW fusion and Higgsstrahlung interplay in Higgs precision tests with the e-e+→νν¯h +process,” Phys. Rev. D 99 (2019), no.3, 033011, arXiv:hep-ph/9704448. +[22] A. Belyaev, N. D. Christensen and A. Pukhov, “CalcHEP 3.4 for collider physics within and beyond +the Standard Model,” Comput. Phys. Commun. 184 (2013) 1729-1769, arXiv:hep-ph/1207.6082. +[23] A. Pukhov, “CalcHEP 2.3: MSSM, structure functions, event generation, batchs, and generation of +matrix elements for other packages,” arXiv:hep-ph/0412191. +9 + +[24] M. Skrzypek and S. Jadach, “Exact and approximate solutions for the electron nonsinglet structure +function in QED,” Z. Phys. C 49 (1991) 557-584, +[25] A. Pukhov, E. Boos, M. Dubinin, V. Edneral, V. Ilyin, D. Kovalenko, A. Kryukov, V. Savrin, +S. Shichanin and A. Semenov, “CompHEP: A Package for evaluation of Feynman diagrams and +integration over multiparticle phase space,” arXiv:hep-ph/9908288. +[26] W. Kilian, M. Kramer and P. M. Zerwas, “Higgsstrahlung and W W fusion in e+ e- collisions,” +Phys. Lett. B 373 (1996) 135-140, arXiv:hep-ph/9512355. +[27] A. M. Sirunyan et al. [CMS], “Identification of heavy-flavour jets with the CMS detector in pp +collisions at 13 TeV,” JINST 13 (2018) no.05, P05011, arXiv:physics.ins-det/1712.07158. +[28] A. Djouadi, J. Kalinowski and M. Spira, “HDECAY: A Program for Higgs boson decays in the +standard model and its supersymmetric extension,” Comput. Phys. Commun. 108 (1998) 59-74, +arXiv:hep-ph/9704448. +[29] M. +Spira, +“Higgs +Boson +Production +and +Decay +at +Hadron +Colliders,” +Prog. Part. Nucl. Phys. 95 (2017) 98-159, arXiv:hep-ph/1612.07651. +[30] A. Djouadi, “The Anatomy of electro-weak symmetry breaking. I: The Higgs boson in the standard +model,” Phys. Rept. 457 (2008) 1-216, arXiv:hep-ph/0503172. +[31] S. +Dawson, +C. +Englert +and +T. +Plehn, +“Higgs +Physics: +It +ain’t +over +till +it’s +over,” +Phys. Rept. 816 (2019) 1-85, [arXiv:1808.01324 [hep-ph]]. +[32] G. Cowan, K. Cranmer, E. Gross and O. Vitells, “Asymptotic formulae for likelihood-based tests of +new physics,” Eur. Phys. J. C 71 (2011) 1554, arXiv:1007.1727 [physics.data-an]. +10 + diff --git a/ENFRT4oBgHgl3EQfAze2/content/tmp_files/load_file.txt b/ENFRT4oBgHgl3EQfAze2/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..33a6f35526b4dd00d789c7eb57af4f674c9ac69d --- /dev/null +++ b/ENFRT4oBgHgl3EQfAze2/content/tmp_files/load_file.txt @@ -0,0 +1,563 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf,len=562 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='13463v1 [hep-ph] 31 Jan 2023 Higgs production at next generation e+e− colliders Deniz YILMAZ1∗, Mehmet SAHIN2, Dogukan Hazar YAVUZ1 1Physics Engineering Department, Ankara University, Ankara,Turkey 2Department of Computer Engineering, Usak University, Usak,Turkey February 1, 2023 Abstract In this study, Higgs production processes, Higgsstrahlung and vector boson (W and Z) fusion processes, were investigated for four different future lepton colliders (CEPC, ILC, CLIC, and FCC- ee).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' The cross sections for each production process and corresponding backgrounds were calculated considering the ISR and beamstrahlung effects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Various cuts and the b-tagging method were used to reduce the background.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Finally, the number of events for each collider was determined, and significance calculations were performed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' In our calculations, high event numbers were obtained for all four colliders for the Higgsstrahlung, W, and Z fusion process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' This shows that electron-positron colliders will play an important role in future Higgs physics research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' 1 Introduction The discovery of the Higgs boson at the Large Hadron Collider (LHC) [1, 2] confirmed the electroweak symmetry breaking mechanism of the Standard Model (SM) [3, 4, 5, 6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' However, there is still some unknown about the observed Higgs boson: is it the fundamental scalar of the SM, or a more complex object, or part of an extended Higgs sector?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Studying the properties of the Higgs boson at the LHC and in future colliders is crucial to understanding its true nature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Up to now, some properties of the Higgs boson have been measured at the LHC with an accuracy of about 10% [7, 8, 9, 10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Although the LHC Run 2 to be developed will examine it with higher data, because of the complexity of the internal structure of the proton, the LHC will not be sensitive enough to examine the properties of Higgs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Electron-positron colliders, which will be installed to precisely measure the properties of the Higgs particle, have unique capabilities for the measurement of Higgs boson parameters, including the Higgs total cross section, decay width, branching ratios, Higgs width, and determination of Higgs couplings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Therefore,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' today,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' four e+e− colliders are being designed to study the properties of the Higgs boson and other standard model (SM) particles with high precision: the International Linear Collider (ILC) [11],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' with a center of mass energy of 250 – 500 GeV,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Compact Linear Collider (CLIC) [12] with center of mass energies of 380 – 1500 – 3000 GeV,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Circular Electron Positron Collider (CEPC) with center of mass energies between 90 and 250 GeV [13] and the Future e+e− Circular Collider (FCC-ee) [14],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' which will be located in a new tunnel at CERN at 240 GeV center of mass energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' The main beam parameters of these colliders [11, 12, 13, 14] are given in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' The integrated luminosities given here are annual values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Table 1: The main collider parameters Parameters CEPC FCC-ee ILC CLIC Center of mass energy (GeV) 240 240 250 500 380 1500 3000 Number of particles per bunch (1010) 15 18 2 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='52 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='37 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='37 Horizontal beam size at IP (σx) (µm) 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='9 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='516 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='474 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='149 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='04 Vertical beam size at IP (σy) (nm) 60 36 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='66 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='86 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='5 1 Bunch length (mm) 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='4 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='07 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='044 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='044 Luminosity (105pb−1 ) 6 17 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='35 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='7 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='9 In the electron-positron collider, Higgs bosons are produced by the Higgsstrahlung and vector boson (W and Z) fusion processes [15, 16, 17, 18, 19, 20, 21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' In this study, these three processes were examined ∗dyilmaz@eng.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='ankara.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='tr 1 Figure 1: The Feynmann diagrams of the Higgs production processes and calculations were performed using CalcHEP [22, 23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' In the electron-positron collider, it is important to consider the effects of ISR and Beamstrahlung [24, 25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' The parameters listed in Table 1 were used to calculate the ISR and the beamstraghlung effects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' In section 2 cross sections are given for these three processes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Section 3 provides signal and background analyses, the number of events for each collider, and the significance calculations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Finally, conclusion is provided in the section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' 2 Higgs Production at the electron - positron colliders The main production processes of Higgs at the e+e− colliders are the Higgsstrahlung and W/Z fusion mechanisms given below, as shown in Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Higgs − strahlung e+e− → ZH Wfusion e+e− → νeνeH Zfusion e+e− → e+e−H The cross section for the Higgsstrahlung process can be written as σ(e+e− → ZH) = G2 F M 4 Z 96πs (η2 e + a2 e)κ1/2 κ + 12M 2 Z/s (1 − M 2 Z/s)2 (1) where ae = −1, ηe = −1 + 4sin2θW are the Z charges of the electron and κ = (1 − (MH + MZ)2/s)(1 − (MH − MZ)2/s) is the usual two particle phase space function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' The total cross section for the vector boson fusion mechanism is σ(e+e− → V V → llH) = G2 F m4 V 64 √ 2π3 � 1 xH dx � 1 x dyT (x, y) [1 + (y − x)/xV ]2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' (2) T (x, y) = (2x y3 − 3x + 1 y2 + x + 2 y − 1)[ z z + 1 − log(z + 1)] + xz2(1 − y) y3(z + 1) , where V denotes the vector bosons W or Z and xH = m2 H/s, xV = m2 V /s and z = y(x − xH)/xxV (√s is the center-of-mass energy) [26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' 200 250 300 350 400 450 500 √s [GeV] 0 0,05 0,1 0,15 0,2 0,25 σ [pb] Higgsstrahlung W Fusion Z Fusion Figure 2: The cross sections of the Higgs production mechanisms as a function of center-of-mass energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' 2 200 250 300 350 400 450 500 √s [GeV] 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='05 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='1 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='15 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='2 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='25 σ [pb] CEPC ILC FCC-ee CLIC Higgsstrahlung 200 250 300 350 400 450 500 √s [GeV] 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='01 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='02 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='03 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='04 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='05 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='06 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='07 σ [pb] CEPC ILC FCC-ee CLIC W Fusion 200 250 300 350 400 450 500 √s [GeV] 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='001 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='002 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='003 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='004 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='005 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='006 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='007 σ [pb] CEPC ILC FCC-ee CLIC Z Fusion Figure 3: The cross section comparison for Higgsstrahlung,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' W Fusion and Z Fusion processes for four e+e−colliders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' The behavior of the production cross-sections of the Higgs boson calculated by the Higgsstrahlung and the W/Z fusion mechanisms using the CalcHEP simulation program, depending on the center of mass energy, are shown in Figure 2 and Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' The relevant production cross sections as a function of the center of mass energy are shown in Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' As shown in Figure 2, the Higgsstrahlung suppresses the vector boson production processes for moderate values of the energy due to the additional electroweak coupling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' With the increase in energy, the cross sections of the vector boson procecesses increase log- arithmically and become dominant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' At a center of mass energy of about 250 GeV, Higgs bosons are predominantly produced from the ZH process as seen in the same figure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' In the Figure 3, the cross sections are shown as a function of the center of mass energy for each production mechanisms for four electron-positron colliders with the ISR and the beamstrahlung effects of each colliders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' 3 Signal and Background Analyses Because the Higgs boson’s decay rate to bb is greater than the decay rate to other quarks and leptons [27, 28, 29, 30, 31], the bb decay mode of Higgs (H −→ bb) is considered in all production processes in this study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Since the cross sections of the background processes corresponding to the leptonic decays of the Z boson are less than the background cross sections corresponding to the other decays, the leptonic decays of the Z boson in the Higgsstrahlung process are taken into account.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' The signal processes are given below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Signal 1: Higgsstrahlung e+e− → ZH → llbb Zfusion e+e− → e+e−bb Signal 2: Wfusion e+e− → νeνebb 3 Here, l and l are e−, µ− and e+, µ+, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' The corresponding background processes analysed here are as follows: For signal 1: i) e+e− → ZZ → llJJ, ii) e+e− → e+e−Z → e+e−JJ, iii) e+e− → tt → W +JW −J → llJJνlνl, For signal 2: e+e− → JJ, here, J represents the quark and antiquark: J = d, d, u, u, s, s, c, c, b, b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' The transverse momentum (PT ), pseudo rapidity (η) and invariant mass (Minv) distributions of the final state particles were investigated by using CalcHEP program in order to find the cut values to distinguish the signal from the background in the FCC-ee collider with a center of mass energy of 240 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' The background iii process corresponding to Signal 1 is not included in the calculations for 240 GeV, as it starts to contribute at 350 GeV and greater center of mass energies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Because the transverse momentum, pseudo rapidity, and invariant mass distributions of the final state particles in the signal and background processes will exhibit similar behavior for other colliders, the cut values obtained can be used for CEPC, ILC, and CLIC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Transverse momentum distribution plots for the final state particles of signal 1 and the corresponding background processes i and ii are shown in Figure 4, while the graphs of signal 2 are shown in Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' As can be seen from Figure 4 and 5, when a transverse momentum cut of 35 GeV is applied to the e−, e+, µ−, µ+, and two jets (J) in the final state particles of signal 1 and signal 2 and the corresponding background processes, the signal will almost not change, but the background will be significantly reduced.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Pseudorapidity plots for signal 1, signal 2, and the corresponding backgrounds are shown in Figure 6 and 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' As can be seen from the figures, cut regions of −2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='5 < ηJ,J < 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='5, −2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='5 < ηe−,e+ < 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='5, −2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='5 < ηµ−,µ+ < 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='5 will be appropriate for e−, e+, µ−, µ+ and two jets (J) in the final state particles of signal 1 and signal 2 and the corresponding background processes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='10-5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='10-4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='10-3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='10-2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='10-1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='101 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='120 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='140 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='√s=240 GeV ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='(1/σ)dσ/dpT (1/GeV) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='pT (GeV) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='signal 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='background i ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='background ii ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='10-5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='10-4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='10-3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='10-2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='10-1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='101 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='120 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='140 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='√s=240 GeV ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='(1/σ)dσ/dpT (1/GeV) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='pT (GeV) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='signal 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='background i ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='10-5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='10-4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='10-3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='10-2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='10-1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='101 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='120 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='140 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='√s=240 GeV ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='(1/σ)dσ/dpT (1/GeV) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='pT (GeV) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='signal 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='background i ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='background ii ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='Figure 4: Transverse momentum distribution plots for the e−/e+ (upper left ),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' µ−/µ+ (upper right) and J/J (bottom) final state particles of signal 1 and the corresponding bacground processes in FCC-ee collider with 240 GeV center of mass energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' 4 10-5 10-4 10-3 10-2 10-1 100 101 0 20 40 60 80 100 120 140 √s=240 GeV (1/σ)dσ/dpT (1/GeV) pT (GeV) signal 2 background Figure 5: Transverse momentum distribution plots for the b/b and J/J final state particles of signal 2 and the corresponding bacground processes in FCC-ee collider with 240 GeV center of mass energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' An Emiss T cut value of >15 GeV was also used for neutrinos in our calculations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Invariant mass distribution plots for signal 1, signal 2 and their corresponding background processes are shown in Figure 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' As can be seen from the figures, in the calculations, it would be appropriate to exclude the 80 GeV < Minv(e−, e+) <100 GeV and 80 GeV < Minv(µ−, µ+) < 100 GeV regions for the ll final states in signal and background processes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' In addition, only the 115 GeV < Minv(J, J) <135 GeV region was included in the calculations for two final jet states in the signal and background pro- cesses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' These included and excluded invariant mass regions allow the signal to be distinguished from the background.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' In addition to these cut values, the separation cuts of ∆R(l, J) >0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='5 and ∆R(l, J) >0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='5 distinguish the final state leptons and antileptons from the jets, while the ∆R(J, J) >0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='5 separation cut was used to distinguish the final state jets from each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' 10-5 10-4 10-3 10-2 10-1 100 101 6 4 2 0 2 4 6 √s=240 GeV (1/σ)dσ/dη ηe signal 1 background i background ii 10-5 10-4 10-3 10-2 10-1 100 101 6 4 2 0 2 4 6 √s=240 GeV (1/σ)dσ/dη ηµ signal 1 background i 10-5 10-4 10-3 10-2 10-1 100 101 6 4 2 0 2 4 6 √s=240 GeV (1/σ)dσ/dη ηJ signal 1 background i background ii Figure 6: Pseudorapidity distribution plots for the e−/e+ (upper left ),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' µ−/µ+ (upper right) and J/J (bottom) final state particles of signal 1 and the corresponding bacground processes in FCC-ee collider with 240 GeV center of mass energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' 5 10-5 10-4 10-3 10-2 10-1 100 101 6 4 2 0 2 4 6 √s=240 GeV (1/σ)dσ/dη ηJ signal 2 background Figure 7: Pseudorapidity distribution plots for the b/b and J/J final state particles of signal 2 and the corresponding bacground processes in FCC-ee collider with 240 GeV center of mass energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' All the cut values obtained are listed in Table 2, and these cut values were used in the calculations for the four colliders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' In addition to the cut values in Table 2, because the Higgs boson decays to bb in our signal processes, it is possible to further reduce the background cross section value using the b-tagging method [27]: 68% is used for the b-tagging identification rate, and a 1% ratio is used for misidentification rate with light quarks as b quarks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' The following equation is used to calculate the significance of the 10-8 10-6 10-4 10-2 100 0 25 50 75 100 125 150 175 200 225 250 √s=240 GeV dσ/dMinv (pb/GeV) Minv (GeV) signal Z(e-,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='e+) signal h(b,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' b-) background Z(e-,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='e+) background γ(e-,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='e+) background Z(J,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='J) 10-8 10-6 10-4 10-2 100 0 25 50 75 100 125 150 175 200 225 250 √s=240 GeV (1/σ)dσ/dMinv (1/GeV) Minv (GeV) signal h(b,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='b-) background Z(J,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='J)) Figure 8: Invariant mass plots for the signal 1 (left) and signal 2 (right) and the corresponding bacground processes in FCC-ee collider with 240 GeV center of mass energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' obtained data: S = � 2((s + b) ln(1 + s/b) − s) (3) where s and b represent signal and background events, respectively [32].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Cross-sections, event rates, and significance values were calculated for the signal and background processes using the cut values in Table 2, Table 2: Cut values Emiss T (νl, νl) > 15 GeV PT (l, l) > 35 GeV PT (J) > 35 GeV 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='5 < η(l, l) < 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='5 < η(J) < 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='5 80 GeV < Minv(l, l) < 100 GeV region is excluded 115 GeV< Minv(J, J) < 135 GeV region is included ∆R(l, J) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='5 ∆R(l, J) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='5 ∆R(J, J) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='5 6 Table 3: Cross sections, number of events and the significance values for CEPC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Colliders Processes Sg CS (pb) Bg CS (pb) L (pb−1) No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' SgE No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='BgE S CEPC (240 GeV) Signal 1 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='91×10−5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='38×10−4 6×105 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='5 142.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='8 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='7 Signal 1 (with b-tagging) 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='72×10−5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='68×10−5 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='32 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='08 7 Signal 2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='24×10−2 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='22×10−1 7440 313200 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='24 Signal 2 (with b-tagging) 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='45×10−3 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='17×10−2 5070 43020 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='98 b-tagging method, and nominal integrated luminosity given in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' The event rates and significance values of the signals and corresponding backgrounds are obtained for four future lepton colliders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' The numerical results are given in Table 3-6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' The abbreviations used in the tables are: Sg CS (signal cross- section), Bg CS ( background cross-section),L (integrated luminosity), No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' SgE (number of signal events) and No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' BgE (number of background events).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' 4 Conclusion After the discovery of the Higgs particle, precise measurements of the Higgs properties became an im- portant step forward for future research in particle physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Electron positron colliders to be installed for this purpose have unique capabilities for the measurement of Higgs boson parameters, including the Higgs total cross section of production processes, decay width, branching rates and determination of Higgs couplings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' In this study, the Higgsstrahlung and W and Z fusion processes were examined, and the data obtained are presented in graphs and tables for four different electron-positron colliders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' The pro- duction cross-sections for each process and additionally cross-sections for various final state backgrounds were calculated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' In the calculations, we attempted to reduce the background by transverse momentum, pseudo rapidity, invariant mass, cone-angle constraints, and the b-tagging method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Significance calcula- tions were performed by determining the number of events related to the production processes and the background for each collider.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' The values are listed in Table 3-6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' When the results are examined in Table 5 , it is seen that the desired significance value for Signal 1 cannot be reached at the luminosity value given for ILC – 250 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' For Signal 1 processes to be observed in the ILC-250 GeV, the collider needs to accumulate data for a longer period of time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Again, at the end of one year, it was seen that the statistical significance value of 5σ would be reached after the b-tagging method for the Signal 1 processes in the CEPC collider.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Therefore, the CEPC collider will enable the properties of the Higgs boson to be investigated precisely through Signal 1 processes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' It is seen that at the end of 1 year in the FCC-ee collider, a significance value of 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='95 will be reached without b-tagging and a high significance value of 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='9 can be reached by using b-tagging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' This shows that FCC-ee will be more advantageous than ILC-250 GeV and CEPC 250 GeV colliders for investigating Higgs boson properties through the Signal 1 group around these center of mass energies (240-250 GeV).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' In the ILC-500 GeV and CLIC-380-1500-3000 GeV colliders, results well above the desired significance value can be obtained for signal 1 processes, even without the b-tagging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Therefore, the properties of the Higgs boson through Signal 1 processes can be studied with precision in colliders other than the ILC-250 GeV collider.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Since the results obtained for the Signal 2 process are greater than 5 significance values, the properties of the Table 4: Cross sections, number of events and the significance values for FCC-ee.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Colliders Processes Sg CS (pb) Bg CS (pb) L (pb−1) No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' SgE No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='BgE S FCC-ee (240 GeV) Signal 1 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='98×10−5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='36×10−4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='7×106 169.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='7 401.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='2 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='95 Signal 1 (with b-tagging) 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='79×10−5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='67×10−5 115.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='4 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='4 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='9 Signal 2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='25×10−2 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='37×10−1 21250 912900 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='15 Signal 2 (with b-tagging) 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='53×10−3 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='38×10−2 14501 125460 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='18 7 Table 5: Cross sections, number of events and the significance values for ILC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Colliders Processes Sg CS (pb) Bg CS (pb) L (pb−1) No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' SgE No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='BgE S ILC (250 GeV) Signal 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='33×10−4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='9×10−4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='35×105 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='95 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='15 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='68 Signal 1 (with b-tagging) 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='04×10−5 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='34×10−5 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='2 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='86 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='03 Signal 2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='3×10−2 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='33×10−1 1755 71955 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='51 Signal 2 (with b-tagging) 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='82×10−3 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='32×10−2 1190 9882 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='74 ILC (500 GeV) Signal 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='41×10−3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='7×10−3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='8×105 253.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='8 306 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='98 Signal 1 (with b-tagging) 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='57×10−4 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='32×10−4 172.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='3 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='8 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='88 Signal 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='86×10−2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='13×10−1 5148 20340 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='71 Signal 2 (with b-tagging) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='94×10−2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='56×10−2 3492 2808 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='54 Table 6: Cross sections, number of events and the significance values for CLIC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Colliders Processes Sg CS (pb) Bg CS (pb) L (pb−1) No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' SgE No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='BgE S CLIC (380 GeV) Signal 1 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='44×10−4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='08×10−3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='5×105 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='6 162 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='98 Signal 1 (with b-tagging) 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='38×10−4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='53×10−4 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='7 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='95 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='76 Signal 2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='7×10−2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='11×10−1 2550 31650 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='14 Signal 2 (with b-tagging) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='16×10−2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='9×10−2 1740 4350 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='86 CLIC (1500 GeV) Signal 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='95×10−3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='47×10−3 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='7×105 721.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='5 543.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='9 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='34 Signal 1 (with b-tagging) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='32×10−3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='34×10−4 488.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='4 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='58 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='64 Signal 2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='03×10−1 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='22×10−3 38110 3411 362 Signal 2 (with b-tagging) 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='99×10−2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='27×10−3 25863 470 400 CLIC (3000 GeV) Signal 1 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='01×10−4 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='47×10−4 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='9×105 355 499.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='7 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='38 Signal 1 (with b-tagging) 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='09×10−4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='32×10−4 241 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='8 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='44 Signal 2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='61×10−1 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='72×10−3 94990 1605 776 Signal 2 (with b-tagging) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='09×10−1 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='74×10−4 64310 221 777 Higgs boson can be studied precisely for all colliders through this channel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' As a result, in future lepton colliders, the Higgs boson can be observed with high event rates via Higgsstrahlung, W and Z fusion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Thus, electron–positron colliders can precisely measure the properties of the Higgs boson.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Acknowledgment We would like to thank Professor Dr Inanc Sahin for his suggestions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' 8 References [1] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Aad et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' [ATLAS], “Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' B 716 (2012) 1-29, arXiv:hep-ex/1207.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='7214.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' [2] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Chatrchyan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' [CMS], “Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' B 716(2012) 30-61, arXiv:hep-ex/1207.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='7235 [3] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Higgs, “Broken Symmetries and the Masses of Gauge Bosons,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' 13 (1964) 508-509 [4] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Higgs, “Broken symmetries, massless particles and gauge fields,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' 12(1964) 132-133 [5] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Englert and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Brout, “Broken Symmetry and the Mass of Gauge Vector Mesons,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' 13 (1964) 321-323 [6] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Guralnik, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Hagen and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Kibble, “Global Conservation Laws and Massless Parti- cles,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' 13 (1964) 585-587 [7] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Dittmaier et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' [LHC Higgs Cross Section Working Group], “Handbook of LHC Higgs Cross Sections: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Inclusive Observables,” ,arXiv:hep-ph/1101.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='0593.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' [8] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Dittmaier, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Mariotti, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Passarino, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Tanaka, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Alekhin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Alwall, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Bagnaschi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Banfi, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Bl¨umlein and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Bolognesi, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' “Handbook of LHC Higgs Cross Sections: 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Differential Distri- butions,” ,arXiv:hep-ph/1201.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='3084.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' [9] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Heinemeyer et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' [LHC Higgs Cross Section Working Group], “Handbook of LHC Higgs Cross Sections: 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Higgs Properties,” ,arXiv:hep-ph/1307.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='1347.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' [10] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' de Florian et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' [LHC Higgs Cross Section Working Group], “Handbook of LHC Higgs Cross Sections: 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Deciphering the Nature of the Higgs Sector,” ,arXiv:hep-ph/1610.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='07922.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' [11] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Evans et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' [Linear Collide], “The International Linear Collider Machine Staging Report 2017,” arXiv:physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='acc-ph/1711.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='00568 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' [12] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Boland et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' [CLIC and CLICdp], “Updated baseline for a staged Compact Linear Collider,” CERN 004 (2016) arXiv:physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='acc-ph/1608.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='07537 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' [13] [CEPC Study Group], “CEPC Conceptual Design Report: Volume 1 Accelerator,” arXiv:physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='acc-ph/1809.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='00285 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' [14] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Abada et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' [FCC], “FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1,” Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' C 79(2019) no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='6, 474 [15] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Jones and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Petcov, “Heavy Higgs Bosons at LEP,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' B 84 (1979) 440-444, [16] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Dicus and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Willenbrock, “Higgs Bosons From Vector Boson Fusion in e+e−, ep and pp Collisions,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' D 32 (1985) 1642, [17] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Altarelli, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Mele and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Pitolli, “Heavy Higgs Production at Future Colliders,” Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' B 287 (1987) 205-224, [18] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Kilian, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Kramer and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Zerwas, “Higgsstrahlung and W W fusion in e+ e- collisions,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' B 373 (1996) 135-140, arXiv:hep-ph/9512355.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' [19] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Hikasa, “Heavy Higgs Production in e+e− and e−e− Collisions,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' B 164 (1985) 385 [20] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Mo, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Li, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Ruan and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Lou, “Physics cross sections and event generation of e+e− annihilations at the CEPC,” Chin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' C 40 (2016), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='3, 033001, arXiv:hep-ex/1505.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='01008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' [21] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Zhang, “WW fusion and Higgsstrahlung interplay in Higgs precision tests with the e-e+→νν¯h process,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' D 99 (2019), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='3, 033011, arXiv:hep-ph/9704448.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' [22] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Belyaev, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Christensen and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Pukhov, “CalcHEP 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='4 for collider physics within and beyond the Standard Model,” Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' 184 (2013) 1729-1769, arXiv:hep-ph/1207.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='6082.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' [23] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Pukhov, “CalcHEP 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='3: MSSM, structure functions, event generation, batchs, and generation of matrix elements for other packages,” arXiv:hep-ph/0412191.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' 9 [24] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Skrzypek and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Jadach, “Exact and approximate solutions for the electron nonsinglet structure function in QED,” Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' C 49 (1991) 557-584, [25] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Pukhov, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Boos, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Dubinin, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Edneral, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Ilyin, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Kovalenko, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Kryukov, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Savrin, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Shichanin and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Semenov, “CompHEP: A Package for evaluation of Feynman diagrams and integration over multiparticle phase space,” arXiv:hep-ph/9908288.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' [26] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Kilian, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Kramer and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Zerwas, “Higgsstrahlung and W W fusion in e+ e- collisions,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' B 373 (1996) 135-140, arXiv:hep-ph/9512355.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' [27] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Sirunyan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' [CMS], “Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV,” JINST 13 (2018) no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='05, P05011, arXiv:physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='ins-det/1712.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='07158.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' [28] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Djouadi, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Kalinowski and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Spira, “HDECAY: A Program for Higgs boson decays in the standard model and its supersymmetric extension,” Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' 108 (1998) 59-74, arXiv:hep-ph/9704448.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' [29] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Spira, “Higgs Boson Production and Decay at Hadron Colliders,” Prog.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Part.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' 95 (2017) 98-159, arXiv:hep-ph/1612.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='07651.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' [30] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Djouadi, “The Anatomy of electro-weak symmetry breaking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' I: The Higgs boson in the standard model,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Rept.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' 457 (2008) 1-216, arXiv:hep-ph/0503172.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' [31] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Dawson, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Englert and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Plehn, “Higgs Physics: It ain’t over till it’s over,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Rept.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' 816 (2019) 1-85, [arXiv:1808.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='01324 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' [32] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Cowan, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Cranmer, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Gross and O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Vitells, “Asymptotic formulae for likelihood-based tests of new physics,” Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' C 71 (2011) 1554, arXiv:1007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='1727 [physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content='data-an].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} +page_content=' 10' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENFRT4oBgHgl3EQfAze2/content/2301.13463v1.pdf'} diff --git a/JNFRT4oBgHgl3EQfCTcy/content/tmp_files/2301.13468v1.pdf.txt b/JNFRT4oBgHgl3EQfCTcy/content/tmp_files/2301.13468v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..5f7e66b3c58c03a7a2015545d167ece7f0e4fb28 --- /dev/null +++ b/JNFRT4oBgHgl3EQfCTcy/content/tmp_files/2301.13468v1.pdf.txt @@ -0,0 +1,593 @@ +Complete identification of spin-wave eigenmodes excited by parametric pumping in YIG microdisks +T. Srivastava*,1, ∗ H. Merbouche*,2, † I. Ngouagnia Yemeli,1 N. Beaulieu,3 J. Ben Youssef,3 M. +Mu˜noz,4 P. Che,5 P. Bortolotti,5 V. Cros,5 O. Klein,6 S. Sangiao,7 J. M. De Teresa,7 S. O. +Demokritov,2 V. E. Demidov,2 A. Anane,5 C. Serpico,8 M. d’Aquino,8 and G. de Loubens1, ‡ +1SPEC, CEA, CNRS, Universit´e Paris-Saclay, Gif-sur-Yvette, France +2Institute for Applied Physics, University of Muenster, Germany +3LabSTICC, CNRS, Universit´e de Bretagne Occidentale, Brest, France +4Instituto de Tecnolog´ıas F´ısicas y de la Informaci´on (CSIC), Madrid, Spain +5Unit´e Mixte de Physique, CNRS, Thales, Universit´e Paris-Saclay, Palaiseau, France +6Universit´e Grenoble Alpes, CEA, CNRS, Grenoble INP, Spintec, Grenoble, France +7Instituto de Nanociencia y Materiales de Arag´on (INMA) and Laboratorio de +Microscop´ıas Avanzadas (LMA), Universidad de Zaragoza, Zaragoza, Spain +8Department of Electrical Engineering and ICT, University of Naples Federico II, Italy +We present the parametric excitation of spin-wave modes in YIG microdisks via parallel pumping. Their +spectroscopy is performed using magnetic resonance force microscopy (MRFM), while their spatial profiles +are determined by micro-focus Brillouin light scattering (BLS). We observe that almost all the fundamental +eigenmodes of an in-plane magnetized YIG microdisk, calculated using a micromagnetic eigenmode solver, +can be excited using the parallel pumping scheme, as opposed to the transverse one. The comparison between +the MRFM and BLS data on one side, and the simulations on the other side, provides the complete spectro- +scopic labeling of over 40 parametrically excited modes. Our findings could be promising for spin-wave-based +computation schemes, in which the amplitudes of a large number of spin-wave modes have to be controlled. +I. +INTRODUCTION +Novel proposals for spin-wave-based computing schemes +necessitate the generation and control of multiple spin-wave +(SW) modes1–5. The most standard way to excite SW modes +in a magnetic microstructure is by direct inductive coupling. +There, the quasi-uniform microwave field, produced on the +magnetic volume by an rf antenna, couples to the transverse +dynamical component of the magnetization associated with +the SW mode, with a maximal efficiency when the applied +rf frequency coincides with the eigenfrequency of the mode. +However, this method is not adapted to excite modes with anti- +symmetric spatial profiles, as their overlap integral with the +excitation field is zero6, nor short-wavelength modes, as their +excitation efficiency quickly decreases with their wavevector. +Yet, these two categories of modes make up a significant part +of the SW k-space. In order to excite a large number of modes +irrespective of their spatial profiles, parametric parallel pump- +ing, which does not suffer from these limitations, becomes the +ideal choice7. In this case, the microwave magnetic field cre- +ated by the rf antenna is aligned parallel to the static field. As +a result, it does not couple to the SW modes directly. Instead, +it interacts with the dynamic component of magnetization os- +cillating at 2ω in the static field direction, which arises due to +the elliptical trajectory of magnetization precession at ω. An +rf field at 2ω can therefore excite SW modes at ω. A quantum +mechanical picture of this process is a photon generating two +magnons of opposite momenta at half its frequency8. Since +this is a nonlinear process, SWs are excited only if the am- +plitude of the excitation field exceeds a parametric threshold, +which depends on the mode relaxation, and on the mode ellip- +ticity. The threshold power is lower for lower relaxation rates +and higher ellipticities. +Parallel pumping has been employed to generate SW modes +in extended films9–13 and micro- and nano-waveguides14,15 +of yttrium iron garnet (YIG), as well as in magnetic +nanocontacts16, magnetic tunnel junctions17, and micro- and +nano-dots of Permalloy18–20. It has also been used for SW +amplification21. All these studies have been limited to a hand- +ful number of modes. +The excitation and identification of +many modes in an adequate system would pave the way to- +wards simultaneous control and manipulation of a large num- +ber of SW modes for different applications in magnonics. +In this study, we present the excitation and identification of +multiple SW modes in YIG microdisks via parametric pump- +ing. The scheme of the experiments is shown in Fig. 1. The +SW modes are excited in YIG disks of diameters 1 µm, 3 µm +and 5 µm through an integrated rf antenna and detected us- +ing a magnetic resonance force microscope (MRFM). Their +spatial profiles can also be recorded using micro-focus Bril- +louin light scattering spectroscopy (µ-BLS). We observe that +almost all the SW eigenmodes are accessible by parametric +pumping. As expected, these eigenmodes become fewer in +number as the size of the disk decreases. For the 3 µm disk, +we label over 40 eigenmodes by comparing its MRFM para- +metric spectroscopy to micromagnetic simulations, and con- +firm the identification of as many as 10 of them through their +profiles thanks to µ-BLS. Our results could be instrumental in +designing basic units for unconventional computing schemes +like neuromorphic computing using hyperconnected popula- +tions of a large number of eigen-excitations in a single mi- +crostructure. +II. +RESULTS +A. +Sample +We use 50 nm thick YIG grown on 0.5 mm thick GGG +substrate by liquid phase epitaxy22. +The characteristics of +arXiv:2301.13468v1 [physics.app-ph] 31 Jan 2023 + +2 +FIG. 1. Schematics of the experimental setup. Parallel pump- +ing of a YIG microdisk using an rf antenna deposited on top. The +spectroscopy of the parametrically excited modes is achieved using +a magnetic resonance force microscope (MRFM) positioned above +the sample. Their spatial profiles are measured by micro-focus Bril- +louin light scattering (µ-BLS) using a separate experimental setup, +the laser beam being focused to the bottom of the sample, through +the transparent GGG substrate. +the extended film are measured by standard magnetometry +and broadband FMR techniques. +These yield a saturation +magnetization Ms = 140.7 kA/m, a gyromagnetic ratio γ = +28.28 GHz/T, a Gilbert damping parameter α = 7.5 × 10−5, +and a weak inhomogeneous broadening of the FMR linewidth, +found to be 0.1 mT. These parameters are typical of the YIG +material; the exchange constant, which has not been specifi- +cally determined on this film, is assumed to be A = 3.7 pJ/m, a +standard value from literature23. The YIG layer was patterned +into disks of diameters 1 µm, 3 µm and 5 µm using e-beam +lithography. A 220 nm thick Ti/Au antenna, of width equal to +8 µm, was then deposited on top of the disks. Injecting an rf +current in the antenna generates an rf in-plane magnetic field +that is orthogonal to the long axis of the antenna. +B. +Parallel pumping spectroscopy +The SW mode spectroscopy is done using MRFM. It em- +ploys a very soft cantilever, at the end of which a submicronic +magnetic spherical probe made of cobalt is attached24, to me- +chanically detect the magnetization dynamics in the sample +placed underneath25. When SWs are excited in the sample +by the microwave field, the (static) longitudinal component of +magnetization is reduced and so is the dipolar force on the +MRFM probe, resulting in a displacement of the cantilever +beam, which is detected optically. The rf excitation applied +to the sample via the antenna is modulated at the mechanical +resonance frequency of the cantilever to improve the quality +factor and the signal-to-noise ratio. +In these measurements, the dc magnetic field is applied in- +plane at an angle of 45° with respect to the direction of the rf +magnetic field, as displayed in Fig. 1. Therefore the rf field ex- +citation has both a transverse and a parallel component relative +to the magnetization direction. The parallel pumped SW spec- +trum is studied for different-sized disks as a function of the +applied microwave power. Figure 2 shows the results of the +MRFM parametric spectroscopy performed at a constant mi- +crowave frequency of 4 GHz for the three disks (color-coded +intensity maps), together with the corresponding transverse +excitation spectra measured at fixed frequency of 2 GHz and +power of −5 dBm (continuous white curves). Only a few SW +modes are detected in the latter regime. In contrast, we ob- +serve that a large number of modes can be excited by parallel +pumping at 4 GHz for all the disks, in the range of applied dc +field corresponding to the direct excitation of modes at 2 GHz, +because parametrically excited modes are generated at half the +pumping frequency. As expected, this occurs only above a +minimum power level, that ranges from about −4 dBm for the +5 µm disk to −2 dBm for the 1 µm disk. The fact that the para- +metric threshold increases and that the density of the excited +modes decreases as the lateral size decreases can be explained +by geometrical confinement effects, as reported earlier20. +In the following, we will mainly focus on the 3 µm disk +where the SW modes are quite abundant but at the same time +discernible (not too closely spaced). We perform similar mea- +surements on this disk, this time fixing the value of the dc field +to 27 mT, and scanning the parallel pumping frequency as a +function of the microwave power. Fig. 3b shows the intensity +map of the parametrically excited modes in these conditions, +as a function of half the pumping frequency fp/2 and the rf +power P, varied along the horizontal and vertical axes, respec- +tively. We note that the threshold power increases with the +frequency in a non-monotonic way, which can be explained +as follows. The threshold excitation field of each mode can +indeed be computed as the ratio between the relaxation rate +ωr(k) to a coupling coefficient V(k), that is related to the mode +ellipticity7: the more elliptical a mode is, the larger its V(k) +and the lower will its threshold be. Both the terms depend +non-monotonously on the wavevector k and on the mode fre- +quency. However, on a wide range, when k increases, so does +the mode frequency and its relaxation rate, while its ellipticity +and its coupling V(k) tends to decrease7,21. This leads to the +clear but not monotonous increase of the experimental thresh- +old power with frequency seen in Fig. 3b. +C. +Simulations +In order to identify these parametrically excited modes, mi- +cromagnetic simulations using the eigenmode solver imple- +mented in the micromagnetic code MaGICo26 have been per- +formed to calculate the SW spectrum. The magnetic ground +state is first computed for the specific geometry and applied +magnetic field. Once the magnetic ground state is known, +the equation describing magnetization dynamics, the Landau- +Lifshitz-Gilbert equation, is linearized around the ground state +and small-amplitude spatial profiles of the modes are com- + +G +rf antenna +GGG3 +FIG. 2. MRFM parametric spectroscopy. Intensity maps of the parametrically excited modes in the field-power coordinates excited by the +microwave field of frequency 4 GHz, measured by MRFM on the 5 µm (a), 3 µm (b) and 1 µm (c) diameter YIG disks. In each panel, the +continuous white curve corresponds to the direct excitation spectrum at the frequency of 2 GHz. The rf pumping field hrf is at 45° from the dc +field H. +puted. This problem can be formulated as a generalized eigen- +value problem as described in ref.27. +The solution of the +eigenvalue problem allows to the determination of the SW +spectrum of the magnetic sample under investigation. Here, +the geometry of the body, a 50 nm thick disk of 3 µm in di- +ameter, was discretized using 300 × 300 × 5 cubic cells (mesh +size of 10 × 10 × 10 nm3), and the values of the magnetic pa- +rameters used in the simulation were those determined exper- +imentally. As in the experimental case, the applied field lies +in the plane of the disk and is set to 27 mT. The implemen- +tation of suitable matrix-free large-scale methods described +in ref.28 allowed the calculation of hundreds of eigenmodes +for such an extended structure (353440 computational cells, +eigenvalue problem size 706880 × 706880) in a few hours. +Figure 3a displays the computed spatial profiles of the first +100 eigenmodes. The 10 lowest frequency modes (first row) +correspond to edge modes, where the precession of the mag- +netization is strongly confined at the boundaries of the disk, +in the (horizontal) direction of the applied dc field due to the +demagnetizing field29,30. The following modes correspond to +standing SW modes, which can be labelled by the number of +precession lobes in the horizontal (nx) and vertical (ny) direc- +tions. For instance, mode 20 (second row, last column) can be +labelled by nx = 2 and ny = 1, i.e., it is the (2,1) mode. Mode +40 (fourth row, last column) is the (11,3) mode. The most uni- +form mode, usually referred as the FMR mode, is mode 29, or +mode (1,1). +Figure 3b presents the comparison between the experimen- +tal spectroscopy and the computed eigenfrequencies of modes +11 to 70, shown as red ticks on top of the intensity map of +the parametrically excited modes. We observe a good agree- +ment between the computed mode frequencies and the exper- +imental mode frequencies (at half-pumping frequencies fp/2) +observed at the bottom of the parametric instability regions +(elongated yellow-green triangles extending downwards on +the intensity map). From this comparison, it is possible to +state that almost all, if not all SW eigenmodes, can be para- +metrically excited, irrespective of their spatial profile. Due to +the high density of modes in the investigated frequency range, +we will only focus on a few modes, to emphasize the good +agreement noted above. The lowest-lying computed modes in +Fig. 3b are the pair of modes 11 and 12 with respective fre- +quencies 1.938 and 1.9383 GHz, which correspond rather well +to the measured parametric instability region with a threshold +power of 2 dBm at around 1.95 GHz. The small disagree- +ment of 10 MHz between the computed and measured fre- +quencies is not unexpected, since these modes belong to the +category of edge modes, whose characteristics are very sen- +sitive to imperfections at the periphery of the disk30,31, which +are not taken into account in the simulations. If we move to +the next parametrically excited modes, which have the low- +est power threshold and have frequencies around 1.975 GHz, +the comparison with computed frequencies shows that they +correspond to two pairs of modes: modes 13 and 14 with re- +spective frequencies 1.973 and 1.9731 GHz, and modes 15 +and 16, at 1.9796 and 1.9809 GHz. The next excited modes +in the experimental spectroscopy map are at around 2 GHz, +and they correspond to mode 17 at 1.998 GHz and mode 18 +at 2.001 GHz. As a matter of fact, a detailed inspection of the +data shows that indeed, the parametric instability region has +two nearby minima with frequencies equally spaced around +2 GHz. This good agreement between experimental and com- +puted mode frequencies continues over the full range of inves- +tigated frequencies. We note that among the 60 modes whose +frequencies have been plotted in ig. 3b, only 44 modes have +discernible frequencies and spatial profiles, a few of them be- +ing pairs of modes with very similar characteristics (e.g., pairs +of modes 11 and 12, 13 and 14, 15 and 16, 21 and 22, etc.). +D. +Spatial profiles with µ-BLS +To push further the comparison between computed SW +modes and experiments, it is possible to take advantage of +µ-BLS, to map the spatial profiles of dynamic magnetization +in micro-structures32. A probing laser light (λ = 473 nm and +Plaser = 0.1 mW) is focused into a diffraction-limited spot on +the surface of a similar 3 µm YIG disk (Fig. 1) and the mod- + +a +C +10.0 +10.0 +10.0 +7.5 +7.5 +7.5 +5.0 - +5.0 +5.0 +(dBm) +2.5 +(dBm) +2.5 +(dBm) +2.5 +0.0 - +0.0 +0.0 +P +P +P +-2.5 - +2.5 +2.5 +-5.0 +5.0 +5.0 +7.5 +5 +wn +7.5 +μm +7.5 +1 μm +10.0- +-10.0- +10.0 +10 +15 +20 +25 +30 +35 +10 +15 +20 +25 +30 +35 +10 +15 +20 +25 +30 +35 +μoH (mT) +μoH (mT) +μoH (mT)4 +FIG. 3. Computed spin-wave eigenmodes. (a) Computed spatial +profiles of the 100 lowest frequency modes of the 3 µm diameter YIG +disk, in-plane magnetized by a field of 27 mT. The color code refers +to the oscillation amplitude of the local magnetization, from blue +(minimum) to red (maximum). (b) Comparison between parametric +spectroscopy MRFM data (color-coded intensity map) and computed +eigenfrequencies (red vertical ticks) of modes 11 to 70 (surrounded +by the red rectangle in panel (a)). +ulation of this probing light by the magnetization oscillations +is analysed using a high-contrast optical spectrometer. The +obtained signal – the BLS intensity – is proportional to the +intensity of the magnetic oscillations at a given frequency. In +this BLS measurement, the in-plane bias field is set at 30 mT. +To compare the experimental mode profiles with the computed +mode profiles, the micromagnetic simulations have therefore +been repeated at 30 mT as well. To avoid nonlinear distor- +tions of the mode profiles, known to occur when the mode +amplitude increases too much, the BLS mapping of the mode +profiles is performed at microwave power only slightly above +threshold. By sweeping the laser spot position across the disk, +a dozen of different modes are imaged, Fig. 4 presents the +comparison between the experimental and computed profiles +of 10 modes. Overall, the measured profiles are in good agree- +ment with the computed ones, taking into account the exper- +imental spatial resolution (≃ 250 nm) and the long duration +of these measurements, which are subjected to experimental +drifts. Similarly to the analysis performed in Fig. 3b, we ob- +serve that the mode frequencies obtained by BLS correspond +very well to the computed mode frequencies, with a mismatch +that remains under 13 MHz for all modes. In particular, we +observe well defined modes up to nx = 7 and ny = 3, which +validates the agreement between experiment and simulations +for a large number of modes. +III. +CONCLUSION +Thanks to the comparison between parametric spectroscopy +and mode imaging respectively performed by MRFM and +BLS on one side, and micromagnetic simulations on the other +side, we have successfully excited, detected and identified a +large number (> 40) of SW eigenmodes in a 3 µm YIG disk, +where the mode density is large due to the large lateral dimen- +sions. The computed spatial profiles provide a direct way to +label those modes, using the numbers of precession nodes in +the directions parallel (nx) and transverse (ny) to the applied +magnetic field. This study opens up the possibility to per- +form experiments where many parametric modes are simulta- +neously excited while using the normal mode approach33,34 to +understand and harness the complex dynamics in the modal +space of confined magnetic structures. +ACKNOWLEDGEMENTS +This work was supported by the Horizon2020 Research +Framework Programme of the European Commission under +grant no. 899646 (k-NET). It is also supported by a pub- +lic grant overseen by the Agence Nationale de la Recherche +as part of the “Investissements d’Avenir” program (Labex +NanoSaclay, reference: ANR-10-LABX-0035). +I.N.Y. ac- +knowledges support from the ANR grant no. ANR-18-CE24- +0021 (Maestro). + +0983GH2 +2.1275GHzf. +n=2.1381GH +Q0000 +2.1493 GH +.1892GHzf +.1992GHz +2583GHz +4GHz +2GHzfa.2.3457GH2 +.3505GHz +3519 GHz fgs =2.3557 GHz fa4 +9 GHz +2.3774GHz fag-2.392GHzfgo-2.3949GHz5 +FIG. 4. BLS imaging of mode profiles. The central graph displays the BLS detected frequencies at 30 mT for 10 modes of the 3 µm disk +(blue lines) and the corresponding computed frequencies of eigenmodes (red line). These frequencies are matched (dotted dark lines) by +associating the mode profiles measured in the experiment (above the graph) to the ones computed in the simulation (below). The experimental +and simulated mode frequencies (in GHz) and their difference (in MHz) are given in the table. +∗ titiksha.srivastava@cea.fr +† hugo.merbouche@uni-muenster.de +‡ gregoire.deloubens@cea.fr +1 T. Br¨acher and P. Pirro, “An analog magnon adder for all- +magnonic neurons,” J. Appl. Phys. 124, 152119 (2018). +2 R. Nakane, G. Tanaka, and A. Hirose, “Reservoir computing with +spin waves excited in a garnet film,” IEEE Access 6, 4462–4469 +(2018). +3 Tyler W. Hughes, Ian A. D. Williamson, Momchil Minkov, and +Shanhui Fan, “Wave physics as an analog recurrent neural net- +work,” Science Advances 5 (2019), 10.1126/sciadv.aay6946. +4 ´Ad´am Papp, Wolfgang Porod, +and Gyorgy Csaba, “Nanoscale +neural network using non-linear spin-wave interference,” Nature +Commun. 12, 1–8 (2021). +5 Lukas K¨orber, Christopher Heins, Tobias Hula, Joo-Von Kim, +Helmut Schultheiss, J¨urgen Fassbender, and Katrin Schultheiss, +“Pattern recognition with a magnon-scattering reservoir,” arXiv +preprint arXiv:2211.02328 (2022), 10.48550/arXiv.2211.02328. +6 V. V. Naletov, G. de Loubens, G. Albuquerque, S. Borlenghi, +V. Cros, G. Faini, J. Grollier, H. Hurdequint, N. Locatelli, +B. Pigeau, A. N. Slavin, V. S. Tiberkevich, C. Ulysse, T. Valet, +and O. Klein, “Identification and selection rules of the spin-wave +eigenmodes in a normally magnetized nanopillar,” Phys. Rev. B +84, 224423 (2011). +7 A. G. Gurevich and G. A. Melkov, Magnetization Oscillations and +Waves (CRC Press, 1996). +8 R. M. White and M. Sparks, “Ferromagnetic Relaxation. III. The- +ory of instabilities,” Phys. Rev. 130, 632 (1963). +9 H. Kurebayashi, O. Dzyapko, V. E. Demidov, D. Fang, A. J. +Ferguson, and S. O. Demokritov, “Spin pumping by parametri- +cally excited short-wavelength spin waves,” Appl. Phys. Lett. 99, +162502 (2011). +10 C. W. Sandweg, Y. Kajiwara, A. V. Chumak, A. A. Serga, V. I. +Vasyuchka, M. B. Jungfleisch, E. Saitoh, +and B. Hillebrands, +“Spin pumping by parametrically excited exchange magnons,” +Phys. Rev. Lett. 106, 216601 (2011). +11 A. A. Serga, C. W. Sandweg, V. I. Vasyuchka, M. B. Jungfleisch, +B. Hillebrands, A. Kreisel, P. Kopietz, +and M. P. Kostylev, +“Brillouin light scattering spectroscopy of parametrically excited +dipole-exchange magnons,” Phys. Rev. B 86, 134403 (2012). +12 C. Hahn, G. de Loubens, M. Viret, O. Klein, V. V. Naletov, and +J. Ben Youssef, “Detection of microwave spin pumping using the +inverse spin hall effect,” Phys. Rev. Lett. 111, 217204 (2013). +13 V. Lauer, D. A. Bozhko, T. Br ˜A¤cher, P. Pirro, V. I. Vasyuchka, +A. A. Serga, M. B. Jungfleisch, M. Agrawal, Yu. V. Kobljanskyj, +G. A. Melkov, C. Dubs, B. Hillebrands, and A. V. Chumak, “Spin- +transfer torque based damping control of parametrically excited +spin waves in a magnetic insulator,” Appl. Phys. Lett. 108, 012402 +(2016). +14 Morteza Mohseni, Martin Kewenig, Roman Verba, Qi Wang, +Michael Schneider, Bj¨orn Heinz, Felix Kohl, Carsten Dubs, Bert +L¨agel, Alexander A. Serga, Burkard Hillebrands, Andrii V. Chu- +mak, and Philipp Pirro, “Parametric generation of propagating +spin waves in ultrathin yttrium iron garnet waveguides,” Phys. Sta- +tus Solidi RRL 14, 2000011 (2020). +15 Bj¨orn Heinz, Morteza Mohseni, Akira Lentfert, Roman Verba, +Michael Schneider, Bert L¨agel, Khrystyna Levchenko, Thomas +Br¨acher, Carsten Dubs, Andrii V. Chumak, +and Philipp Pirro, +“Parametric generation of spin waves in nanoscaled magnonic +conduits,” Phys. Rev. B 105, 144424 (2022). +16 Sergei Urazhdin, Vasil Tiberkevich, and Andrei Slavin, “Paramet- +ric excitation of a magnetic nanocontact by a microwave field,” +Phys. Rev. Lett. 105, 237204 (2010). +17 Yu-Jin Chen, Han Kyu Lee, Roman Verba, Jordan A. Katine, Igor +Barsukov, Vasil Tiberkevich, John Q. Xiao, Andrei N. Slavin, and + +Profile +00 +(experiment) +2.10 +2.15 +Frequency,GHz +2.20 +Profile +00.00 +(simulation) +fexp (GHz) +2.098 +2.124 +2.141 +2.147 +2.162 +2.173 +2.192 +2.226 +2.236 +2.253 +fsimu (GHz) +2.093 +2.117 +2.128 +2.145 +2.149 +2.173 +2.184 +2.217 +2.238 +2.252 +fexp - fsimu +5 +7 +13 +2 +13 +0 +8 +9 +-2 +1 +(MHz)6 +Ilya N. Krivorotov, “Parametric resonance of magnetization ex- +cited by electric field,” Nano Letters 17, 572–577 (2017). +18 Henning Ulrichs, Vladislav E. Demidov, Sergej O. Demokritov, +and Sergei Urazhdin, “Parametric excitation of eigenmodes in mi- +croscopic magnetic dots,” Phys. Rev. B 84, 094401 (2011). +19 E. R. J. Edwards, H. Ulrichs, V. E. Demidov, S. O. Demokritov, +and S. Urazhdin, “Parametric excitation of magnetization oscilla- +tions controlled by pure spin current,” Phys. Rev. B 86, 134420 +(2012). +20 Feng Guo, L. M. Belova, +and R. D. McMichael, “Parametric +pumping of precession modes in ferromagnetic nanodisks,” Phys. +Rev. B 89, 104422 (2014). +21 T. Br¨acher, P. Pirro, and B. Hillebrands, “Parallel pumping for +magnon spintronics: Amplification and manipulation of magnon +spin currents on the micron-scale,” Physics Reports 699, 1–34 +(2017). +22 N. Beaulieu, N. Kervarec, N. Thiery, O. Klein, V. Naletov, H. Hur- +dequint, G. de Loubens, J. Ben Youssef, and N. Vukadinovic, +“Temperature dependence of magnetic properties of a ultrathin +yttrium-iron garnet film grown by liquid phase epitaxy: Effect of +a pt overlayer,” IEEE Magnetics Letters 9, 1–5 (2018). +23 Stefan Klingler, A V Chumak, Tim Mewes, Behrouz Khodadadi, +Claudia Mewes, Carsten Dubs, Oleksii Surzhenko, Burkard Hille- +brands, and Andr´es Conca, “Measurements of the exchange stiff- +ness of yig films using broadband ferromagnetic resonance tech- +niques,” J. Phys. D: Appl. Phys. 48, 015001 (2015). +24 Soraya Sangiao, C´esar Mag´en, Darius Mofakhami, Gr´egoire +de Loubens, and Jos´e Maria De Teresa, “Magnetic properties of +optimized cobalt nanospheres grown by focused electron beam +induced deposition (febid) on cantilever tips,” Beilstein J. Nan- +otechnol. 8, 2106–2115 (2017). +25 O. Klein, G. de Loubens, V. V. Naletov, F. Boust, T. Guillet, +H. Hurdequint, A. Leksikov, A. N. Slavin, V. S. Tiberkevich, and +N. Vukadinovic, “Ferromagnetic resonance force spectroscopy +of individual submicron-size samples,” Phys. Rev. B 78, 144410 +(2008). +26 http://wpage.unina.it/mdaquino/index file/MaGICo.html. +27 Massimiliano d’Aquino, Claudio Serpico, Giovanni Miano, and +Carlo Forestiere, “A novel formulation for the numerical com- +putation of magnetization modes in complex micromagnetic sys- +tems,” J. Comput. Phys. 228, 6130–6149 (2009). +28 Massimiliano d’Aquino and Riccardo Hertel, “Micromagnetic +frequency-domain simulation methods for magnonic systems,” J. +Appl. Phys. 133, 033902 (2023). +29 J. Jersch, V. E. Demidov, H. Fuchs, K. Rott, P. Krzysteczko, +J. M¨unchenberger, G. Reiss, and S. O. Demokritov, “Mapping of +localized spin-wave excitations by near-field brillouin light scat- +tering,” Appl. Phys. Lett. 97, 152502 (2010). +30 Feng Guo, L. M. Belova, and R. D. McMichael, “Spectroscopy +and imaging of edge modes in permalloy nanodisks,” Phys. Rev. +Lett. 110, 017601 (2013). +31 H. T. Nembach, Justin M. Shaw, T. J. Silva, W. L. Johnson, S. A. +Kim, R. D. McMichael, +and P. Kabos, “Effects of shape dis- +tortions and imperfections on mode frequencies and collective +linewidths in nanomagnets,” Phys. Rev. B 83, 094427 (2011). +32 Vladislav E. Demidov and Sergej O. Demokritov, “Magnonic +waveguides studied by microfocus brillouin light scattering,” +IEEE Trans. Magn. 51, 1–15 (2015). +33 S. Perna, F. Bruckner, C. Serpico, D. Suess, and M. d’Aquino, +“Computational micromagnetics based on normal modes: Bridg- +ing the gap between macrospin and full spatial discretization,” J. +Magn. Magn. Mater. 546, 168683 (2022). +34 S. Perna, F. Bruckner, C. Serpico, D. Suess, and M. d’Aquino, +“Normal modes description of nonlinear ferromagnetic resonance +for magnetic nanodots,” AIP Adv. 12, 035244 (2022). + diff --git a/JNFRT4oBgHgl3EQfCTcy/content/tmp_files/load_file.txt b/JNFRT4oBgHgl3EQfCTcy/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..3c4a45f6c6532aedf46e8824fd4ad6c3edae3647 --- /dev/null +++ b/JNFRT4oBgHgl3EQfCTcy/content/tmp_files/load_file.txt @@ -0,0 +1,580 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf,len=579 +page_content='Complete identification of spin-wave eigenmodes excited by parametric pumping in YIG microdisks T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Srivastava*,1, ∗ H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Merbouche*,2, † I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Ngouagnia Yemeli,1 N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Beaulieu,3 J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Ben Youssef,3 M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Mu˜noz,4 P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Che,5 P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Bortolotti,5 V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Cros,5 O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Klein,6 S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Sangiao,7 J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' De Teresa,7 S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Demokritov,2 V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Demidov,2 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Anane,5 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Serpico,8 M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' d’Aquino,8 and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' de Loubens1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' ‡ 1SPEC,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' CEA,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' CNRS,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Universit´e Paris-Saclay,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Gif-sur-Yvette,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' France 2Institute for Applied Physics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' University of Muenster,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Germany 3LabSTICC,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' CNRS,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Universit´e de Bretagne Occidentale,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Brest,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' France 4Instituto de Tecnolog´ıas F´ısicas y de la Informaci´on (CSIC),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Madrid,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Spain 5Unit´e Mixte de Physique,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' CNRS,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Thales,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Universit´e Paris-Saclay,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Palaiseau,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' France 6Universit´e Grenoble Alpes,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' CEA,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' CNRS,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Grenoble INP,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Spintec,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Grenoble,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' France 7Instituto de Nanociencia y Materiales de Arag´on (INMA) and Laboratorio de Microscop´ıas Avanzadas (LMA),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Universidad de Zaragoza,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Zaragoza,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Spain 8Department of Electrical Engineering and ICT,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' University of Naples Federico II,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Italy We present the parametric excitation of spin-wave modes in YIG microdisks via parallel pumping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Their spectroscopy is performed using magnetic resonance force microscopy (MRFM), while their spatial profiles are determined by micro-focus Brillouin light scattering (BLS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' We observe that almost all the fundamental eigenmodes of an in-plane magnetized YIG microdisk, calculated using a micromagnetic eigenmode solver, can be excited using the parallel pumping scheme, as opposed to the transverse one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' The comparison between the MRFM and BLS data on one side, and the simulations on the other side, provides the complete spectro- scopic labeling of over 40 parametrically excited modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Our findings could be promising for spin-wave-based computation schemes, in which the amplitudes of a large number of spin-wave modes have to be controlled.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' INTRODUCTION Novel proposals for spin-wave-based computing schemes necessitate the generation and control of multiple spin-wave (SW) modes1–5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' The most standard way to excite SW modes in a magnetic microstructure is by direct inductive coupling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' There, the quasi-uniform microwave field, produced on the magnetic volume by an rf antenna, couples to the transverse dynamical component of the magnetization associated with the SW mode, with a maximal efficiency when the applied rf frequency coincides with the eigenfrequency of the mode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' However, this method is not adapted to excite modes with anti- symmetric spatial profiles, as their overlap integral with the excitation field is zero6, nor short-wavelength modes, as their excitation efficiency quickly decreases with their wavevector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Yet, these two categories of modes make up a significant part of the SW k-space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' In order to excite a large number of modes irrespective of their spatial profiles, parametric parallel pump- ing, which does not suffer from these limitations, becomes the ideal choice7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' In this case, the microwave magnetic field cre- ated by the rf antenna is aligned parallel to the static field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' As a result, it does not couple to the SW modes directly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Instead, it interacts with the dynamic component of magnetization os- cillating at 2ω in the static field direction, which arises due to the elliptical trajectory of magnetization precession at ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' An rf field at 2ω can therefore excite SW modes at ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' A quantum mechanical picture of this process is a photon generating two magnons of opposite momenta at half its frequency8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Since this is a nonlinear process, SWs are excited only if the am- plitude of the excitation field exceeds a parametric threshold, which depends on the mode relaxation, and on the mode ellip- ticity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' The threshold power is lower for lower relaxation rates and higher ellipticities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Parallel pumping has been employed to generate SW modes in extended films9–13 and micro- and nano-waveguides14,15 of yttrium iron garnet (YIG), as well as in magnetic nanocontacts16, magnetic tunnel junctions17, and micro- and nano-dots of Permalloy18–20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' It has also been used for SW amplification21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' All these studies have been limited to a hand- ful number of modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' The excitation and identification of many modes in an adequate system would pave the way to- wards simultaneous control and manipulation of a large num- ber of SW modes for different applications in magnonics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' In this study, we present the excitation and identification of multiple SW modes in YIG microdisks via parametric pump- ing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' The scheme of the experiments is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' The SW modes are excited in YIG disks of diameters 1 µm, 3 µm and 5 µm through an integrated rf antenna and detected us- ing a magnetic resonance force microscope (MRFM).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Their spatial profiles can also be recorded using micro-focus Bril- louin light scattering spectroscopy (µ-BLS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' We observe that almost all the SW eigenmodes are accessible by parametric pumping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' As expected, these eigenmodes become fewer in number as the size of the disk decreases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' For the 3 µm disk, we label over 40 eigenmodes by comparing its MRFM para- metric spectroscopy to micromagnetic simulations, and con- firm the identification of as many as 10 of them through their profiles thanks to µ-BLS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Our results could be instrumental in designing basic units for unconventional computing schemes like neuromorphic computing using hyperconnected popula- tions of a large number of eigen-excitations in a single mi- crostructure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' RESULTS A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Sample We use 50 nm thick YIG grown on 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='5 mm thick GGG substrate by liquid phase epitaxy22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' The characteristics of arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='13468v1 [physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='app-ph] 31 Jan 2023 2 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Schematics of the experimental setup.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Parallel pump- ing of a YIG microdisk using an rf antenna deposited on top.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' The spectroscopy of the parametrically excited modes is achieved using a magnetic resonance force microscope (MRFM) positioned above the sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Their spatial profiles are measured by micro-focus Bril- louin light scattering (µ-BLS) using a separate experimental setup, the laser beam being focused to the bottom of the sample, through the transparent GGG substrate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' the extended film are measured by standard magnetometry and broadband FMR techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' These yield a saturation magnetization Ms = 140.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='7 kA/m, a gyromagnetic ratio γ = 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='28 GHz/T, a Gilbert damping parameter α = 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='5 × 10−5, and a weak inhomogeneous broadening of the FMR linewidth, found to be 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='1 mT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' These parameters are typical of the YIG material;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' the exchange constant, which has not been specifi- cally determined on this film, is assumed to be A = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='7 pJ/m, a standard value from literature23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' The YIG layer was patterned into disks of diameters 1 µm, 3 µm and 5 µm using e-beam lithography.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' A 220 nm thick Ti/Au antenna, of width equal to 8 µm, was then deposited on top of the disks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Injecting an rf current in the antenna generates an rf in-plane magnetic field that is orthogonal to the long axis of the antenna.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Parallel pumping spectroscopy The SW mode spectroscopy is done using MRFM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' It em- ploys a very soft cantilever, at the end of which a submicronic magnetic spherical probe made of cobalt is attached24, to me- chanically detect the magnetization dynamics in the sample placed underneath25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' When SWs are excited in the sample by the microwave field, the (static) longitudinal component of magnetization is reduced and so is the dipolar force on the MRFM probe, resulting in a displacement of the cantilever beam, which is detected optically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' The rf excitation applied to the sample via the antenna is modulated at the mechanical resonance frequency of the cantilever to improve the quality factor and the signal-to-noise ratio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' In these measurements, the dc magnetic field is applied in- plane at an angle of 45° with respect to the direction of the rf magnetic field, as displayed in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Therefore the rf field ex- citation has both a transverse and a parallel component relative to the magnetization direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' The parallel pumped SW spec- trum is studied for different-sized disks as a function of the applied microwave power.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Figure 2 shows the results of the MRFM parametric spectroscopy performed at a constant mi- crowave frequency of 4 GHz for the three disks (color-coded intensity maps), together with the corresponding transverse excitation spectra measured at fixed frequency of 2 GHz and power of −5 dBm (continuous white curves).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Only a few SW modes are detected in the latter regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' In contrast, we ob- serve that a large number of modes can be excited by parallel pumping at 4 GHz for all the disks, in the range of applied dc field corresponding to the direct excitation of modes at 2 GHz, because parametrically excited modes are generated at half the pumping frequency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' As expected, this occurs only above a minimum power level, that ranges from about −4 dBm for the 5 µm disk to −2 dBm for the 1 µm disk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' The fact that the para- metric threshold increases and that the density of the excited modes decreases as the lateral size decreases can be explained by geometrical confinement effects, as reported earlier20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' In the following, we will mainly focus on the 3 µm disk where the SW modes are quite abundant but at the same time discernible (not too closely spaced).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' We perform similar mea- surements on this disk, this time fixing the value of the dc field to 27 mT, and scanning the parallel pumping frequency as a function of the microwave power.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' 3b shows the intensity map of the parametrically excited modes in these conditions, as a function of half the pumping frequency fp/2 and the rf power P, varied along the horizontal and vertical axes, respec- tively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' We note that the threshold power increases with the frequency in a non-monotonic way, which can be explained as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' The threshold excitation field of each mode can indeed be computed as the ratio between the relaxation rate ωr(k) to a coupling coefficient V(k), that is related to the mode ellipticity7: the more elliptical a mode is, the larger its V(k) and the lower will its threshold be.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Both the terms depend non-monotonously on the wavevector k and on the mode fre- quency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' However, on a wide range, when k increases, so does the mode frequency and its relaxation rate, while its ellipticity and its coupling V(k) tends to decrease7,21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' This leads to the clear but not monotonous increase of the experimental thresh- old power with frequency seen in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' 3b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Simulations In order to identify these parametrically excited modes, mi- cromagnetic simulations using the eigenmode solver imple- mented in the micromagnetic code MaGICo26 have been per- formed to calculate the SW spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' The magnetic ground state is first computed for the specific geometry and applied magnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Once the magnetic ground state is known, the equation describing magnetization dynamics, the Landau- Lifshitz-Gilbert equation, is linearized around the ground state and small-amplitude spatial profiles of the modes are com- G rf antenna GGG3 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' MRFM parametric spectroscopy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Intensity maps of the parametrically excited modes in the field-power coordinates excited by the microwave field of frequency 4 GHz, measured by MRFM on the 5 µm (a), 3 µm (b) and 1 µm (c) diameter YIG disks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' In each panel, the continuous white curve corresponds to the direct excitation spectrum at the frequency of 2 GHz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' The rf pumping field hrf is at 45° from the dc field H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' puted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' This problem can be formulated as a generalized eigen- value problem as described in ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' The solution of the eigenvalue problem allows to the determination of the SW spectrum of the magnetic sample under investigation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Here, the geometry of the body, a 50 nm thick disk of 3 µm in di- ameter, was discretized using 300 × 300 × 5 cubic cells (mesh size of 10 × 10 × 10 nm3), and the values of the magnetic pa- rameters used in the simulation were those determined exper- imentally.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' As in the experimental case, the applied field lies in the plane of the disk and is set to 27 mT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' The implemen- tation of suitable matrix-free large-scale methods described in ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='28 allowed the calculation of hundreds of eigenmodes for such an extended structure (353440 computational cells, eigenvalue problem size 706880 × 706880) in a few hours.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Figure 3a displays the computed spatial profiles of the first 100 eigenmodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' The 10 lowest frequency modes (first row) correspond to edge modes, where the precession of the mag- netization is strongly confined at the boundaries of the disk, in the (horizontal) direction of the applied dc field due to the demagnetizing field29,30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' The following modes correspond to standing SW modes, which can be labelled by the number of precession lobes in the horizontal (nx) and vertical (ny) direc- tions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' For instance, mode 20 (second row, last column) can be labelled by nx = 2 and ny = 1, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=', it is the (2,1) mode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Mode 40 (fourth row, last column) is the (11,3) mode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' The most uni- form mode, usually referred as the FMR mode, is mode 29, or mode (1,1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Figure 3b presents the comparison between the experimen- tal spectroscopy and the computed eigenfrequencies of modes 11 to 70, shown as red ticks on top of the intensity map of the parametrically excited modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' We observe a good agree- ment between the computed mode frequencies and the exper- imental mode frequencies (at half-pumping frequencies fp/2) observed at the bottom of the parametric instability regions (elongated yellow-green triangles extending downwards on the intensity map).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' From this comparison, it is possible to state that almost all, if not all SW eigenmodes, can be para- metrically excited, irrespective of their spatial profile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Due to the high density of modes in the investigated frequency range, we will only focus on a few modes, to emphasize the good agreement noted above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' The lowest-lying computed modes in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' 3b are the pair of modes 11 and 12 with respective fre- quencies 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='938 and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='9383 GHz, which correspond rather well to the measured parametric instability region with a threshold power of 2 dBm at around 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='95 GHz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' The small disagree- ment of 10 MHz between the computed and measured fre- quencies is not unexpected, since these modes belong to the category of edge modes, whose characteristics are very sen- sitive to imperfections at the periphery of the disk30,31, which are not taken into account in the simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' If we move to the next parametrically excited modes, which have the low- est power threshold and have frequencies around 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='975 GHz, the comparison with computed frequencies shows that they correspond to two pairs of modes: modes 13 and 14 with re- spective frequencies 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='973 and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='9731 GHz, and modes 15 and 16, at 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='9796 and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='9809 GHz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' The next excited modes in the experimental spectroscopy map are at around 2 GHz, and they correspond to mode 17 at 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='998 GHz and mode 18 at 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='001 GHz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' As a matter of fact, a detailed inspection of the data shows that indeed, the parametric instability region has two nearby minima with frequencies equally spaced around 2 GHz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' This good agreement between experimental and com- puted mode frequencies continues over the full range of inves- tigated frequencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' We note that among the 60 modes whose frequencies have been plotted in ig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' 3b, only 44 modes have discernible frequencies and spatial profiles, a few of them be- ing pairs of modes with very similar characteristics (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=', pairs of modes 11 and 12, 13 and 14, 15 and 16, 21 and 22, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Spatial profiles with µ-BLS To push further the comparison between computed SW modes and experiments, it is possible to take advantage of µ-BLS, to map the spatial profiles of dynamic magnetization in micro-structures32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' A probing laser light (λ = 473 nm and Plaser = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='1 mW) is focused into a diffraction-limited spot on the surface of a similar 3 µm YIG disk (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' 1) and the mod- a C 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='0 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='0 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='0 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='5 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='5 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='0 - 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='0 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='0 (dBm) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='5 (dBm) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='5 (dBm) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='0 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='0 P P P 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='5 - 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='0 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='0 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='0 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='5 5 wn 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='5 μm 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='5 1 μm 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='0- 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='0- 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='0 10 15 20 25 30 35 10 15 20 25 30 35 10 15 20 25 30 35 μoH (mT) μoH (mT) μoH (mT)4 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Computed spin-wave eigenmodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' (a) Computed spatial profiles of the 100 lowest frequency modes of the 3 µm diameter YIG disk, in-plane magnetized by a field of 27 mT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' The color code refers to the oscillation amplitude of the local magnetization, from blue (minimum) to red (maximum).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' (b) Comparison between parametric spectroscopy MRFM data (color-coded intensity map) and computed eigenfrequencies (red vertical ticks) of modes 11 to 70 (surrounded by the red rectangle in panel (a)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' ulation of this probing light by the magnetization oscillations is analysed using a high-contrast optical spectrometer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' The obtained signal – the BLS intensity – is proportional to the intensity of the magnetic oscillations at a given frequency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' In this BLS measurement, the in-plane bias field is set at 30 mT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' To compare the experimental mode profiles with the computed mode profiles, the micromagnetic simulations have therefore been repeated at 30 mT as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' To avoid nonlinear distor- tions of the mode profiles, known to occur when the mode amplitude increases too much, the BLS mapping of the mode profiles is performed at microwave power only slightly above threshold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' By sweeping the laser spot position across the disk, a dozen of different modes are imaged, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' 4 presents the comparison between the experimental and computed profiles of 10 modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Overall, the measured profiles are in good agree- ment with the computed ones, taking into account the exper- imental spatial resolution (≃ 250 nm) and the long duration of these measurements, which are subjected to experimental drifts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Similarly to the analysis performed in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' 3b, we ob- serve that the mode frequencies obtained by BLS correspond very well to the computed mode frequencies, with a mismatch that remains under 13 MHz for all modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' In particular, we observe well defined modes up to nx = 7 and ny = 3, which validates the agreement between experiment and simulations for a large number of modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' CONCLUSION Thanks to the comparison between parametric spectroscopy and mode imaging respectively performed by MRFM and BLS on one side, and micromagnetic simulations on the other side, we have successfully excited, detected and identified a large number (> 40) of SW eigenmodes in a 3 µm YIG disk, where the mode density is large due to the large lateral dimen- sions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' The computed spatial profiles provide a direct way to label those modes, using the numbers of precession nodes in the directions parallel (nx) and transverse (ny) to the applied magnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' This study opens up the possibility to per- form experiments where many parametric modes are simulta- neously excited while using the normal mode approach33,34 to understand and harness the complex dynamics in the modal space of confined magnetic structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' ACKNOWLEDGEMENTS This work was supported by the Horizon2020 Research Framework Programme of the European Commission under grant no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' 899646 (k-NET).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' It is also supported by a pub- lic grant overseen by the Agence Nationale de la Recherche as part of the “Investissements d’Avenir” program (Labex NanoSaclay, reference: ANR-10-LABX-0035).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' ac- knowledges support from the ANR grant no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' ANR-18-CE24- 0021 (Maestro).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' 0983GH2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='1275GHzf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' n=2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='1381GH Q0000 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='1493 GH .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='1892GHzf .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='1992GHz 2583GHz 4GHz 2GHzfa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='3457GH2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='3505GHz 3519 GHz fgs =2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='3557 GHz fa4 9 GHz 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='3774GHz fag-2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='392GHzfgo-2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='3949GHz5 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' BLS imaging of mode profiles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' The central graph displays the BLS detected frequencies at 30 mT for 10 modes of the 3 µm disk (blue lines) and the corresponding computed frequencies of eigenmodes (red line).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' These frequencies are matched (dotted dark lines) by associating the mode profiles measured in the experiment (above the graph) to the ones computed in the simulation (below).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' The experimental and simulated mode frequencies (in GHz) and their difference (in MHz) are given in the table.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' ∗ titiksha.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='srivastava@cea.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='fr † hugo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='merbouche@uni-muenster.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='de ‡ gregoire.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='deloubens@cea.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='fr 1 T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Br¨acher and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Pirro, “An analog magnon adder for all- magnonic neurons,” J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' 124, 152119 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' 2 R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Nakane, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Tanaka, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Hirose, “Reservoir computing with spin waves excited in a garnet film,” IEEE Access 6, 4462–4469 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' 3 Tyler W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Hughes, Ian A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Williamson, Momchil Minkov, and Shanhui Fan, “Wave physics as an analog recurrent neural net- work,” Science Advances 5 (2019), 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='1126/sciadv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='aay6946.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' 4 ´Ad´am Papp, Wolfgang Porod, and Gyorgy Csaba, “Nanoscale neural network using non-linear spin-wave interference,” Nature Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' 12, 1–8 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' 5 Lukas K¨orber, Christopher Heins, Tobias Hula, Joo-Von Kim, Helmut Schultheiss, J¨urgen Fassbender, and Katrin Schultheiss, “Pattern recognition with a magnon-scattering reservoir,” arXiv preprint arXiv:2211.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='02328 (2022), 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='48550/arXiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='2211.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='02328.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' 6 V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Naletov, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' de Loubens, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Albuquerque, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Borlenghi, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Cros, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Faini, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Grollier, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Hurdequint, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Locatelli, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Pigeau, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Slavin, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Tiberkevich, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Ulysse, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Valet, and O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Klein, “Identification and selection rules of the spin-wave eigenmodes in a normally magnetized nanopillar,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' B 84, 224423 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' 7 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Gurevich and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Melkov, Magnetization Oscillations and Waves (CRC Press, 1996).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' 8 R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' White and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Sparks, “Ferromagnetic Relaxation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' The- ory of instabilities,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' 130, 632 (1963).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' 9 H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Kurebayashi, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Dzyapko, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Demidov, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Fang, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Ferguson, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Demokritov, “Spin pumping by parametri- cally excited short-wavelength spin waves,” Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' 99, 162502 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' 10 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Sandweg, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Kajiwara, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Chumak, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Serga, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Vasyuchka, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Jungfleisch, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Saitoh, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Hillebrands, “Spin pumping by parametrically excited exchange magnons,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' 106, 216601 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' 11 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Serga, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Sandweg, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Vasyuchka, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Jungfleisch, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Hillebrands, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Kreisel, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Kopietz, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Kostylev, “Brillouin light scattering spectroscopy of parametrically excited dipole-exchange magnons,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' B 86, 134403 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' 12 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Hahn, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' de Loubens, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Viret, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Klein, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Naletov, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Ben Youssef, “Detection of microwave spin pumping using the inverse spin hall effect,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' 111, 217204 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' 13 V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Lauer, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Bozhko, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Br ˜A¤cher, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Pirro, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Vasyuchka, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Serga, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Jungfleisch, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Agrawal, Yu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Kobljanskyj, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Melkov, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Dubs, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Hillebrands, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Chumak, “Spin- transfer torque based damping control of parametrically excited spin waves in a magnetic insulator,” Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' 108, 012402 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' 14 Morteza Mohseni, Martin Kewenig, Roman Verba, Qi Wang, Michael Schneider, Bj¨orn Heinz, Felix Kohl, Carsten Dubs, Bert L¨agel, Alexander A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Serga, Burkard Hillebrands, Andrii V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Chu- mak, and Philipp Pirro, “Parametric generation of propagating spin waves in ultrathin yttrium iron garnet waveguides,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Sta- tus Solidi RRL 14, 2000011 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' 15 Bj¨orn Heinz, Morteza Mohseni, Akira Lentfert, Roman Verba, Michael Schneider, Bert L¨agel, Khrystyna Levchenko, Thomas Br¨acher, Carsten Dubs, Andrii V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Chumak, and Philipp Pirro, “Parametric generation of spin waves in nanoscaled magnonic conduits,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' B 105, 144424 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' 16 Sergei Urazhdin, Vasil Tiberkevich, and Andrei Slavin, “Paramet- ric excitation of a magnetic nanocontact by a microwave field,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' 105, 237204 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' 17 Yu-Jin Chen, Han Kyu Lee, Roman Verba, Jordan A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Katine, Igor Barsukov, Vasil Tiberkevich, John Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Xiao, Andrei N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Slavin, and Profile 00 (experiment) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='10 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='15 Frequency,GHz 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='20 Profile 00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='00 (simulation) fexp (GHz) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='098 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='124 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='141 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='147 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='162 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='173 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='192 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='226 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='236 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='253 fsimu (GHz) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='093 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='117 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='128 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='145 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='149 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='173 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='184 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='217 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='238 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='252 fexp - fsimu 5 7 13 2 13 0 8 9 2 1 (MHz)6 Ilya N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Krivorotov, “Parametric resonance of magnetization ex- cited by electric field,” Nano Letters 17, 572–577 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' 18 Henning Ulrichs, Vladislav E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Demidov, Sergej O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Demokritov, and Sergei Urazhdin, “Parametric excitation of eigenmodes in mi- croscopic magnetic dots,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' B 84, 094401 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' 19 E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Edwards, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Ulrichs, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Demidov, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Demokritov, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Urazhdin, “Parametric excitation of magnetization oscilla- tions controlled by pure spin current,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' B 86, 134420 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' 20 Feng Guo, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Belova, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' McMichael, “Parametric pumping of precession modes in ferromagnetic nanodisks,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' B 89, 104422 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' 21 T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Br¨acher, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Pirro, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Hillebrands, “Parallel pumping for magnon spintronics: Amplification and manipulation of magnon spin currents on the micron-scale,” Physics Reports 699, 1–34 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' 22 N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Beaulieu, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Kervarec, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Thiery, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Klein, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Naletov, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Hur- dequint, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' de Loubens, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Ben Youssef, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Vukadinovic, “Temperature dependence of magnetic properties of a ultrathin yttrium-iron garnet film grown by liquid phase epitaxy: Effect of a pt overlayer,” IEEE Magnetics Letters 9, 1–5 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' 23 Stefan Klingler, A V Chumak, Tim Mewes, Behrouz Khodadadi, Claudia Mewes, Carsten Dubs, Oleksii Surzhenko, Burkard Hille- brands, and Andr´es Conca, “Measurements of the exchange stiff- ness of yig films using broadband ferromagnetic resonance tech- niques,” J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' D: Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' 48, 015001 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' 24 Soraya Sangiao, C´esar Mag´en, Darius Mofakhami, Gr´egoire de Loubens, and Jos´e Maria De Teresa, “Magnetic properties of optimized cobalt nanospheres grown by focused electron beam induced deposition (febid) on cantilever tips,” Beilstein J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Nan- otechnol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' 8, 2106–2115 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' 25 O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Klein, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' de Loubens, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Naletov, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Boust, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Guillet, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Hurdequint, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Leksikov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Slavin, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Tiberkevich, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Vukadinovic, “Ferromagnetic resonance force spectroscopy of individual submicron-size samples,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' B 78, 144410 (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' 26 http://wpage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='unina.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='it/mdaquino/index file/MaGICo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content='html.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' 27 Massimiliano d’Aquino, Claudio Serpico, Giovanni Miano, and Carlo Forestiere, “A novel formulation for the numerical com- putation of magnetization modes in complex micromagnetic sys- tems,” J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' 228, 6130–6149 (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' 28 Massimiliano d’Aquino and Riccardo Hertel, “Micromagnetic frequency-domain simulation methods for magnonic systems,” J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' 133, 033902 (2023).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' 29 J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Jersch, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Demidov, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Fuchs, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Rott, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Krzysteczko, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' M¨unchenberger, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Reiss, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Demokritov, “Mapping of localized spin-wave excitations by near-field brillouin light scat- tering,” Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' 97, 152502 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' 30 Feng Guo, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Belova, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' McMichael, “Spectroscopy and imaging of edge modes in permalloy nanodisks,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' 110, 017601 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' 31 H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Nembach, Justin M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Shaw, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Silva, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Johnson, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Kim, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' McMichael, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Kabos, “Effects of shape dis- tortions and imperfections on mode frequencies and collective linewidths in nanomagnets,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' B 83, 094427 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' 32 Vladislav E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Demidov and Sergej O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Demokritov, “Magnonic waveguides studied by microfocus brillouin light scattering,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Magn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' 51, 1–15 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' 33 S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Perna, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Bruckner, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Serpico, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Suess, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' d’Aquino, “Computational micromagnetics based on normal modes: Bridg- ing the gap between macrospin and full spatial discretization,” J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Magn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Magn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Mater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' 546, 168683 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' 34 S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Perna, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Bruckner, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Serpico, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' Suess, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' d’Aquino, “Normal modes description of nonlinear ferromagnetic resonance for magnetic nanodots,” AIP Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} +page_content=' 12, 035244 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFRT4oBgHgl3EQfCTcy/content/2301.13468v1.pdf'} diff --git a/MtAyT4oBgHgl3EQf6vrQ/content/tmp_files/2301.00828v1.pdf.txt b/MtAyT4oBgHgl3EQf6vrQ/content/tmp_files/2301.00828v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..954b945386f485535a22c759da33af1370f945e7 --- /dev/null +++ b/MtAyT4oBgHgl3EQf6vrQ/content/tmp_files/2301.00828v1.pdf.txt @@ -0,0 +1,1347 @@ +MNRAS 000, 1–13 (2020) +Preprint 4 January 2023 +Compiled using MNRAS LATEX style file v3.0 +From dark matter halos to pre-stellar cores: High resolution follow-up of +cosmological Lyman-Werner simulations. +Lewis R. Prole,1★ Anna T. P. Schauer,2 Paul C. Clark,1 Simon C. O. Glover,3 Felix D. Priestley,1 Ralf S. Klessen,3,4 +1Cardiff University School of Physics and Astronomy +2Department of Astronomy, The University of Texas at Austin, Austin, TX 78712, USA +3Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische Astrophysik, Albert-Ueberle-Straße 2, D-69120 Heidelberg, Germany +4Universität Heidelberg, Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, Im Neuenheimer Feld 205, D-69120 Heidelberg, Germany +Accepted XXX. Received YYY; in original form ZZZ +ABSTRACT +Molecular hydrogen allows cooling in primordial gas, facilitating its collapse into Population III stars within primordial halos. +Lyman-Werner (LW) radiation from these stars can escape the halo and delay further star formation by destroying H2 in other +halos. As cosmological simulations show that increasing the background LW field strength increases the average halo mass +required for star formation, we perform follow-up simulations of selected halos to investigate the knock-on effects this has on +the Population III IMF. We follow 5 halos for each of the 𝐽21 = 0, 0.01 and 0.1 LW field strengths, resolving the pre-stellar core +density of 10−6 g cm−3 (1018 cm−3) before inserting sink particles and following the fragmentation behaviour for hundreds of +years further. We find that the mass accreted onto sinks by the end of the simulations is proportional to the mass within the +∼ 10−2 pc molecular core, which is not correlated to the initial mass of the halo. As such, the IMF shows little dependence on +the LW strength. As the range of background LW field strengths tested here covers the most likely values from literature, we +conclude that the IMF for so-called Pop III.2 stars is not significantly different from the initial population of Pop III.1 stars. The +primordial IMF therefore likely remains unchanged until the formation of the next generation of Population II stars. +Key words: stars: Population III – dark ages, reionization, first stars – hydrodynamics – stars: luminosity function, mass function +– software: simulations +1 INTRODUCTION +This first stars are able to form because pristine baryonic gas can +collapse within the gravitational potential well of dark matter (DM) +halos (Couchman & Rees 1986; Haiman et al. 1996a; Tegmark et al. +1997), heating it to ∼ 5000 K and facilitating the formation of H2 +(Bromm et al. 2002). H2 primarily forms via the radiative association +reaction forming H− +H + e− → H− + 𝛾, +(1) +followed by the fast associative detachment reaction forming H2 +H− + H → H2 + e−. +(2) +Radiative cooling from the molecular hydrogen renders the gas grav- +itationally unstable, which allows it to decouple from the DM and +collapse to form the first stars, known as Population III (Pop III) +stars. The necessity of H2 renders any process of H2 destruction as a +mechanism to delay or prevent Pop III star formation. +While so-called Pop III.1 stars form from purely cosmological +initial conditions, the radiation they produce affects Pop III.2 stars +that form in its presence. As the masses of Pop III stars are predicted +to be larger than present-day counterparts (due to the lack of cooling +from dust and metals), they are expected to emit large amounts of +★ E-mail: Prolel@cardiff.ac.uk +ionizing radiation (e.g. Schaerer 2002). Ionizing photons above the +Lyman limit (13.6 eV) create H ii regions around the stars up to the +boundary of their Strömgren spheres (Whalen et al. 2004; Kitayama +et al. 2004; Alvarez et al. 2006; Abel et al. 2007; Yoshida et al. +2007a; Jaura et al. 2022) while photons below the Lyman limit are +free to escape their Strömgren sphere. Lyman-Werner (LW) photons +between 11.2 and 13.6 eV can dissociate H2 via the two-step Solomon +process (Field et al. 1966; Stecher & Williams 1967) +H2 + 𝛾 → H∗ +2 → 2H, +(3) +where H∗ +2 represents an electronically excited state of H2. Photons +with energy above 0.76 eV can also photodissociate H− via +H− + 𝛾 → H + e−, +(4) +reducing the H− abundance and hence the rate at which H2 can +form via reaction 2 (e.g. Chuzhoy et al. 2007). This stellar feedback +provides a potential obstacle for Pop III.2 stars to overcome during +formation. Investigations into the effects of these far UV fields typ- +ically categorise the field strength by the intensity in the LW band +𝐽21, in units of 10−21 erg s−1 cm−2 Hz−1 sr−1. +Calculations by Haiman et al. (1997) found that before the Ström- +gren spheres of Pop III stars overlap, the UV background below the +ionization threshold was able to penetrate large clouds and suppress +their H2 abundance. They also found that the flux necessary for H2 +photodissociation is several orders of magnitude smaller than the flux +© 2020 The Authors +arXiv:2301.00828v1 [astro-ph.GA] 2 Jan 2023 + +2 +L. R. Prole +needed to reionize the universe. Haiman et al. (2000) showed that +this photodissociation of H2 suppresses further Pop III star formation +inside small halos and delays reionization until larger halos form. +Collapse is not impossible without sufficient H2 for cooling. +Omukai (2001) showed that if the LW field is sufficient to keep a +halo free of molecular hydrogen, the gas can nevertheless collapse +via atomic hydrogen line cooling if the halo has a virial temperature +𝑇vir > 8000 K. The collapse occurs almost isothermally, possibly +resulting in the formation of a direct collapse black hole (DCBH) +(e.g. Bromm & Loeb 2003; Spaans & Silk 2006; Latif et al. 2013), a +possible progenitor of the supermassive black holes observed at high +redshifts (e.g. Mortlock et al. 2011; Matsuoka et al. 2019). However, +for a T = 105 K blackbody spectrum expected from Pop III stars, a +field strength of 𝐽21 ∼ 104 is required to keep the gas atomic during +the collapse (Glover 2015; Agarwal & Khochfar 2015; Agarwal et al. +2016; Sugimura et al. 2014), while the average exposure is expected +to be 𝐽21 < 0.1 at 𝑧 ∼ 15 (Ahn et al. 2009; Trenti & Stiavelli 2009; +Wise et al. 2012; Agarwal et al. 2012; Skinner & Wise 2020). Dijk- +stra et al. (2008) showed that only a fraction of 10−8 − 10−6 of DM +halos with virial temperatures > 104 K have a close luminous neigh- +bour within < 10 kpc, and are exposed to an LW flux 𝐽21 > 103. +The occurrence of atomically cooled halos is therefore expected to +be rare. +Studies have shown that values of 𝐽21 orders of magnitude lower +than the critical intensity required to completely suppress H2 cooling +in massive halos can still drastically affect halo collapse. Typically, +the critical mass for efficient molecular hydrogen cooling and sub- +sequent star formation increases with increasing 𝐽21 (e.g. Machacek +et al. 2001; Yoshida et al. 2003; O’Shea & Norman 2008; Vis- +bal et al. 2014; Schauer et al. 2021). Cosmological simulations by +Yoshida et al. (2003) found gas cooling was suppressed for 𝐽21 = 0.1, +leading them to predict that star formation would not occur in halos +with 𝑇vir < 8000 K for LW field strengths greater than this. Con- +versely, O’Shea & Norman (2008) found that for field strengths as +high as 𝐽21 = 1, H2 cooling leads to collapse despite the depressed +core molecular hydrogen fractions. They also noted that higher LW +background fluxes lead to higher accretion rates. High resolution +cosmological simulations by Schauer et al. (2021) (hereafter AS21) +examined the impact of different values of the LW field strength on +a large sample of minihalos. They showed that both Mav, the aver- +age minihalo mass required for efficient H2 cooling (i.e. the mass +above which more than 50% of minihalos of that mass can cool), and +Mmin, the minimum minihalo mass required for efficient cooling, in- +creased with increasing 𝐽21. An increase in the critical halo mass for +star formation with increasing 𝐽21 was also found by Kulkarni et al. +(2021), although they find a significant effect only for 𝐽21 > 1. In +contrast, cosmological simulations by Skinner & Wise (2020) found +no relationship between the LW intensity and host halo mass. +The true average 𝐽21 intensity is expected to vary with redshift. +Hirano et al. (2015) followed the formation and evolution of 1540 star- +forming gas clouds. They found that in their models, the characteristic +mass of Pop III stars shifted to lower masses with decreasing redshift +due to the radiative feedback of previous generations of stars. For +𝑧 > 20, half of the star-forming gas clouds were exposed to intense +FUV radiation, with an average exposure of 𝐽21 ∼ 0.07. Due to +smaller stellar masses and the expanding distance between stars, the +FUV background became weaker at lower redshifts. For 15 < 𝑧 < 25, +almost all the clouds had nonzero intensity 𝐽21 > 0.01. The average +LW intensity in Skinner & Wise (2020) increased stochastically from +10−3 at 𝑧 ∼ 25 to 10 at 𝑧 ∼ 10. For redshifts above ∼12, 𝐽21 remained +> 0.1. +Self-shielding is a process that occurs when large column den- +sity of molecular hydrogen protects the inner regions against pho- +todissociation because one photon can only photodissociate one H2 +molecule. This self-shielding allows further H2 production and H2 +cooling (Shang et al. 2010; Agarwal et al. 2014; Regan et al. 2014; +Hartwig et al. 2015a). The large nonequilibrium abundance of elec- +trons in gas cooling from above T > 104 K also boosts H2 formation +(Oh & Haiman 2002). Early attempts to model self shielding (e.g. +Shang et al. 2010) multiplied the intensity in the LW band by a self- +shielding factor given by Draine & Bertoldi (1996). Wolcott-Green +et al. (2011) showed that this method underestimated the numerically +calculated self-shielding rate by more than an order of magnitude in +low-density regions, by overestimating shielding by a large factor at +temperatures above a few hundred kelvin. They modified the method +of Draine & Bertoldi by estimating the shielding factor based on +the Sobolev length, using local properties of the gas. This modifica- +tion was computationally inexpensive and used in many subsequent +investigations into the aforementioned critical intensity required to +form atomic halos, typically producing values an order of magnitude +lower than those using the original Draine & Bertoldi shielding (e.g. +Glover 2015; Agarwal & Khochfar 2015; Agarwal et al. 2016). Clark +et al. (2012) improved on this method further with their introduction +of the TreeCol algorithm, which calculates maps of the column den- +sity distribution seen by each computational element in a simulation +in a computationally efficient fashion with the help of an oct-tree. +Hartwig et al. (2015b) took this approach further by accounting for +the relative velocities between different computational elements. This +Doppler-shifts the spectral lines, reducing the effectiveness of self- +shielding (since molecules shifted by more than the linewidth do not +contribute to the effective column density). +In addition to a background LW field, primordial star formation is +complicated further by streaming velocities between the the gas and +DM. Prior to recombination, baryons were tightly coupled to photons. +As DM does not experience Thomson scattering, there should have +been a relative velocity between the DM and baryons (e.g. Ma & +Bertschinger 1995). At recombination, the relative velocity was ∼ 30 +km s−1 and was coherent over several comoving Mpc. Recombination +resulted in a drop in the sound speed to ∼ 6 km s−1 as the gas +transitioned from plasma to a neutral state, meaning the relative +velocities were highly supersonic. Tseliakhovich & Hirata (2010) +showed that the presence of these large-scale streaming velocities +suppresses the abundance of the first bound objects by advecting +small-scale perturbations near the baryonic Jeans scale. Moving- +mesh calculations by Greif et al. (2011) found that the additional +momentum and energy from the streaming velocities reduces the gas +fractions and central densities of halos, increasing the typical virial +mass required for efficient cooling by a factor of three. They also +noted that the turbulent velocity dispersion increased in the presence +of streaming velocities. The simulations of AS21 found that the +increase in the average and minimum halo mass from increasing +streaming velocities is additive on top of the effect of a LW field, +with streaming velocities having the larger impact of the two. +While it was initally believed that Pop III stars formed in isolation +(Haiman et al. 1996b) and were massive (Abel et al. 2002; Bromm +et al. 2002), more recent studies show that primordial gas fragments +to give rise to a larger populations of lower mass stars (Clark et al. +2011; Smith et al. 2011; Greif et al. 2012; Stacy & Bromm 2013; +Machida & Doi 2013; Stacy et al. 2014; Susa 2019; Wollenberg +et al. 2020). In Prole et al. (2022a) (hereafter LP22), we used high +resolution simulations of idealised, purely hydrodynamical Pop III +star formation to show that a number of cores are ejected from the +system with masses capable of surviving until the present day. As +small-scale primordial magnetic fields do not appear to prevent disc +MNRAS 000, 1–13 (2020) + +Cosmological Lyman-Werner simulations. +3 +fragmentation (Prole et al. 2022b) and accretion of metals onto the +surface of these stars during their lifetime is unlikely (e.g. Johnson +& Khochfar 2011; Tanaka et al. 2017), the question is raised about +why these stars have not been found within archeological surveys +(see e.g. Beers & Christlieb 2005; Frebel & Norris 2015; Starken- +burg et al. 2017). Since most high resolution simulations of Pop III +star formation have considered only the Pop III.1 case, one possible +explanation could be that Pop III.2 star formation yields a different +IMF, i.e. that Pop III stars forming in the presence of a LW back- +ground have systematically larger masses than those forming in the +absence of a background. +In this paper, we aim to test this hypothesis by producing the +most accurate prediction of the Pop III.1 and Pop III.2 initial mass +functions (IMF) to date. We investigate how the increase in halo +masses due to increasing LW field intensity changes star formation +within them, by performing high resolution follow-up simulations +of cosmological halos drawn from the simulations of AS21. The +structure of our paper is as follows. In Section 2, we describe the +cosmological simulations of AS21, our selection criteria for the halos +chosen for follow-up simulations, the chemical model we use and our +use of sink particles. In Section 3 we review the characteristics of the +halos as they are taken from AS21, before presenting the results of the +zoom-in simulations in Section 4, where we probe the density regime +of the molecular core. In Section 5, we compare the fragmentation +behaviour once sink particles have formed and present the IMFs at +the end of the simulations. We discuss caveats in Section 6 before +concluding in Section 7. +2 NUMERICAL METHOD +2.1 Arepo +The simulations presented here were performed with the moving +mesh code Arepo (Springel 2010) with a primordial chemistry set- +up. Arepo combines the advantages of AMR and smoothed particle +hydrodynamics (SPH: Monaghan 1992) with a mesh made up of a +moving, unstructured, Voronoi tessellation of discrete points. Arepo +solves hyperbolic conservation laws of ideal hydrodynamics with a +finite volume approach, based on a second-order unsplit Godunov +scheme with an exact Riemann solver. Automatic and continuous +refinement overcome the challenge of structure growth associated +with AMR (e.g. Heitmann et al. 2008). +2.2 Cosmological simulations +The cosmological simulations performed by AS21 assumed a ΛCDM +cosmology with parameters ℎ = 0.6774, Ω0 = 0.3089, Ωb = +0.04864, ΩΛ = 0.6911, 𝑛 = 0.96 and 𝜎8 = 0.8159 as derived by +the Planck Collaboration et al. (2020). The simulations were ini- +tialised at 𝑧 = 200 with an initial DM distribution created by MUSIC +(Hahn & Abel 2011) using the transfer functions of Eisenstein & +Hu (1998) and the gas distribution initially followed the DM. The +DM was represented by 10243 particles and the gas was initially +modelled with 10243 grid cells, all contained within a box with side +length 1 ℎ−1 Mpc in comoving units. During the simulation, an ad- +ditional Jeans refinement criterion was applied: cells were refined +whenever necessary so as to ensure that the Jeans length was always +resolved with at least 16 cells. This refinement was carried out until +the gas reached a threshold density of ∼ 10−19 g cm−3. Above this +threshold density, gravitationally bound and collapsing gas was con- +verted into collisionless sink particles, as explained at greater length +in AS21. The simulations were carried out with four different values +of the baryonic streaming velocity (𝑣str = 0, 1, 2 and 3, in units of +𝜎rms, the large-scale root mean squared value) and three different +values for the LW field strength (𝐽21 = 0, 0.01 and 0.1). In this study, +we make use of the three simulations with 𝑣str = 1𝜎rms because this +is the most representative value available, as the volume fraction of +streaming velocities peaks at 0.8𝜎rms (AS21). +2.3 Halo selection +Given snapshots at 𝑧 = 15 from the three simulations with 𝑣str = 1 +presented in AS21, we have selected 5 halos for each value of 𝐽21. +Halo positions and masses were provided by the friends-of-friends +(FoF) algorithm as described in that study. The selection criteria for +the halos was as follows: +• The halos identified by the FoF algorithm were sorted by their +mass difference with Mav, the average minihalo mass above which +minihalos become capable of cooling and forming stars. This average +mass was defined in AS21, following Schauer et al. (2019), to be the +minihalo mass above which more than 50% of minihalos can cool +and form stars.1 AS21 report Mav at a range of redshifts between +𝑧 = 22 and 𝑧 = 14; here, we adopt their values at 𝑧 = 15. By sorting +the halos in this way, we ensure that the halos that we eventually +select will have masses close to Mav, i.e. that they are representative +of the common case at that redshift. +• We considered a halo if it contained a cell denser than 𝜌th = +10−22 g cm−3 within a search radius Rsearch = 1 kpc in physical +units from the halo’s central coordinate. Note that checking the H2 +abundance is not necessary, as collapse to this density is not possible +without a high H2 abundance outside of the atomically cooling halo +scenario. +• We check that the halo is sufficiently resolved i.e. that the 16 +cells per Jeans length criteria has not decreased as the cell sizes +approach the maximum resolution of the cosmological simulations. +This process begins when the density reaches ∼ 10−20 g cm−3, so +we reject halos including a cell above this density. Note that this also +ensures that a sink particle has not yet been formed within Rsearch. +• Lastly, we removed the halo from consideration if there were +other dense objects in the vicinity by checking there were no cells +above 𝜌th within the radius Rsearch/2 < r < Rsearch. +We performed this search throughout the simulation cube until 5 +suitable halos were selected for each 𝐽21 value. The selected halo +masses from each simulation are shown in Table 1. Mass-weighted +mean temperatures and H2 abundances are plotted as a function of +density for each halo in Figure 1 and radial distributions of enclosed +gas and DM along with velocity information are shown in Figure +2. Projections of the initial density, temperature and H2 abundance +distributions are visualised in Figures 3, 4 and 5. Note that all of +these figures show the state of the halos at the point at which we +extract them from the AS21 simulations, i.e. prior to our zoom-in +calculation. Our choice of selection criteria means that the same +halos are not chosen for direct comparison between each simulation. +Rather, they are chosen to be most representative of the Universe at +the given background LW field strength. Direct comparison also has +the drawback that individual halos will collapse at different redshifts +depending on the LW field strength, whereas we exclusively select +halos that become able to form stars at 𝑧 = 15. +1 Note that Mav is typically around a factor of three larger than 𝑀min, the +mass of the least massive minihalo with cool gas. +MNRAS 000, 1–13 (2020) + +4 +L. R. Prole +10 +2 +10 +1 +100 +101 +102 +103 +n [cm +3] +101 +102 +103 +T [K] +J21=0 +10 +2 +10 +1 +100 +101 +102 +103 +n [cm +3] +J21=0.01 +10 +2 +10 +1 +100 +101 +102 +103 +n [cm +3] +J21=0.1 +halo 1 +halo 2 +halo 3 +halo 4 +halo 5 +10 +26 10 +25 10 +24 10 +23 10 +22 10 +21 + [g cm +3] +10 +12 +10 +10 +10 +8 +10 +6 +10 +4 +H2 +10 +26 10 +25 10 +24 10 +23 10 +22 10 +21 + [g cm +3] +10 +26 10 +25 10 +24 10 +23 10 +22 10 +21 + [g cm +3] +Figure 1. Summaries of the initial conditions for our simulations. Mass-weighted density profiles of temperature and H2 abundances. +102 +104 +106 +Mgas [M +] +J21=0 +J21=0.01 +J21=0.1 +halo 1 +halo 2 +halo 3 +halo 4 +halo 5 +103 +105 +107 +MDM [M +] +0.25 +0.50 +0.75 +1.00 +v /v +100 +101 +102 +103 +R [pc] +100 +101 +v/cs +100 +101 +102 +103 +R [pc] +100 +101 +102 +103 +R [pc] +Figure 2. Summaries of the initial conditions for our simulations. Cumulative radial profiles of gas and DM mass and mass-weighted radial profiles of the ratio +of rotational to total velocity (note the dotted line represents the value above which rotational component dominates the velocity) and ratio of velocity to sound +speed i.e. Mach number. +2.4 Chemistry +Collapse of primordial gas is closely linked to the chemistry involved +(e.g. Glover et al. 2006; Yoshida et al. 2007b; Glover & Abel 2008; +Turk et al. 2011). We therefore use a fully time-dependent chemical +network to model the gas. We use the same chemistry and cooling +as Wollenberg et al. (2020), which is described in the appendix of +Clark et al. (2011), but with updated rate coefficients, as summarised +in Schauer et al. (2017). The network has 45 chemical reactions +to model primordial gas made up of 12 species: H, H+, H−, H+ +2 , +H2, He, He+, He++, D, D+, HD and free electrons. Included in the +network are: H2 cooling (including an approximate treatment of the +effects of opacity), collisionally-induced H2 emission, HD cooling, +ionisation and recombination, heating and cooling from changes in +the chemical make-up of the gas and from shocks, compression and +expansion of the gas, three-body H2 formation and heating from +accretion luminosity. For reasons of computational efficiency, the +MNRAS 000, 1–13 (2020) + +Cosmological Lyman-Werner simulations. +5 +500 pc +Figure 3. Column-weighted density projections of the 2 kpc region around the 5 cosmological halos for each 𝐽21 value, taken from Schauer et al. (2021), +which serve as the initial conditions of the high resolution follow-up simulations presented in this work. The halo numbers to compare with upcoming plots are +indicated at the top of the figure. +500 pc +Figure 4. Column-weighted temperature projections of the 2 kpc region around the 5 cosmological halos for each 𝐽21 value, taken from Schauer et al. (2021), +which serve as the initial conditions of the high resolution follow-up simulations presented in this work. +network switches off tracking of deuterium chemistry2 at densities +above 10−16 g cm−3, instead assuming that the ratio of HD to H2 at +these densities is given by the cosmological D to H ratio of 2.6×10−5. +The adiabatic index of the gas is computed as a function of chemical +composition and temperature with the Arepo HLLD Riemann solver. +As in Schauer et al. (2021), we use a radiation field expected from +massive Pop III stars. We use a blackbody spectrum at temperature +2 Note that HD cooling continues to be included in the model. +105 K for energies below 13.6 eV. Above this energy, the flux is +expected to drop due to absorption in the intergalactic medium, so +we set the value of the radiation field to 0 above 13.6 eV. We model +the effects of H2 self-shielding using the TreeCol algorithm (Clark +et al. 2012). +MNRAS 000, 1–13 (2020) + +6 +L. R. Prole +500 pc +Figure 5. Column-weighted H2 abundance projections of the 2 kpc region around the 5 cosmological halos for each 𝐽21 value, taken from Schauer et al. (2021), +which serve as the initial conditions of the high resolution follow-up simulations presented in this work. +Table 1. Total mass (DM and gas) as detected by the FoF algorithm within +the selected halos from Schauer et al. (2021). +𝐽21=0 +𝐽21=0.01 +𝐽21=0.1 +halo +Mtot [106 M⊙] +1 +3.50 +4.76 +8.70 +2 +3.65 +4.84 +8.30 +3 +2.81 +4.30 +6.70 +4 +2.76 +4.02 +4.15 +5 +2.96 +3.91 +3.90 +2.5 Sink particles +If the local Jeans length falls below the minimum cell size of the +mesh, artificial collapse occurs. We insert sink particles into the sim- +ulations at a threshold density to prevent artificial collapse when the +simulation reaches its maximum refinement level. Our sink particle +implementation was introduced in Wollenberg et al. (2020) and Tress +et al. (2020). A cell is converted into a sink particle if it satisfies three +criteria: 1) it reaches a threshold density; 2) it is sufficiently far away +from pre-existing sink particles so that their accretion radii do not +overlap; 3) the gas occupying the region inside the sink is gravitation- +ally bound and collapsing. Likewise, for the sink particle to accrete +mass from surrounding cells it must meet two criteria: 1) the cell lies +within the accretion radius; 2) it is gravitationally bound to the sink +particle. A sink particle can accrete up to 90% of a cell’s mass, above +which the cell is removed and the total cell mass is transferred to the +sink. +Increasing the threshold density for sink particle creation dras- +tically increases the degree of fragmentation, reducing the masses +of subsequent secondary protostars (LP22). Ideally, sink particles +would be introduced when the gas becomes adiabatic at ∼ 10−4 g +cm−3. This is currently computationally challenging. However, the +zero metallicity protostellar model of Machida & Nakamura (2015) +suggests that stellar feedback kicks in to halt collapse at ∼ 10−6 g +cm−3 (1018 cm−3), so we choose this as our sink particle creation +density. +The initial accretion radius of a sink particle 𝑅sink is chosen to +be the Jeans length 𝜆J corresponding to the sink particle creation +density and corresponding temperature. At 10−6 g cm−3, we take +the temperature value from LP22 of 4460 K to give a Jeans length +of 1.67 × 1012 cm. We set the minimum cell length to fit 8 cells +across the sink particle in compliance with the Truelove condition, +by setting a minimum cell volume 𝑉min = (𝑅sink/4)3. The minimum +gravitational softening length for cells and sink particles 𝐿soft is set +to 𝑅sink/4. +The increasing radius of a Pop III protostar is dependent on both +its mass and accretion rate (e.g. Omukai & Palla 2003; Hosokawa +& Omukai 2009; Hosokawa et al. 2012; Hirano et al. 2014). We +allow the sink particle accretion radius 𝑅sink to vary throughout its +accretion history, using on-the-fly calculations of the stellar radius +using an approximate analytic formulae originally derrived by Stahler +et al. (1986): +𝑅sink = 26𝑅⊙ +� 𝑀 +𝑀⊙ +�0.27 � +�𝑀 +10−3𝑀⊙yr−1 +�0.41 +, +(5) +where we smooth �𝑀 by taking the average over the time taken to +accrete 0.1M⊙. +The sink particle treatment also includes the accretion luminosity +feedback from Smith et al. (2011), as implemented in Arepo by +Wollenberg et al. (2020). Stellar internal luminosity is not included +in this work because the Kelvin-Helmholtz times of the protostars +formed in our simulations are much longer than the period simulated, +meaning that none will have yet begun nuclear burning. We also +include the treatment of sink particle mergers used in LP22. +3 INITIAL HALO CHARACTERISTICS +Figures 1 and 2 show some of the characteristics of the halos at the +time when they were selected for zoom-in follow-up simulations. +MNRAS 000, 1–13 (2020) + +Cosmological Lyman-Werner simulations. +7 +The top panel of Figure 1 shows that the gas has already been shock +heated as it fell into the gravitational potential well of the DM halo, +allowing it to produce the necessary H2 to cool and collapse to higher +densities. The bottom panel shows the destructive impact of the LW +radiation field on the H2 abundance in the outer regions of the halo. +The H2 abundance in the central regions reaches the same peak value +of 4 × 10−4 due to self-shielding from the radiation field, however +this happens at increasingly higher densities for larger 𝐽21 values. +Figure 2 shows that within ∼ 100 pc, the gas velocity is dominated +by its rotational component. The gas surrounding the halos is highly +supersonic due to large-scale streaming, which cascades down to +become subsonic at scales smaller than ∼ 10 pc, although we show +in Section 4 that the velocities do not remain subsonic once the gas +collapses further. From the density projections of Figure 3, halo sizes +range from ∼ 100−200 pc, their shapes range from roughly spherical +to structurally complex, and each is embedded within a network of +filamentary structures. Figure 4 shows that these webs of filaments +are a few hundred kelvin hotter than the ∼ 10 K gas that surrounds +them, with the central halo reaching ∼ 1000 − 2000 K. Figure 5 +shows how the background H2 abundance is reduced drastically by +the LW background, with significant levels of H2 only appearing in +the central regions of the halo. +4 FURTHER COLLAPSE +We continue the collapse down to densities of 10−6 g cm−3 before +inserting sink particles. Figure 6 shows temperature and chemical +abundance profiles as a function of density, just before the formation +of the first sink particle. At densities above 10−15 g cm−3, three-body +H2 formation raises its abundance to over 0.1 within the molecular +core. The abundance of free electrons falls off with density as the gas +recombines. Figure 7 shows radial profiles of density and velocity. +The rotational component of the gas velocity remains dominated by +rotation only down to scales of ∼ 1 pc, below which infall begins to +dominate. The velocities remain supersonic down to scales of 10−6 +pc (0.2 au). Halos experiencing a LW field are capable of achieving +higher velocities, likely due to the higher halo mass. +The left hand side of Figure 8 compares the temperature, density, +accretion timescale and H2 abundance radial profiles for the differ- +ent 𝐽21 values just before the formation of the first sink particle. +Stronger LW fields require higher mass halos for star formation, as +their stronger gravitational potential is capable of shock-heating the +gas to higher temperatures, which increases the H2 formation rate +enough to build up a high column density of H2 in order to self-shield +the collapsing regions. Despite larger halo masses and shock-heating +to higher initial temperatures, the density profile of the gas remains +unaffected. Following Abel et al. (2002) and O’Shea & Norman +(2008), we have also estimated the accretion timescale (𝑡acc = M/ �M) +where +�M = 4𝜋𝑅2𝜌(𝑅)𝑣rad(𝑅) +(6) +is our estimate of the mass inflow rate at radius 𝑅 and 𝜌(𝑅) and +𝑣rad(𝑅) are the mass-weighted density and radial velocity within +shells at radius 𝑅. For 𝑡acc > 104 yr, there is very little difference +between the runs, suggesting that the accretion rate at early times is +not influenced by the LW field. For larger 𝑡acc, we do see a difference +between different runs, but this manifests as an increased scatter in +𝑡acc at a given 𝑅 rather than any systematic dependence on the LW +field strength. +The right hand side of Figure 8 shows the gas as it transitions into a +fully molecular state within the inner ∼ 10−2 pc core corresponding +to the density regime above 10−15 g cm−3. Halos illuminated gy +a LW background have higher gas kinetic energies owing to their +larger masses, which promotes a larger molecular core. However, +the increasing photodissociation rate with increasing 𝐽21 acts against +this mechanism, reducing the H2 formation rate and shrinking the +molecular core. This results in the 𝐽21 = 0.01 halos having molecular +cores that extend to larger radii than the 𝐽21 = 0.1 halos, despite both +having larger molecular cores than the 𝐽21 = 0 halos. As we only +have access to these 3 values of 𝐽21, the value where the core size is +maximised could lie anywhere between 0 < 𝐽21 < 0.1. +The importance of the molecular core is shown in Figure 9, which +shows the total mass in sink particles at the end of the simulations +as functions of the halo mass, virial temperature and mass within +different regimes of the collapse, just before the maximum density +was reached. The mass in sink particles grows almost linearly with +the mass within the inner molecular core with H2 abundances above +10−1 as +log10(Msinks) = (0.85±0.11)log10(MH2>10−1) + (0.14±0.24). (7) +Due to competing effects between halo mass and H2 photodissoci- +ation rate, the mass in sink particles is not correlated with the total +halo mass or the subsequent mass that initially falls into its potential +well with H2 abundances > 10−4. However, we have only followed +the accretion for 300 yr, which corresponds to a free-fall time for gas +at density 10−14 g cm−3. Gas below this density will not have been +accreted within the simulation time, while gas above this density re- +sides within the molecular core (see Figure 6). It is therefore unclear +if the relationship between accretion and mass of the molecular core +would remain if the simulations ran for a longer time. If the relation- +ship does hold, we speculate that increasing the size of the streaming +velocities between gas and DM may have a greater effect on the IMF, +since this also increases halo masses without the counteracting ef- +fects of H2 dissociation (Tseliakhovich & Hirata 2010; Greif et al. +2011; Hirano et al. 2017; Schauer et al. 2019, AS21). +5 FRAGMENTATION AND THE IMF +The IMF of Pop III stars is determined by the fragmentation be- +haviour of the disc around the initial central object and the subse- +quent accretion onto fragments. Density projections of the inner 650 +AU of the halos are shown in Figure 10, while Figure 11 shows the +evolution of the total number of sink particles formed, the total mass +in sink particles and highest mass sink particle in each halo as a +function of time. While the halos from the simulation without a LW +background typically yield less fragmentation, the overall fragmen- +tation behaviour is stochastic, as expected. The total mass accreted +onto sinks is typically higher in the halos illuminated by a LW field +due to their higher halo mass. +Figure 12 shows the IMF at a time 300 yr after the formation +of the first sink particle. The peak of the IMF positioned at ∼0.2- +0.5 M⊙ shows little dependence on the LW strength, likely because +the positive influence of larger halo masses on the molecular core +is regulated by the increasing photodissociation rate. We also show +the evolution of the cumulative IMFs in time, which converge by the +end of the simulations for the 𝐽21=0.01 and 0.1 suites. The left side +of Figure 13 compares the combined cumulative IMFs for different +𝐽21 values. While the high mass end of the IMFs are nearly identical +between the different 𝐽21 values, the low mass end of the IMFs show +variance due to the random and stochastic nature of ejection events +for low mass objects. Assuming these low mass objects (< 0.075M⊙) +do not go on to accrete significant mass, they will remain as brown +MNRAS 000, 1–13 (2020) + +8 +L. R. Prole +105 +108 +1011 +1014 +1017 +n [cm +3] +103 +T [K] +J21=0 +105 +108 +1011 +1014 +1017 +n [cm +3] +J21=0.01 +105 +108 +1011 +1014 +1017 +n [cm +3] +J21=0.1 +halo 1 +halo 2 +halo 3 +halo 4 +halo 5 +10 +3 +10 +2 +10 +1 +100 +H2 +10 +7 +10 +6 +10 +5 +HD +10 +19 +10 +16 +10 +13 +10 +10 +10 +7 +10 +4 + [g cm +3] +10 +11 +10 +9 +10 +7 +10 +5 +H + +10 +19 +10 +16 +10 +13 +10 +10 +10 +7 +10 +4 + [g cm +3] +10 +19 +10 +16 +10 +13 +10 +10 +10 +7 +10 +4 + [g cm +3] +Figure 6. Mass-weighted temperature, H2, HD and H+ abundances versus density at a time shortly after the formation of the first sink particle. (Note that the +HD abundance is only tracked self-consistently up to 𝜌 = 10−16 g cm−3; above this, we simply fix the HD/H2 ratio at 2.6×10−5, as explained in Section 2.4). +10 +22 +10 +16 +10 +10 +10 +4 + [g cm +3] +J21=0 +J21=0.01 +J21=0.1 +halo 1 +halo 2 +halo 3 +halo 4 +halo 5 +5 +10 +15 +|v| [km s +1] +10 +5 +0 +vr [km s +1] +0.50 +0.75 +1.00 +|v /v| +10 +7 +10 +5 +10 +3 +10 +1 +101 +103 +R [pc] +10 +1 +100 +101 +|v|/cs +10 +7 +10 +5 +10 +3 +10 +1 +101 +103 +R [pc] +10 +7 +10 +5 +10 +3 +10 +1 +101 +103 +R [pc] +Figure 7. Radial distribution of cumulative gas mass and mass-weighted radial profiles of radial velocity, ratio of rotational to total velocity (note the dotted line +represents the value above which rotational component dominates the velocity) and ratio of velocity to sound speed, taken at a time shortly after the formation +of the first sink particle. +MNRAS 000, 1–13 (2020) + +Cosmological Lyman-Werner simulations. +9 +Figure 8. Left: Comparison of the mass-weighted temperature, density and and H2 abundance profiles between the 𝐽21 values. Right: Zoom-in of the transition +to fully molecular core, showing the total kinetic energy within radial shells, mass weighted H2 photodissociation heating rate and H2 abundance. +4 +6 +8 +Mhalo [M +] +1e6 +5 +10 +15 +20 +25 +30 +35 +40 +Msinks [M +] +2000 +3000 +4000 +Tvir [K] +50000 +100000 +150000 +MH2 > 10 +4 [M +] +J21=0 +J21=0.01 +J21=0.1 +10 +20 +30 +40 +MH2 > 10 +1 [M +] +M0.85 +Figure 9. Total mass in sinks at the end of the simulations versus halo mass, virial temperature, mass within the halo with H2 abundance > 10−4 and mass +within the molecular core with H2 abundance > 10−1. The size of the markers is scaled with the halo mass. +dwarfs and never sustain nuclear fusion. The right side of the plot +shows the cumulative IMFs if the brown dwarfs are ignored. Here, +the IMFs fit well within each other’s regions of uncertainty, which +are the standard deviations from the cumulative IMFs of the 5 halos +individually. The overlap between the regions of uncertainty indicates +that the LW strength does not significantly affect the primordial IMF. +As the range of background LW field strengths tested here covers the +most likely values from literature, we infer that the IMF for Pop III.2 +stars is not significantly different from the initial population of Pop +III.1 stars. +We also show the IMF from LP22 as a dotted line, which was +produced from idealised halos as opposed the cosmological initial +conditions. The cosmological halos produced a bi-modal distribution +with a significant population of brown dwarfs that the idealised halos +are missing. Even when ignoring the brown dwarfs, the cosmological +initial conditions have yielded distributions tending to lower mass +pre-stellar cores. +MNRAS 000, 1–13 (2020) + +10 +L. R. Prole +250 AU +Figure 10. Column-weighted density projections of the inner 650 AU of the halos at a time 300 yr after the formation of the first sink particle. Sink particles are +represented as red dots. +0 +10 +20 +30 +Nsink +J21=0 +J21=0.01 +J21=0.1 +halo 1 +halo 2 +halo 3 +halo 4 +halo 5 +100 +101 +Mtot [M +] +0 +100 +200 +300 +t [yr] +10 +1 +100 +101 +Mmax [M +] +100 +200 +300 +t [yr] +100 +200 +300 +t [yr] +Figure 11. Number of sink particles formed, total mass in sinks, largest mass sink particle and median mass of sink particles as a function of time. +6 CAVEATS +Aside from the obvious uncertainties in the ΛCDM model on which +this work and the work of AS21 are based on, there are a number of +caveats to note. +The LW fields we have used in this study assume a population +of massive Pop III stars already exists. While previous studies do +suggest that Pop III stars were massive, more recent work suggests +that they may only grow to a few M⊙ (e.g. Stacy & Bromm 2013; +Wollenberg et al. 2020; Prole et al. 2022a; Jaura et al. 2022). In this +scenario, significantly less LW radiation would be produced, however +radiation from solar mass stars can inhibit H2 formation through the +destruction of H−. The fields used in this study therefore represent the +maximum effect Pop III stars can have on the the Pop III.2 stars that +follow. Since the effects of the LW fields appear to be insignificant, it +is likely that this result also represents the outcome for weaker fields. +We have assumed that the pre-stellar core radius grows as Equation +5. This process begins immediately after sink particle formation. +While this is predicted by stellar theory, it is unclear at what point +the pre-stellar core would begin to expand, which may affect the +accretion behaviour. +MNRAS 000, 1–13 (2020) + +Cosmological Lyman-Werner simulations. +11 +0 +1 +2 +3 +4 +J21=0 +0.5 +1.0 +0 +5 +10 +15 +20 +25 +Nsink +J21=0.01 +0.5 +1.0 +M/Mtot +10 +4 +10 +3 +10 +2 +10 +1 +100 +101 +M [M +] +0 +2 +4 +6 +8 +J21=0.1 +10 +4 +10 +3 +10 +2 +10 +1 +100 +101 +M [M +] +0.0 +0.5 +1.0 +10 yr +50 yr +100 yr +200 yr +300 yr +Figure 12. Left: combined IMFs of sink particles for the different the 𝐽21 val- +ues, Right: Cumulative IMFs of the combined sink particles for the different +the 𝐽21 values. +We have neglected the presence of primordial magnetic fields in +this study. While the findings of Prole et al. (2022b) suggest that +primordial magnetic fields make little difference to the primordial +IMF due to their small-scale structure, the field is still active, with +other recent studies finding that magnetic fields indeed lead to higher +mass Pop III stars (e.g. Saad et al. 2022; Hirano & Machida 2022; +Stacy et al. 2022). +7 CONCLUSIONS +The results of cosmological simulations by AS21 show that increas- +ing the background LW field strength increases the average halo mass +required for star formation. These simulations ran up to a maximum +density of 10−19 g cm−3, hence the knock-on effects on the Pop III +IMF were unclear. In this investigation, we have performed follow-up +simulations of 5 halos for each of the 𝐽21 = 0, 0.01 and 0.1 LW field +strengths, resolving the pre-stellar core density of 10−6 g cm−3 before +inserting sink particles and following the fragmentation behaviour +for hundreds of years further. We have found that the mass accreted +onto sinks by the end of the simulations is proportional to the mass +within the ∼ 10−2 pc molecular core, which is not correlated to the +initial mass of the halo. As such, the IMF shows little dependence +on the LW field strength. We also find no clear relationship between +the estimated accretion time of gas lying further out within the halo +and the LW field strength, suggesting that the LW field is unlikely +to influence the development of the IMF at later times. As the range +of background LW field strengths tested here covers the most likely +values from literature, we conclude that the IMF for so-called Pop +III.2 stars is not significantly different from that of the initial popu- +lation of Pop III.1 stars, although we cannot rule out greater effects +in the small subset of halos that are illuminated by LW fields much +stronger than the average value (see e.g Latif et al. 2014). In a future +paper, we will explore the effects of increasing the streaming veloci- +ties between the gas and dark matter on the Pop III IMF, as this has +been shown to increase halo masses through a different mechanism. +ACKNOWLEDGEMENTS +This work used the DiRAC@Durham facility managed by the +Institute for Computational Cosmology on behalf of the STFC +DiRAC HPC Facility (www.dirac.ac.uk). The equipment was funded +by BEIS capital funding via STFC capital grants ST/P002293/1, +ST/R002371/1 and ST/S002502/1, Durham University and STFC +operations grant ST/R000832/1. DiRAC is part of the National e- +Infrastructure. +The authors gratefully acknowledge the Gauss Centre for Super- +computing e.V. (www.gauss-centre.eu) for supporting this project by +providing computing time on the GCS Supercomputer SuperMUC at +Leibniz Supercomputing Centre (www.lrz.de) under project pr53ka. +AS was partially supported by NSF grant AST-1752913. +RSK and SCOG acknowledge computing resources provided by +the Ministry of Science, Research and the Arts (MWK) of the State +of Baden-Württemberg through bwHPC and the German Research +Foundation (DFG) through grant INST 35/1134-1 FUGG and for +data storage at SDS@hd through grant INST 35/1314-1 FUGG. +RSK and SCOG acknowledge financial support from DFG via the +collaborative research center (SFB 881, Project-ID 138713538) “The +Milky Way System” (subprojects A1, B1, B2 and B8), from the Hei- +delberg Cluster of Excellence “STRUCTURES” in the framework +of Germany’s Excellence Strategy (grant EXC-2181/1, Project-ID +390900948) and from the European Research Council (ERC) via the +ERC Synergy Grant “ECOGAL” (grant 855130). RSK furthermore +thanks the German Ministry for Economic Affairs and Climate Ac- +tion for funding in the project “MAINN” (funding ID 50OO2206). +We also acknowledge the support of the Supercomputing Wales +project, which is part-funded by the European Regional Development +Fund (ERDF) via Welsh Government. +DATA AVAILABILITY +The data underlying this article will be shared on reasonable request +to the corresponding author. +REFERENCES +Abel T., Bryan G. L., Norman M. L., 2002, Science (New York, N.Y.), 295, +93 +Abel T., Wise J. H., Bryan G. L., 2007, The Astrophysical Journal, 659, L87 +Agarwal B., Khochfar S., 2015, Monthly Notices of the Royal Astronomical +Society, 446, 160 +Agarwal B., Khochfar S., Johnson J. L., Neistein E., Dalla Vecchia C., Livio +M., 2012, Monthly Notices of the Royal Astronomical Society, 425, 2854 +Agarwal B., Dalla Vecchia C., Johnson J. L., Khochfar S., Paardekooper J.-P., +2014, Monthly Notices of the Royal Astronomical Society, 443, 648 +Agarwal B., Smith B., Glover S., Natarajan P., Khochfar S., 2016, Monthly +Notices of the Royal Astronomical Society, 459, 4209 +Ahn K., Shapiro P. R., Iliev I. T., Mellema G., Pen U.-L., 2009, The Astro- +physical Journal, 695, 1430 +Alvarez M. A., Bromm V., Shapiro P. R., 2006, The Astrophysical Journal, +639, 621 +Beers T. C., Christlieb N., 2005, Annual Review of Astronomy and Astro- +physics, 43, 531 +MNRAS 000, 1–13 (2020) + +12 +L. R. Prole +10 +4 +10 +3 +10 +2 +10 +1 +100 +101 +Msink [M +] +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +1.2 +M/Mtot +10 +1 +100 +101 +Msink [M +] +Msink > 0.075M +J21=0 +J21=0.01 +J21=0.1 +Prole et al. 2022b +Figure 13. Left: Comparison of the cumulative IMFs at 300 yr after the formation of the first sink particle. Right: Cumulative IMFs ignoring brown dwarfs +(< 0.075M⊙). +Bromm V., Loeb A., 2003, The Astrophysical Journal, 596, 34 +Bromm V., Coppi P. S., Larson R. B., 2002, The Astrophysical Journal, 564, +23 +Chuzhoy L., Kuhlen M., Shapiro P. R., 2007, The Astrophysical Journal, 665, +L85 +Clark P. C., Glover S. C. O., Smith R. J., Greif T. H., Klessen R. S., Bromm +V., 2011, Science, 331, 1040 +Clark P. C., Glover S. C. O., Klessen R. S., 2012, Monthly Notices of the +Royal Astronomical Society, 420, 745 +Collaboration P., et al., 2020, Astronomy and Astrophysics, 641, A6 +Couchman H. M. P., Rees M. J., 1986, Monthly Notices of the Royal Astro- +nomical Society, 221, 53 +Dijkstra M., Haiman Z., Mesinger A., Wyithe J. S. B., 2008, Monthly Notices +of the Royal Astronomical Society, 391, 1961 +Draine B. T., Bertoldi F., 1996, The Astrophysical Journal, 468, 269 +Eisenstein D. J., Hu W., 1998, The Astrophysical Journal, 496, 605 +Field G. B., Somerville W. B., Dressler K., 1966, Annual Review of Astron- +omy and Astrophysics, 4, 207 +Frebel A., Norris J. E., 2015, Annual Review of Astronomy and Astrophysics, +53, 631 +Glover S. C. O., 2015, Monthly Notices of the Royal Astronomical Society, +451, 2082 +Glover S. C. O., Abel T., 2008, Monthly Notices of the Royal Astronomical +Society, 388, 1627 +Glover S. C., Savin D. W., Jappsen A.-K., 2006, The Astrophysical Journal, +640, 553 +Greif T. H., White S. D. M., Klessen R. S., Springel V., 2011, The Astrophys- +ical Journal, 736, 147 +Greif T. H., Bromm V., Clark P. C., Glover S. C. O., Smith R. J., Klessen +R. S., Yoshida N., Springel V., 2012, Monthly Notices of the Royal +Astronomical Society, 424, 399 +Hahn O., Abel T., 2011, Monthly Notices of the Royal Astronomical Society, +415, 2101 +Haiman Z., Thoul A. A., Loeb A., 1996a, The Astrophysical Journal, 464, +523 +Haiman Z., Thoul A. A., Loeb A., 1996b, The Astrophysical Journal, 464, +523 +Haiman Z., Rees M. J., Loeb A., 1997, The Astrophysical Journal, 476, 458 +Haiman Z., Abel T., Rees M. J., 2000, The Astrophysical Journal, 534, 11 +Hartwig T., Glover S. C. O., Klessen R. S., Latif M. A., Volonteri M., 2015a, +Monthly Notices of the Royal Astronomical Society, 452, 1233 +Hartwig T., Clark P. C., Glover S. C. O., Klessen R. S., Sasaki M., 2015b, +The Astrophysical Journal, 799, 114 +Heitmann K., et al., 2008, Computational Science and Discovery, 1, 015003 +Hirano S., Machida M. N., 2022, The Astrophysical Journal, 935, L16 +Hirano S., Hosokawa T., Yoshida N., Umeda H., Omukai K., Chiaki G., Yorke +H. W., 2014, The Astrophysical Journal, 781, 60 +Hirano S., Hosokawa T., Yoshida N., Omukai K., Yorke H. W., 2015, Monthly +Notices of the Royal Astronomical Society, 448, 568 +Hirano S., Hosokawa T., Yoshida N., Kuiper R., 2017, Science, 357, 1375 +Hosokawa T., Omukai K., 2009, The Astrophysical Journal, 691, 823 +Hosokawa T., Omukai K., Yorke H. W., 2012, The Astrophysical Journal, +756, 93 +Jaura O., Glover S. C. O., Wollenberg K. M. J., Klessen R. S., Geen S., Haem- +merlé L., 2022, Monthly Notices of the Royal Astronomical Society, 512, +116 +Johnson J. L., Khochfar S., 2011, Monthly Notices of the Royal Astronomical +Society, 413, 1184 +Kitayama T., Yoshida N., Susa H., Umemura M., 2004, The Astrophysical +Journal, 613, 631 +Kulkarni M., Visbal E., Bryan G. L., 2021, The Astrophysical Journal, 917, +40 +Latif M. A., Schleicher D. R. G., Schmidt W., Niemeyer J. C., 2013, Monthly +Notices of the Royal Astronomical Society, 436, 2989 +Latif M. A., Schleicher D. R. G., Bovino S., Grassi T., Spaans M., 2014, The +Astrophysical Journal, 792, 78 +Ma C.-P., Bertschinger E., 1995, The Astrophysical Journal, 455, 7 +Machacek M. E., Bryan G. L., Abel T., 2001, The Astrophysical Journal, 548, +509 +Machida M. N., Doi K., 2013, Monthly Notices of the Royal Astronomical +Society, 435, 3283 +Machida M. N., Nakamura T., 2015, Monthly Notices of the Royal Astro- +nomical Society, 448, 1405 +Matsuoka Y., et al., 2019, The Astrophysical Journal, 872, L2 +Monaghan J. J., 1992, Annual Review of Astronomy and Astrophysics, 30, +543 +Mortlock D. J., et al., 2011, Nature, 474, 616 +O’Shea B. W., Norman M. L., 2008, The Astrophysical Journal, 673, 14 +Oh S. P., Haiman Z., 2002, The Astrophysical Journal, 569, 558 +Omukai K., 2001, The Astrophysical Journal, 546, 635 +Omukai K., Palla F., 2003, The Astrophysical Journal, 589, 677 +Prole L. R., Clark P. C., Klessen R. S., Glover S. C. O., 2022a, Monthly +Notices of the Royal Astronomical Society, 510, 4019 +Prole L. R., Clark P. C., Klessen R. S., Glover S. C. O., Pakmor R., 2022b, +Monthly Notices of the Royal Astronomical Society, 516, 2223 +Regan J. A., Johansson P. H., Wise J. H., 2014, The Astrophysical Journal, +795, 137 +Saad C. R., Bromm V., El Eid M., 2022, Monthly Notices of the Royal +MNRAS 000, 1–13 (2020) + +Cosmological Lyman-Werner simulations. +13 +Astronomical Society, 516, 3130 +Schaerer D., 2002, Astronomy & Astrophysics, 382, 28 +Schauer A. T. P., Regan J., Glover S. C. O., Klessen R. S., 2017, Monthly +Notices of the Royal Astronomical Society, 471, 4878 +Schauer A. T. P., Glover S. C. O., Klessen R. S., Ceverino D., 2019, Monthly +Notices of the Royal Astronomical Society, 484, 3510 +Schauer A. T. P., Glover S. C. O., Klessen R. S., Clark P., 2021, Monthly +Notices of the Royal Astronomical Society, 507, 1775 +Shang C., Bryan G. L., Haiman Z., 2010, Monthly Notices of the Royal +Astronomical Society, 402, 1249 +Skinner D., Wise J. H., 2020, Monthly Notices of the Royal Astronomical +Society, 492, 4386 +Smith R. J., Glover S. C. O., Clark P. C., Greif T., Klessen R. S., 2011, +Monthly Notices of the Royal Astronomical Society, 414, 3633 +Spaans M., Silk J., 2006, The Astrophysical Journal, 652, 902 +Springel V., 2010, Monthly Notices of the Royal Astronomical Society, 401, +791 +Stacy A., Bromm V., 2013, Monthly Notices of the Royal Astronomical +Society, 433, 1094 +Stacy A., Pawlik A. H., Bromm V., Loeb A., 2014, Monthly Notices of the +Royal Astronomical Society, 441, 822 +Stacy A., McKee C. F., Lee A. T., Klein R. I., Li P. S., 2022, Monthly Notices +of the Royal Astronomical Society, 511, 5042 +Stahler S., Palla F., Salpeter E., 1986, The Astrophysical Journal„ 302, 90 +Starkenburg E., et al., 2017, Monthly Notices of the Royal Astronomical +Society, 471, 2587 +Stecher T. P., Williams D. A., 1967, The Astrophysical Journal, 149, L29 +Sugimura K., Omukai K., Inoue A. K., 2014, Monthly Notices of the Royal +Astronomical Society, 445, 544 +Susa H., 2019, The Astrophysical Journal, 877, 99 +Tanaka S. J., Chiaki G., Tominaga N., Susa H., 2017, The Astrophysical +Journal, 844, 137 +Tegmark M., Silk J., Rees M. J., Blanchard A., Abel T., Palla F., 1997, The +Astrophysical Journal, 474, 1 +Trenti M., Stiavelli M., 2009, The Astrophysical Journal, 694, 879 +Tress R. G., Smith R. J., Sormani M. C., Glover S. C. O., Klessen R. S., +Mac Low M.-M., Clark P. C., 2020, Monthly Notices of the Royal Astro- +nomical Society, 492, 2973 +Tseliakhovich D., Hirata C., 2010, Physical Review D, 82, 083520 +Turk M. J., Clark P., Glover S. C. O., Greif T. H., Abel T., Klessen R., Bromm +V., 2011, Astrophys.J.726:55,2011, 726 +Visbal E., Haiman Z., Terrazas B., Bryan G. L., Barkana R., 2014, Monthly +Notices of the Royal Astronomical Society, 445, 107 +Whalen D., Abel T., Norman M. L., 2004, The Astrophysical Journal, 610, +14 +Wise J. H., Abel T., Turk M. J., Norman M. L., Smith B. D., 2012, Monthly +Notices of the Royal Astronomical Society, 427, 311 +Wolcott-Green J., Haiman Z., Bryan G. L., 2011, Monthly Notices of the +Royal Astronomical Society, 418, 838 +Wollenberg K. M. J., Glover S. C. O., Clark P. C., Klessen R. S., 2020, +Monthly Notices of the Royal Astronomical Society, 494, 1871 +Yoshida N., Abel T., Hernquist L., Sugiyama N., 2003, The Astrophysical +Journal, 592, 645 +Yoshida N., Oh S. P., Kitayama T., Hernquist L., 2007a, The Astrophysical +Journal, 663, 687 +Yoshida N., Omukai K., Hernquist L., 2007b, The Astrophysical Journal, 667, +L117 +This paper has been typeset from a TEX/LATEX file prepared by the author. +MNRAS 000, 1–13 (2020) + diff --git a/MtAyT4oBgHgl3EQf6vrQ/content/tmp_files/load_file.txt b/MtAyT4oBgHgl3EQf6vrQ/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..a983f4176f9ba7231814d1d31c4eb29c61620715 --- /dev/null +++ b/MtAyT4oBgHgl3EQf6vrQ/content/tmp_files/load_file.txt @@ -0,0 +1,1080 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf,len=1079 +page_content='MNRAS 000, 1–13 (2020) Preprint 4 January 2023 Compiled using MNRAS LATEX style file v3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='0 From dark matter halos to pre-stellar cores: High resolution follow-up of cosmological Lyman-Werner simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Lewis R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Prole,1★ Anna T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Schauer,2 Paul C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Clark,1 Simon C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Glover,3 Felix D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Priestley,1 Ralf S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Klessen,3,4 1Cardiff University School of Physics and Astronomy 2Department of Astronomy, The University of Texas at Austin, Austin, TX 78712, USA 3Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische Astrophysik, Albert-Ueberle-Straße 2, D-69120 Heidelberg, Germany 4Universität Heidelberg, Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, Im Neuenheimer Feld 205, D-69120 Heidelberg, Germany Accepted XXX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Received YYY;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' in original form ZZZ ABSTRACT Molecular hydrogen allows cooling in primordial gas, facilitating its collapse into Population III stars within primordial halos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Lyman-Werner (LW) radiation from these stars can escape the halo and delay further star formation by destroying H2 in other halos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' As cosmological simulations show that increasing the background LW field strength increases the average halo mass required for star formation, we perform follow-up simulations of selected halos to investigate the knock-on effects this has on the Population III IMF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' We follow 5 halos for each of the 𝐽21 = 0, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='01 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='1 LW field strengths, resolving the pre-stellar core density of 10−6 g cm−3 (1018 cm−3) before inserting sink particles and following the fragmentation behaviour for hundreds of years further.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' We find that the mass accreted onto sinks by the end of the simulations is proportional to the mass within the ∼ 10−2 pc molecular core, which is not correlated to the initial mass of the halo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' As such, the IMF shows little dependence on the LW strength.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' As the range of background LW field strengths tested here covers the most likely values from literature, we conclude that the IMF for so-called Pop III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='2 stars is not significantly different from the initial population of Pop III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='1 stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' The primordial IMF therefore likely remains unchanged until the formation of the next generation of Population II stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Key words: stars: Population III – dark ages, reionization, first stars – hydrodynamics – stars: luminosity function, mass function – software: simulations 1 INTRODUCTION This first stars are able to form because pristine baryonic gas can collapse within the gravitational potential well of dark matter (DM) halos (Couchman & Rees 1986;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Haiman et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 1996a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Tegmark et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 1997), heating it to ∼ 5000 K and facilitating the formation of H2 (Bromm et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' H2 primarily forms via the radiative association reaction forming H− H + e− → H− + 𝛾, (1) followed by the fast associative detachment reaction forming H2 H− + H → H2 + e−.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' (2) Radiative cooling from the molecular hydrogen renders the gas grav- itationally unstable, which allows it to decouple from the DM and collapse to form the first stars, known as Population III (Pop III) stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' The necessity of H2 renders any process of H2 destruction as a mechanism to delay or prevent Pop III star formation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' While so-called Pop III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='1 stars form from purely cosmological initial conditions, the radiation they produce affects Pop III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='2 stars that form in its presence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' As the masses of Pop III stars are predicted to be larger than present-day counterparts (due to the lack of cooling from dust and metals), they are expected to emit large amounts of ★ E-mail: Prolel@cardiff.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='uk ionizing radiation (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Schaerer 2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Ionizing photons above the Lyman limit (13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='6 eV) create H ii regions around the stars up to the boundary of their Strömgren spheres (Whalen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 2004;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Kitayama et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 2004;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Alvarez et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 2006;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Abel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 2007;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Yoshida et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 2007a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Jaura et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 2022) while photons below the Lyman limit are free to escape their Strömgren sphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Lyman-Werner (LW) photons between 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='2 and 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='6 eV can dissociate H2 via the two-step Solomon process (Field et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 1966;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Stecher & Williams 1967) H2 + 𝛾 → H∗ 2 → 2H, (3) where H∗ 2 represents an electronically excited state of H2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Photons with energy above 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='76 eV can also photodissociate H− via H− + 𝛾 → H + e−, (4) reducing the H− abundance and hence the rate at which H2 can form via reaction 2 (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Chuzhoy et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' This stellar feedback provides a potential obstacle for Pop III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='2 stars to overcome during formation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Investigations into the effects of these far UV fields typ- ically categorise the field strength by the intensity in the LW band 𝐽21, in units of 10−21 erg s−1 cm−2 Hz−1 sr−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Calculations by Haiman et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' (1997) found that before the Ström- gren spheres of Pop III stars overlap, the UV background below the ionization threshold was able to penetrate large clouds and suppress their H2 abundance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' They also found that the flux necessary for H2 photodissociation is several orders of magnitude smaller than the flux © 2020 The Authors arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='00828v1 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='GA] 2 Jan 2023 2 L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Prole needed to reionize the universe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Haiman et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' (2000) showed that this photodissociation of H2 suppresses further Pop III star formation inside small halos and delays reionization until larger halos form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Collapse is not impossible without sufficient H2 for cooling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Omukai (2001) showed that if the LW field is sufficient to keep a halo free of molecular hydrogen, the gas can nevertheless collapse via atomic hydrogen line cooling if the halo has a virial temperature 𝑇vir > 8000 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' The collapse occurs almost isothermally, possibly resulting in the formation of a direct collapse black hole (DCBH) (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Bromm & Loeb 2003;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Spaans & Silk 2006;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Latif et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 2013), a possible progenitor of the supermassive black holes observed at high redshifts (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Mortlock et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 2011;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Matsuoka et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' However, for a T = 105 K blackbody spectrum expected from Pop III stars, a field strength of 𝐽21 ∼ 104 is required to keep the gas atomic during the collapse (Glover 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Agarwal & Khochfar 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Agarwal et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Sugimura et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 2014), while the average exposure is expected to be 𝐽21 < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='1 at 𝑧 ∼ 15 (Ahn et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 2009;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Trenti & Stiavelli 2009;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Wise et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Agarwal et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Skinner & Wise 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Dijk- stra et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' (2008) showed that only a fraction of 10−8 − 10−6 of DM halos with virial temperatures > 104 K have a close luminous neigh- bour within < 10 kpc, and are exposed to an LW flux 𝐽21 > 103.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' The occurrence of atomically cooled halos is therefore expected to be rare.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Studies have shown that values of 𝐽21 orders of magnitude lower than the critical intensity required to completely suppress H2 cooling in massive halos can still drastically affect halo collapse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Typically, the critical mass for efficient molecular hydrogen cooling and sub- sequent star formation increases with increasing 𝐽21 (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Machacek et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 2001;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Yoshida et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 2003;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' O’Shea & Norman 2008;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Vis- bal et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Schauer et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Cosmological simulations by Yoshida et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' (2003) found gas cooling was suppressed for 𝐽21 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='1, leading them to predict that star formation would not occur in halos with 𝑇vir < 8000 K for LW field strengths greater than this.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Con- versely, O’Shea & Norman (2008) found that for field strengths as high as 𝐽21 = 1, H2 cooling leads to collapse despite the depressed core molecular hydrogen fractions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' They also noted that higher LW background fluxes lead to higher accretion rates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' High resolution cosmological simulations by Schauer et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' (2021) (hereafter AS21) examined the impact of different values of the LW field strength on a large sample of minihalos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' They showed that both Mav, the aver- age minihalo mass required for efficient H2 cooling (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' the mass above which more than 50% of minihalos of that mass can cool), and Mmin, the minimum minihalo mass required for efficient cooling, in- creased with increasing 𝐽21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' An increase in the critical halo mass for star formation with increasing 𝐽21 was also found by Kulkarni et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' (2021), although they find a significant effect only for 𝐽21 > 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' In contrast, cosmological simulations by Skinner & Wise (2020) found no relationship between the LW intensity and host halo mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' The true average 𝐽21 intensity is expected to vary with redshift.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Hirano et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' (2015) followed the formation and evolution of 1540 star- forming gas clouds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' They found that in their models, the characteristic mass of Pop III stars shifted to lower masses with decreasing redshift due to the radiative feedback of previous generations of stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' For 𝑧 > 20, half of the star-forming gas clouds were exposed to intense FUV radiation, with an average exposure of 𝐽21 ∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Due to smaller stellar masses and the expanding distance between stars, the FUV background became weaker at lower redshifts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' For 15 < 𝑧 < 25, almost all the clouds had nonzero intensity 𝐽21 > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' The average LW intensity in Skinner & Wise (2020) increased stochastically from 10−3 at 𝑧 ∼ 25 to 10 at 𝑧 ∼ 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' For redshifts above ∼12, 𝐽21 remained > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Self-shielding is a process that occurs when large column den- sity of molecular hydrogen protects the inner regions against pho- todissociation because one photon can only photodissociate one H2 molecule.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' This self-shielding allows further H2 production and H2 cooling (Shang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 2010;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Agarwal et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Regan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Hartwig et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 2015a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' The large nonequilibrium abundance of elec- trons in gas cooling from above T > 104 K also boosts H2 formation (Oh & Haiman 2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Early attempts to model self shielding (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Shang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 2010) multiplied the intensity in the LW band by a self- shielding factor given by Draine & Bertoldi (1996).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Wolcott-Green et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' (2011) showed that this method underestimated the numerically calculated self-shielding rate by more than an order of magnitude in low-density regions, by overestimating shielding by a large factor at temperatures above a few hundred kelvin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' They modified the method of Draine & Bertoldi by estimating the shielding factor based on the Sobolev length, using local properties of the gas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' This modifica- tion was computationally inexpensive and used in many subsequent investigations into the aforementioned critical intensity required to form atomic halos, typically producing values an order of magnitude lower than those using the original Draine & Bertoldi shielding (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Glover 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Agarwal & Khochfar 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Agarwal et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Clark et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' (2012) improved on this method further with their introduction of the TreeCol algorithm, which calculates maps of the column den- sity distribution seen by each computational element in a simulation in a computationally efficient fashion with the help of an oct-tree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Hartwig et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' (2015b) took this approach further by accounting for the relative velocities between different computational elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' This Doppler-shifts the spectral lines, reducing the effectiveness of self- shielding (since molecules shifted by more than the linewidth do not contribute to the effective column density).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' In addition to a background LW field, primordial star formation is complicated further by streaming velocities between the the gas and DM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Prior to recombination, baryons were tightly coupled to photons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' As DM does not experience Thomson scattering, there should have been a relative velocity between the DM and baryons (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Ma & Bertschinger 1995).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' At recombination, the relative velocity was ∼ 30 km s−1 and was coherent over several comoving Mpc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Recombination resulted in a drop in the sound speed to ∼ 6 km s−1 as the gas transitioned from plasma to a neutral state, meaning the relative velocities were highly supersonic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Tseliakhovich & Hirata (2010) showed that the presence of these large-scale streaming velocities suppresses the abundance of the first bound objects by advecting small-scale perturbations near the baryonic Jeans scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Moving- mesh calculations by Greif et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' (2011) found that the additional momentum and energy from the streaming velocities reduces the gas fractions and central densities of halos, increasing the typical virial mass required for efficient cooling by a factor of three.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' They also noted that the turbulent velocity dispersion increased in the presence of streaming velocities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' The simulations of AS21 found that the increase in the average and minimum halo mass from increasing streaming velocities is additive on top of the effect of a LW field, with streaming velocities having the larger impact of the two.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' While it was initally believed that Pop III stars formed in isolation (Haiman et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 1996b) and were massive (Abel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 2002;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Bromm et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 2002), more recent studies show that primordial gas fragments to give rise to a larger populations of lower mass stars (Clark et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 2011;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Smith et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 2011;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Greif et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Stacy & Bromm 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Machida & Doi 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Stacy et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Susa 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Wollenberg et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' In Prole et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' (2022a) (hereafter LP22), we used high resolution simulations of idealised, purely hydrodynamical Pop III star formation to show that a number of cores are ejected from the system with masses capable of surviving until the present day.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' As small-scale primordial magnetic fields do not appear to prevent disc MNRAS 000, 1–13 (2020) Cosmological Lyman-Werner simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 3 fragmentation (Prole et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 2022b) and accretion of metals onto the surface of these stars during their lifetime is unlikely (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Johnson & Khochfar 2011;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Tanaka et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 2017), the question is raised about why these stars have not been found within archeological surveys (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Beers & Christlieb 2005;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Frebel & Norris 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Starken- burg et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Since most high resolution simulations of Pop III star formation have considered only the Pop III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='1 case, one possible explanation could be that Pop III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='2 star formation yields a different IMF, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' that Pop III stars forming in the presence of a LW back- ground have systematically larger masses than those forming in the absence of a background.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' In this paper, we aim to test this hypothesis by producing the most accurate prediction of the Pop III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='1 and Pop III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='2 initial mass functions (IMF) to date.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' We investigate how the increase in halo masses due to increasing LW field intensity changes star formation within them, by performing high resolution follow-up simulations of cosmological halos drawn from the simulations of AS21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' The structure of our paper is as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' In Section 2, we describe the cosmological simulations of AS21, our selection criteria for the halos chosen for follow-up simulations, the chemical model we use and our use of sink particles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' In Section 3 we review the characteristics of the halos as they are taken from AS21, before presenting the results of the zoom-in simulations in Section 4, where we probe the density regime of the molecular core.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' In Section 5, we compare the fragmentation behaviour once sink particles have formed and present the IMFs at the end of the simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' We discuss caveats in Section 6 before concluding in Section 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 2 NUMERICAL METHOD 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='1 Arepo The simulations presented here were performed with the moving mesh code Arepo (Springel 2010) with a primordial chemistry set- up.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Arepo combines the advantages of AMR and smoothed particle hydrodynamics (SPH: Monaghan 1992) with a mesh made up of a moving, unstructured, Voronoi tessellation of discrete points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Arepo solves hyperbolic conservation laws of ideal hydrodynamics with a finite volume approach, based on a second-order unsplit Godunov scheme with an exact Riemann solver.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Automatic and continuous refinement overcome the challenge of structure growth associated with AMR (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Heitmann et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='2 Cosmological simulations The cosmological simulations performed by AS21 assumed a ΛCDM cosmology with parameters ℎ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='6774, Ω0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='3089, Ωb = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='04864, ΩΛ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='6911, 𝑛 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='96 and 𝜎8 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='8159 as derived by the Planck Collaboration et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' The simulations were ini- tialised at 𝑧 = 200 with an initial DM distribution created by MUSIC (Hahn & Abel 2011) using the transfer functions of Eisenstein & Hu (1998) and the gas distribution initially followed the DM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' The DM was represented by 10243 particles and the gas was initially modelled with 10243 grid cells, all contained within a box with side length 1 ℎ−1 Mpc in comoving units.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' During the simulation, an ad- ditional Jeans refinement criterion was applied: cells were refined whenever necessary so as to ensure that the Jeans length was always resolved with at least 16 cells.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' This refinement was carried out until the gas reached a threshold density of ∼ 10−19 g cm−3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Above this threshold density, gravitationally bound and collapsing gas was con- verted into collisionless sink particles, as explained at greater length in AS21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' The simulations were carried out with four different values of the baryonic streaming velocity (𝑣str = 0, 1, 2 and 3, in units of 𝜎rms, the large-scale root mean squared value) and three different values for the LW field strength (𝐽21 = 0, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='01 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' In this study, we make use of the three simulations with 𝑣str = 1𝜎rms because this is the most representative value available, as the volume fraction of streaming velocities peaks at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='8𝜎rms (AS21).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='3 Halo selection Given snapshots at 𝑧 = 15 from the three simulations with 𝑣str = 1 presented in AS21, we have selected 5 halos for each value of 𝐽21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Halo positions and masses were provided by the friends-of-friends (FoF) algorithm as described in that study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' The selection criteria for the halos was as follows: The halos identified by the FoF algorithm were sorted by their mass difference with Mav, the average minihalo mass above which minihalos become capable of cooling and forming stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' This average mass was defined in AS21, following Schauer et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' (2019), to be the minihalo mass above which more than 50% of minihalos can cool and form stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='1 AS21 report Mav at a range of redshifts between 𝑧 = 22 and 𝑧 = 14;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' here, we adopt their values at 𝑧 = 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' By sorting the halos in this way, we ensure that the halos that we eventually select will have masses close to Mav, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' that they are representative of the common case at that redshift.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' We considered a halo if it contained a cell denser than 𝜌th = 10−22 g cm−3 within a search radius Rsearch = 1 kpc in physical units from the halo’s central coordinate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Note that checking the H2 abundance is not necessary, as collapse to this density is not possible without a high H2 abundance outside of the atomically cooling halo scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' We check that the halo is sufficiently resolved i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' that the 16 cells per Jeans length criteria has not decreased as the cell sizes approach the maximum resolution of the cosmological simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' This process begins when the density reaches ∼ 10−20 g cm−3, so we reject halos including a cell above this density.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Note that this also ensures that a sink particle has not yet been formed within Rsearch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Lastly, we removed the halo from consideration if there were other dense objects in the vicinity by checking there were no cells above 𝜌th within the radius Rsearch/2 < r < Rsearch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' We performed this search throughout the simulation cube until 5 suitable halos were selected for each 𝐽21 value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' The selected halo masses from each simulation are shown in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Mass-weighted mean temperatures and H2 abundances are plotted as a function of density for each halo in Figure 1 and radial distributions of enclosed gas and DM along with velocity information are shown in Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Projections of the initial density, temperature and H2 abundance distributions are visualised in Figures 3, 4 and 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Note that all of these figures show the state of the halos at the point at which we extract them from the AS21 simulations, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' prior to our zoom-in calculation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Our choice of selection criteria means that the same halos are not chosen for direct comparison between each simulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Rather, they are chosen to be most representative of the Universe at the given background LW field strength.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Direct comparison also has the drawback that individual halos will collapse at different redshifts depending on the LW field strength, whereas we exclusively select halos that become able to form stars at 𝑧 = 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 1 Note that Mav is typically around a factor of three larger than 𝑀min, the mass of the least massive minihalo with cool gas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' MNRAS 000, 1–13 (2020) 4 L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Prole 10 2 10 1 100 101 102 103 n [cm 3] 101 102 103 T [K] J21=0 10 2 10 1 100 101 102 103 n [cm 3] J21=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='01 10 2 10 1 100 101 102 103 n [cm 3] J21=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='1 halo 1 halo 2 halo 3 halo 4 halo 5 10 26 10 25 10 24 10 23 10 22 10 21 [g cm 3] 10 12 10 10 10 8 10 6 10 4 H2 10 26 10 25 10 24 10 23 10 22 10 21 [g cm 3] 10 26 10 25 10 24 10 23 10 22 10 21 [g cm 3] Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Summaries of the initial conditions for our simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Mass-weighted density profiles of temperature and H2 abundances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 102 104 106 Mgas [M ] J21=0 J21=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='01 J21=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='1 halo 1 halo 2 halo 3 halo 4 halo 5 103 105 107 MDM [M ] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='75 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='00 v /v 100 101 102 103 R [pc] 100 101 v/cs 100 101 102 103 R [pc] 100 101 102 103 R [pc] Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Summaries of the initial conditions for our simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Cumulative radial profiles of gas and DM mass and mass-weighted radial profiles of the ratio of rotational to total velocity (note the dotted line represents the value above which rotational component dominates the velocity) and ratio of velocity to sound speed i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Mach number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='4 Chemistry Collapse of primordial gas is closely linked to the chemistry involved (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Glover et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 2006;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Yoshida et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 2007b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Glover & Abel 2008;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Turk et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' We therefore use a fully time-dependent chemical network to model the gas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' We use the same chemistry and cooling as Wollenberg et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' (2020), which is described in the appendix of Clark et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' (2011), but with updated rate coefficients, as summarised in Schauer et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' The network has 45 chemical reactions to model primordial gas made up of 12 species: H, H+, H−, H+ 2 , H2, He, He+, He++, D, D+, HD and free electrons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Included in the network are: H2 cooling (including an approximate treatment of the effects of opacity), collisionally-induced H2 emission, HD cooling, ionisation and recombination, heating and cooling from changes in the chemical make-up of the gas and from shocks, compression and expansion of the gas, three-body H2 formation and heating from accretion luminosity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' For reasons of computational efficiency, the MNRAS 000, 1–13 (2020) Cosmological Lyman-Werner simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 5 500 pc Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Column-weighted density projections of the 2 kpc region around the 5 cosmological halos for each 𝐽21 value, taken from Schauer et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' (2021), which serve as the initial conditions of the high resolution follow-up simulations presented in this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' The halo numbers to compare with upcoming plots are indicated at the top of the figure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 500 pc Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Column-weighted temperature projections of the 2 kpc region around the 5 cosmological halos for each 𝐽21 value, taken from Schauer et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' (2021), which serve as the initial conditions of the high resolution follow-up simulations presented in this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' network switches off tracking of deuterium chemistry2 at densities above 10−16 g cm−3, instead assuming that the ratio of HD to H2 at these densities is given by the cosmological D to H ratio of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='6×10−5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' The adiabatic index of the gas is computed as a function of chemical composition and temperature with the Arepo HLLD Riemann solver.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' As in Schauer et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' (2021), we use a radiation field expected from massive Pop III stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' We use a blackbody spectrum at temperature 2 Note that HD cooling continues to be included in the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 105 K for energies below 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='6 eV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Above this energy, the flux is expected to drop due to absorption in the intergalactic medium, so we set the value of the radiation field to 0 above 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='6 eV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' We model the effects of H2 self-shielding using the TreeCol algorithm (Clark et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' MNRAS 000, 1–13 (2020) 6 L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Prole 500 pc Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Column-weighted H2 abundance projections of the 2 kpc region around the 5 cosmological halos for each 𝐽21 value, taken from Schauer et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' (2021), which serve as the initial conditions of the high resolution follow-up simulations presented in this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Total mass (DM and gas) as detected by the FoF algorithm within the selected halos from Schauer et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 𝐽21=0 𝐽21=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='01 𝐽21=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='1 halo Mtot [106 M⊙] 1 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='50 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='76 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='70 2 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='65 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='84 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='30 3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='81 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='30 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='70 4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='76 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='02 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='15 5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='96 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='91 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='90 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='5 Sink particles If the local Jeans length falls below the minimum cell size of the mesh, artificial collapse occurs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' We insert sink particles into the sim- ulations at a threshold density to prevent artificial collapse when the simulation reaches its maximum refinement level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Our sink particle implementation was introduced in Wollenberg et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' (2020) and Tress et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' A cell is converted into a sink particle if it satisfies three criteria: 1) it reaches a threshold density;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 2) it is sufficiently far away from pre-existing sink particles so that their accretion radii do not overlap;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 3) the gas occupying the region inside the sink is gravitation- ally bound and collapsing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Likewise, for the sink particle to accrete mass from surrounding cells it must meet two criteria: 1) the cell lies within the accretion radius;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 2) it is gravitationally bound to the sink particle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' A sink particle can accrete up to 90% of a cell’s mass, above which the cell is removed and the total cell mass is transferred to the sink.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Increasing the threshold density for sink particle creation dras- tically increases the degree of fragmentation, reducing the masses of subsequent secondary protostars (LP22).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Ideally, sink particles would be introduced when the gas becomes adiabatic at ∼ 10−4 g cm−3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' This is currently computationally challenging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' However, the zero metallicity protostellar model of Machida & Nakamura (2015) suggests that stellar feedback kicks in to halt collapse at ∼ 10−6 g cm−3 (1018 cm−3), so we choose this as our sink particle creation density.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' The initial accretion radius of a sink particle 𝑅sink is chosen to be the Jeans length 𝜆J corresponding to the sink particle creation density and corresponding temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' At 10−6 g cm−3, we take the temperature value from LP22 of 4460 K to give a Jeans length of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='67 × 1012 cm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' We set the minimum cell length to fit 8 cells across the sink particle in compliance with the Truelove condition, by setting a minimum cell volume 𝑉min = (𝑅sink/4)3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' The minimum gravitational softening length for cells and sink particles 𝐿soft is set to 𝑅sink/4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' The increasing radius of a Pop III protostar is dependent on both its mass and accretion rate (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Omukai & Palla 2003;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Hosokawa & Omukai 2009;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Hosokawa et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Hirano et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' We allow the sink particle accretion radius 𝑅sink to vary throughout its accretion history, using on-the-fly calculations of the stellar radius using an approximate analytic formulae originally derrived by Stahler et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' (1986): 𝑅sink = 26𝑅⊙ � 𝑀 𝑀⊙ �0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='27 � �𝑀 10−3𝑀⊙yr−1 �0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='41 , (5) where we smooth �𝑀 by taking the average over the time taken to accrete 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='1M⊙.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' The sink particle treatment also includes the accretion luminosity feedback from Smith et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' (2011), as implemented in Arepo by Wollenberg et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Stellar internal luminosity is not included in this work because the Kelvin-Helmholtz times of the protostars formed in our simulations are much longer than the period simulated, meaning that none will have yet begun nuclear burning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' We also include the treatment of sink particle mergers used in LP22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 3 INITIAL HALO CHARACTERISTICS Figures 1 and 2 show some of the characteristics of the halos at the time when they were selected for zoom-in follow-up simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' MNRAS 000, 1–13 (2020) Cosmological Lyman-Werner simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 7 The top panel of Figure 1 shows that the gas has already been shock heated as it fell into the gravitational potential well of the DM halo, allowing it to produce the necessary H2 to cool and collapse to higher densities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' The bottom panel shows the destructive impact of the LW radiation field on the H2 abundance in the outer regions of the halo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' The H2 abundance in the central regions reaches the same peak value of 4 × 10−4 due to self-shielding from the radiation field, however this happens at increasingly higher densities for larger 𝐽21 values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Figure 2 shows that within ∼ 100 pc, the gas velocity is dominated by its rotational component.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' The gas surrounding the halos is highly supersonic due to large-scale streaming, which cascades down to become subsonic at scales smaller than ∼ 10 pc, although we show in Section 4 that the velocities do not remain subsonic once the gas collapses further.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' From the density projections of Figure 3, halo sizes range from ∼ 100−200 pc, their shapes range from roughly spherical to structurally complex, and each is embedded within a network of filamentary structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Figure 4 shows that these webs of filaments are a few hundred kelvin hotter than the ∼ 10 K gas that surrounds them, with the central halo reaching ∼ 1000 − 2000 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Figure 5 shows how the background H2 abundance is reduced drastically by the LW background, with significant levels of H2 only appearing in the central regions of the halo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 4 FURTHER COLLAPSE We continue the collapse down to densities of 10−6 g cm−3 before inserting sink particles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Figure 6 shows temperature and chemical abundance profiles as a function of density, just before the formation of the first sink particle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' At densities above 10−15 g cm−3, three-body H2 formation raises its abundance to over 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='1 within the molecular core.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' The abundance of free electrons falls off with density as the gas recombines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Figure 7 shows radial profiles of density and velocity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' The rotational component of the gas velocity remains dominated by rotation only down to scales of ∼ 1 pc, below which infall begins to dominate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' The velocities remain supersonic down to scales of 10−6 pc (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='2 au).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Halos experiencing a LW field are capable of achieving higher velocities, likely due to the higher halo mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' The left hand side of Figure 8 compares the temperature, density, accretion timescale and H2 abundance radial profiles for the differ- ent 𝐽21 values just before the formation of the first sink particle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Stronger LW fields require higher mass halos for star formation, as their stronger gravitational potential is capable of shock-heating the gas to higher temperatures, which increases the H2 formation rate enough to build up a high column density of H2 in order to self-shield the collapsing regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Despite larger halo masses and shock-heating to higher initial temperatures, the density profile of the gas remains unaffected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Following Abel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' (2002) and O’Shea & Norman (2008), we have also estimated the accretion timescale (𝑡acc = M/ �M) where �M = 4𝜋𝑅2𝜌(𝑅)𝑣rad(𝑅) (6) is our estimate of the mass inflow rate at radius 𝑅 and 𝜌(𝑅) and 𝑣rad(𝑅) are the mass-weighted density and radial velocity within shells at radius 𝑅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' For 𝑡acc > 104 yr, there is very little difference between the runs, suggesting that the accretion rate at early times is not influenced by the LW field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' For larger 𝑡acc, we do see a difference between different runs, but this manifests as an increased scatter in 𝑡acc at a given 𝑅 rather than any systematic dependence on the LW field strength.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' The right hand side of Figure 8 shows the gas as it transitions into a fully molecular state within the inner ∼ 10−2 pc core corresponding to the density regime above 10−15 g cm−3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Halos illuminated gy a LW background have higher gas kinetic energies owing to their larger masses, which promotes a larger molecular core.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' However, the increasing photodissociation rate with increasing 𝐽21 acts against this mechanism, reducing the H2 formation rate and shrinking the molecular core.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' This results in the 𝐽21 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='01 halos having molecular cores that extend to larger radii than the 𝐽21 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='1 halos, despite both having larger molecular cores than the 𝐽21 = 0 halos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' As we only have access to these 3 values of 𝐽21, the value where the core size is maximised could lie anywhere between 0 < 𝐽21 < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' The importance of the molecular core is shown in Figure 9, which shows the total mass in sink particles at the end of the simulations as functions of the halo mass, virial temperature and mass within different regimes of the collapse, just before the maximum density was reached.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' The mass in sink particles grows almost linearly with the mass within the inner molecular core with H2 abundances above 10−1 as log10(Msinks) = (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='85±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='11)log10(MH2>10−1) + (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='14±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='24).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' (7) Due to competing effects between halo mass and H2 photodissoci- ation rate, the mass in sink particles is not correlated with the total halo mass or the subsequent mass that initially falls into its potential well with H2 abundances > 10−4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' However, we have only followed the accretion for 300 yr, which corresponds to a free-fall time for gas at density 10−14 g cm−3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Gas below this density will not have been accreted within the simulation time, while gas above this density re- sides within the molecular core (see Figure 6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' It is therefore unclear if the relationship between accretion and mass of the molecular core would remain if the simulations ran for a longer time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' If the relation- ship does hold, we speculate that increasing the size of the streaming velocities between gas and DM may have a greater effect on the IMF, since this also increases halo masses without the counteracting ef- fects of H2 dissociation (Tseliakhovich & Hirata 2010;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Greif et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 2011;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Hirano et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Schauer et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 2019, AS21).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 5 FRAGMENTATION AND THE IMF The IMF of Pop III stars is determined by the fragmentation be- haviour of the disc around the initial central object and the subse- quent accretion onto fragments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Density projections of the inner 650 AU of the halos are shown in Figure 10, while Figure 11 shows the evolution of the total number of sink particles formed, the total mass in sink particles and highest mass sink particle in each halo as a function of time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' While the halos from the simulation without a LW background typically yield less fragmentation, the overall fragmen- tation behaviour is stochastic, as expected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' The total mass accreted onto sinks is typically higher in the halos illuminated by a LW field due to their higher halo mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Figure 12 shows the IMF at a time 300 yr after the formation of the first sink particle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' The peak of the IMF positioned at ∼0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='2- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='5 M⊙ shows little dependence on the LW strength, likely because the positive influence of larger halo masses on the molecular core is regulated by the increasing photodissociation rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' We also show the evolution of the cumulative IMFs in time, which converge by the end of the simulations for the 𝐽21=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='01 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='1 suites.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' The left side of Figure 13 compares the combined cumulative IMFs for different 𝐽21 values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' While the high mass end of the IMFs are nearly identical between the different 𝐽21 values, the low mass end of the IMFs show variance due to the random and stochastic nature of ejection events for low mass objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Assuming these low mass objects (< 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='075M⊙) do not go on to accrete significant mass, they will remain as brown MNRAS 000, 1–13 (2020) 8 L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Prole 105 108 1011 1014 1017 n [cm 3] 103 T [K] J21=0 105 108 1011 1014 1017 n [cm 3] J21=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='01 105 108 1011 1014 1017 n [cm 3] J21=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='1 halo 1 halo 2 halo 3 halo 4 halo 5 10 3 10 2 10 1 100 H2 10 7 10 6 10 5 HD 10 19 10 16 10 13 10 10 10 7 10 4 [g cm 3] 10 11 10 9 10 7 10 5 H + 10 19 10 16 10 13 10 10 10 7 10 4 [g cm 3] 10 19 10 16 10 13 10 10 10 7 10 4 [g cm 3] Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Mass-weighted temperature, H2, HD and H+ abundances versus density at a time shortly after the formation of the first sink particle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' (Note that the HD abundance is only tracked self-consistently up to 𝜌 = 10−16 g cm−3;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' above this, we simply fix the HD/H2 ratio at 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='6×10−5, as explained in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 10 22 10 16 10 10 10 4 [g cm 3] J21=0 J21=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='01 J21=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='1 halo 1 halo 2 halo 3 halo 4 halo 5 5 10 15 |v| [km s 1] 10 5 0 vr [km s 1] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='75 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='00 |v /v| 10 7 10 5 10 3 10 1 101 103 R [pc] 10 1 100 101 |v|/cs 10 7 10 5 10 3 10 1 101 103 R [pc] 10 7 10 5 10 3 10 1 101 103 R [pc] Figure 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Radial distribution of cumulative gas mass and mass-weighted radial profiles of radial velocity, ratio of rotational to total velocity (note the dotted line represents the value above which rotational component dominates the velocity) and ratio of velocity to sound speed, taken at a time shortly after the formation of the first sink particle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' MNRAS 000, 1–13 (2020) Cosmological Lyman-Werner simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 9 Figure 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Left: Comparison of the mass-weighted temperature, density and and H2 abundance profiles between the 𝐽21 values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Right: Zoom-in of the transition to fully molecular core, showing the total kinetic energy within radial shells, mass weighted H2 photodissociation heating rate and H2 abundance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 4 6 8 Mhalo [M ] 1e6 5 10 15 20 25 30 35 40 Msinks [M ] 2000 3000 4000 Tvir [K] 50000 100000 150000 MH2 > 10 4 [M ] J21=0 J21=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='01 J21=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='1 10 20 30 40 MH2 > 10 1 [M ] M0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='85 Figure 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Total mass in sinks at the end of the simulations versus halo mass, virial temperature, mass within the halo with H2 abundance > 10−4 and mass within the molecular core with H2 abundance > 10−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' The size of the markers is scaled with the halo mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' dwarfs and never sustain nuclear fusion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' The right side of the plot shows the cumulative IMFs if the brown dwarfs are ignored.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Here, the IMFs fit well within each other’s regions of uncertainty, which are the standard deviations from the cumulative IMFs of the 5 halos individually.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' The overlap between the regions of uncertainty indicates that the LW strength does not significantly affect the primordial IMF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' As the range of background LW field strengths tested here covers the most likely values from literature, we infer that the IMF for Pop III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='2 stars is not significantly different from the initial population of Pop III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='1 stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' We also show the IMF from LP22 as a dotted line, which was produced from idealised halos as opposed the cosmological initial conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' The cosmological halos produced a bi-modal distribution with a significant population of brown dwarfs that the idealised halos are missing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Even when ignoring the brown dwarfs, the cosmological initial conditions have yielded distributions tending to lower mass pre-stellar cores.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' MNRAS 000, 1–13 (2020) 10 L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Prole 250 AU Figure 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Column-weighted density projections of the inner 650 AU of the halos at a time 300 yr after the formation of the first sink particle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Sink particles are represented as red dots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 0 10 20 30 Nsink J21=0 J21=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='01 J21=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='1 halo 1 halo 2 halo 3 halo 4 halo 5 100 101 Mtot [M ] 0 100 200 300 t [yr] 10 1 100 101 Mmax [M ] 100 200 300 t [yr] 100 200 300 t [yr] Figure 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Number of sink particles formed, total mass in sinks, largest mass sink particle and median mass of sink particles as a function of time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 6 CAVEATS Aside from the obvious uncertainties in the ΛCDM model on which this work and the work of AS21 are based on, there are a number of caveats to note.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' The LW fields we have used in this study assume a population of massive Pop III stars already exists.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' While previous studies do suggest that Pop III stars were massive, more recent work suggests that they may only grow to a few M⊙ (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Stacy & Bromm 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Wollenberg et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Prole et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 2022a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Jaura et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' In this scenario, significantly less LW radiation would be produced, however radiation from solar mass stars can inhibit H2 formation through the destruction of H−.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' The fields used in this study therefore represent the maximum effect Pop III stars can have on the the Pop III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='2 stars that follow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Since the effects of the LW fields appear to be insignificant, it is likely that this result also represents the outcome for weaker fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' We have assumed that the pre-stellar core radius grows as Equation 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' This process begins immediately after sink particle formation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' While this is predicted by stellar theory, it is unclear at what point the pre-stellar core would begin to expand, which may affect the accretion behaviour.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' MNRAS 000, 1–13 (2020) Cosmological Lyman-Werner simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 11 0 1 2 3 4 J21=0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='0 0 5 10 15 20 25 Nsink J21=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='0 M/Mtot 10 4 10 3 10 2 10 1 100 101 M [M ] 0 2 4 6 8 J21=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='1 10 4 10 3 10 2 10 1 100 101 M [M ] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='0 10 yr 50 yr 100 yr 200 yr 300 yr Figure 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Left: combined IMFs of sink particles for the different the 𝐽21 val- ues, Right: Cumulative IMFs of the combined sink particles for the different the 𝐽21 values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' We have neglected the presence of primordial magnetic fields in this study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' While the findings of Prole et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' (2022b) suggest that primordial magnetic fields make little difference to the primordial IMF due to their small-scale structure, the field is still active, with other recent studies finding that magnetic fields indeed lead to higher mass Pop III stars (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Saad et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Hirano & Machida 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Stacy et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 7 CONCLUSIONS The results of cosmological simulations by AS21 show that increas- ing the background LW field strength increases the average halo mass required for star formation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' These simulations ran up to a maximum density of 10−19 g cm−3, hence the knock-on effects on the Pop III IMF were unclear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' In this investigation, we have performed follow-up simulations of 5 halos for each of the 𝐽21 = 0, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='01 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='1 LW field strengths, resolving the pre-stellar core density of 10−6 g cm−3 before inserting sink particles and following the fragmentation behaviour for hundreds of years further.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' We have found that the mass accreted onto sinks by the end of the simulations is proportional to the mass within the ∼ 10−2 pc molecular core, which is not correlated to the initial mass of the halo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' As such, the IMF shows little dependence on the LW field strength.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' We also find no clear relationship between the estimated accretion time of gas lying further out within the halo and the LW field strength, suggesting that the LW field is unlikely to influence the development of the IMF at later times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' As the range of background LW field strengths tested here covers the most likely values from literature, we conclude that the IMF for so-called Pop III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='2 stars is not significantly different from that of the initial popu- lation of Pop III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='1 stars, although we cannot rule out greater effects in the small subset of halos that are illuminated by LW fields much stronger than the average value (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='g Latif et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' In a future paper, we will explore the effects of increasing the streaming veloci- ties between the gas and dark matter on the Pop III IMF, as this has been shown to increase halo masses through a different mechanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' ACKNOWLEDGEMENTS This work used the DiRAC@Durham facility managed by the Institute for Computational Cosmology on behalf of the STFC DiRAC HPC Facility (www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='dirac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='uk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' The equipment was funded by BEIS capital funding via STFC capital grants ST/P002293/1, ST/R002371/1 and ST/S002502/1, Durham University and STFC operations grant ST/R000832/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' DiRAC is part of the National e- Infrastructure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' The authors gratefully acknowledge the Gauss Centre for Super- computing e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' (www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='gauss-centre.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='eu) for supporting this project by providing computing time on the GCS Supercomputer SuperMUC at Leibniz Supercomputing Centre (www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='lrz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='de) under project pr53ka.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' AS was partially supported by NSF grant AST-1752913.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' RSK and SCOG acknowledge computing resources provided by the Ministry of Science, Research and the Arts (MWK) of the State of Baden-Württemberg through bwHPC and the German Research Foundation (DFG) through grant INST 35/1134-1 FUGG and for data storage at SDS@hd through grant INST 35/1314-1 FUGG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' RSK and SCOG acknowledge financial support from DFG via the collaborative research center (SFB 881, Project-ID 138713538) “The Milky Way System” (subprojects A1, B1, B2 and B8), from the Hei- delberg Cluster of Excellence “STRUCTURES” in the framework of Germany’s Excellence Strategy (grant EXC-2181/1, Project-ID 390900948) and from the European Research Council (ERC) via the ERC Synergy Grant “ECOGAL” (grant 855130).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' RSK furthermore thanks the German Ministry for Economic Affairs and Climate Ac- tion for funding in the project “MAINN” (funding ID 50OO2206).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' We also acknowledge the support of the Supercomputing Wales project, which is part-funded by the European Regional Development Fund (ERDF) via Welsh Government.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' DATA AVAILABILITY The data underlying this article will be shared on reasonable request to the corresponding author.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' REFERENCES Abel T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Bryan G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Norman M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2002, Science (New York, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='), 295, 93 Abel T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Wise J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Bryan G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2007, The Astrophysical Journal, 659, L87 Agarwal B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Khochfar S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2015, Monthly Notices of the Royal Astronomical Society, 446, 160 Agarwal B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Khochfar S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Johnson J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Neistein E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Dalla Vecchia C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Livio M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2012, Monthly Notices of the Royal Astronomical Society, 425, 2854 Agarwal B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Dalla Vecchia C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Johnson J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Khochfar S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Paardekooper J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2014, Monthly Notices of the Royal Astronomical Society, 443, 648 Agarwal B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Smith B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Glover S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Natarajan P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Khochfar S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2016, Monthly Notices of the Royal Astronomical Society, 459, 4209 Ahn K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Shapiro P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Iliev I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Mellema G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Pen U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='-L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2009, The Astro- physical Journal, 695, 1430 Alvarez M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Bromm V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Shapiro P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2006, The Astrophysical Journal, 639, 621 Beers T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Christlieb N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2005, Annual Review of Astronomy and Astro- physics, 43, 531 MNRAS 000, 1–13 (2020) 12 L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Prole 10 4 10 3 10 2 10 1 100 101 Msink [M ] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='2 M/Mtot 10 1 100 101 Msink [M ] Msink > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='075M J21=0 J21=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='01 J21=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='1 Prole et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 2022b Figure 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Left: Comparison of the cumulative IMFs at 300 yr after the formation of the first sink particle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Right: Cumulative IMFs ignoring brown dwarfs (< 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='075M⊙).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' Bromm V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Loeb A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2003, The Astrophysical Journal, 596, 34 Bromm V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Coppi P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Larson R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2002, The Astrophysical Journal, 564, 23 Chuzhoy L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Kuhlen M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Shapiro P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2007, The Astrophysical Journal, 665, L85 Clark P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Glover S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Smith R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Greif T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Klessen R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Bromm V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2011, Science, 331, 1040 Clark P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Glover S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Klessen R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2012, Monthly Notices of the Royal Astronomical Society, 420, 745 Collaboration P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2020, Astronomy and Astrophysics, 641, A6 Couchman H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Rees M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 1986, Monthly Notices of the Royal Astro- nomical Society, 221, 53 Dijkstra M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Haiman Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Mesinger A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Wyithe J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2008, Monthly Notices of the Royal Astronomical Society, 391, 1961 Draine B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Bertoldi F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 1996, The Astrophysical Journal, 468, 269 Eisenstein D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Hu W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 1998, The Astrophysical Journal, 496, 605 Field G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Somerville W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Dressler K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 1966, Annual Review of Astron- omy and Astrophysics, 4, 207 Frebel A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Norris J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2015, Annual Review of Astronomy and Astrophysics, 53, 631 Glover S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2015, Monthly Notices of the Royal Astronomical Society, 451, 2082 Glover S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Abel T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2008, Monthly Notices of the Royal Astronomical Society, 388, 1627 Glover S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Savin D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Jappsen A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='-K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2006, The Astrophysical Journal, 640, 553 Greif T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', White S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Klessen R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Springel V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2011, The Astrophys- ical Journal, 736, 147 Greif T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Bromm V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Clark P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Glover S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Smith R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Klessen R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Yoshida N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Springel V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2012, Monthly Notices of the Royal Astronomical Society, 424, 399 Hahn O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Abel T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2011, Monthly Notices of the Royal Astronomical Society, 415, 2101 Haiman Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Thoul A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Loeb A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 1996a, The Astrophysical Journal, 464, 523 Haiman Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Thoul A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Loeb A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 1996b, The Astrophysical Journal, 464, 523 Haiman Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Rees M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Loeb A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 1997, The Astrophysical Journal, 476, 458 Haiman Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Abel T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Rees M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2000, The Astrophysical Journal, 534, 11 Hartwig T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Glover S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Klessen R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Latif M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Volonteri M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2015a, Monthly Notices of the Royal Astronomical Society, 452, 1233 Hartwig T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Clark P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Glover S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Klessen R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Sasaki M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2015b, The Astrophysical Journal, 799, 114 Heitmann K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2008, Computational Science and Discovery, 1, 015003 Hirano S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Machida M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2022, The Astrophysical Journal, 935, L16 Hirano S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Hosokawa T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Yoshida N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Umeda H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Omukai K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Chiaki G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Yorke H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2014, The Astrophysical Journal, 781, 60 Hirano S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Hosokawa T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Yoshida N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Omukai K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Yorke H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2015, Monthly Notices of the Royal Astronomical Society, 448, 568 Hirano S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Hosokawa T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Yoshida N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Kuiper R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2017, Science, 357, 1375 Hosokawa T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Omukai K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2009, The Astrophysical Journal, 691, 823 Hosokawa T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Omukai K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Yorke H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2012, The Astrophysical Journal, 756, 93 Jaura O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Glover S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Wollenberg K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Klessen R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Geen S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Haem- merlé L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2022, Monthly Notices of the Royal Astronomical Society, 512, 116 Johnson J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Khochfar S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2011, Monthly Notices of the Royal Astronomical Society, 413, 1184 Kitayama T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Yoshida N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Susa H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Umemura M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2004, The Astrophysical Journal, 613, 631 Kulkarni M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Visbal E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Bryan G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2021, The Astrophysical Journal, 917, 40 Latif M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Schleicher D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Schmidt W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Niemeyer J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2013, Monthly Notices of the Royal Astronomical Society, 436, 2989 Latif M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Schleicher D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Bovino S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Grassi T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Spaans M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2014, The Astrophysical Journal, 792, 78 Ma C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Bertschinger E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 1995, The Astrophysical Journal, 455, 7 Machacek M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Bryan G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Abel T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2001, The Astrophysical Journal, 548, 509 Machida M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Doi K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2013, Monthly Notices of the Royal Astronomical Society, 435, 3283 Machida M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Nakamura T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2015, Monthly Notices of the Royal Astro- nomical Society, 448, 1405 Matsuoka Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2019, The Astrophysical Journal, 872, L2 Monaghan J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 1992, Annual Review of Astronomy and Astrophysics, 30, 543 Mortlock D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2011, Nature, 474, 616 O’Shea B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Norman M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2008, The Astrophysical Journal, 673, 14 Oh S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Haiman Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2002, The Astrophysical Journal, 569, 558 Omukai K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2001, The Astrophysical Journal, 546, 635 Omukai K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Palla F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2003, The Astrophysical Journal, 589, 677 Prole L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Clark P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Klessen R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Glover S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2022a, Monthly Notices of the Royal Astronomical Society, 510, 4019 Prole L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Clark P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Klessen R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Glover S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Pakmor R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2022b, Monthly Notices of the Royal Astronomical Society, 516, 2223 Regan J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Johansson P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Wise J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2014, The Astrophysical Journal, 795, 137 Saad C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Bromm V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', El Eid M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2022, Monthly Notices of the Royal MNRAS 000, 1–13 (2020) Cosmological Lyman-Werner simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' 13 Astronomical Society, 516, 3130 Schaerer D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2002, Astronomy & Astrophysics, 382, 28 Schauer A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Regan J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Glover S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Klessen R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2017, Monthly Notices of the Royal Astronomical Society, 471, 4878 Schauer A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Glover S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Klessen R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Ceverino D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2019, Monthly Notices of the Royal Astronomical Society, 484, 3510 Schauer A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Glover S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Klessen R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Clark P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2021, Monthly Notices of the Royal Astronomical Society, 507, 1775 Shang C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Bryan G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Haiman Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2010, Monthly Notices of the Royal Astronomical Society, 402, 1249 Skinner D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Wise J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2020, Monthly Notices of the Royal Astronomical Society, 492, 4386 Smith R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Glover S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Clark P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Greif T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Klessen R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2011, Monthly Notices of the Royal Astronomical Society, 414, 3633 Spaans M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Silk J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2006, The Astrophysical Journal, 652, 902 Springel V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2010, Monthly Notices of the Royal Astronomical Society, 401, 791 Stacy A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Bromm V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2013, Monthly Notices of the Royal Astronomical Society, 433, 1094 Stacy A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Pawlik A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Bromm V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Loeb A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2014, Monthly Notices of the Royal Astronomical Society, 441, 822 Stacy A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', McKee C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Lee A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Klein R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Li P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2022, Monthly Notices of the Royal Astronomical Society, 511, 5042 Stahler S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Palla F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Salpeter E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 1986, The Astrophysical Journal„ 302, 90 Starkenburg E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2017, Monthly Notices of the Royal Astronomical Society, 471, 2587 Stecher T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Williams D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 1967, The Astrophysical Journal, 149, L29 Sugimura K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Omukai K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Inoue A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2014, Monthly Notices of the Royal Astronomical Society, 445, 544 Susa H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2019, The Astrophysical Journal, 877, 99 Tanaka S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Chiaki G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Tominaga N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Susa H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2017, The Astrophysical Journal, 844, 137 Tegmark M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Silk J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Rees M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Blanchard A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Abel T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Palla F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 1997, The Astrophysical Journal, 474, 1 Trenti M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Stiavelli M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2009, The Astrophysical Journal, 694, 879 Tress R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Smith R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Sormani M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Glover S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Klessen R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Mac Low M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='-M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Clark P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2020, Monthly Notices of the Royal Astro- nomical Society, 492, 2973 Tseliakhovich D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Hirata C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2010, Physical Review D, 82, 083520 Turk M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Clark P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Glover S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Greif T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Abel T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Klessen R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Bromm V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2011, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content='726:55,2011, 726 Visbal E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Haiman Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Terrazas B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Bryan G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Barkana R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2014, Monthly Notices of the Royal Astronomical Society, 445, 107 Whalen D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Abel T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Norman M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2004, The Astrophysical Journal, 610, 14 Wise J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Abel T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Turk M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Norman M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Smith B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2012, Monthly Notices of the Royal Astronomical Society, 427, 311 Wolcott-Green J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Haiman Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Bryan G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2011, Monthly Notices of the Royal Astronomical Society, 418, 838 Wollenberg K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Glover S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Clark P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Klessen R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2020, Monthly Notices of the Royal Astronomical Society, 494, 1871 Yoshida N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Abel T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Hernquist L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Sugiyama N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2003, The Astrophysical Journal, 592, 645 Yoshida N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Oh S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Kitayama T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Hernquist L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2007a, The Astrophysical Journal, 663, 687 Yoshida N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Omukai K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', Hernquist L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=', 2007b, The Astrophysical Journal, 667, L117 This paper has been typeset from a TEX/LATEX file prepared by the author.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} +page_content=' MNRAS 000, 1–13 (2020)' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtAyT4oBgHgl3EQf6vrQ/content/2301.00828v1.pdf'} diff --git a/MtFJT4oBgHgl3EQfzS0r/vector_store/index.pkl b/MtFJT4oBgHgl3EQfzS0r/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..8f76a1d109821e261a1c114627e30bb2f3da7e4d --- /dev/null +++ b/MtFJT4oBgHgl3EQfzS0r/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4351c13dc146e6e995050b3a2d9240fda34239fa1fdf38fbcf595533bb10bc60 +size 114227 diff --git a/O9A0T4oBgHgl3EQfC_9-/content/tmp_files/2301.01997v1.pdf.txt b/O9A0T4oBgHgl3EQfC_9-/content/tmp_files/2301.01997v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..b4ce213d136980d3ae7c7424f76d053406804d3c --- /dev/null +++ b/O9A0T4oBgHgl3EQfC_9-/content/tmp_files/2301.01997v1.pdf.txt @@ -0,0 +1,1322 @@ +arXiv:2301.01997v1 [cs.LG] 5 Jan 2023 +1 +Data-Driven Inverse Reinforcement Learning for +Expert-Learner Zero-Sum Games +Wenqian Xue, Bosen Lian, Jialu Fan, Tianyou Chai, and Frank L. Lewis +Abstract—In this paper, we formulate inverse reinforcement +learning (IRL) as an expert-learner interaction whereby the +optimal performance intent of an expert or target agent is +unknown to a learner agent. The learner observes the states +and controls of the expert and hence seeks to reconstruct the +expert’s cost function intent and thus mimics the expert’s optimal +response. Next, we add non-cooperative disturbances that seek to +disrupt the learning and stability of the learner agent. This leads +to the formulation of a new interaction we call zero-sum game +IRL. We develop a framework to solve the zero-sum game IRL +problem that is a modified extension of RL policy iteration (PI) +to allow unknown expert performance intentions to be computed +and non-cooperative disturbances to be rejected. The framework +has two parts: a value function and control action update based +on an extension of PI, and a cost function update based on +standard inverse optimal control. Then, we eventually develop +an off-policy IRL algorithm that does not require knowledge +of the expert and learner agent dynamics and performs single- +loop learning. Rigorous proofs and analyses are given. Finally, +simulation experiments are presented to show the effectiveness +of the new approach. +I. INTRODUCTION +For an agent or system suffering from disturbances, its con- +trol input, as a defender, desires to complete a specified control +mission by determining control policy to reject the influences +of antagonistic input, i.e., non-cooperative disturbances that +intend to disrupt the mission. This is known as zero-sum games +or min-max problems [1], [2]. In real-world applications, agent +dynamics may be unknown. In order to make such an agent +perform in the target trajectories exhibited by a target agent +with optimal policy, optimal control theory assumes that the +performance cost function is known, and RL [3], [4] based +optimal tracking control methods [5]–[7] compute optimal +policy by observing states and control actions without knowing +the system dynamics, where a standard iterative form for RL +is known as policy iteration (PI) [3], [4], [8], [9]. However, +in real interactions, operators may not know the appropriate +specified cost functions, i.e., the weights on states and inputs. +As a result, these optimal control methods may not obtain the +expected control performance or even be used. +Wenqian Xue, Jialu Fan, Tianyou Chai are with the State Key Laboratory of +Synthetical Automation for Process Industries and International Joint Research +Laboratory of Integrated Automation, Northeastern University, Shenyang +110819, China. (e-mail: xuewenqian23@163.com, fanjialu@gmail.com, ty- +chai@mail.neu.edu.cn). +Bosen Lian and Frank L. Lewis are with the UTA Research Insti- +tute, the University of Texas at Arlington, Texas 76118, USA. (email: +bosen.lian@mavs.uta.edu; lewis@uta.edu). +Instead of manually selecting cost function weights, many +efforts have been made on constructing cost function weights. +Inverse optimal control (IOC) and inverse RL (IRL) construct +cost function weights given system control behaviors. Some- +times they are referred to as the same thing [10]–[12], but they +may differ in structure and how they are applied [13]. +Assuming a stable control system, IOC constructs a cost +function concerning which the system behavior is optimal. +The cost function is constructed in the framework of Lyapunov +stability condition for continuous-time (CT) systems [14]–[17] +and discrete-time (DT) systems [18]–[20] where [20] considers +finite horizon. Online IOC methods to determine cost function +in the infinite and finite horizon are studied in [21], [22]. IOC +is also used to verify the effectiveness of the proposed control +laws in [23], [24]. These works do not consider min-max +or zero-sum games, but [25] does. They all require system +dynamics, which cannot be applied directly to systems with +unknown dynamics. +IRL generally reconstructs reward and cost functions from +expert demonstrations of the optimal policy. It is usually +applied to apprenticeship learning and imitation learning prob- +lems of Markov decision processes (MDPs) [12], [26]–[29] +where a learner seeks to imitate the demonstrations by learning +the unknown expert’s reward function from the observed +demonstrations. IRL methods construct reward function since +reward function is a more succinct, robust, and transferable +definition for the task than the policy mapping from states to +actions. Lyapunov stability is not necessarily considered here. +IRL has also been developed for trajectory tracking and +imitation problems of differential systems in [30], [31], where +[30] uses a bilevel structure (also see [26], [27], [32]). That is, +an optimal control problem is solved repeatedly in the inner +loop. This two-loop iteration is computationally expensive. All +of these works are model-based and do not consider min-max +or zero-sum games. The work [33] makes an effort for data- +driven control by estimating model parameters before adopt- +ing the model-based IRL method. Unlike them, without the +need for model identification, our previous studies [34], [35] +propose completely model-free IRL methods that use merely +system data, but not for zero-sum games. Our work [36] +considers zero-sum games but propose an IRL method using +a two-loop iteration structure and partial system dynamics. +This paper considers an expert-learner zero-sum game, that +is, a learner agent suffering from non-cooperative disturbances +with unknown dynamics expects to mimic the behaviors of the +expert agent of optimal policy. As the solution, we propose a +new interaction called zero-sum game IRL, namely a novel +data-driven off-policy IRL algorithm for expert-learner zero- + +2 +sum games of differential systems. It consists of a game +solution correction modified from the standard RL and a cost +function weight reconstruction using the standard IOC. Using +only the behavior data of the expert and learner, a learner +agent learns the unknown cost function objective and the +optimal control policy to mimic the expert’s behavior. This +algorithm does not need to know or identify system models +and performs a single-loop learning procedure without solving +optimal problems repeatedly in inner loops. Moreover, no +initial stabilizing policy is needed to start the iteration. The +properties and effectiveness of the proposed data-driven are +well-analyzed. +Notations. ∥·∥ is the Euclidean norm. In is n×n identity ma- +trix, and diag{a,b,..} is diagonal matrix with a,b,.. in diagonal +line. For a vector x = [x1, ··· , xn]T ∈ Rn, ˆx ≜ [x2 +1, 2x1x2, ···, +2x1xn, x2 +2, ···, 2xn−1xn, x2 +n]T. For a matrix A = {aij} ∈ Rm×n, +vec(A) ≜ [a11, a12, ···, a1n, a21, ···, am,n−1, amn]T. +II. IRL PROBLEM FORMULATION +We consider two dynamical agents. A target expert agent +exhibits the demonstrations optimally associated with an ex- +pert performance cost function. A learner agent attempts to +determine the unknown cost function objective of the expert +agent and mimic its behavior. The learner agent only knows +the target agent’s control actions and state behavior but does +not know its performance cost function and system dynamics. +A. Target optimal control +Consider a target expert agent +˙xT = AxT + BuT + DdT, +(1) +where xT ∈ Rn is the target state, uT ∈ Rm is the target input +and dT ∈ Rz is the non-cooperative disturbance. Matrices A, B, +and D have appropriate dimensions. The pair (A,B) is assumed +to be controllable. +According to [2], the input of target (1) is uT = −KTxT +that minimizes the following target performance cost function +against dT +VT(xT) = +� ∞ +t (xT +T QTxT + uT +TRTuT − γ2 +TdT +T dT)dτ, +(2) +where QT = QT +T > 0 and RT = RT +T > 0 are weights, γT > 0 is +attenuation factor. The input uT and the worst disturbance d∗ +T +are given by +uT = −KTxT = −R−1 +T BTPTxT, +(3a) +d∗ +T = LTxT = 1 +γ2 +T +DTPTxT, +(3b) +and form the Nash equilibrium +VT(xT)∗ = min +uT max +dT +� ∞ +t +rTdτ = xT +TPTxT +(4) +where rT = xT +TQTxT + uT +TRTuT − γ2 +TdT +T dT, and PT = PT +T > 0 +satisfies the target Bellman equation +(AxT + BuT + DdT)TPTxT + xT +TPT(AxT + BuT + DdT) ++ xT +TQTxT + uT +TRTuT − γ2 +TdT +T dT = 0, +(5) +and the target game algebraic Riccati equation (GARE) +ATPT + PTA+ QT − PTBR−1 +T BTPT + 1 +γ2 +T +PTDDTPT = 0. +(6) +The GARE guarantees the uniqueness of stabilizing optimal +control policy (3a) given the performance cost function (2). +B. Learner dynamics and IRL control problem +Consider a learner agent to be controlled +˙x = Ax+ Bu + Dd, +(7) +where x ∈ Rn, u ∈ Rm, d ∈ Rz are the learner’s state, control +input and disturbance, respectively. +Assumption 1. The target cost function VT (2) and the target +control policy in (3a) are unknown to the learner (7). That is, +the weights QT, RT, γT in VT, the optimal strategy KT in (3a), +the worst disturbance d∗ +T, LT and GARE solution PT are all +unknown. +Assumption 2. The learner knows the target behaviour data +xT, uT and dT. +Definition 1. Expert-Learner Zero-Sum Game. By using +the behaviour data of the expert (1) and the learner itself (7), +the learner desires to reconstruct the unknown performance +cost function (2) to exhibit the same control actions uT in +(3a) and states xT as the expert (1). +□ +The learner (7) will be stabilized and perform the same way +as the target (1) does if KT in (3a) is applied to the learner (7) +with bounded dT = d. Hence, our control goal is to determine +the unknown cost function objective (2) to produce the optimal +control input u∗ = −K∗x with K∗ = KT using only target data +of xT,uT,dT and learner data of x,u,d. +III. MODEL-BASED IRL FRAMEWORK +In this section, we develop a novel model-based IRL +framework for learner (7) to determine the cost function (2) +and use this knowledge to compute control input u(t), such +that its behavior trajectories of u(t),x(t) mimic the observed +target trajectories of uT(t),xT(t). In Section 5, we will finally +propose a data-driven IRL algorithm that does not need any +system dynamics. +A. Learner optimal control +Let us take a review of the zero-sum game [2] of the learner +(7) with an arbitrary given cost function +V(x) = +� ∞ +t (xT Qx+ uTRu − γ2dTd)dτ, +(8) +where Q = QT > 0, R = RT > 0, and γ > 0. The optimal input +uo and the worst dw are given by +uo = −Kx = −R−1BTPx, +(9) +dw = Lx = 1 +γ2 DTPx, +(10) + +3 +and (uo,dw) forms the Nash equilibrium +V ∗(x) = min +u max +d +� ∞ +t +rdτ = xTPx, +(11) +where r = xTQx+uTRu−γ2dTd, and P = PT > 0 satisfies the +following learner GARE +ATP+ PA+ Q− PBR−1BTP+ 1 +γ2 PDDTP = 0. +(12) +B. Expert-learner zero-sum game solution +We now present a theorem to show the conditions that the +solution to the expert-learner zero-sum game must satisfy. +Theorem 1. If the cost weights Q,R,γ and the solution P that +satisfy the GARE (12) also satisfy the following equation +(A− BKT)T P+P(A− BKT) ++Q+ 1 +γ2 PDDTP+ KT +T RKT = 0, +(13) +then, the corresponding control strategy K in (9) equals the +target strategy KT in (3a). +Proof: Rewrite (12) with KT in (3a) and K in (9) as +(A− BKT)TP+ P(A− BKT)+ Q+ 1 +γ2 PDDTP ++ KT +T RK + KTRKT − KTRK = 0. +(14) +By subtracting (14) from (13), we have +KT +T RKT − KT +T RK − KTRKT + KTRK += (KT − K)TR(KT − K) = 0. +(15) +Since R > 0, (15) concludes that K = KT . +□ +C. Learning rules for cost function and game control policy +To find the Q,R,γ,P satisfying Theorem 1, we select γ > 0 +and R > 0 and propose an iterative procedure based on +Theorem 1 so as to learn the weight Q, the game control +policy P, and consequently K in (9) and L in (10). +First, we apply a modified PI to correct P using (13). Set +current iteration step as i,i = 0,1,··· , and give the estimates Qi +and Li. Then the iterative form of (13), i.e., (16) in Algorithm +1 is presented below to obtain Pi. Then optimal control ((9) +and (10)) is used to update the strategy Ki+1 and Li+1 based +on the corrected Pi by (17a) and (17b), respectively. +Now we must update the cost function weight estimate Qi+1 +based on the corrected Pi. By IOC [15], taking the iterative +form of GARE (12) yields (18) in Algorithm 1 presented as +follows. +Remark 1. In Algorithm 1, step 4 is the standard IOC +computation based on Lyapunov stability condition. Note also +that if we set Qi = QT and KT = Ki in (16), then steps 2-3 are +the standard RL PI. As such, Algorithm 1 combines modified +PI with IOC to solve the IRL problem. +Algorithm 1 Model-based IRL algorithm for expert-learner +zero-sum games. +Step 1: Initialize with R > 0 and γ > 0, Q0 > 0, and L0 = 0, +and set i = 0. +Step 2: (Game policy correction) Update policy Pi by +(A− BKT)T Pi + Pi(A− BKT) += −Qi − KT +T RKT − γ2(Li)TLi. +(16) +Step 3: (Input update) Update control input and disturbance +gain based on (9) and (10) +ui+1 = −Ki+1x = −R−1BTPix, +(17a) +di+1 = Li+1x = 1 +γ2 DTPix. +(17b) +Step 4: (Cost function weight construction) Update Qi+1 by +Qi+1 =− ATPi − PiA ++ (Ki+1)TRKi+1 − γ2(Li+1)T Li+1. +(18) +Step 5: Stop if it converges. Otherwise, set i = i+1 and repeat +steps 2 to 4. +IV. ANALYSIS OF ALGORITHM 1 +The convergence, stability, and optimality of the proposed +Algorithm 1 are analyzed here. It is also shown that Algorithm +1 may not converge to a unique solution (Pi,Qi) even if all +solutions give the correct target strategy Ki = KT . +A. Convergence analysis +Theorem 2. i). With an initial Q0 such that 0 < Q0 ≤ ˆQ and +L0 = 0 where ˆQ > 0 is a solution to Theorem 1 associated with +the R > 0 and γ > 0, Algorithm 1 converges. ii). As i → ∞, the +solutions Qi,Pi,Ki,Li converge to Q∗,P∗,K∗,L∗ that satisfy +ATP∗ + P∗A+ Q∗−P∗BR−1BTP∗+ 1 +γ2 P∗DDTP∗ = 0, +(19a) +K∗ = KT = R−1BTP∗, +(19b) +L∗ = 1 +γ2 DTP∗. +(19c) +iii). The solutions Q∗,P∗,K∗,L∗ satisfy Theorem 1. +Proof: i). Convergence proof. First, we prove that Algorithm +1 solves an increasing sequence Qi for all i = 0,1,···. Substi- +tuting (17a) for Ki into (18) for Qi yields +ATPi−1 + Pi−1A = (Ki)T RKi − Qi − γ2(Li)TLi, +(20) +which can be rewritten as +(A− BKT)TPi−1 + Pi−1(A− BKT) += (Ki)TRKi − Qi − γ2(Li)T Li − (Ki)T RKT − KT +T RKi. +(21) +Subtracting (16) from (21) gives +(A− BKT)T (Pi−1 − Pi)+ (Pi−1 − Pi)(A− BKT) += (Ki − KT)TR(Ki − KT). +(22) +It follows from (Ki − KT )TR(Ki − KT ) ≥ 0 and Hurwitz +A − BKT that Pi−1 ≤ Pi holds for all iterations. Each pair of + +4 +(Pi,Qi+1) satisfies (18), and they uniquely correspond to each +other. This is followed by the known fact that Pi−1 ≤ Pi if +Qi ≤ Qi+1 [37]. Therefore, Qi+1 ≥ Qi > 0 holds for i = 0,1,···, +and Qi+1 = Qi holds if and only if KT = Ki+1. Note that +achieving KT = Ki+1 is the goal of the algorithm. +Now we show that Qi is bounded by an upper bound. Let +ˆQ > 0 and ˆP > 0 be a group of solution to Theorem 1. That +is +AT ˆP+ ˆPA+ ˆQ− ˆPBR−1BT ˆP+ 1 +γ2 ˆPDDT ˆP = 0, +(23a) +KT = R−1BT ˆP, ˆL = 1 +γ2 DT ˆP. +(23b) +Rewriting (23a) using (23b) yields +(A− BKT)T ˆP+ ˆP(A− BKT)+ ˆQ+ KT +T RKT + γ2ˆLT ˆL = 0. +(24) +If Qi + γ2(Li)TLi ≤ ˆQ+ γ2 ˆLT ˆL holds, then (16) and (24) will +solve 0 < Pi ≤ ˆP with Hurwitz A−BKT. With (3a), (17a) and +(23b), AREs (18) and (23a) can be rewritten as +(A− BKi+1)TPi + Pi(A− BKi+1) += −Qi+1 − (Ki+1)TRKi+1 − γ2(Li+1)T(Li+1), +(25a) +(A− BKi+1)T ˆP+ ˆP(A− BKi+1) += KT +T RKT − ˆQ− γ2ˆLT ˆL− (Ki+1)TRKT − KT +T RKi+1, +(25b) +respectively. Since (18) ensures Hurwitz A− BKi+1, subtract- +ing (25a) from (25b) and using 0 < Pi ≤ ˆP obtains +(A− BKi+1)T ( ˆP− Pi)+ ( ˆP− Pi)(A− BKi+1) += (Qi+1 + γ2(Li+1)TLi+1)− ( ˆQ+ γ2 ˆLT ˆL) ++ (Ki+1 − KT)TR(Ki+1 − KT) ≤ 0. +(26) +Therefore, Qi+1 + γ2(Li+1)T Li+1 ≤ ˆQ+ γ2ˆLT ˆL holds. +By deduction, it is inferred that initializing Algorithm 1 with +a Q0 such that 0 < Q0 ≤ ˆQ and L0 = 0, then Qi > 0,i = 0,1,··· +will be increasing with an upper bound. Therefore, Algorithm +1 converges. +ii). Converged solutions satisfy (19a), (19b), (19c). +Substituting (18) into (16) yields +ATPi + PiA− PiBR−1BTPi += ATPi+1 + Pi+1A− Pi+1BKT −KT +T BTPi+1 + KT +T RKT. +(27) +Taking Pi+1 = Pi = P∗ as converged value, (27) becomes +(KT − K∗)R(KT − K∗) = 0, +(28) +where K∗ = R−1BTP∗. Since R > 0, (28) implies KT = K∗, +which is exactly (19b). The converged P∗ produces the con- +verged L∗ using (17b) as shown in (19c) and the converged +Q∗ using (18) as shown in (19a). +iii). Converged solutions satisfy Theorem 1. +Rewriting (19a) with (19b) yields +(A− BKT)T P∗ + P∗(A− BKT)+ Q∗ ++ KT +T RKT + 1 +γ2 P∗DDTP∗ = 0, +(29) +which is exactly (13). Obviously, (19a) is exactly (12). There- +fore, Q∗,P∗,K∗ satisfy Theorem 1. +□ +B. Stability and optimality analysis +We now prove the stability of Algorithm 1 in Theorem 3, +and optimality and Nash equilibrium in Theorem 4 +Theorem 3. Each iteration of Algorithm 1 exponentially +stabilizes the learner agent (7) with d = 0. +Proof: Rewriting (16) with (3a) and (17a) yields +ATPi + PiA+ ˜Qi − PiBR−1BTPi + γ2(Li)TLi = 0. +(30) +where ˜Qi = Qi + (Ki+1 − KT)TR(Ki+1 − KT ). With (Ki+1 − +KT)T R(Ki+1 −KT) ≥ 0 and Qi > 0, then ˜Qi > 0. It is obvious +that Pi solved by (30) or equivalently (16) is a symmetrical +positive definite matrix satisfying +ATPi + PiA− PiBR−1BTPi + γ2(Li)T Li < 0, +(31) +and one has +˙V i(x,Pi) = xT(A− BKi+1)TPix+ xTPi(A− BKi+1)x +< −xTPiBR−1BTPix− γ2xT(Li)TLix < 0. +(32) +That is, Pi yields stabilizing Ki+1 by (17a) for learner (7) with +d = 0. +Considering (17a) and (31), Qi+1 in (18) satisfies +Qi+1 + γ2(Li+1)T Li+1 += −(ATPi + PiA− PiBR−1BTPi) > 0. +(33) +Using Qi+1 +γ2(Li+1)TLi+1 > 0 in (16) would still make (32) +hold for the next iteration. Therefore, provided Q0 > 0 (32) +will hold for all i = 0,1,···. +□ +Before optimality analysis of Algorithm 1, we now give a +lemma of importance which extends the idea of classic IOC +[15] to two-player zero-sum games. +Lemma 1. Consider the two-player learner agent (7) with +x(t0) = x0, t ≥ t0 and (8) and (11). Assume there exists a +positive definite symmetric matrix P ∈ Rn×n such that +ATP+ PA− PBR−1BTP+ 1 +γ2 PDDTP < 0. +(34) +Then, with the optimal feedback control input uo and the worst +disturbance dw such that +uo = −R−1BTPx, dw = 1 +γ2 DTPx, +(35) +and the cost function weight +Q = −(ATP+ PA− PBR−1BTP+ 1 +γ2 PDDTP), +(36) +the saddle point (uo,dw) makes the cost value function (8) +reach the Nash equilibrium +V(x0,uo,d) ≤ V(x0,uo,dw) ≤ V(x0,u,dw). +(37) +Proof: First, V(x) in (8) can be represented with P > 0 as +V(x) = xTPx ≥ 0, V(0) = 0. +(38) +It follows from (35) and (36) that H(x,uo,dw) = 0 [2] where +the Hamiltonian is +H(x,u,d) =xTQx+ uTRu − γ2dTd + (Ax+ Bu + Dd)TPx ++ xTP(Ax+ Bu + Dd). +(39) + +5 +One writes +H(x,u,d) = H(x,u,d)− H(x,uo,dw) += (u − uo)R(u − uo)− γ2(d − dw)T (d − dw), +(40) +and hence +H(x0,uo,d) ≤ H(x0,uo,dw) ≤ H(x0,u,dw). +(41) +Based on [2], we obtain the conclusion (37). +□ +Theorem 4. The converged solutions Q∗,P∗,K∗,L∗ obtained +by Algorithm 1 shown in Theorem 2 yield Nash equilibrium +of the value function V(x) in (8) such that +V(x0,u∗,d) ≤ V(x0,u∗,d∗) ≤ V(x0,u,d∗), +(42) +where u∗ = −K∗x and d∗ = L∗x. +Proof: It follows from Theorem 1 that Qi > 0 holds for all +i = 0,1,···. Thus one has the converged Q∗ > 0 and +ATP∗ + P∗A− P∗BR−1BTP∗ + 1 +γ2 (P∗)TDDTP∗ < 0, +(43) +from (19a), which means that the converged P∗ satisfies (34) +in Lemma 1. Also, the converged control strategy K∗ in (19b) +and disturbance gain L∗ in (19c) satisfy (35) in Lemma 1. This +indicates that (41) also holds for u∗ and d∗, namely the Nash +equilibrium (42) holds. +□ +C. Non-uniqueness of solution +In fact, the Q∗,R,γ,P∗ satisfying (19a)-(19c) that explain +the same strategy K∗ = KT may not be unique and can be +different from the actual target values QT,RT,γT,PT shown +in (3b) and (6). This multi-solution phenomenon is known +as the ill-posedness property, which is well-analyzed for DT +ARE in [38] and coupled ARE in [39]. In the next result, +we characterize the relationship between QT,RT,γT ,PT, and +Q∗,R,γ,P∗ for CT GARE and show the conditions for the +occurrence of this phenomenon. +Theorem 5. Recall QT, RT, γT, PT satisfying (6) and (3b), +and let Qo, Ro, Po satisfy +BTPo = RoR−1 +T BTPT, +(44a) +Qo + ATPo + PoA− KT +T RoKT + 1 +γ2 +T +PTDDTPT − 1 +γ2 P∗DDTP∗ += 0, +(44b) +where Ro = RT −R. Then any Q∗ = QT −Qo and P∗ = PT −Po +satisfy (19a)-(19c). +Proof: Subtracting (44b) from (6) and using (3b) yields +AT(PT − Po)+ (PT − Po)A+ (QT − Qo) +− KT +T (RT − Ro)KT + 1 +γ2 P∗DDTP∗ = 0. +(45) +Using P∗ = PT − Po, Ro = RT − R, and R > 0 in (44a) gives +K∗ = R−1BTP∗ = R−1 +T BTPT = KT, +(46) +which is (19b). Substituting it into (45) yields (19a) and (19c). +This proves the relationship between the obtained solution +Q∗,R,γ,P∗ and the expert’s QT,RT,γT ,PT. We observe that +Po, Ro, Qo satisfying (44a) and (44b) can be nonzero. That +is, Q∗,R,γ,P∗ associate optimally with the same strategy as +QT,RT,γT,PT, i.e., KT = K∗, but QT ̸= Q∗, RT ̸= R, γT ̸= γ. +Therefore, there could be multiple solutions to (19a) to gen- +erate a K∗ in (19b) equal to the target KT in (3a). +□ +The following corollary shows a special case of the Q∗,R,γ +of Theorem 5 which gives V(x)∗ = cVT(xT)∗. +corollary 1. With scalar c > 0, any Q∗ = cQT, R = cRT, γ = +√cγT would yield V(x)∗ = cVT(xT)∗ in (4) and (11), and they +optimally associate with the same K∗ as the expert such that +K∗ = KT in (19b) and (3a). +Proof: Bring such Q∗,R,γ into (19a), since QT,RT,γT satisfy +(6), then one has P∗ = cPT and K∗ = KT . Then, using this +result in (11) for V(x)∗ and comparing it with VT(xT)∗ in (4) +shows that V(x)∗ = cVT(xT)∗. +□ +V. DATA-DRIVEN OFF-POLICY IRL ALGORITHM +Algorithm 1 relies on the system dynamics A,B,D and the +target strategy KT . To remove this requirement, we develop +here a data-driven IRL algorithm for expert-learner zero-sum +games based on Algorithm 1, which only requires the data +xT,uT,dT of the target agent (1) and x,u,d of the learner +agent (7). To accomplish this, we use two techniques similar +to integral RL [6], [8] and off-policy RL [6], [40]. The end +result is Algorithm 2. +A. Data-driven game policy correction +In order to update Pi, Ki+1 and Li+1 in (16)-(17b) using +only target data xT,uT,dT, inspired by the idea of off-policy +integral RL technique [6], [40], rewrite (1) as +˙xT = AxT − BKixT + DdT + B(uT + KixT). +(47) +Using (47) and (16) one writes +˙xT +T PixT + xT +TPi ˙xT += (AxT − BKixT)T PixT + xT +TPi(AxT − BKixT) ++ 2(uT + KixT)TBTPixT + 2dT +T DTPixT += −xT +TQixT − xT +TKT +T RKTxT − γ2xT +T(Li)T LixT ++ 2xT +TKT +T BTPixT + 2uT +TBTPixT + 2dT +T DTPixT. +(48) +Using (17a), (17b), (3a) in (48) and integrating both sides from +t to t + T, where T > 0 is the integral time period, obtains +(50) in Algorithm 2 to be presented, by which Pi, Ki+1 and +Li+1 are updated simultaneously. Similar to [6], probing noise +e is added to uT, i.e., uT = −KTxT + e, for the persistence +of excitation condition in merely learning process. It is not +needed anymore when solutions converge. Unlike (16)-(17b), +(50) does not need the knowledge of agent dynamics A,B,D +or the strategy KT in (3a). + +6 +B. Data-driven cost function weight reconstruction +In order to update Qi+1 in (18) using only data x,u,d, +inspired by the integral RL technique [8], multiplying both +sides of (18) by x and adding and subtracting terms uTBTPix +and dTDTPix, (18) can be rewritten as +xTQi+1x =− [(Ax+ Bu + Dd)TPix+ xTPi(Ax+ Bu + Dd) +− xT(Ki+1)TRKi+1x+ γ2xT(Li+1)T Li+1x +− 2uTBTPix− 2dTDTPix], +(49) +where u can be generated by any stabilizing policy and d +can be random and different from dT in the learning process. +Substituting (7), (17a) and (17b) into (49) and integrating it +gives (51) in Algorithm 2 below. Using Pi, Ki+1 and Li+1 +obtained by (50), (51) equivalently replaces (18) in Algorithm +1 to calculate Qi+1 without knowing any system dynamics. +Algorithm 2 Data-driven off-policy IRL algorithm for expert- +learner zero-sum games. +Step 1: Initialize with R > 0, γ > 0, Q0 > 0, and L0 = 0, +and collect system data generated by any stabilizing +control input u. Set i = 0. +Step 2: (Game policy correction) Update policy Pi, control +strategy Ki+1 and disturbance gain Li+1 by +xT(t + T)TPixT(t + T)− xT(t)TPixT(t) +− 2 +� t+T +t +eTRKi+1xTdτ − 2γ2 +� t+T +t +dT +T Li+1xTdτ += − +� t+T +t +� +xT +TQixT + (uT − e)TR(uT − e) ++ γ2xT +T (Li)TLixT +� +dτ. +(50) +Step 3: (Cost function weight construction) Update cost +function weight Qi+1 by +� t+T +t +xT Qi+1xdτ += −[x(t + T)TPix(t + T)− x(t)TPix(t) +− +� t+T +t +(2uTRKi+1x+ xT(Ki+1)TRKi+1x)dτ +−γ2 +� t+T +t +(2dTLi+1x− xT(Li+1)TLi+1x)dτ]. +(51) +Step 4: Stop if it converges. Otherwise, set i = i+1 and repeat +steps 2 to 4, . +Remark 2. Algorithm 2 does not need system dynamics. +Moreover, it iterates in single loop indicated by i, no inner- +loop iteration is needed. +C. Implementation and Analysis of Algorithm 2 +In order to show how to implement data-driven IRL Al- +gorithm 2 using only data, first, consider Kronecker product +aTWb = (bT ⊗ aT)vec(W) for (50) and define the following +operators, +OxT xT = [x2 +T1,2xT1xT2,...,x2 +T2,2xT2xT3,...,x2 +Tn]T; +dxT xT = [OxT xT (t + T)− OxT xT (t),..., +OxT xT (t + lT)− OxT xT (t + (l − 1)T)]T; +IxT xT = [ +� t+T +t +OxT xT dτ,..., +� t+lT +t+(l−1)T OxT xT dτ]T; +IxT uT = [ +� t+T +t +xT ⊗ uTdτ,..., +� t+lT +t+(l−1)T xT ⊗ uTdτ]T ; +IxT dT = [ +� t+T +t +xT ⊗ dTdτ,..., +� t+lT +t+(l−1)T xT ⊗ dTdτ]T ; +IxT e = [ +� t+T +t +xT ⊗ edτ,..., +� t+lT +t+(l−1)T xT ⊗ edτ]T; +Φp = [dxT xT ,−2IxT e(In ⊗ R),−2γ2IxT dT ]T; +ri = xT +TQixT + (uT − e)TR(uT − e)+ γ2xT +T(Li)T LixT; +Ψi +p = −[ +� t+T +t +ridτ,..., +� t+lT +t+(l−1)T ridτ]T; +ˆPi = [Pi +11,Pi +12,...,Pi +22,Pi +23,...,Pi +nn]T, +(52) +where l is the group number of collected data and should be +l ≥ n(n+1) +2 ++ nm + nz. Using batch least squares method [8], +[40], [41], ˆPi, Ki+1, Li+1 can be calculated by +� +( ˆPi)T ,vec(Ki+1)T,vec(Li+1)T �T=(ΦT +pΦp)−1ΦT +pΨi +p. +(53) +Similarly, for (51), we define +Oxx = [x2 +1,2x1x2,...,x2 +2,2x2x3,...,x2 +n]T; +dxx = [Oxx(t + T)− Oxx(t),..., +Oxx(t + kT)− Oxx(t + (k − 1)T)]T ; +ˆqi = [Qi +11,Qi +12,...,Qi +22,Qi +23,...,Qi +nn]T; +Φq = Ixx = [ +� t+T +t +Oxxdτ,..., +� t+kT +t+(k−1)T Oxxdτ]T ; +Ii+1 +q +(t) = +� t+T +t +(2uTRKi+1x+ xT(Ki+1)TRKi+1x)dτ ++ γ2 +� t+T +t +(2dTLi+1x− xT(Li+1)TLi+1x)dτ +Ψi+1 +q += −dxx ˆPi + [Ii+1 +q +(t),...,Ii+1 +q +(t + (k − 1)T)]T , +(54) +where k is the group number of collected data and should be +k ≥ n(n+1) +2 +. Then, Qi+1 can be uniquely solved by +ˆqi+1 = (ΦT +q Φq)−1ΦT +q Ψi+1 +q +. +(55) +By using (53) and (55), we solve Pi, Qi+1, Ki+1, Li+1 in a +data-driven mode. +Each step of Algorithm 1 yields a unique solution. Algo- +rithm 2 is developed based on Algorithm 1. To illustrate that +the solution obtained by Algorithm 2 estimates the solution +obtained by Algorithm 1, we show that equations (53) and +(55) yield unique solutions in the next result. + +7 +Theorem 6. If there exist lo > 0, ko > 0, for all l ≥ lo and +k ≥ ko, +rank([IxT xT ,IxT uT ,IxT dT ]) = n(n + 1) +2 ++ nm+ nz, +(56a) +rank(Ixx) = n(n + 1) +2 +, +(56b) +then, (53) and (55) solve unique solution, respectively. +Proof: First, we show that (53) solves unique solution. This +is aiming to show that +ΦpΩ = 0 +(57) +has only the trivial solution Ω = 0. Now, we prove Ω = 0 +by contradiction. Assume Ω = [XT +v ,Y T +v ,ZT +v ]T ∈ R +n(n+1) +2 ++nm+nz +is a nonzero solution of (57), where Xv ∈ R +n(n+1) +2 +, Yv ∈ Rmn, +Zv ∈ Rnz. Then, Xv,Yv,Zv uniquely determine matrices X,Y,Z +by Xv = ˆX, Yv = vec(Y) and Zv = vec(Z), respectively, where +X is a symmetrical matrix. +Define +Inx = [ +� t+T +t +xT ⊗ xTdτ,..., +� t+kT +t+(k−1)T xT ⊗ xTdτ]T. +(58) +Integrating (48) from t to t + T gives +ΦpΩ = Inxvec(E)+ 2IxT uT vec(G)+ 2IxTdT vec(F)= 0, (59) +where +E = ATX + XA− KT +T RY −YT RKT, +(60a) +G = BTX − RY, +(60b) +F = DTX − γ2Z. +(60c) +Since E is a symmetrical matrix, one has Inxvec(E) = IxT xT ˆE. +Using this in (59) yields +ΦpΩ = [IxT xT ,2IxT uT ,2IxT dT ] + + +ˆE +vec(G) +vec(F) + + = 0. +(61) +Under (56a), we know that [Ixx,Ixu,Ixd] has full column rank, +and thus (61) has only the solution ˆE = 0, vec(G) = 0 and +vec(F) = 0. That is, +ATX + XA− KT +T RY −Y TRKT = 0, +(62a) +BTX = RY, +(62b) +DTX = γ2Z. +(62c) +Since A − BKT is Hurwitz, substituting (62b) and (62c) into +(62a) gives X = 0. This implies that Y = 0 and Z = 0 due to +R > 0 and γ2 > 0. In summary, we have Ω = 0. However, this +conflicts with the assumption that Ω is nonzero. Therefore, it +concludes that under (56a), (55) solves unique solution. +Second, from the integral RL work [8], we conclude that +when (56b) holds for (51), Qi+1 in (51) can be uniquely +determined by (55) with collected data. +□ +VI. SIMULATION +We show three simulation experiments, a first one of the +data-driven Algorithm 2 to show its performance, a com- +parison simulation with the bilevel IRL method in [36] to +show the reduction of iteration steps of Algorithm 2, and +a second comparison simulation with the RL-based optimal +tracking control method in [6] to show the improvement of +control performance with the cost function weights correction +of Algorithm 2. +A. Simulation result of Algorithm 2 +The system dynamics information of the target (1) and the +learner (7) for simulation is +A = +� +−1 +2 +2.2 +1.7 +� +,B = +� +0 +3 +� +,D = +� +1 +0 +� +. +(63) +For the target agent (1), the actual target cost function objec- +tive (2) consists of QT = diag{8,12},RT = 2I1,γT = 3. The +disturbance is dT = 0.003rand(1). The expert’s LT, KT and PT +are +KT = [1.9869,3.5779],LT = [0.4162,0.1472], +PT = +� 3.7459 +1.3246 +1.3246 +2.3853 +� +. +(64) +For the learner, the behaviour strategy to generate data +is Kb = [1.2129, +2.2812], and the disturbance is d = +0.003rand(1). To start Algorithm 2, the initial weights for cost +function, initial disturbance gain L0, and integral time period +T are given by +Q0 = diag{1,0.5},R = I1,γ = 40,L0 = [0, 0],T = 0.008s. +(65) +The Fig. 1(a) captures the iteration process from the initial +spot to the spot on ∥Ki+1−KT∥ ≤ 0.01. The final values of Ki, +Qi, Li, and Pi are K∗, Q∗, L∗, and P∗, respectively, as follows +K∗ = +� 1.9827 +3.5839 � +, +Q∗ = +� +2.2796 +2.6670 +2.6670 +6.0151 +� +, +L∗ = 10−3 × +� +0.4021 +0.4131 +� +, +P∗ = +� 0.6441 +0.6622 +0.6622 +1.1968 +� +, +(66) +where K∗ closely approximates the target KT in (64) with +∥K∗ − KT∥ = 0.0073, while Q∗, L∗ and P∗ are not equal to +QT,LT and PT in (64), respectively. This is the multiple- +solution phenomenon. In Fig. 1(b), the learner’s state x can +mimic the trajectories of the target xT very well under the +learned K∗. Therefore, the proposed Algorithm 2 can learn an +appropriate cost function and optimal policy for the learner to +mimic the target trajectories. +B. Comparison simulation case 1 +This subsection shows the simulation results of the bilevel +IRL method in [36] that iterates in two-loop to show the +reduction of computational complexity in terms of iteration +steps. The same expert-learner system, initial parameters for + +8 +0 +10 +20 +30 +40 +50 +0 +1 +2 +||Ki − KT|| +0 +10 +20 +30 +40 +50 +9 +10 +11 +12 +||Qi − QT|| +0 +10 +20 +30 +40 +50 +0.44095 +0.441 +0.44105 +0.4411 +||Li − LT|| +0 +10 +20 +30 +40 +50 +Update steps i +(a) +3.4 +3.6 +||P i − PT|| +0 +0.5 +1 +1.5 +2 +Time(s) +(b) +-20 +-10 +0 +10 +20 +x1 +x2 +xT1 +xT2 +Fig. 1. Convergence and imitation performance using Algorithm 2 +Algorithm 2 in (63)-(65) are used for this comparison method +1. +Fig. 2 also captures the iteration process from the initial +spot to the spot on ∥Ki+1 −KT∥ ≤ 0.01 as Fig. 1 to show the +difference in iteration steps of the two methods. The inner- +loop iteration figures are omitted since they are too many to +put here. In Fig. 2, the final values of K j,Qj,Lj, and P j of +the outer-loop iterations are +K∗ = +� +1.9822 +3.5691 +� +, +Q∗ = +� 2.3186 +2.6974 +2.6974 +6.0506 +� +, +L∗ = 10−3 × +� 0.4053 +0.4130 � +, +P∗ = +� 0.6486 +0.6607 +0.6607 +1.1897 +� +. +(67) +where K∗ approximates the target KT in (64) with ∥K∗−KT∥ = +0.01. Table I shows that the total iteration steps of the method +is 3370, including 587 outer-loop updates (See Fig. 2) and +2783 inner-loop updates, while Algorithm 2 iterates 51 steps +in total (See Fig. 1(a)). The time of the learning process of +Algorithm 2 is 4.08s, while that of the comparison method 1 is +169.936s. It is proportional to the amount of utilized collected +data. Algorithm 2 uses 510 groups of data, and comparison +method 1 uses 21242 groups of data. Therefore, Algorithm 2 +costs much fewer data and time than the bilevel comparison +method 1. +0 +100 +200 +300 +400 +500 +600 +0 +1 +2 +||Kj − KT|| +0 +100 +200 +300 +400 +500 +600 +8.5 +9 +9.5 +10 +||Qj − QT|| +0 +100 +200 +300 +400 +500 +600 +0.441 +0.4411 +||Lj − LT|| +0 +100 +200 +300 +400 +500 +600 +Outer-loop update steps j +3.4 +3.6 +||P j − PT|| +Fig. 2. Convergence of K j,Qj,Lj, and Pj using the comparison method 1 +TABLE I +ITERATION STEPS AND LEARNING TIME OF ALGORITHM 2 AND THE +COMPARISON METHOD 1 +Methods +Total updates +Learning time +Algorithm 2 +51 +4.08s +Comparison method 1 +3370 +169.936s +C. Comparison simulation case 2 +In this subsection, the typical RL-based optimal tracking +control method [6] for linear disturbed systems, which com- +putes optimal control policy given cost function weights, is +simulated to show the advantage of Algorithm 2 in control +performance by computing both optimal control policy and +cost function weights. +The same system and cost weights shown in (63)-(65) and +discount factor α = 0.9 are used. The obtained optimal control +law is u∗ = −[1.1760 1.9139 1.0044 1.7639][xT,rT]T, and the +corresponding imitation performance in Fig. 3 is not as good +as that of Algorithm 2 in Fig. 1(b). By evenly sampling the +trajectory data, the imitation performance of the two methods +is quantified by the error index defined as follows +Te = 1 +n +n +∑ +i=1 +� +1 +a +a +∑ +k=1 +|xi(kT)− xTi(kT)|2 +where n = 2, a = 250, and T = 0.008s. As shown in Table II, +Te of Algorithm 2 is much smaller than that of the comparison +method 2. The reason is that Algorithm 2 can correct the +given cost function weights when it is inappropriate, but the +comparison method 2 cannot. Algorithm 2 thus obtains much +better imitation performance. +TABLE II +IMITATION INDEX OF ALGORITHM 2 AND THE COMPARISON METHOD 2 +Methods +Error index Te +Algorithm 2 +0.0162 +Comparison method 2 +1.4461 + +9 +0 +0.2 +0.4 +0.6 +0.8 +1 +1.2 +1.4 +1.6 +1.8 +2 +-20 +-10 +0 +10 +20 +Fig. 3. Imitation performance of learner’s x to target xT using the comparison +method 2 +VII. CONCLUSION +This paper proposes a novel data-driven off-policy IRL +approach to determine both cost function and optimal con- +trol policy to stabilize a learner agent suffering from non- +cooperative disturbances by mimicking a target agent’s tra- +jectories using data of both agents. The proposed approach +does not need any system dynamics and guarantees stability, +Nash optimality, and imitation performance with single-loop +iteration. The rigorous theoretical proofs and simulation ex- +periments verify its effectiveness. +REFERENCES +[1] T. Bas¸ar and P. Bernhard, H-infinity optimal control and related minimax +design problems: a dynamic game approach. +Springer Science & +Business Media, 2008. +[2] F. L. Lewis, D. Vrabie, and V. Syrmos, Optimal Control. +John Wiley +& Sons, Inc., Hoboken, NJ, USA., pages 444–453, 2012. +[3] S. R. S. and B. A. G., Reinforcement learning: An introduction. +MIT +Press, Cambridge, USA., pages 73–88, 1998. +[4] F. L. Lewis and D. Vrabie, “Reinforcement learning and adaptive +dynamic programming for feedback control,” IEEE Circ. Syst. Mag., +vol. 9, no. 3, pp. 32–50, 2009. +[5] L. R. G. Carrillo and K. Vamvoudakis, “Deep-learning tracking for +autonomous flying systems under adversarial inputs,” IEEE Trans. +Aerosp. Electron. Syst., vol. 56, no. 2, pp. 1444–1459, 2019. +[6] H. Modares, F. L. Lewis, and Z. Jiang, “H∞ tracking control of com- +pletely unknown continuous-time systems via off-policy reinforcement +learning,” IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 10, pp. +2550–2562, 2015. +[7] B. Kiumarsi, F. L. Lewis, and Z. Jiang, “H∞ control of linear discrete- +time systems: Off-policy reinforcement learning,” Automatica, vol. 78, +pp. 144–152, 2017. +[8] H. Modares and F. L. Lewis, “Linear quadratic tracking control of +partially-unknown continuous-time systems using reinforcement learn- +ing,” IEEE Trans. Autom. Control, vol. 59, no. 11, pp. 3051–3056, 2014. +[9] D. Kleinman, “On an iterative technique for riccati equation computa- +tions,” IEEE Trans. Autom. Control, vol. 13, no. 1, pp. 114–115, 1968. +[10] X. Chen, M. Monfort, B. D. Ziebart, and P. Carr, “Adversarial inverse +optimal control for general imitation learning losses and embodiment +transfer.” in Conf. Uncertain. Artif. Intell., 2016, pp. 1–10. +[11] R. Self, K. Coleman, H. Bai, and R. Kamalapurkar, “Online observer- +based inverse reinforcement learning,” arXiv:2011.02057., 2020. +[12] S. Levine and V. Koltun, “Continuous inverse optimal control with +locally optimal examples,” arXiv preprint arXiv:1206.4617, 2012. +[13] N. Ab Azar, A. Shahmansoorian, and M. Davoudi, “From inverse +optimal control to inverse reinforcement learning: A historical review.” +Annu. Rev. Control, vol. 50, pp. 119–138, 2020. +[14] R. E. Kalman, “When is a linear control system optimal?” J. Basic Eng., +vol. 86, no. 1, pp. 51–60, 1964. +[15] W. M. Haddad and V. Chellaboina, Nonlinear dynamical systems and +control: A Lyapunov-based approach. +Princeton University Press, +Princeton, USA, pages 519–540, 2011. +[16] M. Johnson, N. Aghasadeghi, and T. Bretl, “Inverse optimal control for +deterministic continuous-time nonlinear systems,” in Proc. 52nd IEEE +CDC, 2013, pp. 2906–2913. +[17] X. Cai and Z. Han, “Inverse optimal control of nonlinear systems with +structural uncertainty,” IEE Proc-C, vol. 152, no. 1, pp. 79–83, 2005. +[18] F. Ornelas, E. N. Sanchez, and A. G. Loukianov, “Discrete-time non- +linear systems inverse optimal control: A control lyapunov function +approach,” in Proc. IEEE Int. Conf. Control Autom., 2011, pp. 1431– +1436. +[19] E. N. Sanchez and F. Ornelas-Tellez, Discrete-time inverse optimal +control for nonlinear systems. +CRC Press, Boca Raton, USA., pages +67–107, 2017. +[20] T. L. Molloy, J. J. Ford, and T. Perez, “Finite-horizon inverse optimal +control for discrete-time nonlinear systems,” Automatica, vol. 87, pp. +442–446, 2018. +[21] ——, “Online inverse optimal control on infinite horizons,” in Proc. +57th IEEE CDC, 2018, pp. 1663–1668. +[22] ——, “Online inverse optimal control for control-constrained discrete- +time systems on finite and infinite horizons,” Automatica, vol. 87, pp. +1–8, 2020. +[23] Y. Park, “Inverse optimal and robust nonlinear attitude control of rigid +spacecraft,” Aerosp. Sci. Technol., vol. 28, no. 1, pp. 257–265, 2013. +[24] W. Luo, Y. Chu, and K. V. Ling, “Inverse optimal adaptive control for +attitude tracking of spacecraft,” IEEE Trans. Autom. Contr., vol. 50, +no. 11, pp. 1639–1654, 2005. +[25] D. Tsai, T. L. Molloy, and T. Perez, “Inverse two-player zero-sum +dynamic games,” in Pro. 2016 AUCC, 2016, pp. 192–196. +[26] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse reinforce- +ment learning,” in Proc. 21st. Conf. Mach. Learn. ICML, 2004, pp. 1–8. +[27] M. Wulfmeier, P. Ondruska, and I. Posner, “Maximum entropy deep +inverse reinforcement learning,” arXiv preprint arXiv:1507.04888, 2015. +[28] G. Neu and C. Szepesv´ari, “Apprenticeship learning using inverse +reinforcement learning and gradient methods,” pp. 295–302, 2012. +[29] B. D. Ziebart, A. Maas, J. Andrew Bagnell, and A. K. Dey, “Maximum +entropy inverse reinforcement learning,” in Pro. 2008 AAAI., 2008, pp. +1433–1438. +[30] S. Choi, S. Kim, and H. Jin Kim, “Inverse reinforcement learning control +for trajectory tracking of a multirotor uav,” Int. J. Control Autom. Syst., +vol. 15, no. 4, pp. 1826–1834, 2017. +[31] R. Self, M. Abudia, and R. Kamalapurkar, “Online inverse reinforcement +learning for systems with disturbances,” in Proc. 2020 ACC., 2020, pp. +1118–1123. +[32] K. Mombaur, A. Truong, and J. P. Laumond, “From human to humanoid +locomotion: An inverse optimal control approach,” Auton. Robots., +vol. 28, no. 3, pp. 369–383, 2010. +[33] R. Kamalapurkar, “Linear inverse reinforcement learning in continuous +time and space.” in Proc. 2018 ACC, 2018, pp. 1683–1688. +[34] W. Xue, K. P., J. Fan, L. B., T. Chai, and F. L. Lewis, “Inverse rein- +forcement learning in tracking control based on inverse optimal control,” +IEEE Trans. Cybern., doi: 10.1109/TCYB.2021.3061894, 2021. +[35] W. Xue, L. B., J. Fan, T. Chai, and F. L. Lewis, “Inverse reinforcement +learning in tracking control based on inverse optimal control,” IEEE +Trans. Neural Netw. Learn., doi: 10.1109/TNNLS.2021.3106635, 2021. +[36] B. Lian, W. Xue, F. L. Lewis, and T. Chai, “Online inverse reinforcement +learning for nonlinear systems with adversarial attacks,” Int. J. Robust +Nonlinear Control., vol. 31, no. 14, pp. 6646–6667, 2021. +[37] P. Lancaster and L. Rodman, Algebraic Riccati equations. +Clarendon +Press, Oxford, UK., pages: 231–243, 1995. +[38] M. Menner and M. N. Zeilinger, “Convex formulations and algebraic +solutions for linear quadratic inverse optimal control problems,” in Proc. +17th ECC, 2018, pp. 2107–2112. +[39] J. Inga, E. Bischoff, T. L. Molloy, M. Flad, and S. Hohmann, “Solution +sets for inverse non-cooperative linear-quadratic differential games.” +IEEE Control Syst. Lett., vol. 3, no. 4, pp. 871–876, 2019. +[40] Y. Jiang and Z. Jiang, “Computational adaptive optimal control for +continuous-time linear systems with completely unknown dynamics,” +Automatica, vol. 48, no. 10, pp. 2699–2704, 2012. +[41] Y. Jiang, J. Fan, T. Chai, J. Li, and F. L. Lewis, “Data-driven flotation +industrial process operational optimal control based on reinforcement +learning,” IEEE Trans. Ind. Informa., vol. 14, no. 5, pp. 1974–1989, +2018. + diff --git a/O9A0T4oBgHgl3EQfC_9-/content/tmp_files/load_file.txt b/O9A0T4oBgHgl3EQfC_9-/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..5c488d54df1f2ba8f1a2da7ef73538d8a0b2ee30 --- /dev/null +++ b/O9A0T4oBgHgl3EQfC_9-/content/tmp_files/load_file.txt @@ -0,0 +1,801 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf,len=800 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='01997v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='LG] 5 Jan 2023 1 Data-Driven Inverse Reinforcement Learning for Expert-Learner Zero-Sum Games Wenqian Xue, Bosen Lian, Jialu Fan, Tianyou Chai, and Frank L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Lewis Abstract—In this paper, we formulate inverse reinforcement learning (IRL) as an expert-learner interaction whereby the optimal performance intent of an expert or target agent is unknown to a learner agent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' The learner observes the states and controls of the expert and hence seeks to reconstruct the expert’s cost function intent and thus mimics the expert’s optimal response.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Next, we add non-cooperative disturbances that seek to disrupt the learning and stability of the learner agent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' This leads to the formulation of a new interaction we call zero-sum game IRL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' We develop a framework to solve the zero-sum game IRL problem that is a modified extension of RL policy iteration (PI) to allow unknown expert performance intentions to be computed and non-cooperative disturbances to be rejected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' The framework has two parts: a value function and control action update based on an extension of PI, and a cost function update based on standard inverse optimal control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Then, we eventually develop an off-policy IRL algorithm that does not require knowledge of the expert and learner agent dynamics and performs single- loop learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Rigorous proofs and analyses are given.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Finally, simulation experiments are presented to show the effectiveness of the new approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' INTRODUCTION For an agent or system suffering from disturbances, its con- trol input, as a defender, desires to complete a specified control mission by determining control policy to reject the influences of antagonistic input, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=', non-cooperative disturbances that intend to disrupt the mission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' This is known as zero-sum games or min-max problems [1], [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' In real-world applications, agent dynamics may be unknown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' In order to make such an agent perform in the target trajectories exhibited by a target agent with optimal policy, optimal control theory assumes that the performance cost function is known, and RL [3], [4] based optimal tracking control methods [5]–[7] compute optimal policy by observing states and control actions without knowing the system dynamics, where a standard iterative form for RL is known as policy iteration (PI) [3], [4], [8], [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' However, in real interactions, operators may not know the appropriate specified cost functions, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=', the weights on states and inputs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' As a result, these optimal control methods may not obtain the expected control performance or even be used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Wenqian Xue, Jialu Fan, Tianyou Chai are with the State Key Laboratory of Synthetical Automation for Process Industries and International Joint Research Laboratory of Integrated Automation, Northeastern University, Shenyang 110819, China.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' (e-mail: xuewenqian23@163.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='com, fanjialu@gmail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='com, ty- chai@mail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='neu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='cn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Bosen Lian and Frank L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Lewis are with the UTA Research Insti- tute, the University of Texas at Arlington, Texas 76118, USA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' (email: bosen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='lian@mavs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='uta.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='edu;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' lewis@uta.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='edu).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Instead of manually selecting cost function weights, many efforts have been made on constructing cost function weights.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Inverse optimal control (IOC) and inverse RL (IRL) construct cost function weights given system control behaviors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Some- times they are referred to as the same thing [10]–[12], but they may differ in structure and how they are applied [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Assuming a stable control system, IOC constructs a cost function concerning which the system behavior is optimal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' The cost function is constructed in the framework of Lyapunov stability condition for continuous-time (CT) systems [14]–[17] and discrete-time (DT) systems [18]–[20] where [20] considers finite horizon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Online IOC methods to determine cost function in the infinite and finite horizon are studied in [21], [22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' IOC is also used to verify the effectiveness of the proposed control laws in [23], [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' These works do not consider min-max or zero-sum games, but [25] does.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' They all require system dynamics, which cannot be applied directly to systems with unknown dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' IRL generally reconstructs reward and cost functions from expert demonstrations of the optimal policy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' It is usually applied to apprenticeship learning and imitation learning prob- lems of Markov decision processes (MDPs) [12], [26]–[29] where a learner seeks to imitate the demonstrations by learning the unknown expert’s reward function from the observed demonstrations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' IRL methods construct reward function since reward function is a more succinct, robust, and transferable definition for the task than the policy mapping from states to actions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Lyapunov stability is not necessarily considered here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' IRL has also been developed for trajectory tracking and imitation problems of differential systems in [30], [31], where [30] uses a bilevel structure (also see [26], [27], [32]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' That is, an optimal control problem is solved repeatedly in the inner loop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' This two-loop iteration is computationally expensive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' All of these works are model-based and do not consider min-max or zero-sum games.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' The work [33] makes an effort for data- driven control by estimating model parameters before adopt- ing the model-based IRL method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Unlike them, without the need for model identification, our previous studies [34], [35] propose completely model-free IRL methods that use merely system data, but not for zero-sum games.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Our work [36] considers zero-sum games but propose an IRL method using a two-loop iteration structure and partial system dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' This paper considers an expert-learner zero-sum game, that is, a learner agent suffering from non-cooperative disturbances with unknown dynamics expects to mimic the behaviors of the expert agent of optimal policy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' As the solution, we propose a new interaction called zero-sum game IRL, namely a novel data-driven off-policy IRL algorithm for expert-learner zero- 2 sum games of differential systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' It consists of a game solution correction modified from the standard RL and a cost function weight reconstruction using the standard IOC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Using only the behavior data of the expert and learner, a learner agent learns the unknown cost function objective and the optimal control policy to mimic the expert’s behavior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' This algorithm does not need to know or identify system models and performs a single-loop learning procedure without solving optimal problems repeatedly in inner loops.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Moreover, no initial stabilizing policy is needed to start the iteration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' The properties and effectiveness of the proposed data-driven are well-analyzed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Notations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' ∥·∥ is the Euclidean norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' In is n×n identity ma- trix, and diag{a,b,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='.} is diagonal matrix with a,b,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='. in diagonal line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' For a vector x = [x1, ··· , xn]T ∈ Rn, ˆx ≜ [x2 1, 2x1x2, ···, 2x1xn, x2 2, ···, 2xn−1xn, x2 n]T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' For a matrix A = {aij} ∈ Rm×n, vec(A) ≜ [a11, a12, ···, a1n, a21, ···, am,n−1, amn]T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' IRL PROBLEM FORMULATION We consider two dynamical agents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' A target expert agent exhibits the demonstrations optimally associated with an ex- pert performance cost function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' A learner agent attempts to determine the unknown cost function objective of the expert agent and mimic its behavior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' The learner agent only knows the target agent’s control actions and state behavior but does not know its performance cost function and system dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Target optimal control Consider a target expert agent ˙xT = AxT + BuT + DdT, (1) where xT ∈ Rn is the target state, uT ∈ Rm is the target input and dT ∈ Rz is the non-cooperative disturbance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Matrices A, B, and D have appropriate dimensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' The pair (A,B) is assumed to be controllable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' According to [2], the input of target (1) is uT = −KTxT that minimizes the following target performance cost function against dT VT(xT) = � ∞ t (xT T QTxT + uT TRTuT − γ2 TdT T dT)dτ, (2) where QT = QT T > 0 and RT = RT T > 0 are weights, γT > 0 is attenuation factor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' The input uT and the worst disturbance d∗ T are given by uT = −KTxT = −R−1 T BTPTxT,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' (3a) d∗ T = LTxT = 1 γ2 T DTPTxT,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' (3b) and form the Nash equilibrium VT(xT)∗ = min uT max dT � ∞ t rTdτ = xT TPTxT (4) where rT = xT TQTxT + uT TRTuT − γ2 TdT T dT,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' and PT = PT T > 0 satisfies the target Bellman equation (AxT + BuT + DdT)TPTxT + xT TPT(AxT + BuT + DdT) + xT TQTxT + uT TRTuT − γ2 TdT T dT = 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' (5) and the target game algebraic Riccati equation (GARE) ATPT + PTA+ QT − PTBR−1 T BTPT + 1 γ2 T PTDDTPT = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' (6) The GARE guarantees the uniqueness of stabilizing optimal control policy (3a) given the performance cost function (2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Learner dynamics and IRL control problem Consider a learner agent to be controlled ˙x = Ax+ Bu + Dd, (7) where x ∈ Rn, u ∈ Rm, d ∈ Rz are the learner’s state, control input and disturbance, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Assumption 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' The target cost function VT (2) and the target control policy in (3a) are unknown to the learner (7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' That is, the weights QT, RT, γT in VT, the optimal strategy KT in (3a), the worst disturbance d∗ T, LT and GARE solution PT are all unknown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Assumption 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' The learner knows the target behaviour data xT, uT and dT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Definition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Expert-Learner Zero-Sum Game.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' By using the behaviour data of the expert (1) and the learner itself (7), the learner desires to reconstruct the unknown performance cost function (2) to exhibit the same control actions uT in (3a) and states xT as the expert (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' □ The learner (7) will be stabilized and perform the same way as the target (1) does if KT in (3a) is applied to the learner (7) with bounded dT = d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Hence, our control goal is to determine the unknown cost function objective (2) to produce the optimal control input u∗ = −K∗x with K∗ = KT using only target data of xT,uT,dT and learner data of x,u,d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' MODEL-BASED IRL FRAMEWORK In this section, we develop a novel model-based IRL framework for learner (7) to determine the cost function (2) and use this knowledge to compute control input u(t), such that its behavior trajectories of u(t),x(t) mimic the observed target trajectories of uT(t),xT(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' In Section 5, we will finally propose a data-driven IRL algorithm that does not need any system dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Learner optimal control Let us take a review of the zero-sum game [2] of the learner (7) with an arbitrary given cost function V(x) = � ∞ t (xT Qx+ uTRu − γ2dTd)dτ, (8) where Q = QT > 0, R = RT > 0, and γ > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' The optimal input uo and the worst dw are given by uo = −Kx = −R−1BTPx, (9) dw = Lx = 1 γ2 DTPx, (10) 3 and (uo,dw) forms the Nash equilibrium V ∗(x) = min u max d � ∞ t rdτ = xTPx, (11) where r = xTQx+uTRu−γ2dTd, and P = PT > 0 satisfies the following learner GARE ATP+ PA+ Q− PBR−1BTP+ 1 γ2 PDDTP = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' (12) B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Expert-learner zero-sum game solution We now present a theorem to show the conditions that the solution to the expert-learner zero-sum game must satisfy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' If the cost weights Q,R,γ and the solution P that satisfy the GARE (12) also satisfy the following equation (A− BKT)T P+P(A− BKT) +Q+ 1 γ2 PDDTP+ KT T RKT = 0, (13) then, the corresponding control strategy K in (9) equals the target strategy KT in (3a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Proof: Rewrite (12) with KT in (3a) and K in (9) as (A− BKT)TP+ P(A− BKT)+ Q+ 1 γ2 PDDTP + KT T RK + KTRKT − KTRK = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' (14) By subtracting (14) from (13), we have KT T RKT − KT T RK − KTRKT + KTRK = (KT − K)TR(KT − K) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' (15) Since R > 0, (15) concludes that K = KT .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' □ C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Learning rules for cost function and game control policy To find the Q,R,γ,P satisfying Theorem 1, we select γ > 0 and R > 0 and propose an iterative procedure based on Theorem 1 so as to learn the weight Q, the game control policy P, and consequently K in (9) and L in (10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' First, we apply a modified PI to correct P using (13).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Set current iteration step as i,i = 0,1,··· , and give the estimates Qi and Li.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Then the iterative form of (13), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=', (16) in Algorithm 1 is presented below to obtain Pi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Then optimal control ((9) and (10)) is used to update the strategy Ki+1 and Li+1 based on the corrected Pi by (17a) and (17b), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Now we must update the cost function weight estimate Qi+1 based on the corrected Pi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' By IOC [15], taking the iterative form of GARE (12) yields (18) in Algorithm 1 presented as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Remark 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' In Algorithm 1, step 4 is the standard IOC computation based on Lyapunov stability condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Note also that if we set Qi = QT and KT = Ki in (16), then steps 2-3 are the standard RL PI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' As such, Algorithm 1 combines modified PI with IOC to solve the IRL problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Algorithm 1 Model-based IRL algorithm for expert-learner zero-sum games.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Step 1: Initialize with R > 0 and γ > 0, Q0 > 0, and L0 = 0, and set i = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Step 2: (Game policy correction) Update policy Pi by (A− BKT)T Pi + Pi(A− BKT) = −Qi − KT T RKT − γ2(Li)TLi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' (16) Step 3: (Input update) Update control input and disturbance gain based on (9) and (10) ui+1 = −Ki+1x = −R−1BTPix, (17a) di+1 = Li+1x = 1 γ2 DTPix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' (17b) Step 4: (Cost function weight construction) Update Qi+1 by Qi+1 =− ATPi − PiA + (Ki+1)TRKi+1 − γ2(Li+1)T Li+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' (18) Step 5: Stop if it converges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Otherwise, set i = i+1 and repeat steps 2 to 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' ANALYSIS OF ALGORITHM 1 The convergence, stability, and optimality of the proposed Algorithm 1 are analyzed here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' It is also shown that Algorithm 1 may not converge to a unique solution (Pi,Qi) even if all solutions give the correct target strategy Ki = KT .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Convergence analysis Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' i).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' With an initial Q0 such that 0 < Q0 ≤ ˆQ and L0 = 0 where ˆQ > 0 is a solution to Theorem 1 associated with the R > 0 and γ > 0, Algorithm 1 converges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' ii).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' As i → ∞, the solutions Qi,Pi,Ki,Li converge to Q∗,P∗,K∗,L∗ that satisfy ATP∗ + P∗A+ Q∗−P∗BR−1BTP∗+ 1 γ2 P∗DDTP∗ = 0, (19a) K∗ = KT = R−1BTP∗, (19b) L∗ = 1 γ2 DTP∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' (19c) iii).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' The solutions Q∗,P∗,K∗,L∗ satisfy Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Proof: i).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Convergence proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' First, we prove that Algorithm 1 solves an increasing sequence Qi for all i = 0,1,···.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Substi- tuting (17a) for Ki into (18) for Qi yields ATPi−1 + Pi−1A = (Ki)T RKi − Qi − γ2(Li)TLi, (20) which can be rewritten as (A− BKT)TPi−1 + Pi−1(A− BKT) = (Ki)TRKi − Qi − γ2(Li)T Li − (Ki)T RKT − KT T RKi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' (21) Subtracting (16) from (21) gives (A− BKT)T (Pi−1 − Pi)+ (Pi−1 − Pi)(A− BKT) = (Ki − KT)TR(Ki − KT).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' (22) It follows from (Ki − KT )TR(Ki − KT ) ≥ 0 and Hurwitz A − BKT that Pi−1 ≤ Pi holds for all iterations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Each pair of 4 (Pi,Qi+1) satisfies (18), and they uniquely correspond to each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' This is followed by the known fact that Pi−1 ≤ Pi if Qi ≤ Qi+1 [37].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Therefore, Qi+1 ≥ Qi > 0 holds for i = 0,1,···, and Qi+1 = Qi holds if and only if KT = Ki+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Note that achieving KT = Ki+1 is the goal of the algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Now we show that Qi is bounded by an upper bound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Let ˆQ > 0 and ˆP > 0 be a group of solution to Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' That is AT ˆP+ ˆPA+ ˆQ− ˆPBR−1BT ˆP+ 1 γ2 ˆPDDT ˆP = 0, (23a) KT = R−1BT ˆP, ˆL = 1 γ2 DT ˆP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' (23b) Rewriting (23a) using (23b) yields (A− BKT)T ˆP+ ˆP(A− BKT)+ ˆQ+ KT T RKT + γ2ˆLT ˆL = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' (24) If Qi + γ2(Li)TLi ≤ ˆQ+ γ2 ˆLT ˆL holds, then (16) and (24) will solve 0 < Pi ≤ ˆP with Hurwitz A−BKT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' With (3a), (17a) and (23b), AREs (18) and (23a) can be rewritten as (A− BKi+1)TPi + Pi(A− BKi+1) = −Qi+1 − (Ki+1)TRKi+1 − γ2(Li+1)T(Li+1), (25a) (A− BKi+1)T ˆP+ ˆP(A− BKi+1) = KT T RKT − ˆQ− γ2ˆLT ˆL− (Ki+1)TRKT − KT T RKi+1, (25b) respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Since (18) ensures Hurwitz A− BKi+1, subtract- ing (25a) from (25b) and using 0 < Pi ≤ ˆP obtains (A− BKi+1)T ( ˆP− Pi)+ ( ˆP− Pi)(A− BKi+1) = (Qi+1 + γ2(Li+1)TLi+1)− ( ˆQ+ γ2 ˆLT ˆL) + (Ki+1 − KT)TR(Ki+1 − KT) ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' (26) Therefore, Qi+1 + γ2(Li+1)T Li+1 ≤ ˆQ+ γ2ˆLT ˆL holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' By deduction, it is inferred that initializing Algorithm 1 with a Q0 such that 0 < Q0 ≤ ˆQ and L0 = 0, then Qi > 0,i = 0,1,··· will be increasing with an upper bound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Therefore, Algorithm 1 converges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' ii).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Converged solutions satisfy (19a), (19b), (19c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Substituting (18) into (16) yields ATPi + PiA− PiBR−1BTPi = ATPi+1 + Pi+1A− Pi+1BKT −KT T BTPi+1 + KT T RKT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' (27) Taking Pi+1 = Pi = P∗ as converged value, (27) becomes (KT − K∗)R(KT − K∗) = 0, (28) where K∗ = R−1BTP∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Since R > 0, (28) implies KT = K∗, which is exactly (19b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' The converged P∗ produces the con- verged L∗ using (17b) as shown in (19c) and the converged Q∗ using (18) as shown in (19a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' iii).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Converged solutions satisfy Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Rewriting (19a) with (19b) yields (A− BKT)T P∗ + P∗(A− BKT)+ Q∗ + KT T RKT + 1 γ2 P∗DDTP∗ = 0, (29) which is exactly (13).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Obviously, (19a) is exactly (12).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' There- fore, Q∗,P∗,K∗ satisfy Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' □ B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Stability and optimality analysis We now prove the stability of Algorithm 1 in Theorem 3, and optimality and Nash equilibrium in Theorem 4 Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Each iteration of Algorithm 1 exponentially stabilizes the learner agent (7) with d = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Proof: Rewriting (16) with (3a) and (17a) yields ATPi + PiA+ ˜Qi − PiBR−1BTPi + γ2(Li)TLi = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' (30) where ˜Qi = Qi + (Ki+1 − KT)TR(Ki+1 − KT ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' With (Ki+1 − KT)T R(Ki+1 −KT) ≥ 0 and Qi > 0, then ˜Qi > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' It is obvious that Pi solved by (30) or equivalently (16) is a symmetrical positive definite matrix satisfying ATPi + PiA− PiBR−1BTPi + γ2(Li)T Li < 0, (31) and one has ˙V i(x,Pi) = xT(A− BKi+1)TPix+ xTPi(A− BKi+1)x < −xTPiBR−1BTPix− γ2xT(Li)TLix < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' (32) That is, Pi yields stabilizing Ki+1 by (17a) for learner (7) with d = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Considering (17a) and (31), Qi+1 in (18) satisfies Qi+1 + γ2(Li+1)T Li+1 = −(ATPi + PiA− PiBR−1BTPi) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' (33) Using Qi+1 +γ2(Li+1)TLi+1 > 0 in (16) would still make (32) hold for the next iteration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Therefore, provided Q0 > 0 (32) will hold for all i = 0,1,···.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' □ Before optimality analysis of Algorithm 1, we now give a lemma of importance which extends the idea of classic IOC [15] to two-player zero-sum games.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Consider the two-player learner agent (7) with x(t0) = x0, t ≥ t0 and (8) and (11).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Assume there exists a positive definite symmetric matrix P ∈ Rn×n such that ATP+ PA− PBR−1BTP+ 1 γ2 PDDTP < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' (34) Then, with the optimal feedback control input uo and the worst disturbance dw such that uo = −R−1BTPx, dw = 1 γ2 DTPx, (35) and the cost function weight Q = −(ATP+ PA− PBR−1BTP+ 1 γ2 PDDTP), (36) the saddle point (uo,dw) makes the cost value function (8) reach the Nash equilibrium V(x0,uo,d) ≤ V(x0,uo,dw) ≤ V(x0,u,dw).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' (37) Proof: First, V(x) in (8) can be represented with P > 0 as V(x) = xTPx ≥ 0, V(0) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' (38) It follows from (35) and (36) that H(x,uo,dw) = 0 [2] where the Hamiltonian is H(x,u,d) =xTQx+ uTRu − γ2dTd + (Ax+ Bu + Dd)TPx + xTP(Ax+ Bu + Dd).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' (39) 5 One writes H(x,u,d) = H(x,u,d)− H(x,uo,dw) = (u − uo)R(u − uo)− γ2(d − dw)T (d − dw), (40) and hence H(x0,uo,d) ≤ H(x0,uo,dw) ≤ H(x0,u,dw).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' (41) Based on [2], we obtain the conclusion (37).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' □ Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' The converged solutions Q∗,P∗,K∗,L∗ obtained by Algorithm 1 shown in Theorem 2 yield Nash equilibrium of the value function V(x) in (8) such that V(x0,u∗,d) ≤ V(x0,u∗,d∗) ≤ V(x0,u,d∗), (42) where u∗ = −K∗x and d∗ = L∗x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Proof: It follows from Theorem 1 that Qi > 0 holds for all i = 0,1,···.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Thus one has the converged Q∗ > 0 and ATP∗ + P∗A− P∗BR−1BTP∗ + 1 γ2 (P∗)TDDTP∗ < 0, (43) from (19a), which means that the converged P∗ satisfies (34) in Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Also, the converged control strategy K∗ in (19b) and disturbance gain L∗ in (19c) satisfy (35) in Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' This indicates that (41) also holds for u∗ and d∗, namely the Nash equilibrium (42) holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' □ C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Non-uniqueness of solution In fact, the Q∗,R,γ,P∗ satisfying (19a)-(19c) that explain the same strategy K∗ = KT may not be unique and can be different from the actual target values QT,RT,γT,PT shown in (3b) and (6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' This multi-solution phenomenon is known as the ill-posedness property, which is well-analyzed for DT ARE in [38] and coupled ARE in [39].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' In the next result, we characterize the relationship between QT,RT,γT ,PT, and Q∗,R,γ,P∗ for CT GARE and show the conditions for the occurrence of this phenomenon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Recall QT, RT, γT, PT satisfying (6) and (3b), and let Qo, Ro, Po satisfy BTPo = RoR−1 T BTPT, (44a) Qo + ATPo + PoA− KT T RoKT + 1 γ2 T PTDDTPT − 1 γ2 P∗DDTP∗ = 0, (44b) where Ro = RT −R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Then any Q∗ = QT −Qo and P∗ = PT −Po satisfy (19a)-(19c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Proof: Subtracting (44b) from (6) and using (3b) yields AT(PT − Po)+ (PT − Po)A+ (QT − Qo) − KT T (RT − Ro)KT + 1 γ2 P∗DDTP∗ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' (45) Using P∗ = PT − Po, Ro = RT − R, and R > 0 in (44a) gives K∗ = R−1BTP∗ = R−1 T BTPT = KT, (46) which is (19b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Substituting it into (45) yields (19a) and (19c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' This proves the relationship between the obtained solution Q∗,R,γ,P∗ and the expert’s QT,RT,γT ,PT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' We observe that Po, Ro, Qo satisfying (44a) and (44b) can be nonzero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' That is, Q∗,R,γ,P∗ associate optimally with the same strategy as QT,RT,γT,PT, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=', KT = K∗, but QT ̸= Q∗, RT ̸= R, γT ̸= γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Therefore, there could be multiple solutions to (19a) to gen- erate a K∗ in (19b) equal to the target KT in (3a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' □ The following corollary shows a special case of the Q∗,R,γ of Theorem 5 which gives V(x)∗ = cVT(xT)∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' corollary 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' With scalar c > 0, any Q∗ = cQT, R = cRT, γ = √cγT would yield V(x)∗ = cVT(xT)∗ in (4) and (11), and they optimally associate with the same K∗ as the expert such that K∗ = KT in (19b) and (3a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Proof: Bring such Q∗,R,γ into (19a), since QT,RT,γT satisfy (6), then one has P∗ = cPT and K∗ = KT .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Then, using this result in (11) for V(x)∗ and comparing it with VT(xT)∗ in (4) shows that V(x)∗ = cVT(xT)∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' □ V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' DATA-DRIVEN OFF-POLICY IRL ALGORITHM Algorithm 1 relies on the system dynamics A,B,D and the target strategy KT .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' To remove this requirement, we develop here a data-driven IRL algorithm for expert-learner zero-sum games based on Algorithm 1, which only requires the data xT,uT,dT of the target agent (1) and x,u,d of the learner agent (7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' To accomplish this, we use two techniques similar to integral RL [6], [8] and off-policy RL [6], [40].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' The end result is Algorithm 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Data-driven game policy correction In order to update Pi, Ki+1 and Li+1 in (16)-(17b) using only target data xT,uT,dT, inspired by the idea of off-policy integral RL technique [6], [40], rewrite (1) as ˙xT = AxT − BKixT + DdT + B(uT + KixT).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' (47) Using (47) and (16) one writes ˙xT T PixT + xT TPi ˙xT = (AxT − BKixT)T PixT + xT TPi(AxT − BKixT) + 2(uT + KixT)TBTPixT + 2dT T DTPixT = −xT TQixT − xT TKT T RKTxT − γ2xT T(Li)T LixT + 2xT TKT T BTPixT + 2uT TBTPixT + 2dT T DTPixT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' (48) Using (17a), (17b), (3a) in (48) and integrating both sides from t to t + T, where T > 0 is the integral time period, obtains (50) in Algorithm 2 to be presented, by which Pi, Ki+1 and Li+1 are updated simultaneously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Similar to [6], probing noise e is added to uT, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=', uT = −KTxT + e, for the persistence of excitation condition in merely learning process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' It is not needed anymore when solutions converge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Unlike (16)-(17b), (50) does not need the knowledge of agent dynamics A,B,D or the strategy KT in (3a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 6 B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Data-driven cost function weight reconstruction In order to update Qi+1 in (18) using only data x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='u,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='d,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' inspired by the integral RL technique [8],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' multiplying both sides of (18) by x and adding and subtracting terms uTBTPix and dTDTPix,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' (18) can be rewritten as xTQi+1x =− [(Ax+ Bu + Dd)TPix+ xTPi(Ax+ Bu + Dd) − xT(Ki+1)TRKi+1x+ γ2xT(Li+1)T Li+1x − 2uTBTPix− 2dTDTPix],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' (49) where u can be generated by any stabilizing policy and d can be random and different from dT in the learning process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Substituting (7), (17a) and (17b) into (49) and integrating it gives (51) in Algorithm 2 below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Using Pi, Ki+1 and Li+1 obtained by (50), (51) equivalently replaces (18) in Algorithm 1 to calculate Qi+1 without knowing any system dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Algorithm 2 Data-driven off-policy IRL algorithm for expert- learner zero-sum games.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Step 1: Initialize with R > 0, γ > 0, Q0 > 0, and L0 = 0, and collect system data generated by any stabilizing control input u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Set i = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Step 2: (Game policy correction) Update policy Pi, control strategy Ki+1 and disturbance gain Li+1 by xT(t + T)TPixT(t + T)− xT(t)TPixT(t) − 2 � t+T t eTRKi+1xTdτ − 2γ2 � t+T t dT T Li+1xTdτ = − � t+T t � xT TQixT + (uT − e)TR(uT − e) + γ2xT T (Li)TLixT � dτ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' (50) Step 3: (Cost function weight construction) Update cost function weight Qi+1 by � t+T t xT Qi+1xdτ = −[x(t + T)TPix(t + T)− x(t)TPix(t) − � t+T t (2uTRKi+1x+ xT(Ki+1)TRKi+1x)dτ −γ2 � t+T t (2dTLi+1x− xT(Li+1)TLi+1x)dτ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' (51) Step 4: Stop if it converges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Otherwise, set i = i+1 and repeat steps 2 to 4, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Algorithm 2 does not need system dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Moreover, it iterates in single loop indicated by i, no inner- loop iteration is needed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Implementation and Analysis of Algorithm 2 In order to show how to implement data-driven IRL Al- gorithm 2 using only data, first, consider Kronecker product aTWb = (bT ⊗ aT)vec(W) for (50) and define the following operators, OxT xT = [x2 T1,2xT1xT2,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=',x2 T2,2xT2xT3,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=',x2 Tn]T;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' dxT xT = [OxT xT (t + T)− OxT xT (t),.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=', OxT xT (t + lT)− OxT xT (t + (l − 1)T)]T;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' IxT xT = [ � t+T t OxT xT dτ,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=', � t+lT t+(l−1)T OxT xT dτ]T;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' IxT uT = [ � t+T t xT ⊗ uTdτ,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=', � t+lT t+(l−1)T xT ⊗ uTdτ]T ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' IxT dT = [ � t+T t xT ⊗ dTdτ,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=', � t+lT t+(l−1)T xT ⊗ dTdτ]T ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' IxT e = [ � t+T t xT ⊗ edτ,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=', � t+lT t+(l−1)T xT ⊗ edτ]T;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Φp = [dxT xT ,−2IxT e(In ⊗ R),−2γ2IxT dT ]T;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' ri = xT TQixT + (uT − e)TR(uT − e)+ γ2xT T(Li)T LixT;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Ψi p = −[ � t+T t ridτ,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=', � t+lT t+(l−1)T ridτ]T;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' ˆPi = [Pi 11,Pi 12,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=',Pi 22,Pi 23,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=',Pi nn]T, (52) where l is the group number of collected data and should be l ≥ n(n+1) 2 + nm + nz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Using batch least squares method [8], [40], [41], ˆPi, Ki+1, Li+1 can be calculated by � ( ˆPi)T ,vec(Ki+1)T,vec(Li+1)T �T=(ΦT pΦp)−1ΦT pΨi p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' (53) Similarly, for (51), we define Oxx = [x2 1,2x1x2,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=',x2 2,2x2x3,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=',x2 n]T;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' dxx = [Oxx(t + T)− Oxx(t),.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=', Oxx(t + kT)− Oxx(t + (k − 1)T)]T ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' ˆqi = [Qi 11,Qi 12,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=',Qi 22,Qi 23,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=',Qi nn]T;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Φq = Ixx = [ � t+T t Oxxdτ,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=', � t+kT t+(k−1)T Oxxdτ]T ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Ii+1 q (t) = � t+T t (2uTRKi+1x+ xT(Ki+1)TRKi+1x)dτ + γ2 � t+T t (2dTLi+1x− xT(Li+1)TLi+1x)dτ Ψi+1 q = −dxx ˆPi + [Ii+1 q (t),.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=',Ii+1 q (t + (k − 1)T)]T , (54) where k is the group number of collected data and should be k ≥ n(n+1) 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Then, Qi+1 can be uniquely solved by ˆqi+1 = (ΦT q Φq)−1ΦT q Ψi+1 q .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' (55) By using (53) and (55), we solve Pi, Qi+1, Ki+1, Li+1 in a data-driven mode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Each step of Algorithm 1 yields a unique solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Algo- rithm 2 is developed based on Algorithm 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' To illustrate that the solution obtained by Algorithm 2 estimates the solution obtained by Algorithm 1, we show that equations (53) and (55) yield unique solutions in the next result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 7 Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' If there exist lo > 0, ko > 0, for all l ≥ lo and k ≥ ko, rank([IxT xT ,IxT uT ,IxT dT ]) = n(n + 1) 2 + nm+ nz, (56a) rank(Ixx) = n(n + 1) 2 , (56b) then, (53) and (55) solve unique solution, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Proof: First, we show that (53) solves unique solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' This is aiming to show that ΦpΩ = 0 (57) has only the trivial solution Ω = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Now, we prove Ω = 0 by contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Assume Ω = [XT v ,Y T v ,ZT v ]T ∈ R n(n+1) 2 +nm+nz is a nonzero solution of (57), where Xv ∈ R n(n+1) 2 , Yv ∈ Rmn, Zv ∈ Rnz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Then, Xv,Yv,Zv uniquely determine matrices X,Y,Z by Xv = ˆX, Yv = vec(Y) and Zv = vec(Z), respectively, where X is a symmetrical matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Define Inx = [ � t+T t xT ⊗ xTdτ,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=', � t+kT t+(k−1)T xT ⊗ xTdτ]T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' (58) Integrating (48) from t to t + T gives ΦpΩ = Inxvec(E)+ 2IxT uT vec(G)+ 2IxTdT vec(F)= 0, (59) where E = ATX + XA− KT T RY −YT RKT, (60a) G = BTX − RY, (60b) F = DTX − γ2Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' (60c) Since E is a symmetrical matrix, one has Inxvec(E) = IxT xT ˆE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Using this in (59) yields ΦpΩ = [IxT xT ,2IxT uT ,2IxT dT ] \uf8ee \uf8f0 ˆE vec(G) vec(F) \uf8f9 \uf8fb = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' (61) Under (56a), we know that [Ixx,Ixu,Ixd] has full column rank, and thus (61) has only the solution ˆE = 0, vec(G) = 0 and vec(F) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' That is, ATX + XA− KT T RY −Y TRKT = 0, (62a) BTX = RY, (62b) DTX = γ2Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' (62c) Since A − BKT is Hurwitz, substituting (62b) and (62c) into (62a) gives X = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' This implies that Y = 0 and Z = 0 due to R > 0 and γ2 > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' In summary, we have Ω = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' However, this conflicts with the assumption that Ω is nonzero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Therefore, it concludes that under (56a), (55) solves unique solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Second, from the integral RL work [8], we conclude that when (56b) holds for (51), Qi+1 in (51) can be uniquely determined by (55) with collected data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' □ VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' SIMULATION We show three simulation experiments, a first one of the data-driven Algorithm 2 to show its performance, a com- parison simulation with the bilevel IRL method in [36] to show the reduction of iteration steps of Algorithm 2, and a second comparison simulation with the RL-based optimal tracking control method in [6] to show the improvement of control performance with the cost function weights correction of Algorithm 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Simulation result of Algorithm 2 The system dynamics information of the target (1) and the learner (7) for simulation is A = � −1 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='7 � ,B = � 0 3 � ,D = � 1 0 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' (63) For the target agent (1), the actual target cost function objec- tive (2) consists of QT = diag{8,12},RT = 2I1,γT = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' The disturbance is dT = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='003rand(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' The expert’s LT, KT and PT are KT = [1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='9869,3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='5779],LT = [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='4162,0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='1472], PT = � 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='7459 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='3246 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='3246 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='3853 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' (64) For the learner, the behaviour strategy to generate data is Kb = [1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='2129, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='2812], and the disturbance is d = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='003rand(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' To start Algorithm 2, the initial weights for cost function, initial disturbance gain L0, and integral time period T are given by Q0 = diag{1,0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='5},R = I1,γ = 40,L0 = [0, 0],T = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='008s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' (65) The Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 1(a) captures the iteration process from the initial spot to the spot on ∥Ki+1−KT∥ ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' The final values of Ki, Qi, Li, and Pi are K∗, Q∗, L∗, and P∗, respectively, as follows K∗ = � 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='9827 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='5839 � , Q∗ = � 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='2796 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='6670 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='6670 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='0151 � , L∗ = 10−3 × � 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='4021 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='4131 � , P∗ = � 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='6441 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='6622 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='6622 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='1968 � , (66) where K∗ closely approximates the target KT in (64) with ∥K∗ − KT∥ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='0073, while Q∗, L∗ and P∗ are not equal to QT,LT and PT in (64), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' This is the multiple- solution phenomenon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 1(b), the learner’s state x can mimic the trajectories of the target xT very well under the learned K∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Therefore, the proposed Algorithm 2 can learn an appropriate cost function and optimal policy for the learner to mimic the target trajectories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Comparison simulation case 1 This subsection shows the simulation results of the bilevel IRL method in [36] that iterates in two-loop to show the reduction of computational complexity in terms of iteration steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' The same expert-learner system, initial parameters for 8 0 10 20 30 40 50 0 1 2 ||Ki − KT|| 0 10 20 30 40 50 9 10 11 12 ||Qi − QT|| 0 10 20 30 40 50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='44095 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='441 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='44105 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='4411 ||Li − LT|| 0 10 20 30 40 50 Update steps i (a) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='4 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='6 ||P i − PT|| 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='5 2 Time(s) (b) 20 10 0 10 20 x1 x2 xT1 xT2 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Convergence and imitation performance using Algorithm 2 Algorithm 2 in (63)-(65) are used for this comparison method 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 2 also captures the iteration process from the initial spot to the spot on ∥Ki+1 −KT∥ ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='01 as Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 1 to show the difference in iteration steps of the two methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' The inner- loop iteration figures are omitted since they are too many to put here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 2, the final values of K j,Qj,Lj, and P j of the outer-loop iterations are K∗ = � 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='9822 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='5691 � , Q∗ = � 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='3186 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='6974 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='6974 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='0506 � , L∗ = 10−3 × � 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='4053 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='4130 � , P∗ = � 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='6486 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='6607 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='6607 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='1897 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' (67) where K∗ approximates the target KT in (64) with ∥K∗−KT∥ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Table I shows that the total iteration steps of the method is 3370, including 587 outer-loop updates (See Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 2) and 2783 inner-loop updates, while Algorithm 2 iterates 51 steps in total (See Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 1(a)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' The time of the learning process of Algorithm 2 is 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='08s, while that of the comparison method 1 is 169.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='936s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' It is proportional to the amount of utilized collected data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Algorithm 2 uses 510 groups of data, and comparison method 1 uses 21242 groups of data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Therefore, Algorithm 2 costs much fewer data and time than the bilevel comparison method 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 0 100 200 300 400 500 600 0 1 2 ||Kj − KT|| 0 100 200 300 400 500 600 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='5 9 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='5 10 ||Qj − QT|| 0 100 200 300 400 500 600 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='441 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='4411 ||Lj − LT|| 0 100 200 300 400 500 600 Outer-loop update steps j 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='4 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='6 ||P j − PT|| Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Convergence of K j,Qj,Lj, and Pj using the comparison method 1 TABLE I ITERATION STEPS AND LEARNING TIME OF ALGORITHM 2 AND THE COMPARISON METHOD 1 Methods Total updates Learning time Algorithm 2 51 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='08s Comparison method 1 3370 169.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='936s C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Comparison simulation case 2 In this subsection, the typical RL-based optimal tracking control method [6] for linear disturbed systems, which com- putes optimal control policy given cost function weights, is simulated to show the advantage of Algorithm 2 in control performance by computing both optimal control policy and cost function weights.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' The same system and cost weights shown in (63)-(65) and discount factor α = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='9 are used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' The obtained optimal control law is u∗ = −[1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='1760 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='9139 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='0044 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='7639][xT,rT]T, and the corresponding imitation performance in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 3 is not as good as that of Algorithm 2 in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 1(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' By evenly sampling the trajectory data, the imitation performance of the two methods is quantified by the error index defined as follows Te = 1 n n ∑ i=1 � 1 a a ∑ k=1 |xi(kT)− xTi(kT)|2 where n = 2, a = 250, and T = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='008s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' As shown in Table II, Te of Algorithm 2 is much smaller than that of the comparison method 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' The reason is that Algorithm 2 can correct the given cost function weights when it is inappropriate, but the comparison method 2 cannot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Algorithm 2 thus obtains much better imitation performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' TABLE II IMITATION INDEX OF ALGORITHM 2 AND THE COMPARISON METHOD 2 Methods Error index Te Algorithm 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='0162 Comparison method 2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='4461 9 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='8 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='8 2 20 10 0 10 20 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Imitation performance of learner’s x to target xT using the comparison method 2 VII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' CONCLUSION This paper proposes a novel data-driven off-policy IRL approach to determine both cost function and optimal con- trol policy to stabilize a learner agent suffering from non- cooperative disturbances by mimicking a target agent’s tra- jectories using data of both agents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' The proposed approach does not need any system dynamics and guarantees stability, Nash optimality, and imitation performance with single-loop iteration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' The rigorous theoretical proofs and simulation ex- periments verify its effectiveness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' REFERENCES [1] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Bas¸ar and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Bernhard, H-infinity optimal control and related minimax design problems: a dynamic game approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Springer Science & Business Media, 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' [2] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Lewis, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Vrabie, and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Syrmos, Optimal Control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' John Wiley & Sons, Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=', Hoboken, NJ, USA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=', pages 444–453, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' [3] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=', Reinforcement learning: An introduction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' MIT Press, Cambridge, USA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=', pages 73–88, 1998.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' [4] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Lewis and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Vrabie, “Reinforcement learning and adaptive dynamic programming for feedback control,” IEEE Circ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Syst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Mag.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 9, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 32–50, 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' [5] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Carrillo and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Vamvoudakis, “Deep-learning tracking for autonomous flying systems under adversarial inputs,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Aerosp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Electron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Syst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 56, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 1444–1459, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' [6] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Modares, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Lewis, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Jiang, “H∞ tracking control of com- pletely unknown continuous-time systems via off-policy reinforcement learning,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Neural Netw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Learn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Syst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 26, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 10, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 2550–2562, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' [7] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Kiumarsi, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Lewis, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Jiang, “H∞ control of linear discrete- time systems: Off-policy reinforcement learning,” Automatica, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 78, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 144–152, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' [8] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Modares and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Lewis, “Linear quadratic tracking control of partially-unknown continuous-time systems using reinforcement learn- ing,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Autom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Control, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 59, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 11, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 3051–3056, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' [9] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Kleinman, “On an iterative technique for riccati equation computa- tions,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Autom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Control, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 13, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 114–115, 1968.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' [10] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Chen, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Monfort, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Ziebart, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Carr, “Adversarial inverse optimal control for general imitation learning losses and embodiment transfer.” in Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Uncertain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Artif.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Intell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=', 2016, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 1–10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' [11] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Self, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Coleman, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Bai, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Kamalapurkar, “Online observer- based inverse reinforcement learning,” arXiv:2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='02057.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=', 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' [12] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Levine and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Koltun, “Continuous inverse optimal control with locally optimal examples,” arXiv preprint arXiv:1206.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='4617, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' [13] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Ab Azar, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Shahmansoorian, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Davoudi, “From inverse optimal control to inverse reinforcement learning: A historical review.” Annu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Control, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 50, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 119–138, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' [14] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Kalman, “When is a linear control system optimal?”' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Basic Eng.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 86, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 51–60, 1964.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' [15] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Haddad and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Chellaboina, Nonlinear dynamical systems and control: A Lyapunov-based approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Princeton University Press, Princeton, USA, pages 519–540, 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' [16] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Johnson, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Aghasadeghi, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Bretl, “Inverse optimal control for deterministic continuous-time nonlinear systems,” in Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 52nd IEEE CDC, 2013, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 2906–2913.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' [17] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Cai and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Han, “Inverse optimal control of nonlinear systems with structural uncertainty,” IEE Proc-C, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 152, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 79–83, 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' [18] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Ornelas, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Sanchez, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Loukianov, “Discrete-time non- linear systems inverse optimal control: A control lyapunov function approach,” in Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' IEEE Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Control Autom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=', 2011, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 1431– 1436.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' [19] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Sanchez and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Ornelas-Tellez, Discrete-time inverse optimal control for nonlinear systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' CRC Press, Boca Raton, USA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=', pages 67–107, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' [20] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Molloy, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Ford, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Perez, “Finite-horizon inverse optimal control for discrete-time nonlinear systems,” Automatica, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 87, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 442–446, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' [21] ——, “Online inverse optimal control on infinite horizons,” in Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 57th IEEE CDC, 2018, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 1663–1668.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' [22] ——, “Online inverse optimal control for control-constrained discrete- time systems on finite and infinite horizons,” Automatica, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 87, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 1–8, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' [23] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Park, “Inverse optimal and robust nonlinear attitude control of rigid spacecraft,” Aerosp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Technol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 28, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 257–265, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' [24] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Luo, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Chu, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Ling, “Inverse optimal adaptive control for attitude tracking of spacecraft,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Autom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Contr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 50, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 11, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 1639–1654, 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' [25] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Tsai, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Molloy, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Perez, “Inverse two-player zero-sum dynamic games,” in Pro.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 2016 AUCC, 2016, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 192–196.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' [26] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Abbeel and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Ng, “Apprenticeship learning via inverse reinforce- ment learning,” in Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 21st.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Mach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Learn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' ICML, 2004, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 1–8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' [27] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Wulfmeier, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Ondruska, and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Posner, “Maximum entropy deep inverse reinforcement learning,” arXiv preprint arXiv:1507.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='04888, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' [28] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Neu and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Szepesv´ari, “Apprenticeship learning using inverse reinforcement learning and gradient methods,” pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 295–302, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' [29] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Ziebart, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Maas, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Andrew Bagnell, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Dey, “Maximum entropy inverse reinforcement learning,” in Pro.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 2008 AAAI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=', 2008, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 1433–1438.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' [30] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Choi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Kim, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Jin Kim, “Inverse reinforcement learning control for trajectory tracking of a multirotor uav,” Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Control Autom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Syst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 15, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 1826–1834, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' [31] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Self, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Abudia, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Kamalapurkar, “Online inverse reinforcement learning for systems with disturbances,” in Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 2020 ACC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=', 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 1118–1123.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' [32] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Mombaur, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Truong, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Laumond, “From human to humanoid locomotion: An inverse optimal control approach,” Auton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Robots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 28, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 369–383, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' [33] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Kamalapurkar, “Linear inverse reinforcement learning in continuous time and space.” in Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 2018 ACC, 2018, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 1683–1688.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' [34] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Xue, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=', J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Fan, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=', T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Chai, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Lewis, “Inverse rein- forcement learning in tracking control based on inverse optimal control,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Cybern.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=', doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='1109/TCYB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='3061894, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' [35] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Xue, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=', J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Fan, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Chai, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Lewis, “Inverse reinforcement learning in tracking control based on inverse optimal control,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Neural Netw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Learn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=', doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='1109/TNNLS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content='3106635, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' [36] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Lian, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Xue, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Lewis, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Chai, “Online inverse reinforcement learning for nonlinear systems with adversarial attacks,” Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Robust Nonlinear Control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 31, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 14, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 6646–6667, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' [37] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Lancaster and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Rodman, Algebraic Riccati equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Clarendon Press, Oxford, UK.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=', pages: 231–243, 1995.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' [38] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Menner and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Zeilinger, “Convex formulations and algebraic solutions for linear quadratic inverse optimal control problems,” in Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 17th ECC, 2018, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 2107–2112.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' [39] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Inga, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Bischoff, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Molloy, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Flad, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Hohmann, “Solution sets for inverse non-cooperative linear-quadratic differential games.” IEEE Control Syst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 3, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 871–876, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' [40] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Jiang and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Jiang, “Computational adaptive optimal control for continuous-time linear systems with completely unknown dynamics,” Automatica, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 48, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 10, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 2699–2704, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' [41] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Jiang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Fan, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Chai, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Li, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Lewis, “Data-driven flotation industrial process operational optimal control based on reinforcement learning,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Ind.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' Informa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 14, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 5, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} +page_content=' 1974–1989, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/O9A0T4oBgHgl3EQfC_9-/content/2301.01997v1.pdf'} diff --git a/PdE2T4oBgHgl3EQfrgiA/content/tmp_files/2301.04050v1.pdf.txt b/PdE2T4oBgHgl3EQfrgiA/content/tmp_files/2301.04050v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..422747e8a6f241dd6c1d7928d6c13e2e2a28b866 --- /dev/null +++ b/PdE2T4oBgHgl3EQfrgiA/content/tmp_files/2301.04050v1.pdf.txt @@ -0,0 +1,1332 @@ +arXiv:2301.04050v1 [cs.RO] 10 Jan 2023 +1 +Design, Modeling and Control of a Quadruped Robot SPIDAR: +Spherically Vectorable and Distributed Rotors Assisted +Air-Ground Amphibious Quadruped Robot +Moju Zhao1, Tomoki Anzai2, Takuzumi Nishio2 +Abstract—Multimodal locomotion capability is an emerging +topic in robotics field, and various novel mobile robots have +been developed to enable the maneuvering in both terrestrial +and aerial domains. Among these hybrid robots, several state-of- +the-art bipedal robots enable the complex walking motion which +is interlaced with flying. These robots are also desired to have the +manipulation ability; however, it is difficult for the current forms +to keep stability with the joint motion in midair due to the cen- +tralized rotor arrangement. Therefore, in this work, we develop +a novel air-ground amphibious quadruped robot called SPIDAR +which is assisted by spherically vectorable rotors distributed in +each link to enable both walking motion and transformable flight. +First, we present a unique mechanical design for quadruped robot +that enables terrestrial and aerial locomotion. We then reveal the +modeling method for this hybrid robot platform, and further +develop an integrated control strategy for both walking and +flying with joint motion. Finally, we demonstrate the feasibility of +the proposed hybrid quadruped robot by performing a seamless +motion that involves static walking and subsequent flight. To +the best of our knowledge, this work is the first to achieve a +quadruped robot with multimodal locomotion capability, which +also shows the potential of manipulation in multiple domains. +Index Terms—Legged Robots; Aerial Systems: Mechanics and +Control; Motion Control +I. INTRODUCTION +During the last decade, robots with multimodal locomotion +capability have undergone intensive development, and demon- +strated the versatile maneuvering in multiple domains (i.e., +terrestrial, aerial, and aquatic) [1]–[5] which can benefit the +performance in various situations, such as disaster response +and industrial surveillance. Among various forms for mul- +timodal locomotion, the legged type has the advantage in +unstructured terrains, and several bipedal models have been +developed to demonstrate the promising walking that is inter- +laced with flying motion [6], [7]. The legged robots are desired +to provide not only the advanced locomotion capability, but +also the manipulation ability by the limb end-effector. Then, +multilegged (multilimbed) is considered effective from the +aspect of both the stability in the terrestrial locomotion and +the freedom in manipulation. In spite of the achievement +of a simple arm motion in midair by the flying humanoid +robot in [7], the centralized rotor arrangement in most of the +existing robot platforms can hardly handle the large change of +Center-of-Gravity (CoG) caused by the joint motion in midair. +Besides, the external force at the limb end during the aerial +manipulation is also difficult to compensate by the centralized +1 Department of Mechanical Engineering, The University of Tokyo, 2 +Department of Mechano-Infomatics, The University of Tokyo, 7-3-1 Hongo, +Bunkyo-ku, Tokyo 113-8656, Japan. chou@hnl.t.u-tokyo.ac.jp +Digital Object Identifier (DOI): see top of this page. +(A) +(B) +Fig. 1. +Air-ground amphibious quadruped robot SPIDAR: SPherIcally +vectorable and Distributed rotors assisted Air-ground amphibious quadruped +Robot. (A) walk on the ground like an usual quadruped robot, but with the +assistance of thrust force; (B) fly and transform in midair. +rotors due to the large moment arm. Hence, a distributed rotor +arrangement is necessary for aerial manipulation. Then, we +propose a novel quadruped robot platform in this work, which +can both walk and fly by using the spherically vectorable rotors +distributed in each link unit as illustrated in Fig. 1. +One of the efficient type of air-ground hybrid robot plat- +forms equips an ordinary multirotor for flying, and then de- +ploys rolling cage or wheels to perform terrestrial locomotion +[2], [8], [9]. Although the rolling mechanism can achieve the +stable terrestrial locomotion without any complex control, it is +relatively difficult for this type to handle the unstructured ter- +rains (e.g., very few foothold). Then, legged model is proposed +in several researches [6], [7], [10]–[12] to solve this issue by +the walking motion. Most of these robots are bipedal model +which attaches the multirotor unit in their torso for aerial +maneuvering. Compared with the bipedal model, it is relatively +easier to achieve the walking stability by the multilegged +model because of the larger support polygon. Besides, the legs +can be considered as the limbs for manipulation in midair, and +thus more limbs can provide more end-effectors for complex +manipulation task. Therefore, we choose the quadruped model +that can offer both the stable terrestrial locomotion and the +potential of aerial manipulation. +For most of the quadruped robot, the form is bio-inspired +and specialized for terrestrial locomotion [13]–[15]. However, +in our work, the robot is also desired to perform manipulation +task in multiple domains. Several ape-like quadruped robots +show the manipulation ability by the hands attached on the leg +ends [16], [17]. The point symmetry is the crucial difference of +these robots from the skeleton design for common quadruped +robots. In our work, we also adopt the point symmetry for +our hybrid quadruped robot to enable the omni-directional +maneuvering and manipulation in both terrestrial and aerial + +2 +domains. Regarding the rotor arrangement, it is difficult for +rotors centralized in the robot torso like [6] to handle the +change of CoG caused by the joint motion. Besides, the +external force acted at the end-effectors can also induce a +large rotational load for the centralized rotors due to the +large moment arm. To ensure a sufficient control margin for +the stable joint motion in midair, [11] proposes a distributed +rotor arrangement that deploys the thrust units at each limb +end. However, this rotor arrangement deprives the robot of +manipulation ability. Therefore, a fully-distributed rotor design +proposed by [18] is applied in this work. In this design, +spherically vectorable rotor apparatus is embedded in each link +and thus can generate individual three-dimensional thrust force +for the promising maneuvering and manipulation in midair as +presented in [19]. +For the stable flying motion, the whole platform should be +lightweight, which leads a relatively compact and weak joint +actuator for legs. Hence, the thrust force is also required to +assist the walking motion by reducing the load from gravity. +For model with centralized rotor arrangement, both the model- +based [6] and the policy-based [20] methods are developed to +obtain the assistive thrust. However, these methods are not +suitable for the model with rotors distributed in all links. +Then, [21] proposes an assistive thrust control method for a +bipedal robot with the vectorable rotor attached at each foot, +whereas [19] presents a control method for a fully-distributed +rotor model in the aerial domains. Based on these methods, a +comprehensive investigation of the modeling and control for +the multilegged model is performed in this work to handle +multiple types of torques and forces (i.e., the joint torque, the +contact force on each limb end, the gravity of each link, and +the thrust force from each vectorable rotor). +The main contributions of this work can be summarized as +follows: +1) We propose a unique mechanical design for air-ground +quadruped robot with the spherically vectorable rotors +distributed in all links. +2) We present a modeling and control methods for this +multilegged platform for hybrid locomotion in both +terrestrial and aerial domains. +3) We achieve the seamless and stable motion that involves +walking, flying and joint motion in midair by the proto- +type of quadruped robot. +The remainder of this paper is organized as follows. The +mechanical design for this unique quadruped robot is intro- +duced in Sec. II. The modeling of our robot is presented in +Sec. III, followed by the integrated control method for hybrid +locomotion in Sec. IV. We then show the experimental results +in Sec. V before concluding in Sec. VI. +II. DESIGN +In this section, we present the mechanical design for the +quadruped robot that is capable of terrestrial/aerial hybrid +locomotion. The key of the whole structure is the spherically +vectorable rotor embedded in each link unit, along with the +unique quadruped shape that differs from the common bio- +inspired type. +Fig. 2. Mechanical design for the air-ground hybrid quadruped robot. +(A) skeleton model for common bio-inspired mammal-type quadruped robot. +(B) proposed point-symmetric skeleton model for hybrid quadruped model. +(C1)/(C2) two-DoF joint module for each limb, where the yaw axis qi yaw +comes first followed by the pitch axis qi pitch. (D) spherically vectorable +rotor apparatus with two vectoring angles (φ, θ), and a combined thrust force +λi from the counter rotating dual rotors. There is a small offset between two +vectoring axes because two rods cannot intersect with each other. +A. Skeleton Model +As shown in Fig. 2(A), the common skeleton for quadruped +robot is mammal-type, which puts a priority on the forward +motion. Thus, the model is plane symmetric, and each leg has +three DoF (two in the hip, and one in knee). However, our +robot is desired to enable not only the terrestrial/aerial hybrid +locomotion, but also the manipulation in midair. Therefore, the +omni-directional movement is a critical feature for the skeleton +design. Then, a point symmetric structure is introduced as +depicted in Fig. 2(B). This is similar to the sprawling-type +quadruped design proposed by [22], which can provide s wider +supporting polygon and also a lower CoG than the mammal- +type. According to this design concept, each limb consists +of two links that have the same length, and is connected to +the center torso with a joint module that has two Degree-of- +Freedom (DoF). For this joint module, the yaw axis qi yaw +comes first, which is followed by the pitch axis qi pitch +to allow a larger swinging range for walking as shown in +Fig. 2(C1)/(C2). The crucial difference from the ordinary +sprawling-type is that we also introduce an identical two- +DoF joint module to connect neighboring links, which can +provide a four-DoF manipulation capability by each limb end +without the help of the torso motion. Eventually, this robot +is composed of 8 links with 16 joints for walking and flying. +Given that the lightweight design is significantly important for +the flight performance, we deploy a compact servo motor to +individually actuate each joint at the expense of the torque +power. Nevertheless, the shortage of the joint torque can be +compensated by the rotor thrust in our robot. +B. Spherically Vectorable Rotor +Rotors embedded in links are used to achieve flight with +arbitrary joint motion in midair. Besides, it is also necessary + +(B) +(A) +qi+1_yaw +i+1_pitch +yaw +qi_pitch +(D) +C1 top view +(C2) side view3 +to use the rotor thrust to assist leg lifts for walking, because +the joint actuator is weak due to the lightweight design as +mentioned in Sec. II-A. Therefore, the rotor is required to +point arbitrary direction to handle the change in link ori- +entation. In other words, it is required to generate a three- +dimensional thrust force by each rotor module to interact +with not only the gravity and also the external force (i.e., +the contact force on each foot). Then a spherically vectorable +apparatus proposed by [18] is equipped in each link as depicted +in Fig. 2(D). To achieve the spherical vectoring around the +link unit, two rotation axes is necessary. We first introduce +a roll axis φi around the link rod. Then, we need the second +orthogonal vectoring axis. If we use a single rotor, the collision +between the propeller and the link rod will be inevitable +while performing the second vectoring. Therefore, we apply +the counter-rotating dual-rotor module to avoid the collision +as shown in Fig. 2(D). In addition, this dual-rotor can also +counteract the drag moment and gyroscopic moment. Then, +we define the pitch axis across dual rotors as the second +vectoring axis θi. Each vectoring axis is also actuated by an +individual compact servo motor. Regarding the thrust force, +since we assume that a pair of rotors rotate with the same +speed, it is possible to introduced a combined thrust λi for +each spherically vectorable rotor module. Eventually, there are +three control input (two vectoring angles φi, θi, and one thrust +λi) for each vectorable rotor module, and totally 8 sets are used +to control the whole quadruped model. +III. MODELING +In this section, we describe the modeling for this robot +which can be divided into two parts: the thrust model and +the whole dynamics model. +A. Spherically Vectorable Thrust +Based on the kinematic model depicted in Fig. 3, the three- +dimensional force fi generated by the i-th rotor module can +contact +contact +contact +free +Œ• +Œ•>Ú +“•• +Œ‰• +Ε +Ε>Ú +Ε>Û +Ε>Ü +“•>Ú• +<(Ü= +<%K)= +<.Ü= +Fig. 3. +Dynamics model of the proposed quadruped robot. The entire +dynamics involves the joint torque τj, the contact force at each limb end fci, +the gravity of each link mig, and the thrust force from each vectorable rotor +fi. {Li} and {Fi} denote the frame for the i-th link and rotor respectively, +whereas {CoG} is the CoG frame for the whole model. For the free leg +during walking, the contact force fci at the limb end disappears. +be written as: +fi = λiui, +(1) +ui = CoGRFi(q, φi, θi) +�0 +0 +1�T , +(2) +where CoGRFi denotes a rotation matrix of the rotor frame +{Fi} w.r.t. the frame {CoG}. For this robot, we define the +frame {CoG} to have an origin at the CoG point as depicted in +Fig. 3, and a xyz coordinate that is identical to the baselink at +the center torso. ui denotes the unit vector for the spherically +vectorable mechanism that is effected by two vectoring angles +φi and θi. Besides, this vector also depends on the joint angles +q ∈ RNJ , NJ is the number of joints. +Then the total wrench in the frame {CoG} can be given by +� +fλ +τλ +� += + + +Nr +� +i=1 +fi +Nr +� +i=1 +pi × fi + + += Qλ, +(3) +Q = +� +u1 +u2 +· · · +uNr +p1 × u1 +p2 × u2 +· · · +pNr × uNr +� +, +(4) +λ = +�λ1 +λ2 +· · · +λNr +�T , +where pi is the position of the frame {Fi} origin from the +frame {CoG} that is influenced by the joint angles q and the +first vectoring angle φi for the i-th rotor. Nr is the number of +rotors. +B. Dynamics of Multilinked Model +The whole dynamic model can be written as follows: +˙PΣ =Rcfλ − mΣg + +Nc +� +i=1 +fci, +(5) +˙LΣ =τλ + +Nc +� +i=1 +pci × RT +c fci, +(6) +MJ(q)¨q + c(q, ˙q) =τq + +Nc +� +i=1 +JT +cifci ++ +Nr +� +i=1 +JT +rifi + +Ns +� +i=1 +JT +simsig. +(7) +(5) and (6) denote the centroidal dynamics for the whole +multibody model. PΣ and LΣ are the entire linear and +rotational momentum described in the inertial frame {W} +and the frame {CoG}, respectively. These momentum are +both affected by the joint angles, vectoring angles, and their +velocities (i.e., q, ˙q, φ, ˙φ, θ, ˙θ). Rc is the orientatin of the +frame {CoG} w.r.t. the frame {W}, and is identical to Rb +that is the orientatin of the baselink. fλ and τλ corresponds +to the total wrench described in (3). fci is the contact force at +the i-th limb end (foot) w.r.t. the frame {W}, whereas pci is +the position of this contact point from the frame {CoG} which +is also influenced by the joint angles q. Nc is the number of +contact points (i.e., standing legs). mΣ is the total mass, and +g is a three-dimensional vector expressing gravity. + +4 +(7) corresponds to the joint motion. MJ(q) denotes the +inertial matrix, whereas c(q, ˙q) is the term related to the +centrifugal and Coriolis forces in joint motion. J∗i ∈ R3×NJ +is the Jacobian matrix for the frame of the i-th contact point +(∗ → c), the i-th rotor (∗ → r), and the i-th segment’s CoG +(∗ → s), respectively. τq ∈ RNJ is the vector of joint torque +and fi is the vectoring thrust force corresponding to (1). +(5) ∼ (7) are highly complex due to the joint motion. Then +the realtime feedback control based on these nonlinear equa- +tions is significantly difficult for an onboard computational +resource. Therefore, for the joint motion, a crucial assumption +is introduced in our work to simplify the dynamics, i.e., all +the joints are actuated slowly by individual servo motors. +This is also called the quasi-static assumption that allows +˙q ≈ 0; ¨q ≈ 0 during the joint motion. +Under this assumption, the original dynamic model can be +approximated as follows: +mΣ¨rc(q) = Rcfλ − mΣg + +Nc +� +i=1 +fci, +(8) +IΣ(q) ˙ω + ω × IΣ(q)ω = τλ + +Nc +� +i=1 +pci × fci, +(9) +0 = τq + +Nc +� +i=1 +JT +cifci + +Nr +� +i=1 +JT +rifi + +Ns +� +i=1 +JT +simsig, +(10) +where rc is the position of the frame {CoG} w.r.t the frame +{W}, which can be calculated using the forward-kinematics +from the baselink states with the joint angles q. ωc is the +angular velocity of the frame {CoG} w.r.t the frame of +{CoG}, and is identical to ωb that is the angular velocity +of the baselink. IΣ(q) is the total inertia tensor that is also +influenced by the joint angles q. +(8) and (9) show the property of a single rigid body, whereas +(10) indicates the equilibrium between the forces and torques +for the joint motion. Given that we apply the quasi-static +assumption for joint motion, only the slow terrestrial motion, +such as the static walk gait, is allowed. +IV. CONTROL +In this section, we first describe a unified control framework +as depicted in Fig. 4, and then present the modification for the +aerial and terrestrial locomotion, respectively. +Control +Allocation +Centroidal +Motion +Control +Robot +Dynamics +Model +Approximation +4Ö× +˜Ö× +6˜Ö× +Ó‰× +�× +Ø× Â× Å× +˜Õ +4Õ +6˜Õ +ÓÕ +— +—× +IŠ +Š +Vectorable Rotor Control +4Ö ÓÖ +˜Ö +6˜Ö +— +Joint +PD Control +Îä× +Fig. 4. +Unified control framework for terrestrial/aerial locomotion. +“Model approximation” presented in Sec. III-B is followed by the vectorable +rotor control based on the centroidal motion. The joint control is performed +independently. +A. Centroidal Motion Control +For the approximated dynamics of (8) and (9), the position +feedback control based on an ordinary PID control is given by +f d +λ = mΣRT +c (Kf,per + Kf,i +� +er + Kf,d ˙er) ++ RT +c (mΣg − +Nc +� +i=1 +fci), +(11) +where er = rd +c − rc, and Kf,∗ are the PID gain diagonal +matrices. +The attitude control follows the SO(3) control method +proposed by [23]: +τ d +λ = IΣ(Kτ,peR + Kτ,i +� +eR + Kτ,deω) ++ ωc × IΣωc − +Nc +� +i=1 +pci × RT +c fci, +(12) +eR = 1 +2 +� +RT +c Rd +c − RdT +c Rc +�∨ , +(13) +eω = RT +c Rd +cωd +c − ωc, +(14) +where [⋆]∨ is the inverse of a skew map. +Then, the desired wrench w.r.t the frame {CoG} can be +summarized as follows: +wd = +� +f d +λ +τ d +λ +�T . +(15) +B. Control Allocation +The goal of vectorable rotor control is to obtain the control +input (the desired thrust λd and the desired vectoring angles +φd, θd) from the desired wrench wd. Meanwhile, it is also +important to suppress the rotor output and the joint load from +the aspect of the energy consumption. Then, an optimization +problem should be design to obtain the desired control input. +Since the vectoring angles φ and θ demand the trigono- +metric function, nonlinear constraints would appear in the +optimization problem and thus lead a complex computation. +To decrease the computational load during the realtime control +loop, we introduce an alternative three-dimensional forces f +′ +i +that is the vectorable thrust w.r.t, the related link frame {Li}: +f +′ +i = LiRFi(φi, θi) +�0 +0 +λi +�T. The definition of the frames +of {Li} and {Fi} can be found in Fig. 3. Then the above +optimization problem can be modified as follows: +min +f ′ +i ,τq,fci +w1 +Nr +� +i=1 +∥f +′ +i∥2 + w2∥τq∥2, +(16) +s.t. +wd = +Nr +� +i=1 +Qif +′ +i , +Qi = +�E3×3 +[pi×] +� +CoGRLi, +(17) +τq = − +Nc +� +i=1 +JT +cifci − +Nr +� +i=1 +JT +rifi − +Ns +� +i=1 +JT +simsig, +(18) +0 < λi < ¯λ, +(19) +− ¯τq < τqi < ¯τq, +(20) +0 < fci(2), +(21) + +5 +where w1 and w2 in (16) are the weights for the cost of rotor +thrust and joint torque, respectively. (17) is the modified form +of wrench allocation from (3) by using the alternative variable +f +′ +i . pi is defined in (3), whereas CoGRLi is the orientation of +the frame {Li} w.r.t. the frame {CoG}. E3×3 is a 3 × 3 +identity matrix and [·×] denotes the skew symmetric matrix +of a three dimensional vector. (18) denotes the equilibrium +between the joint torque τq, the contact force fci, the thrust +force fi, and the segment gravity msig to satisfy the joint +quasi-static assumption. (19) and (20) denote the bounds for +the rotor thrust and joint torque, respectively. The contact force +fci is also considered as the searching variable, and the z +element fci(2) should be always non-negative as shown in +(21). +Given that all constraints (17) ∼ (21) are linear, an ordinary +algorithm for quadratic problem can be applied. Once the +optimized thrust force ˜f +′ +i is calculated, the true control input +for the spherically vector rotor apparatus can be obtained as +follows: +λi = ∥f +′ +i∥, +(22) +φi = tan−1(−f +′ +i(1) +f +′ +i(2) ), +(23) +θi = tan−1( +f +′ +i (0) +−f +′ +i(1)sin(φi) + f +′ +i(2)cos(φi)), +(24) +where f +′ +i (0), f +′ +i(1), and f +′ +i(2) are the x, y, and z element of +the vector. +As a unique mechanical feature of the spherically vectorable +apparatus depicted in Fig. 2(D), the result of vectoring angles +φ and θ from (23) and (24) will deviate the position pi in +(17) because of the small offset between two vectoring axes +as depicted in Fig. 2(D). Then, the results of (22) ∼ (24) will +no longer satisfy the constraint (17) because Qi has changed. +To solve this problem, we apply the iteration process that is +based on the gradient of a residual term ǫ := wd − Q(θ, φ)λ, +and finally we can obtain the convergent values of φd, θd and +λd. The detail can be found in [19]. +C. Joint Control +The proposed optimization problem of (16) can also pro- +vides the joint torque that however only satisfies the quasi- +static assumption for joint motion. In addition, the measure- +ment bias and noisy from the joint encoders along with the +slight deformation of the link and joint structure can also +induce the model error. To handle this model error, it is +necessary to apply a feed-back control to track the desired +position for joints. Therefore, a simple PD control for joint +position is introduced for each joint: +τ d +i = kj,p(qd +i − qi) − kj,d ˙qi, +(25) +where qd +i is the desired joint angle from the walking gait or +the aerial transformation planning. kj,p and kj,d are the P and +D control gains. It is also notable that we also used the same +PD control for the rotor vectoring angles φi and θi. +D. Aerial Locomotion +The control mode for aerial locomotion follows the flow +shown in Fig. 4 but without the contact force fci. Then the +constraint of (21) and the first term �Nc +i=1 JT +cifci at the right +side of (18) can be omitted. The joint control is executed +independently to follow the trajectory given by other task +planing. +E. Terrestrial Locomotion +1) Torso altitude control: The terrestrial locomotion is +totally based on the quasi-static joint motion. Therefore the +centroidal motion should be also assumed to be static, which +results in a desired wrench only handling gravity (wd = +�0 +0 +−mΣg +0 +0 +0� +) for (17). Despite of the joint +position control proposed in (25), a small error regarding +the torso (i.e., baselink) pose, particularly along the altitude +direction, would still remain mainly due to the influence of +gravity. Therefore, we apply a feedback control using the rotor +thrust for the torso altitude. Instead of the PID position control +for the centroidal motion as proposed in (11), a truncated +feedback control for the torso altitude is introduced as follows: +f d +z = kb(zd +b − zb), +(26) +where kb is the P gain, and zb is the torso altitude. We assume +this altitude control is for the “floating” baselink even in the +terrestrial locomotion mode. Therefore, instead of considering +f d +z in (17) and (18), we introduce another independent control +allocation to obtain the additional thrust force as follows: +∆wd = +Nr +2 +� +i=1 +Q2i∆f +′ +2i, +(27) +where ∆wd = +� +0 +0 +f d +z +0 +0 +0 +�T. It is notable that we +only choose the rotors in the inner link of each leg to suppress +the influence on the joint quasi-static motion as presented in +(18). Then ∆f +′ +2i can be given by +∆f +′ = ˜Q#∆wd, +(28) +˜Q = +�Q0 +Q2 +· · · +QNr +� +, +∆f +′ = +� +∆f +′ +0 +∆f +′ +2 +· · · +∆f +′ +Nr +�T , +where ˜Q# is the psuedo-inverse matrix of ˜Q. Finally, f +′ +2i → +f +′ +2i + ∆f +′ +2i is performed before substituting it into (22)∼(24). +2) Static walking gait: In this work, we only focus on the +static walking gait. Hence only one leg is allowed to lift during +walking. As the update of the foot step for the lifting leg, +we analytically solve the inverse-kinematics for the related +three joint angles: qi yaw, qi pitch, and qi+1 pitch as depicted +in Fig. 2, which can be uniquely determined. Regarding the +gait for linear movement, we design a creeping gait that lifts +the front-left, front-right, rear-right, and rear-left legs in order +for one gait cycle, and also solely moves the torso in standing +mode just after the two front legs have moved to the new +position. To enable the repetition of the gait cycle, the stride +length of all feet is set equal to the moving distance of torso. +We further assume the robot only walks on a flat floor, and +thus the height of feet should be always zero. Then, we first + +6 +set an intermediate target position right above the new foot +step with a small height offset. Thus qi yaw and qi+1 pitch are +identical to the final target, whereas qi pitch is smaller than +the final value. Once the lifting leg moves to this intermediate +pose, the robot starts lowering the leg to reach the new foot +step only by changing qi pitch. Given that there is no tactile +sensor on the foot, we introduce a threshold ∆qc for the joint +angle error of qi pitch to detect touchdown. That is, if qd +i pitch− +qi pitch < ∆qc, then switch the lifting leg to the standing +mode, and thus the number of the contact force fci changes +from three to four. +V. EXPERIMENT +A. Robot Platform +In this work, we developed a prototype of SIDAR as shown +in Fig. 5, and the basic specification is summarized in Tab. I. +Given the lightweight design, we employed CFRP material for +link rod where cables can pass through. For the joint module, +we used the Aluminum sheet to connect links, whereas the +joint servo was Dynamixel XH430-V350R of which the torque +was enhanced by pulley made from PLA. The range of joint +angle was [−90◦ 90◦]. For the vectorable rotor module, a +pair of counter-rotating plastic propellers were enclosed by +ducts with the aim of safety and increase of thrust, whereas +Dynamixel XL430-W250T was used for the rotor vectoring. +Batteries are distributed in each link unit in parallel as shown +in Fig. 5(G) which can provide a flight duration up to 9 min +and a longer walk duration up to 20 min. A hemisphere foot +with anti-slip tape was equipped to ensure the stable point +contact during the terrestrial locomotion. +On the center torso as shown in Fig. 5(A), NVIDIA Jetson +TX2 and an original MCU board called Spinal were deployed +to perform the realtime control framework as presented in +Fig. 4. For each link unit, there was a distributed MCU +board called Neuron that served as relay node between Spinal +(C1) +(A) +(B) +(D) +(C2) +(G) +(F) +(A) +(B) +(C1) +(C2) +(D) +(E) +(E) +(F) +(G) +àÜ +öÜ +1.1m +MÜ4w_ê +MÜ>54w_ê +MÜ4ngraf +MÜ>54ngraf +CAN +Fig. 5. Prototype of SPIDAR: (A) center torso that employed an original +red MCU called Spinal and a high level processor (Nvidia Jetson TX2); (B) +spherically vectorable dual-rotor module; (C1)(C2) two-DoF joint module +for the “hip” and the “knee”, respectively; (D) single leg (limb) that had the +maximum length of 1.1 m; (E) small relay board called “Neuron” for each +link unit that was connected with “Spinal” via CAN; (F) hemisphere foot +with anti-slip tape; (G) distributed battery attached at each link unit. +TABLE I +PROTOTYPE SPECIFICATIONS +1. Main Feature +3. Vectorable Rotor +Attribute +Value +Attribute +Value +total mass +15.2 kg +rotor KV +1550 +max size (dia.) +2.7 m +propeller diameter +5 inch +max flight time +9 min +max thrust (¯λ) +42 N +max walk time +20 min +pulley ratio +1:1.5 +max vectoring torque +1.5 Nm +2. Link and Joint +max vectoring speed +4.2 rad/s +Attribute +Value +link length +0.54 m +4. Lipo Battery +joint pulley ratio +1:2 +Attribute +Value +max joint speed +0.34 rad/s +capacity +6S 3Ah +max torque (¯τq) +6.5 Nm +amount +8 +and each actuator. Neurons and Spinal were connected by +CAN cable. The detail of the onboard communication can be +found in [18]. Besides, an external motion capture system was +applied in our experiment to obtain the state of the baselink +(i.e., rb, ˙rb, Rb, and ωb), which were used to calculate the +state of centroidal motion based on forward-kinematics. +B. Basic Experimental Evaluation +1) Aerial transformation: A unique feature of SPIDAR is +the aerial maneuvering with joint motion (i.e., aerial transfor- +mation). To validate the stability during flight, simple transfor- +mation as shown in Fig. 6 was performed. All limbs changed +their joints with the same trajectories as plotted in Fig. 7(C). +(A) +(B) +Fig. 6. Stable joint motion in midair: (A) extended pose that has diameter +of 2.6 m; (B) standing pose, implying the feasibility to takeoff directly from +the terrestrial mode. +32 +34 +36 +38 +40 +42 +44 [s] +(B) +(A) +(D) +0.05 +-0.05 +0 +Š Aåã +Š Aåä +Š Aåå +Š Aåâßß Š AãÜçÖÛ Š AìÔê +[m] +1.5 +-1.5 +-1.0 +-0.5 +0.5 +1.0 +0 +[;] +6 +4 +2 +0 +-2 +-4 +[Nm] +32 +34 +36 +38 +40 +42 +44 [s] +(C) +80 +60 +40 +20 +0 +-20 +[;] +Š M54ìÔê +Š M54ãÜçÖÛ +Š M64ìÔê +Š M64ãÜçÖÛ +Š ì54ìÔê +Š ì54ãÜçÖÛ +Š ì64ìÔê +Š ì64ãÜçÖÛ +Fig. 7. Plots related to Fig. 6 : (A) positional errors of {CoG}; (B) rotational +errors of {CoG} described in XYZ Euler angles; (C) joint trajectories for +leg1 (q1 yaw, q1 pitch, q2 yaw, and q2 pitch), other legs followed the same +joint trajectories; (D) torques for those joints. + +MM +MwM +M装配件7 +(A) +(B) +Fig. 8. lifting a single leg from standing mode: (A) standing mode where +all feet have contact with the ground; (B) lifting single leg and keeping the +raised pose with the assistance of rotor thrust. +For the control gains in (11) and (12), we set Kf,p, Kf,i, Kf,d, +Kτ,p, Kτ,i, and Kτ,d as D(3.6, 3.6, 2.8), D(0.03, 0.03, 1.2), +D(4, 4, 2.8), D(15, 15, 10), D(0.3, 0.3, 0.1), and D(5, 5, 5), +where D(∗, ∗, ∗) ∈ R3×3 is a diagonal matrix. For the +optimization problem of (16), we omitted the second term +(i.e., w2 = 0) to put a priority on the minimization of the +thrust force. Fig. 7(A) and (B) plotted the positional and +rotational errors during the flight and transformation, and the +RMS of those errors were [0.014, 0.023, 0.038] m and [0.81, +0.69, 0.92]◦. The altitude error erz indicated a relatively large +deviation during the joint motion, which was caused by the +violation of the quasi-static assumption. Nevertheless, this +deviation rapidly decreased once the joint motion finished. +Fig. 7(C) and (D) showed that all joint were well controlled by +the PD control as presented in (25). Eventually, these results +demonstrated the stability of both the baselink pose and the +joint motion in aerial locomotion. +2) Leg lifting: The key to achieve walking by legged robot +is the stability while lifting the leg. Then, we evaluated the +proposed control method by performing a long-term single +leg lifting as shown in Fig. 8. The cost weights in (16) were +set as w1 = 1, w2 = 1, and the bound for joint torque ¯τq +was decreased to 1.5 Nm to ensure sufficient margin for joint +control. Besides, the gain kb in (26) was set as 25. Leg1 +was lifted by changing q1 pitch from −16 ◦ to −28 ◦, and the +lifting motion lasted around 30 s as shown in Fig. 9(A). Other +joints were kept constant in the whole motion as shown in +Fig. 9(A) and (C), and their torques were within the bounds as +depicted in Fig. 9(B) and (D). These results demonstrated the +stability of joint motion against the influence of thrust force. +Besides the stability of the baselink pose can be confirmed +in Fig. 9(E) and (F), where both the positional and rotational +errors converged to the sufficiently small value (i.e., 0.01 m +and 0.5 ◦). Fig. 9(G) showed the large increase of the thrust +forces in the lifting leg, whereas Fig. 9(H) showed small +changes in other standing legs. In addition, these plots also +confirmed the stable transition between standing mode and +leg lifting mode. In particular, the shift back to the standing +model around 40 s demonstrated the smooth touchdown, which +indicates the promising terrestrial locomotion. +C. Seamless Terrestrial/Aerial Hybrid Locomotion +We further evaluated the feasibility of seamless locomotion +transition as shown in Fig. 10. Fig. 11(A) and (C) demon- +strated the baselink pose trajectory during walking with five +15 +20 +25 +30 +35 +40 +[s] +45 +15 +20 +25 +30 +35 +40 +[s] +45 +15 +20 +10 +5 +10 +8 +6 +4 +2 +[N] +[N] +(F) +(E) +(G) +(H) +0.02 +-0.02 +0 +[m] +-0.01 +0.01 +1.5 +-1.5 +-1.0 +-0.5 +0.5 +1.0 +0 +[;] +Š Aåã Š Aåä Š Aåå +Š Aåâßß Š AãÜçÖÛ Š AìÔê +Š ã5 Š ã6 +Š ã7 Š ã8 Š ã9 Š ã: +(A) +(B) +(C) +(D) +2 +1 +0 +-1 +-2 +6 +5 +[Nm] +4 +2 +1 +0 +-1 +3 +-30 +-25 +-20 +-15 +[;] +80 +[;] +86 +84 +82 +Š M54ãÜçÖÛ Š M74ãÜçÖÛ Š M94ãÜçÖÛ +Š ì54ãÜçÖÛ Š ì74ãÜçÖÛ Š ì94ãÜçÖÛ +Š M64ãÜçÖÛ Š M84ãÜçÖÛ Š M:4ãÜçÖÛ +Š ì64ãÜçÖÛ Š ì84ãÜçÖÛ Š ì:4ãÜçÖÛ +Fig. 9. Plots related to Fig. 8: (A) trajectories for hip pitch joints. q7 pitch +was omitted due to the symmetric pose of leg4 related to leg2; (B) torques +of joints in (A); (C) trajectories for knee pitch joints; (D) torques of joints in +(C); (E) positional errors of baselink ; (F) rotational errors of baselink; (G) +thrust forces in leg1; (H) thrust forces in other legs. +gait cycles. We observed that the translational drift along the +walking direction (x axis) and the orthogonal direction (y axis) +finally grew to 0.18 m and 0.10 m, whereas the rotational drift +along the yaw axis also increased to 9 ◦. These drifts can be +attributed to the feed-froward gait planing where the target +baselink pose was updated based on the last target values +� + +! +" +0.2m +0.2m +0.2m +5 gait +cycles +gait cycle +Fig. 10. Seamless Terrestrial/Aerial Hybrid Locomotion: 1⃝ ∼ 3⃝ shows +the representative phases (moving the front-left leg, the torso, and rear-left +leg) in one creeping gait cycle. After five gait cycles, robot switched to the +aerial locomotion directly from the terrestrial pose as shown in 4⃝. + +82prMN8 +gait +cycle1 +gait +cycle2 +gait +cycle3 +gait +cycle4 +gait +cycle5 +stand +sprawl +Š NKHH Š LEP?D Š U=S +--- NKHH×, LEP?D×, U=S× +-6 +4 +2 +0 +-2 +-4 +-8 +-10 +takeoff +land +(B) +(A) +(C) +(D) +1.2 +0.8 +1.0 +[;] +-6 +0 +-2 +-4 +-8 +-10 +[;] +0.6 +0.4 +0.2 +0 +-0.2 +0.8 +0.6 +0.4 +0.2 +0 +-0.2 +[m] +[m] +Š Në Š Nì Š Ní +--- Në× --- Në× --- Në× +--- U=S× +20 +40 +60 +80 +100 +120 [s] +120 +125 +130 +135 +[s] +Fig. 11. Plots related Fig. 10.(A)/(B) trajectories of baselink position during +the terrestrial locomotion and the aerial locomotion, respectively; (C)/(D) +trajectories of baselink orientation during the terrestrial locomotion and the +aerial locomotion, respectively. +but not the actual values. Nevertheless, these drifts can be +considered relatively small compared to the total displacement, +and are possible to be suppressed by adding a feed-back loop +in planning as a future work. Furthermore, the deviations +regarding the z, roll, and pitch axes were sufficiently small, +which demonstrated the efficiency of the proposed control +method presented in Sec. IV. +As shown in Fig. 11(B) and (D), the transition to the +aerial locomotion was smooth and stable, and the stability in +midair was also confirmed, Thus, these results demonstrated +the feasibility of the mechanical design, modeling and control +methods for the terrestrial/aerial hybrid quadruped platform. +VI. CONCLUSION +In this paper, we presented the achievement of the terres- +trial/aerial hybrid locomotion by the quadruped robot SPIDAR +that were equipped with the vectorable rotors distributed in all +links. We first proposed the mechanical design for this unique +quadruped platform, and then developed the modeling and +control methods to enable static walking and transformable +flight. The feasibility of the above methods were verified by +the experiment of seamless terrestrial/aerial hybrid locomotion +with the prototype of SPIDAR. +A crucial issue remained in this work is the oscillation +and deviation of the baselink pose and joint angles during +walking. To improve the stability, the rotor thrust should be +directly used in the joint position control to replace the current +simple PD control. Furthermore, the gait planning should be +also robust against the drift by adding a feed-back loop as +discussed in Sec. V-C. Last but not least, the dynamic walking +and the aerial manipulation will be investigated to enhance the +versatility of this robot in both maneuvering and manipulation. +REFERENCES +[1] Koji Kawasaki, Moju Zhao, Kei Okada, and Masayuki Inaba. MUWA: +Multi-field universal wheel for air-land vehicle with quad variable-pitch +propellers. In 2013 IEEE/RSJ International Conference on Intelligent +Robots and Systems, pp. 1880–1885, 2013. +[2] Arash Kalantari and Matthew Spenko. +Modeling and performance +assessment of the HyTAQ, a hybrid terrestrial/aerial quadrotor. IEEE +Transactions on Robotics, Vol. 30, No. 5, pp. 1278–1285, 2014. +[3] Hiroya Yamada, et al. +Development of amphibious snake-like robot +ACM-R5. In the 36th International Symposium on Robotics (ISR), 2005. +[4] Auke Jan Ijspeert, Alessandro Crespi, Dimitri Ryczko, and Jean-Marie +Cabelguen. From swimming to walking with a salamander robot driven +by a spinal cord model. Science, Vol. 315, No. 5817, pp. 1416–1420, +2007. +[5] Hamzeh Alzu’bi, Iyad Mansour, and Osamah Rawashdeh. Loon Copter: +Implementation of a hybrid unmanned aquatic–aerial quadcopter with +active buoyancy control. Journal of Field Robotics, Vol. 35, No. 5, pp. +764–778, 2018. +[6] Kyunam Kim, Patrick Spieler, Elena-Sorina Lupu, Alireza Ramezani, +and Soon-Jo Chung. A bipedal walking robot that can fly, slackline, +and skateboard. Science Robotics, Vol. 6, No. 59, p. eabf8136, 2021. +[7] Tomoki Anzai, Yuta Kojio, Tasuku Makabe, Kei Okada, and Masayuki +Inaba. Design and development of a flying humanoid robot platform with +bi-copter flight unit. In 2020 IEEE-RAS 20th International Conference +on Humanoid Robots (Humanoids), pp. 69–75, 2021. +[8] Stella Latscha, et al. Design of a hybrid exploration robot for air and land +deployment (H.E.R.A.L.D) for urban search and rescue applications. +In 2014 IEEE/RSJ International Conference on Intelligent Robots and +Systems, pp. 1868–1873, 2014. +[9] Nitzan Ben David and David Zarrouk. Design and analysis of FCSTAR, +a hybrid flying and climbing sprawl tuned robot. IEEE Robotics and +Automation Letters, Vol. 6, No. 4, pp. 6188–6195, 2021. +[10] Azumi Maekawa, Ryuma Niiyama, and Shunji Yamanaka. +Pseudo- +locomotion design with a quadrotor-assisted biped robot. In 2018 IEEE +International Conference on Robotics and Biomimetics (ROBIO), pp. +2462–2466, 2018. +[11] Daniele Pucci, Silvio Traversaro, and Francesco Nori. +Momentum +control of an underactuated flying humanoid robot. IEEE Robotics and +Automation Letters, Vol. 3, No. 1, pp. 195–202, 2018. +[12] Yuhang Li, et al. Jet-HR2: A flying bipedal robot based on thrust vector +control. IEEE Robotics and Automation Letters, Vol. 7, No. 2, pp. 4590– +4597, 2022. +[13] Michael P. Murphy, Aaron Saunders, Cassie Moreira, Alfred A. Rizzi, +and Marc Raibert. The LittleDog robot. The International Journal of +Robotics Research, Vol. 30, No. 2, pp. 145–149, 2011. +[14] Marco Hutter, et al. +ANYmal - a highly mobile and dynamic +quadrupedal robot. +In 2016 IEEE/RSJ International Conference on +Intelligent Robots and Systems (IROS), pp. 38–44, 2016. +[15] Benjamin Katz, Jared Di Carlo, and Sangbae Kim. +Mini Cheetah: +A platform for pushing the limits of dynamic quadruped control. +In +2019 International Conference on Robotics and Automation (ICRA), pp. +6295–6301, 2019. +[16] Paul Hebert, et al. Mobile manipulation and mobility as manipulation- +design and algorithm RoboSimian. Journal of Field Robotics, Vol. 32, +No. 2, pp. 255–274, 2015. +[17] Kenji Hashimoto, et al. +WAREC-1 - a four-limbed robot having +high locomotion ability with versatility in locomotion styles. In 2017 +IEEE International Symposium on Safety, Security and Rescue Robotics +(SSRR), pp. 172–178, 2017. +[18] Moju Zhao, et al. +Design, modeling, and control of an aerial robot +DRAGON: A dual-rotor-embedded multilink robot with the ability +of multi-degree-of-freedom aerial transformation. IEEE Robotics and +Automation Letters, Vol. 3, No. 2, pp. 1176–1183, April 2018. +[19] Moju Zhao, Kei Okada, and Masayuki Inaba. Versatile articulated aerial +robot DRAGON: Aerial manipulation and grasping by vectorable thrust +control. The International Journal of Robotics Research, 2022. +[20] Fan Shi, Tomoki Anzai, Yuta Kojio, Kei Okada, and Masayuki In- +aba. Learning agile hybrid whole-body motor skills for thruster-aided +humanoid robots. +In 2022 IEEE/RSJ International Conference on +Intelligent Robots and Systems (IROS), pp. 12986–12993, 2022. +[21] Zhifeng Huang, et al. Three-dimensional posture optimization for biped +robot stepping over large ditch based on a ducted-fan propulsion system. +In 2020 IEEE/RSJ International Conference on Intelligent Robots and +Systems (IROS), pp. 3591–3597, 2020. +[22] Satoshi Kitano, Shigeo Hirose, Gen Endo, and Edwardo F. Fukushima. +Development of lightweight sprawling-type quadruped robot TITAN- +XIII and its dynamic walking. In 2013 IEEE/RSJ International Confer- +ence on Intelligent Robots and Systems, pp. 6025–6030, 2013. +[23] T. Lee, M. Leok, and N. H. McClamroch. Geometric tracking control +of a quadrotor UAV on SE(3). In 49th IEEE Conference on Decision +and Control (CDC), pp. 5420–5425, 2010. + +E \ No newline at end of file diff --git a/PdE2T4oBgHgl3EQfrgiA/content/tmp_files/load_file.txt b/PdE2T4oBgHgl3EQfrgiA/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..8b85cc8b7fc5ec4a5941e7b9c01b239eecceb6e9 --- /dev/null +++ b/PdE2T4oBgHgl3EQfrgiA/content/tmp_files/load_file.txt @@ -0,0 +1,598 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf,len=597 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='04050v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='RO] 10 Jan 2023 1 Design, Modeling and Control of a Quadruped Robot SPIDAR: Spherically Vectorable and Distributed Rotors Assisted Air-Ground Amphibious Quadruped Robot Moju Zhao1, Tomoki Anzai2, Takuzumi Nishio2 Abstract—Multimodal locomotion capability is an emerging topic in robotics field, and various novel mobile robots have been developed to enable the maneuvering in both terrestrial and aerial domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Among these hybrid robots, several state-of- the-art bipedal robots enable the complex walking motion which is interlaced with flying.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' These robots are also desired to have the manipulation ability;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' however, it is difficult for the current forms to keep stability with the joint motion in midair due to the cen- tralized rotor arrangement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Therefore, in this work, we develop a novel air-ground amphibious quadruped robot called SPIDAR which is assisted by spherically vectorable rotors distributed in each link to enable both walking motion and transformable flight.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' First, we present a unique mechanical design for quadruped robot that enables terrestrial and aerial locomotion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' We then reveal the modeling method for this hybrid robot platform, and further develop an integrated control strategy for both walking and flying with joint motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Finally, we demonstrate the feasibility of the proposed hybrid quadruped robot by performing a seamless motion that involves static walking and subsequent flight.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' To the best of our knowledge, this work is the first to achieve a quadruped robot with multimodal locomotion capability, which also shows the potential of manipulation in multiple domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Index Terms—Legged Robots;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Aerial Systems: Mechanics and Control;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Motion Control I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' INTRODUCTION During the last decade, robots with multimodal locomotion capability have undergone intensive development, and demon- strated the versatile maneuvering in multiple domains (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=', terrestrial, aerial, and aquatic) [1]–[5] which can benefit the performance in various situations, such as disaster response and industrial surveillance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Among various forms for mul- timodal locomotion, the legged type has the advantage in unstructured terrains, and several bipedal models have been developed to demonstrate the promising walking that is inter- laced with flying motion [6], [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' The legged robots are desired to provide not only the advanced locomotion capability, but also the manipulation ability by the limb end-effector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Then, multilegged (multilimbed) is considered effective from the aspect of both the stability in the terrestrial locomotion and the freedom in manipulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' In spite of the achievement of a simple arm motion in midair by the flying humanoid robot in [7], the centralized rotor arrangement in most of the existing robot platforms can hardly handle the large change of Center-of-Gravity (CoG) caused by the joint motion in midair.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Besides, the external force at the limb end during the aerial manipulation is also difficult to compensate by the centralized 1 Department of Mechanical Engineering, The University of Tokyo, 2 Department of Mechano-Infomatics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' chou@hnl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='u-tokyo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='jp Digital Object Identifier (DOI): see top of this page.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' (A) (B) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Air-ground amphibious quadruped robot SPIDAR: SPherIcally vectorable and Distributed rotors assisted Air-ground amphibious quadruped Robot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' (A) walk on the ground like an usual quadruped robot, but with the assistance of thrust force;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' (B) fly and transform in midair.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' rotors due to the large moment arm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Hence, a distributed rotor arrangement is necessary for aerial manipulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Then, we propose a novel quadruped robot platform in this work, which can both walk and fly by using the spherically vectorable rotors distributed in each link unit as illustrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' One of the efficient type of air-ground hybrid robot plat- forms equips an ordinary multirotor for flying, and then de- ploys rolling cage or wheels to perform terrestrial locomotion [2], [8], [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Although the rolling mechanism can achieve the stable terrestrial locomotion without any complex control, it is relatively difficult for this type to handle the unstructured ter- rains (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=', very few foothold).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Then, legged model is proposed in several researches [6], [7], [10]–[12] to solve this issue by the walking motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Most of these robots are bipedal model which attaches the multirotor unit in their torso for aerial maneuvering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Compared with the bipedal model, it is relatively easier to achieve the walking stability by the multilegged model because of the larger support polygon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Besides, the legs can be considered as the limbs for manipulation in midair, and thus more limbs can provide more end-effectors for complex manipulation task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Therefore, we choose the quadruped model that can offer both the stable terrestrial locomotion and the potential of aerial manipulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' For most of the quadruped robot, the form is bio-inspired and specialized for terrestrial locomotion [13]–[15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' However, in our work, the robot is also desired to perform manipulation task in multiple domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Several ape-like quadruped robots show the manipulation ability by the hands attached on the leg ends [16], [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' The point symmetry is the crucial difference of these robots from the skeleton design for common quadruped robots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' In our work, we also adopt the point symmetry for our hybrid quadruped robot to enable the omni-directional maneuvering and manipulation in both terrestrial and aerial 2 domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Regarding the rotor arrangement, it is difficult for rotors centralized in the robot torso like [6] to handle the change of CoG caused by the joint motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Besides, the external force acted at the end-effectors can also induce a large rotational load for the centralized rotors due to the large moment arm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' To ensure a sufficient control margin for the stable joint motion in midair, [11] proposes a distributed rotor arrangement that deploys the thrust units at each limb end.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' However, this rotor arrangement deprives the robot of manipulation ability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Therefore, a fully-distributed rotor design proposed by [18] is applied in this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' In this design, spherically vectorable rotor apparatus is embedded in each link and thus can generate individual three-dimensional thrust force for the promising maneuvering and manipulation in midair as presented in [19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' For the stable flying motion, the whole platform should be lightweight, which leads a relatively compact and weak joint actuator for legs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Hence, the thrust force is also required to assist the walking motion by reducing the load from gravity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' For model with centralized rotor arrangement, both the model- based [6] and the policy-based [20] methods are developed to obtain the assistive thrust.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' However, these methods are not suitable for the model with rotors distributed in all links.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Then, [21] proposes an assistive thrust control method for a bipedal robot with the vectorable rotor attached at each foot, whereas [19] presents a control method for a fully-distributed rotor model in the aerial domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Based on these methods, a comprehensive investigation of the modeling and control for the multilegged model is performed in this work to handle multiple types of torques and forces (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=', the joint torque, the contact force on each limb end, the gravity of each link, and the thrust force from each vectorable rotor).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' The main contributions of this work can be summarized as follows: 1) We propose a unique mechanical design for air-ground quadruped robot with the spherically vectorable rotors distributed in all links.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 2) We present a modeling and control methods for this multilegged platform for hybrid locomotion in both terrestrial and aerial domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 3) We achieve the seamless and stable motion that involves walking, flying and joint motion in midair by the proto- type of quadruped robot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' The remainder of this paper is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' The mechanical design for this unique quadruped robot is intro- duced in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' The modeling of our robot is presented in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' III, followed by the integrated control method for hybrid locomotion in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' We then show the experimental results in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' V before concluding in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' DESIGN In this section, we present the mechanical design for the quadruped robot that is capable of terrestrial/aerial hybrid locomotion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' The key of the whole structure is the spherically vectorable rotor embedded in each link unit, along with the unique quadruped shape that differs from the common bio- inspired type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Mechanical design for the air-ground hybrid quadruped robot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' (A) skeleton model for common bio-inspired mammal-type quadruped robot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' (B) proposed point-symmetric skeleton model for hybrid quadruped model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' (C1)/(C2) two-DoF joint module for each limb, where the yaw axis qi yaw comes first followed by the pitch axis qi pitch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' (D) spherically vectorable rotor apparatus with two vectoring angles (φ, θ), and a combined thrust force λi from the counter rotating dual rotors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' There is a small offset between two vectoring axes because two rods cannot intersect with each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Skeleton Model As shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 2(A), the common skeleton for quadruped robot is mammal-type, which puts a priority on the forward motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Thus, the model is plane symmetric, and each leg has three DoF (two in the hip, and one in knee).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' However, our robot is desired to enable not only the terrestrial/aerial hybrid locomotion, but also the manipulation in midair.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Therefore, the omni-directional movement is a critical feature for the skeleton design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Then, a point symmetric structure is introduced as depicted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 2(B).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' This is similar to the sprawling-type quadruped design proposed by [22], which can provide s wider supporting polygon and also a lower CoG than the mammal- type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' According to this design concept, each limb consists of two links that have the same length, and is connected to the center torso with a joint module that has two Degree-of- Freedom (DoF).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' For this joint module, the yaw axis qi yaw comes first, which is followed by the pitch axis qi pitch to allow a larger swinging range for walking as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 2(C1)/(C2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' The crucial difference from the ordinary sprawling-type is that we also introduce an identical two- DoF joint module to connect neighboring links, which can provide a four-DoF manipulation capability by each limb end without the help of the torso motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Eventually, this robot is composed of 8 links with 16 joints for walking and flying.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Given that the lightweight design is significantly important for the flight performance, we deploy a compact servo motor to individually actuate each joint at the expense of the torque power.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Nevertheless, the shortage of the joint torque can be compensated by the rotor thrust in our robot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Spherically Vectorable Rotor Rotors embedded in links are used to achieve flight with arbitrary joint motion in midair.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Besides, it is also necessary (B) (A) qi+1_yaw i+1_pitch yaw qi_pitch (D) C1 top view (C2) side view3 to use the rotor thrust to assist leg lifts for walking, because the joint actuator is weak due to the lightweight design as mentioned in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' II-A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Therefore, the rotor is required to point arbitrary direction to handle the change in link ori- entation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' In other words, it is required to generate a three- dimensional thrust force by each rotor module to interact with not only the gravity and also the external force (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=', the contact force on each foot).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Then a spherically vectorable apparatus proposed by [18] is equipped in each link as depicted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 2(D).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' To achieve the spherical vectoring around the link unit, two rotation axes is necessary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' We first introduce a roll axis φi around the link rod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Then, we need the second orthogonal vectoring axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' If we use a single rotor, the collision between the propeller and the link rod will be inevitable while performing the second vectoring.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Therefore, we apply the counter-rotating dual-rotor module to avoid the collision as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 2(D).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' In addition, this dual-rotor can also counteract the drag moment and gyroscopic moment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Then, we define the pitch axis across dual rotors as the second vectoring axis θi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Each vectoring axis is also actuated by an individual compact servo motor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Regarding the thrust force, since we assume that a pair of rotors rotate with the same speed, it is possible to introduced a combined thrust λi for each spherically vectorable rotor module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Eventually, there are three control input (two vectoring angles φi, θi, and one thrust λi) for each vectorable rotor module, and totally 8 sets are used to control the whole quadruped model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' MODELING In this section, we describe the modeling for this robot which can be divided into two parts: the thrust model and the whole dynamics model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Spherically Vectorable Thrust Based on the kinematic model depicted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 3, the three- dimensional force fi generated by the i-th rotor module can contact contact contact free Œ• Œ•>Ú “•• Œ‰• Ε Ε>Ú Î•>Û Î•>Ü “•>Ú• <(Ü= <%K)= <.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='Ü= Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Dynamics model of the proposed quadruped robot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' The entire dynamics involves the joint torque τj, the contact force at each limb end fci, the gravity of each link mig, and the thrust force from each vectorable rotor fi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' {Li} and {Fi} denote the frame for the i-th link and rotor respectively, whereas {CoG} is the CoG frame for the whole model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' For the free leg during walking, the contact force fci at the limb end disappears.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' be written as: fi = λiui, (1) ui = CoGRFi(q, φi, θi) �0 0 1�T , (2) where CoGRFi denotes a rotation matrix of the rotor frame {Fi} w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' the frame {CoG}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' For this robot, we define the frame {CoG} to have an origin at the CoG point as depicted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 3, and a xyz coordinate that is identical to the baselink at the center torso.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' ui denotes the unit vector for the spherically vectorable mechanism that is effected by two vectoring angles φi and θi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Besides, this vector also depends on the joint angles q ∈ RNJ , NJ is the number of joints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Then the total wrench in the frame {CoG} can be given by � fλ τλ � = \uf8ee \uf8ef\uf8ef\uf8ef\uf8ef\uf8f0 Nr � i=1 fi Nr � i=1 pi × fi \uf8f9 \uf8fa\uf8fa\uf8fa\uf8fa\uf8fb = Qλ, (3) Q = � u1 u2 · · uNr p1 × u1 p2 × u2 · · pNr × uNr � , (4) λ = �λ1 λ2 · · λNr �T , where pi is the position of the frame {Fi} origin from the frame {CoG} that is influenced by the joint angles q and the first vectoring angle φi for the i-th rotor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Nr is the number of rotors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Dynamics of Multilinked Model The whole dynamic model can be written as follows: ˙PΣ =Rcfλ − mΣg + Nc � i=1 fci, (5) ˙LΣ =τλ + Nc � i=1 pci × RT c fci, (6) MJ(q)¨q + c(q, ˙q) =τq + Nc � i=1 JT cifci + Nr � i=1 JT rifi + Ns � i=1 JT simsig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' (7) (5) and (6) denote the centroidal dynamics for the whole multibody model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' PΣ and LΣ are the entire linear and rotational momentum described in the inertial frame {W} and the frame {CoG}, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' These momentum are both affected by the joint angles, vectoring angles, and their velocities (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=', q, ˙q, φ, ˙φ, θ, ˙θ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Rc is the orientatin of the frame {CoG} w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' the frame {W}, and is identical to Rb that is the orientatin of the baselink.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' fλ and τλ corresponds to the total wrench described in (3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' fci is the contact force at the i-th limb end (foot) w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' the frame {W}, whereas pci is the position of this contact point from the frame {CoG} which is also influenced by the joint angles q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Nc is the number of contact points (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=', standing legs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' mΣ is the total mass, and g is a three-dimensional vector expressing gravity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 4 (7) corresponds to the joint motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' MJ(q) denotes the inertial matrix, whereas c(q, ˙q) is the term related to the centrifugal and Coriolis forces in joint motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' J∗i ∈ R3×NJ is the Jacobian matrix for the frame of the i-th contact point (∗ → c), the i-th rotor (∗ → r), and the i-th segment’s CoG (∗ → s), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' τq ∈ RNJ is the vector of joint torque and fi is the vectoring thrust force corresponding to (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' (5) ∼ (7) are highly complex due to the joint motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Then the realtime feedback control based on these nonlinear equa- tions is significantly difficult for an onboard computational resource.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Therefore, for the joint motion, a crucial assumption is introduced in our work to simplify the dynamics, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=', all the joints are actuated slowly by individual servo motors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' This is also called the quasi-static assumption that allows ˙q ≈ 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' ¨q ≈ 0 during the joint motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Under this assumption, the original dynamic model can be approximated as follows: mΣ¨rc(q) = Rcfλ − mΣg + Nc � i=1 fci, (8) IΣ(q) ˙ω + ω × IΣ(q)ω = τλ + Nc � i=1 pci × fci, (9) 0 = τq + Nc � i=1 JT cifci + Nr � i=1 JT rifi + Ns � i=1 JT simsig, (10) where rc is the position of the frame {CoG} w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='t the frame {W}, which can be calculated using the forward-kinematics from the baselink states with the joint angles q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' ωc is the angular velocity of the frame {CoG} w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='t the frame of {CoG}, and is identical to ωb that is the angular velocity of the baselink.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' IΣ(q) is the total inertia tensor that is also influenced by the joint angles q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' (8) and (9) show the property of a single rigid body, whereas (10) indicates the equilibrium between the forces and torques for the joint motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Given that we apply the quasi-static assumption for joint motion, only the slow terrestrial motion, such as the static walk gait, is allowed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' CONTROL In this section, we first describe a unified control framework as depicted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 4, and then present the modification for the aerial and terrestrial locomotion, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Control Allocation Centroidal Motion Control Robot Dynamics Model Approximation 4Ö× ˜Ö× 6˜Ö× Ó‰× �× Ø× Â× Å× ˜Õ 4Õ 6˜Õ ÓÕ — —× IŠ +Š Vectorable Rotor Control 4Ö ÓÖ ˜Ö 6˜Ö — Joint PD Control Îä× Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Unified control framework for terrestrial/aerial locomotion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' “Model approximation” presented in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' III-B is followed by the vectorable rotor control based on the centroidal motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' The joint control is performed independently.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Centroidal Motion Control For the approximated dynamics of (8) and (9), the position feedback control based on an ordinary PID control is given by f d λ = mΣRT c (Kf,per + Kf,i � er + Kf,d ˙er) + RT c (mΣg − Nc � i=1 fci), (11) where er = rd c − rc, and Kf,∗ are the PID gain diagonal matrices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' The attitude control follows the SO(3) control method proposed by [23]: τ d λ = IΣ(Kτ,peR + Kτ,i � eR + Kτ,deω) + ωc × IΣωc − Nc � i=1 pci × RT c fci, (12) eR = 1 2 � RT c Rd c − RdT c Rc �∨ , (13) eω = RT c Rd cωd c − ωc, (14) where [⋆]∨ is the inverse of a skew map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Then, the desired wrench w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='t the frame {CoG} can be summarized as follows: wd = � f d λ τ d λ �T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' (15) B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Control Allocation The goal of vectorable rotor control is to obtain the control input (the desired thrust λd and the desired vectoring angles φd, θd) from the desired wrench wd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Meanwhile, it is also important to suppress the rotor output and the joint load from the aspect of the energy consumption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Then, an optimization problem should be design to obtain the desired control input.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Since the vectoring angles φ and θ demand the trigono- metric function, nonlinear constraints would appear in the optimization problem and thus lead a complex computation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' To decrease the computational load during the realtime control loop, we introduce an alternative three-dimensional forces f ′ i that is the vectorable thrust w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='t, the related link frame {Li}: f ′ i = LiRFi(φi, θi) �0 0 λi �T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' The definition of the frames of {Li} and {Fi} can be found in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Then the above optimization problem can be modified as follows: min f ′ i ,τq,fci w1 Nr � i=1 ∥f ′ i∥2 + w2∥τq∥2, (16) s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' wd = Nr � i=1 Qif ′ i , Qi = �E3×3 [pi×] � CoGRLi, (17) τq = − Nc � i=1 JT cifci − Nr � i=1 JT rifi − Ns � i=1 JT simsig, (18) 0 < λi < ¯λ, (19) − ¯τq < τqi < ¯τq, (20) 0 < fci(2), (21) 5 where w1 and w2 in (16) are the weights for the cost of rotor thrust and joint torque, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' (17) is the modified form of wrench allocation from (3) by using the alternative variable f ′ i .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' pi is defined in (3), whereas CoGRLi is the orientation of the frame {Li} w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' the frame {CoG}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' E3×3 is a 3 × 3 identity matrix and [·×] denotes the skew symmetric matrix of a three dimensional vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' (18) denotes the equilibrium between the joint torque τq, the contact force fci, the thrust force fi, and the segment gravity msig to satisfy the joint quasi-static assumption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' (19) and (20) denote the bounds for the rotor thrust and joint torque, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' The contact force fci is also considered as the searching variable, and the z element fci(2) should be always non-negative as shown in (21).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Given that all constraints (17) ∼ (21) are linear, an ordinary algorithm for quadratic problem can be applied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Once the optimized thrust force ˜f ′ i is calculated, the true control input for the spherically vector rotor apparatus can be obtained as follows: λi = ∥f ′ i∥, (22) φi = tan−1(−f ′ i(1) f ′ i(2) ), (23) θi = tan−1( f ′ i (0) −f ′ i(1)sin(φi) + f ′ i(2)cos(φi)), (24) where f ′ i (0), f ′ i(1), and f ′ i(2) are the x, y, and z element of the vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' As a unique mechanical feature of the spherically vectorable apparatus depicted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 2(D), the result of vectoring angles φ and θ from (23) and (24) will deviate the position pi in (17) because of the small offset between two vectoring axes as depicted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 2(D).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Then, the results of (22) ∼ (24) will no longer satisfy the constraint (17) because Qi has changed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' To solve this problem, we apply the iteration process that is based on the gradient of a residual term ǫ := wd − Q(θ, φ)λ, and finally we can obtain the convergent values of φd, θd and λd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' The detail can be found in [19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Joint Control The proposed optimization problem of (16) can also pro- vides the joint torque that however only satisfies the quasi- static assumption for joint motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' In addition, the measure- ment bias and noisy from the joint encoders along with the slight deformation of the link and joint structure can also induce the model error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' To handle this model error, it is necessary to apply a feed-back control to track the desired position for joints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Therefore, a simple PD control for joint position is introduced for each joint: τ d i = kj,p(qd i − qi) − kj,d ˙qi, (25) where qd i is the desired joint angle from the walking gait or the aerial transformation planning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' kj,p and kj,d are the P and D control gains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' It is also notable that we also used the same PD control for the rotor vectoring angles φi and θi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Aerial Locomotion The control mode for aerial locomotion follows the flow shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 4 but without the contact force fci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Then the constraint of (21) and the first term �Nc i=1 JT cifci at the right side of (18) can be omitted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' The joint control is executed independently to follow the trajectory given by other task planing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Terrestrial Locomotion 1) Torso altitude control: The terrestrial locomotion is totally based on the quasi-static joint motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Therefore the centroidal motion should be also assumed to be static, which results in a desired wrench only handling gravity (wd = �0 0 −mΣg 0 0 0� ) for (17).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Despite of the joint position control proposed in (25), a small error regarding the torso (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=', baselink) pose, particularly along the altitude direction, would still remain mainly due to the influence of gravity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Therefore, we apply a feedback control using the rotor thrust for the torso altitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Instead of the PID position control for the centroidal motion as proposed in (11), a truncated feedback control for the torso altitude is introduced as follows: f d z = kb(zd b − zb), (26) where kb is the P gain, and zb is the torso altitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' We assume this altitude control is for the “floating” baselink even in the terrestrial locomotion mode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Therefore, instead of considering f d z in (17) and (18), we introduce another independent control allocation to obtain the additional thrust force as follows: ∆wd = Nr 2 � i=1 Q2i∆f ′ 2i, (27) where ∆wd = � 0 0 f d z 0 0 0 �T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' It is notable that we only choose the rotors in the inner link of each leg to suppress the influence on the joint quasi-static motion as presented in (18).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Then ∆f ′ 2i can be given by ∆f ′ = ˜Q#∆wd, (28) ˜Q = �Q0 Q2 · · QNr � , ∆f ′ = � ∆f ′ 0 ∆f ′ 2 · · ∆f ′ Nr �T , where ˜Q# is the psuedo-inverse matrix of ˜Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Finally, f ′ 2i → f ′ 2i + ∆f ′ 2i is performed before substituting it into (22)∼(24).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 2) Static walking gait: In this work, we only focus on the static walking gait.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Hence only one leg is allowed to lift during walking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' As the update of the foot step for the lifting leg, we analytically solve the inverse-kinematics for the related three joint angles: qi yaw, qi pitch, and qi+1 pitch as depicted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 2, which can be uniquely determined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Regarding the gait for linear movement, we design a creeping gait that lifts the front-left, front-right, rear-right, and rear-left legs in order for one gait cycle, and also solely moves the torso in standing mode just after the two front legs have moved to the new position.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' To enable the repetition of the gait cycle, the stride length of all feet is set equal to the moving distance of torso.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' We further assume the robot only walks on a flat floor, and thus the height of feet should be always zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Then, we first 6 set an intermediate target position right above the new foot step with a small height offset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Thus qi yaw and qi+1 pitch are identical to the final target, whereas qi pitch is smaller than the final value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Once the lifting leg moves to this intermediate pose, the robot starts lowering the leg to reach the new foot step only by changing qi pitch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Given that there is no tactile sensor on the foot, we introduce a threshold ∆qc for the joint angle error of qi pitch to detect touchdown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' That is, if qd i pitch− qi pitch < ∆qc, then switch the lifting leg to the standing mode, and thus the number of the contact force fci changes from three to four.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' EXPERIMENT A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Robot Platform In this work, we developed a prototype of SIDAR as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 5, and the basic specification is summarized in Tab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Given the lightweight design, we employed CFRP material for link rod where cables can pass through.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' For the joint module, we used the Aluminum sheet to connect links, whereas the joint servo was Dynamixel XH430-V350R of which the torque was enhanced by pulley made from PLA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' The range of joint angle was [−90◦ 90◦].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' For the vectorable rotor module, a pair of counter-rotating plastic propellers were enclosed by ducts with the aim of safety and increase of thrust, whereas Dynamixel XL430-W250T was used for the rotor vectoring.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Batteries are distributed in each link unit in parallel as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 5(G) which can provide a flight duration up to 9 min and a longer walk duration up to 20 min.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' A hemisphere foot with anti-slip tape was equipped to ensure the stable point contact during the terrestrial locomotion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' On the center torso as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 5(A), NVIDIA Jetson TX2 and an original MCU board called Spinal were deployed to perform the realtime control framework as presented in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' For each link unit, there was a distributed MCU board called Neuron that served as relay node between Spinal (C1) (A) (B) (D) (C2) (G) (F) (A) (B) (C1) (C2) (D) (E) (E) (F) (G) àÜ öÜ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='1m MÜ4w_ê MÜ>54w_ê MÜ4ngraf MÜ>54ngraf CAN Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Prototype of SPIDAR: (A) center torso that employed an original red MCU called Spinal and a high level processor (Nvidia Jetson TX2);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' (B) spherically vectorable dual-rotor module;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' (C1)(C2) two-DoF joint module for the “hip” and the “knee”, respectively;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' (D) single leg (limb) that had the maximum length of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='1 m;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' (E) small relay board called “Neuron” for each link unit that was connected with “Spinal” via CAN;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' (F) hemisphere foot with anti-slip tape;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' (G) distributed battery attached at each link unit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' TABLE I PROTOTYPE SPECIFICATIONS 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Main Feature 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Vectorable Rotor Attribute Value Attribute Value total mass 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='2 kg rotor KV 1550 max size (dia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=') 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='7 m propeller diameter 5 inch max flight time 9 min max thrust (¯λ) 42 N max walk time 20 min pulley ratio 1:1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='5 max vectoring torque 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='5 Nm 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Link and Joint max vectoring speed 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='2 rad/s Attribute Value link length 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='54 m 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Lipo Battery joint pulley ratio 1:2 Attribute Value max joint speed 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='34 rad/s capacity 6S 3Ah max torque (¯τq) 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='5 Nm amount 8 and each actuator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Neurons and Spinal were connected by CAN cable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' The detail of the onboard communication can be found in [18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Besides, an external motion capture system was applied in our experiment to obtain the state of the baselink (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=', rb, ˙rb, Rb, and ωb), which were used to calculate the state of centroidal motion based on forward-kinematics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Basic Experimental Evaluation 1) Aerial transformation: A unique feature of SPIDAR is the aerial maneuvering with joint motion (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=', aerial transfor- mation).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' To validate the stability during flight, simple transfor- mation as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 6 was performed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' All limbs changed their joints with the same trajectories as plotted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 7(C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' (A) (B) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Stable joint motion in midair: (A) extended pose that has diameter of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='6 m;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' (B) standing pose, implying the feasibility to takeoff directly from the terrestrial mode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 32 34 36 38 40 42 44 [s] (B) (A) (D) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='05 0 Š Aåã Š Aåä Š Aåå Š Aåâßß Š AãÜçÖÛ Š AìÔê [m] 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='0 0 [;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='] 6 4 2 0 2 4 [Nm] 32 34 36 38 40 42 44 [s] (C) 80 60 40 20 0 20 [;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='] Š M54ìÔê Š M54ãÜçÖÛ Š M64ìÔê Š M64ãÜçÖÛ Š ì54ìÔê Š ì54ãÜçÖÛ Š ì64ìÔê Š ì64ãÜçÖÛ Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Plots related to Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 6 : (A) positional errors of {CoG};' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' (B) rotational errors of {CoG} described in XYZ Euler angles;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' (C) joint trajectories for leg1 (q1 yaw, q1 pitch, q2 yaw, and q2 pitch), other legs followed the same joint trajectories;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' (D) torques for those joints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' MM MwM M装配件7 (A) (B) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' lifting a single leg from standing mode: (A) standing mode where all feet have contact with the ground;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' (B) lifting single leg and keeping the raised pose with the assistance of rotor thrust.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' For the control gains in (11) and (12), we set Kf,p, Kf,i, Kf,d, Kτ,p, Kτ,i, and Kτ,d as D(3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='6, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='6, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='8), D(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='03, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='03, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='2), D(4, 4, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='8), D(15, 15, 10), D(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='3, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='3, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='1), and D(5, 5, 5), where D(∗, ∗, ∗) ∈ R3×3 is a diagonal matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' For the optimization problem of (16), we omitted the second term (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=', w2 = 0) to put a priority on the minimization of the thrust force.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 7(A) and (B) plotted the positional and rotational errors during the flight and transformation, and the RMS of those errors were [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='014, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='023, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='038] m and [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='81, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='69, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='92]◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' The altitude error erz indicated a relatively large deviation during the joint motion, which was caused by the violation of the quasi-static assumption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Nevertheless, this deviation rapidly decreased once the joint motion finished.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 7(C) and (D) showed that all joint were well controlled by the PD control as presented in (25).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Eventually, these results demonstrated the stability of both the baselink pose and the joint motion in aerial locomotion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 2) Leg lifting: The key to achieve walking by legged robot is the stability while lifting the leg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Then, we evaluated the proposed control method by performing a long-term single leg lifting as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' The cost weights in (16) were set as w1 = 1, w2 = 1, and the bound for joint torque ¯τq was decreased to 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='5 Nm to ensure sufficient margin for joint control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Besides, the gain kb in (26) was set as 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Leg1 was lifted by changing q1 pitch from −16 ◦ to −28 ◦, and the lifting motion lasted around 30 s as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 9(A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Other joints were kept constant in the whole motion as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 9(A) and (C), and their torques were within the bounds as depicted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 9(B) and (D).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' These results demonstrated the stability of joint motion against the influence of thrust force.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Besides the stability of the baselink pose can be confirmed in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 9(E) and (F), where both the positional and rotational errors converged to the sufficiently small value (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=', 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='01 m and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='5 ◦).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 9(G) showed the large increase of the thrust forces in the lifting leg, whereas Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 9(H) showed small changes in other standing legs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' In addition, these plots also confirmed the stable transition between standing mode and leg lifting mode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' In particular, the shift back to the standing model around 40 s demonstrated the smooth touchdown, which indicates the promising terrestrial locomotion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Seamless Terrestrial/Aerial Hybrid Locomotion We further evaluated the feasibility of seamless locomotion transition as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 11(A) and (C) demon- strated the baselink pose trajectory during walking with five 15 20 25 30 35 40 [s] 45 15 20 25 30 35 40 [s] 45 15 20 10 5 10 8 6 4 2 [N] [N] (F) (E) (G) (H) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='02 0 [m] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='01 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='0 0 [;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='] Š Aåã Š Aåä Š Aåå Š Aåâßß Š AãÜçÖÛ Š AìÔê Š ã5 Š ã6 Š ã7 Š ã8 Š ã9 Š ã: (A) (B) (C) (D) 2 1 0 1 2 6 5 [Nm] 4 2 1 0 1 3 30 25 20 15 [;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='] 80 [;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='] 86 84 82 Š M54ãÜçÖÛ Š M74ãÜçÖÛ Š M94ãÜçÖÛ Š ì54ãÜçÖÛ Š ì74ãÜçÖÛ Š ì94ãÜçÖÛ Š M64ãÜçÖÛ Š M84ãÜçÖÛ Š M:4ãÜçÖÛ Š ì64ãÜçÖÛ Š ì84ãÜçÖÛ Š ì:4ãÜçÖÛ Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Plots related to Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 8: (A) trajectories for hip pitch joints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' q7 pitch was omitted due to the symmetric pose of leg4 related to leg2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' (B) torques of joints in (A);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' (C) trajectories for knee pitch joints;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' (D) torques of joints in (C);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' (E) positional errors of baselink ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' (F) rotational errors of baselink;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' (G) thrust forces in leg1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' (H) thrust forces in other legs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' gait cycles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' We observed that the translational drift along the walking direction (x axis) and the orthogonal direction (y axis) finally grew to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='18 m and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='10 m, whereas the rotational drift along the yaw axis also increased to 9 ◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' These drifts can be attributed to the feed-froward gait planing where the target baselink pose was updated based on the last target values � !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' " 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='2m 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='2m 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='2m 5 gait cycles gait cycle Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Seamless Terrestrial/Aerial Hybrid Locomotion: 1⃝ ∼ 3⃝ shows the representative phases (moving the front-left leg, the torso, and rear-left leg) in one creeping gait cycle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' After five gait cycles, robot switched to the aerial locomotion directly from the terrestrial pose as shown in 4⃝.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 82prMN8 gait cycle1 gait cycle2 gait cycle3 gait cycle4 gait cycle5 stand sprawl Š NKHH Š LEP?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='D Š U=S --- NKHH×, LEP?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='D×, U=S× 6 4 2 0 2 4 8 10 takeoff land (B) (A) (C) (D) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='0 [;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='] 6 0 2 4 8 10 [;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='2 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='2 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='2 [m] [m] Š Në Š Nì Š Ní --- Në× --- Në× --- Në× --- U=S× 20 40 60 80 100 120 [s] 120 125 130 135 [s] Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Plots related Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' (A)/(B) trajectories of baselink position during the terrestrial locomotion and the aerial locomotion, respectively;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' (C)/(D) trajectories of baselink orientation during the terrestrial locomotion and the aerial locomotion, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' but not the actual values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Nevertheless, these drifts can be considered relatively small compared to the total displacement, and are possible to be suppressed by adding a feed-back loop in planning as a future work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Furthermore, the deviations regarding the z, roll, and pitch axes were sufficiently small, which demonstrated the efficiency of the proposed control method presented in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' As shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 11(B) and (D), the transition to the aerial locomotion was smooth and stable, and the stability in midair was also confirmed, Thus, these results demonstrated the feasibility of the mechanical design, modeling and control methods for the terrestrial/aerial hybrid quadruped platform.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' CONCLUSION In this paper, we presented the achievement of the terres- trial/aerial hybrid locomotion by the quadruped robot SPIDAR that were equipped with the vectorable rotors distributed in all links.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' We first proposed the mechanical design for this unique quadruped platform, and then developed the modeling and control methods to enable static walking and transformable flight.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' The feasibility of the above methods were verified by the experiment of seamless terrestrial/aerial hybrid locomotion with the prototype of SPIDAR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' A crucial issue remained in this work is the oscillation and deviation of the baselink pose and joint angles during walking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' To improve the stability, the rotor thrust should be directly used in the joint position control to replace the current simple PD control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Furthermore, the gait planning should be also robust against the drift by adding a feed-back loop as discussed in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' V-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Last but not least, the dynamic walking and the aerial manipulation will be investigated to enhance the versatility of this robot in both maneuvering and manipulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' REFERENCES [1] Koji Kawasaki, Moju Zhao, Kei Okada, and Masayuki Inaba.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' MUWA: Multi-field universal wheel for air-land vehicle with quad variable-pitch propellers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 1880–1885, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' [2] Arash Kalantari and Matthew Spenko.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Modeling and performance assessment of the HyTAQ, a hybrid terrestrial/aerial quadrotor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' IEEE Transactions on Robotics, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 30, No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 5, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 1278–1285, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' [3] Hiroya Yamada, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Development of amphibious snake-like robot ACM-R5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' In the 36th International Symposium on Robotics (ISR), 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' [4] Auke Jan Ijspeert, Alessandro Crespi, Dimitri Ryczko, and Jean-Marie Cabelguen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' From swimming to walking with a salamander robot driven by a spinal cord model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Science, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 315, No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 5817, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 1416–1420, 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' [5] Hamzeh Alzu’bi, Iyad Mansour, and Osamah Rawashdeh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Loon Copter: Implementation of a hybrid unmanned aquatic–aerial quadcopter with active buoyancy control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Journal of Field Robotics, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 35, No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 5, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 764–778, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' [6] Kyunam Kim, Patrick Spieler, Elena-Sorina Lupu, Alireza Ramezani, and Soon-Jo Chung.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' A bipedal walking robot that can fly, slackline, and skateboard.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Science Robotics, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 6, No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 59, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' eabf8136, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' [7] Tomoki Anzai, Yuta Kojio, Tasuku Makabe, Kei Okada, and Masayuki Inaba.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Design and development of a flying humanoid robot platform with bi-copter flight unit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' In 2020 IEEE-RAS 20th International Conference on Humanoid Robots (Humanoids), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 69–75, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' [8] Stella Latscha, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Design of a hybrid exploration robot for air and land deployment (H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content='D) for urban search and rescue applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' In 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 1868–1873, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' [9] Nitzan Ben David and David Zarrouk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Design and analysis of FCSTAR, a hybrid flying and climbing sprawl tuned robot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' IEEE Robotics and Automation Letters, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 6, No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 6188–6195, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' [10] Azumi Maekawa, Ryuma Niiyama, and Shunji Yamanaka.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Pseudo- locomotion design with a quadrotor-assisted biped robot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' In 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 2462–2466, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' [11] Daniele Pucci, Silvio Traversaro, and Francesco Nori.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Momentum control of an underactuated flying humanoid robot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' IEEE Robotics and Automation Letters, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 3, No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 195–202, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' [12] Yuhang Li, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Jet-HR2: A flying bipedal robot based on thrust vector control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' IEEE Robotics and Automation Letters, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 7, No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 4590– 4597, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' [13] Michael P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Murphy, Aaron Saunders, Cassie Moreira, Alfred A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Rizzi, and Marc Raibert.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' The LittleDog robot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' The International Journal of Robotics Research, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 30, No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 145–149, 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' [14] Marco Hutter, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' ANYmal - a highly mobile and dynamic quadrupedal robot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 38–44, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' [15] Benjamin Katz, Jared Di Carlo, and Sangbae Kim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Mini Cheetah: A platform for pushing the limits of dynamic quadruped control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' In 2019 International Conference on Robotics and Automation (ICRA), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 6295–6301, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' [16] Paul Hebert, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Mobile manipulation and mobility as manipulation- design and algorithm RoboSimian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Journal of Field Robotics, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 32, No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 255–274, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' [17] Kenji Hashimoto, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' WAREC-1 - a four-limbed robot having high locomotion ability with versatility in locomotion styles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' In 2017 IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 172–178, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' [18] Moju Zhao, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Design, modeling, and control of an aerial robot DRAGON: A dual-rotor-embedded multilink robot with the ability of multi-degree-of-freedom aerial transformation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' IEEE Robotics and Automation Letters, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 3, No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 1176–1183, April 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' [19] Moju Zhao, Kei Okada, and Masayuki Inaba.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Versatile articulated aerial robot DRAGON: Aerial manipulation and grasping by vectorable thrust control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' The International Journal of Robotics Research, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' [20] Fan Shi, Tomoki Anzai, Yuta Kojio, Kei Okada, and Masayuki In- aba.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Learning agile hybrid whole-body motor skills for thruster-aided humanoid robots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' In 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 12986–12993, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' [21] Zhifeng Huang, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Three-dimensional posture optimization for biped robot stepping over large ditch based on a ducted-fan propulsion system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 3591–3597, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' [22] Satoshi Kitano, Shigeo Hirose, Gen Endo, and Edwardo F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Fukushima.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Development of lightweight sprawling-type quadruped robot TITAN- XIII and its dynamic walking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' In 2013 IEEE/RSJ International Confer- ence on Intelligent Robots and Systems, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 6025–6030, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' [23] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Lee, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Leok, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' McClamroch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' Geometric tracking control of a quadrotor UAV on SE(3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' In 49th IEEE Conference on Decision and Control (CDC), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' 5420–5425, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} +page_content=' E' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PdE2T4oBgHgl3EQfrgiA/content/2301.04050v1.pdf'} diff --git a/QdAyT4oBgHgl3EQf7vpN/content/tmp_files/2301.00843v1.pdf.txt b/QdAyT4oBgHgl3EQf7vpN/content/tmp_files/2301.00843v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..d6b54795dac870ce63a7f7793ef7f0738a5ac844 --- /dev/null +++ b/QdAyT4oBgHgl3EQf7vpN/content/tmp_files/2301.00843v1.pdf.txt @@ -0,0 +1,1564 @@ +CHEN et. al: EXPLICITLY SOLVABLE CONTINUOUS-TIME INFERENCE FOR PARTIALLY OBSERVED MARKOV PROCESSES +1 +Explicitly Solvable Continuous-time Inference for +Partially Observed Markov Processes +Daniel Chen, Alexander G. Strang, Andrew W. Eckford Senior Member, IEEE, Peter J. Thomas +Abstract—Many natural and engineered systems can be mod- +eled as discrete state Markov processes. Often, only a subset +of states are directly observable. Inferring the conditional prob- +ability that a system occupies a particular hidden state, given +the partial observation, is a problem with broad application. +In this paper, we introduce a continuous-time formulation of +the sum-product algorithm, which is a well-known discrete-time +method for finding the hidden states’ conditional probabilities, +given a set of finite, discrete-time observations. From our new +formulation, we can explicitly solve for the conditional probability +of occupying any state, given the transition rates and observations +within a finite time window. We apply our algorithm to a +realistic model of the cystic fibrosis transmembrane conductance +regulator (CFTR) protein for exact inference of the conditional +occupancy probability, given a finite time series of partial +observations. +I. INTRODUCTION +Markov processes—dynamic processes whose future be- +havior depends only on their present state—approximate a +wide variety of natural and engineered systems. Despite rapid +advances in high-throughput data acquisition and data pro- +cessing, many systems of interest contain important degrees +of freedom that cannot be directly observed. Inferring the +conditional probability that such a partially observed Markov +process occupies specific hidden states, given the available ob- +servations, is a ubiquitous problem in science and engineering. +Examples appear in robotics [1], ecology [2], neuroscience [3], +and algorithmic text analysis [4]. +We are motivated by biological examples in the present +paper. Ion channels in excitable membranes, such as the +sodium (Na+) and potassium (K+) channels described in +Hodgkin and Huxley’s quantitative model for action potential +generation [5], [6], [7], provide an early example. Discrete +state Markov models based on Hodgkin and Huxley’s K+ +channel contain five states, only one of which conducts an +ionic current; the other states are “silent” and cannot be distin- +guished by direct electrophysiological observation. Similarly, +This work was supported in part by National Institutes of Health BRAIN +Initiative grant R01 NS118606 and a National Science Foundation grant +DMS-2052109 to PJT, as well as research support from the Oberlin College +Libraries, and an NSERC Discovery grant to AWE. +D. Chen and P. J. Thomas are with the Department of Mathematics, Applied +Mathematics, and Statistics; Department of Electrical, Control and Systems +Engineering; Department of Computer and Data Science; Department of +Biology, Case Western Reserve University, Cleveland, OH 44106 USA (e- +mail: txc461/pjthomas@case.edu). +A. G. Strang is with Department of Statistics, University of Chicago, +Chicago, IL 60637 USA (email: alexstrang@uchicago.edu). +A. W. Eckford is with Department of Electrical Engineering and Computer +Science, York University, Toronto, ON M3J 1P3 Canada (e-mail: aeck- +ford@yorku.ca). +the Na+ channel has eight states: seven with zero conductance +and one with nonzero conductance. Colquhoun and Hawkes +introduced maximum likelihood methods for inferring the rate +constants of a partially observed Markov process representing +the nicotinic Acetylcholine receptor [8], [9], [10], [11], but +did not address the question of inferring microscopic state +occupancy from observable conductance time series. More +recently, research into the molecular biology of cystic fibrosis +(CF) has focused on the CF transmembrane conductance +regulator (CFTR), which can be modeled as a 7-state system +with two conducting states and five nonconducting states +[12] (detailed below in Section V). Beyond these biological +examples, problems of inferring or estimating hidden states +from incomplete observations are widely studied in the signal +processing literature [13]. +The literature contains several approaches to approximating +the behavior of hidden states of partially observed Markov +processes. Sampling provides one common technique for +approximate inference [14]. As an example, recent work by +Fang et al. demonstrated an efficient algorithm for simulating +stochastic reaction networks with multiple separated time +scales using particle filters [15]. In general, Markov Chain +Monte Carlo is a widely employed sampling technique used +to infer hidden states [16], [17], that has also been applied to +ion channels [18]. For partially observed Bayesian networks +operating in discrete time, message passing algorithms on +factor graphs provide an efficient and exact inference method +[19]. The factor-graph formalism is highly flexible. Algorithms +based on the message passing concept have been extended to +applications in localization [20], compressed sensing [21], and +decision fusion [22]. Factor graphs are not limited to models +with a discrete number of variables. For example, Gaussian +message passing in linear Gaussian models (e.g. Kalman +filtering and smoothing) has been developed for continuous- +time models with discrete-time observations [23], [24], [25]. +However, the state reconstruction problem for continuous-time +finite-state hidden Markov models has not been addressed in +the literature, to be best of our knowledge. +In this work, we extend the message-passing algorithm in +order to analytically interpolate state-occupancy probabilities +of a continuous-time system, given a discretely sampled time +series. That is, we show how to infer the time-dependent +conditional probabilities of latent states for continuous-time +discrete-state homogeneous Markov processes given a set of +partial observations over a finite time window. We derive +an equivalent formulation of the sum-product algorithm in +continuous time that allows one to find an explicit ana- +lytic solution for the state occupancy probability. Having +arXiv:2301.00843v1 [eess.SP] 2 Jan 2023 + +CHEN et. al: EXPLICITLY SOLVABLE CONTINUOUS-TIME INFERENCE FOR PARTIALLY OBSERVED MARKOV PROCESSES +2 +explicit solutions lowers the computational cost and, unlike +sampling-based approximate methods, does not sacrifice ac- +curacy. Furthermore, the continuous-time formalism leads to +elegant simplification of the analytic solutions. For certain +systems—like the three-state systems shown in Figure 2—the +conditional probability obeys a second-order inhomogeneous +linear ordinary differential equation. Finally, we demonstrate +the practical functionality of the algorithm with the 7-state +model for CFTR using simulated data. +The paper is organized as follows. Section II reviews the +message-passing algorithm for Markov processes with binary +observations. Section III displays the main result of the paper: +a continuous-time formulation of the sum-product algorithm. +We present the derivation of the conditional probability using +the message-passing approach in continuous time, and the +corresponding sum-product algorithm. Section IV discusses +the implications of the continuous-time formulation further. +We give examples of small systems to display how analytic +solutions may be found. In Section V we demonstrate the value +of the algorithm for a larger, realistic system. +II. THEORY OF THE SUM-PRODUCT ALGORITHM +The sum-product algorithm can be used generally for in- +ference on probabilistic models that can be written as factor +graphs [19]. There are many variants of the sum-product +algorithm, each suitable for accomplishing a different task. +For our purposes, we will focus on the forward/backward +algorithm for inference on hidden Markov models. +We consider a continuous-time, discrete-state homogeneous +Markov process on a finite state space Ω. Given a discrete, +uniformly spaced sampling interval, the continuous-time pro- +cess induces a discrete-time Markov process specified by some +column-stochastic transition matrix P that is invariant in time. +Let S ⊂ Ω be a subset of states, and let St ∈ Ω be the state +of the system at time t. We assume an observer can only +see whether St is in S or not. Accordingly, let Yt = m(St) +represent the observable where m(s) : Ω → {0, 1} is the +indicator function for the set S. The goal of the algorithm +is to infer the conditional probability of being at a particular +state, i ∈ Ω, given the binary observation. +The algorithm involves three vector-valued quantities: a for- +ward message αt, a backward message βt, and the observation +message χt. One can interpret the forward message as the +probability of arriving at a certain state from time 0 to time +t and the backward message as the likelihood of occupying +a certain state at time t conditioned on ending up in a given +target state, or a given target set of states, at the end of the +measurement T. On the other hand, the observation message +χt is an indicator function of the possible states given the +observation. For instance, if at time t, the observation of the +total system were Yt = 1, then χt would be a vector with 1’s +on the states in the observation set S and 0 otherwise. Using +superscripts to denote vector indices, i.e. v(i) denotes the i- +th element of vector v, we present pseudo-code for the sum- +product algorithm in Algorithm 1. Note that, the normalization +constant Z = � +k α(k) +t +β(k) +t +in Line 10 of Algorithm 1 is time +invariant [26]. +Algorithm 1 Forward/Backward Algorithm +Input: The transition matrix P ∈ Rn×n, the observation +message χt for t ∈ {1, . . . , T}. +Output: The inferred probability pt for t ∈ {1, . . . , T}. +1: Initialize the forward message α0 = π, the stationary +distribution of P +2: Initialize the backward message β(i) +T += 1, for all i +3: for t from 2, . . . , T do +4: +αt = diag(χt)Pαt−1 +5: end for +6: for s from T − 1, . . . , 1 do +7: +βs = P ⊺diag(χs+1)βs+1 +8: end for +9: for t from 1, . . . , T do +10: +pt = +αt⊙βt +� +k α(k) +t +β(k) +t +11: end for +Fig. 1 illustrates the sum-product algorithm’s application to +a time series of discretely sampled observations. Consider a +three-state-chain with symmetric transition rates as shown in +the top-left of Figure 1. If the system takes states 1 or 2, +“0” will be observed, and “1” will be observed otherwise. +Using the sum-product algorithm, we can find the probability +of the system occupying each state given the discrete-time +observations. As shown in the bottom row, as the sampling +time step decreases, the conditional probabilities appear to +converge to a smooth curve within each interval with a fixed +observation (either “0” or “1”). Intuitively, there should exist +a continuous, perhaps piecewise differentiable, representation +of the conditional probability of a partially observed process. +We formalize this intuition below. +III. CONTINUOUS-TIME MESSAGE PASSING +In this section, we present the main result, namely the +derivation of the continuous-time message passing algorithm. +In this new formalism, messages are passed in the form +of linear differential equations on possible states given the +observable system. In order to guarantee the existence of the +continuous sum-product algorithm, we assume the following +conditions. +Assumptions: +A1 The continuous-time process {S(t); t ∈ [0, T]} takes +values in a finite state space Ω = {1, 2, . . . , N}. +A2 S(t) has the Markov property, and has exponentially +distributed waiting times parameterized by a rate matrix +W, with wji specifying the transition rate from state i to +state j. Note that W is constant in the interval [0, T]. +A3 There is a distinguished subset S ⊂ Ω such that the +observable process Y(t) satisfies +Y(t) = +� +1 +if S(t) ∈ S, +0 +otherwise . +Further details appear in Appendix A. +Under these assumptions, we obtain a continuous-time ver- +sion of the sum-product algorithm by executing the following +steps (made rigorous in the proof of Theorem 1 below). Write + +CHEN et. al: EXPLICITLY SOLVABLE CONTINUOUS-TIME INFERENCE FOR PARTIALLY OBSERVED MARKOV PROCESSES +3 +Fig. 1: Illustrating convergence of conditional state occupancy probabilities to a differentiable function for a three-state model. +(Top left) The state diagram. (Top middle) True simulated states. (Top right) Binary observation derived from true states. +(Bottom row) Inference of hidden states via the sum-product algorithm with time steps 2.5 sec (Bottom Left), 1.0 sec (Bottom +Middle) and 0.5 sec (Bottom Right). +out the matrix multiplication of the discrete-time algorithm +element-wise. Focus on one sojourn where the observation +doesn’t change. Within that time interval, take the limit as the +time step goes to zero to derive the continuous-time dynamics +of the conditional probabilities. Extend the solution to the +full time interval via appropriate boundary conditions at the +transition between each sojourn. The main result is stated in +the theorem below. +Theorem 1. Suppose processes S(t) and the associated +process Y(t) satisfies assumptions A1, A2, and A3 above. +Then, given a realization of the process Y(t), the conditional +probability p(t) = Pr[S(t)|Y(t)] exists, is piecewise smooth +(C∞), and is C∞ on all intervals where Y(t) is constant. In +particular, p(t) takes the form +p(t) = +ρ(t) +� +k ρ(k)(t) = +α(t) ⊙ β(t) +� +k α(k)(t) ⊙ β(k)(t) +(1) +where ⊙ denotes the element-wise product, and the quantities +α(t) and β(t) are functions of time that follow the linear +ordinary differential equations +dα(i)(t) +dt += +� +k∈S\{i} +wkiα(k)(t) − +� +l̸=i +wilα(i)(t), +(2) +dβ(j)(t) +dt += − +� +k∈S\{j} +wjkβ(k)(t) + +� +l̸=j +wjlβ(j)(t). +(3) +Proof. Without loss of generality, focus on the case where +Y(0) = Y(T) = 0, and Y(t) = 1 for 0 < t < T. We use +q(t) to denote a quantity, q, evolving in continuous time on +the interval [0, T], and qt to denote the same process sampled +at discrete times. +Let the time interval [0, T] be discretized with a step size +∆t = T/n for some integer n ≫ 1. At each time step, +S(t) is sampled. Then, the sum-product algorithm can be used +to solve for pt. Writing the matrix multiplication out yields +the following set of equations for the forward and backward +messages in discrete time: +α(i) +t+∆t = +� +k +Pr[st+∆t = i|st = k]α(k) +t +χ(i) +t , +(4) +β(i) +t += +� +k +Pr[st+∆t = k|st = i]β(k) +t+∆tχ(k) +t+∆t. +(5) +We neglect states not in S because only the probability +conditioned on the observations is of interest. Then, for any +state i ∈ S, we argue that the corresponding forward message, +α(i)(t), and backward message, β(i)(t) in continuous time can +be written as solutions of systems of differential equations, +upon taking limits as ∆t → 0. For notational simplicity, for + +true states +observation +3 +W2 +2 +W/2 +W23 +0 +0 +50 +100 +0 +50 +100 +sample every 2.5 seconds +sample every 1 seconds +sample every 0.5 seconds +1 +0.8 +0.8 +0.8 +0.6 +0.6 +0.6 +0.4 +0.4 +0.4 +0.2 +0.2 +0.2 +0 +0 +0 +20 +40 +60 +80 +100 +20 +40 +60 +80 +100 +20 +40 +60 +80 +100CHEN et. al: EXPLICITLY SOLVABLE CONTINUOUS-TIME INFERENCE FOR PARTIALLY OBSERVED MARKOV PROCESSES +4 +t > τ we let P(i,j) +t,τ += Pr[S(t) = i|S(τ) = j]. +dα(i)(t) +dt += lim +∆t→0 +α(i)(t + ∆t) − α(i)(t) +∆t +(6) += lim +∆t→0 +1 +∆t +� � +k +P(i,k) +t+∆t,tα(k)(t)χ(i)(t) − α(i)(t) +� +(7) += lim +∆t→0 +1 +∆t +� +� +k∈S\{i} +(wki∆t + o(∆t))α(k)(t) . . . +− +� +l̸=i +(wil∆t + o(t))α(i)(t) +� +(8) += +� +k∈S\{i} +wkiα(k)(t) − +� +l̸=i +wilα(i)(t) +(9) +dβ(i)(t) +dt += lim +∆t→0 +β(i)(t + ∆t) − β(i)(t) +∆t +(10) += lim +∆t→0 +1 +∆t +� +β(i)(t + ∆t) . . . +− +� +k +P(k,i) +t+∆t,tβ(k)(t + ∆t)χ(k)(t + ∆t) +� +(11) += lim +∆t→0 +1 +∆t +� +− +� +k∈S\{i} +(wik∆t + o(∆t))β(k)(t + ∆t) ++ +� +l̸=i +(wil∆t + o(t))β(i)(t + ∆t) +� +(12) += − +� +k∈S\{i} +wikβ(k)(t) + +� +l̸=i +wilβ(i)(t) +(13) +where lim∆t→0 o(∆t)/∆t = 0. Readers could refer to Ap- +pendix A or consult existing literature such as [27] for the +relationship between transition probabilities and transition +rates of a Markov jump process. +The conditional probability can be found by solving the +differential equations, taking the component-wise product of +α(t) and β(t) for every t ∈ [0, T], and normalizing so as to +obtain a valid probability distribution. +The differential equation formulation is only applicable for +the time intervals where the observation Y(t) is constant. +When the observable Y(t) changes (when the systems transi- +tions from a state in S to a state not in S), the probability with +respect to time might not be differentiable; in some cases, it +is not even continuous. Therefore, we must specify boundary +conditions to connect the probabilities from one sojourn to +the next. The observable may change either by the system +entering S or else leaving S. Suppose a transition occurred +within time (t∗ −∆t, t∗] such that, for t < t∗ −∆t, S(t) ∈ S, +and S(t) ̸∈ S for t ≥ t∗. Call this event E. Then, we obtain +the following transition rule for the forward message. +Pr[S(t∗) = j|E] += +� +i∈S Pj,i +t∗,t∗−∆tPr[S(t∗ − ∆t) = i] +� +k̸∈S +� +i∈S Pk,i +t∗,t∗−∆tPr[S(t∗ − ∆t) = i] +(14) += +� +i∈S(wji∆t + o(∆t))Pr[S(t∗ − ∆t) = i] +� +k̸∈S +� +i∈S(wki∆t + o(∆t))Pr[S(t∗ − ∆t) = i] +(15) +→ +� +i∈S wjiPr[S(t− +∗ ) = i] +� +k̸∈S +� +i∈S wkiPr[S(t− +∗ ) = i] +(16) +as ∆t → 0. Here Pr[S(t− +∗ ) = i] is the probability of occupying +state i the instant before the transition, which can be found by +solving the differential equations introduced above. +We handle the boundary conditions at state transitions for +the backward message similarly. Define E as above and let s∗ +be a particular goal state. Then: +Pr[S(T) = s∗|S(t∗ − ∆t) = j, E] += +� +i̸∈S +Pr[S(T) = s∗, S(t∗) = i|S(t∗ − ∆t) = j, E] += +� +i̸∈S Pr[S(T) = s∗|S(t∗) = i]Pi,j +t∗,t∗−∆t +� +k∈S +� +i̸∈S Ps∗,i +T,t∗Pi,k +t∗,t∗−∆t +(17) += +� +i̸∈S Pr[S(T) = s∗|S(t∗) = i](wij∆t + o(∆t)) +� +k∈S +� +i̸∈S Ps∗,i +T,t∗(wik∆t + o(∆t)) +(18) += +� +i̸∈S Pr[S(T) = s∗|S(t∗) = i](wij + o(∆t) +∆t ) +� +k∈S +� +i̸∈S Ps∗,i +T,t∗(wik + o(∆t) +∆t ) +(19) +→ +� +i̸∈S wijPr[S(T) = s∗|S(t∗) = i] +� +k∈S +� +i̸∈S wikPr[S(T) = s∗|S(t∗) = i] +(20) +as ∆t → 0. Here, Pr[S(T) = s∗|S(t∗) = i] is a hitting +probability associated with the backward message at time +t∗, which can be found by solving the backward-message +differential equation. These boundary conditions, together with +the differential equations (2)-(3), give the continuous-time +evolution of the conditional probability for any finite-length +observations. +Note that the equations (2)-(3) extend to the case where +Y(0) = Y(T) = 1 and Y(t) = 0 for 0 < t < T by viewing +S ← Ω \ S. So, given a time series observation Y(t) where +observation (the value of Y(t)) changes at time 0 < t1 < t2 < +. . . tm, we can solve for the analytic solution at any interval +with consistent observation (ti, ti+1] using equation (2) and +(3). Then, use the result to compute the initial condition for the +next interval — namely, (ti+1, ti+2] for the forward message +and (ti−1, ti] for the backward message — as specified in (16) +and (20). Thus, the statement of Theorem 1 holds. +A general expression for the conditional probability can be +obtained, but it is not of great utility in most systems. Yet, +there are certain special cases that yield elegant solutions; we +introduce several examples in Section IV. +The continuous-time sum-product algorithm follows directly +from the derivation above, and is outlined in Algorithm 2. + +CHEN et. al: EXPLICITLY SOLVABLE CONTINUOUS-TIME INFERENCE FOR PARTIALLY OBSERVED MARKOV PROCESSES +5 +The discrete algorithm passes information through matrix +multiplication of a truncated transition matrix; the continuous- +time algorithm does the same by solving a system of linear +differential equations using the truncated rate matrix. Since the +final conditional probability is only piecewise differentiable, +the boundary condition must be applied whenever a transition +in or out of the observable set S occurs. +Algorithm 2 Continuous-time Forward/Backward Algorithm +Input: The rate transition matrix W ∈ Rn×n, the observed +process Y(t). +Output: The inferred probability p(t) for t ∈ [0, T]. +1: Let [t1, t2, . . . , tm] be a list of times where transitions +occur +2: τ ← 0 +3: α∗ ← π, the stationary distribution +4: for j from 1, . . . , m do +5: +αj ← solution to the forward message differential +equation (Equation 2) from τ to tj with initial condition +α∗ +6: +τ ← tj +7: +α∗ ← distribution specified according to Equation 16 +8: end for +9: τ ← T +10: β∗ ← the uniform distribution +11: for j from m, . . . , 1 do +12: +βj ← solution to the backward message differential +equation (Equation 3) from τ to tj with initial condition +β∗ +13: +τ ← tj +14: +β∗ ← distribution specified according to Equation 20 +15: end for +16: α(t), β(t) ← concatenation αj’s and βj’s +17: Compute ρ(t) = α(t)⊙β(t), the component-wise product +between α(t) and β(t) pointwise with respect to t +18: Compute the conditional probability p(t) = +ρ(t) +� +k ρ(k)(t) +From a practical perspective, having the ability to solve +for the conditional probabilities exactly through differential +equations drastically lowers the computational cost of the +forward/backward algorithm. Traditionally, the discrete-time +algorithm propagates the forward and backward messages +through matrix operations at each time step. For long time- +series and/or high-dimensional systems, this is computation- +ally prohibitive. Through our continuous-time formalism, we +solve the differential equations analytically, which is an op- +eration that is independent of the length of the time-series, +to find the forward or backward message at any time point. +This difference effectively reduces the asymptotic scaling +from O(∆t−1) to O(1), with the later scaling only in the +number of observable transitions. In scenarios where finding +the appropriate boundary condition would require an iterative +procedure of solving the forward and backward messages +multiple times, our continuous time approach should be much +more efficient than the traditional discrete-time method. We +discuss the performance of the continuous-time message- +Fig. 2: State diagrams of two systems for which the +continuous-time message passing algorithm exhibit analytic +simplifications. (Left) 3-state chain with symmetric rates +w12 = w21. (Right) Irreversible 3-state loop. States marked +in red return Y(t) = 1 and blue return Y(t) = 0. +passing algorithm further in Section V. +IV. ANALYTIC SOLUTION +Theorem 1 in the previous section shows that the conditional +probability is always available analytically upon normalizing +the component-wise product of the forward and backward +messages, +i.e. p(t) = ρ(t)/Z where Z = � +k ρ(k)(t). +As +in the discrete-time case, the normalizing term Z is time- +invariant in the continuous-time case as well. See Appendix +B. The conditional probability may therefore be expressed in +a particularly elegant form in certain cases, namely as the +solution of a linear nonhomogeneous second-order differential +equation. We begin this section by considering two examples. +Following the examples, we consider extensions to higher +dimensions. +A. Symmetric 3-State Chain +Consider the three-state chain depicted in the left panel of +Figure 2, where states 1 and 2 are hidden. Assume that the per- +capita transition rates within the hidden block are symmetric, +i.e. w12 = w21 > 0, and assume w13 = w31 = 0. The rates +w23 > 0 and w32 > 0 may be arbitrary. These assumptions +result in the following rate matrix: +W = +� +� +−w21 +w12 +0 +w21 +−(w12 + w32) +w23 +0 +w32 +−w23 +� +� . +(21) +In this case, let S = {3}, the singleton set of state 3. When +Y(t) = 1 the inference problem is trivial since the system +takes state 3 with probability one. Thus, we emphasize the +intervals when Y(t) = 0. +First, consider the forward message given by the following +system of differential equations +dα +dt = +�−w21 +w12 +w21 +−(w12 + w32) +� +α . +(22) +Note that the matrix defining the system of equations corre- +sponds to the upper left block of W. To simplify notation, let +w21 = w12 = a and w32 = b. Then, the submatrix reduces to +the following form: +dα +dt = +�−a +a +a +−a − b +� +α . +(23) + +W +13 +W +W +21 +32 +2 +W +32 +W +W +12 +23 +W +21 +2CHEN et. al: EXPLICITLY SOLVABLE CONTINUOUS-TIME INFERENCE FOR PARTIALLY OBSERVED MARKOV PROCESSES +6 +This is a linear system of differential equations that can +be solved exactly. The sub-matrix is real-symmetric, so is +diagonalizable. Therefore, the solution will be of the form: +α(t) = Aeλ1tv1 + Beλ2tv2. +(24) +where λi is an eigenvalue of the rate submatrix and vi is the +corresponding eigenvector. The eigenvalues and vectors are: +λ1/2 = a(−1 ± +� +1 + γ2) − γ, +(25) +v1/2 = +� +γ ± +� +1 + γ2 +1 +� +, +(26) +where γ = b/2a. Constants A and B are found through +the initial condition given below. In the previous section, the +initial forward message was set to the equilibrium distribution. +However, the chain structure leaves no ambiguity in the state +occupied when the observation changes from 1 to 0. So, the +initial forward message is the delta distribution on state 2: +α(0) = +�0 +1 +� +. +(27) +After some time T, the system re-enters the visible state, +namely, state 3 again. By the same reasoning, we also have an +unambiguous boundary condition for the backward message: +β(T) = +�0 +1 +� +. +(28) +Also, by the symmetry in the rates, the backward message +evolves according to the same equations as the forward mes- +sage, but backward in time. Thus, β(t) = α(T − t), +β(t) = Aeλ1(T −t)v1 + Beλ2(T −t)v2 +(29) +where λi’s, vi’s, constants A and B all remain the same due +to symmetry. +The +conditional +probability +is +proportional +to +the +component-wise product ρ = α ⊙ β, which yields: +ρ(t) = A +� +eλ1(T −t)+λ2t + eλ1t+λ2(T −t)� ++ B, +(30) +where +A = AB(v1 ⊙ v2) = +�−AB +AB�⊺, +(31) +B = A2eλ1T (v1 ⊙ v1) + B2eλ2T (v2 ⊙ v2). +(32) +To recover the conditional probability, we must normalize such +that the component sum evaluates to 1. In this case, since the +submatrix in Equation 22 is symmetric, the eigenvectors of the +submatrix are orthogonal to each other, which means the sum +of the components of v1⊙v2, or the inner-product between v1 +and v2, evaluates to 0. Then, the component-wise sum of A is +zero, so the normalizing constant equals the component-wise +sum of B. +Write p(t) to represent the conditional probability. We write +Z = � +k B(k) to represent the normalizing constant. The final +equation describing the conditional probability can thus be +rewritten in the following form: +p(t) = 1 +Z +� +Ae(λ1−λ2)teλ2T + Ae(λ2−λ1)teλ1T + B +� +. (33) +The components of p(t) may also be expressed as the solutions +of a second-order ordinary differential equation, cf. (51)-(52). +B. Irreversible 3-State Loop +Light-gated Channelrhodopsin-2 (ChR2) receptors can be +modeled with a 3-state chain where each vertex has out-degree +1 and forms a cycle, as depicted in Figure 2, right panel [28], +[29]. Let state 1 be open, and states 2 and 3 be closed. That +is, S = {1}. The open/closed status of the channel is observed +through voltage recordings: high conductance indicates that the +channel is in the open state, and low conductance implies the +closed state. The rate matrix can be written as the following: +W = +� +� +−w21 +0 +w13 +w21 +−w32 +0 +0 +w32 +−w13 +� +� +(34) +where wji is the transition rate from state i to state j. +Conditioning on the channel being closed, the message-passing +algorithm takes the lower right 2 × 2 block as the transition +matrix. +When transitioning from S to a state not in S, the system +must enter state 2 first and exit through state 3. Thus the +boundary conditions for the forward and backward message +are +α(0) = +�1 +0 +� +, +β(T) = +�0 +1 +� +(35) +where the first component corresponds to state 2 and second +state 3. Suppose w32 ̸= w13 and let γ = +w32 +w13−w32 . Then, the +solution of the message-passing differential equations with the +initial condition enforced satisfies: +α(t) = e−w32t +�1 +γ +� +− γe−w31t +�0 +1 +� +, +(36) +β(t) = e−w32(T −t) +� +1 +0 +� ++ 1 +γ e−w13(T −t) +� +−γ +1 +� +. +(37) +To get the conditional probability, first take the component- +wise product between the forward and backward message at +time t. +ρ(t) = e−w32t−w13(T −t) +� +−1 +1 +� ++ +� e−w32T +−e−w13T +� +(38) +As in the previous example, the normalizing constant is +invariant in time. In this case, Z = e−w32T − e−w13T . Thus, +the time evolution of the conditional probability can be written +p(t) = ρ(t)/Z. +(39) +Next, we consider a case in which the submatrix is not diag- +onalizable. We set w = w32 = w13, so that the corresponding +submatrix: +U = +�−w +0 +w +−w +� +(40) +admits the following Jordan normal form: +U = +�0 +w +1 +0 +� �−w +1 +0 +−w +� � 0 +1 +1 +w +0 +� +. +(41) +Using the same initial condition as Equation (35) to solve the +system of differential equations yields the following forward +message. +α(t) = +� e−wt +te−wt +� +(42) + +CHEN et. al: EXPLICITLY SOLVABLE CONTINUOUS-TIME INFERENCE FOR PARTIALLY OBSERVED MARKOV PROCESSES +7 +We solve for the backward message by undergoing a similar +procedure and yield +β(t) = +�(T − t)e−w(T −t) +e−w(T −t) +� +. +(43) +Upon taking the component-wise product, we observe that the +evolution of conditional probability is independent of time: +ρ(t) = e−wT +� +T − t +t +� +, +Z = +1 +Te−wT . +(44) +Since both the time entering and exiting the hidden states are +fixed, we can see that the probability flows linearly from one +state to the other at equal rates. +Time-invariant normalization is a fundamental property of +the sum-product algorithm [26]. In Appendix B we give an +elementary demonstration of this property for continuous-time +systems with time-homogeneous transition rates, as illustrated +by the two cases presented above. +C. Generalization +We show that under certain circumstances, the conditional +probability follows a second-order nonhomogeneous linear +ordinary differential equation. +Corollary 1. For 3-state systems where the truncated subma- +trix U has distinct eigenvalues, the conditional probability can +be written as the solution of a nonhomogeneous second-order +linear differential equation with constant coefficients. +Proof. Let (λi, vi) be eigenpairs for U and let (λi, wi) be +eigenpairs for U ⊺. Then the forward and backward messages +are given by the expressions: +α(t) = Aeλ1tv1 + Beλ2tv2, +(45) +β(t) = Ceλ1(T −t)w1 + Deλ2(T −t)w2. +(46) +Taking the component-wise product yields the form: +ρ(t) = A +� +eλ1t+λ2(T −t)� ++ B +� +eλ1(T −t)+λ2t� ++ C, +(47) += A +� +e(λ1−λ2)teλ2T � ++ B +� +e(λ2−λ1)teλ1T � ++ C, +(48) +where +A = AD(v1 ⊙ w2), +B = BC(v2 ⊙ w1), +(49) +C = ACeλ1T (v1 ⊙ w1) + BDeλ2T (v2 ⊙ w2). +(50) +Since the left and right eigenvectors corresponding to dif- +ferent eigenvalues are orthogonal, all time-dependent terms +cancel when normalizing. Thus the normalization constant +Z = � +k C(k). Upon differentiating p(t) = ρ(t)/Z twice with +respect to time, we arrive at the second-order linear differential +equation that describes the time evolution of the condition +probability: +d2p +dt2 = (λ1 − λ2)2 +Z +� +Ae(λ1−λ2)teλ2T + Be(λ2−λ1)teλ1T � +(51) += (λ1 − λ2)2 +Z +(p − C). +(52) +This second order equation comes equipped with two bound- +ary conditions set by fixing α(0) and β(T). +Fig. 3: State diagram for CFTR. When the protein enters one of +the red states, the ion channels will open and conduct a current. +On the other hand, when CFTR is in one of the blue states, +then the ion channels are closed and conducts no current. For +this system S = {4, 5}. +Corollary 2. For a system of arbitrary dimension, for which +the truncated submatrix U has exactly two distinct eigenvalues +and is diagonalizable, the conditional probability can be +written as a second-order linear differential equation of the +same form as Equation 52. +Proof. Let λ1 and λ2 be the two distinct eigenvalues. Let vi be +the sum of all right eigenvectors corresponding to eigenvalue +λi, and let wi be the sum of all left eigenvectors corresponding +to eigenvalue value λi. Then by diagonalizability, the proof for +this corollary follows the proof of Corollary 1. +This result extends Corollary 1 to higher dimensional sys- +tems, under special conditions. These two corollaries match +intuition: we are concerned with the state occupancy prob- +ability conditioned on both the entrance and exit times of +an observable state, so the probability flow obeys a second- +order differential equation, which also requires specifying two +boundary conditions. We note, however, that if the submatrix +has three or more distinct eigenvalues, we do not expect a +similar result to hold. Moreover, generic matrices typically +have as many distinct eigenvalues as their dimension, so we +do not expect this scenario to occur outside of special cases +when the rate submatrix is highly regular. In addition, it would +be difficult to check if a given rate submatrix satisfies these +conditions through numerical solvers, as equality of repeated +eigenvalues might be obscured by floating point arithmetic. +Therefore, as much as the second-order differential equations +interpretation is intuitively appealing, it is likely not a generic +phenomenon that we should expect for arbitrary rate matrices. +V. BIOLOGICAL EXAMPLE: CFTR +Here, we show that our algorithm applies to a higher +dimensional system, namely the 7-state model of the cystic +fibrosis transmembrane conductance regulator (CFTR) protein. +CF is a common life-threatening genetic disorder. CFTR is +an important protein that regulates the opening and closing +of ion channels. Loss of CFTR function causes pancreatic +insufficiency as well as airway infection due to excessive +mucus, which in turn can cause a variety of complications +such as impaired innate immunity and respiratory failure [30]. +Mathematically, the behavior of CFTR can be captured +with a 7-state hidden Markov process. Figure 3 illustrates + +2 +3 +4 +5 +7 +6CHEN et. al: EXPLICITLY SOLVABLE CONTINUOUS-TIME INFERENCE FOR PARTIALLY OBSERVED MARKOV PROCESSES +8 +Fig. 4: The inference result of the continuous-time algorithm (top) and the discrete-time algorithm (middle) for the true state +occupancy simulated from the Gillespie algorithm (bottom). Sampling time step ∆t = 10−4. +the state diagram [12]. The ion channel opens (conducts an +ionic current) when CFTR is in state four or five (marked in +red). When in the nonconducting states (marked in blue) the +ion channel is closed. Transmembrane conductance recordings +report whether CFTR is in a conducting or a nonconducting +state, but do not directly indicate which of the possible states +is occupied. Using the numbering shown in Figure 3, the rate +matrix is defined as follows: +W = +� +� +� +� +� +� +� +� +� +−9.9 +5.0 +0 +0 +0 +0 +1.7 +9.9 +−12.7 +5.8 +0 +0 +0 +0 +0 +7.7 +−10.7 +10.0 +0 +0 +0 +0 +0 +4.9 +−17.1 +0 +0 +0 +0 +0 +0 +7.1 +−3.0 +7.0 +0 +0 +0 +0 +0 +3.0 +−13.0 +12.8 +0 +0 +0 +0 +0 +6.0 +−14.5 +� +� +� +� +� +� +� +� +� +. +(53) +We used Gillespie’s exact stochastic simulation algorithm +[31], [32], [33] to generate sample traces of the ion channel +states and recordings. The simulation produces discrete state, +continuous time trajectories. We introduced a finite sampling +time step to discretize the simulated data along the time axis, +consistent with data obtained through experimental recordings. +Then, we place the generated data into discretized time bins +where the size of each bin (one can think of this as the sam- +pling time step) is a parameter that can be altered. We solved +the differential equations giving the forward and backward +messages exactly via function handles in Matlab. Figure 4 +compares the traces produced by the classical discrete-time +algorithm, our continuous-time algorithm, and the true states, +and shows excellent agreement among the respective curves. +With a sufficiently small time step (∆t = 10−4), the contin- +uous and discrete-time algorithms show no visible discrepancy, +as expected. Figure 5 shows that the maximum discrepancy +Fig. 5: First-order convergence of the message passing al- +gorithms as a function of sampling time step. The mean +maximum difference was plotted along with one standard +deviation about the mean as the error bar for an ensemble +of forty trajectories. +(ℓ∞ norm) between the conditional probabilities generated by +the continuous time and discrete time algorithms decreases +linearly with the sampling time step ∆t. The figure shows +the results from an ensemble of forty independent repeated +trials for each sample size. Again, we emphasize that while +the discrete time algorithm requires iterating over all samples, +which scales O(∆t−1), the continuous time algorithm outputs +a description of the conditional probability — that is, a +function that returns a value at an exact time point queried +— in O(1) time, scaling only with the number of transitions. + +inferred probability of states: continuous +1234567 +0.9 +0.8 +0.5 +1 +1.5 +2 +2.5 +3 +3.5 +4 +4.5 +5 +×104 +0.7 +inferred probability of states: discrete +1234567 +0.6 +0.5 +0.4 +0.5 +1 +1.5 +2 +2.5 +3 +3.5 +4 +4.5 +5 +×104 +0.3 +true states +0.2 +134567 +0.1 +0.5 +1.5 +2 +2.5 +3.5 +4.5 +0 +3 +4 +5 +time +×10410~2 +maximum difference +10~3 +10~5 +10~6 +10-7 +10-7 +10-6 +10-5 +10-4 +10-3 +size of sampling intervalCHEN et. al: EXPLICITLY SOLVABLE CONTINUOUS-TIME INFERENCE FOR PARTIALLY OBSERVED MARKOV PROCESSES +9 +VI. DISCUSSION & CONCLUSIONS +This paper presents an algorithm for continuous-time infer- +ence on partially observable Markov processes with discrete +state spaces. We show that the well-known sum-product al- +gorithm can be extended to the continuous-time domain via +two sets of differential equations and pointwise normalization. +In the continuous time setting, we were able to solve the +trajectory of conditional probabilities exactly given a finite +time-series. Moveover, we find that the dynamics of the state +occupancy probabilities can be reduced to second-order dif- +ferential equations under special circumstances. These results +are valuable not only for their mathematical interest, but +also because they have the potential to reduce the inference +problem to solving systems of linear differential equations, +with a potentially significant reduction in computational com- +plexity for long time series. Numerically, the continuous-time +algorithm is consistent with the discrete-time algorithm in the +limit of small time step, but executes in approximately constant +time rather than linearly in the number of time steps. +Our formalism extends naturally to non-binary observations. +Briefly, let S1, S2, . . . , Sm be a partition over the sample space +Ω, and suppose the observable process Y is given as: +Y(t) = i if S(t) ∈ Si. +(54) +For a sojourn with observation i, we can apply the forward +and backward message-passing scheme as introduced for the +binary case, viewing the observation as either in Si or Ω\Si. At +the boundaries, the same technique (as in the proof of Theorem +1) can be used for finding the update rule by noting the +possible transitions from Si to Sj, for all j ̸= i. This approach +can finally be extended to an arbitrary collection of subsets +of Ω where the elements are not necessarily disjoint. One +may accomplish this extension by expanding all unions and +intersections as disjoint sets possibly with the same observable. +We defer detailed investigations in this direction to future +work. +Extending the continuous-time message passing to the case +with inhomogeneous transition rates remains an open problem. +We expect a derivation similar to the proof of the main theorem +would be applicable, possibly with smoothness constraints +on the transition rates. While the normalization constant will +remain invariant in time, we do not expect a result such as +Corollary 1 to hold beyond constant transition rates. +Finally, we note the relationship between conditional prob- +ability and a second-order differential equation is intuitively +satisfying: the entry and exit times act as two boundary +conditions that fix the endpoints of the evolution, whereas +the unconstrained forward evolution equation, a first-order +differential equation, requires only the starting condition. It +is an interesting question for future work to investigate under +which assumptions a similar result as Corollary 1 would hold +for systems with more than two distinct eigenvalues. +APPENDIX A +NOTATION AND PRELIMINARIES +For completeness, we define a continuous-time discrete- +space Markov process with exponential waiting times. +Definition 1 (Markov Process). Let {S(t); t ∈ [0, T]} be +a discrete-space, continuous-time stochastic process where +for each t, S(t) is a random variable with state space +Ω = {1, 2, . . . , N}, N < ∞. Then, the process S(t) has the +Markov Property if for any s1, s2, . . . , sm ∈ Ω, 0 < τ1 < +τ2 < · · · < τm−1 < t, +Pr[S(t) = sm|S(τ1) = s1, S(τ2) = s2, . . . , S(τm−1) = sm−1] += Pr[S(t) = sm|S(τm−1) = sm−1]. +(55) +Furthermore, the process has exponential waiting times if for +any i, j ∈ Ω, i ̸= j, there is a constant rate 0 ≤ wji < ∞ +such that +� +Pr[S(t + ∆t) = i|S(t) = i] = 1 − � +k̸=i wki∆t + o(∆t) +Pr[S(t + ∆t) = j|S(t) = i] = wji∆t + o(∆t) +Pr[S(t + ∆t) = j, S(t + 2∆t) = k|S(t) = i] = o(∆t), +∀k +for sufficiently small ∆t. +The following table lists notation used in the paper. +Symbol +Meaning +St +discrete-time process with (integer) time index t +S(t) +continuous-time process with time index t +Ω +sample space of a process at fixed time +S +states that give observable “1” +Y(t) +the observed process (indicating S(t) ∈ S) +P +transition matrix of a Markov chain +W +transition rate matrix of Markov process +αt; α(t) +forward message +βt; β(t) +backward message +χt; χ(t) +observation message +ρt; ρ(t) +unnormalized conditional state-occupancy probability +Z(t) +normalizing constant for ρ(t) +pt; p(t) +conditional state-occupancy probability +∆t +sampling time step +APPENDIX B +INVARIANT NORMALIZATION IN CONTINUOUS TIME +Time-invariant invariant normalization is a fundamental +property of the sum-product algorithm [26]. In the continuous +time case, we observed that this property can be easily con- +firmed when the submatrices are diagonalizable, because the +left and right eigenvectors corresponding to different eigenval- +ues are orthogonal. When the submatrix has nontrivial Jordan +blocks, the time-dependent term cancels in less obvious ways. +Here we show that time-independent normalization holds in +general, using only elementary calculus without invoking the +machinery of factor-graphs. +Recall +that +the +normalizing +constant +is +Z(t) += +� +i α(i)(t)β(i)(t). Using Equation 2 and 3, we can obtain the + +CHEN et. al: EXPLICITLY SOLVABLE CONTINUOUS-TIME INFERENCE FOR PARTIALLY OBSERVED MARKOV PROCESSES +10 +following series of expressions. +dZ(t) +dt += d +dt +� +i∈S +α(i)(t)β(i)(t) +(56) += +� +i∈S +dα(i)(t) +dt +β(i)(t) + α(i)(t)dβ(i)(t) +dt +(57) += +� +i∈S +� +� � +k∈S\{i} +wkiα(k) − +� +l̸=i +α(i) +� +� β(i) . . . ++ α(i) +� +�− +� +k∈S\{i} +wikβ(k) + +� +l̸=i +β(i) +� +� +(58) += +� +i∈S +� +k∈S\{i} +wkiα(k)β(i) − wikα(i)β(k) +(59) += 0 +(60) +Since the rate of change of Z(t) is zero, the normalizing +constant is invariant of time. +REFERENCES +[1] G. Grisettiyz, C. Stachniss, and W. Burgard, “Improving grid-based +slam with Rao-Blackwellized particle filters by adaptive proposals and +selective resampling,” in Proceedings of the 2005 IEEE International +Conference on Robotics and Automation. +IEEE, 2005, pp. 2432–2437. +[2] L. E. Baum and J. A. Eagon, “An inequality with applications to +statistical estimation for probabilistic functions of Markov processes and +to a model for ecology,” Bulletin of the American Mathematical Society, +vol. 73, no. 3, pp. 360–363, 1967. +[3] D. F. Anderson, B. Ermentrout, and P. J. Thomas, “Stochastic repre- +sentations of ion channel kinetics and exact stochastic simulation of +neuronal dynamics,” Journal of Computational Neuroscience, vol. 38, +no. 1, pp. 67–82, 2015. +[4] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet allocation,” +Journal of Machine Learning research, vol. 3, pp. 993–1022, 2003. +[5] A. L. Hodgkin and A. F. Huxley, “A quantitative description of mem- +brane current and its application to conduction and excitation in nerve,” +The Journal of Physiology, vol. 117, no. 4, p. 500, 1952. +[6] E. Skaugen and L. Walløe, “Firing behaviour in a stochastic nerve +membrane model based upon the Hodgkin—Huxley equations,” Acta +Physiologica Scandinavica, vol. 107, no. 4, pp. 343–363, 1979. +[7] B. Hille, “Ionic channels in excitable membranes. current problems and +biophysical approaches,” Biophysical Journal, vol. 22, no. 2, pp. 283– +294, 1978. +[8] D. Colquhoun and A. G. Hawkes, “Relaxation and fluctuations of mem- +brane currents that flow through drug-operated channels,” Proceedings +of the Royal Society of London. Series B. Biological Sciences, vol. 199, +no. 1135, pp. 231–262, 1977. +[9] D. Colquhoun and A. Hawkes, “On the stochastic properties of single +ion channels,” Proceedings of the Royal Society of London. Series B. +Biological Sciences, vol. 211, no. 1183, pp. 205–235, 1981. +[10] D. Colquhoun and A. G. Hawkes, “On the stochastic properties of bursts +of single ion channel openings and of clusters of bursts,” Philosophical +Transactions of the Royal Society of London. Series B, Biological +Sciences, pp. 1–59, 1982. +[11] F. Qin, A. Auerbach, and F. Sachs, “Maximum likelihood estimation +of aggregated Markov processes,” Proceedings of the Royal Society of +London. Series B: Biological Sciences, vol. 264, no. 1380, pp. 375–383, +1997. +[12] M. D. Fuller, Z.-R. Zhang, G. Cui, and N. A. McCarty, “The block +of CFTR by scorpion venom is state-dependent,” Biophysical Journal, +vol. 89, no. 6, pp. 3960–3975, 2005. +[13] H.-A. Loeliger, J. Dauwels, J. Hu, S. Korl, L. Ping, and F. R. Kschis- +chang, “The factor graph approach to model-based signal processing,” +Proceedings of the IEEE, vol. 95, no. 6, pp. 1295–1322, 2007. +[14] D. Koller and N. Friedman, Particle-based Approximate Inference. MIT +Press, 2012. +[15] Z. Fang, A. Gupta, and M. Khammash, “Stochastic filtering for mul- +tiscale stochastic reaction networks based on hybrid approximations,” +Journal of Computational Physics, vol. 467, p. 111441, 2022. +[16] O. Capp´e, C. P. Robert, and T. Ryd´en, “Reversible jump, birth-and- +death and more general continuous time Markov chain Monte Carlo +samplers,” Journal of the Royal Statistical Society: Series B (Statistical +Methodology), vol. 65, no. 3, pp. 679–700, 2003. +[17] P. M. Djuric and J.-H. Chun, “Estimation of nonstationary hidden +Markov models by MCMC sampling,” in 1999 IEEE International +Conference on Acoustics, Speech, and Signal Processing. Proceedings. +ICASSP99 (Cat. No. 99CH36258), vol. 3. +IEEE, 1999, pp. 1737–1740. +[18] R. Rosales, J. A. Stark, W. J. Fitzgerald, and S. B. Hladky, “Bayesian +restoration of ion channel records using hidden Markov models,” Bio- +physical Journal, vol. 80, no. 3, pp. 1088–1103, 2001. +[19] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and +the sum-product algorithm,” IEEE Transactions on Information Theory, +vol. 47, no. 2, pp. 498–519, 2001. +[20] D. Jin, F. Yin, C. Fritsche, F. Gustafsson, and A. M. Zoubir, “Bayesian +cooperative localization using received signal strength with unknown +path loss exponent: Message passing approaches,” IEEE Transactions +on Signal Processing, vol. 68, pp. 1120–1135, 2020. +[21] S. Som and P. Schniter, “Compressive imaging using approximate +message passing and a Markov-tree prior,” IEEE Transactions on Signal +Processing, vol. 60, no. 7, pp. 3439–3448, 2012. +[22] A. Abrardo, M. Barni, K. Kallas, and B. Tondi, “A message passing +approach for decision fusion of hidden-Markov observations in the +presence of synchronized attacks,” in Int. Conf. Advances in Multimedia +(MMEDIA), Special Track on Models and Algorithms for Spatially and +Temporally Correlated Data (STCD), Venice, Italy, 2017. +[23] L. Bolliger, Digital Estimation of Continuous-Time Signals Using Factor +Graphs, Hartung-Gorre Verlag, Konstanz, Series in Signal and Informa- +tion Processing, vol. 22, 2012. +[24] L. Bolliger, H.-A. Loeliger, and C. Vogel, “LMMSE estimation and +interpolation of continuous-time signals from discrete-time samples +using factor graphs,” arXiv preprint arXiv:1301.4793, 2013. +[25] L. Bruderer and H.-A. Loeliger, “Estimation of sensor input signals that +are neither bandlimited nor sparse,” in 2014 Information Theory and +Applications Workshop (ITA). +IEEE, 2014, pp. 1–5. +[26] G. D. Forney Jr and P. O. Vontobel, “Partition functions of normal factor +graphs,” arXiv preprint arXiv:1102.0316, 2011. +[27] R. G. Gallager, Stochastic Processes: Theory for Applications. +Cam- +bridge University Press, 2013. +[28] A. W. Eckford and P. J. Thomas, “The channel capacity of Channel- +rhodopsin and other intensity-driven signal transduction receptors,” IEEE +Transactions on Molecular, Biological and Multi-Scale Communications, +vol. 4, no. 1, pp. 27–38, 2018. +[29] G. Nagel, T. Szellas, W. Huhn, S. Kateriya, N. Adeishvili, P. Berthold, +D. Ollig, P. Hegemann, and E. Bamberg, “Channelrhodopsin-2, a directly +light-gated cation-selective membrane channel,” Proceedings of the +National Academy of Sciences, vol. 100, no. 24, pp. 13 940–13 945, +2003. +[30] D. Goetz and C. L. Ren, “Review of cystic fibrosis,” Pediatric Annals, +vol. 48, no. 4, pp. e154–e161, 2019. +[31] D. T. Gillespie, “Exact stochastic simulation of coupled chemical +reactions,” The Journal of Physical Chemistry, vol. 81, no. 25, pp. 2340– +2361, 1977. +[32] ——, “Stochastic simulation of chemical kinetics,” Annual Review of +Physical Chemistry, vol. 58, pp. 35–55, 2007. +[33] D. J. Wilkinson, Stochastic Modelling for Systems Biology. +Chapman +and Hall/CRC, 2018. + diff --git a/QdAyT4oBgHgl3EQf7vpN/content/tmp_files/load_file.txt b/QdAyT4oBgHgl3EQf7vpN/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..70e917764e14c7fbdf2a8fd116a63a4e75995a81 --- /dev/null +++ b/QdAyT4oBgHgl3EQf7vpN/content/tmp_files/load_file.txt @@ -0,0 +1,721 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf,len=720 +page_content='CHEN et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' al: EXPLICITLY SOLVABLE CONTINUOUS-TIME INFERENCE FOR PARTIALLY OBSERVED MARKOV PROCESSES 1 Explicitly Solvable Continuous-time Inference for Partially Observed Markov Processes Daniel Chen, Alexander G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Strang, Andrew W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Eckford Senior Member, IEEE, Peter J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Thomas Abstract—Many natural and engineered systems can be mod- eled as discrete state Markov processes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Often, only a subset of states are directly observable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Inferring the conditional prob- ability that a system occupies a particular hidden state, given the partial observation, is a problem with broad application.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' In this paper, we introduce a continuous-time formulation of the sum-product algorithm, which is a well-known discrete-time method for finding the hidden states’ conditional probabilities, given a set of finite, discrete-time observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' From our new formulation, we can explicitly solve for the conditional probability of occupying any state, given the transition rates and observations within a finite time window.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' We apply our algorithm to a realistic model of the cystic fibrosis transmembrane conductance regulator (CFTR) protein for exact inference of the conditional occupancy probability, given a finite time series of partial observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' INTRODUCTION Markov processes—dynamic processes whose future be- havior depends only on their present state—approximate a wide variety of natural and engineered systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Despite rapid advances in high-throughput data acquisition and data pro- cessing, many systems of interest contain important degrees of freedom that cannot be directly observed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Inferring the conditional probability that such a partially observed Markov process occupies specific hidden states, given the available ob- servations, is a ubiquitous problem in science and engineering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Examples appear in robotics [1], ecology [2], neuroscience [3], and algorithmic text analysis [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' We are motivated by biological examples in the present paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Ion channels in excitable membranes, such as the sodium (Na+) and potassium (K+) channels described in Hodgkin and Huxley’s quantitative model for action potential generation [5], [6], [7], provide an early example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Discrete state Markov models based on Hodgkin and Huxley’s K+ channel contain five states, only one of which conducts an ionic current;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' the other states are “silent” and cannot be distin- guished by direct electrophysiological observation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Similarly, This work was supported in part by National Institutes of Health BRAIN Initiative grant R01 NS118606 and a National Science Foundation grant DMS-2052109 to PJT, as well as research support from the Oberlin College Libraries, and an NSERC Discovery grant to AWE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Chen and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Thomas are with the Department of Mathematics, Applied Mathematics, and Statistics;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Department of Electrical, Control and Systems Engineering;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Department of Computer and Data Science;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Department of Biology, Case Western Reserve University, Cleveland, OH 44106 USA (e- mail: txc461/pjthomas@case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='edu).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Strang is with Department of Statistics, University of Chicago, Chicago, IL 60637 USA (email: alexstrang@uchicago.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='edu).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Eckford is with Department of Electrical Engineering and Computer Science, York University, Toronto, ON M3J 1P3 Canada (e-mail: aeck- ford@yorku.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='ca).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' the Na+ channel has eight states: seven with zero conductance and one with nonzero conductance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Colquhoun and Hawkes introduced maximum likelihood methods for inferring the rate constants of a partially observed Markov process representing the nicotinic Acetylcholine receptor [8], [9], [10], [11], but did not address the question of inferring microscopic state occupancy from observable conductance time series.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' More recently, research into the molecular biology of cystic fibrosis (CF) has focused on the CF transmembrane conductance regulator (CFTR), which can be modeled as a 7-state system with two conducting states and five nonconducting states [12] (detailed below in Section V).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Beyond these biological examples, problems of inferring or estimating hidden states from incomplete observations are widely studied in the signal processing literature [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' The literature contains several approaches to approximating the behavior of hidden states of partially observed Markov processes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Sampling provides one common technique for approximate inference [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' As an example, recent work by Fang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' demonstrated an efficient algorithm for simulating stochastic reaction networks with multiple separated time scales using particle filters [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' In general, Markov Chain Monte Carlo is a widely employed sampling technique used to infer hidden states [16], [17], that has also been applied to ion channels [18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' For partially observed Bayesian networks operating in discrete time, message passing algorithms on factor graphs provide an efficient and exact inference method [19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' The factor-graph formalism is highly flexible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Algorithms based on the message passing concept have been extended to applications in localization [20], compressed sensing [21], and decision fusion [22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Factor graphs are not limited to models with a discrete number of variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' For example, Gaussian message passing in linear Gaussian models (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Kalman filtering and smoothing) has been developed for continuous- time models with discrete-time observations [23], [24], [25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' However, the state reconstruction problem for continuous-time finite-state hidden Markov models has not been addressed in the literature, to be best of our knowledge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' In this work, we extend the message-passing algorithm in order to analytically interpolate state-occupancy probabilities of a continuous-time system, given a discretely sampled time series.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' That is, we show how to infer the time-dependent conditional probabilities of latent states for continuous-time discrete-state homogeneous Markov processes given a set of partial observations over a finite time window.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' We derive an equivalent formulation of the sum-product algorithm in continuous time that allows one to find an explicit ana- lytic solution for the state occupancy probability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Having arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='00843v1 [eess.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='SP] 2 Jan 2023 CHEN et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' al: EXPLICITLY SOLVABLE CONTINUOUS-TIME INFERENCE FOR PARTIALLY OBSERVED MARKOV PROCESSES 2 explicit solutions lowers the computational cost and, unlike sampling-based approximate methods, does not sacrifice ac- curacy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Furthermore, the continuous-time formalism leads to elegant simplification of the analytic solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' For certain systems—like the three-state systems shown in Figure 2—the conditional probability obeys a second-order inhomogeneous linear ordinary differential equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Finally, we demonstrate the practical functionality of the algorithm with the 7-state model for CFTR using simulated data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' The paper is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Section II reviews the message-passing algorithm for Markov processes with binary observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Section III displays the main result of the paper: a continuous-time formulation of the sum-product algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' We present the derivation of the conditional probability using the message-passing approach in continuous time, and the corresponding sum-product algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Section IV discusses the implications of the continuous-time formulation further.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' We give examples of small systems to display how analytic solutions may be found.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' In Section V we demonstrate the value of the algorithm for a larger, realistic system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' THEORY OF THE SUM-PRODUCT ALGORITHM The sum-product algorithm can be used generally for in- ference on probabilistic models that can be written as factor graphs [19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' There are many variants of the sum-product algorithm, each suitable for accomplishing a different task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' For our purposes, we will focus on the forward/backward algorithm for inference on hidden Markov models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' We consider a continuous-time, discrete-state homogeneous Markov process on a finite state space Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Given a discrete, uniformly spaced sampling interval, the continuous-time pro- cess induces a discrete-time Markov process specified by some column-stochastic transition matrix P that is invariant in time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Let S ⊂ Ω be a subset of states, and let St ∈ Ω be the state of the system at time t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' We assume an observer can only see whether St is in S or not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Accordingly, let Yt = m(St) represent the observable where m(s) : Ω → {0, 1} is the indicator function for the set S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' The goal of the algorithm is to infer the conditional probability of being at a particular state, i ∈ Ω, given the binary observation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' The algorithm involves three vector-valued quantities: a for- ward message αt, a backward message βt, and the observation message χt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' One can interpret the forward message as the probability of arriving at a certain state from time 0 to time t and the backward message as the likelihood of occupying a certain state at time t conditioned on ending up in a given target state, or a given target set of states, at the end of the measurement T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' On the other hand, the observation message χt is an indicator function of the possible states given the observation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' For instance, if at time t, the observation of the total system were Yt = 1, then χt would be a vector with 1’s on the states in the observation set S and 0 otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Using superscripts to denote vector indices, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' v(i) denotes the i- th element of vector v, we present pseudo-code for the sum- product algorithm in Algorithm 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Note that, the normalization constant Z = � k α(k) t β(k) t in Line 10 of Algorithm 1 is time invariant [26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Algorithm 1 Forward/Backward Algorithm Input: The transition matrix P ∈ Rn×n, the observation message χt for t ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' , T}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Output: The inferred probability pt for t ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' , T}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 1: Initialize the forward message α0 = π, the stationary distribution of P 2: Initialize the backward message β(i) T = 1, for all i 3: for t from 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' , T do 4: αt = diag(χt)Pαt−1 5: end for 6: for s from T − 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' , 1 do 7: βs = P ⊺diag(χs+1)βs+1 8: end for 9: for t from 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' , T do 10: pt = αt⊙βt � k α(k) t β(k) t 11: end for Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 1 illustrates the sum-product algorithm’s application to a time series of discretely sampled observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Consider a three-state-chain with symmetric transition rates as shown in the top-left of Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' If the system takes states 1 or 2, “0” will be observed, and “1” will be observed otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Using the sum-product algorithm, we can find the probability of the system occupying each state given the discrete-time observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' As shown in the bottom row, as the sampling time step decreases, the conditional probabilities appear to converge to a smooth curve within each interval with a fixed observation (either “0” or “1”).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Intuitively, there should exist a continuous, perhaps piecewise differentiable, representation of the conditional probability of a partially observed process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' We formalize this intuition below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' CONTINUOUS-TIME MESSAGE PASSING In this section, we present the main result, namely the derivation of the continuous-time message passing algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' In this new formalism, messages are passed in the form of linear differential equations on possible states given the observable system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' In order to guarantee the existence of the continuous sum-product algorithm, we assume the following conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Assumptions: A1 The continuous-time process {S(t);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' t ∈ [0, T]} takes values in a finite state space Ω = {1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' , N}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' A2 S(t) has the Markov property, and has exponentially distributed waiting times parameterized by a rate matrix W, with wji specifying the transition rate from state i to state j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Note that W is constant in the interval [0, T].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' A3 There is a distinguished subset S ⊂ Ω such that the observable process Y(t) satisfies Y(t) = � 1 if S(t) ∈ S, 0 otherwise .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Further details appear in Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Under these assumptions, we obtain a continuous-time ver- sion of the sum-product algorithm by executing the following steps (made rigorous in the proof of Theorem 1 below).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Write CHEN et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' al: EXPLICITLY SOLVABLE CONTINUOUS-TIME INFERENCE FOR PARTIALLY OBSERVED MARKOV PROCESSES 3 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 1: Illustrating convergence of conditional state occupancy probabilities to a differentiable function for a three-state model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' (Top left) The state diagram.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' (Top middle) True simulated states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' (Top right) Binary observation derived from true states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' (Bottom row) Inference of hidden states via the sum-product algorithm with time steps 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='5 sec (Bottom Left), 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='0 sec (Bottom Middle) and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='5 sec (Bottom Right).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' out the matrix multiplication of the discrete-time algorithm element-wise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Focus on one sojourn where the observation doesn’t change.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Within that time interval, take the limit as the time step goes to zero to derive the continuous-time dynamics of the conditional probabilities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Extend the solution to the full time interval via appropriate boundary conditions at the transition between each sojourn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' The main result is stated in the theorem below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Suppose processes S(t) and the associated process Y(t) satisfies assumptions A1, A2, and A3 above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Then, given a realization of the process Y(t), the conditional probability p(t) = Pr[S(t)|Y(t)] exists, is piecewise smooth (C∞), and is C∞ on all intervals where Y(t) is constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' In particular, p(t) takes the form p(t) = ρ(t) � k ρ(k)(t) = α(t) ⊙ β(t) � k α(k)(t) ⊙ β(k)(t) (1) where ⊙ denotes the element-wise product, and the quantities α(t) and β(t) are functions of time that follow the linear ordinary differential equations dα(i)(t) dt = � k∈S\\{i} wkiα(k)(t) − � l̸=i wilα(i)(t), (2) dβ(j)(t) dt = − � k∈S\\{j} wjkβ(k)(t) + � l̸=j wjlβ(j)(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' (3) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Without loss of generality, focus on the case where Y(0) = Y(T) = 0, and Y(t) = 1 for 0 < t < T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' We use q(t) to denote a quantity, q, evolving in continuous time on the interval [0, T], and qt to denote the same process sampled at discrete times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Let the time interval [0, T] be discretized with a step size ∆t = T/n for some integer n ≫ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' At each time step, S(t) is sampled.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Then, the sum-product algorithm can be used to solve for pt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Writing the matrix multiplication out yields the following set of equations for the forward and backward messages in discrete time: α(i) t+∆t = � k Pr[st+∆t = i|st = k]α(k) t χ(i) t , (4) β(i) t = � k Pr[st+∆t = k|st = i]β(k) t+∆tχ(k) t+∆t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' (5) We neglect states not in S because only the probability conditioned on the observations is of interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Then, for any state i ∈ S, we argue that the corresponding forward message, α(i)(t), and backward message, β(i)(t) in continuous time can be written as solutions of systems of differential equations, upon taking limits as ∆t → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' For notational simplicity, for true states observation 3 W2 2 W/2 W23 0 0 50 100 0 50 100 sample every 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='5 seconds sample every 1 seconds sample every 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='5 seconds 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='2 0 0 0 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100CHEN et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' al: EXPLICITLY SOLVABLE CONTINUOUS-TIME INFERENCE FOR PARTIALLY OBSERVED MARKOV PROCESSES 4 t > τ we let P(i,j) t,τ = Pr[S(t) = i|S(τ) = j].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' dα(i)(t) dt = lim ∆t→0 α(i)(t + ∆t) − α(i)(t) ∆t (6) = lim ∆t→0 1 ∆t � � k P(i,k) t+∆t,tα(k)(t)χ(i)(t) − α(i)(t) � (7) = lim ∆t→0 1 ∆t � � k∈S\\{i} (wki∆t + o(∆t))α(k)(t) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' − � l̸=i (wil∆t + o(t))α(i)(t) � (8) = � k∈S\\{i} wkiα(k)(t) − � l̸=i wilα(i)(t) (9) dβ(i)(t) dt = lim ∆t→0 β(i)(t + ∆t) − β(i)(t) ∆t (10) = lim ∆t→0 1 ∆t � β(i)(t + ∆t) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' − � k P(k,i) t+∆t,tβ(k)(t + ∆t)χ(k)(t + ∆t) � (11) = lim ∆t→0 1 ∆t � − � k∈S\\{i} (wik∆t + o(∆t))β(k)(t + ∆t) + � l̸=i (wil∆t + o(t))β(i)(t + ∆t) � (12) = − � k∈S\\{i} wikβ(k)(t) + � l̸=i wilβ(i)(t) (13) where lim∆t→0 o(∆t)/∆t = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Readers could refer to Ap- pendix A or consult existing literature such as [27] for the relationship between transition probabilities and transition rates of a Markov jump process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' The conditional probability can be found by solving the differential equations, taking the component-wise product of α(t) and β(t) for every t ∈ [0, T], and normalizing so as to obtain a valid probability distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' The differential equation formulation is only applicable for the time intervals where the observation Y(t) is constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' When the observable Y(t) changes (when the systems transi- tions from a state in S to a state not in S), the probability with respect to time might not be differentiable;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' in some cases, it is not even continuous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Therefore, we must specify boundary conditions to connect the probabilities from one sojourn to the next.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' The observable may change either by the system entering S or else leaving S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Suppose a transition occurred within time (t∗ −∆t, t∗] such that, for t < t∗ −∆t, S(t) ∈ S, and S(t) ̸∈ S for t ≥ t∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Call this event E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Then, we obtain the following transition rule for the forward message.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Pr[S(t∗) = j|E] = � i∈S Pj,i t∗,t∗−∆tPr[S(t∗ − ∆t) = i] � k̸∈S � i∈S Pk,i t∗,t∗−∆tPr[S(t∗ − ∆t) = i] (14) = � i∈S(wji∆t + o(∆t))Pr[S(t∗ − ∆t) = i] � k̸∈S � i∈S(wki∆t + o(∆t))Pr[S(t∗ − ∆t) = i] (15) → � i∈S wjiPr[S(t− ∗ ) = i] � k̸∈S � i∈S wkiPr[S(t− ∗ ) = i] (16) as ∆t → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Here Pr[S(t− ∗ ) = i] is the probability of occupying state i the instant before the transition, which can be found by solving the differential equations introduced above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' We handle the boundary conditions at state transitions for the backward message similarly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Define E as above and let s∗ be a particular goal state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Then: Pr[S(T) = s∗|S(t∗ − ∆t) = j,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' E] = � i̸∈S Pr[S(T) = s∗,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' S(t∗) = i|S(t∗ − ∆t) = j,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' E] = � i̸∈S Pr[S(T) = s∗|S(t∗) = i]Pi,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='j t∗,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='t∗−∆t � k∈S � i̸∈S Ps∗,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='i T,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='t∗Pi,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='k t∗,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='t∗−∆t (17) = � i̸∈S Pr[S(T) = s∗|S(t∗) = i](wij∆t + o(∆t)) � k∈S � i̸∈S Ps∗,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='i T,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='t∗(wik∆t + o(∆t)) (18) = � i̸∈S Pr[S(T) = s∗|S(t∗) = i](wij + o(∆t) ∆t ) � k∈S � i̸∈S Ps∗,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='i T,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='t∗(wik + o(∆t) ∆t ) (19) → � i̸∈S wijPr[S(T) = s∗|S(t∗) = i] � k∈S � i̸∈S wikPr[S(T) = s∗|S(t∗) = i] (20) as ∆t → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Here, Pr[S(T) = s∗|S(t∗) = i] is a hitting probability associated with the backward message at time t∗, which can be found by solving the backward-message differential equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' These boundary conditions, together with the differential equations (2)-(3), give the continuous-time evolution of the conditional probability for any finite-length observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Note that the equations (2)-(3) extend to the case where Y(0) = Y(T) = 1 and Y(t) = 0 for 0 < t < T by viewing S ← Ω \\ S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' So, given a time series observation Y(t) where observation (the value of Y(t)) changes at time 0 < t1 < t2 < .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' tm, we can solve for the analytic solution at any interval with consistent observation (ti, ti+1] using equation (2) and (3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Then, use the result to compute the initial condition for the next interval — namely, (ti+1, ti+2] for the forward message and (ti−1, ti] for the backward message — as specified in (16) and (20).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Thus, the statement of Theorem 1 holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' A general expression for the conditional probability can be obtained, but it is not of great utility in most systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Yet, there are certain special cases that yield elegant solutions;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' we introduce several examples in Section IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' The continuous-time sum-product algorithm follows directly from the derivation above, and is outlined in Algorithm 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' CHEN et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' al: EXPLICITLY SOLVABLE CONTINUOUS-TIME INFERENCE FOR PARTIALLY OBSERVED MARKOV PROCESSES 5 The discrete algorithm passes information through matrix multiplication of a truncated transition matrix;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' the continuous- time algorithm does the same by solving a system of linear differential equations using the truncated rate matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Since the final conditional probability is only piecewise differentiable, the boundary condition must be applied whenever a transition in or out of the observable set S occurs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Algorithm 2 Continuous-time Forward/Backward Algorithm Input: The rate transition matrix W ∈ Rn×n, the observed process Y(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Output: The inferred probability p(t) for t ∈ [0, T].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 1: Let [t1, t2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' , tm] be a list of times where transitions occur 2: τ ← 0 3: α∗ ← π, the stationary distribution 4: for j from 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' , m do 5: αj ← solution to the forward message differential equation (Equation 2) from τ to tj with initial condition α∗ 6: τ ← tj 7: α∗ ← distribution specified according to Equation 16 8: end for 9: τ ← T 10: β∗ ← the uniform distribution 11: for j from m, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 1 do 12: βj ← solution to the backward message differential equation (Equation 3) from τ to tj with initial condition β∗ 13: τ ← tj 14: β∗ ← distribution specified according to Equation 20 15: end for 16: α(t),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' β(t) ← concatenation αj’s and βj’s 17: Compute ρ(t) = α(t)⊙β(t),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' the component-wise product between α(t) and β(t) pointwise with respect to t 18: Compute the conditional probability p(t) = ρ(t) � k ρ(k)(t) From a practical perspective,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' having the ability to solve for the conditional probabilities exactly through differential equations drastically lowers the computational cost of the forward/backward algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Traditionally, the discrete-time algorithm propagates the forward and backward messages through matrix operations at each time step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' For long time- series and/or high-dimensional systems, this is computation- ally prohibitive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Through our continuous-time formalism, we solve the differential equations analytically, which is an op- eration that is independent of the length of the time-series, to find the forward or backward message at any time point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' This difference effectively reduces the asymptotic scaling from O(∆t−1) to O(1), with the later scaling only in the number of observable transitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' In scenarios where finding the appropriate boundary condition would require an iterative procedure of solving the forward and backward messages multiple times, our continuous time approach should be much more efficient than the traditional discrete-time method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' We discuss the performance of the continuous-time message- Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 2: State diagrams of two systems for which the continuous-time message passing algorithm exhibit analytic simplifications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' (Left) 3-state chain with symmetric rates w12 = w21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' (Right) Irreversible 3-state loop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' States marked in red return Y(t) = 1 and blue return Y(t) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' passing algorithm further in Section V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' ANALYTIC SOLUTION Theorem 1 in the previous section shows that the conditional probability is always available analytically upon normalizing the component-wise product of the forward and backward messages, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' p(t) = ρ(t)/Z where Z = � k ρ(k)(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' As in the discrete-time case, the normalizing term Z is time- invariant in the continuous-time case as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' See Appendix B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' The conditional probability may therefore be expressed in a particularly elegant form in certain cases, namely as the solution of a linear nonhomogeneous second-order differential equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' We begin this section by considering two examples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Following the examples, we consider extensions to higher dimensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Symmetric 3-State Chain Consider the three-state chain depicted in the left panel of Figure 2, where states 1 and 2 are hidden.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Assume that the per- capita transition rates within the hidden block are symmetric, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' w12 = w21 > 0, and assume w13 = w31 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' The rates w23 > 0 and w32 > 0 may be arbitrary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' These assumptions result in the following rate matrix: W = � � −w21 w12 0 w21 −(w12 + w32) w23 0 w32 −w23 � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' (21) In this case, let S = {3}, the singleton set of state 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' When Y(t) = 1 the inference problem is trivial since the system takes state 3 with probability one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Thus, we emphasize the intervals when Y(t) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' First, consider the forward message given by the following system of differential equations dα dt = �−w21 w12 w21 −(w12 + w32) � α .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' (22) Note that the matrix defining the system of equations corre- sponds to the upper left block of W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' To simplify notation, let w21 = w12 = a and w32 = b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Then, the submatrix reduces to the following form: dα dt = �−a a a −a − b � α .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' (23) W 13 W W 21 32 2 W 32 W W 12 23 W 21 2CHEN et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' al: EXPLICITLY SOLVABLE CONTINUOUS-TIME INFERENCE FOR PARTIALLY OBSERVED MARKOV PROCESSES 6 This is a linear system of differential equations that can be solved exactly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' The sub-matrix is real-symmetric, so is diagonalizable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Therefore, the solution will be of the form: α(t) = Aeλ1tv1 + Beλ2tv2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' (24) where λi is an eigenvalue of the rate submatrix and vi is the corresponding eigenvector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' The eigenvalues and vectors are: λ1/2 = a(−1 ± � 1 + γ2) − γ, (25) v1/2 = � γ ± � 1 + γ2 1 � , (26) where γ = b/2a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Constants A and B are found through the initial condition given below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' In the previous section, the initial forward message was set to the equilibrium distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' However, the chain structure leaves no ambiguity in the state occupied when the observation changes from 1 to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' So, the initial forward message is the delta distribution on state 2: α(0) = �0 1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' (27) After some time T, the system re-enters the visible state, namely, state 3 again.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' By the same reasoning, we also have an unambiguous boundary condition for the backward message: β(T) = �0 1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' (28) Also, by the symmetry in the rates, the backward message evolves according to the same equations as the forward mes- sage, but backward in time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Thus, β(t) = α(T − t), β(t) = Aeλ1(T −t)v1 + Beλ2(T −t)v2 (29) where λi’s, vi’s, constants A and B all remain the same due to symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' The conditional probability is proportional to the component-wise product ρ = α ⊙ β, which yields: ρ(t) = A � eλ1(T −t)+λ2t + eλ1t+λ2(T −t)� + B, (30) where A = AB(v1 ⊙ v2) = �−AB AB�⊺, (31) B = A2eλ1T (v1 ⊙ v1) + B2eλ2T (v2 ⊙ v2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' (32) To recover the conditional probability, we must normalize such that the component sum evaluates to 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' In this case, since the submatrix in Equation 22 is symmetric, the eigenvectors of the submatrix are orthogonal to each other, which means the sum of the components of v1⊙v2, or the inner-product between v1 and v2, evaluates to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Then, the component-wise sum of A is zero, so the normalizing constant equals the component-wise sum of B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Write p(t) to represent the conditional probability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' We write Z = � k B(k) to represent the normalizing constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' The final equation describing the conditional probability can thus be rewritten in the following form: p(t) = 1 Z � Ae(λ1−λ2)teλ2T + Ae(λ2−λ1)teλ1T + B � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' (33) The components of p(t) may also be expressed as the solutions of a second-order ordinary differential equation, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' (51)-(52).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Irreversible 3-State Loop Light-gated Channelrhodopsin-2 (ChR2) receptors can be modeled with a 3-state chain where each vertex has out-degree 1 and forms a cycle, as depicted in Figure 2, right panel [28], [29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Let state 1 be open, and states 2 and 3 be closed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' That is, S = {1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' The open/closed status of the channel is observed through voltage recordings: high conductance indicates that the channel is in the open state, and low conductance implies the closed state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' The rate matrix can be written as the following: W = � � −w21 0 w13 w21 −w32 0 0 w32 −w13 � � (34) where wji is the transition rate from state i to state j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Conditioning on the channel being closed, the message-passing algorithm takes the lower right 2 × 2 block as the transition matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' When transitioning from S to a state not in S, the system must enter state 2 first and exit through state 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Thus the boundary conditions for the forward and backward message are α(0) = �1 0 � , β(T) = �0 1 � (35) where the first component corresponds to state 2 and second state 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Suppose w32 ̸= w13 and let γ = w32 w13−w32 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Then, the solution of the message-passing differential equations with the initial condition enforced satisfies: α(t) = e−w32t �1 γ � − γe−w31t �0 1 � , (36) β(t) = e−w32(T −t) � 1 0 � + 1 γ e−w13(T −t) � −γ 1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' (37) To get the conditional probability, first take the component- wise product between the forward and backward message at time t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' ρ(t) = e−w32t−w13(T −t) � −1 1 � + � e−w32T −e−w13T � (38) As in the previous example, the normalizing constant is invariant in time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' In this case, Z = e−w32T − e−w13T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Thus, the time evolution of the conditional probability can be written p(t) = ρ(t)/Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' (39) Next, we consider a case in which the submatrix is not diag- onalizable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' We set w = w32 = w13, so that the corresponding submatrix: U = �−w 0 w −w � (40) admits the following Jordan normal form: U = �0 w 1 0 � �−w 1 0 −w � � 0 1 1 w 0 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' (41) Using the same initial condition as Equation (35) to solve the system of differential equations yields the following forward message.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' α(t) = � e−wt te−wt � (42) CHEN et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' al: EXPLICITLY SOLVABLE CONTINUOUS-TIME INFERENCE FOR PARTIALLY OBSERVED MARKOV PROCESSES 7 We solve for the backward message by undergoing a similar procedure and yield β(t) = �(T − t)e−w(T −t) e−w(T −t) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' (43) Upon taking the component-wise product, we observe that the evolution of conditional probability is independent of time: ρ(t) = e−wT � T − t t � , Z = 1 Te−wT .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' (44) Since both the time entering and exiting the hidden states are fixed, we can see that the probability flows linearly from one state to the other at equal rates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Time-invariant normalization is a fundamental property of the sum-product algorithm [26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' In Appendix B we give an elementary demonstration of this property for continuous-time systems with time-homogeneous transition rates, as illustrated by the two cases presented above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Generalization We show that under certain circumstances, the conditional probability follows a second-order nonhomogeneous linear ordinary differential equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Corollary 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' For 3-state systems where the truncated subma- trix U has distinct eigenvalues, the conditional probability can be written as the solution of a nonhomogeneous second-order linear differential equation with constant coefficients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Let (λi, vi) be eigenpairs for U and let (λi, wi) be eigenpairs for U ⊺.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Then the forward and backward messages are given by the expressions: α(t) = Aeλ1tv1 + Beλ2tv2, (45) β(t) = Ceλ1(T −t)w1 + Deλ2(T −t)w2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' (46) Taking the component-wise product yields the form: ρ(t) = A � eλ1t+λ2(T −t)� + B � eλ1(T −t)+λ2t� + C, (47) = A � e(λ1−λ2)teλ2T � + B � e(λ2−λ1)teλ1T � + C, (48) where A = AD(v1 ⊙ w2), B = BC(v2 ⊙ w1), (49) C = ACeλ1T (v1 ⊙ w1) + BDeλ2T (v2 ⊙ w2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' (50) Since the left and right eigenvectors corresponding to dif- ferent eigenvalues are orthogonal, all time-dependent terms cancel when normalizing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Thus the normalization constant Z = � k C(k).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Upon differentiating p(t) = ρ(t)/Z twice with respect to time, we arrive at the second-order linear differential equation that describes the time evolution of the condition probability: d2p dt2 = (λ1 − λ2)2 Z � Ae(λ1−λ2)teλ2T + Be(λ2−λ1)teλ1T � (51) = (λ1 − λ2)2 Z (p − C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' (52) This second order equation comes equipped with two bound- ary conditions set by fixing α(0) and β(T).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 3: State diagram for CFTR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' When the protein enters one of the red states, the ion channels will open and conduct a current.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' On the other hand, when CFTR is in one of the blue states, then the ion channels are closed and conducts no current.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' For this system S = {4, 5}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' For a system of arbitrary dimension, for which the truncated submatrix U has exactly two distinct eigenvalues and is diagonalizable, the conditional probability can be written as a second-order linear differential equation of the same form as Equation 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Let λ1 and λ2 be the two distinct eigenvalues.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Let vi be the sum of all right eigenvectors corresponding to eigenvalue λi, and let wi be the sum of all left eigenvectors corresponding to eigenvalue value λi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Then by diagonalizability, the proof for this corollary follows the proof of Corollary 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' This result extends Corollary 1 to higher dimensional sys- tems, under special conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' These two corollaries match intuition: we are concerned with the state occupancy prob- ability conditioned on both the entrance and exit times of an observable state, so the probability flow obeys a second- order differential equation, which also requires specifying two boundary conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' We note, however, that if the submatrix has three or more distinct eigenvalues, we do not expect a similar result to hold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Moreover, generic matrices typically have as many distinct eigenvalues as their dimension, so we do not expect this scenario to occur outside of special cases when the rate submatrix is highly regular.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' In addition, it would be difficult to check if a given rate submatrix satisfies these conditions through numerical solvers, as equality of repeated eigenvalues might be obscured by floating point arithmetic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Therefore, as much as the second-order differential equations interpretation is intuitively appealing, it is likely not a generic phenomenon that we should expect for arbitrary rate matrices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' BIOLOGICAL EXAMPLE: CFTR Here, we show that our algorithm applies to a higher dimensional system, namely the 7-state model of the cystic fibrosis transmembrane conductance regulator (CFTR) protein.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' CF is a common life-threatening genetic disorder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' CFTR is an important protein that regulates the opening and closing of ion channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Loss of CFTR function causes pancreatic insufficiency as well as airway infection due to excessive mucus, which in turn can cause a variety of complications such as impaired innate immunity and respiratory failure [30].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Mathematically, the behavior of CFTR can be captured with a 7-state hidden Markov process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Figure 3 illustrates 2 3 4 5 7 6CHEN et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' al: EXPLICITLY SOLVABLE CONTINUOUS-TIME INFERENCE FOR PARTIALLY OBSERVED MARKOV PROCESSES 8 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 4: The inference result of the continuous-time algorithm (top) and the discrete-time algorithm (middle) for the true state occupancy simulated from the Gillespie algorithm (bottom).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Sampling time step ∆t = 10−4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' the state diagram [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' The ion channel opens (conducts an ionic current) when CFTR is in state four or five (marked in red).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' When in the nonconducting states (marked in blue) the ion channel is closed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Transmembrane conductance recordings report whether CFTR is in a conducting or a nonconducting state, but do not directly indicate which of the possible states is occupied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Using the numbering shown in Figure 3, the rate matrix is defined as follows: W = � � � � � � � � � −9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='9 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='0 0 0 0 0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='7 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='9 −12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='7 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='8 0 0 0 0 0 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='7 −10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='7 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='0 0 0 0 0 0 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='9 −17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='1 0 0 0 0 0 0 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='1 −3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='0 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='0 0 0 0 0 0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='0 −13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='0 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='8 0 0 0 0 0 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='0 −14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='5 � � � � � � � � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' (53) We used Gillespie’s exact stochastic simulation algorithm [31], [32], [33] to generate sample traces of the ion channel states and recordings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' The simulation produces discrete state, continuous time trajectories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' We introduced a finite sampling time step to discretize the simulated data along the time axis, consistent with data obtained through experimental recordings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Then, we place the generated data into discretized time bins where the size of each bin (one can think of this as the sam- pling time step) is a parameter that can be altered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' We solved the differential equations giving the forward and backward messages exactly via function handles in Matlab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Figure 4 compares the traces produced by the classical discrete-time algorithm, our continuous-time algorithm, and the true states, and shows excellent agreement among the respective curves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' With a sufficiently small time step (∆t = 10−4), the contin- uous and discrete-time algorithms show no visible discrepancy, as expected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Figure 5 shows that the maximum discrepancy Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 5: First-order convergence of the message passing al- gorithms as a function of sampling time step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' The mean maximum difference was plotted along with one standard deviation about the mean as the error bar for an ensemble of forty trajectories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' (ℓ∞ norm) between the conditional probabilities generated by the continuous time and discrete time algorithms decreases linearly with the sampling time step ∆t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' The figure shows the results from an ensemble of forty independent repeated trials for each sample size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Again, we emphasize that while the discrete time algorithm requires iterating over all samples, which scales O(∆t−1), the continuous time algorithm outputs a description of the conditional probability — that is, a function that returns a value at an exact time point queried — in O(1) time, scaling only with the number of transitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' inferred probability of states: continuous 1234567 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='5 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='5 3 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='5 4 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='5 5 ×104 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='7 inferred probability of states: discrete 1234567 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='5 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='5 3 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='5 4 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='5 5 ×104 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='3 true states 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='2 134567 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='5 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='5 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='5 0 3 4 5 time ×10410~2 maximum difference 10~3 10~5 10~6 10-7 10-7 10-6 10-5 10-4 10-3 size of sampling intervalCHEN et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' al: EXPLICITLY SOLVABLE CONTINUOUS-TIME INFERENCE FOR PARTIALLY OBSERVED MARKOV PROCESSES 9 VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' DISCUSSION & CONCLUSIONS This paper presents an algorithm for continuous-time infer- ence on partially observable Markov processes with discrete state spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' We show that the well-known sum-product al- gorithm can be extended to the continuous-time domain via two sets of differential equations and pointwise normalization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' In the continuous time setting, we were able to solve the trajectory of conditional probabilities exactly given a finite time-series.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Moveover, we find that the dynamics of the state occupancy probabilities can be reduced to second-order dif- ferential equations under special circumstances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' These results are valuable not only for their mathematical interest, but also because they have the potential to reduce the inference problem to solving systems of linear differential equations, with a potentially significant reduction in computational com- plexity for long time series.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Numerically, the continuous-time algorithm is consistent with the discrete-time algorithm in the limit of small time step, but executes in approximately constant time rather than linearly in the number of time steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Our formalism extends naturally to non-binary observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Briefly, let S1, S2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' , Sm be a partition over the sample space Ω, and suppose the observable process Y is given as: Y(t) = i if S(t) ∈ Si.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' (54) For a sojourn with observation i, we can apply the forward and backward message-passing scheme as introduced for the binary case, viewing the observation as either in Si or Ω\\Si.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' At the boundaries, the same technique (as in the proof of Theorem 1) can be used for finding the update rule by noting the possible transitions from Si to Sj, for all j ̸= i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' This approach can finally be extended to an arbitrary collection of subsets of Ω where the elements are not necessarily disjoint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' One may accomplish this extension by expanding all unions and intersections as disjoint sets possibly with the same observable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' We defer detailed investigations in this direction to future work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Extending the continuous-time message passing to the case with inhomogeneous transition rates remains an open problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' We expect a derivation similar to the proof of the main theorem would be applicable, possibly with smoothness constraints on the transition rates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' While the normalization constant will remain invariant in time, we do not expect a result such as Corollary 1 to hold beyond constant transition rates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Finally, we note the relationship between conditional prob- ability and a second-order differential equation is intuitively satisfying: the entry and exit times act as two boundary conditions that fix the endpoints of the evolution, whereas the unconstrained forward evolution equation, a first-order differential equation, requires only the starting condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' It is an interesting question for future work to investigate under which assumptions a similar result as Corollary 1 would hold for systems with more than two distinct eigenvalues.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' APPENDIX A NOTATION AND PRELIMINARIES For completeness, we define a continuous-time discrete- space Markov process with exponential waiting times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Definition 1 (Markov Process).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Let {S(t);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' t ∈ [0, T]} be a discrete-space, continuous-time stochastic process where for each t, S(t) is a random variable with state space Ω = {1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' , N}, N < ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Then, the process S(t) has the Markov Property if for any s1, s2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' , sm ∈ Ω, 0 < τ1 < τ2 < · · · < τm−1 < t, Pr[S(t) = sm|S(τ1) = s1, S(τ2) = s2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' , S(τm−1) = sm−1] = Pr[S(t) = sm|S(τm−1) = sm−1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' (55) Furthermore, the process has exponential waiting times if for any i, j ∈ Ω, i ̸= j, there is a constant rate 0 ≤ wji < ∞ such that � Pr[S(t + ∆t) = i|S(t) = i] = 1 − � k̸=i wki∆t + o(∆t) Pr[S(t + ∆t) = j|S(t) = i] = wji∆t + o(∆t) Pr[S(t + ∆t) = j, S(t + 2∆t) = k|S(t) = i] = o(∆t), ∀k for sufficiently small ∆t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' The following table lists notation used in the paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Symbol Meaning St discrete-time process with (integer) time index t S(t) continuous-time process with time index t Ω sample space of a process at fixed time S states that give observable “1” Y(t) the observed process (indicating S(t) ∈ S) P transition matrix of a Markov chain W transition rate matrix of Markov process αt;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' α(t) forward message βt;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' β(t) backward message χt;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' χ(t) observation message ρt;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' ρ(t) unnormalized conditional state-occupancy probability Z(t) normalizing constant for ρ(t) pt;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' p(t) conditional state-occupancy probability ∆t sampling time step APPENDIX B INVARIANT NORMALIZATION IN CONTINUOUS TIME Time-invariant invariant normalization is a fundamental property of the sum-product algorithm [26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' In the continuous time case, we observed that this property can be easily con- firmed when the submatrices are diagonalizable, because the left and right eigenvectors corresponding to different eigenval- ues are orthogonal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' When the submatrix has nontrivial Jordan blocks, the time-dependent term cancels in less obvious ways.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Here we show that time-independent normalization holds in general, using only elementary calculus without invoking the machinery of factor-graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Recall that the normalizing constant is Z(t) = � i α(i)(t)β(i)(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Using Equation 2 and 3, we can obtain the CHEN et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' al: EXPLICITLY SOLVABLE CONTINUOUS-TIME INFERENCE FOR PARTIALLY OBSERVED MARKOV PROCESSES 10 following series of expressions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' dZ(t) dt = d dt � i∈S α(i)(t)β(i)(t) (56) = � i∈S dα(i)(t) dt β(i)(t) + α(i)(t)dβ(i)(t) dt (57) = � i∈S � � � k∈S\\{i} wkiα(k) − � l̸=i α(i) � � β(i) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' + α(i) � �− � k∈S\\{i} wikβ(k) + � l̸=i β(i) � � (58) = � i∈S � k∈S\\{i} wkiα(k)β(i) − wikα(i)β(k) (59) = 0 (60) Since the rate of change of Z(t) is zero, the normalizing constant is invariant of time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' REFERENCES [1] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Grisettiyz, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Stachniss, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Burgard, “Improving grid-based slam with Rao-Blackwellized particle filters by adaptive proposals and selective resampling,” in Proceedings of the 2005 IEEE International Conference on Robotics and Automation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' IEEE, 2005, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 2432–2437.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' [2] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Baum and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Eagon, “An inequality with applications to statistical estimation for probabilistic functions of Markov processes and to a model for ecology,” Bulletin of the American Mathematical Society, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 73, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 360–363, 1967.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' [3] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Anderson, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Ermentrout, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Thomas, “Stochastic repre- sentations of ion channel kinetics and exact stochastic simulation of neuronal dynamics,” Journal of Computational Neuroscience, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 38, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 67–82, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' [4] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Blei, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Ng, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Jordan, “Latent Dirichlet allocation,” Journal of Machine Learning research, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 993–1022, 2003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' [5] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Hodgkin and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Huxley, “A quantitative description of mem- brane current and its application to conduction and excitation in nerve,” The Journal of Physiology, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 117, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 4, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 500, 1952.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' [6] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Skaugen and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Walløe, “Firing behaviour in a stochastic nerve membrane model based upon the Hodgkin—Huxley equations,” Acta Physiologica Scandinavica, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 107, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 343–363, 1979.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' [7] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Hille, “Ionic channels in excitable membranes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' current problems and biophysical approaches,” Biophysical Journal, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 22, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 283– 294, 1978.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' [8] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Colquhoun and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Hawkes, “Relaxation and fluctuations of mem- brane currents that flow through drug-operated channels,” Proceedings of the Royal Society of London.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Series B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Biological Sciences, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 199, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 1135, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 231–262, 1977.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' [9] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Colquhoun and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Hawkes, “On the stochastic properties of single ion channels,” Proceedings of the Royal Society of London.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Series B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Biological Sciences, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 211, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 1183, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 205–235, 1981.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' [10] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Colquhoun and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Hawkes, “On the stochastic properties of bursts of single ion channel openings and of clusters of bursts,” Philosophical Transactions of the Royal Society of London.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Series B, Biological Sciences, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 1–59, 1982.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' [11] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Qin, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Auerbach, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Sachs, “Maximum likelihood estimation of aggregated Markov processes,” Proceedings of the Royal Society of London.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Series B: Biological Sciences, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 264, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 1380, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 375–383, 1997.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' [12] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Fuller, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='-R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Zhang, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Cui, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' McCarty, “The block of CFTR by scorpion venom is state-dependent,” Biophysical Journal, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 89, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 6, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 3960–3975, 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' [13] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='-A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Loeliger, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Dauwels, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Hu, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Korl, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Ping, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Kschis- chang, “The factor graph approach to model-based signal processing,” Proceedings of the IEEE, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 95, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 6, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 1295–1322, 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' [14] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Koller and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Friedman, Particle-based Approximate Inference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' MIT Press, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' [15] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Fang, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Gupta, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Khammash, “Stochastic filtering for mul- tiscale stochastic reaction networks based on hybrid approximations,” Journal of Computational Physics, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 467, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 111441, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' [16] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Capp´e, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Robert, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Ryd´en, “Reversible jump, birth-and- death and more general continuous time Markov chain Monte Carlo samplers,” Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 65, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 679–700, 2003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' [17] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Djuric and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Chun, “Estimation of nonstationary hidden Markov models by MCMC sampling,” in 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Proceedings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' ICASSP99 (Cat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 99CH36258), vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' IEEE, 1999, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 1737–1740.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' [18] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Rosales, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Stark, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Fitzgerald, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Hladky, “Bayesian restoration of ion channel records using hidden Markov models,” Bio- physical Journal, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 80, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 1088–1103, 2001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' [19] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Kschischang, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Frey, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='-A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Loeliger, “Factor graphs and the sum-product algorithm,” IEEE Transactions on Information Theory, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 47, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 498–519, 2001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' [20] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Jin, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Yin, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Fritsche, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Gustafsson, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Zoubir, “Bayesian cooperative localization using received signal strength with unknown path loss exponent: Message passing approaches,” IEEE Transactions on Signal Processing, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 68, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 1120–1135, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' [21] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Som and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Schniter, “Compressive imaging using approximate message passing and a Markov-tree prior,” IEEE Transactions on Signal Processing, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 60, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 7, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 3439–3448, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' [22] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Abrardo, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Barni, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Kallas, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Tondi, “A message passing approach for decision fusion of hidden-Markov observations in the presence of synchronized attacks,” in Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Advances in Multimedia (MMEDIA), Special Track on Models and Algorithms for Spatially and Temporally Correlated Data (STCD), Venice, Italy, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' [23] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Bolliger, Digital Estimation of Continuous-Time Signals Using Factor Graphs, Hartung-Gorre Verlag, Konstanz, Series in Signal and Informa- tion Processing, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 22, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' [24] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Bolliger, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='-A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Loeliger, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Vogel, “LMMSE estimation and interpolation of continuous-time signals from discrete-time samples using factor graphs,” arXiv preprint arXiv:1301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='4793, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' [25] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Bruderer and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='-A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Loeliger, “Estimation of sensor input signals that are neither bandlimited nor sparse,” in 2014 Information Theory and Applications Workshop (ITA).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' IEEE, 2014, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 1–5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' [26] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Forney Jr and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Vontobel, “Partition functions of normal factor graphs,” arXiv preprint arXiv:1102.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content='0316, 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' [27] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Gallager, Stochastic Processes: Theory for Applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Cam- bridge University Press, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' [28] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Eckford and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Thomas, “The channel capacity of Channel- rhodopsin and other intensity-driven signal transduction receptors,” IEEE Transactions on Molecular, Biological and Multi-Scale Communications, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 4, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 27–38, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' [29] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Nagel, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Szellas, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Huhn, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Kateriya, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Adeishvili, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Berthold, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Ollig, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Hegemann, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Bamberg, “Channelrhodopsin-2, a directly light-gated cation-selective membrane channel,” Proceedings of the National Academy of Sciences, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 100, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 24, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 13 940–13 945, 2003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' [30] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Goetz and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Ren, “Review of cystic fibrosis,” Pediatric Annals, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 48, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' e154–e161, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' [31] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Gillespie, “Exact stochastic simulation of coupled chemical reactions,” The Journal of Physical Chemistry, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 81, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 25, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 2340– 2361, 1977.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' [32] ——, “Stochastic simulation of chemical kinetics,” Annual Review of Physical Chemistry, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 58, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' 35–55, 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' [33] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Wilkinson, Stochastic Modelling for Systems Biology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} +page_content=' Chapman and Hall/CRC, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QdAyT4oBgHgl3EQf7vpN/content/2301.00843v1.pdf'} diff --git a/SNE0T4oBgHgl3EQf1wKp/content/tmp_files/2301.02704v1.pdf.txt b/SNE0T4oBgHgl3EQf1wKp/content/tmp_files/2301.02704v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..ec011dd238997aef40f2765bdc8ba002fe4f1d74 --- /dev/null +++ b/SNE0T4oBgHgl3EQf1wKp/content/tmp_files/2301.02704v1.pdf.txt @@ -0,0 +1,704 @@ +Revista Mexicana de Física 3 040909 (2022) 1–4 +September 2022 +Rivet and the analysis preservation in heavy-ion collisions experiments +Antonio Carlos Oliveira da Silva (for the ALICE Collaboration) +University of Tennessee, Knoxville, 1408 Circle Drive, Knoxville TN 37996-1200 +Received 3 July 2022; accepted 15 September 2022 +The comparison of experimental data and theoretical predictions is important for our understanding of the mechanisms for interactions and +particle production in hadron collisions, both at the Large Hadron Collider and at the Relativistic Heavy-Ion Collider experiments. Several +tools were ideated to help with that. Rivet (Robust Independent Validation of Experiment and Theory) is a framework that facilitates the +comparison between measurements from high-energy physics experiments and Monte Carlo event generators able to produce outputs using +the HepMC package. Rivet contains a repository with analysis algorithms developed by experiments, providing analysis documentation and +preservation. +The recent developments for the implementation of centrality and multiplicity classes in Rivet are presented in this contribution. +Keywords: +1 +Introduction +Currently, the data and analysis preservation in high-energy +physics experiments is becoming a common concern. Previ- +ous experiments and collaborations are losing the power of +reproducing their measurements since the data are not prop- +erly kept in a accessible way. +The old code, which con- +tains crucial and detailed information like detector accep- +tance, particle and event selections, and corrections, is no +longer maintained and it is very difficult, if possible, to be +run again. Comparisons of previous measurements with new +models is, therefore, very challenging. +Robust Independent Validation of Experiment and The- +ory (Rivet) [1] is a framework that aims to facilitate the com- +parison between data and Monte Carlo (MC) event genera- +tors. +2 +Rivet framework +Rivet analyses are written in C++ and it currently contains +more than 1000 analyses from several high-energy physics +collaborations. The data, when available, are downloaded di- +rectly from HepData [2]. Any model that is incorporated in +an event generator able to produce output that complies with +HepMC framework [3] can be used by Rivet for the compar- +ison with data. The integration of Rivet with HepMC and +HepData is pictured in the scheme presented in Fig. 1. +The references for the event generators in Fig. +1 can +be found in [4–12]. Not all of them provide output using +HepMC standards. +In principle, an article presenting a measurement should +present enough information to make the measurement able +to be reproduced by another experiment or theoretician inter- +ested in comparing the data with a model. However, some +subtle details about detector acceptances, particle selections, +trigger conditions, etc, could be missing or not clearly de- +scribed. This can be the case even in internal notes in large +collaborations. +FIGURE 1. Schematic diagram showing how Rivet is integrated +with HepMC and HepData. +Rivet aims at preserving all the analysis details. Further- +more, it should reproduce the methods used in a measurement +as close as possible. One of the pillars of the Rivet philoso- +phy is that we should treat Monte Carlo simulations in the +same way as data. +In order to assure maximum fidelity to the original ac- +ceptances, selections and methods used in a measurement, +whenever possible, the rivet analysis should be implemented +by the collaboration that published the article containing the +measurement. Currently, ALICE has an official internal pro- +cedure for Rivet analysis approvals. +3 +Centrality and multiplicity determination +Measurements in heavy-ion collisions are commonly differ- +ential in centrality intervals to study different physical phe- +nomena. Therefore, centrality determination is a crucial fea- +ture Rivet has to provide in order to reproduce measurements +in heavy-ion collisions. +Centrality determination in ALICE is commonly pro- +vided by the V0 detector [13], which consists of two ar- +rays, V0-A and V0-C covering the pseudorapidity ranges 2.8 +< η < 5.1 and 3.7 < η < 1.7 respectively. +Figure 2 presents the distribution of the total energy de- +arXiv:2301.02704v1 [physics.data-an] 6 Jan 2023 + +AMPT +FXR +HIJING +JETSCAPE +PYTHIA +Monte Carlo Mode +JEWEL +EPOS +PHSI +smash +HepMC +HEpData +Rivet2 +ANTONIO CARLOS OLIVEIRA DA SILVA +posited in the V0 scintillators (amplitude). The most cen- +tral collisions are associated with those event with highest +V0 amplitude. The details of the centrality determination are +described in [14]. +FIGURE 2. Distribution of the total amplitude in the V0 scintilla- +tors in black points. The data are fitted using a Negative Binomial +Distribution (NBD) using parameters from the Glauber model. +b +b +b +b +b b +b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b +b b b b b b b b b b +b b b b +b +b b b b b b b b b b b b b b +b b b b b b +b b b b b b +b b +b b b b +b b +b b b b b b b b b b b b b b b b b b b b b b b b +b b b b b +b b b b b b b b b b b b b b b b b b b b b b b b b b b b +b +b b b b +b +b +b +b b b b +b b b b b b b b +b b +b +b b b b +b b +b b b b b b b b b b +b +b b b b b b b +b b b b b b b b b b b b b b b +b +b b b +b +b b b b b +b b b +b b b +b b +b +b b b +b b b +b b +b +b +b b b b b b b b b b b +b +b b +b b b b b +b b +b b +b b +b +b +b b +b b b +b +b b b b b +b +b +b +b b +b b +b b +b +b +b +b b +b +b +b b +b +b b +b +b +b +b +b b b +b +b b b b +b +Data +calibration ALICE PbPb2760GeV +0 +5000 +1.0·104 +1.5·104 +2.0·104 +2.5·104 +3.0·104 +3.5·104 +10−6 +10−5 +10−4 +10−3 +10−2 +10−1 +1 +VZERO amplitude (a.u.) or ch. particle multiplicity +Events +FIGURE 3. V0 amplitude in arbitrary units (black markers) mea- +sured by ALICE and the charged particle multiplicity in the V0 ac- +ceptance calculated with Rivet from Pb–Pb collisions at 2.76 TeV +events simulated with PYTHIA 8 Angantyr (red line). +The centrality determination in Rivet uses the multiplic- +ity of charged particles in the acceptance of the V0. Since +the multiplicity of particles in heavy-ion collision events in +Monte Carlo event generators is model dependent, it is neces- +sary to create a calibration file that depends on collisions sys- +tem, energy and event generator. Figure 3 shows the V0 am- +plitude distribution measured by ALICE and the multiplicity +of charged particles in Pb–Pb collisions at √sNN = 2.76 TeV +generated with PYTHIA 8 Angantyr [6]. +Rivet divides the charged particle multiplicity presented +in figure 3 (red line) in centrality percentiles. +So the +most central events are associated to the highest multiplic- +ity events. When running the Rivet analysis that requires +centrality determination, this calibration has to be provided. +A similar strategy is used for multiplicity determination in +pp and p–Pb collisions. Currently, ALICE is developing the +possibility to characterize the event using the self-normalized +charged particle multiplicity distribution. This development +is presented in sections 4 and 5. +4 +Self-normalized multiplicity +Forward-rapidity multiplicity classes can be defined in +ALICE using the V0 detector. Figure 4 shows the distribution +of the V0M amplitude, which is proportional to the number +of charged particles passing through the V0A and V0C de- +tectors, scaled by its average value ⟨V0M⟩ [15]. +FIGURE 4. Distribution of the V0M amplitude scaled by its aver- +age value ⟨V0M⟩ used to determined forward-rapidity multiplicity +classes in pp collisions at √s = 13 TeV. +The Silicon Pixel Detector (SPD) [16, 17] is the closest +detector to the interaction point in ALICE. The SPD provides +mid-rapidity multiplicity classes determination using the re- +constructed tracklets, which are track segments that connects +hits in the two SPD layers pointing to the primary vertex. The +self-normalized estimator is obtained with the distribution of +SPD tracklets NSPD tracklets in -2 < η < 2 scaled by the av- +erage of its value ⟨NSPD tracklets⟩. The self-normalized SPD +tracklets distribution is presented in Fig. 5. +Supl. Rev. Mex. Fis. 3 040909 + +Yield (a.u.) +10-3 +10-3 ++ +Data +Glauberfit +80-90% +70-80% +60-70% +10-4 +10-4 +500 +1000 +10-5 +50-60% +40-50% +0-40% +20-30% +10-20% +10-6 +5-10% +-5% +8 +0 +4000 +8000 +12000 +16000 +20000 +VZERO Amplitude (a.u.) +ALI-PUB-89941103 +ALICE +Forward Multiplicity Classes +Min. Bias data (%) +102 +Normalised counts +pp, Vs = 13 TeV +0-1 +1-5 +5-10 +10-15 +10 +15-20 +20-30 +30-40 +40-50 +50-70 +70-100 +High-Mult data (%) +10- +0-0.01 +0.01-0.1 +10-3 +10 +10 +5 +0 +2 +4 +6 +8 +10 +VOM/VOM) +ALI-PUB-499489A LATEXTEMPLATE FOR THE RMF, RMF-E, SRMF +3 +FIGURE 5. Distribution of the number of SPD tracklets scaled by its +average value ⟨NSPD tracklets⟩ used to determine midrapidity mul- +tiplicity classes in pp collisions at √s = 13 TeV. +The event characterization using self-normalized multi- +plicity estimators in Rivet is under development in ALICE. +Similar to what was discussed in the previous section, instead +of using the V0M amplitude, Rivet uses the charged particle +multiplicity in the V0 acceptance. In particular, the forward- +rapidity self-normalized estimator uses the multiplicity of +charged particles in the V0 acceptance scaled by its average +value. Figure 6 shows the V0M/⟨V0M⟩ distribution calcu- +lated with Rivet using pp collisions at 13 TeV generated with +PYTHIA 8 Monash 2013 tune [4,18]. +Rivet pp13TeV +0 +2 +4 +6 +8 +10 +10−5 +10−4 +10−3 +10−2 +10−1 +1 +V0M/⟨V0M⟩ +Normalized counts +FIGURE 6. Self-normalized multiplicity distribution of charged par- +ticles in the acceptance of the V0 detector in pp collisions at √s = +13 TeV generated with PYTHIA 8 Monash 2013. +Similarly to what is done for the V0M, the self- +normalized multiplicity estimator at mid-rapidity uses the +number of charged particles in the acceptance of the SPD. +Figure 7 shows the distribution of the charged particles in the +SPD acceptance scaled by its average value in pp collisions +at 13 TeV generated with PYTHIA 8 Monash 2013. +Rivet pp13TeV +0 +2 +4 +6 +8 +10 +10−4 +10−3 +10−2 +10−1 +1 +NSPD tracklets +SPD tracklets +SPD tracklets/⟨NSPD tracklets +SPD tracklets +SPD tracklets⟩ +Normalized counts +FIGURE 7. Self-normalized multiplicity distribution of charged par- +ticles in the acceptance of the SPD detector in pp collisions at +√s = 13 TeV generated with PYTHIA 8 Monash 2013. +5 +Results using the self-normalized multiplic- +ity estimators +The self-normalized multiplicity estimators framework in +Rivet is currently work in progress and being tested using ar- +ticles published by ALICE that use such estimators. The first +measurement used to test the V0M/⟨V0M⟩ estimator was the +transverse momentum (pT) of jets in different multiplicity in- +tervals in pp collisions at √s = 13 TeV [19]. +b +b +b +b +b +b +b +b +b +b +b +b +b +b +b +b +b +b +b +Data +Rivet [cent=GEN] +10−6 +10−5 +10−4 +10−3 +10−2 +10−1 +1/Nevent d2N/dpTd +event d2N/dpTd +event d2N/dpTdηηη (GeV/ccc)))−1 +−1 +−1 +b +b +b +b +b +b +b +b +b +b +b +b +b +b +b +b +b +b +10 +20 +30 +40 +50 +60 +70 +80 +90 +100 +0.5 +0.6 +0.7 +0.8 +0.91 +1.1 +1.2 +1.3 +1.4 +jet pT +pT +pT (GeV/ccc))) +MC/Data +FIGURE 8. Charged-particle jet transverse momentum distribution +in pp collisions at √s = 5.02 TeV for the 0-1% multiplicity +class corresponding to the self-normalized V0M-based multiplic- +ity estimator. Jets were reconstructed using jet resolution parame- +ter R = 0.2. Data (black markers) are compared with PYTHIA 8 +Monash 2013 (red line). +Supl. Rev. Mex. Fis. 3 040909 + +103 +ALICE +Central Multiplicity Classes +Min. Bias data (%) +102 +pp, Vs = 13 TeV +Normalised counts +0-1 +1-5 +5-10 +10-15 +10 +15-20 +20-30 +30-40 +40-50 +50-70 +70-100 +10 +10 +3 +10 +10 +5 +0 +2 +4 +6 +8 +10 +KN +SPD Tracklet4 +ANTONIO CARLOS OLIVEIRA DA SILVA +b +b +b +b +b +b +b +b +b +b +b +b +b +b +b +b +b +b +b +b +b +b +b +b +b +b +b +b +b +b +b +Data +Rivet SPD pp5TeV [cent=GEN] +0 +5 +10 +15 +20 +25 +dN/dη +dN/dη +dN/dη +b +b +b +b +b +b +b +b +b +b +b +b +b +b +b +b +b +b +b +b +b +b +b +b +b +b +b +b +b +b +-1.5 +-1 +-0.5 +0 +0.5 +1 +1.5 +0.5 +0.6 +0.7 +0.8 +0.91 +1.1 +1.2 +1.3 +1.4 +ηηη +MC/Data +FIGURE 9. Charged particle pseudorapidity distribution in pp colli- +sions at √s = 5.02 TeV for the 0-1% multiplicity class correspond- +ing to the self-normalized SPD-based multiplicity estimator. Data +(black markers) are compared with PYTHIA 8 Monash 2013 (red +line). +The transverse momentum of jets reconstructed with +FastJet anti-kT algorithm [20] and resolution parameter R = +0.2 in the multiplicity class 0-1% in pp collisions at √s = +13 TeV is presented in figure 8. The measurement was com- +pared with PYTHIA 8 Monash 2013 using Rivet and the self- +normalized V0M multiplicity framework. The agreement of +the model to data is a positive indication that the framework +can reproduce the multiplicity determination method used by +ALICE. Other multiplicity classes presented a similar perfor- +mance. +The self-normalized estimator using the SPD was also +tested using the measurements in [15]. +Figure 9 presents +the charged particle pseudorapidity distribution in pp colli- +sions at √s = 5.02 TeV. The ALICE data are compared +with PYTHIA 8 Monash 2013 using Rivet and the SPD self- +normalized framework. The results fairly reproduce the com- +parisons to MC presented in the cited article. +6 +Summary +Rivet is a valuable tool for analysis preservation and compar- +ison of data to Monte Carlo event generators. The develop- +ment of additional tools to facilitate the implementation of +Rivet analyses is an important contribution to the framework +and can be of benefit both for the experiment and the theory +side. The self-normalized multiplicity estimators are provid- +ing consistent results between MC curves in Rivet and those +provided by experiments. The final goal is to make this mul- +tiplicity framework available soon in the Rivet official frame- +work. +1. A. Buckley, et al., Rivet user manual (2010). +2. E. Maguire, L. Heinrich, and G. Watt, HEPData: a repository +for high energy physics data, Journal of Physics: Conference +Series 898 (2017) 102006, +10.1088/1742-6596/898/ +10/102006 +3. M. Dobbs and J. B. Hansen, The HepMC C++ Monte Carlo +Event Record for High Energy Physics, +Tech. rep., CERN, +Geneva (2000), URL https://cds.cern.ch/record/ +684090, Revised version number 1 submitted on 2001-02-27 +09:54:32. +4. T. Sjöstrand, S. Mrenna, and P. Z. Skands, A Brief Introduc- +tion to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852, +10.1016/j.cpc.2008.01.036 +5. Z.-W. Lin, et al., Multiphase transport model for relativistic +heavy ion collisions, Physical Review C 72 (2005), 10.1103/ +physrevc.72.064901 +6. C. Bierlich, et al., The Angantyr model for Heavy-Ion Col- +lisions in PYTHIA8, +JHEP 10 (2018) 134, +10.1007/ +JHEP10(2018)134 +7. J. H. Putschke, et al., The JETSCAPE framework (2019), 10. +48550/ARXIV.1903.07706, +URL https://arxiv. +org/abs/1903.07706. +8. J. Weil, et al., Particle production and equilibrium properties +within a new hadron transport approach for heavy-ion colli- +sions, Physical Review C 94 (2016), 10.1103/physrevc. +94.054905 +9. T. Pierog, et al., +EPOS LHC: Test of collective hadroniza- +tion with data measured at the CERN Large Hadron Collider, +Phys. Rev. C 92 (2015) 034906, 10.1103/PhysRevC.92. +034906 +10. K. Zapp, et al., A Monte Carlo model for ‘jet quenching’, The +European Physical Journal C 60 (2009), 10.1140/epjc/ +s10052-009-0941-2 +11. X.-N. Wang and M. Gyulassy, hijing: A Monte Carlo model +for multiple jet production in pp, pA, and AA collisions, Phys. +Rev. D 44 (1991) 3501, 10.1103/PhysRevD.44.3501 +12. W. Cassing and E. Bratkovskaya, +Parton–hadron–string dy- +namics: An off-shell transport approach for relativistic ener- +gies, +Nuclear Physics A 831 (2009) 215, +10.1016/j. +nuclphysa.2009.09.007 +13. T. A. Collaboration, Performance of the ALICE VZERO sys- +tem, Journal of Instrumentation 8 (2013) P10016, 10.1088/ +1748-0221/8/10/p10016 +14. B. Abelev, J. Adam, and D. Adamov, +Centrality determina- +tion of Pb-Pb collisions at √sNN = 2.76 TeV with ALICE 88 +(2013), 10.1103/physrevc.88.044909 +15. J. Adam et al., +Pseudorapidity distributions of charged par- +ticles as a function of mid- and forward rapidity multiplic- +Supl. Rev. Mex. Fis. 3 040909 + +A LATEXTEMPLATE FOR THE RMF, RMF-E, SRMF +5 +ities in pp collisions at √s = 5.02, 7 and 13 TeV (2021), +10.1140/epjc/s10052-021-09349-5 +16. ALICE Inner Tracking System (ITS): Technical Design Report, +Technical design report. ALICE (CERN, Geneva, 1999), URL +http://cds.cern.ch/record/391175. +17. R. Santoro, et al., The ALICE Silicon Pixel Detector: readiness +for the first proton beam, Journal of Instrumentation 4 (2009) +P03023, 10.1088/1748-0221/4/03/p03023 +18. P. Skands, S. Carrazza, and J. Rojo, +Tuning PYTHIA 8.1: +the Monash 2013 tune, The European Physical Journal C 74 +(2014), 10.1140/epjc/s10052-014-3024-y +19. ALICE Collaboration, +Multiplicity dependence of charged- +particle jet production in pp collisions at √s = 13 TeV +(2022), 10.48550/ARXIV.2202.01548, URL https: +//arxiv.org/abs/2202.01548. +20. M. Cacciari, G. P. Salam, and G. Soyez, +FastJet user man- +ual, The European Physical Journal C 72 (2012), 10.1140/ +epjc/s10052-012-1896-2 +Supl. Rev. Mex. Fis. 3 040909 + diff --git a/SNE0T4oBgHgl3EQf1wKp/content/tmp_files/load_file.txt b/SNE0T4oBgHgl3EQf1wKp/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..f26d0321c78467b3157c20cc2f01da015740effe --- /dev/null +++ b/SNE0T4oBgHgl3EQf1wKp/content/tmp_files/load_file.txt @@ -0,0 +1,382 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf,len=381 +page_content='Revista Mexicana de Física 3 040909 (2022) 1–4 September 2022 Rivet and the analysis preservation in heavy-ion collisions experiments Antonio Carlos Oliveira da Silva (for the ALICE Collaboration) University of Tennessee, Knoxville, 1408 Circle Drive, Knoxville TN 37996-1200 Received 3 July 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' accepted 15 September 2022 The comparison of experimental data and theoretical predictions is important for our understanding of the mechanisms for interactions and particle production in hadron collisions, both at the Large Hadron Collider and at the Relativistic Heavy-Ion Collider experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Several tools were ideated to help with that.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Rivet (Robust Independent Validation of Experiment and Theory) is a framework that facilitates the comparison between measurements from high-energy physics experiments and Monte Carlo event generators able to produce outputs using the HepMC package.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Rivet contains a repository with analysis algorithms developed by experiments, providing analysis documentation and preservation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' The recent developments for the implementation of centrality and multiplicity classes in Rivet are presented in this contribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Keywords: 1 Introduction Currently, the data and analysis preservation in high-energy physics experiments is becoming a common concern.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Previ- ous experiments and collaborations are losing the power of reproducing their measurements since the data are not prop- erly kept in a accessible way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' The old code, which con- tains crucial and detailed information like detector accep- tance, particle and event selections, and corrections, is no longer maintained and it is very difficult, if possible, to be run again.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Comparisons of previous measurements with new models is, therefore, very challenging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Robust Independent Validation of Experiment and The- ory (Rivet) [1] is a framework that aims to facilitate the com- parison between data and Monte Carlo (MC) event genera- tors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' 2 Rivet framework Rivet analyses are written in C++ and it currently contains more than 1000 analyses from several high-energy physics collaborations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' The data, when available, are downloaded di- rectly from HepData [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Any model that is incorporated in an event generator able to produce output that complies with HepMC framework [3] can be used by Rivet for the compar- ison with data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' The integration of Rivet with HepMC and HepData is pictured in the scheme presented in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' The references for the event generators in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' 1 can be found in [4–12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Not all of them provide output using HepMC standards.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' In principle, an article presenting a measurement should present enough information to make the measurement able to be reproduced by another experiment or theoretician inter- ested in comparing the data with a model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' However, some subtle details about detector acceptances, particle selections, trigger conditions, etc, could be missing or not clearly de- scribed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' This can be the case even in internal notes in large collaborations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' FIGURE 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Schematic diagram showing how Rivet is integrated with HepMC and HepData.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Rivet aims at preserving all the analysis details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Further- more, it should reproduce the methods used in a measurement as close as possible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' One of the pillars of the Rivet philoso- phy is that we should treat Monte Carlo simulations in the same way as data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' In order to assure maximum fidelity to the original ac- ceptances, selections and methods used in a measurement, whenever possible, the rivet analysis should be implemented by the collaboration that published the article containing the measurement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Currently, ALICE has an official internal pro- cedure for Rivet analysis approvals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' 3 Centrality and multiplicity determination Measurements in heavy-ion collisions are commonly differ- ential in centrality intervals to study different physical phe- nomena.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Therefore, centrality determination is a crucial fea- ture Rivet has to provide in order to reproduce measurements in heavy-ion collisions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Centrality determination in ALICE is commonly pro- vided by the V0 detector [13], which consists of two ar- rays, V0-A and V0-C covering the pseudorapidity ranges 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='8 < η < 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='1 and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='7 < η < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='7 respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Figure 2 presents the distribution of the total energy de- arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='02704v1 [physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='data-an] 6 Jan 2023 AMPT FXR HIJING JETSCAPE PYTHIA Monte Carlo Mode JEWEL EPOS PHSI smash HepMC HEpData Rivet2 ANTONIO CARLOS OLIVEIRA DA SILVA posited in the V0 scintillators (amplitude).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' The most cen- tral collisions are associated with those event with highest V0 amplitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' The details of the centrality determination are described in [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' FIGURE 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Distribution of the total amplitude in the V0 scintilla- tors in black points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' The data are fitted using a Negative Binomial Distribution (NBD) using parameters from the Glauber model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b b b b b b b b b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b b b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b b b b b b b b b b b b b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b b b b b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b b b b b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b b b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b b b b b b b b b b b b b b b b b b b b b b b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b b b b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b b b b b b b b b b b b b b b b b b b b b b b b b b b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b b b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b b b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b b b b b b b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b b b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b b b b b b b b b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b b b b b b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b b b b b b b b b b b b b b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b b b b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b b b b b b b b b b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b b b b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b b b b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b b b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='Data ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='calibration ALICE PbPb2760GeV ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='5000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='0·104 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='5·104 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='0·104 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='5·104 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='0·104 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='5·104 10−6 10−5 10−4 10−3 10−2 10−1 1 VZERO amplitude (a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=') or ch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' particle multiplicity Events FIGURE 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' V0 amplitude in arbitrary units (black markers) mea- sured by ALICE and the charged particle multiplicity in the V0 ac- ceptance calculated with Rivet from Pb–Pb collisions at 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='76 TeV events simulated with PYTHIA 8 Angantyr (red line).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' The centrality determination in Rivet uses the multiplic- ity of charged particles in the acceptance of the V0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Since the multiplicity of particles in heavy-ion collision events in Monte Carlo event generators is model dependent, it is neces- sary to create a calibration file that depends on collisions sys- tem, energy and event generator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Figure 3 shows the V0 am- plitude distribution measured by ALICE and the multiplicity of charged particles in Pb–Pb collisions at √sNN = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='76 TeV generated with PYTHIA 8 Angantyr [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Rivet divides the charged particle multiplicity presented in figure 3 (red line) in centrality percentiles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' So the most central events are associated to the highest multiplic- ity events.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' When running the Rivet analysis that requires centrality determination, this calibration has to be provided.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' A similar strategy is used for multiplicity determination in pp and p–Pb collisions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Currently, ALICE is developing the possibility to characterize the event using the self-normalized charged particle multiplicity distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' This development is presented in sections 4 and 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' 4 Self-normalized multiplicity Forward-rapidity multiplicity classes can be defined in ALICE using the V0 detector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Figure 4 shows the distribution of the V0M amplitude, which is proportional to the number of charged particles passing through the V0A and V0C de- tectors, scaled by its average value ⟨V0M⟩ [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' FIGURE 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Distribution of the V0M amplitude scaled by its aver- age value ⟨V0M⟩ used to determined forward-rapidity multiplicity classes in pp collisions at √s = 13 TeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' The Silicon Pixel Detector (SPD) [16, 17] is the closest detector to the interaction point in ALICE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' The SPD provides mid-rapidity multiplicity classes determination using the re- constructed tracklets, which are track segments that connects hits in the two SPD layers pointing to the primary vertex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' The self-normalized estimator is obtained with the distribution of SPD tracklets NSPD tracklets in -2 < η < 2 scaled by the av- erage of its value ⟨NSPD tracklets⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' The self-normalized SPD tracklets distribution is presented in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Supl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Mex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Fis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' 3 040909 Yield (a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=') 10-3 10-3 + Data Glauberfit 80-90% 70-80% 60-70% 10-4 10-4 500 1000 10-5 50-60% 40-50% 0-40% 20-30% 10-20% 10-6 5-10% 5% 8 0 4000 8000 12000 16000 20000 VZERO Amplitude (a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=') ALI-PUB-89941103 ALICE Forward Multiplicity Classes Min.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Bias data (%) 102 Normalised counts pp, Vs = 13 TeV 0-1 1-5 5-10 10-15 10 15-20 20-30 30-40 40-50 50-70 70-100 High-Mult data (%) 10- 0-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='01-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='1 10-3 10 10 5 0 2 4 6 8 10 VOM/VOM) ALI-PUB-499489A LATEXTEMPLATE FOR THE RMF, RMF-E, SRMF 3 FIGURE 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Distribution of the number of SPD tracklets scaled by its average value ⟨NSPD tracklets⟩ used to determine midrapidity mul- tiplicity classes in pp collisions at √s = 13 TeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' The event characterization using self-normalized multi- plicity estimators in Rivet is under development in ALICE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Similar to what was discussed in the previous section, instead of using the V0M amplitude, Rivet uses the charged particle multiplicity in the V0 acceptance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' In particular, the forward- rapidity self-normalized estimator uses the multiplicity of charged particles in the V0 acceptance scaled by its average value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Figure 6 shows the V0M/⟨V0M⟩ distribution calcu- lated with Rivet using pp collisions at 13 TeV generated with PYTHIA 8 Monash 2013 tune [4,18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Rivet pp13TeV 0 2 4 6 8 10 10−5 10−4 10−3 10−2 10−1 1 V0M/⟨V0M⟩ Normalized counts FIGURE 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Self-normalized multiplicity distribution of charged par- ticles in the acceptance of the V0 detector in pp collisions at √s = 13 TeV generated with PYTHIA 8 Monash 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Similarly to what is done for the V0M, the self- normalized multiplicity estimator at mid-rapidity uses the number of charged particles in the acceptance of the SPD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Figure 7 shows the distribution of the charged particles in the SPD acceptance scaled by its average value in pp collisions at 13 TeV generated with PYTHIA 8 Monash 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Rivet pp13TeV 0 2 4 6 8 10 10−4 10−3 10−2 10−1 1 NSPD tracklets SPD tracklets SPD tracklets/⟨NSPD tracklets SPD tracklets SPD tracklets⟩ Normalized counts FIGURE 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Self-normalized multiplicity distribution of charged par- ticles in the acceptance of the SPD detector in pp collisions at √s = 13 TeV generated with PYTHIA 8 Monash 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' 5 Results using the self-normalized multiplic- ity estimators The self-normalized multiplicity estimators framework in Rivet is currently work in progress and being tested using ar- ticles published by ALICE that use such estimators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' The first measurement used to test the V0M/⟨V0M⟩ estimator was the transverse momentum (pT) of jets in different multiplicity in- tervals in pp collisions at √s = 13 TeV [19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' b b b b b b b b b b b b b b b b b b b Data Rivet [cent=GEN] 10−6 10−5 10−4 10−3 10−2 10−1 1/Nevent d2N/dpTd event d2N/dpTd event d2N/dpTdηηη (GeV/ccc)))−1 −1 −1 b b b b b b b b b b b b b b b b b b 10 20 30 40 50 60 70 80 90 100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='91 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='4 jet pT pT pT (GeV/ccc))) MC/Data FIGURE 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Charged-particle jet transverse momentum distribution in pp collisions at √s = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='02 TeV for the 0-1% multiplicity class corresponding to the self-normalized V0M-based multiplic- ity estimator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Jets were reconstructed using jet resolution parame- ter R = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Data (black markers) are compared with PYTHIA 8 Monash 2013 (red line).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Supl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Mex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Fis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' 3 040909 103 ALICE Central Multiplicity Classes Min.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Bias data (%) 102 pp, Vs = 13 TeV Normalised counts 0-1 1-5 5-10 10-15 10 15-20 20-30 30-40 40-50 50-70 70-100 10 10 3 10 10 5 0 2 4 6 8 10 KN SPD Tracklet4 ANTONIO CARLOS OLIVEIRA DA SILVA b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b Data Rivet SPD pp5TeV [cent=GEN] 0 5 10 15 20 25 dN/dη dN/dη dN/dη b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='5 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='91 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='4 ηηη MC/Data FIGURE 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Charged particle pseudorapidity distribution in pp colli- sions at √s = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='02 TeV for the 0-1% multiplicity class correspond- ing to the self-normalized SPD-based multiplicity estimator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Data (black markers) are compared with PYTHIA 8 Monash 2013 (red line).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' The transverse momentum of jets reconstructed with FastJet anti-kT algorithm [20] and resolution parameter R = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='2 in the multiplicity class 0-1% in pp collisions at √s = 13 TeV is presented in figure 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' The measurement was com- pared with PYTHIA 8 Monash 2013 using Rivet and the self- normalized V0M multiplicity framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' The agreement of the model to data is a positive indication that the framework can reproduce the multiplicity determination method used by ALICE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Other multiplicity classes presented a similar perfor- mance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' The self-normalized estimator using the SPD was also tested using the measurements in [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Figure 9 presents the charged particle pseudorapidity distribution in pp colli- sions at √s = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='02 TeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' The ALICE data are compared with PYTHIA 8 Monash 2013 using Rivet and the SPD self- normalized framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' The results fairly reproduce the com- parisons to MC presented in the cited article.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' 6 Summary Rivet is a valuable tool for analysis preservation and compar- ison of data to Monte Carlo event generators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' The develop- ment of additional tools to facilitate the implementation of Rivet analyses is an important contribution to the framework and can be of benefit both for the experiment and the theory side.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' The self-normalized multiplicity estimators are provid- ing consistent results between MC curves in Rivet and those provided by experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' The final goal is to make this mul- tiplicity framework available soon in the Rivet official frame- work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Buckley, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=', Rivet user manual (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Maguire, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Heinrich, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Watt, HEPData: a repository for high energy physics data, Journal of Physics: Conference Series 898 (2017) 102006, 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='1088/1742-6596/898/ 10/102006 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Dobbs and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Hansen, The HepMC C++ Monte Carlo Event Record for High Energy Physics, Tech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' rep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=', CERN, Geneva (2000), URL https://cds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='cern.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='ch/record/ 684090, Revised version number 1 submitted on 2001-02-27 09:54:32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Sjöstrand, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Mrenna, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Skands, A Brief Introduc- tion to PYTHIA 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='1, Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' 178 (2008) 852, 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='cpc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='036 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='-W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Lin, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=', Multiphase transport model for relativistic heavy ion collisions, Physical Review C 72 (2005), 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='1103/ physrevc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='064901 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Bierlich, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=', The Angantyr model for Heavy-Ion Col- lisions in PYTHIA8, JHEP 10 (2018) 134, 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='1007/ JHEP10(2018)134 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Putschke, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=', The JETSCAPE framework (2019), 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' 48550/ARXIV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='1903.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='07706, URL https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' org/abs/1903.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='07706.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Weil, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=', Particle production and equilibrium properties within a new hadron transport approach for heavy-ion colli- sions, Physical Review C 94 (2016), 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='1103/physrevc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' 94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='054905 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Pierog, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=', EPOS LHC: Test of collective hadroniza- tion with data measured at the CERN Large Hadron Collider, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' C 92 (2015) 034906, 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='1103/PhysRevC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' 034906 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Zapp, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=', A Monte Carlo model for ‘jet quenching’, The European Physical Journal C 60 (2009), 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='1140/epjc/ s10052-009-0941-2 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='-N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Wang and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Gyulassy, hijing: A Monte Carlo model for multiple jet production in pp, pA, and AA collisions, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' D 44 (1991) 3501, 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='1103/PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='3501 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Cassing and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Bratkovskaya, Parton–hadron–string dy- namics: An off-shell transport approach for relativistic ener- gies, Nuclear Physics A 831 (2009) 215, 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' nuclphysa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='007 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Collaboration, Performance of the ALICE VZERO sys- tem, Journal of Instrumentation 8 (2013) P10016, 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='1088/ 1748-0221/8/10/p10016 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Abelev, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Adam, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Adamov, Centrality determina- tion of Pb-Pb collisions at √sNN = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='76 TeV with ALICE 88 (2013), 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='1103/physrevc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='88.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='044909 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Adam et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=', Pseudorapidity distributions of charged par- ticles as a function of mid- and forward rapidity multiplic- Supl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Mex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Fis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' 3 040909 A LATEXTEMPLATE FOR THE RMF, RMF-E, SRMF 5 ities in pp collisions at √s = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='02, 7 and 13 TeV (2021), 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='1140/epjc/s10052-021-09349-5 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' ALICE Inner Tracking System (ITS): Technical Design Report, Technical design report.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' ALICE (CERN, Geneva, 1999), URL http://cds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='cern.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='ch/record/391175.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Santoro, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=', The ALICE Silicon Pixel Detector: readiness for the first proton beam, Journal of Instrumentation 4 (2009) P03023, 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='1088/1748-0221/4/03/p03023 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Skands, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Carrazza, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Rojo, Tuning PYTHIA 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='1: the Monash 2013 tune, The European Physical Journal C 74 (2014), 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='1140/epjc/s10052-014-3024-y 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' ALICE Collaboration, Multiplicity dependence of charged- particle jet production in pp collisions at √s = 13 TeV (2022), 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='48550/ARXIV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='2202.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='01548, URL https: //arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='org/abs/2202.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='01548.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Cacciari, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Salam, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Soyez, FastJet user man- ual, The European Physical Journal C 72 (2012), 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content='1140/ epjc/s10052-012-1896-2 Supl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Mex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' Fis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} +page_content=' 3 040909' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'} diff --git a/TNAzT4oBgHgl3EQfXfzv/content/tmp_files/load_file.txt b/TNAzT4oBgHgl3EQfXfzv/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..8185535ab01ae4d74b7742cfab7c3c216f3dc33a --- /dev/null +++ b/TNAzT4oBgHgl3EQfXfzv/content/tmp_files/load_file.txt @@ -0,0 +1,896 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf,len=895 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='01321v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='CR] 3 Jan 2023 Cheesecloth: Zero-Knowledge Proofs of Real-World Vulnerabilities Santiago Cuéllar∗ Galois, Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Bill Harris Galois, Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' James Parker Galois, Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Stuart Pernsteiner Galois, Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Eran Tromer Columbia University Abstract Currently, when a security analyst discovers a vulnerabil- ity in critical software system, they must navigate a fraught dilemma: immediately disclosing the vulnerability to the public could harm the system’s users;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' whereas disclosing the vulnerability only to the software’s vendor lets the vendor disregard or deprioritize the security risk, to the detriment of unwittingly-affected users.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' A compelling recent line of work aims to resolve this by using Zero Knowledge (ZK) protocols that let analysts prove that they know a vulnerability in a program, without reveal- ing the details of the vulnerability or the inputs that exploit it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' In principle, this could be achieved by generic ZK tech- niques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' In practice, ZK vulnerability proofs to date have been restricted in scope and expressibility, due to challenges re- lated to generating proof statements that model real-world software at scale and to directly formulating violated proper- ties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' This paper presents CHEESECLOTH, a novel proof- statement compiler, which proves practical vulnerabilities in ZK by soundly-but-aggressively preprocessing programs on public inputs, selectively revealing information about exe- cuted control segments, and formalizing information leak- age using a novel storage-labeling scheme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' CHEESECLOTH’s practicality is demonstrated by generating ZK proofs of well-known vulnerabilities in (previous versions of) critical software, including the Heartbleed information leakage in OpenSSL and a memory vulnerability in the FFmpeg graph- ics framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 1 Introduction Ideally, programs that process sensitive information would always execute safely and securely.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' With this ideal remain- ing difficult to achieve for the foreseeable future, it is criti- cal that that when programs are found to be vulnerable, the program’s affected users are alerted quickly and safely.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' This ∗Authors listed alphabetically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' requirement presents a challenge: convincingly disclosing a vulnerability appears to require sharing the vulnerability’s details (such as an exploit that triggers it), thereby placing users at greater risk in the short term.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' A promising approach to disclosing vulnerabilities con- vincingly yet safely is to leverage Zero-Knowledge (ZK) proofs: protocols in which one party—designated as the prover—convinces another party—designated as the veri- fier—of the validity of a claim without revealing any addi- tional information about the claim’s evidence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Such a use of ZK proofs has arguably been a conceptual possibility ever since the initial fundamental results establish- ing that they exist for all problems in NP [26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' It has become more realistic with improvements to underlying ZK proto- cols and with the emergence of schemes for encoding knowl- edge of executions of programs written in convenient lan- guages (starting with [10,24] and discussed further below).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' In order to prove vulnerabilities in ZK about practical soft- ware, several open problems remaing to be addressed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' First, proof frameworks must scale to compile proofs of vulner- abilities that require considerably more steps of execution and space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' TinyRAM [10–12] is sufficiently flexible to val- idate the executions of applications, but it is expensive, in part due to the fact that it simulates every instruction in the modeled CPU’s ISA in each step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' TinyRAM’s performance is surpassed by those of Pantry [17] and Buffet [52], but both frameworks require loops to be unrolled to a public bound: publicly revealing these bounds leaks information about the underlying vulnerability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' A second open problem is to efficiently compile state- ments from an understandable form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' One immediate ap- proach is to execute a program under a dynamic safety moni- tor for well-understood safety properties, such as those those implemented in Valgrind [41];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' however, directly encoding the additional monitoring would induce prohibitively large overhead.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Approaches for verifying low-level exploits in ZK [27] rely on being able to efficiently compile directly- understandable properties into statements of control-location reachability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 1 To address these problems, we present CHEESECLOTH, an optimizing ZK proof-statement generator that efficently en- codes vulnerabilities in practical software.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' The contributions behind CHEESECLOTH’s design include: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Optimizations of ZK statements that verify the executions of programs, taking advantage of program structure but without revealing additional information about the exe- cution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Specifically, Public-PC segments construct execu- tion traces from segments with public program counters, thus enabling aggressive constant folding, without leak- ing information about the overall execution trace.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Simi- larly, instructions which are publicly-determined to be ex- ecuted infrequently are sparsely supported (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' can’t be executed at every step), making the statement smaller.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Novel, efficient ZK encodings of memory errors preva- lent in practical software, specifically out-of-bound ac- cess, use-after-free, free-after-free, and uninitialized ac- cess.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Previous related work focused primarily on proving knowledge of a valid execution without proving existence of a vulnerability [10,11] or encoded proofs of vulnerabil- ity using a less efficient memory model [29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' A novel, efficient encoding of statements that a program always leaks data (when given an exploit as a secret in- put).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Our scheme enables proofs of program properties that are related to, but critically distinct from, existing pro- gram monitors and type systems that prove that a program may leak data [20,39], optionally in ZK [21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' We implemented these optimizations and encodings in CHEESECLOTH, a full compilation toolchain for encoding vulnerabilities of real-world programs into efficient ZK proofs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' The toolchain extends previous approaches based on TinyRAM, and includes a full definition of a novel TinyRAM extension (named MicroRAM) and a compiler to MicroRAM from the LLVM intermediate language,enabling proofs of vulnerabilities in programs provided in C, C++, or Rust.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' We evaluated our implementation by proving in ZK the existence of three vulnerabilities in practical systems soft- ware.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Specifically, we proved that previous versions of the GRIT and FFmpeg [2] graphics processing libraries con- tained buffer-overflow vulnerabilites, and that the OpenSSL cryptograhy toolkit [3] was vulnerable to the notorious Heart- bleed vulnerability [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' CHEESECLOTH takes the software C/C++ source code and a flag denoting a vulnerabilities class;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' it combines these with an emulation of the runtime environment (operating system and libraries), and applies the aforementioned techniques, to derive a statement directly provable in ZK.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' The ZK proof can then be given, as a wit- ness, the concrete exploit used to demonstrate the original at- tack.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' CHEESECLOTH contains implementations of powerful program analyses that, when combined with manual program partitioning in some cases, dramatically increase the scale of programs that it can process, compared to a more naive com- piler.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' The remainder of this paper is organized as follows: Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 2 reviews the background that this work builds upon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 3 presents the implementation details of our CHEESECLOTH compilation pipeline;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 4 covers the critical and aggres- sive optimizations we make to verify the ZK execution of a program;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 5 describes our ZK encodings to efficiently de- tect memory and information leakage vulnerabilities;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 6 describes our practical experience using CHEESECLOTH to prove vulnerabilities;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 7 compares our approach to re- lated work and Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 8 concludes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 2 Background In this section, we review prior work on which our contribu- tion builds upon, specifically Zero-Knowledge (ZK) proofs of program executions (Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='1), information leakage by pro- grams (Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='2), and partial program evaluation (Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='1 Zero-Knowledge Proofs Zero-knowledge proofs enable a prover party to prove to a verifier party that the prover knows the correctness of a computational statement (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=', that a given Boolean circuit is satisfiable), without revealing information about their evi- dence for the claim (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=', the witness that satisfied the circuit).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' There exist ZK protocols for proving knowledge of solutions to all problems in NP [26], and in recent years, numerous ef- ficient protocols have been developed and implemented for ZK proofs of general statements (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=', [8, 10, 12, 14–16, 22, 24,28,29,31,32,38,43,51]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Some of these works specifically address statements about correct execution of programs running on a general-purpose architecture that include Random Access Memory (RAM), where the program is expressed in low-level machine code or a high-level language [9,10,12,14,16,17,22,27,29,31,32, 38,51,52].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Our compiler uses a hybrid of step-by-step CPU emula- tion, similar to TinyRAM [10–12], a MIPS-like CPU that can simulate programs in C and similar low-level languages that access RAM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' The TinyRAM encoder, given a public TinyRAM program and bound on the number of steps of ex- ecution to simulate and a private program input, generates an R1CS that is satisfied by encodings of the input.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' The con- straint system consists of (1) a family of constraint systems that validate computations purely over registers in each step and (2) a novel memory-checking sub-circuit that verifies the correctness of RAM operations using a permutation network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' This CPU-unrolling technique is excellent for supporting lan- guage features such as data-dependent loops, control-flow and self-modifying code.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' The technique can also naturally leverage existing tools such as compilers front-ends and li- braries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 2 We combine TinyRAM-style emulation with direct com- pilation of program blocks into circuit gates [17, 24, 52] (Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' The compiler’s output is a circuit whose satisfia- bility is equivalent to the existence of a vulnerability in the source program, and whose structure does not reveal the vul- nerability or how it may be triggered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' In our evaluation, the underlying ZK protocol is the Mac’n’Cheese [9] protocol for proving circuit satisfiability, as implemented by the Swanky [23] library.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' This is an inter- active protocol, where the prover and verifier engage in mul- tiple rounds of communication to evaluate the circuit, at the end of which the verifier learns that the circuit accepted the secret witness provided by the prover (and nothing else).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='2 Information Flow One core contribution of our work is a practical scheme for proving in zero knowledge that a program leaks data, which we have applied to prove that previous versions of OpenSSL leak private data, as triggered by the Heartbleed vulnerabil- ity (described in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='2 and Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' The scheme’s design requires a formal treatment of information flow: specifically, a treatment sufficiently formal that we could generate logical circuits that would be satisfied only by witnesses to leakage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' In the interest of space and clarity, we will omit a definition of information flow and leakage for a full programming lan- guage, but we will describe ours in sfufficient datail to com- municate the key challenges and approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' A labeling L is a subset of a program’s input variables I designated as the private inputs, and a subset of its output variables O denoted as public outputs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Program P satisfies noninterference with respect to L if each pair of inputs that are only distinct at private inputs result in values that are the same at all public outputs;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' P leaks with respect to L if, with respect to L, it does not satisfy noninterference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' It follows from the above definition that a leak is witnessed by a pair of executions that differ only at L-labeled inputs and produce distinct L-labeled outputs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Noninterference has a precise but accessible formal defi- nition that can capture the flow requirements of some criti- cal software [20], but its shortcomings in practice are well known [39, 40, 45]: the complete information flow spec- ifications of practical programs often are not noninterfer- ence properties, intuitively because programs that take sen- sitive inputs typically do need to reveal some partial infor- mation about them;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' and even when desired flow properties are noninterference properties, proving that a program sat- isfies the property in general can involve careful reasoning about unbounded data and control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' A rich body of prior work [13, 18, 19, 25] has considered generalizations of non- interference involving equivalences over observable events, along with rich programming languages and type systems and attempt to prove their satisfaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' However, noninterfer- ence properties still constitute aspects of a program’s com- plete information flow requirements that unfortunately are both critical and are violated in practice (Heartbleed being a prominent example).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' This pattern justisfies the current work’s primary focus on proving noninterference violations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='1 Labeled Programs and Executions In their most general form, information flow and leakage are defined over pairs of executions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Practical program moni- tors [20,49] and type systems [39] prove facts about all exe- cution pairs, by labeling the program’s data and control struc- tures with metadata which is tracked through the execution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' These approaches can be carried out by a programmer or au- tomated analysis that directly annotates the program or exe- cution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' However, the requisite guarantees are different in our proof-of-vulnerability context compared to their usual appli- cations, as seen next.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' At a high level, the guarantees provided by dynamic infor- mation flow monitors are as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' A labeling of a program execution over n steps is an assignment from each program variable and step 0 ≤ i < n to a sensitivity label.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' A label- ing over-approximates information flow if, from any two ex- ecutions starting from states that only differ at high inputs, the program produces results that differ only at high-labeled timestamped storage cells (static analyses and type systems lift this property to be defined over all pairs of executions that differ only at sensitive inputs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Such over-approximation allows for “false positives” in identifying information flows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' For example, in a context where only input x is sensitive and the return value is pub- lic, the following function always_true does not leak any information about its input secret because it returns true for each input value: bool always_true(bool secret) { if (secret) return secret;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' else return !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='secret;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' } However, many natural taint analyses would label the re- turned values as sensitive because it is computed from secret.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Over-approximation of potential leaks is often still valu- able for aiding programmers to ensure that their program does not leak: falsely determining that a secure program may leak may constitute a nuisance, and may need be mitigated to ensure practicality, but can to some degree to tolerated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' However, in our setting of proving a leak in ZK, it is un- acceptable for the verifier to learn only that a program may leak.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' The whole point is to prove that it does leak (given the purported exploit).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' We will thus create a labeling which is an under-approximation, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=', when the labels say so, a leakage is present.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' It will then remain to empirically show that label- ing indeed detects leakage for the vulnerabilities of interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='3 Partial Evaluation In many practical contexts, a program may receive different subsets of its input at different times after it has been written and compiled: e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=', after being installed, a configuration file may be included that remains the same over all executions on distinct inputs subsequently received from a network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' A natural objective is, given a program and a subset of its in- puts that can be fixed, to generate a specialized program that processes the remaining inputs with improved performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Stated more precisely, for program P(X,Y) with input vari- ables X and Y, a partial evaluation of P on an assignment A : X → Words from X to data values Words is a program PA such that P(A,B) is the same as PA(B) for each assignment B : Y → Words.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Partially evaluating programs in a practical language brings several complexities [35];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' the underlying technique amounts to: (1) evaluate the program under a symbolic state, in which registers and memory addresses may be mapped either to memory addresses or terms defined over symbolic variables that denoted unknown values;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' (2) using computed symbolic states that describe all possible states at each con- trol point, simplify the control structure at each point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Vari- ations of this technique may be viewed as aggressive exten- sions and generalizations of the constant propagation analy- sis and constant folding transformation implemented in con- ventional optmizing compilers [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 3 CHEESECLOTH Implementation CHEESECLOTH produces ZK proofs of real world vulnera- bilities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' It takes as input a public LLVM program (typically compiled from C, C++, or Rust) and, when run as the prover, a secret exploit that triggers a vulnerability in the program.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' CHEESECLOTH outputs a ZK circuit that verifies the execu- tion trace of the program and checks whether or not a vulner- ability occurred during that execution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' The pipeline enables a prover to demonstrate to a verifier that there is a vulnerability in a program while keeping the vulnerability and triggering exploit secret.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' CHEESECLOTH produces ZK circuits in multiple stan- dard representations including Rank-1 Constraints Systems (R1CS) [10] and SIEVE IR [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Because the circuits are seri- alized in standardized formats, CHEESECLOTH is agnostic to the ZK protocol applied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' When run as the prover, CHEESE- CLOTH outputs the accompanying witness for the circuit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' CHEESECLOTH can be extended to check different proper- ties about a program’s execution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Users can selectively en- able which extensions to run by providing different input flags to the compilation pipeline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' These extensions are how the memory and information leakage vulnerability detection checks described in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 5 are implemented.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' This section covers the baseline design of the CHEESECLOTH compila- tion pipeline which includes (1) the MicroRAM assembly language, (2) the MicroRAM Compiler, and (3) the Witness Checker Generator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 4 describes optimizations for this design that enable it to scale to real world vulnerabilities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='1 MicroRAM The MicroRAM assembly language is critical to CHEESE- CLOTH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' It is the core IR language that CHEESECLOTH op- erates on and is the language that the MicroRAM Compiler compiles LLVM programs to.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' The Witness Checker Genera- tor produces ZK circuits that verify program executions ac- cording to MicroRAM’s architecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' MicroRAM is heavily inspired by TinyRAM [10, 11], which is a practical and efficient assembly language with a simple transition function that is ideal for ZK execution verification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' We describe MicroRAM and its architecture be- low, and we precisely describe how its design diverges from TinyRAM in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' MicroRAM is a random-access machine designed to effi- ciently detect vulnerabilities in program executions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' It is a reduced instruction set computer (RISC) with a Harvard ar- chitecture and byte-addressable random-access memory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' MicroRAM instructions are relatively simple and include 4 boolean operations, 8 arithmetic operations for signed and unsigned integers, 2 shift operations, 5 compare operations,2 move operations, 3 jump instructions, 2 operations for read- ing and writing to memory, and 1 answer operation that re- turns and halts the execution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Floating-point and vector arith- metic are not directly supported in the MicroRAM machine and must be implemented in software.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Instructions take two registers and one operand (either a register or an immediate) as arguments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' As an example, instruction xor ri rj 255 writes to register ri the exclusive-orof register rj and the im- mediate 255.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' CHEESECLOTH extensions like those described in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 5 can introduce additional instructions as needed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' The state of the MicroRAM machine consists of the pro- gram counter (pc), k 64-bit registers, a memory of 264 64-bit words, a flag indicating whether or not the execution so far is valid (inv_flag), and a flag tracking whether a vulnerability has occurred (vuln_flag).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' CHEESECLOTH extensions can extend the state of the MicroRAM machine as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' To demonstrate the existence of a vulnerability in a pro- gram, a prover must present a secret input that results in a valid execution trace that triggers a vulnerability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Formally, given a MicroRAM program, P, and an initial memory, m0, P(m0) demonstrates a vulnerability in T steps if inv_flag is false and vuln_flag is true in the final MicroRAM state of the program’s execution trace.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' inv_flag is set to false if any of the checks validating the program’s execu- tion fails.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' The extensions implementing the vulnerability de- tection checks set vuln_flag to true if they observe a vul- nerability during the program’s execution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 4 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='1 Beyond TinyRAM As mentioned above, our MicroRAM machine is inspired by TinyRAM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Here we report on how MicroRAM’s design de- parts from the TinyRAM model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' MicroRAM’s memory model is byte-addressable while TinyRAM is word-addressable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Byte-addressable memory is necessary to support functionality like string manipula- tions and packed structs, without adding subroutines to ac- cess bytes within full words.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' TinyRAM receives input via input tapes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' In MicroRAM, input is passed directly in memory, which saves many cy- cles that TinyRAM spends copying input to memory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' A Mi- croRAM program can request non-deterministic advice in several ways, however the prover does not have to commit to the advice ahead of time on a tape;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' instead they provide the advice upon request.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' This approach is better suited to support backends that exploit parallelism or streaming, and it results in smaller circuits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' TinyRAM uses a 1-bit condition flag for branching while MicroRAM does not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' This is advantageous since Micro- RAM targets a variety of backends including non-boolean arithmetic circuits where the flag is more expensive than a regular register1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' In addition, the semantics without a flag are much simpler so the compiler, interpreter, and circuit generator are simpler as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' We found that even when targeting boolean circuits, the benefits of having a condi- tion flag are outweighed by the extra complexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' We have not yet explored using a von Neumann architec- ture [12] for MicroRAM because, despite the asymptotic benefits, the instruction fetching circuit is not yet a limit- ing factor in our ZK statements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='2 MicroRAM Compiler The MicroRAM Compiler is implemented as a LLVM back- end that takes LLVM IR programs as input and produces Mi- croRAM assembly as output.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' We currently support C, C++, and Rust programs by compiling them to LLVM IR with the Clang and rustc compiler frontends.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Support for other lan- guages such as C#, Haskell, or Scala can be added in the future by connecting their appropriate LLVM frontends and writing the appropriate standard libraries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Our compiler backend supports a large subset of the LLVM IR language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' The compiler supports all boolean and arithmetic operations for integers of different sizes, bitwise operations, all non-concurrent memory operations including pointer arithmetic with getelementptr, conversion opera- tions, function calls, variable arguments, comparisons, and phi nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Complex operations like floating-point opera- tions are implemented in software via a LLVM compiler 1If full words fit in a field element, then the flag is the same size as a register, but requires special circuitry and has more restrictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' pass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Exceptions, and all exception handling instructions, are not supported;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' but we we can still tolerate programs with ex- ceptions as long as the prover is disclose that the execution of interest, which triggers a vulnerability,does not throw any ex- ceptions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' This is since the MicroRAM Compiler translates all exception handling instructions to traps that mark the trace as invalid by setting the inv_flag flag.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' By inserting traps, the MicroRAM Compiler can process programs with any num- ber of unsupported features, as long as the prover is will- ing to reveal that those features are not involved in the vul- nerable execution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' With this simple trick, users can compile real-world programs without having to manually remove un- supported features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' When enabling traps, provers must take care not to reveal too much information about the underlying vulnerability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='3 presents a more detailed discussion about the security implications of how proof statements can reveal information about their witnesses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='1 Standard library MicroRAM supports a significant portion of the C standard library and POSIX system calls, using Picolibc [4]: a library that offers the C standard library APIs and was originally de- signed for small embedded systems with limited RAM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Picol- ibc supports multiple widely deployed target architectures, including ARM, RISC-V, and x86-64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' We implemented MicroRAM as a target architecture for Picolibc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' This enables the MicroRAM compiler to support most of the C standard library and POSIX system calls.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' It is also convenient as it allows prover to publicly customize the behavior of system calls.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' For example, in our case study of OpenSSL, the victim server receives the malicious re- quest from the attacker over the network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' We customized the behavior of read when compiled natively to intercept and record all data received over the network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' When compiled for MicroRAM, read returns the previously recorded exploit request, which is loaded from secret memory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' We also cus- tomize the implementation of malloc and free to efficiently detect memory vulnerabilities (Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='2 Generating advice As we will see in later sections, CHEESECLOTH requires non- deterministic advice to efficiently generate a ZK circuit that verifies the consistency of memory in an execution (Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='3) and the presence of a vulnerability (Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' To aid the prover in producing that advice, the MicroRAM compiler runs two interpreter passes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' The first pass executes the pro- gram without any advice and records the necessary advice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' The second execution runs the nondeterministic semantics and records the trace, which is passed to the Witness Checker Generator to produce the witness for the prover.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='3 Security MicroRAM produces zero-knowledge proofs which ensure that no additional information is revealed about the wit- ness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' However, the proof statement itself can reveal informa- tion about the secret input.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' For example, in MicroRAM and TinyRAM the circuit reveals a time bound T on the execution length.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' In Pantry/Buffet, the circuit discloses an upper bound Ti on every loop (and recursive function) in the execution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' In vRAM [53], every instruction run during the execution is re- vealed to the verifier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' We argue that a formalization of this information leakage is necessary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Interesting and important future work will be to define a formal framework to analyse how secure these encodings are.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='4 Preprocessing public inputs One opportunity for aggressive optimization is to publicly evaluate logic that is determined by the program’s public in- puts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Many practical programs collect inputs from multiple sources, some of which are not secret (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=', irrelevant to the vulnerability).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' If the prover and verifier agree when defining a proof statement that only some inputs are sensitive secrets (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=', data packets received from a network connection) while others are not (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=', straightforward configuration options), then the resulting proof statement could be immediately op- timized by generating the proof statement and partially eval- uating the resulting circuit on its input wires corresponding to non-sensitive inputs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' CHEESECLOTH supports such cases with a compiler pass that determines the largest program prefix in which no op- eration depends on secret inputs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' The MicroRAM compiler then separates the public prefix from the remaining program suffix and compiles them separately.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' When the interpreter is executed by both the prover and verifier, it executes the pre- fix and defines a public snapshot of the resulting state, includ- ing both registers and memory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' When executed by the prover, the interpreter then executes the remaining suffix using both the snapshot and their private input generate to generate the statement’s witness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' In practice, this simple optimization has significant impact, reducing the number of execution steps in OpenSSL’s ZK proof statement from 25M to 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='3M (Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' The compiler optimization implements a relatively re- stricted form of partial evaluation and constant folding (Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Our initial experience indicates that further ex- tensions could improve CHEESECLOTH’s performance dras- tically: a key technical challenge is that while programs may perform much processing of public data over the course of the entire execution, the processing is often interleaved with computation over sensitive inputs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Evaluating each of the in- terleaved phases of public computation is sound in principle, but can only be automated by ensuring that regions of storage used by public and secret phases are disjoint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Such automa- tion could potentially be achieved by applying points-to and shape analyses [46–48], including separation logic [44].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='3 Witness Checker Generator The Witness Checker Generator takes as input a MicroRAM program and generates a ZK circuit, serialized in standard- ized formats including R1CS and SIEVE IR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' It also accepts nondeterministic advice as input and outputs the secret wit- ness to the circuit when run as the prover.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' The Witness Checker Generator builds arithmetic circuits for the prime field 2128−159.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' As an optimization, it automat- ically constant folds gates that are independent of secret in- puts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' To scale to large circuits and avoid running out of mem- ory, it streams the circuit serialization to a file.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' This stream- ing is independent of secret witnesses, so the same circuit is generated for the prover and verifier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' The nondeterministic advice the Witness Checker Genera- tor accepts provides a description of a program’s execution together with the advice necessary to run it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Concretely, the advice for an execution of T steps contains the initial pro- gram memory, the T MicroRAM states making up the execu- tion trace, and a mapping from step number to additional ad- vice given at each step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' This additional advice includes mem- ory ports for what is read or written to memory and stutters that indicate the execution should pause for the current step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' The Witness Checker Generator produces a ZK circuit that verifies that the witness describes a valid execution trace for the program and that a vulnerability occurs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' The circuit is split into four key pieces: (1) the transition function circuit, (2) the memory consistency circuit, (3) a state transition net- work, and (4) public-pc segments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' We describe the first two here, which follow a similar structure to the circuit construc- tion for TinyRAM [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' The other two are described later in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Transition function circuit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' The transition function circuit checks a single step of execution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' These checks are chained together to validate the entire execution trace.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 1 shows pseudocode for the transition function circuit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' It takes as input the circuit’s wire representation of the current Micro- RAM state, the next state, and any additional advice needed for the current step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' The circuit then fetches the instruction to execute based on the program counter and pulls out the instruction’s argument values by indexing into machine reg- isters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' It calculates the expected result of the step by multi- plexing over the instruction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Finally, the circuit ensures that the calculated expected state matches the next state provided as advice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Memory consistency circuit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' The memory consistency cir- cuit is similar to TinyRAM’s except addresses are byte- addressable instead of word-addressable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Each step may have a corresponding memory port advice that states the ad- dress and what was read or written to memory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' The transi- tion function circuit verifies that the execution trace matches the memory port advice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' All of the memory ports are sorted by address and step number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' The memory consistency cir- 6 1 fn transition_func(circuit, current_st, next_st) { 2 let expected_st = current_st.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='clone();' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 3 let instr = fetch_instr(circuit, current_st.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='pc);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 4 let arg1 = index(circuit, current_st.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='regs, instr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='op1);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 5 let arg2 = index(circuit, current_st.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='regs, instr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='op2);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 6 7 let result = circuit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='mux(instr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='opcode == XOR, 8 xor(circuit, arg1, arg2), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=');' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 9 expected_st.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='pc = circuit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='mux( 10 is_jump(circuit, instr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='opcode), 11 result, 12 circuit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='add(current_st.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='pc, 1));' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 13 write_index(circuit, expected_st.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='regs, instr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='dest, 14 result);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 15 16 circuit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='assert(expected_st == next_st);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' } Figure 1: Pseudocode for the transition function circuit that validates a single MicroRAM step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' cuit linearly scans the memory ports to ensure that all reads and writes to a given address are consistent with the previ- ous memory operation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' For example, a read should return the same value that was previously written to an address.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Fi- nally, the memory consistency circuit checks that the sorted memory ports are a permutation of the memory ports used by the transition function circuit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='1 describes how these checks are enhanced to efficiently detect memory vulnerabil- ities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 4 Optimizations This section describes two of CHEESECLOTH’s key optimiza- tions: constructing executions with public program coun- ters (Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='1) and tuning steps based on instruction sparsity (Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='4 contains an empirical evaluation of the optimizations’ effectiveness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='1 Public-PC segments The MicroRAM machine is design to minimize the size of the circuit that checks the transition function circuit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' How- ever, even with MicroRAM’s small instruction set, the tran- sition function circuit is still large.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' This is due to the fact that every transition function must support every operation in every step of execution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' What if we could remove all the unused functionality?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' This is the approach of vRAM [53], where the circuit is tuned to check the instruction that is exe- cuted at each step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' The resulting circuit is much smaller, but unfortunately the trace of executed instructions is revealed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' The values in memory and registers would still be kept secret, however a verifier could easily discover where the vulnerable code is in the program.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' In this section, we present public-pc segments which generate much smaller circuits without re- vealing the trace.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' A public-pc segment is a sequence of transition circuits with a hardcoded and public program counter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Using con- stant folding, all the instruction fetches of the public-pc seg- ments are known and the unused functionality of every step can be removed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' For example, with a public program counter, the fetch_instr and subsequent mux operations over the in- struction in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 1 can be constant folded away.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' We gener- ate public-pc segments for all straightline code segments in a program, and we implemented a compiler pass that uses a naive control-flow analysis to estimate how many times each segment will be used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' The analysis takes a global bound spec- ifying how many times to unroll loops and estimates how many times a function will be called by counting the number of call sites for that function in the program.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' To preserve the security of the trace, the cycle counter of segments is kept private.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' In addition, we introduce a state routing network so that the end state of a segment could be the initial state for any other segment in the circuit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Just like the memory routing network, the routing information for the state routing network is given by the prover and kept secret.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' As a further optimization, we avoid using the state rout- ing network when possible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' For example, when a public-pc segment branches to two statically known locations, we di- rectly connect the end state of that segment to the segments representating those two locations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' It is possible that the bound for unrolling loops is not large enough to support certain executions, so the pipeline would not generate enough public-pc segments for a section of code.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' As backup, the pipeline also produces private-pc segments which are just like public-pc segments except the program counter is not revealed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Private-pc segments look similar to a much smaller TinyRAM circuit with the difference that their start and end states come from the state routing network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' The circuits for these segments are significantly larger, but can ex- ecute any part of the program at any point during execution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='2 Sparsity With the naive CPU unrolling described in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='3, ev- ery transition function must contain a memory port, which causes the memory consistency network to grow at a rate of O(T logT), where T is the number of steps executed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Unfor- tunately, most of those gates are wasted by execution steps that do not access memory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' CHEESECLOTH mitigates this ex- cess by removing some of the unused memory ports, thereby reducing the size of the memory consistency circuit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' The key observation for this optimization is that memory operations are rarely contiguous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Even when a program per- forms a memory-intensive operation, other instructions are often interleaved between memory instructions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' For exam- ple, when adding the values in a buffer, it takes some steps to increment the pointer and add the values between memory reads.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' This enables us to share one memory port among s contiguous steps, shrinking the memory consistency network 7 by a factor of s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' We define the memory sparsity, s, as the number of steps that share a single memory port.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' CHEESECLOTH chooses s based on a static analysis of the code.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' The analysis deter- mines the minimum distance between two memory opera- tions in any possible execution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Across statically-unknown jumps (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' calling a function from a pointer dereference), the analysis naively considers all the instructions the control flow can possibly jump to.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' This memory sparsity number s is then used by the MicroRAM Compiler and Witness Checker Generator to generate the optimized circuit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Given a memory sparsity s, the Witness Checker Generator will group s consecutive steps and create a single memory port for all of these steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' A multiplexer connects the single memory port to the entire group and sends the result, using nondeterministic advice, to the right step (if any).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' If s is larger than the actual sparsity displayed by a trace, then (if unlucky) multiple memory accesses can fall into the same group of steps, which has a single memory port.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' CHEESECLOTH handles this situation by inserting stutter instructions that delay memory operations until they are pushed into the next group with separate memory ports.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' In- serting stutter instructions can be expensive, but reducing the size of the memory consistency circuit is more beneficial (Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' In future work, we will explore swapping program instructions to reduce stutter instructions and determine the optimal s parameter for most programs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 5 Encoding Vulnerabilities This section describes how CHEESECLOTH encodes two prevalent and critical classes of software vulnerabilities: memory unsafety (Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='1) and data leakage (Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='1 Memory unsafety We now describe how CHEESECLOTH efficiently models memory and represents memory vulnerabilties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' In CHEESE- CLOTH, memory is an array of 264 bytes with half reserved for the heap and the rest for global variables and the stack.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Our approach is to keep track of valid memory (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' allo- cated arrays) and report a vulnerability (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=', set bug_flag) when the program accesses non-valid memory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' At the start of the execution, the only valid memory is where the global variables are stored and, during execution,malloc makes allo- cated regions valid and free makes them invalid again.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' With this technique we can catch the following memory errors: Uninitialized access.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' All uninitialized memory is invalid, so any use triggers a bug.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Use-after-free.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' When a region is freed it becomes invalid, so any use triggers a bug.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Free-after-free.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' The implementation of free starts by read- ing a word from the region to be freed, if the region is not 1 void* malloc(size_t size) { 2 // Get pointer from advice 3 char* addr = __cc_malloc(size);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 4 /* Compute and validate the size of 5 the allocation provided by the 6 prover.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' */ 7 size_t region_size = 8 1ull << ((addr >> 58) & 63);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 9 /* The allocated region must have 10 space for `size` bytes, plus 11 an additional word for metadata.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 12 / 13 __cc_valid_if( 14 region_size >= size + sizeof(uintptr_t), 15 "allocated region size is too small");' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 16 /* `region_size` is always a power of 17 two and is at least the word size, 18 so the address must be a multiple 19 of the word size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' */ 20 __cc_valid_if(addr % region_size == 0, 21 "allocated address is misaligned for" 22 "its region size");' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 23 /* Write 1 (allocated) to the metadata 24 field, and poison it to prevent 25 tampering, invalidating the trace 26 if the metadata word is already 27 poisoned (this happens if the 28 prover tries to return the same 29 region for two separate 30 allocations).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' */ 31 uintptr_t* metadata = (uintptr_t*) 32 (addr + region_size - sizeof(uintptr_t));' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 33 __cc_write_and_poison(metadata, 1);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 34 35 // further computation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 36 return (void*)addr;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' } Figure 2: Implementation of non-deterministic malloc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' valid it triggers a bug.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Out-of-bound access.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' If the program accesses an address out of bounds, that new location might (see below) not be valid and this triggers a bug.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' It is clear that a normal execution with such bound check- ing might miss out-of-bound access bugs, when the ac- cess happens to fall on another valid region, and free-after- free/use-after-free bugs, if an intermediate malloc makes the region valid before the bug is triggered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' However, we only need to show that the bug exists in one execution, so we im- plement a malloc guided by nondeterministicadvice;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' this lets the prover choose the allocation layout to ensure the bug is triggered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' While the techniques described here are specific to heap memory bugs, the same ideas can be applied to the stack.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='1 Encoding dynamic memory allocation An implementation of malloc with nondeterminism poses its own challenges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' If left unchecked, the prover could man- ufacture an execution that triggers a false bug.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' For example the prover could malloc overlapping regions such that if one 8 is freed and the other one is accessed a false bug is triggered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Thus, our implementation of malloc and free (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 2) focuses on verifying that the nondeterminisitc choices are legal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' If foul play is detected, the execution is flagged as invalid with inv_flag and will not be accepted by the verifier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' To ensure that malloc never returns overlapping regions, we predetermine aligned non-overlapping regions of differ- ent sizes for malloc to choose from.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Concretely, we divide memory into 26 pools of size 258, then subdivide pool i into regions of size 2i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' malloc rounds up the requested size to the next power of two, then returns the start of an unallocated region of that size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' For example, malloc(15) must return a region in the 4th pool and be 16-byte aligned.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' In fact, we can easily verify that malloc has allocated a correct region just by looking at the pointer returned: the first 6 bits determine the pool and the rest the alignment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Finally, malloc must not return the same pointer twice without it being freed in between.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' To do so, we add to each region one word reserved for metadata that is marked and made invalid when the region is allocated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' If the region was allocated again, the invalid metadata would be made invalid again which makes the trace invalid by setting inv_flag.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Furthermore, an implementation of malloc/free that tracks the validity of all memory locations would be quite inef- ficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Luckily, the prover knows exactly where the bug will happen and thus the malloc/free implementation only needs to track the status of that location.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' At the beginning of the execution, the prover commits to a secret location stored in the global variable __cc_memory_error_address and then malloc/free only track the validity of that location.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' In particular, if an allocated/freed region does not contain __cc_memory_error_address then malloc/free do not check for errors, and run in constant time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='2 Data leakage A straightforward approach to proving leakage would be to directly encode the definition of noninterference in the ZK circuit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' This could be accomplished by verifying two pro- gram executions where only sensitive inputs are distinct but public outputs are distinct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' However, suchan approach would result in a statement of twice the size required for validating a single execution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Instead, we might hope to prove a leak using a single execution in which storage is annotated with labels (Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' However, such systems tranditionally have only been designed to prove that a program may leak infor- mation, which is unacceptable for definitively proving a leak without providing a violating execution directly (Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Specifying leakage To identify sensitive sources and sinks, the instructions source and sink are added to the Mi- croRAM instruction set, and are directly wrapped by user- level functions taintSource and taintSink, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' source annotates that a given byte of data carries sensitive data;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' sink annotates that a given byte is output to a channel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Instantiating the general definitions of information flow and leakage (Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='2) for this extended ISA, a MicroRAM pro- gram leaks if it has two executions whose inputs only differ at addresses given to source, but result in different values at an address given in calls to sink.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Leakage is established by the prover and verifier collaborating to extend the subject program to call the taintSource and taintSink to anno- tate sensitive sources and sinks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Proving leakage To soundly and precisely prove leakage, we propose a novel labeling system that tracks what program storage may and must hold secret.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' There are four labels, de- noted and partially ordered as ⊥ ⊑ ℓ0,ℓ1 ⊑ ⊤ with a least-upper bound (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=', join) operation denoted ⊔.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' La- bels ℓ0 and ℓ1 annotates data that must belong to one of two principals;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' ⊤ denotes that the data’s sensitivity is unknown;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' ⊥ denotes data that must not be influenced by a principal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' With this labeling scheme, leakage of ℓ-labeled data written to a ℓc-labeled sink must occur when ℓ ̸= ⊤ ∧ℓ ̸⊑ ℓc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' MicroRAM state is extended so that every register and byte of memory is associated with a label, similar to previ- ous leakage monitors [20, 42, 49, 50].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Two additional labels model effects of instructions other than register arithmetic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' The control context label γ is maintained to be ⊥ if the pro- gram execution has not branched on secret data, and ⊤ other- wise;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' similarly, the storage context label σ is maintained to be ⊥ if the program has not stored to a secret address, and ⊤ otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Each assignment x:=e sets the label of x to L(e) ⊔ γ ⊔ σ (where L(e) is the label of e, defined below);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' thus, if the pro- gram has branched on secret data or written to a secret ad- dress, the label of x is set to ⊤.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' If e is an arithmetic/logical operation f(y), then L(e) is ⊥ when L(y) is ⊥ and ⊤ other- wise;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' L(e) = L(y) if f is a bijection: our current implemen- tation conservatively only labels single-register expressions (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=', copy sources) as L(y).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' If e is a load *p, then L(e) is L(*p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Conditional branches update γ and memory stores up- date σ according to the labels’ descriptions;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' we omit formal descriptions here, due to space constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Plenty of natural programs leak but cannot be proved to do so by this labeling system, potentially because a leakage happens after branching or storing to a ⊤-labeled value, or because a secret value is propagated over an operation not recognized as a bijection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Such cases restrict the situations in which the labeling scheme can be applied to prove leakage, but do not threaten its validity when it claims that a given program leaks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' They might be addressed in future work that refines instruction interpretations using valid logical axioms (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=', the fact that for each value x, x + 0 = x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Such threats and mitigations are dual to threats to precision, and possi- ble refinements when proving that a program execution may leak.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 9 6 Evaluation We evaluate CHEESECLOTH with three case studies that demonstrate ZK proofs of real world software vulnerabilities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' The vulnerabilities scale by code size and execution trace length to showcase the capabilities of CHEESECLOTH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' We also benchmark the optimizations (Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 4) to evaluate their effectiveness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Tab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 1 presents the results of using CHEESECLOTH to pro- duce ZK proofs for our case studies which include GRIT, FFMPEG, and OpenSSL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' For each case study, we report the size of the program in terms of the number of Micro- RAM instructions, the number of execution steps required to demonstrate the vulnerability, and the number of multipli- cation gates in the resulting ZK circuit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' We prove satisfia- bility of the ZK circuit using the Mac’n’Cheese [9] interac- tive ZK protocol, as implemented by the Swanky [23] library.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' We record the protocol running time and communication cost between the prover and verifier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' All measurements were per- formed on a 128 core Intel Xeon E7-8867 CPU with 2 TB of RAM running Debian 11, although our implementation typi- cally uses considerably less memory (Tab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='1 Memory unsafety in GRIT The GBA Raster Image Transmogrifier (GRIT) [34] converts bitmap image files to a graphics format that is readable by the Game Boy Advance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' A bitmap image includes headers, a palette array indicating the colors in the image, and the pixels for the image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' For 24bpp images, GRIT’s parser assumes the palette size is zero and allocates a buffer without space for the palette.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' When populating the buffer, it checks the image header for the numberof palette entries without checking that this matches the assumed palette size that was used during allocation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' As a result, a malformed 24bpp image can write an arbitrary amount of data (up to the length of the file) past the allocated buffer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' To demonstrate this memory error, we construct a 24bpp exploit image with 0x3000 bytes of pixel data and 12 bytes of palette data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' On Linux, the 12 byte overflow overwrites heap metadata and triggers an assertion failure in the memory allo- cator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' When run through CHEESECLOTH, we generate a ZK proof that a memory error is triggered within six thousand steps of GRIT’s execution without revealing the triggering image or where the error occurred in the code.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='2 Memory unsafety in FFmpeg FFmpeg is a tool for recording, converting, and streaming au- dio and video [2], and is used in popular software projects such as Chrome, Firefox, iTunes, VLC, and YouTube.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' FFm- peg is written in C and has been plagued by vulnerabilities that compromise memory safety, enabling attackers to exe- cute code and share local files over the network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Versions of FFmpeg prior to v1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='2 contained a vulnerability [1] caused by the memory error in the function gif_copy_img_rect, which copies the frame of a GIF file between buffers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Previ- ous versions of gif_copy_img_rect insecurely calculated a pointer to the end of a memory buffer by directly using the input image’s height.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' This calculation allowed an attacker to provide a carefully crafted GIF which causes FFmpeg to write to memory outside of an array’s bounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' To prove memory unsafety of FFmpeg in ZK, we manually crafted a GIF image that exploits the described memory vul- nerability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' We passed this image and a program module that invokes FFmpeg’s video decoder to CHEESECLOTH, which generated a proof of a out-of-bound access.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' The only facts re- vealed about the exploitative GIF are what are implied by the fact that it trigger an out-of-bound access within 76K steps of execution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Preprocessing FFmpeg on public inputs There was po- tential to aggressively optimize FFmpeg’s proof state- ment, which was ultimately achieved by applying CHEESE- CLOTH’s constant folding transformation pass after manual program partitioning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' The need for partitioning arose due to the interleaving of public and secret computation in the GIF modules, which executes by: (1) demultiplexing a given se- cret GIF file into a sequence of data packets;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' (2) initializing the state of the decoder, using public configuration settings;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' (3) executing the codec that contains the vulnerability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Although phase (2) computes entirely over public data, it would not be optimized by CHEESECLOTH’s constant fold- ing pass because the pass halts upon detecting computation that uses secret data, and thus would not optimize any pro- gram segment after phase (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' To address this issue, we man- ually partitioned the program by phase, applied CHEESE- CLOTH’s constant folding pass to each, and linked the result- ing optimized MicroRAM code.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' In general, our case study of FFmpeg motivates the further study and design of more aggressive constant folding passes, which might apply more sophisticated static program analyses (Secs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='3 and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='3 Leakage in OpenSSL OpenSSL [3] is a widely deployed open-source crypto- graphic library that contains implementations of the SSL and TLS protocols.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' OpenSSL versions 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='1 to 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='1f contained a devastating vulnerability dubbed Heartbleed, discovered in 2014 [5], that could be exploited by a remote attacker to completely leak information stored over the protocol’s exe- cution, including other clients’ sensitive information and pri- vate keys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Comprehensive descriptions of SSL and OpenSSL are be- yond the scope of this paper;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' for the purposes of our work, it suffices to note that SSL parties support multiple requests, including both requests to store data from the another party and requests to reply to a heartbeat signal: a signal sent only 10 Program Code size (K instrs) Execution steps (K) Mult gates (M) Protocol time Protocol memory GRIT 3 5 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='7 3m 40s 845 MB FFmpeg 24 79 672.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='7 1h 22m 19 GB OpenSSL 340 1,300 17,049.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='5 36h 45m 460 GB Table 1: Results for generating and running a ZK proof of software vulnerability for each case study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 1 void process_heartbeat(SSLRequest *req) { 2 unsigned int len = parse_heartbeat_len(req);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 3 unsigned char *heartbeat = get_heartbeat(req);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 4 unsigned char *response = malloc(len);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 5 memcpy(response, heartbeat, len);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 6 write(response, len);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' } Figure 3: Pseudocode depicting the Heartbleed vulnerability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' to obtain a response to ensure that the other party is still re- sponsive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' The heartbeat request and response is critical to the oper- ation of the Heartbleed vulnerability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' A well-formed request consists of a data buffer d and a length field n < |d|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' A cor- rect response to such a request returns the first n bytes con- tained in d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' However, a party could potentially transmit an ill-formed request, in which n > |d|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' The correct response to such an ill-formed request is to reject it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' The implementation of OpenSSL (illustrated by the pseu- docode function process_heartbeat in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 3) crucially failed to implement this aspect of the protocol and instead returned the n bytes of memory contiguous with the input buffer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' process_heartbeat takes a heartbeat request from a client and echos the provided heartbeat string back.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' It does so by first parsing the length of the heartbeat string from the client’s request.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' The function then gets a pointer to the heartbeat string in the request.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Next, it allocates a response buffer and copies len bytes from the heartbeat string into the response buffer, which is subsequently sent back to the client.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Since process_heartbeat does not check the pro- vided heartbeat length against the actual length of the heart- beat string, if the claimed length is larger than the actual length of the provided heartbeat string, memory beyond the client’s request is sent back to the client.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' This is practically exploitable, and has been demonstrated to reveal sensitive in- memory data such as cryptographic keys and passwords.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Using CHEESECLOTH, we proved in ZK that OpenSSL version 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='1f leaks arbitrary user information in 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='3M steps of execution, propagating data purely over register copies, loads, and stores;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' while the statement reveals a bound on the amount of computation required to perform the leak and in- formation about the types of instructions used to perform the leak (described below), it gives no direct indication of what validation is missing in the function for processing heartbeat requests, or that heartbeat requests are involved in the leak at all.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' We describe the statement proved, along with technical challenges and solutions, in more detail below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 1 int login_handler( 2 SSLConn *c, char *password, int len) { 3 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 4 label l = getLabel(c);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 5 for (size_t i = 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' i < len;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' i++) 6 taintSource(password + i, l);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 7 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' } 8 int ssl3_write( 9 SSLConn *c, char *buf, int len) { 10 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 11 label l = getLabel(c);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 12 for (size_t i = 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' i < len;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' i++) 13 taintSink(buf + i, l);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 14 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' } Figure 4: Versions of the OpenSSL functions login_handler and ssl3_write that we augmented with operations that specify information sources and sinks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Passwords are tainted with the label of the current connec- tion, and leaks are detected if data written to the network has a label from a different connection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Specifying OpenSSL’s leakage A primary challenge of our work was to provide a scheme for identifying sensitive sources and sinks such that: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' A verifier with only an understanding of the data that a subject program handles should be able to inspect the modified program and definitively conclude that it cor- rectly defines information sources and sinks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Any modifications to the program to enable the defini- tion of sources and sinks between which information is leaked must not reveal additional information about the leak’s triggering input.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Our mechanism for defining sensitivity of sources and sinks consists of the designated functions taintSource and taintSink (Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' We found that such a library served well for specifying information flow in in OpenSSL;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' psue- docode of C functions modified in the OpenSSL codebase to label sources and sinks are given in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' The function login_handler, given an SSL connection c and a buffer password presumed to contain len bytes of sensitive infor- mation to be transmitted over c, labels len addresses be- ginning with password with the label of c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' The function ssl3_write, given an SSL connection c and buffer buf pre- sumed to output len bytes, denotes sinks at the output chan- nel with the label of c for len addresses beginning with buf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' The modifications to login_handler and ssl3_write 11 Program Mult gates without public-pc segments (M) Mult gates without sparsity (M) GRIT 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='3 (37%) 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='9 (4%) FFmpeg 716.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='9 (6%) 709.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='9 (5%) Table 2: The number of multiplication gates in the circuit with the different optimizations disabled, as well as the per- centage increase in size over the baseline numbers from Tab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' illustrate the utility of first-order labels that can be opera- tionally collected and set, as opposed to operations that set addresses as only high sources or low sinks, even in a setting in which the information belonging to only one principal is of interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' By using first-order labels, we we able to write small specification functions that only unified the labels between a network connection and a given buffer, and then succinctly modified the original program logic in contexts that readily provided a connection and related buffer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Proving OpenSSL’s leakage Once OpenSSL has been suit- ably modified to call the taintSource and taintSink func- tions, its leakage can be proved by generating a statement whose solution corresponds to an execution of a server run- ning OpenSSL that leaks sensitive data from one connec- tion to another connection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' We have generated such a state- ment where the server first responds to a public login request where the password is marked as sensitive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' The server then handles a secret malicious heartbeat request that returns the password from the previous request’s connection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Using CHEESECLOTH we prove OpenSSL’s leakage by validating the previously described execution which is de- rived from one of its originally disclosed exploits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' The leak- age is detected through the source and sink annotations ac- cording to our proposed must-leak labeling scheme (Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='2) and the verifier only learns an upper bound on the length of the malicious request.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' We found that the labeling scheme en- abled leakage to be proved much more efficiently, reducing the overall circuit size by 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='6% over the two trace approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' CHEESECLOTH proved the vulnerability of OpenSSL in ap- proximately 37 hours, using 460 GB of protocol communica- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='4 Optimizations Tab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 2 contains the improvements yielded by our key opti- mizations (Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' We ran the GRIT and FFmpeg case stud- ies with each optimization disabled and report on the num- ber of multiplication gates in the resulting ZK circuit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' In addition, we provide the percentage improvement over the baseline numbers from Tab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' The public-pc optimization reduced gate size by 37% in the shorter GRIT execution and 6% for FFmpeg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' While this is an improvement, these results indicate there is still room for improvement in our analysis that determines the number of public segments to generate for longer executions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' The sparsity optimization with s = 2 offers modest improvements of 4%–5% in gate size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 7 Related Work Recent work has provided the first, exciting steps toward proofs of vulnerability in ZK.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' BubbleRAM [29] is an ef- ficient framework for proving vulnerability, leverage novel protocols for converting between computations in arithmetic and Boolean fields, efficiently handling both read-only and read-write memory, and the Stack protocol [30] for prov- ing satisfaction of circuits with explicit disjunctions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Al- though our current statement compiler partially overlaps with BubbleRAM because it implements an older scheme for mod- eling RAM computations [10], most of our paper’s key con- tributions, namely simplifying unrolled computations using partial evaluation and the novel scheme for generating state- ments of application leakage, are largely independent of the contributions of [29,30], and we believe that the approaches could be composed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' In particular, Stack was evaluated on code snippets representative of a practical CVE of up to 50 LoC;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' due to its efficient support of disjunctions, it could scale to prove that one of many more such snippets is vulnera- ble, but it likely strongly benefit from CHEESECLOTH’s pro- gram optimizations if any particular code segment increased in size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Reverie [27] is a framework for proving exploits in mi- croprocessor code, consisting of a circuit generator that com- piles a given program to an arithmetic circuit and an instan- tiation [36] of the “MPC in the Head” protocol [33].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' The compiler generates statements from exploits that have been formalized as executing a designated instruction that signals an error condition (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=', violations of reachability properties, formalized directly in the program’s control flow);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' the eval- uation of Reverie demonstrates that it can be used to prove Capture the Flag (CTF) exploits that require up to 51K cy- cles on an MSP430 microprocessor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' The core contributions of Reverie are largely complementary to those of CHEESE- CLOTH, which could potentially be adapted to efficiently compile vulnerability statements about programs in interme- diate languages to control reachability properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Recent work on static program analysis in ZK [21] has presented techniques for proving over-approximations of all program executions without revealing further details of the program, and instantiates the framework on an abstract do- main for information flow based on taint tracking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' The static analysis itself is designed to prove that a program may leak information: thus, it cannot yield results that directly imply that a program must leak, although in many cases it could provide evidence that could strongly inform an analysts be- lieft that a program may in fact leak.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Our MicroRAM machine is inspired by TinyRAM [10] but departs from their design in sevaral important ways discussed 12 in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' There are also some key differences in scope and capabilities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' TinyRAM is designed to express correctness of any nondeterministic computations while MicroRAM fo- cuses on vulnerable programs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' For example, SNARKs for C [10] approach cannot encode proofs of memory-safety vul- nerability in ZK directly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Instead, they encode knowledge of the existence of a complete, concrete vulnerability trace, which includes copies of exact values in all local variables and the values in memory at each point in the trace and the bug must be evident in the execution’s return value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Our ap- proach encodes memory vulnerabilities directly, resulting in a significantly more succinct witnesses to vulnerability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' In particular we can disregard the trace after the bug is found and we don’t rely on the programs return value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Furthermore, TinyRAM approach does not scale to proofs of vulnerabilities in practical programs and has only been evaluated on programs with less than 1,200 low-level instruc- tions [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' In contrast, the optimizations proposed in this work enables us to support programs with more than 340,000 lines of low-level code (Tab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Beyond scalability, Micro- RAM supports a much broader subset of the C language, in- cluding most of the standard C library.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Pantry and Buffet [17, 52] represent computation as arith- metic constraints;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' a solution to the constraints is a valid trace of the computation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' After implementing the memory consis- tency approach of TinyRAM, they report results orders of magnitude better than TinyRAM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Buffet supports all features in the C language, with the exceptions of goto statements and function pointers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' To translate computation into a con- straint system, Pantry and Buffet must unroll loops to pub- licly revealed bound (although the original work does not explicitly discuss encoding recursive functions, we hypoth- esize that they would be encoded similarly, using bounded function inlining).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' The constraint system must include every branch of conditionals and every iteration of every loop (mul- tiplicatively with nested loops) which could lead to blowups in the constraint system, howeverthe authors suggest that this would only happen in degenerated cases and would not be common in practice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' A variant Pantry/Buffet that uses zero- knowledge techniques to keep the state private with the same efficiency benefits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' When presenting our approach, we com- pare facts about private inputs that it reveals to those revealed from public loop bounds (Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' vRAM [53] has achieved further efficiency with a inge- nious universal preprocessing that allows the parties to use a smaller circuit tailored to verifying the specific program on the chosen inputs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Unfortunately, such tailored circuits can reveal significant information about the input provided.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Our public-pc optimization (Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='1) attempts to balance the gains of a tailored circuit and the privacy requirements of the prover.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 8 Conclusion Due to a sustainted successes in the development of ZK protocols, recent techniques have reached the cusp of prov- ing knowledge of realistic vulnerabilities and proving sub- tle exploits in low-level code.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' This paper describes how a host of core techniques from compiler design—namely, conservative instruction profiling and under-approximating information-flow tainting—can be implemented in an opti- mizing proof-statement generator to produce proofs of vul- nerability in commodity software that can be triggered only be using a considerable amount of time and space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Our practical experience has produced a zero-knowledge proof of memory unsafety in FFmpeg and a proof of leakakge in OpenSSL that directly used the Heartbleed exploit as a wit- ness and demonstrates that zero knowledge proofs of vulner- ability in critical application software are now practical.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Availability and Ethical Considerations We are in process of open sourcing the implementation of CHEESECLOTH for publication and artifact evaluation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' CHEESECLOTH aids in responsible disclosure by produc- ing zero-knowledge proofs of the existence of vulnerabili- ties while keeping the vulnerabilities and exploits secret.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' All vulnerabilities used in our evaluation have been previously disclosed publicly, and fixes are widely deployed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Thus, the work presented in this paper does not constitute an unethical disclosure of potentially harmful information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Acknowledgments This material is based upon work supported by the Defense Advanced Research Projects Agency (DARPA) under Con- tract No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' HR001120C0085.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Any opinions, findings and con- clusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Defense Advanced Research Projects Agency (DARPA).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Approved for Public Release, Distribution Unlim- ited.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' References [1] CVE-2013-0864.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' https://cve.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='mitre.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='org/ cgi-bin/cvename.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='cgi?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='name=CVE-2013-0864.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Accessed: 2022-10-10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' [2] FFmpeg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' https://ffmpeg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='org/.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Accessed: 2022-09- 01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' [3] OpenSSL: Cryptography and SSL/TLS toolkit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' https://openssl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='org/.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Accessed: 2022-09-05.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 13 [4] Picolibc: C libraries for smaller embedded systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' https://keithp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='com/picolibc/.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Accessed: 2022- 10-10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' [5] The Heartbleed Bug.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' https://heartbleed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='com/.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Accessed: 2022-09-05.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' [6] zkInterface: SIEVE intermediate representation (IR) proposal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' https://hackmd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='io/@danib31/ BkP9HBp2L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Accessed: 2022-10-10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' [7] Alfred V Aho, Monica S Lam, Ravi Sethi, and Jeffrey D Ullman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Compilers: principles, techniques, & tools.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Pearson Education India, 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' [8] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthura- makrishnan Venkitasubramaniam.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Ligero: Lightweight sublinear arguments without a trusted setup.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' In Bha- vani M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages 2087– 2104, Dallas, TX, USA, October 31 – November 2, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' ACM Press.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' [9] Carsten Baum, Alex J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Malozemoff, Marc B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Rosen, and Peter Scholl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Mac’n’cheese: Zero-knowledge proofs for boolean and arithmetic circuits with nested disjunctions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' In Malkin and Peikert [37], pages 92–122.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' [10] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' SNARKs for C: Veri- fying program executions succinctly and in zero knowl- edge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' In Ran Canetti and Juan A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages 90–108, Santa Barbara, CA, USA, August 18–22, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Springer, Heidelberg, Germany.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' [11] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' TinyRAM architec- ture specification, v0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='991.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='scipr-lab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' org/doc/TinyRAM-spec-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='991.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='pdf, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' [12] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Succinct non-interactive zero knowl- edge for a von Neumann architecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' In 23rd USENIX Security Symposium (USENIX Security 14), pages 781– 796, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' [13] Nick Benton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Simple relational correctness proofs for static analyses and program transformations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' ACM SIG- PLAN Notices, 39(1):14–25, 2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' [14] Alexander R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Block, Justin Holmgren, Alon Rosen, Ron D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Rothblum, and Pratik Soni.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Public-coin zero- knowledge arguments with (almost) minimal time and space overheads.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' In Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020, Part II, volume 12551 of LNCS, pages 168–197, Durham, NC, USA, November 16–19, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Springer, Heidelberg, Germany.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' [15] Alexander R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Block, Justin Holmgren, Alon Rosen, Ron D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Rothblum, and Pratik Soni.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Time- and space- efficient arguments from groups of unknown order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' In Malkin and Peikert [37], pages 123–152.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' [16] Jonathan Bootle, Andrea Cerulli, Jens Groth, Sune K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Jakobsen, and Mary Maller.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Arya: Nearly linear- time zero-knowledge proofs for correct program exe- cution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' In Thomas Peyrin and Steven Galbraith, edi- tors, ASIACRYPT 2018, Part I, volume 11272 of LNCS, pages 595–626, Brisbane, Queensland, Australia, De- cember 2–6, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Springer, Heidelberg, Germany.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' [17] Benjamin Braun, Ariel J Feldman, Zuocheng Ren, Sri- nath Setty, Andrew J Blumberg, and Michael Walfish.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Verifying computations with state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' In Proceedings of the Twenty-Fourth ACM Symposium on Operating Sys- tems Principles, pages 341–357, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' [18] Michael R Clarkson and Fred B Schneider.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Hyperprop- erties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Journal of Computer Security, 18(6):1157–1210, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' [19] Dorothy E Denning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' A lattice model of secure informa- tion flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Communications of the ACM, 19(5):236–243, 1976.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' [20] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon Chun, Landon P Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N Sheth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Taint- droid: an information-flow tracking system for realtime privacy monitoring on smartphones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' ACM Transactions on Computer Systems (TOCS), 32(2):1–29, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' [21] Zhiyong Fang, David Darais, Joseph P Near, and Yu- peng Zhang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Zero knowledge static program analy- sis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' In Proceedings of the 2021 ACM SIGSAC Con- ference on Computer and Communications Security, pages 2951–2967, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' [22] Nicholas Franzese, Jonathan Katz, Steve Lu, Rafail Os- trovsky, Xiao Wang, and Chenkai Weng.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Constant- overhead zero-knowledge for RAM programs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' In Giovanni Vigna and Elaine Shi, editors, ACM CCS 2021, pages 178–191,Virtual Event, Republic of Korea, November 15–19, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' ACM Press.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' [23] Galois, Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' swanky: A suite of rust libraries for secure computation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='com/GaloisInc/ swanky, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' [24] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mar- iana Raykova.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Quadratic span programs and suc- cinct NIZKs without PCPs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' In Thomas Johansson and Phong Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Nguyen,editors, EUROCRYPT 2013,vol- ume 7881 of LNCS, pages 626–645, Athens, Greece, May 26–30, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Springer, Heidelberg, Germany.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 14 [25] Joseph A Goguen and José Meseguer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Security poli- cies and security models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' In 1982 IEEE Symposium on Security and Privacy, pages 11–11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' IEEE, 1982.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' [26] Oded Goldreich, Silvio Micali, and Avi Wigderson.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Proofs that yield nothing but their validity or all lan- guages in np have zero-knowledge proof systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Jour- nal of the ACM (JACM), 38(3):690–728, 1991.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' [27] Matthew Green, Mathias Hall-Andersen, Eric Hen- nenfent, Gabriel Kaptchuk, Benjamin Perez, and Gijs Van Laer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Efficient proofs of software exploitability for real-world processors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Cryptology ePrint Archive, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' [28] Jens Groth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' On the size of pairing-based non- interactive arguments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' In Marc Fischlin and Jean- Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 305–326,Vienna, Austria, May 8–12, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Springer, Heidelberg, Germany.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' [29] David Heath and Vladimir Kolesnikov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' A 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='1 khz zero-knowledge processor with bubbleram.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' In Proceed- ings of the 2020 ACM SIGSAC Conference on Com- puter and Communications Security, pages 2055–2074, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' [30] David Heath and Vladimir Kolesnikov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Stacked gar- bling for disjunctive zero-knowledge proofs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' In An- nual International Conference on the Theory and Appli- cations of Cryptographic Techniques, pages 569–598.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Springer, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' [31] David Heath, Yibin Yang, David Devecsery, and Vladimir Kolesnikov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Zero knowledge for everything and everyone: Fast ZK processor with cached ORAM for ANSI C programs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' In 2021 IEEE Symposium on Security and Privacy, pages 1538–1556, San Francisco, CA, USA, May 24–27, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' IEEE Computer Society Press.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' [32] Zhangxiang Hu, Payman Mohassel, and Mike Ro- sulek.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Efficient zero-knowledge proofs of non- algebraic statements with sublinear amortized cost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' In Rosario Gennaro and Matthew J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Robshaw, edi- tors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages 150–169, Santa Barbara, CA, USA, August 16– 20, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Springer, Heidelberg, Germany.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' [33] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Zero-knowledge from secure multiparty computation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' In Proceedings of the thirty-ninth annual ACM symposium on Theory of computing, pages 21–30, 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' [34] Jasper Vijn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' GRIT: Gba raster image transmogrifier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content='com/devkitPro/grit, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' [35] Neil D Jones, Carsten K Gomard, and Peter Sestoft.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Partial evaluation and automatic program generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Peter Sestoft, 1993.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' [36] Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Improved non-interactive zero knowledge with applica- tions to post-quantum signatures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Com- munications Security, pages 525–537, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' [37] Tal Malkin and Chris Peikert, editors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' CRYPTO 2021, Part IV, volume 12828 of LNCS, Virtual Event, Au- gust 16–20, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Springer, Heidelberg, Germany.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' [38] Payman Mohassel, Mike Rosulek, and Alessandra Scafuro.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Sublinear zero-knowledge arguments for RAM programs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' In Jean-Sébastien Coron and Jes- per Buus Nielsen, editors, EUROCRYPT 2017, Part I, volume 10210 of LNCS, pages 501–531, Paris, France, April 30 – May 4, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Springer, Heidelberg, Ger- many.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' [39] Andrew C Myers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Jflow: Practical mostly-static in- formation flow control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' In Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages 228–241, 1999.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' [40] Andrew C Myers and Barbara Liskov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' A decentralized model for information flow control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' ACM SIGOPS Op- erating Systems Review, 31(5):129–142, 1997.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' [41] Nicholas Nethercote and Julian Seward.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Valgrind: A framework for heavyweight dynamic binary instrumen- tation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' In Proceedings of the 28th ACM SIGPLAN Conference on Programming Language Design and Im- plementation, PLDI ’07, page 89–100, New York, NY, USA, 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Association for Computing Machinery.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' [42] James Parker, Niki Vazou, and Michael Hicks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Lweb: Information flow security for multi-tier web applica- tions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' ACM Program.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Lang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=', 3(POPL), jan 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' [43] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Pinocchio: Nearly practical verifiable com- putation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' In 2013 IEEE Symposium on Security and Privacy, pages 238–252, Berkeley, CA, USA, May 19– 22, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' IEEE Computer Society Press.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' [44] John C Reynolds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Separation logic: A logic for shared mutable data structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' In Proceedings 17th Annual IEEE Symposium on Logic in Computer Science, pages 55–74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' IEEE, 2002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' [45] Andrei Sabelfeld and Andrew C Myers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Language- based information-flow security.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' IEEE Journal on se- lected areas in communications, 21(1):5–19, 2003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 15 [46] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Parametric shape analysis via 3-valued logic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' ACM Transactions on Programming Languages and Systems (TOPLAS), 24(3):217–298, 2002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' [47] Marc Shapiro and Susan Horwitz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Fast and accurate flow-insensitive points-to analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' In Proceedings of the 24th ACM SIGPLAN-SIGACT symposium on Prin- ciples of programming languages, pages 1–14, 1997.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' [48] Bjarne Steensgaard.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Points-to analysis in almost lin- ear time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' In Proceedings of the 23rd ACM SIGPLAN- SIGACT symposium on Principles of programming lan- guages, pages 32–41, 1996.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' [49] Deian Stefan, Alejandro Russo, John C Mitchell, and David Mazières.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Flexible dynamic information flow control in haskell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' In Proceedings of the 4th ACM Sym- posium on Haskell, pages 95–106, 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' [50] G Edward Suh, Jae W Lee, David Zhang, and Srinivas Devadas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Secure program execution via dynamic infor- mation flow tracking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' ACM Sigplan Notices, 39(11):85– 96, 2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' [51] Riad S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Wahby, Srinath T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Setty, Zuocheng Ren, An- drew J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Blumberg,and Michael Walfish.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Efficient RAM and control flow in verifiable outsourced computation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' In NDSS 2015, San Diego, CA, USA, February 8–11, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' The Internet Society.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' [52] Riad S Wahby, Srinath TV Setty, Zuocheng Ren, An- drew J Blumberg, and Michael Walfish.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' Efficient RAM and control flow in verifiable outsourced computation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' In NDSS, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' [53] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and Charalampos Papaman- thou.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' vRAM: Faster verifiable ram with program- independent preprocessing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' In 2018 IEEE Symposium on Security and Privacy (SP), pages 908–925.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' IEEE, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} +page_content=' 16' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TNAzT4oBgHgl3EQfXfzv/content/2301.01321v1.pdf'} diff --git a/TtE4T4oBgHgl3EQfLwyC/content/tmp_files/2301.04941v1.pdf.txt b/TtE4T4oBgHgl3EQfLwyC/content/tmp_files/2301.04941v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..1c9d2f8ca5cc356d0fec74a99e94d9a99cd79e9f --- /dev/null +++ b/TtE4T4oBgHgl3EQfLwyC/content/tmp_files/2301.04941v1.pdf.txt @@ -0,0 +1,491 @@ +arXiv:2301.04941v1 [math.RT] 12 Jan 2023 +RIGID INTEGRAL REPRESENTATIONS OF QUIVERS REVISITED +WILLIAM CRAWLEY-BOEVEY +Abstract. In earlier work, the author classified rigid representations of a quiver by +means of finitely generated free modules over a principal ideal ring. +We show that +the classification of exceptional pointwise free lattices can be extended to arbitrary +commutative rings and that the classification of rigid lattices can be extended to reduced +commutative rings. +1. Introduction +In [4] we studied rigid representations of a quiver over a principal ideal domain. Here +we generalize the results to more general commutative base rings. +Let R be a commutative ring (always non-zero). Given an R-module X and a homo- +morphism R → S we write XS for the induced S-module S ⊗R X. Recall that a finitely +generated projective R-module P has constant rank n if Pp is a free Rp-module of rank +n for each prime ideal p of R, or equivalently if dimK P K = n for all homomorphisms +R → K with K a field, which we may take to be algebraically closed. +Let Q = (Q0, Q1, h, t) be a finite quiver and let RQ be the path algebra of Q over R, +with a trivial path ei for each vertex i ∈ Q0. By an RQ-lattice we mean an RQ-module +which is finitely generated projective as an R-module. We say that an RQ-module X +is pointwise free if eiX is a free R-module for all i. We say that an RQ-lattice X has +rank vector α ∈ NQ0 if eiX has constant rank αi for each i, and that X has pointwise +constant rank if it has rank vector α for some α. If R → S is a homomorphism, then XS +is naturally an SQ-module. +We say that an RQ-module X is rigid if Ext1 +RQ(X, X) = 0, and exceptional if also the +natural map R → EndRQ(X) is an isomorphism. If K is an algebraically closed field, then +by definition the possible dimension vectors of exceptional KQ-modules are the real Schur +roots for Q. We call the possible dimension vectors of rigid KQ-modules rigid dimension +vectors. By results of [2] or [3] these do not depend on the field K. If X is a rigid +(respectively exceptional) RQ-lattice of rank vector α, then XK is a rigid (respectively +exceptional) KQ-module of dimension vector α for any homomorphism R → K with K +a field (see Lemmas 3.1,3.2), and so α must be a rigid dimension vector (respectively real +Schur root). +Theorem A. For any commutative ring R and real Schur root α for Q, there is a unique +rigid pointwise free RQ-lattice with rank vector α and it is exceptional. +The existence follows easily from [4], and the uniqueness follows from the next result. +As mentioned, the case when R is a principal ideal domain is in [4]. The case when R is +a truncated polynomial ring K[ǫ]/(ǫn) is a special case of [6, Theorem 1.2]. Recall that a +commutative ring R is reduced if it has no nilpotent elements. +2020 Mathematics Subject Classification. Primary 16G20; Secondary 16G30,16H20,13C10. +Key words and phrases. Quiver representations, Rigid representations, Lattices over orders. +Partially supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – +SFB-TRR 358/1 2023 – 491392403. +1 + +Theorem B. If R is reduced, then any rigid RQ-lattice X of pointwise constant rank +has a decomposition +X ∼= (X1 ⊗R P1) ⊕ · · · ⊕ (Xr ⊗R Pr) +where the Xi are pairwise non-isomorphic exceptional pointwise free RQ-lattices satisfying +Ext1 +RQ(Xi, Xj) = 0 for all i, j and the Pi are finitely generated projective R-modules of +constant rank. Moreover this decomposition is unique up to isomorphism and reordering. +In particular any exceptional RQ-lattice is of the form Y ⊗R P with Y an exceptional +pointwise free RQ-module and P a projective R-module of constant rank 1. +Note that in general one doesn’t have uniqueness for rigid pointwise free lattices of a +given rank vector. For example let Q be the quiver 1 → 2 and R a reduced ring with a +stably free projective module P which is not free, say P ⊕Rn ∼= Rm. Then (RQe2⊗RP)⊕ +(RQe1 ⊗R Rn) is pointwise free, but not isomorphic to (RQe2 ⊗R Rm−n) ⊕(RQe1 ⊗R Rn). +2. Commutative rings +Concerning our definitions and results, note that every finitely generated projective +R-module has constant rank if and only if Spec R is connected, or equivalently R has no +idempotents other than 0 and 1, see for example Exercise 20.12 in [5]. +Lemma 2.1. Let R be a commutative ring. +(i) If X is a finitely generated R-module, then X = 0 if and only if XK = 0 for all +homomorphisms R → K with K an algebraically closed field. +(ii) If θ : X → Y is a homomorphism of R-modules and Y is finitely generated, then +θ is onto if and only if θK is onto for all R → K with K an algebraically closed +field. +(iii) If R is reduced and X is a finitely generated R-module, then X is projective of +constant rank n if and only if dimK XK = n for all homomorphisms R → K with +K an algebraically closed field. +(iv) If R is reduced and θ : X → Y is a homomorphism with X, Y finitely generated +projective of constant rank, then θ is a split monomorphism if and only if θK is a +monomorphism for all R → K with K an algebraically closed field. +Proof. (i) Since X is finitely generated, if non-zero it has a map onto some R/m, and +taking K to be the algebraic closure of this field gives a surjective map XK → R/m⊗RK ∼= +K. +(ii) Clear. +(iii) See Exercise 20.13 in [5]. +(iv) If θK is a monomorphism for all R → K, then Coker θK has constant dimension, +so Coker θ is projective of constant rank. Then Im θ is a summand of Y , so projective. +But then 0 → Ker θ → X → Im θ → 0 splits, so is exact after inducing to K. Thus +Ker θK = 0. Also Ker θ is summand of X, so finitely generated. Thus Ker θ is zero. +□ +Lemma 2.2. Any commutative ring R can be written as a quotient R ∼= ˜R/I with ˜R an +integral domain and I is an ideal contained in the Jacobson radical of ˜R. +Proof. Let A = Z[xr : r ∈ R] be the polynomial ring over Z with indeterminates indexed +by the elements of R. There is a surjective homomorphism θ : A → R sending each xr +to r and the set +S = {a ∈ A : θ(a) is invertible} +is a multiplicative subset. We set ˜R to be the localization AS, an integral domain. The +homomorphism θ extends to a surjective homomorphism ˜θ : ˜R → R. +2 + +Let x ∈ Ker ˜θ. If y ∈ ˜R, then xy ∈ Ker ˜θ. Write xy = as−1 with a ∈ A and s ∈ S. +Then θ(a) = 0, so s + a ∈ S. Thus 1 + xy = (s + a)s−1 is invertible in ˜R. Since this is +true for all y, it follows that x is in the Jacobson radical of ˜R. +□ +3. Lattices +Let R be a commutative ring and Q a quiver. Lemma 1 of [4] generalizes immediately +to this setting. +Lemma 3.1. If X is an RQ-lattice, then proj. dim X ≤ 1 and +Ext1 +RQ(X, Y )S ∼= Ext1 +SQ(XS, Y S) +for any homomorphism R → S and any RQ-module Y . In particular if X is a rigid +RQ-lattice, then XS is a rigid SQ-lattrice for all homomorphisms R → S. Conversely, if +X is an RQ-lattice and XK rigid for all homomorphisms R → K with K an algebraically +closed field, then X is rigid. +Proof. Letting S be the R-subalgebra of RQ with basis the trivial paths ei and B be the +free R-submodule of RQ with basis the arrows, the path algebra RQ is isomorphic to the +tensor algebra of B over S, so there is a standard resolution +0 → RQ ⊗S B ⊗S RQ → RQ ⊗S RQ → RQ → 0, +or equivalently +0 → +� +a∈Q1 +RQeh(a) ⊗R et(a)RQ → +� +i∈Q0 +RQei ⊗R eiR → RQ → 0. +Tensoring with the RQ-module X gives +0 = TorRQ +1 (RQ, X) → +� +a∈Q1 +RQeh(a) ⊗R et(a)X → +� +i∈Q0 +RQei ⊗R eiX → X → 0. +and this is a resolution of X by finitely generated projective RQ-modules. We denote it +by 0 → P1 → P0 → X → 0. Since X is projective over R, the induced sequence +0 → P S +1 → P S +0 → XS → 0 +is exact, so a resolution of XS by projective SQ-modules. Now if P is a finitely generated +projective RQ-module, then +HomRQ(P, Y )S ∼= HomSQ(P S, Y S). +Thus we get a commutative diagram with exact rows +HomRQ(P0, Y )S −−−→ HomRQ(P1, Y )S −−−→ Ext1 +RQ(X, Y )S +−−−→ 0 +� +� +HomSQ(P S +0 , Y S) −−−→ HomSQ(P S +1 , Y S) −−−→ Ext1 +SQ(XS, Y S) −−−→ 0 +in which the vertical maps are isomorphisms, and hence an isomorphism +Ext1 +RQ(X, Y )S ∼= Ext1 +SQ(XS, Y S). +Now Ext1 +RQ(X, X) is a finitely generated R-module, so if Ext1 +RQ(X, X)K = 0 for all +homomorphisms from R to an algebraically closed field K then Ext1 +RQ(X, X) = 0, that +is, X is rigid. +□ +3 + +Over an algebraically closed field K, the isomorphism classes of representations X of +Q of dimension vector α correspond to orbits OX of a group GL(α) acting on an affine +space Rep(Q, α). Moreover X is rigid if and only if OX is open orbit. Since the affine +space it irreducible, it follows that there is at most one rigid module of dimension α, up +to isomorphism. +The general dimension of Hom(X, Y ) and Ext1(X, Y ) for X of dimension α and Y +of dimension β is denoted hom(α, β) and ext(α, β). In particular this is these are the +dimensions for X and Y rigid. Based on work of Schofield [11], it is proved in [3] that +hom(α, β) and ext(α, β) do not depend on the algebraically closed field K. +Lemma 3.2. If R is reduced, and if X, Y are rigid RQ-lattices of pointwise constant +rank α, β, then +HomRQ(X, Y )S ∼= HomSQ(XS, Y S) +for all homomorphisms R → S. Moreover Ext1 +RQ(X, Y ) and HomRQ(X, Y ) are finitely +generated projective R-modules of constant rank ext(α, β) and hom(α, β). +Proof. For any R → K with K an algebraically closed field, Ext1 +RQ(X, Y )K has constant +dimension ext(α, β), so Ext1 +RQ(X, Y ) is projective over R of this rank by Lemma 2.1(iii). +Now the projective resolution 0 → P1 → P0 → X → 0 of X gives an exact sequence +0 → HomRQ(X, Y ) → HomRQ(P0, Y ) → HomRQ(P1, Y ) → Ext1 +RQ(X, Y ) → 0. +The last three are projective R-modules of constant rank, so this sequence splits. Thus +the first module is also projective over R. Moreover the sequence remains exact under +induction using a homomorphism R → S. It follows that +HomRQ(X, Y )S ∼= HomSQ(XS, Y S). +Considering the case when S is a field, we see that HomRQ(X, Y ) has constant rank +hom(α, β). +□ +The following result is well known. +Lemma 3.3. The full subquiver of Q on the support of any rigid dimension vector α has +no oriented cycles. +Proof. If not, one can easily construct representations of Q of dimension α over an alge- +braically closed field K on which the trace of the oriented cycle is arbitrary, but the variety +of representations has a dense orbit, so the trace must be constant. (This argument is +already used in [4, Theorem 1] for real Schur roots.) +□ +4. Mutations +Lemma 4.1. If R is a commutative ring and α is real Schur root for Q, then there exists +an exceptional pointwise free RQ-lattice of dimension vector α. +Proof. By [4, Theorem 2], there is a (unique) exceptional ZQ-lattice X0 of rank vector +α. Now we obtain an RQ-lattice XR = X ⊗Z R, and it is exceptional by Lemmas 3.1 +and 3.2. +□ +The cited theorem [4, Theorem 2] depends on a braid group action for exceptional +sequences of lattices, defined using mutations of exceptional pairs. +The result about +mutations in turn depends on the construction of mutations of pairs of representations of +KQ where K is a field, for which [4] cites [10] and [2] cites [7]. We take this opportunity +to give a direct proof, based on the following generalization of the Happel-Ringel Lemma +[8, Lemma 4.1]. +4 + +Lemma 4.2. Let θ : X → Y be a homomorphism between finite-dimensional A-modules +for a hereditary algebra A and suppose that Ext1 +A(Y, X) = 0. If Y is indecomposable, then +either θ is an epimorphism or the map X → Im(θ) is a split epimorphism. +Proof. The map θ gives exact sequences +ξ : 0 → Im(θ) +α−→ Y → Coker(θ) → 0 +and +η : 0 → Ker(θ) → X +β−→ Im(θ) → 0. +From Ext1 +A(Coker(θ), η) we get an exact sequence +· · · → Ext1 +A(Coker(θ), X) +f−→ Ext1 +A(Coker(θ), Im(θ)) → Ext2 +A(Coker(θ), Ker(θ)) = 0 +so ξ = f(ζ) for some ζ. Thus there is a commutative diagram +ζ : 0 −−−→ +X +δ +−−−→ Z −−−→ Coker(θ) −−−→ 0 +β +� +γ +� +��� +ξ : 0 −−−→ Im(θ) +α +−−−→ Y −−−→ Coker(θ) −−−→ 0 +Now the sequence +0 → X + +δ +β + + +−−−→ Z ⊕ Im(θ) +� +γ +−α +� +−−−−−−→ Y → 0 +is exact, so splits since Ext1 +A(Y, X) = 0. Thus there are maps +�p +q� +: Z ⊕ Im(θ) → X +and +� +r +s +� +: Y → Z ⊕ Im(θ) +with +� +1Z +0 +0 +1Im(θ) +� += +� +δ +β +� �p +q� ++ +� +r +s +� �γ +−α� +. +Thus 1Im(θ) = βq − sα. Now if θ is not an epimorphism, then αs cannot be an auto- +morphism of Y . Since Y is indecomposable, αs is nilpotent. This implies that βq is +invertible, and hence that β is a split epimorphism. +□ +If X is also indecomposable, one recovers the Happel-Ringel Lemma: if θ is non- +zero and not an epimorphism, then X → Im(θ) must be an isomorphism, so θ is a +monomorphism. Dually we have: +Lemma 4.3. Let θ : X → Y be a homomorphism between finite-dimensional A-modules +for a hereditary algebra A and suppose that Ext1 +A(Y, X) = 0. If X is indecomposable, +then either θ is a monomorphism or the map Im(θ) → Y is a split monomorphism. +A sequence of exceptional RQ-lattices (X1, . . . , Xr) is called an exceptional sequence +provided that HomRQ(Xi, Xj) = Ext1 +RQ(Xi, Xj) = 0 for all i > j. The result about +mutations is as follows. +Theorem 4.4. Suppose R is reduced. If (X, Y ) is an exceptional pair of RQ-lattices, then +there are exceptional pairs (LXY, X) and (Y, RY X) given as follows. If HomRQ(X, Y ) = 0 +then LXY and RY X are given by the universal exact sequences +0 → Y → LXY → X ⊗R Ext1 +RQ(X, Y ) → 0, +0 → Y ⊗R D Ext1 +RQ(X, Y ) → RY X → X → 0. +where D = HomR(−, R). If HomRQ(X, Y ) ̸= 0, then the universal map +f : X ⊗R HomRQ(X, Y ) → Y +5 + +is an epimorphism or a monomorphism, and LXY is its kernel or cokernel, and the +universal map +g : X → HomR(HomRQ(X, Y ), Y ) ∼= Y ⊗R D HomRQ(X, Y ) +is an epimorphism or a monomorphism and RY X is its kernel or cokernel. +Proof. Since R is reduced and the lattices are rigid, the Hom and Ext spaces are projective +over R of constant rank, independent of R. Moreover using Lemma 2.1 we can, as in [4, +Lemma 4], reduce to the case when R = K is an algebraically closed field. +In this setting, the claim follows easily once one knows that if HomKQ(X, Y ) ̸= 0 then +Ext1 +KQ(X, Y ) = 0, and that f and g are either epimorphisms or monomorphisms. +Now if θ ∈ HomKQ(X, Y ) is a non-zero map, then by the Happel-Ringel Lemma θ is +either an epimorphism or a monomorphism. In the first case we have a exact sequence +· · · → Ext1 +KQ(X, X) → Ext1 +KQ(X, Y ) → Ext2 +KQ(X, Ker(θ)) = 0 +and in the second case we have +· · · → Ext1 +KQ(Y, Y ) → Ext1 +KQ(X, Y ) → Ext2 +KQ(Coker(θ), Y ) = 0. +Since Ext1 +KQ(X, X) = Ext1 +KQ(Y, Y ) = 0, in both cases we get Ext1 +KQ(X, Y ) = 0. +If the map f : X ⊗K HomKQ(X, Y ) → Y is not an epimorphism, then the induced +map f ′ : X ⊗K HomKQ(X, Y ) → Im(f) is a split epimorphism by Lemma 4.2. Since +EndKQ(X) = K, the map f can be identified with the universal map from a direct sum +of copies of X to Y given by a basis of HomKQ(X, Y ), from which it is easy to see +that f is right minimal [1, §I.2]. Thus by [1, Corollary I.2.3] there is no non-zero direct +summand of the domain on which f vanishes. Thus f ′ is an isomorphism, and hence f +is a monomorphism. The argument for g is dual. +□ +5. Classification of rigids +We prove the following result. Once Theorem A is proved, it gives Theorem B. The +proof of the theorem is the same as Theorem 2(ii) of [4]. +Theorem 5.1. Let R be reduced. For each real Schur root α, we choose an exceptional +pointwise free RQ-lattice X(α) of rank vector α. Any rigid RQ-lattice X of pointwise +constant rank has a decomposition +X ∼= (X(α1) ⊗R P1) ⊕ · · · ⊕ (X(αr) ⊗R Pr) +where the α1, . . . , αr are distinct real Schur roots, ext(αi, αj) = 0 for all i, j and the Pi +are finitely generated projective R-modules of constant rank. Moreover this decomposition +is unique up to isomorphism and reordering. In particular any exceptional RQ-lattice of +rank vector α is of the form X(α) ⊗R P with X exceptional pointwise free and P a +projective R-module of constant rank 1. +Proof. By Lemma 3.3, we may assume that Q has no oriented cycles. We fix temporarily +a homomorphism R → K with K an algebraically closed field. Then XK is rigid, so +decomposes as direct sum +XK ∼= Mm1 +1 +⊕ · · · ⊕ Mmr +r +. +with the Mi pairwise non-isomorphic exceptional KQ-modules, Ext1 +KQ(Mi, Mj) = 0 for +all i, j and all mi > 0. By [8, Corollary 4.2], we can order the Mi so that (M1, . . . , Mr) is +an exceptional sequence, so Hom(Mi, Mj) = 0 for i > j. Let Mi have dimension vector αi. +We have Hom(X(αi), X(αj)) = 0 for i > j since dim Hom(Mi, Mj) = hom(αi, αj). +6 + +Now Pr = HomRQ(X(αr), X) is a finitely generated projective R-module of constant +rank. Consider the evaluation map θ : X(αr) ⊗R Pr → X and let C be its cokernel. For +an arbitrary homomorphism R → K with K an algebraically closed field (no longer the +one fixed above), using Lemma 3.2, we can identify θK with the evaluation map +X(αr)K ⊗K HomKQ(X(αr)K, XK) → X +but we know that +XK ∼= (X(α1)K)m1 ⊕ · · · ⊕ (X(αr)K)mr +since both sides are rigid KQ-modules of the same dimension vector. Thus θK is the +inclusion of (X(αr)K)mr as a direct summand of XK. Thus by Lemma 2.1, θ is a split +monomorphism of R-modules, so C is projective over R. Also +CK ∼= Coker(θK) ∼= (X(α1)K)m1 ⊕ · · · ⊕ (X(αr−1)K)mr−1 +so Ext1 +KQ(CK, CK) = 0 and Ext1 +KQ(CK, X(αr)K) = 0. Thus C is rigid and Ext1(C, Xr) = +0. Thus X ∼= X(αr) ⊗R Pr ⊕C. Now the result follows by induction (on r or on the total +rank of X). +For uniqueness, note that if we have another decomposition +X = (X(β1) ⊗ P ′ +1) ⊕ · · · ⊕ (X(βs) ⊗ P ′ +s) +with the βi being distinct real Schur roots and the P ′ +i projective R-modules of constant +rank, then using a fixed homomorphism R → K and the uniqueness of rigid KQ-modules +of a given dimension vector, we see that s = r and that the βi are a permutation of the +αi. Thus we reduce to the case that βi = αi. But then +P ′ +r ∼= HomRQ(X(αr), X) ∼= Pr +and then the corresponding cokernels of the evaluation maps are isomorphic, so by in- +duction P ′ +i ∼= Pi for all i. +The special case of exceptional lattices follows. +□ +6. Uniqueness for exceptional pointwise frees +We now prove Theorem A. The existence part was Lemma 4.1. Suppose X is a point- +wise free lattice for RQ of rank vector α, a real Schur root. By Lemma 2.2 we can write +R ∼= ˜R/I with ˜R reduced and I contained in the Jacobson radical of ˜R. +We define a pointwise free ˜RQ-lattice ˜X by giving it as a representation of Q by free +˜R-modules as follows. For each vertex i we take ei ˜X to be a free ˜R-module of rank αi, +and we fix an isomorphism +(ei ˜X)/I(ei ˜X) ∼= (ei ˜X)R ∼= eiX. +For each arrow a ∈ Q1, multiplication by a induces an R-linear map et(a)X → eh(a)X, +and we lift this to an ˜R-linear map et(a) ˜X → eh(a) ˜X. This defines ˜X as a representation +of Q and clearly we have ˜XR ∼= X. +Let E = Ext1 +˜RQ( ˜X, ˜X), a finitely generated ˜R-module. Now ER ∼= Ext1 +RQ(X, X) = 0 +by Lemma 3.1, so E = IE, so by Nakayama’s Lemma E = 0. Thus ˜X is rigid. (This +idea of lifting X to a rigid representation ˜X is taken from [6].) +By Theorem B we have ˜X ∼= X(α)⊗ ˜R ˜P, where X(α) is a chosen exceptional pointwise +free ˜RQ-lattice of rank vector α and ˜P is a finitely generated projective ˜R-module of +constant rank 1. +7 + +Tensoring with R, we get X ∼= Y ⊗R P where Y = X(α)R is an exceptional pointwise +free RQ-lattice and P = ˜P R is a finitely generated projective R-module of constant +rank 1. +Now since X and Y are pointwise free of rank vector α, we have +Rαi ∼= eiX ∼= eiY ⊗R P ∼= Rαi ⊗R P ∼= P αi +for all i. Since α is a real root for Q, it is indivisible, that is, its components are coprime. +Thus we can find ai, bi ∈ N such that +1 + +� +i +aiαi = +� +i +biαi. +Then +P ⊕ R +� +i aiαi ∼= P ⊕ +� +i +(Rαi)ai ∼= P ⊕ +� +i +(P αi)ai ∼= +� +i +(P αi)bi ∼= +� +i +(Rαi)bi ∼= R +� +i biαi. +Thus P is stably free. Now any stably free projective module of constant rank 1 for a +commutative ring is free, see for example [9, Theorem 4.11], so P ∼= R. Thus X ∼= Y . +We have already observed that Y is exceptional, hence so is X. +References +[1] M. Auslander, I. Reiten and S. O. Smalø, Representation theory of Artin algebras, Cambridge +Studies in Advanced Mathematics, 36. Cambridge University Press, Cambridge, 1995. +[2] W. Crawley-Boevey, Exceptional sequences of representations of quivers, in ‘Representations of +algebras’ (Ottawa, ON, 1992), 117-–124, CMS Conf. Proc., 14, Amer. Math. Soc., Providence, RI, +1993. +[3] W. Crawley-Boevey, Subrepresentations of general representations of quivers, Bull. London Math. +Soc. 28 (1996), 363—366. +[4] W. Crawley-Boevey, Rigid integral representations of quivers, in ‘Representation theory of +algebras’ (Cocoyoc, 1994), 155-–163, CMS Conf. Proc., 18, Amer. Math. Soc., Providence, RI, +1996. +[5] D. Eisenbud, Commutative algebra. With a view toward algebraic geometry, Graduate Texts in +Mathematics, 150. Springer-Verlag, New York, 1995. +[6] C. Geiß, B. Leclerc and J. Schr¨oer, Rigid modules and Schur roots. Math. Z. 295 (2020), no. 3-4, +1245–1277. +[7] A. L. Gorodentsev, Exceptional bundles on surfaces with a moving anticanonical class (Russian), +Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), 740-–757, 895; translation in Math. USSR-Izv. 33 +(1989), 67-–83. +[8] D. Happel and C. M. Ringel, Tilted algebras, Trans. Amer. Math. Soc. 274 (1982), 399-–443. +[9] T. Y. Lam, Serre’s problem on projective modules, Springer Monographs in Mathematics. +Springer-Verlag, Berlin, 2006. +[10] A. N. Rudakov, Exceptional collections, mutations and helices, in ‘Helices and vector bundles’, +1-–6, London Math. Soc. Lecture Note Ser., 148, Cambridge Univ. Press, Cambridge, 1990. +[11] A. Schofield, General representations of quivers, Proc. London Math. Soc. (3) 65 (1992), 46-–64. +Fakult¨at f¨ur Mathematik, Universit¨at Bielefeld, 33501 Bielefeld, Germany +Email address: wcrawley@math.uni-bielefeld.de +8 + diff --git a/TtE4T4oBgHgl3EQfLwyC/content/tmp_files/load_file.txt b/TtE4T4oBgHgl3EQfLwyC/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..9f88b3d6e1cd225b58846f3c76f34fbc4c5dc5dc --- /dev/null +++ b/TtE4T4oBgHgl3EQfLwyC/content/tmp_files/load_file.txt @@ -0,0 +1,326 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf,len=325 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content='04941v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content='RT] 12 Jan 2023 RIGID INTEGRAL REPRESENTATIONS OF QUIVERS REVISITED WILLIAM CRAWLEY-BOEVEY Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' In earlier work, the author classified rigid representations of a quiver by means of finitely generated free modules over a principal ideal ring.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' We show that the classification of exceptional pointwise free lattices can be extended to arbitrary commutative rings and that the classification of rigid lattices can be extended to reduced commutative rings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Introduction In [4] we studied rigid representations of a quiver over a principal ideal domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Here we generalize the results to more general commutative base rings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Let R be a commutative ring (always non-zero).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Given an R-module X and a homo- morphism R → S we write XS for the induced S-module S ⊗R X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Recall that a finitely generated projective R-module P has constant rank n if Pp is a free Rp-module of rank n for each prime ideal p of R, or equivalently if dimK P K = n for all homomorphisms R → K with K a field, which we may take to be algebraically closed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Let Q = (Q0, Q1, h, t) be a finite quiver and let RQ be the path algebra of Q over R, with a trivial path ei for each vertex i ∈ Q0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' By an RQ-lattice we mean an RQ-module which is finitely generated projective as an R-module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' We say that an RQ-module X is pointwise free if eiX is a free R-module for all i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' We say that an RQ-lattice X has rank vector α ∈ NQ0 if eiX has constant rank αi for each i, and that X has pointwise constant rank if it has rank vector α for some α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' If R → S is a homomorphism, then XS is naturally an SQ-module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' We say that an RQ-module X is rigid if Ext1 RQ(X, X) = 0, and exceptional if also the natural map R → EndRQ(X) is an isomorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' If K is an algebraically closed field, then by definition the possible dimension vectors of exceptional KQ-modules are the real Schur roots for Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' We call the possible dimension vectors of rigid KQ-modules rigid dimension vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' By results of [2] or [3] these do not depend on the field K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' If X is a rigid (respectively exceptional) RQ-lattice of rank vector α, then XK is a rigid (respectively exceptional) KQ-module of dimension vector α for any homomorphism R → K with K a field (see Lemmas 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content='1,3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content='2), and so α must be a rigid dimension vector (respectively real Schur root).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Theorem A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' For any commutative ring R and real Schur root α for Q, there is a unique rigid pointwise free RQ-lattice with rank vector α and it is exceptional.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' The existence follows easily from [4], and the uniqueness follows from the next result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' As mentioned, the case when R is a principal ideal domain is in [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' The case when R is a truncated polynomial ring K[ǫ]/(ǫn) is a special case of [6, Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content='2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Recall that a commutative ring R is reduced if it has no nilpotent elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' 2020 Mathematics Subject Classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Primary 16G20;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Secondary 16G30,16H20,13C10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Key words and phrases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Quiver representations, Rigid representations, Lattices over orders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Partially supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – SFB-TRR 358/1 2023 – 491392403.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' 1 Theorem B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' If R is reduced, then any rigid RQ-lattice X of pointwise constant rank has a decomposition X ∼= (X1 ⊗R P1) ⊕ · · · ⊕ (Xr ⊗R Pr) where the Xi are pairwise non-isomorphic exceptional pointwise free RQ-lattices satisfying Ext1 RQ(Xi, Xj) = 0 for all i, j and the Pi are finitely generated projective R-modules of constant rank.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Moreover this decomposition is unique up to isomorphism and reordering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' In particular any exceptional RQ-lattice is of the form Y ⊗R P with Y an exceptional pointwise free RQ-module and P a projective R-module of constant rank 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Note that in general one doesn’t have uniqueness for rigid pointwise free lattices of a given rank vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' For example let Q be the quiver 1 → 2 and R a reduced ring with a stably free projective module P which is not free, say P ⊕Rn ∼= Rm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Then (RQe2⊗RP)⊕ (RQe1 ⊗R Rn) is pointwise free, but not isomorphic to (RQe2 ⊗R Rm−n) ⊕(RQe1 ⊗R Rn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Commutative rings Concerning our definitions and results, note that every finitely generated projective R-module has constant rank if and only if Spec R is connected, or equivalently R has no idempotents other than 0 and 1, see for example Exercise 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content='12 in [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Let R be a commutative ring.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' (i) If X is a finitely generated R-module, then X = 0 if and only if XK = 0 for all homomorphisms R → K with K an algebraically closed field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' (ii) If θ : X → Y is a homomorphism of R-modules and Y is finitely generated, then θ is onto if and only if θK is onto for all R → K with K an algebraically closed field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' (iii) If R is reduced and X is a finitely generated R-module, then X is projective of constant rank n if and only if dimK XK = n for all homomorphisms R → K with K an algebraically closed field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' (iv) If R is reduced and θ : X → Y is a homomorphism with X, Y finitely generated projective of constant rank, then θ is a split monomorphism if and only if θK is a monomorphism for all R → K with K an algebraically closed field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' (i) Since X is finitely generated, if non-zero it has a map onto some R/m, and taking K to be the algebraic closure of this field gives a surjective map XK → R/m⊗RK ∼= K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' (ii) Clear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' (iii) See Exercise 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content='13 in [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' (iv) If θK is a monomorphism for all R → K, then Coker θK has constant dimension, so Coker θ is projective of constant rank.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Then Im θ is a summand of Y , so projective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' But then 0 → Ker θ → X → Im θ → 0 splits, so is exact after inducing to K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Thus Ker θK = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Also Ker θ is summand of X, so finitely generated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Thus Ker θ is zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' □ Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Any commutative ring R can be written as a quotient R ∼= ˜R/I with ˜R an integral domain and I is an ideal contained in the Jacobson radical of ˜R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Let A = Z[xr : r ∈ R] be the polynomial ring over Z with indeterminates indexed by the elements of R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' There is a surjective homomorphism θ : A → R sending each xr to r and the set S = {a ∈ A : θ(a) is invertible} is a multiplicative subset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' We set ˜R to be the localization AS, an integral domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' The homomorphism θ extends to a surjective homomorphism ˜θ : ˜R → R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' 2 Let x ∈ Ker ˜θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' If y ∈ ˜R, then xy ∈ Ker ˜θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Write xy = as−1 with a ∈ A and s ∈ S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Then θ(a) = 0, so s + a ∈ S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Thus 1 + xy = (s + a)s−1 is invertible in ˜R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Since this is true for all y, it follows that x is in the Jacobson radical of ˜R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' □ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Lattices Let R be a commutative ring and Q a quiver.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Lemma 1 of [4] generalizes immediately to this setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' If X is an RQ-lattice, then proj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' dim X ≤ 1 and Ext1 RQ(X, Y )S ∼= Ext1 SQ(XS, Y S) for any homomorphism R → S and any RQ-module Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' In particular if X is a rigid RQ-lattice, then XS is a rigid SQ-lattrice for all homomorphisms R → S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Conversely, if X is an RQ-lattice and XK rigid for all homomorphisms R → K with K an algebraically closed field, then X is rigid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Letting S be the R-subalgebra of RQ with basis the trivial paths ei and B be the free R-submodule of RQ with basis the arrows, the path algebra RQ is isomorphic to the tensor algebra of B over S, so there is a standard resolution 0 → RQ ⊗S B ⊗S RQ → RQ ⊗S RQ → RQ → 0, or equivalently 0 → � a∈Q1 RQeh(a) ⊗R et(a)RQ → � i∈Q0 RQei ⊗R eiR → RQ → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Tensoring with the RQ-module X gives 0 = TorRQ 1 (RQ, X) → � a∈Q1 RQeh(a) ⊗R et(a)X → � i∈Q0 RQei ⊗R eiX → X → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' and this is a resolution of X by finitely generated projective RQ-modules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' We denote it by 0 → P1 → P0 → X → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Since X is projective over R, the induced sequence 0 → P S 1 → P S 0 → XS → 0 is exact, so a resolution of XS by projective SQ-modules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Now if P is a finitely generated projective RQ-module, then HomRQ(P, Y )S ∼= HomSQ(P S, Y S).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Thus we get a commutative diagram with exact rows HomRQ(P0, Y )S −−−→ HomRQ(P1, Y )S −−−→ Ext1 RQ(X, Y )S −−−→ 0 \uf8e6\uf8e6� \uf8e6\uf8e6� HomSQ(P S 0 , Y S) −−−→ HomSQ(P S 1 , Y S) −−−→ Ext1 SQ(XS, Y S) −−−→ 0 in which the vertical maps are isomorphisms, and hence an isomorphism Ext1 RQ(X, Y )S ∼= Ext1 SQ(XS, Y S).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Now Ext1 RQ(X, X) is a finitely generated R-module, so if Ext1 RQ(X, X)K = 0 for all homomorphisms from R to an algebraically closed field K then Ext1 RQ(X, X) = 0, that is, X is rigid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' □ 3 Over an algebraically closed field K, the isomorphism classes of representations X of Q of dimension vector α correspond to orbits OX of a group GL(α) acting on an affine space Rep(Q, α).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Moreover X is rigid if and only if OX is open orbit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Since the affine space it irreducible, it follows that there is at most one rigid module of dimension α, up to isomorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' The general dimension of Hom(X, Y ) and Ext1(X, Y ) for X of dimension α and Y of dimension β is denoted hom(α, β) and ext(α, β).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' In particular this is these are the dimensions for X and Y rigid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Based on work of Schofield [11], it is proved in [3] that hom(α, β) and ext(α, β) do not depend on the algebraically closed field K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' If R is reduced, and if X, Y are rigid RQ-lattices of pointwise constant rank α, β, then HomRQ(X, Y )S ∼= HomSQ(XS, Y S) for all homomorphisms R → S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Moreover Ext1 RQ(X, Y ) and HomRQ(X, Y ) are finitely generated projective R-modules of constant rank ext(α, β) and hom(α, β).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' For any R → K with K an algebraically closed field, Ext1 RQ(X, Y )K has constant dimension ext(α, β), so Ext1 RQ(X, Y ) is projective over R of this rank by Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content='1(iii).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Now the projective resolution 0 → P1 → P0 → X → 0 of X gives an exact sequence 0 → HomRQ(X, Y ) → HomRQ(P0, Y ) → HomRQ(P1, Y ) → Ext1 RQ(X, Y ) → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' The last three are projective R-modules of constant rank, so this sequence splits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Thus the first module is also projective over R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Moreover the sequence remains exact under induction using a homomorphism R → S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' It follows that HomRQ(X, Y )S ∼= HomSQ(XS, Y S).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Considering the case when S is a field, we see that HomRQ(X, Y ) has constant rank hom(α, β).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' □ The following result is well known.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' The full subquiver of Q on the support of any rigid dimension vector α has no oriented cycles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' If not, one can easily construct representations of Q of dimension α over an alge- braically closed field K on which the trace of the oriented cycle is arbitrary, but the variety of representations has a dense orbit, so the trace must be constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' (This argument is already used in [4, Theorem 1] for real Schur roots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=') □ 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Mutations Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' If R is a commutative ring and α is real Schur root for Q, then there exists an exceptional pointwise free RQ-lattice of dimension vector α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' By [4, Theorem 2], there is a (unique) exceptional ZQ-lattice X0 of rank vector α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Now we obtain an RQ-lattice XR = X ⊗Z R, and it is exceptional by Lemmas 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content='1 and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' □ The cited theorem [4, Theorem 2] depends on a braid group action for exceptional sequences of lattices, defined using mutations of exceptional pairs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' The result about mutations in turn depends on the construction of mutations of pairs of representations of KQ where K is a field, for which [4] cites [10] and [2] cites [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' We take this opportunity to give a direct proof, based on the following generalization of the Happel-Ringel Lemma [8, Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content='1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' 4 Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Let θ : X → Y be a homomorphism between finite-dimensional A-modules for a hereditary algebra A and suppose that Ext1 A(Y, X) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' If Y is indecomposable, then either θ is an epimorphism or the map X → Im(θ) is a split epimorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' The map θ gives exact sequences ξ : 0 → Im(θ) α−→ Y → Coker(θ) → 0 and η : 0 → Ker(θ) → X β−→ Im(θ) → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' From Ext1 A(Coker(θ), η) we get an exact sequence · · → Ext1 A(Coker(θ), X) f−→ Ext1 A(Coker(θ), Im(θ)) → Ext2 A(Coker(θ), Ker(θ)) = 0 so ξ = f(ζ) for some ζ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Thus there is a commutative diagram ζ : 0 −−−→ X δ −−−→ Z −−−→ Coker(θ) −−−→ 0 β \uf8e6\uf8e6� γ \uf8e6\uf8e6� ��� ξ : 0 −−−→ Im(θ) α −−−→ Y −−−→ Coker(θ) −−−→ 0 Now the sequence 0 → X \uf8eb \uf8edδ β \uf8f6 \uf8f8 −−−→ Z ⊕ Im(θ) � γ −α � −−−−−−→ Y → 0 is exact, so splits since Ext1 A(Y, X) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Thus there are maps �p q� : Z ⊕ Im(θ) → X and � r s � : Y → Z ⊕ Im(θ) with � 1Z 0 0 1Im(θ) � = � δ β � �p q� + � r s � �γ −α� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Thus 1Im(θ) = βq − sα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Now if θ is not an epimorphism, then αs cannot be an auto- morphism of Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Since Y is indecomposable, αs is nilpotent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' This implies that βq is invertible, and hence that β is a split epimorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' □ If X is also indecomposable, one recovers the Happel-Ringel Lemma: if θ is non- zero and not an epimorphism, then X → Im(θ) must be an isomorphism, so θ is a monomorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Dually we have: Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Let θ : X → Y be a homomorphism between finite-dimensional A-modules for a hereditary algebra A and suppose that Ext1 A(Y, X) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' If X is indecomposable, then either θ is a monomorphism or the map Im(θ) → Y is a split monomorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' A sequence of exceptional RQ-lattices (X1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' , Xr) is called an exceptional sequence provided that HomRQ(Xi, Xj) = Ext1 RQ(Xi, Xj) = 0 for all i > j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' The result about mutations is as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Suppose R is reduced.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' If (X, Y ) is an exceptional pair of RQ-lattices, then there are exceptional pairs (LXY, X) and (Y, RY X) given as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' If HomRQ(X, Y ) = 0 then LXY and RY X are given by the universal exact sequences 0 → Y → LXY → X ⊗R Ext1 RQ(X, Y ) → 0, 0 → Y ⊗R D Ext1 RQ(X, Y ) → RY X → X → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' where D = HomR(−, R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' If HomRQ(X, Y ) ̸= 0, then the universal map f : X ⊗R HomRQ(X, Y ) → Y 5 is an epimorphism or a monomorphism, and LXY is its kernel or cokernel, and the universal map g : X → HomR(HomRQ(X, Y ), Y ) ∼= Y ⊗R D HomRQ(X, Y ) is an epimorphism or a monomorphism and RY X is its kernel or cokernel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Since R is reduced and the lattices are rigid, the Hom and Ext spaces are projective over R of constant rank, independent of R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Moreover using Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content='1 we can, as in [4, Lemma 4], reduce to the case when R = K is an algebraically closed field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' In this setting, the claim follows easily once one knows that if HomKQ(X, Y ) ̸= 0 then Ext1 KQ(X, Y ) = 0, and that f and g are either epimorphisms or monomorphisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Now if θ ∈ HomKQ(X, Y ) is a non-zero map, then by the Happel-Ringel Lemma θ is either an epimorphism or a monomorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' In the first case we have a exact sequence · · → Ext1 KQ(X, X) → Ext1 KQ(X, Y ) → Ext2 KQ(X, Ker(θ)) = 0 and in the second case we have · · → Ext1 KQ(Y, Y ) → Ext1 KQ(X, Y ) → Ext2 KQ(Coker(θ), Y ) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Since Ext1 KQ(X, X) = Ext1 KQ(Y, Y ) = 0, in both cases we get Ext1 KQ(X, Y ) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' If the map f : X ⊗K HomKQ(X, Y ) → Y is not an epimorphism, then the induced map f ′ : X ⊗K HomKQ(X, Y ) → Im(f) is a split epimorphism by Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Since EndKQ(X) = K, the map f can be identified with the universal map from a direct sum of copies of X to Y given by a basis of HomKQ(X, Y ), from which it is easy to see that f is right minimal [1, §I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content='2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Thus by [1, Corollary I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content='3] there is no non-zero direct summand of the domain on which f vanishes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Thus f ′ is an isomorphism, and hence f is a monomorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' The argument for g is dual.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' □ 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Classification of rigids We prove the following result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Once Theorem A is proved, it gives Theorem B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' The proof of the theorem is the same as Theorem 2(ii) of [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Let R be reduced.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' For each real Schur root α, we choose an exceptional pointwise free RQ-lattice X(α) of rank vector α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Any rigid RQ-lattice X of pointwise constant rank has a decomposition X ∼= (X(α1) ⊗R P1) ⊕ · · · ⊕ (X(αr) ⊗R Pr) where the α1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' , αr are distinct real Schur roots, ext(αi, αj) = 0 for all i, j and the Pi are finitely generated projective R-modules of constant rank.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Moreover this decomposition is unique up to isomorphism and reordering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' In particular any exceptional RQ-lattice of rank vector α is of the form X(α) ⊗R P with X exceptional pointwise free and P a projective R-module of constant rank 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' By Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content='3, we may assume that Q has no oriented cycles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' We fix temporarily a homomorphism R → K with K an algebraically closed field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Then XK is rigid, so decomposes as direct sum XK ∼= Mm1 1 ⊕ · · · ⊕ Mmr r .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' with the Mi pairwise non-isomorphic exceptional KQ-modules, Ext1 KQ(Mi, Mj) = 0 for all i, j and all mi > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' By [8, Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content='2], we can order the Mi so that (M1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' , Mr) is an exceptional sequence, so Hom(Mi, Mj) = 0 for i > j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Let Mi have dimension vector αi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' We have Hom(X(αi), X(αj)) = 0 for i > j since dim Hom(Mi, Mj) = hom(αi, αj).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' 6 Now Pr = HomRQ(X(αr), X) is a finitely generated projective R-module of constant rank.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Consider the evaluation map θ : X(αr) ⊗R Pr → X and let C be its cokernel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' For an arbitrary homomorphism R → K with K an algebraically closed field (no longer the one fixed above), using Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content='2, we can identify θK with the evaluation map X(αr)K ⊗K HomKQ(X(αr)K, XK) → X but we know that XK ∼= (X(α1)K)m1 ⊕ · · · ⊕ (X(αr)K)mr since both sides are rigid KQ-modules of the same dimension vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Thus θK is the inclusion of (X(αr)K)mr as a direct summand of XK.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Thus by Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content='1, θ is a split monomorphism of R-modules, so C is projective over R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Also CK ∼= Coker(θK) ∼= (X(α1)K)m1 ⊕ · · · ⊕ (X(αr−1)K)mr−1 so Ext1 KQ(CK, CK) = 0 and Ext1 KQ(CK, X(αr)K) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Thus C is rigid and Ext1(C, Xr) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Thus X ∼= X(αr) ⊗R Pr ⊕C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Now the result follows by induction (on r or on the total rank of X).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' For uniqueness, note that if we have another decomposition X = (X(β1) ⊗ P ′ 1) ⊕ · · · ⊕ (X(βs) ⊗ P ′ s) with the βi being distinct real Schur roots and the P ′ i projective R-modules of constant rank, then using a fixed homomorphism R → K and the uniqueness of rigid KQ-modules of a given dimension vector, we see that s = r and that the βi are a permutation of the αi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Thus we reduce to the case that βi = αi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' But then P ′ r ∼= HomRQ(X(αr), X) ∼= Pr and then the corresponding cokernels of the evaluation maps are isomorphic, so by in- duction P ′ i ∼= Pi for all i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' The special case of exceptional lattices follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' □ 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Uniqueness for exceptional pointwise frees We now prove Theorem A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' The existence part was Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Suppose X is a point- wise free lattice for RQ of rank vector α, a real Schur root.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' By Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content='2 we can write R ∼= ˜R/I with ˜R reduced and I contained in the Jacobson radical of ˜R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' We define a pointwise free ˜RQ-lattice ˜X by giving it as a representation of Q by free ˜R-modules as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' For each vertex i we take ei ˜X to be a free ˜R-module of rank αi, and we fix an isomorphism (ei ˜X)/I(ei ˜X) ∼= (ei ˜X)R ∼= eiX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' For each arrow a ∈ Q1, multiplication by a induces an R-linear map et(a)X → eh(a)X, and we lift this to an ˜R-linear map et(a) ˜X → eh(a) ˜X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' This defines ˜X as a representation of Q and clearly we have ˜XR ∼= X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Let E = Ext1 ˜RQ( ˜X, ˜X), a finitely generated ˜R-module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Now ER ∼= Ext1 RQ(X, X) = 0 by Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content='1, so E = IE, so by Nakayama’s Lemma E = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Thus ˜X is rigid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' (This idea of lifting X to a rigid representation ˜X is taken from [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=') By Theorem B we have ˜X ∼= X(α)⊗ ˜R ˜P, where X(α) is a chosen exceptional pointwise free ˜RQ-lattice of rank vector α and ˜P is a finitely generated projective ˜R-module of constant rank 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' 7 Tensoring with R, we get X ∼= Y ⊗R P where Y = X(α)R is an exceptional pointwise free RQ-lattice and P = ˜P R is a finitely generated projective R-module of constant rank 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Now since X and Y are pointwise free of rank vector α, we have Rαi ∼= eiX ∼= eiY ⊗R P ∼= Rαi ⊗R P ∼= P αi for all i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Since α is a real root for Q, it is indivisible, that is, its components are coprime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Thus we can find ai, bi ∈ N such that 1 + � i aiαi = � i biαi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Then P ⊕ R � i aiαi ∼= P ⊕ � i (Rαi)ai ∼= P ⊕ � i (P αi)ai ∼= � i (P αi)bi ∼= � i (Rαi)bi ∼= R � i biαi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Thus P is stably free.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Now any stably free projective module of constant rank 1 for a commutative ring is free, see for example [9, Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content='11], so P ∼= R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Thus X ∼= Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' We have already observed that Y is exceptional, hence so is X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' References [1] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Auslander, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Reiten and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Smalø, Representation theory of Artin algebras, Cambridge Studies in Advanced Mathematics, 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Cambridge University Press, Cambridge, 1995.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' [2] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Crawley-Boevey, Exceptional sequences of representations of quivers, in ‘Representations of algebras’ (Ottawa, ON, 1992), 117-–124, CMS Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=', 14, Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=', Providence, RI, 1993.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' [3] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Crawley-Boevey, Subrepresentations of general representations of quivers, Bull.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' London Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' 28 (1996), 363—366.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' [4] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Crawley-Boevey, Rigid integral representations of quivers, in ‘Representation theory of algebras’ (Cocoyoc, 1994), 155-–163, CMS Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=', 18, Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=', Providence, RI, 1996.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' [5] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Eisenbud, Commutative algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' With a view toward algebraic geometry, Graduate Texts in Mathematics, 150.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Springer-Verlag, New York, 1995.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' [6] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Geiß, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Leclerc and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Schr¨oer, Rigid modules and Schur roots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' 295 (2020), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' 3-4, 1245–1277.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' [7] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Gorodentsev, Exceptional bundles on surfaces with a moving anticanonical class (Russian), Izv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Akad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Nauk SSSR Ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' 52 (1988), 740-–757, 895;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' translation in Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' USSR-Izv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' 33 (1989), 67-–83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' [8] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Happel and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Ringel, Tilted algebras, Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' 274 (1982), 399-–443.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' [9] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Lam, Serre’s problem on projective modules, Springer Monographs in Mathematics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Springer-Verlag, Berlin, 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' [10] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Rudakov, Exceptional collections, mutations and helices, in ‘Helices and vector bundles’, 1-–6, London Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Lecture Note Ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=', 148, Cambridge Univ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Press, Cambridge, 1990.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' [11] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Schofield, General representations of quivers, Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' London Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' (3) 65 (1992), 46-–64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content=' Fakult¨at f¨ur Mathematik, Universit¨at Bielefeld, 33501 Bielefeld, Germany Email address: wcrawley@math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content='uni-bielefeld.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} +page_content='de 8' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'} diff --git a/U9E2T4oBgHgl3EQftwgF/content/tmp_files/2301.04072v1.pdf.txt b/U9E2T4oBgHgl3EQftwgF/content/tmp_files/2301.04072v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..7da0ef46f4577469ae46739fee6eff187f626b78 --- /dev/null +++ b/U9E2T4oBgHgl3EQftwgF/content/tmp_files/2301.04072v1.pdf.txt @@ -0,0 +1,993 @@ +The spectral reconstruction of inclusive rates +John Bulava 𝑎,∗ +𝑎Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany +E-mail: john.bulava@desy.de +A recently re-discovered variant of the Backus-Gilbert algorithm for spectral reconstruction en- +ables the controlled determination of smeared spectral densities from lattice field theory correlation +functions. A particular advantage of this approach is the a priori specification of the kernel with +which the underlying spectral density is smeared, allowing for variation of its peak position, +smearing width, and functional form. If the unsmeared spectral density is sufficiently smooth +in the neighborhood of a particular energy, it can be obtained from an extrapolation to zero +smearing-kernel width at fixed peak position. A natural application for this approach is scattering +processes summed over all hadronic final states. As a proof-of-principle test, an inclusive rate +is computed in the two-dimensional O(3) sigma model from a two-point correlation function of +conserved currents. The results at finite and zero smearing radius are in good agreement with +the known analytic form up to energies at which 40-particle states contribute, and are sensitive to +the 4-particle contribution to the inclusive rate. The straight-forward adaptation to compute the +𝑅-ratio in lattice QCD from two-point functions of the electromagnetic current is briefly discussed. +The 39th International Symposium on Lattice Field Theory, +8th-13th August, 2022, +Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany +∗Speaker +© Copyright owned by the author(s) under the terms of the Creative Commons +Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). +https://pos.sissa.it/ +arXiv:2301.04072v1 [hep-lat] 10 Jan 2023 + +The spectral reconstruction of inclusive rates +John Bulava +1. +Introduction +Lattice QCD simulations proceed by computing 𝑛-point euclidean correlation functions of +(quasi-) local interpolating operators. Single-hadron states and finite-volume few-hadron states are +isolated from correlation functions in the asymptotic large euclidean time limit. However, some +hadronic phenomena are best studied by other means. As an example, this work considers inclusive +rates defined as a sum over all hadronic final states produced by an external current. At large +center-of-mass energies, a finite-volume approach to such a process is impractical since it requires +the isolation of all individual finite-volume levels with arbitrarily many particles. Such processes +are a cornerstone of QCD and connect the low-energy hadronic and high-energy perturbative +regimes [1], serving as a manifestation of ‘quark-hadron duality’ [2] whereby perturbative QCD in +terms of quarks and gluons becomes increasingly effective at computing inclusive rates summed +over final states consisting entirely of hadrons. +For concreteness, consider the QCD part of the process 𝑒+𝑒− → hadrons +𝜌(𝑠) = 𝑅(𝑠) +12𝜋2 , +𝑅(𝑠) = 𝜎 [𝑒+𝑒− → hadrons] (𝑠) +4𝜋𝛼em(𝑠)2/(3𝑠) +, +(1) +𝜌𝜇𝜈(𝑘) = 1 +2𝜋 +ˆ +𝑑4𝑥 𝑒−𝑖𝑘·𝑥⟨Ω| ˆ𝑗em +𝜇 (𝑥) ˆ𝑗em +𝜈 (0)|Ω⟩ = (𝑔𝜇𝜈𝑘2 − 𝑘𝜇𝑘𝜈) 𝜌(𝑘2), +(2) +where ˆ𝑗em +𝜇 +is the quark-level electromagnetic current. The desired inclusive rate is given by the +spectral density 𝜌(𝑠), which is also present in the analogous infinite-volume Euclidean correlator +𝐶(𝑡) = +ˆ +𝑑3𝒙 ⟨Ω| ˆ𝑗em +𝑧 (𝒙) 𝑒− ˆ𝐻𝑡 ˆ𝑗em +𝑧 (0)†|Ω⟩ = +ˆ ∞ +0 +𝑑𝜔 𝜔2𝜌(𝜔2) 𝑒−𝜔𝑡 . +(3) +The direct determination of 𝜌(𝑠) in lattice QCD is not straightforward, however. First, the inversion +of integral equations like Eq. 3 using 𝐶(𝑡) evaluated at a finite number of discrete times with +statistical errors is notoriously ill-posed. +Furthermore, the finite volume introduces additional +complication. Even if the inverse problem were solved successfully and the finite-volume euclidean +correlator 𝐶𝐿(𝑡) used to determine its spectral density 𝜌𝐿(𝑠), it differs qualitatively from its infinite- +volume counterpart 𝜌(𝑠). While 𝜌𝐿(𝑠) is a sum over Dirac 𝛿-functions for each finite-volume state, +𝜌(𝑠) is smooth apart from non-analyticities due to the opening of thresholds. In no way does 𝜌𝐿(𝑠) +‘approach’ 𝜌(𝑠) as 𝐿 → ∞. +The bridge between finite and infinite volume is made more effectively using the smeared +spectral density +𝜌𝜖 (𝐸) = +ˆ ∞ +0 +𝑑𝜔 𝛿𝜖 (𝐸 − 𝜔) 𝜌(𝜔) , +(4) +where lim𝜖 →0 𝛿𝜖 (𝑥) = 𝛿(𝑥), 𝛿(𝑥) is the Dirac-delta function, and +´ ∞ +−∞ 𝑑𝑥 𝛿𝜖 (𝑥) = 1. This solves +(in principle) both of the difficulties mentioned above: the inverse problem can be made arbitrarily +mild by increasing in the smearing width 𝜖 and 𝜌𝐿,𝜖 (𝐸) approaches its infinite-volume counterpart +in a well-defined manner. The goal is now to take the ordered double limit [3] +𝜌(𝐸) = lim +𝜖 →0+ lim +𝐿→∞ 𝜌𝐿,𝜖 (𝐸), +(5) +2 + +The spectral reconstruction of inclusive rates +John Bulava +the asymptotic corrections to which are discussed in Sec. 21. +Although spectral reconstruction has a long history in lattice QCD, particularly at finite temper- +ature [4], the treatment of the inverse problem in Eq. 3 demands special care. In order to define the +result of the spectral reconstruction procedure, precise knowledge of the smearing kernel in Eq. 4 +is required. As detailed in Sec. 2, the Backus-Gilbert approach [5, 6] is suitable in this respect2. +Since the estimator for the smeared spectral density ˆ𝜌𝜖 (𝐸) is simply a linear combination of the +input correlator data ˆ𝜌𝜖 (𝐸) = � +𝑡 𝑔𝑡 (𝜖, 𝐸)𝐶(𝑡), the resultant smearing kernel is given by the same +linear combination of decaying exponentials in Eq. 3 +ˆ𝜌𝜖 (𝐸) = +ˆ +𝑑𝜔 ˆ𝛿𝜖 (𝐸, 𝜔) 𝜌(𝜔), +ˆ𝛿𝜖 (𝐸, 𝜔) = +∑︁ +𝑡 +𝑔𝑡 (𝜖, 𝐸)𝜔2𝑒−𝜔𝑡. +(6) +Explicit knowledge of ˆ𝛿𝜖 (𝐸, 𝜔) is a minimum requirement for a well-defined spectral reconstruction +procedure. +Naively the Backus-Gilbert approach provides knowledge of the kernel in Eq. 6 only a posteriori +for a given choice of coefficients. However, the coefficients themselves can be chosen to approximate +a particular smearing kernel specified a priori [9]. This important innovation is employed here +and was applied to lattice field theory for the first time in Ref. [10]. In order to understand this +reconstruction algorithm, and in particular demonstrate control over the systematic errors, a test in a +controlled context is warranted. Such a test has been performed in Ref. [11] for the two-dimensional +O(3) sigma model together with attempts at saturating the ordered double limit of Eq. 5. +The remainder of this work is organized as follows. The spectral reconstruction method is +presented in Sec. 2 in the context of the O(3) model test mentioned above. Prospects for adapting +the method to current correlators in lattice QCD is discussed in Sec. 3 and Sec. 4 concludes. +2. +O(3) model test +This section reviews a spectral reconstruction test which was recently published in Ref. [11]. +It employs the spectral reconstruction procedure of Ref. [10] in the two-dimensional O(3) sigma +model. Consider the standard lattice discretization +𝑆[𝜎] = 𝛽 +2 +∑︁ +𝑥∈Λ +𝑎2 ∑︁ +𝜇 +ˆ𝜕𝜇𝜎(𝑥) · ˆ𝜕𝜇𝜎(𝑥) = 𝛽 +∑︁ +𝑥∈Λ +∑︁ +𝜇 +[1 − 𝜎(𝑥) · 𝜎(𝑥 + 𝑎 ˆ𝜇)] , +(7) +where 𝜎(𝑥) ∈ R3, |𝜎(𝑥)| = 1, and ˆ𝜕𝜇 𝑓 (𝑥) = 1 +𝑎 [ 𝑓 (𝑥 + 𝑎 ˆ𝜇) − 𝑓 (𝑥)]. This model has a conserved +current +𝑗 𝑎 +𝜇(𝑥) = 𝛽𝜖 𝑎𝑏𝑐𝜎𝑏(𝑥) ˆ𝜕𝜇𝜎𝑐(𝑥) +(8) +at finite lattice spacing, and possesses a dynamically-generated mass gap 𝑚. The total zero spatial +momentum euclidean current-current correlation function analogous to Eq. 3 (but without the factor +1Finite lattice spacing effects must also be removed by taking the continuum limit, which is here performed at fixed +𝜖 and 𝐸. +2Another spectral reconstruction algorithm for which the smearing kernel is formally known a posteriori is the +Chebyshev polynomial approach of Ref. [7]. Ref. [8] compares that approach to the one employed here. +3 + +The spectral reconstruction of inclusive rates +John Bulava +n=2 +n=4 +10 +20 +30 +40 +50 +μ/m +0.5 +1.0 +1.5 +2.0 +2.5 +ρ(n)(μ) +Figure 1: +Left: exactly known 𝑛 = 2 and 𝑛 = 4 particle contributions to the (continuum, infinite- +volume) spectral density associated with the conserved current in the two-dimensional O(3) sigma model. +Contributions from states with more particles are insignificant in the energy range shown here. Right: the +four smearing kernels 𝛿x +𝜖 (𝑥), where x = {g, c0, c1, c2}, defined in Eq. 9 plotted against 𝑥 with 𝜖 = 1 . +of 𝜔2) is computed by numerical simulations using the single-cluster algorithm of Ref. [12]. A +variety of ensembles are generated, with 𝑚𝐿 ≈ 30 − 60 and 𝑎𝑚 ∈ [0.01, 0.04] to assess finite +volume effects and take the continuum limit. In the continuum the contributions to the associated +spectral density 𝜌(𝜔) from each fixed-particle number sector can be computed exactly [13]. Below +energies 𝐸 < 50𝑚, only the 𝑛 = 2 and 𝑛 = 4 particle contributions are significant and are shown in +Fig.1. +In order to demonstrate the a priori specification of the smearing kernel, consider four kernels +with different profiles as a function of 𝑥 = 𝐸 − 𝜔: +𝛿g +𝜖 (𝑥) = +1 +√ +2𝜋𝜖 +exp +� +− 𝑥2 +2𝜖2 +� +, +𝛿c0 +𝜖 (𝑥) = 1 +𝜋 +𝜖 +𝑥2 + 𝜖2 , +(9) +𝛿c1 +𝜖 (𝑥) = 2 +𝜋 +𝜖3 +(𝑥2 + 𝜖2)2 , +𝛿c2 +𝜖 (𝑥) = 8 +3𝜋 +𝜖5 +(𝑥2 + 𝜖2)3 , +(10) +including the gaussian (denoted ‘g’) and three Cauchy-like kernels denoted ‘c𝑛’, for which 𝑛 = 0, 1, 2 +distinguishes the power of the pole. These kernels are depicted in Fig. 1. +The method advocated in Ref. [10] to reconstruct the smeared spectral density 𝜌x +𝜖 (𝐸), where +x = {g, c0, c1, c2}, is based on two criteria. First, the reconstructed smearing kernel ˆ𝛿x +𝜖 (𝐸, 𝜔) +should be close to the desired one 𝛿x +𝜖 (𝐸 − 𝜔). Second, the coefficients {𝑔𝑡 (𝜖, 𝐸)} in Eq. 6 should +not induce a large statistical variance on the estimator ˆ𝜌x +𝜖 (𝐸). These two considerations are encoded +in the functionals +𝐴[𝑔] = +ˆ ∞ +𝐸0 +𝑑𝜔 +� +𝛿x +𝜖 (𝐸 − 𝜔) − ˆ𝛿x +𝜖 (𝐸, 𝜔) +�2 , +(11) +𝐵[𝑔] = Var[ ˆ𝜌x +𝜖 (𝐸)] = +∑︁ +𝑡𝑡′ +𝑔𝑡 (𝜖, 𝐸) 𝑔𝑡′(𝜖, 𝐸) Cov[𝐶(𝑡), 𝐶(𝑡′)] +(12) +respectively. The coefficients are then chosen to minimize the combination functional 𝐺𝜆[𝑔] = (1− +𝜆)𝐴[𝑔]/𝐴[0] + 𝜆𝐵[𝑔], where the ‘trade-off’ parameter 𝜆 is introduced. For small 𝜆, the ‘accuracy’ +functional 𝐴[𝑔] takes preference over the ‘precision’ one 𝐵[𝑔] resulting in small systematic but large +4 + +The spectral reconstruction of inclusive rates +John Bulava +3 +− +10 +2 +− +10 +1 +− +10 +1 +0.66 +0.67 +0.68 +0.69 +0.7 +0.71 +0.72 +0.73 +(E) +ερ + = 0.20 +c +λ + = 0.75m, gauss, +ε +E = 3.0m, +A[q]/A[0] +(E) +ερ +1.5 +− +1 +− +0.5 +− +0 +0.5 +1 +1.5 +0.1 +0.15 +0.2 +0.25 +0.3 +0.35 +0.4 +ε +)/ +ω +(E- +ε +λ +δ +ε +ε +λ +δ +ε +Figure 2: Left: indicative illustration of the trade-off between statistical and systematic errors for a particular +choice of 𝐸 and 𝜖 on a single ensemble. Each point corresponds to a different 𝜆 and the horizontal band +indicates the chosen reconstruction (with 𝜆 = 𝜆c = 0.20) for which statistical errors dominate systematic ones. +Right: for this same setup and 𝜆 = 𝜆c, the reconstructed kernel ˆ𝛿g +𝜖 (𝐸, 𝜔), together with the desired kernel +𝛿g +𝜖 (𝐸 − 𝜔) shown as a solid line. All reconstructions employ the correlator timeslices 𝑡 = 1𝑎, . . . , 160𝑎. +statistical errors. By contrast, large 𝜆 results in small statistical errors but a reconstructed smearing +kernel which does not resemble the desired one. The choice of the parameter 𝜆 is performed +automatically and results in an approximate balance of these two criteria. The effect of varying +𝜆 is illustrated in Fig. 2 together with the reconstructed kernel ˆ𝛿g +𝜖 (𝐸, 𝜔) for a sample setup. The +trade-off between statistical and systematic errors is familiar to lattice field theorists and the left +panel of Fig. 2 resembles the identification of a plateau in effective mass plots. +The procedure described above is performed for a variety of 𝐸 and 𝜖, and for all four smearing +kernels. Next, finite volume effects must be assessed and the continuum limit taken independently +for each 𝐸, 𝜖, and kernel. Finite-volume effects are assessed at a single lattice spacing by simulating +two additional ensembles with doubled spatial and temporal extents, respectively. The differences +Δ𝐿,𝑇 between the spectral reconstruction on the doubled lattices divided by the statistical error are +shown in Fig. 3, which show (at most) moderately significant hints for finite-𝐿 effects at energies +near the two-particle production threshold. +With the finite-volume effects demonstrably controlled for the (𝐸, 𝜖) values and the kernels in +question, the continuum limit can be investigated. Cutoff effects for ‘on-shell’ quantities in the two- +dimensional O(3) sigma model have a long history, due to their apparently linear behaviour which +is caused by large logarithmic corrections [14]. Unfortunately, the analysis there is incomplete +for the ‘off-shell’ smeared spectral density considered here. In order to explore the influence of +logarithmic cutoff effects, the fit forms +𝑄(𝑎) = 𝑄(0) + 𝐶𝑎2𝛽𝑟, +𝑟 = 0, 3, 6 +(13) +are explored to extrapolate the smeared spectral densities to the continuum limit. A comparison +of the extrapolation forms is shown in Fig. 4. The continuum limits are generally mild and well- +constrained by the data, although the slope becomes steeper for increasing 𝐸. +Given the assessment of systematic errors due to spectral reconstruction, finite 𝐿 and 𝑇 effects, +and finite lattice spacing, it is time to confront the computations of 𝜌x +𝜖 (𝐸) with the exact spectral +density 𝜌(𝜔) (comprised of the two-, four-, and six-particle contributions) smeared with the exact +5 + +The spectral reconstruction of inclusive rates +John Bulava +Figure 3: The difference Δ𝐿,𝑇 between spectral reconstruction on ensembles using 𝐿 and 2𝐿 (top row), and +using ensembles with 𝑇 and 2𝑇 in the bottom row. In both cases Δ𝐿,𝑇 is divided by the statistical error on +the smaller ensemble. Perhaps some marginally significant hints for finite-𝐿 effects are observed at small 𝐸 +near the two-particle production threshold. +Figure 4: The continuum limit for a single 𝐸, 𝜖, and smearing kernel using the ansatz of Eq. 13. The shaded +band indicates the fit, and the horizontal dotted region the extrapolated value for 𝑟 = 3, which is taken as the +final result. +6 + +The spectral reconstruction of inclusive rates +John Bulava +Figure 5: Lattice results for 𝜌x +𝜖 (𝐸) in the continuum limit (the data points shown in the legend) compared +against the exact spectral density including two-, four-, and six-particle contributions smeared with the exact +kernel 𝛿x +𝜖 (𝐸 − 𝜔). The exact results are shown as lines in the top row, and the bottom row shows the ‘pull’ +between the numerical data and the exact result, divided by the statistical and systematic error combined +in quadrature. A naive histogram of the differences, which ignores correlations among the data, is shown +horizontally in the bottom row and approximately resembles the unit gaussian. +smearing kernel 𝛿x +𝜖 (𝐸 − 𝜔). +Such a comparison is performed in Fig. 5 where the numerical +computations are demonstrably consistent with the exact results, within the quoted errors. These +errors take into account the statistical errors due to the reconstruction, with any residual systematic +errors from finite-𝐿,𝑇 effects and the continuum limit added in quadrature. +At this point the verification of the spectral reconstruction approach of Ref. [10] is complete. +Smeared spectral densities in the two-dimensional O(3) sigma model have been reconstructed with +smearing kernels specified a priori, which are consistent with the exact result after the continuum +limit has been taken. Consider now the 𝜖 → 0 limit in Eq. 5. For this, an important property of the +unsmeared spectral density evident in Fig. 1 is required, namely that it varies increasingly slowly +with increasing 𝐸. This circumvents the limitations in reconstructing kernels with a fixed 𝜖 and +increasing 𝐸 evident in Fig. 5: larger smearing widths are sufficient at larger 𝐸. To this end, the +smearing width is scaled 𝜖 ∝ (𝐸 −2𝑚). Also, rather than using a single smearing kernel, 𝜌x +𝜖 (𝐸) for +all kernels are used to perform constrained extrapolations. For this the small-𝜖 expansion is useful +𝜌x +𝜖 (𝐸) ≡ +ˆ ∞ +0 +𝑑𝜔 𝛿x +𝜖 (𝐸 − 𝜔) 𝜌(𝜔) = 𝜌(𝐸) + +∞ +∑︁ +𝑘=1 +𝑤x +𝑘𝑎𝑘(𝐸)𝜖 𝑘 , +(14) +7 + +The spectral reconstruction of inclusive rates +John Bulava +x +𝑤x +𝑘, even 𝑘 +𝑤x +𝑘, odd 𝑘 +𝑤x +1 +𝑤x +2 +𝑤x +3 +𝑤x +4 +g +𝑘! +(−2)𝑘/2(𝑘/2)! +0 +0 +−1 +0 +3 +c0 +1 +1 +1 +1 +1 +1 +c1 +(1 − 𝑘) +(1 − 𝑘) +0 +−1 +−2 +−3 +c2 +1 +3 (𝑘 − 3)(𝑘 − 1) +1 +3 (𝑘 − 3)(𝑘 − 1) +0 +−1/3 +0 +1 +Table 1: The kernel-dependent coefficients 𝑤x +𝑘 appearing in the small-𝜖 expansion of Eq. (14). For the c1 +and c2 kernels, 𝑤c1 +3 and 𝑤c2 +5 (respectively) are the non-zero coefficients with lowest odd order. +where the contribution at the 𝑘th order in 𝜖 is the product of a kernel-independent factor +𝑎𝑘(𝐸) = +������ +������ +(−1)𝑘/2 +𝑘! +� +𝑑 +𝑑𝐸 +� 𝑘 +𝜌(𝐸) , +𝑘 even +lim𝜂→0+ (−1) (𝑘−1)/2 +2𝜋 +´ ∞ +−∞ d𝜔 𝜌(𝐸+𝜔)+𝜌(𝐸−𝜔) +(𝜔+𝑖𝜂)𝑘+1 +, +𝑘 odd +. +(15) +which depends on the unsmeared spectral density, and a kernel-independent piece 𝑤(x) +𝑘 +which is +however independent of 𝜌(𝜔). The 𝑤(x) +𝑘 +for the kernels used here are given for all orders in Tab. 1. +The c0 kernel is however not practically useful in such extrapolations due to the O(𝜖) term. +A representative constrained extrapolation, in which all kernels (apart from c0) are used to fit +for 𝜌(𝐸) and the 𝑎𝑘(𝐸) up to a certain order, is shown in Fig. 6. A final estimate for 𝜌(𝐸) is chosen +with a statistical error larger than the variation between different extrapolation orders and ranges. +Repeating this procedure for all values of 𝐸 yields the final results for the spectral density 𝜌(𝐸) +shown in Fig. 10. Not only do the numerical results agree with the exact spectral density including +two-, four-, and six-particle contributions, but differ significantly from the two-particle contribution +alone, indicating the sensitivity to four-particle states. Furthermore, the largest energy of 𝐸 = 40𝑚 +is statistically consistent with the two-loop perturbative result, demonstrating that 𝜌(𝐸) has been +computed up to the onset of the perturbative regime. +3. +Prospects for QCD +It is in principle straightforward to adopt the analysis of the O(3) sigma model in Sec. 2 to the +lattice QCD computation of current spectral densities. However, while it is difficult to compare +the density of finite-volume states in one and three spatial dimensions, the O(3) model setup with +𝑚𝐿 ≈ 30 may be difficult to achieve in QCD. Fortunately, the masterfield paradigm [15–17] offers +the possibility of large lattice volumes by accumulating statistics from widely-separated space-time +regions rather than widely-separated Markov chain elements. +Work in this direction has been detailed at this conference in talks by M. Cè and P. Fritzsch. +This section describes preliminary work toward the spectral reconstruction of the isovector vector +8 + +The spectral reconstruction of inclusive rates +John Bulava +Figure 6: Left: a sample constrained extrapolation using the known coefficients in Tab. 1 up to and including +O(𝜖4) terms for a fixed energy 𝐸 = 14𝑚. The relative fit ranges of the different smearing kernels are adjusted +so that each kernel has an equal amount of support between the two-particle threshold 2𝑚 and 𝐸. Right: +variation of the extrapolated value of 𝜌(𝐸) for different extrapolation ranges and orders. The final result is +conservatively taken as the horizontal shaded region. +Figure 7: Left: a selection of some of values of 𝜖 (given in the legend) used in the 𝜖 → 0 extrapolation, +together with the exact smeared spectral density shown as solid lines for the gaussian kernel. Right: the +final extrapolated results for 𝜌(𝐸) together with the exact two-particle contribution to the spectral density +and the sum of the two-, four-, and six-particle contributions. The two-loop perturbative spectral density is +also shown. +current spectral density with the collaborators and setup mentioned in those talks. Using 𝑁f = 2+1 +dynamical flavors of stabilized Wilson fermions [17] at 𝑎 = 0.09 fm, two ensembles were generated +with (𝐿/𝑎)4 = 964 and 1924. The analysis described below is based on two and five thermalized, +widely separated configuations on the 𝐿/𝑎 = 96 and 192 ensembles, respectively. Details about the +construction of the correlators and the estimation of the statistical errors were given by M. Cè. For +the data presented here, a variant of the bootstrap procedure is employed. +As suggested in Sec. 1, the prototypical QCD analogue of Sec. 2 is the hadronic component +to 𝑒+𝑒− → hadrons, which can be obtained by solving the inverse problem of the euclidean +current-current correlator projected onto zero spatial momentum in Eq. 3. However, including both +the isoscalar and isovector components of the electromagnetic current requires valence quark-line +9 + +The spectral reconstruction of inclusive rates +John Bulava +disconnected Wick contractions, incurring additional computational cost and statistical variance. +Consider then the simpler case of the isovector-vector correlator. Phenomenologically this spectral +density can be accessed directly from hadronic decays of the tau lepton [18]. A state-of-the-art +phenomenological determination of the isovector-vector spectral density is performed in Ref. [19]. +The spectral reconstruction approach of Sec. 2 is adopted nearly identically here, apart from +some key differences. +First, the basis functions provided by the correlator data in Sec. 2 are +𝑏𝑡 (𝜔) = e−𝜔𝑡 + e−𝜔(𝑇 −𝑡), but those employed in this analysis from Eq. 3 are 𝑏𝑡 (𝜔) = 𝜔2 e−𝜔𝑡. +The flexibility of the formalism of Sec. 2 to handle these different basis functions is an advantage +over the Chebyshev approach of Ref. [7]. Also, for these large lattices the finite temporal extent +can be demonstrably ignored. For a first test of the approach in QCD, only the gaussian smearing +kernel from Eq. 9 is considered. All correlator timeslices from 𝑡min = 𝑎 to 𝑡max = 35𝑎 are used in +the reconstruction, and all arithmetic operations are performed with 400 bits of computer precision +using the Arb library [20]. +Another innovation for this analysis compared to Sec. 2 is the procedure for choosing the 𝜆 at +which statistical errors dominate the systematic errors. As suggested by the left panel in Fig. 2, the +procedure in Sec. 2 which balances the two functionals 𝐴[𝑔]/𝐴[0] and 𝐵[𝑔] from Eq. 11 is perhaps +over-conservative and somewhat arbitrary. The alternative approach employed here makes use of +one of the possible constraints introduced in Ref. [11]. By the addition of a lagrange multiplier, it is +possible to enforce constraints on the reconstructed smearing kernel ˆ𝛿g +𝜖 (𝐸, 𝜔). Ref. [11] describes +how to impose the coincidence of the reconstructed and desired kernels at a particular point +ˆ𝛿g +𝜖 (𝐸, 𝜔∗) = 𝛿g +𝜖 (𝐸 − 𝜔∗). +(16) +Although Ref. [11] only considers 𝜔 = 𝐸, the generalization to arbitrary 𝜔∗, even outside the +interval [𝐸0, ∞), is straightforward. +Using this ‘equal value’ constraint on the reconstructed kernel, it is possible to estimate how +small 𝐴[𝑔]/𝐴[0] must be for the statistical errors to dominate. An ‘ensemble’ of reconstructions +are performed with different values of 𝜔∗, in addition to the unconstrained one. The systematic error +estimate is then obtained from the variation of ˆ𝜌g +𝜖 (𝐸) among this ensemble at similar 𝐴[𝑔]/𝐴[0]. +The point at which this variation is smaller than the statistical error on the unconstrained result is +taken as the optimal reconstruction. Of course this procedure depends on the ensemble of constraint +points {𝜔∗} which are considered. However, it is sensitive the unsmeared spectral density 𝜌(𝜔), in +contrast to the approach of Ref. [11]. If additional values of 𝜔∗ are added for which 𝜌(𝜔∗) has little +support, these will likely differ little from the unconstrained case, apart from possible variations in +ˆ𝛿g +𝜖 (𝐸, 𝜔) away from 𝜔∗ induced by the constraint at 𝜔∗. An illustration of this procedure is given +in Fig. 8. +After applying the procedure discussed above for a variety of 𝜖 and 𝐸 for the gaussian kernel +on each of the 𝐿 = 9 fm and 18 fm ensembles, finite volume effects can be examined. This is done +in Fig. 9, using 𝑣1(𝑠) = 2𝜋2𝜌(𝑠) for a variety of energies at two different values of the smearing +width 𝜖. While there are possibly hints of finite-volume effects at the one-to-few sigma level at both +𝜖, these effects are generally under control. Additional volumes will however elucidate the situation +in the future. +We finally turn to a comparison of the reconstructed isovector vector spectral density with +experiment [21]. For this a preliminary value of the vector current renormalization factor 𝑍𝑉 is +10 + +The spectral reconstruction of inclusive rates +John Bulava +3 +− +10 +2 +− +10 +1 +− +10 +0.05 +0.06 +0.07 +0.08 +0.09 +0.1 +0.11 +0.12 +0.13 +A[g]/A[0] +(E) +ε +g +ρ +π + = 0.5m +ε +, +π +E = 2.5m +none +π +2.5m +π +2m +π +3m +π +4m +π +5m +π +6m +π +7m +π +8m +π +9m +π +10m +π +11m +π +12m +2 +− +0 +2 +4 +6 +8 +10 +12 +0.05 +− +0 +0.05 +0.1 +0.15 +0.2 +0.25 +0.3 +0.35 +0.4 +ε + - E)/ +ω +( +εδ +ε +ε +g +δ +ε +none +π +2.5m +π +2m +π +3m +π +4m +π +5m +π +6m +π +7m +π +8m +π +9m +π +10m +π +11m +π +12m +Figure 8: Illustration of the method for choosing the optimal tradeoff parameter 𝜆 described in the text for the +gaussian reconstruction on the 𝐿 = 18 fm ensemble with 𝜖 = 0.5𝑚 𝜋 and 𝐸 = 2.5𝑚 𝜋. Left: different values of +𝜆 for the unconstrained reconstruction and reconstructed kernels constrained to agree with 𝛿g +𝜖 (𝐸 − 𝜔∗) at the +various values of 𝜔∗ indicated in the legend. The horizontal band indicates the chosen estimate for which the +statistical error on the unconstrained reconstruction covers the spread given by the ensemble of constraints. +For comparison, the method for balancing statistical and systematic errors of Sec. 2 (and Ref. [11]) chooses +the unconstrained point with 𝐴[𝑔]/𝐴[0] ≈ 0.0016. Right: the reconstructed smearing kernel compared +to the desired gaussian (solid line) for each member of the constraint ensemble near the chosen value of +𝐴[𝑔]/𝐴[0] indicated by the horizontal band in the left plot. The residual variation between the different +constraints is evidently smaller than the statistical error on the constrained reconstruction, although perhaps +additional values of 𝜔∗ near 𝜔∗ − 𝐸 ≈ 2𝜖 should be added in the future. +0 +0.2 +0.4 +0.6 +0.8 +1 +0 +0.2 +0.4 +0.6 +0.8 +1 +1.2 +1.4 +1.6 +1.8 +) +2 +s (GeV +(s) +ε +1, +g +v +π + = 0.5m +ε +L = 9 fm +L = 18 fm +0 +0.5 +1 +1.5 +2 +2.5 +0.1 +0.2 +0.3 +0.4 +0.5 +0.6 +0.7 +0.8 +0.9 +1 +) +2 +s (GeV +(s) +ε +1, +g +v +π + = 1.0m +ε +L = 9 fm +L = 18 fm +Figure 9: Finite volume effects in the reconstructed vector isovector spectral density on the two masterfield +ensembles described in the text. Gaussian smearing is used for a variety of energies at smearing width +𝜖 = 0.5𝑚 𝜋, shown on the left, and 𝜖 = 𝑚 𝜋, shown on the right. These effects are generally small apart from +some mild discrepancies near 𝑠 = 0.4 GeV2 for 𝜖 = 0.5𝑚 𝜋 and 𝑠 = 0.75GeV2 for 𝜖 = 𝑚 𝜋. Additional smaller +lattice volumes could further examine these potential finite volume effects. +11 + +The spectral reconstruction of inclusive rates +John Bulava +0 +0.5 +1 +1.5 +2 +2.5 +3 +3.5 +4 +0 +0.5 +1 +1.5 +2 +2.5 +3 +) +2 +s (GeV +(s) +ε +1, +g +v + = 265 MeV, a = 0.09 fm +π +L = 18 fm, m +π + = 0.5m +ε +π + = 0.75m +ε +π + = 1.0m +ε +π + = 1.25m +ε +0 +0.5 +1 +1.5 +2 +2.5 +3 +0 +0.5 +1 +1.5 +2 +2.5 +3 +3.5 +τ– → V–ντ +π–π0 +π–3π0, 2π–π+π0, (6π)– +ωπ–, ηπ–π0, (KK +–(π))– +QCD prediction +parton model +s (GeV2) +v1(s) +ALEPH +Figure 10: +Comparison of the lattice QCD results for the isovector vector spectral density on the larger +𝐿/𝑎 = 192 master field ensemble discussed in the text (shown on the left), with experimental results for +hadronic 𝜏-decays on the right. Statistical errors due to the scale setting and the renormalization of the vector +current are not yet taken into account. +employed, which was presented at this conference by J. Kuhlmann. The statistical error on 𝑍𝑉 +is ignored in these preliminary results, as is the error on the lattice scale, which is crudely set +by assuming 𝑚 𝜋 = 265 MeV. The results are summarized in Fig. 10, and broadly resemble the +experimental plot, with a narrow peak likely due to the 𝜌(770) vector resonance followed by a slow +rise due to four-particle states. Particularly interesting is the mild indication of this rise in the lattice +QCD data, which (like in the O(3) model) show the effects of four-pion states. It should be noted +that the current state-of-the-art for the finite-volume approach to lattice QCD scattering amplitudes +is the numerical computation of (exclusive rather than inclusive) three-pion scattering amplitudes3. +4. +Conclusions +Alternative techniques are required to compute phenomena arising from many hadronic states. +The spectral reconstruction of smeared spectral densities from euclidean correlator data not only +bridges the gap between finite and infinite volume, but also helps to regulate the ill-posed nature +of the problem. The application discussed here is the computation of inclusive rates summed over +all final states produced by an external current. In the two-dimensional O(3) model, after taking +the continuum limit, the algorithm presented in Sec. 2 (first proposed for lattice field theory in +Ref. [10]) results in smeared spectral densities consistent with known analytic results. Spectral +reconstruction algorithms based on the Backus-Gilbert approach [5, 6] enable a precise definition +of the smeared spectral density that has been computed, while the modification of Ref. [9] further +allows the a priori specification of a desired smearing kernel. The simple linear ansatz on which +these approaches are based enables the direct expression for the smearing kernel given in Eq. 6. +Smeared spectral densities are useful not only for inclusive decay rates. An incomplete list +of recent applications of the Backus-Gilbert approach includes the nucleon hadronic tensor [24], +3For a review of the current status of computations of three-particle scattering amplitudes using the finite-volume +approach, see the presentation by F. Romero-López and the recent reviews in Refs. [22, 23]. +12 + +The spectral reconstruction of inclusive rates +John Bulava +the determination of PDFs from Ioffe time data [25], and the photon emissivity of the quark- +gluon plasma [26]. These applications do not employ the algorithmic variant enabling a priori +specification of the smearing kernel, but could perhaps benefit from it in the future. This a priori +specification of the kernel enabled in Refs. [9, 10] is also present in the Chebyshev approach of +Ref. [7], but the stabilizing effect of the functional 𝐵[𝑔] in Eq. 11 is naively not present. The work +of Ref. [8] is a first step towards comparing the two approaches. +The advantages of the a priori approach are leveraged in the two-dimensional O(3) model to +perform joint constrained 𝜖 → 0 extrapolations with several different kernels. The presence of the +narrow 𝜌(770) peak in the isovector vector spectral density in QCD discussed in Sec. 3 complicates +such an extrapolation and more work is required toward an implementation. A similar approach has +been employed to compute inclusive decay rates in Refs. [27, 28], and taken up by additional groups +in Refs. [8, 29, 30]. Work towards computing the 𝑅-ratio was reported in this conference [31], as +well as a similar analyses of the total hadronic tau decay rate [32, 33], albeit with a wider gaussian +smearing radius than employed here. The interplay between the spatial extent and the smallest +achievable smearing width requires further study. Furthermore, the a priori approach of Ref. [7] +led to the direct computation of the Borel transform of a current-current correlator required for +the Shifman-Vainshtein-Zakharov sum rule in Ref. [34], possibly opening the door for additional +interaction between lattice QCD and QCD sum rules. Another interesting application is pursued in +Ref. [35] in which fits to smeared spectral densities are considered as an alternative to ‘standard’ +spectroscopy. Additional applications could appear in the future. The a priori approach in principle +enables the computation of exclusive scattering amplitudes using Refs. [36, 37], while the formalism +for inclusive rates was developed already in Refs. [3, 38]. +References +[1] A. Pich, Precision physics with inclusive QCD processes, Prog. Part. Nucl. Phys. 117 (2021) +103846, [arXiv:2012.04716]. +[2] E. C. Poggio, H. R. Quinn, and S. Weinberg, Smearing the Quark Model, Phys. Rev. D 13 +(1976) 1958. +[3] M. T. Hansen, H. B. Meyer, and D. Robaina, From deep inelastic scattering to heavy-flavor +semileptonic decays: Total rates into multihadron final states from lattice QCD, Phys. Rev. D +96 (2017), no. 9 094513, [arXiv:1704.08993]. +[4] O. Kaczmarek and H.-T. Shu, Spectral and Transport Properties from Lattice QCD, Lect. +Notes Phys. 999 (2022) 307–345, [arXiv:2206.14676]. +[5] G. Backus and F. Gilbert, The resolving power of gross earth data, Geophysical Journal +International 16 (1968), no. 2 169–205. +[6] G. Backus and F. Gilbert, Uniqueness in the inversion of inaccurate gross earth data, +Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and +Engineering Sciences 266 (1970), no. 1173 123–192, +[http://rsta.royalsocietypublishing.org/content/266/1173/123.full.pdf]. +13 + +The spectral reconstruction of inclusive rates +John Bulava +[7] G. Bailas, S. Hashimoto, and T. Ishikawa, Reconstruction of smeared spectral function from +Euclidean correlation functions, PTEP 2020 (2020), no. 4 043B07, [arXiv:2001.11779]. +[8] A. Barone, S. Hashimoto, A. Jüttner, T. Kaneko, and R. Kellermann, Inclusive semi-leptonic +𝐵(𝑠) mesons decay at the physical 𝑏 quark mass, in 39th International Symposium on Lattice +Field Theory, 11, 2022. arXiv:2211.15623. +[9] F. Pijpers and M. Thompson, Faster formulations of the optimally localized averages method +for helioseismic inversions, Astronomy and Astrophysics 262 (08, 1992) L33–L36. +[10] M. Hansen, A. Lupo, and N. Tantalo, Extraction of spectral densities from lattice correlators, +Phys. Rev. D 99 (2019), no. 9 094508, [arXiv:1903.06476]. +[11] J. Bulava, M. T. Hansen, M. W. Hansen, A. Patella, and N. Tantalo, Inclusive rates from +smeared spectral densities in the two-dimensional O(3) non-linear 𝜎-model, JHEP 07 +(2022) 034, [arXiv:2111.12774]. +[12] M. Luscher and U. Wolff, How to Calculate the Elastic Scattering Matrix in Two-dimensional +Quantum Field Theories by Numerical Simulation, Nucl. Phys. B339 (1990) 222–252. +[13] J. Balog and M. Niedermaier, Off-shell dynamics of the O(3) NLS model beyond Monte +Carlo and perturbation theory, Nucl. Phys. B 500 (1997) 421–461, [hep-th/9612039]. +[14] J. Balog, F. Niedermayer, and P. Weisz, The Puzzle of apparent linear lattice artifacts in the +2d non-linear sigma-model and Symanzik’s solution, Nucl. Phys. B 824 (2010) 563–615, +[arXiv:0905.1730]. +[15] M. Lüscher, Stochastic locality and master-field simulations of very large lattices, EPJ Web +Conf. 175 (2018) 01002, [arXiv:1707.09758]. +[16] L. Giusti and M. Lüscher, Topological susceptibility at 𝑇 > 𝑇c from master-field simulations +of the SU(3) gauge theory, Eur. Phys. J. C 79 (2019), no. 3 207, [arXiv:1812.02062]. +[17] A. Francis, P. Fritzsch, M. Lüscher, and A. Rago, Master-field simulations of O(𝑎)-improved +lattice QCD: Algorithms, stability and exactness, Comput. Phys. Commun. 255 (2020) +107355, [arXiv:1911.04533]. +[18] M. Davier, A. Hocker, and Z. Zhang, The Physics of Hadronic Tau Decays, Rev. Mod. Phys. +78 (2006) 1043–1109, [hep-ph/0507078]. +[19] D. Boito, M. Golterman, K. Maltman, S. Peris, M. V. Rodrigues, and W. Schaaf, Strong +coupling at the 𝜏-mass scale from an improved vector isovector spectral function, in 16th +International Workshop on Tau Lepton Physics , 12, 2021. arXiv:2112.05413. +[20] F. Johansson, Arb: efficient arbitrary-precision midpoint-radius interval arithmetic, IEEE +Transactions on Computers 66 (2017) 1281–1292. +14 + +The spectral reconstruction of inclusive rates +John Bulava +[21] ALEPH Collaboration, S. Schael et al., Branching ratios and spectral functions of tau +decays: Final ALEPH measurements and physics implications, Phys. Rept. 421 (2005) +191–284, [hep-ex/0506072]. +[22] M. T. Hansen and S. R. Sharpe, Lattice QCD and Three-particle Decays of Resonances, Ann. +Rev. Nucl. Part. Sci. 69 (2019) 65–107, [arXiv:1901.00483]. +[23] M. Mai, U.-G. Meißner, and C. Urbach, Towards a theory of hadron resonances, +arXiv:2206.01477. +[24] XQCD Collaboration, J. Liang, T. Draper, K.-F. Liu, A. Rothkopf, and Y.-B. Yang, Towards +the nucleon hadronic tensor from lattice QCD, Phys. Rev. D 101 (2020), no. 11 114503, +[arXiv:1906.05312]. +[25] J. Karpie, K. Orginos, A. Rothkopf, and S. Zafeiropoulos, Reconstructing parton distribution +functions from Ioffe time data: from Bayesian methods to Neural Networks, JHEP 04 (2019) +057, [arXiv:1901.05408]. +[26] M. Cè, T. Harris, A. Krasniqi, H. B. Meyer, and C. Török, Photon emissivity of the +quark-gluon plasma: A lattice QCD analysis of the transverse channel, Phys. Rev. D 106 +(2022), no. 5 054501, [arXiv:2205.02821]. +[27] P. Gambino, S. Hashimoto, S. Mächler, M. Panero, F. Sanfilippo, S. Simula, A. Smecca, and +N. Tantalo, Lattice QCD study of inclusive semileptonic decays of heavy mesons, JHEP 07 +(2022) 083, [arXiv:2203.11762]. +[28] P. Gambino and S. Hashimoto, Inclusive Semileptonic Decays from Lattice QCD, Phys. Rev. +Lett. 125 (2020), no. 3 032001, [arXiv:2005.13730]. +[29] R. Kellermann, A. Barone, S. Hashimoto, A. Jüttner, and T. Kaneko, Inclusive semi-leptonic +decays of charmed mesons with Möbius domain wall fermions, in 39th International +Symposium on Lattice Field Theory, 11, 2022. arXiv:2211.16830. +[30] P. Gambino, S. Hashimoto, S. Mächler, M. Panero, F. Sanfilippo, S. Simula, A. Smecca, and +N. Tantalo, Inclusive semileptonic 𝐵-decays from lattice QCD, in 39th International +Symposium on Lattice Field Theory, 11, 2022. arXiv:2211.11833. +[31] C. Alexandrou et al., Lattice calculation of the R-ratio smeared with Gaussian kernel, in 39th +International Symposium on Lattice Field Theory, 12, 2022. arXiv:2212.12493. +[32] A. Evangelista, R. Frezzotti, G. Gagliardi, V. Lubicz, F. Sanfilippo, S. Simula, and +N. Tantalo, Direct lattice calculation of inclusive hadronic decay rates of the 𝜏 lepton, in +39th International Symposium on Lattice Field Theory, 1, 2023. arXiv:2301.00796. +[33] C. Alexandrou et al., Probing the 𝑅-ratio on the lattice, arXiv:2212.08467. +[34] T. Ishikawa and S. Hashimoto, Spectral sum of current correlators from lattice QCD, Phys. +Rev. D 104 (2021), no. 7 074521, [arXiv:2103.06539]. +15 + +The spectral reconstruction of inclusive rates +John Bulava +[35] L. Del Debbio, A. Lupo, M. Panero, and N. Tantalo, Multi-Representation Dynamics of SU(4) +Composite Higgs Models: Chiral Limit and Spectral Reconstructions, arXiv:2211.09581. +[36] J. Bulava and M. T. Hansen, Scattering amplitudes from finite-volume spectral functions, +Phys. Rev. D 100 (2019), no. 3 034521, [arXiv:1903.11735]. +[37] M. Bruno and M. T. Hansen, Variations on the Maiani-Testa approach and the inverse +problem, JHEP 06 (2021) 043, [arXiv:2012.11488]. +[38] H. Fukaya, S. Hashimoto, T. Kaneko, and H. Ohki, Towards fully nonperturbative +computations of inelastic ℓ𝑁 scattering cross sections from lattice QCD, Phys. Rev. D 102 +(2020), no. 11 114516, [arXiv:2010.01253]. +16 + diff --git a/U9E2T4oBgHgl3EQftwgF/content/tmp_files/load_file.txt b/U9E2T4oBgHgl3EQftwgF/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..297584739150e7470ec87b2cdcf5c98597fa77b9 --- /dev/null +++ b/U9E2T4oBgHgl3EQftwgF/content/tmp_files/load_file.txt @@ -0,0 +1,684 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf,len=683 +page_content='The spectral reconstruction of inclusive rates John Bulava 𝑎,∗ 𝑎Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany E-mail: john.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='bulava@desy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='de A recently re-discovered variant of the Backus-Gilbert algorithm for spectral reconstruction en- ables the controlled determination of smeared spectral densities from lattice field theory correlation functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' A particular advantage of this approach is the a priori specification of the kernel with which the underlying spectral density is smeared, allowing for variation of its peak position, smearing width, and functional form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' If the unsmeared spectral density is sufficiently smooth in the neighborhood of a particular energy, it can be obtained from an extrapolation to zero smearing-kernel width at fixed peak position.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' A natural application for this approach is scattering processes summed over all hadronic final states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' As a proof-of-principle test, an inclusive rate is computed in the two-dimensional O(3) sigma model from a two-point correlation function of conserved currents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' The results at finite and zero smearing radius are in good agreement with the known analytic form up to energies at which 40-particle states contribute, and are sensitive to the 4-particle contribution to the inclusive rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' The straight-forward adaptation to compute the 𝑅-ratio in lattice QCD from two-point functions of the electromagnetic current is briefly discussed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' The 39th International Symposium on Lattice Field Theory, 8th-13th August, 2022, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany ∗Speaker © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='0 International License (CC BY-NC-ND 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' https://pos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='sissa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='it/ arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='04072v1 [hep-lat] 10 Jan 2023 The spectral reconstruction of inclusive rates John Bulava 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Introduction Lattice QCD simulations proceed by computing 𝑛-point euclidean correlation functions of (quasi-) local interpolating operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Single-hadron states and finite-volume few-hadron states are isolated from correlation functions in the asymptotic large euclidean time limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' However, some hadronic phenomena are best studied by other means.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' As an example, this work considers inclusive rates defined as a sum over all hadronic final states produced by an external current.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' At large center-of-mass energies, a finite-volume approach to such a process is impractical since it requires the isolation of all individual finite-volume levels with arbitrarily many particles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Such processes are a cornerstone of QCD and connect the low-energy hadronic and high-energy perturbative regimes [1], serving as a manifestation of ‘quark-hadron duality’ [2] whereby perturbative QCD in terms of quarks and gluons becomes increasingly effective at computing inclusive rates summed over final states consisting entirely of hadrons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' For concreteness, consider the QCD part of the process 𝑒+𝑒− → hadrons 𝜌(𝑠) = 𝑅(𝑠) 12𝜋2 , 𝑅(𝑠) = 𝜎 [𝑒+𝑒− → hadrons] (𝑠) 4𝜋𝛼em(𝑠)2/(3𝑠) , (1) 𝜌𝜇𝜈(𝑘) = 1 2𝜋 ˆ 𝑑4𝑥 𝑒−𝑖𝑘·𝑥⟨Ω| ˆ𝑗em 𝜇 (𝑥) ˆ𝑗em 𝜈 (0)|Ω⟩ = (𝑔𝜇𝜈𝑘2 − 𝑘𝜇𝑘𝜈) 𝜌(𝑘2), (2) where ˆ𝑗em 𝜇 is the quark-level electromagnetic current.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' The desired inclusive rate is given by the spectral density 𝜌(𝑠), which is also present in the analogous infinite-volume Euclidean correlator 𝐶(𝑡) = ˆ 𝑑3𝒙 ⟨Ω| ˆ𝑗em 𝑧 (𝒙) 𝑒− ˆ𝐻𝑡 ˆ𝑗em 𝑧 (0)†|Ω⟩ = ˆ ∞ 0 𝑑𝜔 𝜔2𝜌(𝜔2) 𝑒−𝜔𝑡 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' (3) The direct determination of 𝜌(𝑠) in lattice QCD is not straightforward, however.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' First, the inversion of integral equations like Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 3 using 𝐶(𝑡) evaluated at a finite number of discrete times with statistical errors is notoriously ill-posed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Furthermore, the finite volume introduces additional complication.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Even if the inverse problem were solved successfully and the finite-volume euclidean correlator 𝐶𝐿(𝑡) used to determine its spectral density 𝜌𝐿(𝑠), it differs qualitatively from its infinite- volume counterpart 𝜌(𝑠).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' While 𝜌𝐿(𝑠) is a sum over Dirac 𝛿-functions for each finite-volume state, 𝜌(𝑠) is smooth apart from non-analyticities due to the opening of thresholds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' In no way does 𝜌𝐿(𝑠) ‘approach’ 𝜌(𝑠) as 𝐿 → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' The bridge between finite and infinite volume is made more effectively using the smeared spectral density 𝜌𝜖 (𝐸) = ˆ ∞ 0 𝑑𝜔 𝛿𝜖 (𝐸 − 𝜔) 𝜌(𝜔) , (4) where lim𝜖 →0 𝛿𝜖 (𝑥) = 𝛿(𝑥), 𝛿(𝑥) is the Dirac-delta function, and ´ ∞ −∞ 𝑑𝑥 𝛿𝜖 (𝑥) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' This solves (in principle) both of the difficulties mentioned above: the inverse problem can be made arbitrarily mild by increasing in the smearing width 𝜖 and 𝜌𝐿,𝜖 (𝐸) approaches its infinite-volume counterpart in a well-defined manner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' The goal is now to take the ordered double limit [3] 𝜌(𝐸) = lim 𝜖 →0+ lim 𝐿→∞ 𝜌𝐿,𝜖 (𝐸), (5) 2 The spectral reconstruction of inclusive rates John Bulava the asymptotic corrections to which are discussed in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Although spectral reconstruction has a long history in lattice QCD, particularly at finite temper- ature [4], the treatment of the inverse problem in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 3 demands special care.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' In order to define the result of the spectral reconstruction procedure, precise knowledge of the smearing kernel in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 4 is required.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' As detailed in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 2, the Backus-Gilbert approach [5, 6] is suitable in this respect2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Since the estimator for the smeared spectral density ˆ𝜌𝜖 (𝐸) is simply a linear combination of the input correlator data ˆ𝜌𝜖 (𝐸) = � 𝑡 𝑔𝑡 (𝜖, 𝐸)𝐶(𝑡), the resultant smearing kernel is given by the same linear combination of decaying exponentials in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 3 ˆ𝜌𝜖 (𝐸) = ˆ 𝑑𝜔 ˆ𝛿𝜖 (𝐸, 𝜔) 𝜌(𝜔), ˆ𝛿𝜖 (𝐸, 𝜔) = ∑︁ 𝑡 𝑔𝑡 (𝜖, 𝐸)𝜔2𝑒−𝜔𝑡.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' (6) Explicit knowledge of ˆ𝛿𝜖 (𝐸, 𝜔) is a minimum requirement for a well-defined spectral reconstruction procedure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Naively the Backus-Gilbert approach provides knowledge of the kernel in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 6 only a posteriori for a given choice of coefficients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' However, the coefficients themselves can be chosen to approximate a particular smearing kernel specified a priori [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' This important innovation is employed here and was applied to lattice field theory for the first time in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' In order to understand this reconstruction algorithm, and in particular demonstrate control over the systematic errors, a test in a controlled context is warranted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Such a test has been performed in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' [11] for the two-dimensional O(3) sigma model together with attempts at saturating the ordered double limit of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' The remainder of this work is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' The spectral reconstruction method is presented in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 2 in the context of the O(3) model test mentioned above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Prospects for adapting the method to current correlators in lattice QCD is discussed in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 3 and Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 4 concludes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' O(3) model test This section reviews a spectral reconstruction test which was recently published in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' It employs the spectral reconstruction procedure of Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' [10] in the two-dimensional O(3) sigma model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Consider the standard lattice discretization 𝑆[𝜎] = 𝛽 2 ∑︁ 𝑥∈Λ 𝑎2 ∑︁ 𝜇 ˆ𝜕𝜇𝜎(𝑥) · ˆ𝜕𝜇𝜎(𝑥) = 𝛽 ∑︁ 𝑥∈Λ ∑︁ 𝜇 [1 − 𝜎(𝑥) · 𝜎(𝑥 + 𝑎 ˆ𝜇)] , (7) where 𝜎(𝑥) ∈ R3, |𝜎(𝑥)| = 1, and ˆ𝜕𝜇 𝑓 (𝑥) = 1 𝑎 [ 𝑓 (𝑥 + 𝑎 ˆ𝜇) − 𝑓 (𝑥)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' This model has a conserved current 𝑗 𝑎 𝜇(𝑥) = 𝛽𝜖 𝑎𝑏𝑐𝜎𝑏(𝑥) ˆ𝜕𝜇𝜎𝑐(𝑥) (8) at finite lattice spacing, and possesses a dynamically-generated mass gap 𝑚.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' The total zero spatial momentum euclidean current-current correlation function analogous to Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 3 (but without the factor 1Finite lattice spacing effects must also be removed by taking the continuum limit, which is here performed at fixed 𝜖 and 𝐸.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 2Another spectral reconstruction algorithm for which the smearing kernel is formally known a posteriori is the Chebyshev polynomial approach of Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' [8] compares that approach to the one employed here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 3 The spectral reconstruction of inclusive rates John Bulava n=2 n=4 10 20 30 40 50 μ/m 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='5 ρ(n)(μ) Figure 1: Left: exactly known 𝑛 = 2 and 𝑛 = 4 particle contributions to the (continuum, infinite- volume) spectral density associated with the conserved current in the two-dimensional O(3) sigma model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Contributions from states with more particles are insignificant in the energy range shown here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Right: the four smearing kernels 𝛿x 𝜖 (𝑥), where x = {g, c0, c1, c2}, defined in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 9 plotted against 𝑥 with 𝜖 = 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' of 𝜔2) is computed by numerical simulations using the single-cluster algorithm of Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' A variety of ensembles are generated, with 𝑚𝐿 ≈ 30 − 60 and 𝑎𝑚 ∈ [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='01, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='04] to assess finite volume effects and take the continuum limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' In the continuum the contributions to the associated spectral density 𝜌(𝜔) from each fixed-particle number sector can be computed exactly [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Below energies 𝐸 < 50𝑚, only the 𝑛 = 2 and 𝑛 = 4 particle contributions are significant and are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' In order to demonstrate the a priori specification of the smearing kernel, consider four kernels with different profiles as a function of 𝑥 = 𝐸 − 𝜔: 𝛿g 𝜖 (𝑥) = 1 √ 2𝜋𝜖 exp � − 𝑥2 2𝜖2 � , 𝛿c0 𝜖 (𝑥) = 1 𝜋 𝜖 𝑥2 + 𝜖2 , (9) 𝛿c1 𝜖 (𝑥) = 2 𝜋 𝜖3 (𝑥2 + 𝜖2)2 , 𝛿c2 𝜖 (𝑥) = 8 3𝜋 𝜖5 (𝑥2 + 𝜖2)3 , (10) including the gaussian (denoted ‘g’) and three Cauchy-like kernels denoted ‘c𝑛’, for which 𝑛 = 0, 1, 2 distinguishes the power of the pole.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' These kernels are depicted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' The method advocated in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' [10] to reconstruct the smeared spectral density 𝜌x 𝜖 (𝐸), where x = {g, c0, c1, c2}, is based on two criteria.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' First, the reconstructed smearing kernel ˆ𝛿x 𝜖 (𝐸, 𝜔) should be close to the desired one 𝛿x 𝜖 (𝐸 − 𝜔).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Second, the coefficients {𝑔𝑡 (𝜖, 𝐸)} in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 6 should not induce a large statistical variance on the estimator ˆ𝜌x 𝜖 (𝐸).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' These two considerations are encoded in the functionals 𝐴[𝑔] = ˆ ∞ 𝐸0 𝑑𝜔 � 𝛿x 𝜖 (𝐸 − 𝜔) − ˆ𝛿x 𝜖 (𝐸, 𝜔) �2 , (11) 𝐵[𝑔] = Var[ ˆ𝜌x 𝜖 (𝐸)] = ∑︁ 𝑡𝑡′ 𝑔𝑡 (𝜖, 𝐸) 𝑔𝑡′(𝜖, 𝐸) Cov[𝐶(𝑡), 𝐶(𝑡′)] (12) respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' The coefficients are then chosen to minimize the combination functional 𝐺𝜆[𝑔] = (1− 𝜆)𝐴[𝑔]/𝐴[0] + 𝜆𝐵[𝑔], where the ‘trade-off’ parameter 𝜆 is introduced.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' For small 𝜆, the ‘accuracy’ functional 𝐴[𝑔] takes preference over the ‘precision’ one 𝐵[𝑔] resulting in small systematic but large 4 The spectral reconstruction of inclusive rates John Bulava 3 − 10 2 − 10 1 − 10 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='66 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='67 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='68 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='69 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='71 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='72 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='73 (E) ερ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='20 c λ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='75m, gauss, ε E = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='0m, A[q]/A[0] (E) ερ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='5 − 1 − 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='5 − 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='4 ε )/ ω (E- ε λ δ ε ε λ δ ε Figure 2: Left: indicative illustration of the trade-off between statistical and systematic errors for a particular choice of 𝐸 and 𝜖 on a single ensemble.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Each point corresponds to a different 𝜆 and the horizontal band indicates the chosen reconstruction (with 𝜆 = 𝜆c = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='20) for which statistical errors dominate systematic ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Right: for this same setup and 𝜆 = 𝜆c, the reconstructed kernel ˆ𝛿g 𝜖 (𝐸, 𝜔), together with the desired kernel 𝛿g 𝜖 (𝐸 − 𝜔) shown as a solid line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' All reconstructions employ the correlator timeslices 𝑡 = 1𝑎, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' , 160𝑎.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' statistical errors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' By contrast, large 𝜆 results in small statistical errors but a reconstructed smearing kernel which does not resemble the desired one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' The choice of the parameter 𝜆 is performed automatically and results in an approximate balance of these two criteria.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' The effect of varying 𝜆 is illustrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 2 together with the reconstructed kernel ˆ𝛿g 𝜖 (𝐸, 𝜔) for a sample setup.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' The trade-off between statistical and systematic errors is familiar to lattice field theorists and the left panel of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 2 resembles the identification of a plateau in effective mass plots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' The procedure described above is performed for a variety of 𝐸 and 𝜖, and for all four smearing kernels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Next, finite volume effects must be assessed and the continuum limit taken independently for each 𝐸, 𝜖, and kernel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Finite-volume effects are assessed at a single lattice spacing by simulating two additional ensembles with doubled spatial and temporal extents, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' The differences Δ𝐿,𝑇 between the spectral reconstruction on the doubled lattices divided by the statistical error are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 3, which show (at most) moderately significant hints for finite-𝐿 effects at energies near the two-particle production threshold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' With the finite-volume effects demonstrably controlled for the (𝐸, 𝜖) values and the kernels in question, the continuum limit can be investigated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Cutoff effects for ‘on-shell’ quantities in the two- dimensional O(3) sigma model have a long history, due to their apparently linear behaviour which is caused by large logarithmic corrections [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Unfortunately, the analysis there is incomplete for the ‘off-shell’ smeared spectral density considered here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' In order to explore the influence of logarithmic cutoff effects, the fit forms 𝑄(𝑎) = 𝑄(0) + 𝐶𝑎2𝛽𝑟, 𝑟 = 0, 3, 6 (13) are explored to extrapolate the smeared spectral densities to the continuum limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' A comparison of the extrapolation forms is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' The continuum limits are generally mild and well- constrained by the data, although the slope becomes steeper for increasing 𝐸.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Given the assessment of systematic errors due to spectral reconstruction,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' finite 𝐿 and 𝑇 effects,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' and finite lattice spacing,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' it is time to confront the computations of 𝜌x 𝜖 (𝐸) with the exact spectral density 𝜌(𝜔) (comprised of the two-,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' four-,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' and six-particle contributions) smeared with the exact 5 The spectral reconstruction of inclusive rates John Bulava Figure 3: The difference Δ𝐿,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='𝑇 between spectral reconstruction on ensembles using 𝐿 and 2𝐿 (top row),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' and using ensembles with 𝑇 and 2𝑇 in the bottom row.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' In both cases Δ𝐿,𝑇 is divided by the statistical error on the smaller ensemble.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Perhaps some marginally significant hints for finite-𝐿 effects are observed at small 𝐸 near the two-particle production threshold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Figure 4: The continuum limit for a single 𝐸, 𝜖, and smearing kernel using the ansatz of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' The shaded band indicates the fit, and the horizontal dotted region the extrapolated value for 𝑟 = 3, which is taken as the final result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 6 The spectral reconstruction of inclusive rates John Bulava Figure 5: Lattice results for 𝜌x 𝜖 (𝐸) in the continuum limit (the data points shown in the legend) compared against the exact spectral density including two-, four-, and six-particle contributions smeared with the exact kernel 𝛿x 𝜖 (𝐸 − 𝜔).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' The exact results are shown as lines in the top row, and the bottom row shows the ‘pull’ between the numerical data and the exact result, divided by the statistical and systematic error combined in quadrature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' A naive histogram of the differences, which ignores correlations among the data, is shown horizontally in the bottom row and approximately resembles the unit gaussian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' smearing kernel 𝛿x 𝜖 (𝐸 − 𝜔).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Such a comparison is performed in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 5 where the numerical computations are demonstrably consistent with the exact results, within the quoted errors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' These errors take into account the statistical errors due to the reconstruction, with any residual systematic errors from finite-𝐿,𝑇 effects and the continuum limit added in quadrature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' At this point the verification of the spectral reconstruction approach of Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' [10] is complete.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Smeared spectral densities in the two-dimensional O(3) sigma model have been reconstructed with smearing kernels specified a priori, which are consistent with the exact result after the continuum limit has been taken.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Consider now the 𝜖 → 0 limit in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' For this, an important property of the unsmeared spectral density evident in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 1 is required, namely that it varies increasingly slowly with increasing 𝐸.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' This circumvents the limitations in reconstructing kernels with a fixed 𝜖 and increasing 𝐸 evident in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 5: larger smearing widths are sufficient at larger 𝐸.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' To this end, the smearing width is scaled 𝜖 ∝ (𝐸 −2𝑚).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Also, rather than using a single smearing kernel, 𝜌x 𝜖 (𝐸) for all kernels are used to perform constrained extrapolations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' For this the small-𝜖 expansion is useful 𝜌x 𝜖 (𝐸) ≡ ˆ ∞ 0 𝑑𝜔 𝛿x 𝜖 (𝐸 − 𝜔) 𝜌(𝜔) = 𝜌(𝐸) + ∞ ∑︁ 𝑘=1 𝑤x 𝑘𝑎𝑘(𝐸)𝜖 𝑘 , (14) 7 The spectral reconstruction of inclusive rates John Bulava x 𝑤x 𝑘, even 𝑘 𝑤x 𝑘, odd 𝑘 𝑤x 1 𝑤x 2 𝑤x 3 𝑤x 4 g 𝑘!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' (−2)𝑘/2(𝑘/2)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 0 0 −1 0 3 c0 1 1 1 1 1 1 c1 (1 − 𝑘) (1 − 𝑘) 0 −1 −2 −3 c2 1 3 (𝑘 − 3)(𝑘 − 1) 1 3 (𝑘 − 3)(𝑘 − 1) 0 −1/3 0 1 Table 1: The kernel-dependent coefficients 𝑤x 𝑘 appearing in the small-𝜖 expansion of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' (14).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' For the c1 and c2 kernels, 𝑤c1 3 and 𝑤c2 5 (respectively) are the non-zero coefficients with lowest odd order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' where the contribution at the 𝑘th order in 𝜖 is the product of a kernel-independent factor 𝑎𝑘(𝐸) = ������ ������ (−1)𝑘/2 𝑘!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' � 𝑑 𝑑𝐸 � 𝑘 𝜌(𝐸) , 𝑘 even lim𝜂→0+ (−1) (𝑘−1)/2 2𝜋 ´ ∞ −∞ d𝜔 𝜌(𝐸+𝜔)+𝜌(𝐸−𝜔) (𝜔+𝑖𝜂)𝑘+1 , 𝑘 odd .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' (15) which depends on the unsmeared spectral density, and a kernel-independent piece 𝑤(x) 𝑘 which is however independent of 𝜌(𝜔).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' The 𝑤(x) 𝑘 for the kernels used here are given for all orders in Tab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' The c0 kernel is however not practically useful in such extrapolations due to the O(𝜖) term.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' A representative constrained extrapolation, in which all kernels (apart from c0) are used to fit for 𝜌(𝐸) and the 𝑎𝑘(𝐸) up to a certain order, is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' A final estimate for 𝜌(𝐸) is chosen with a statistical error larger than the variation between different extrapolation orders and ranges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Repeating this procedure for all values of 𝐸 yields the final results for the spectral density 𝜌(𝐸) shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Not only do the numerical results agree with the exact spectral density including two-, four-, and six-particle contributions, but differ significantly from the two-particle contribution alone, indicating the sensitivity to four-particle states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Furthermore, the largest energy of 𝐸 = 40𝑚 is statistically consistent with the two-loop perturbative result, demonstrating that 𝜌(𝐸) has been computed up to the onset of the perturbative regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Prospects for QCD It is in principle straightforward to adopt the analysis of the O(3) sigma model in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 2 to the lattice QCD computation of current spectral densities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' However, while it is difficult to compare the density of finite-volume states in one and three spatial dimensions, the O(3) model setup with 𝑚𝐿 ≈ 30 may be difficult to achieve in QCD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Fortunately, the masterfield paradigm [15–17] offers the possibility of large lattice volumes by accumulating statistics from widely-separated space-time regions rather than widely-separated Markov chain elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Work in this direction has been detailed at this conference in talks by M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Cè and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Fritzsch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' This section describes preliminary work toward the spectral reconstruction of the isovector vector 8 The spectral reconstruction of inclusive rates John Bulava Figure 6: Left: a sample constrained extrapolation using the known coefficients in Tab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 1 up to and including O(𝜖4) terms for a fixed energy 𝐸 = 14𝑚.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' The relative fit ranges of the different smearing kernels are adjusted so that each kernel has an equal amount of support between the two-particle threshold 2𝑚 and 𝐸.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Right: variation of the extrapolated value of 𝜌(𝐸) for different extrapolation ranges and orders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' The final result is conservatively taken as the horizontal shaded region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Figure 7: Left: a selection of some of values of 𝜖 (given in the legend) used in the 𝜖 → 0 extrapolation, together with the exact smeared spectral density shown as solid lines for the gaussian kernel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Right: the final extrapolated results for 𝜌(𝐸) together with the exact two-particle contribution to the spectral density and the sum of the two-, four-, and six-particle contributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' The two-loop perturbative spectral density is also shown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' current spectral density with the collaborators and setup mentioned in those talks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Using 𝑁f = 2+1 dynamical flavors of stabilized Wilson fermions [17] at 𝑎 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='09 fm, two ensembles were generated with (𝐿/𝑎)4 = 964 and 1924.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' The analysis described below is based on two and five thermalized, widely separated configuations on the 𝐿/𝑎 = 96 and 192 ensembles, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Details about the construction of the correlators and the estimation of the statistical errors were given by M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Cè.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' For the data presented here, a variant of the bootstrap procedure is employed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' As suggested in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 1, the prototypical QCD analogue of Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 2 is the hadronic component to 𝑒+𝑒− → hadrons, which can be obtained by solving the inverse problem of the euclidean current-current correlator projected onto zero spatial momentum in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' However, including both the isoscalar and isovector components of the electromagnetic current requires valence quark-line 9 The spectral reconstruction of inclusive rates John Bulava disconnected Wick contractions, incurring additional computational cost and statistical variance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Consider then the simpler case of the isovector-vector correlator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Phenomenologically this spectral density can be accessed directly from hadronic decays of the tau lepton [18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' A state-of-the-art phenomenological determination of the isovector-vector spectral density is performed in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' [19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' The spectral reconstruction approach of Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 2 is adopted nearly identically here, apart from some key differences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' First, the basis functions provided by the correlator data in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 2 are 𝑏𝑡 (𝜔) = e−𝜔𝑡 + e−𝜔(𝑇 −𝑡), but those employed in this analysis from Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 3 are 𝑏𝑡 (𝜔) = 𝜔2 e−𝜔𝑡.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' The flexibility of the formalism of Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 2 to handle these different basis functions is an advantage over the Chebyshev approach of Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Also, for these large lattices the finite temporal extent can be demonstrably ignored.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' For a first test of the approach in QCD, only the gaussian smearing kernel from Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 9 is considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' All correlator timeslices from 𝑡min = 𝑎 to 𝑡max = 35𝑎 are used in the reconstruction, and all arithmetic operations are performed with 400 bits of computer precision using the Arb library [20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Another innovation for this analysis compared to Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 2 is the procedure for choosing the 𝜆 at which statistical errors dominate the systematic errors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' As suggested by the left panel in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 2, the procedure in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 2 which balances the two functionals 𝐴[𝑔]/𝐴[0] and 𝐵[𝑔] from Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 11 is perhaps over-conservative and somewhat arbitrary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' The alternative approach employed here makes use of one of the possible constraints introduced in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' By the addition of a lagrange multiplier, it is possible to enforce constraints on the reconstructed smearing kernel ˆ𝛿g 𝜖 (𝐸, 𝜔).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' [11] describes how to impose the coincidence of the reconstructed and desired kernels at a particular point ˆ𝛿g 𝜖 (𝐸, 𝜔∗) = 𝛿g 𝜖 (𝐸 − 𝜔∗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' (16) Although Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' [11] only considers 𝜔 = 𝐸, the generalization to arbitrary 𝜔∗, even outside the interval [𝐸0, ∞), is straightforward.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Using this ‘equal value’ constraint on the reconstructed kernel, it is possible to estimate how small 𝐴[𝑔]/𝐴[0] must be for the statistical errors to dominate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' An ‘ensemble’ of reconstructions are performed with different values of 𝜔∗, in addition to the unconstrained one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' The systematic error estimate is then obtained from the variation of ˆ𝜌g 𝜖 (𝐸) among this ensemble at similar 𝐴[𝑔]/𝐴[0].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' The point at which this variation is smaller than the statistical error on the unconstrained result is taken as the optimal reconstruction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Of course this procedure depends on the ensemble of constraint points {𝜔∗} which are considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' However, it is sensitive the unsmeared spectral density 𝜌(𝜔), in contrast to the approach of Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' If additional values of 𝜔∗ are added for which 𝜌(𝜔∗) has little support, these will likely differ little from the unconstrained case, apart from possible variations in ˆ𝛿g 𝜖 (𝐸, 𝜔) away from 𝜔∗ induced by the constraint at 𝜔∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' An illustration of this procedure is given in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' After applying the procedure discussed above for a variety of 𝜖 and 𝐸 for the gaussian kernel on each of the 𝐿 = 9 fm and 18 fm ensembles, finite volume effects can be examined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' This is done in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 9, using 𝑣1(𝑠) = 2𝜋2𝜌(𝑠) for a variety of energies at two different values of the smearing width 𝜖.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' While there are possibly hints of finite-volume effects at the one-to-few sigma level at both 𝜖, these effects are generally under control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Additional volumes will however elucidate the situation in the future.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' We finally turn to a comparison of the reconstructed isovector vector spectral density with experiment [21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' For this a preliminary value of the vector current renormalization factor 𝑍𝑉 is 10 The spectral reconstruction of inclusive rates John Bulava 3 − 10 2 − 10 1 − 10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='07 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='09 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='11 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='12 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='13 A[g]/A[0] (E) ε g ρ π = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='5m ε , π E = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='5m none π 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='5m π 2m π 3m π 4m π 5m π 6m π 7m π 8m π 9m π 10m π 11m π 12m 2 − 0 2 4 6 8 10 12 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='05 − 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='4 ε E)/ ω ( εδ ε ε g δ ε none π 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='5m π 2m π 3m π 4m π 5m π 6m π 7m π 8m π 9m π 10m π 11m π 12m Figure 8: Illustration of the method for choosing the optimal tradeoff parameter 𝜆 described in the text for the gaussian reconstruction on the 𝐿 = 18 fm ensemble with 𝜖 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='5𝑚 𝜋 and 𝐸 = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='5𝑚 𝜋.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Left: different values of 𝜆 for the unconstrained reconstruction and reconstructed kernels constrained to agree with 𝛿g 𝜖 (𝐸 − 𝜔∗) at the various values of 𝜔∗ indicated in the legend.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' The horizontal band indicates the chosen estimate for which the statistical error on the unconstrained reconstruction covers the spread given by the ensemble of constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' For comparison, the method for balancing statistical and systematic errors of Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 2 (and Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' [11]) chooses the unconstrained point with 𝐴[𝑔]/𝐴[0] ≈ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='0016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Right: the reconstructed smearing kernel compared to the desired gaussian (solid line) for each member of the constraint ensemble near the chosen value of 𝐴[𝑔]/𝐴[0] indicated by the horizontal band in the left plot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' The residual variation between the different constraints is evidently smaller than the statistical error on the constrained reconstruction, although perhaps additional values of 𝜔∗ near 𝜔∗ − 𝐸 ≈ 2𝜖 should be added in the future.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='8 1 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='8 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='8 ) 2 s (GeV (s) ε 1, g v π = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='5m ε L = 9 fm L = 18 fm 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='5 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='9 1 ) 2 s (GeV (s) ε 1, g v π = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='0m ε L = 9 fm L = 18 fm Figure 9: Finite volume effects in the reconstructed vector isovector spectral density on the two masterfield ensembles described in the text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Gaussian smearing is used for a variety of energies at smearing width 𝜖 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='5𝑚 𝜋, shown on the left, and 𝜖 = 𝑚 𝜋, shown on the right.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' These effects are generally small apart from some mild discrepancies near 𝑠 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='4 GeV2 for 𝜖 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='5𝑚 𝜋 and 𝑠 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='75GeV2 for 𝜖 = 𝑚 𝜋.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Additional smaller lattice volumes could further examine these potential finite volume effects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 11 The spectral reconstruction of inclusive rates John Bulava 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='5 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='5 3 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='5 4 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='5 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='5 3 ) 2 s (GeV (s) ε 1, g v = 265 MeV, a = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='09 fm π L = 18 fm, m π = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='5m ε π = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='75m ε π = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='0m ε π = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='25m ε 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='5 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='5 3 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='5 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='5 3 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='5 τ– → V–ντ π–π0 π–3π0, 2π–π+π0, (6π)– ωπ–, ηπ–π0, (KK –(π))– QCD prediction parton model s (GeV2) v1(s) ALEPH Figure 10: Comparison of the lattice QCD results for the isovector vector spectral density on the larger 𝐿/𝑎 = 192 master field ensemble discussed in the text (shown on the left), with experimental results for hadronic 𝜏-decays on the right.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Statistical errors due to the scale setting and the renormalization of the vector current are not yet taken into account.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' employed, which was presented at this conference by J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Kuhlmann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' The statistical error on 𝑍𝑉 is ignored in these preliminary results, as is the error on the lattice scale, which is crudely set by assuming 𝑚 𝜋 = 265 MeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' The results are summarized in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 10, and broadly resemble the experimental plot, with a narrow peak likely due to the 𝜌(770) vector resonance followed by a slow rise due to four-particle states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Particularly interesting is the mild indication of this rise in the lattice QCD data, which (like in the O(3) model) show the effects of four-pion states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' It should be noted that the current state-of-the-art for the finite-volume approach to lattice QCD scattering amplitudes is the numerical computation of (exclusive rather than inclusive) three-pion scattering amplitudes3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Conclusions Alternative techniques are required to compute phenomena arising from many hadronic states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' The spectral reconstruction of smeared spectral densities from euclidean correlator data not only bridges the gap between finite and infinite volume, but also helps to regulate the ill-posed nature of the problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' The application discussed here is the computation of inclusive rates summed over all final states produced by an external current.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' In the two-dimensional O(3) model, after taking the continuum limit, the algorithm presented in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 2 (first proposed for lattice field theory in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' [10]) results in smeared spectral densities consistent with known analytic results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Spectral reconstruction algorithms based on the Backus-Gilbert approach [5, 6] enable a precise definition of the smeared spectral density that has been computed, while the modification of Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' [9] further allows the a priori specification of a desired smearing kernel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' The simple linear ansatz on which these approaches are based enables the direct expression for the smearing kernel given in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Smeared spectral densities are useful not only for inclusive decay rates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' An incomplete list of recent applications of the Backus-Gilbert approach includes the nucleon hadronic tensor [24], 3For a review of the current status of computations of three-particle scattering amplitudes using the finite-volume approach, see the presentation by F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Romero-López and the recent reviews in Refs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' [22, 23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 12 The spectral reconstruction of inclusive rates John Bulava the determination of PDFs from Ioffe time data [25], and the photon emissivity of the quark- gluon plasma [26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' These applications do not employ the algorithmic variant enabling a priori specification of the smearing kernel, but could perhaps benefit from it in the future.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' This a priori specification of the kernel enabled in Refs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' [9, 10] is also present in the Chebyshev approach of Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' [7], but the stabilizing effect of the functional 𝐵[𝑔] in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 11 is naively not present.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' The work of Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' [8] is a first step towards comparing the two approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' The advantages of the a priori approach are leveraged in the two-dimensional O(3) model to perform joint constrained 𝜖 → 0 extrapolations with several different kernels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' The presence of the narrow 𝜌(770) peak in the isovector vector spectral density in QCD discussed in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 3 complicates such an extrapolation and more work is required toward an implementation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' A similar approach has been employed to compute inclusive decay rates in Refs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' [27, 28], and taken up by additional groups in Refs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' [8, 29, 30].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Work towards computing the 𝑅-ratio was reported in this conference [31], as well as a similar analyses of the total hadronic tau decay rate [32, 33], albeit with a wider gaussian smearing radius than employed here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' The interplay between the spatial extent and the smallest achievable smearing width requires further study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Furthermore, the a priori approach of Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' [7] led to the direct computation of the Borel transform of a current-current correlator required for the Shifman-Vainshtein-Zakharov sum rule in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' [34], possibly opening the door for additional interaction between lattice QCD and QCD sum rules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Another interesting application is pursued in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' [35] in which fits to smeared spectral densities are considered as an alternative to ‘standard’ spectroscopy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Additional applications could appear in the future.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' The a priori approach in principle enables the computation of exclusive scattering amplitudes using Refs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' [36, 37], while the formalism for inclusive rates was developed already in Refs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' [3, 38].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' References [1] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Pich, Precision physics with inclusive QCD processes, Prog.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Part.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 117 (2021) 103846, [arXiv:2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='04716].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' [2] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Poggio, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Quinn, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Weinberg, Smearing the Quark Model, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' D 13 (1976) 1958.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' [3] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Hansen, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Meyer, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Robaina, From deep inelastic scattering to heavy-flavor semileptonic decays: Total rates into multihadron final states from lattice QCD, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' D 96 (2017), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 9 094513, [arXiv:1704.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='08993].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' [4] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Kaczmarek and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='-T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Shu, Spectral and Transport Properties from Lattice QCD, Lect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Notes Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 999 (2022) 307–345, [arXiv:2206.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='14676].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' [5] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Backus and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Gilbert, The resolving power of gross earth data, Geophysical Journal International 16 (1968), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 2 169–205.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' [6] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Backus and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Gilbert, Uniqueness in the inversion of inaccurate gross earth data, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 266 (1970), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 1173 123–192, [http://rsta.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='royalsocietypublishing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='org/content/266/1173/123.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='full.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='pdf].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 13 The spectral reconstruction of inclusive rates John Bulava [7] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Bailas, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Hashimoto, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Ishikawa, Reconstruction of smeared spectral function from Euclidean correlation functions, PTEP 2020 (2020), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 4 043B07, [arXiv:2001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='11779].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' [8] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Barone, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Hashimoto, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Jüttner, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Kaneko, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Kellermann, Inclusive semi-leptonic 𝐵(𝑠) mesons decay at the physical 𝑏 quark mass, in 39th International Symposium on Lattice Field Theory, 11, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' arXiv:2211.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='15623.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' [9] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Pijpers and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Thompson, Faster formulations of the optimally localized averages method for helioseismic inversions, Astronomy and Astrophysics 262 (08, 1992) L33–L36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' [10] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Hansen, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Lupo, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Tantalo, Extraction of spectral densities from lattice correlators, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' D 99 (2019), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 9 094508, [arXiv:1903.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='06476].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' [11] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Bulava, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Hansen, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Hansen, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Patella, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Tantalo, Inclusive rates from smeared spectral densities in the two-dimensional O(3) non-linear 𝜎-model, JHEP 07 (2022) 034, [arXiv:2111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='12774].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' [12] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Luscher and U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Wolff, How to Calculate the Elastic Scattering Matrix in Two-dimensional Quantum Field Theories by Numerical Simulation, Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' B339 (1990) 222–252.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' [13] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Balog and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Niedermaier, Off-shell dynamics of the O(3) NLS model beyond Monte Carlo and perturbation theory, Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' B 500 (1997) 421–461, [hep-th/9612039].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' [14] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Balog, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Niedermayer, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Weisz, The Puzzle of apparent linear lattice artifacts in the 2d non-linear sigma-model and Symanzik’s solution, Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' B 824 (2010) 563–615, [arXiv:0905.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='1730].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' [15] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Lüscher, Stochastic locality and master-field simulations of very large lattices, EPJ Web Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 175 (2018) 01002, [arXiv:1707.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='09758].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' [16] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Giusti and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Lüscher, Topological susceptibility at 𝑇 > 𝑇c from master-field simulations of the SU(3) gauge theory, Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' C 79 (2019), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 3 207, [arXiv:1812.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='02062].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' [17] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Francis, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Fritzsch, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Lüscher, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Rago, Master-field simulations of O(𝑎)-improved lattice QCD: Algorithms, stability and exactness, Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 255 (2020) 107355, [arXiv:1911.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='04533].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' [18] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Davier, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Hocker, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Zhang, The Physics of Hadronic Tau Decays, Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 78 (2006) 1043–1109, [hep-ph/0507078].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' [19] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Boito, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Golterman, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Maltman, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Peris, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Rodrigues, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Schaaf, Strong coupling at the 𝜏-mass scale from an improved vector isovector spectral function, in 16th International Workshop on Tau Lepton Physics , 12, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' arXiv:2112.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='05413.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' [20] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Johansson, Arb: efficient arbitrary-precision midpoint-radius interval arithmetic, IEEE Transactions on Computers 66 (2017) 1281–1292.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 14 The spectral reconstruction of inclusive rates John Bulava [21] ALEPH Collaboration, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Schael et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=', Branching ratios and spectral functions of tau decays: Final ALEPH measurements and physics implications, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Rept.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 421 (2005) 191–284, [hep-ex/0506072].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' [22] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Hansen and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Sharpe, Lattice QCD and Three-particle Decays of Resonances, Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Part.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 69 (2019) 65–107, [arXiv:1901.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='00483].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' [23] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Mai, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='-G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Meißner, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Urbach, Towards a theory of hadron resonances, arXiv:2206.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='01477.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' [24] XQCD Collaboration, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Liang, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Draper, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='-F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Liu, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Rothkopf, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='-B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Yang, Towards the nucleon hadronic tensor from lattice QCD, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' D 101 (2020), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 11 114503, [arXiv:1906.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='05312].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' [25] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Karpie, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Orginos, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Rothkopf, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Zafeiropoulos, Reconstructing parton distribution functions from Ioffe time data: from Bayesian methods to Neural Networks, JHEP 04 (2019) 057, [arXiv:1901.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='05408].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' [26] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Cè, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Harris, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Krasniqi, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Meyer, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Török, Photon emissivity of the quark-gluon plasma: A lattice QCD analysis of the transverse channel, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' D 106 (2022), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 5 054501, [arXiv:2205.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='02821].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' [27] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Gambino, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Hashimoto, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Mächler, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Panero, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Sanfilippo, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Simula, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Smecca, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Tantalo, Lattice QCD study of inclusive semileptonic decays of heavy mesons, JHEP 07 (2022) 083, [arXiv:2203.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='11762].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' [28] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Gambino and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Hashimoto, Inclusive Semileptonic Decays from Lattice QCD, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 125 (2020), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 3 032001, [arXiv:2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='13730].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' [29] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Kellermann, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Barone, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Hashimoto, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Jüttner, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Kaneko, Inclusive semi-leptonic decays of charmed mesons with Möbius domain wall fermions, in 39th International Symposium on Lattice Field Theory, 11, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' arXiv:2211.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='16830.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' [30] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Gambino, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Hashimoto, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Mächler, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Panero, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Sanfilippo, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Simula, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Smecca, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Tantalo, Inclusive semileptonic 𝐵-decays from lattice QCD, in 39th International Symposium on Lattice Field Theory, 11, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' arXiv:2211.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='11833.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' [31] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Alexandrou et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=', Lattice calculation of the R-ratio smeared with Gaussian kernel, in 39th International Symposium on Lattice Field Theory, 12, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' arXiv:2212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='12493.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' [32] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Evangelista, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Frezzotti, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Gagliardi, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Lubicz, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Sanfilippo, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Simula, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Tantalo, Direct lattice calculation of inclusive hadronic decay rates of the 𝜏 lepton, in 39th International Symposium on Lattice Field Theory, 1, 2023.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='00796.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' [33] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Alexandrou et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=', Probing the 𝑅-ratio on the lattice, arXiv:2212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='08467.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' [34] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Ishikawa and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Hashimoto, Spectral sum of current correlators from lattice QCD, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' D 104 (2021), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 7 074521, [arXiv:2103.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='06539].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 15 The spectral reconstruction of inclusive rates John Bulava [35] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Del Debbio, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Lupo, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Panero, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Tantalo, Multi-Representation Dynamics of SU(4) Composite Higgs Models: Chiral Limit and Spectral Reconstructions, arXiv:2211.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='09581.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' [36] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Bulava and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Hansen, Scattering amplitudes from finite-volume spectral functions, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' D 100 (2019), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 3 034521, [arXiv:1903.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='11735].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' [37] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Bruno and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Hansen, Variations on the Maiani-Testa approach and the inverse problem, JHEP 06 (2021) 043, [arXiv:2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='11488].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' [38] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Fukaya, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Hashimoto, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Kaneko, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Ohki, Towards fully nonperturbative computations of inelastic ℓ𝑁 scattering cross sections from lattice QCD, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' D 102 (2020), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 11 114516, [arXiv:2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content='01253].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} +page_content=' 16' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E2T4oBgHgl3EQftwgF/content/2301.04072v1.pdf'} diff --git a/UtAyT4oBgHgl3EQf8voh/content/tmp_files/2301.00860v1.pdf.txt b/UtAyT4oBgHgl3EQf8voh/content/tmp_files/2301.00860v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..5c87cb34c4110db71401593c719556101efe5a0d --- /dev/null +++ b/UtAyT4oBgHgl3EQf8voh/content/tmp_files/2301.00860v1.pdf.txt @@ -0,0 +1,1105 @@ +arXiv:2301.00860v1 [hep-ph] 2 Jan 2023 +Dijet azimuthal decorrelation in e+e− annihilation +Hana Benslamaa, Yazid Delendaa,∗, Kamel Khelifa-Kerfab +aLaboratoire de Physique des Rayonnements et de leurs Interactions avec la Mati`ere, +D´epartement de Physique, Facult´e des Sciences de la Mati`ere, +Universit´e de Batna-1, Batna 05000, Algeria +bLaboratoire de Math´ematique et Applications, +D´epartement de Physique, Facult´e des Sciences et Technologies +Universit´e Ahmed Zabana de Relizane, Relizane 48000, Algeria +Abstract +We examine non-global and clustering logarithms in the distribution of the azimuthal decorrelation between +two jets in e+e− → dijet events, where the jets are defined with E-scheme recombination in the generalized kt +algorithm. We calculate at one loop and to all orders the leading global single logarithms in the distribution +of the said observable. +We also compute at fixed order up to four loops the non-global and clustering +logarithms, and numerically resum them to all orders in the large-Nc approximation. +We compare our +results at O(αs) and O(α2 +s) with those of the EVENT2 fixed-order Monte Carlo program and find agreement +of the leading singular behavior of the azimuthal decorrelation distribution. We find that the impact of +non-global logarithms on the resummed distribution in the anti-kt algorithm is substantial, while it is +significantly smaller in the kt algorithm. Furthermore, the combined clustering and non-global logarithms +in the kt algorithm have an even smaller effect on the distribution. Finally, we use the program Gnole +to calculate the resummed distribution at NLL accuracy, thus achieving state-of-the-art accuracy for the +resummation of this quantity. +Keywords: +QCD, Jets, Resummation +1. Introduction +The production of jets in e+e− collisions is a simple and clean environment, yet rich of physics, to test +QCD and the Standard Model. It will be used in future colliders such as the ILC and FCC-ee in order to +make precise measurements of QCD-related quantities, which together with detailed theoretical calculations +will pave the way towards potential discovery of new-physics phenomena. +At lowest order two correlated jets are produced back-to-back with a relative azimuthal angle equal to +π. At higher orders the jets manifest a decorrelation of azimuthal angle δφ which is enhanced near the +back-to-back limit. The quantity δφ, being sensitive to soft/collinear QCD effects, is of great interest in +the phenomenology of perturbative and non-perturbative QCD dynamics. For instance it has been used +to study unintegrated parton distribution functions in deep-inelastic e − p scattering (DIS) [1] and small-x +BFKL effects [2], as well as measurements of the QCD coupling at various scales [3]. Many studies have +been devoted to the distribution of δφ in various processes, such as dijet production in p − p [4, 5, 6] (and +even p − pb [7]) collisions and DIS [2, 8]. Experimentally, boson-jet (in pp collisions) [9] and lepton-jet or +photon-jet (in DIS) [10, 11] decorrelations have been measured. +Near the back-to-back limit, the distribution of the azimuthal decorrelation is characterized by large +logarithms preventing the convergence of the perturbative series, and thus need to be resummed to all +∗Corresponding author. +Email addresses: hana.benslama@univ-batna.dz (Hana Benslama), yazid.delenda@univ-batna.dz (Yazid Delenda, +kamel.khelifakerfa@univ-relizane.dz (Kamel Khelifa-Kerfa) +Preprint submitted to Physics Letters B +January 4, 2023 + +orders. Depending on the nature of the algorithm being used to define the jets, the leading logarithms in +this distribution can be double or single logarithms. For instance, in pt-weighted recombination scheme of +the kt [12, 13, 14], anti-kt [15] and Cambridge/Aachen algorithms [16, 17], the leading logarithms are double, +αn +s L2n, while in E-scheme recombination they are single, αn +s Ln, with L = ln(1/δφ). In the former scheme, +the jets recoil against emissions everywhere in the phase space, and in particular soft and collinear emissions +to these jets, which leads to the double logarithms in δφ. On the other hand, in the latter (E-scheme), the +jets recoil only against emissions that do not get clustered to them, and hence only away-from-jets emissions +contribute to δφ, resulting in leading soft wide-angle single logarithmic contributions. +In addition to this, the classification of the δφ observable, in E-scheme definition, falls in the “non-global” +category, and as a consequence its distribution receives contributions from single non-global (NGLs) [18, 19] +and/or clustering (CLs) [20, 21] logarithms. The resummation of these logarithms is not straightforward, +and is usually performed numerically via Monte Carlo (MC) programs in the planar (large-Nc) limit. +In this letter, we are interested in the calculation of NGLs and/or CLs for the δφ distribution both in the +kt and anti-kt algorithms. We compute the coefficients of these logarithms as a function of the jet radius R +up to O(α3 +s), and at O(α4 +s) in the anti-kt algorithm at small R. We use the fixed-order MC program EVENT2 +[22, 23] in order to compare the leading singular behavior of the δφ distribution with our results at O(αs) +and O(α2 +s). We also compute the resummed NGLs and CLs at all orders in the large-Nc limit using the MC +code of refs. [18, 19] as well as the recently-published program Gnole [24, 25] (in the anti-kt algorithm). +The latter program is also used to compute the resummed differential δφ distribution at next-to-leading +logarithmic (NLL) accuracy, in which we additionally control all the sub-leading logarithms αn+1 +s +Ln in the +exponent of the resummation, and quantify the corresponding scale uncertainties. +This letter is organized as follows. In the next section we compute at O(αs) the leading-order distribution +focusing on the logarithmic contribution, and compare with fixed-order MC programs at this order. In +section 3, we present the calculation of NGLs and CLs at O(α2 +s) and show plots of the coefficients of these +logarithms as a function of the jet radius and comment on the relative size of these coefficients. We also +compare at this order the calculated δφ distribution with the output of the program EVENT2, thus confirming +our results. In section 4 we extend the calculation to O(α3 +s) and (in the anti-kt algorithm and at small R) +O(α4 +s), and point out the significantly different color structure of NGLs in kt clustering. In section 5 we +present the all-orders resummation of the NGLs and/or CLs in the large-Nc limit up to LL accuracy for the +kt algorithm, and NLL accuracy in the anti-kt clustering. Finally we draw our conclusions in section 6. +2. One-loop calculation and the global form factor +In this letter we consider the process of dijet production in e+e− annihilation at centre-of-mass energy +√s. The jets are reconstructed with the kt [14] or anti-kt [15] algorithms, suited for e+e− annihilation, with +merging and stopping distances dij and di defined by +dij = min +� +E2p +i , E2p +j +� 1 − cos θij +1 − cos R , +di = E2p +i +, +(1) +where p = +1 for the kt algorithm and p = −1 for the anti-kt algorithm. Here R is the jet radius, Ei +is the energy of the ith parton in the final state, and θij is the opening angle between partons i and j. +The algorithm sequentially merges objects i and j whenever dij is the smallest of all merging and stopping +distances, and if an object i has its stopping distance as the smallest then it gets admitted to the list of +final inclusive jets. The algorithm keeps recursing until all partons are clustered into jets. In this letter, +we assume the jet kinematics to be defined with E-scheme recombination, such that the 4-momentum of a +merged object simply equals the vectorial sum of the momenta of its constituents. +At the Born level, the two jets are produced back-to-back, and their relative azimuthal angle (with +respect to the beam axis) is exactly π. The observable we are interested in is the deviation from π of this +relative azimuthal angle, δφ, when soft gluons are emitted at higher orders. It is straightforward to obtain +the following expression for δφ in terms of the transverse momenta of the emitted gluons κti and their +2 + +azimuthal angles ϕi, with respect to the beam axis +δφ = +������ +� +i/∈jets +κti +pt +sin ϕi +������ +, +(2) +where pt is the jet transverse momentum. The (algebraic) sum is over all emitted gluons that are not clustered +to any of the two measured (leading) jets. This definition is valid only at single leading logarithmic (LL) +accuracy, and we shall give the proper definition, valid at NLL accuracy, in section 5. Furthermore, the +expression of δφ in eq. (2) only applies in E-scheme recombination. Alternative jet recombination schemes +exist for which the jet kinematics take a different form, e.g. the pt-weighted scheme, and the resummation +takes an entirely different structure [8]. +At one loop the cumulative cross-section for events with azimuthal decorrelation δϕ less than some ∆, +normalized to the Born cross-section, reads +Σ1(∆) = −2 CF +� αs(kt) +π +dkt +kt +d cos θ +sin2 θ +dφ +2π ωk +q¯q Θout(k) Θ (κt| sin ϕ|/pt − ∆) , +(3) +where θ, φ and kt are the polar angle, azimuthal angle and transverse momentum of the emitted soft gluon +k, with respect to the jet (thrust) axis (the back-to-back outgoing jets are aligned along the z axis), CF +is the color factor associated with the emission of the gluon off the hard q¯q dipole, and αs is the strong +coupling with argument kt. The invariant antenna function ωk +q¯q is given by +ωk +q¯q = k2 +t +2 +pq · p¯q +(pq · k)(p¯q · k) = 1 , +(4) +with pi denoting the momentum of particle i +pq = +√s +2 (1, 0, 0, 1) , +(5a) +p¯q = +√s +2 (1, 0, 0, −1) , +(5b) +k = E (1, cos φ sin θ, sin φ sin θ, cos θ) , +(5c) +where kt = E sin θ. The constraint Θout(k) restricts the emitted gluon to be outside the jets and forbids it +from being clustered to any of them in order to induce a non-zero azimuthal decorrelation. It depends on +the jet radius R and is given, in the generalized algorithm, by +Θout(k) = Θ (cos R − | cos θ|) . +(6) +Since the soft emission is restricted to be outside both jets then there are no collinear logarithms as- +sociated with this observable. This means that the leading logarithms are single, which allows us at LL +accuracy to simply change Θ(κt| sin ϕ|/pt − ∆) → Θ(2 kt/√s − ∆), since any factor multiplying kt will only +induce sub-leading logarithms. 1 We can then perform the integration over kt using the one-loop running +of the coupling (which formally enters the distribution at higher orders), and write the result in terms of +the evolution parameter t defined by +t(∆) ≡ +� √s/2 αs(kt) +π +dkt +kt +Θ +� +2 kt/√s − ∆ +� += − +1 +2πβ0 +ln(1 − 2λ) , +(7) +where λ = αs(√s/2)β0 ln(1/∆) and β0 is the one-loop coefficient of the QCD beta function. The angular +integration is straightforward and we obtain +Σ1(∆) = −2 CF t(∆) +� 1 +−1 +dc +1 − c2 Θ (cos R − |c|) = −2 CF t(∆) ln 1 + cos R +1 − cos R , +(8) +1Notice that κt and ϕ are different from kt and φ. +3 + +with c standing for cos θ. Note that since only emissions in the inter-jet (gap) region are integrated over, +this result may be cast in terms of the rapidity-gap width ∆η +∆η ≡ ln 1 + cos R +1 − cos R . +(9) +The all-orders resummed global form factor is simply the exponential of the one-loop distribution. That is +Σglobal(∆) = exp [−2 CF t(∆) ∆η] . +(10) +An identical expression was also arrived at in ref. [26] for jet shapes in e+e− annihilation. +The leading-order result can be verified by comparing it with the output of the MC program EVENT2 at +O(αs) [22, 23]. Specifically we compare the differential distribution +2π +αs +dΣ1 +dL = 4 CF ln 1 + cos R +1 − cos R , +(11) +where L = ln ∆, with the same MC distribution, for the chosen value of R = 0.5. We show in figure 1 a +plot of the difference between the MC distribution and the expansion of the resummation at O(αs), where, +as expected, this difference tends to zero in the logarithmically-enhanced region. +Figure 1: The difference between the leading-order EVENT2 differential distribution 2π/αs dΣ1/dL and the resummed distribu- +tion expanded at O(αs). The singular behavior of the MC distribution is exactly cancelled by the expanded result. +3. Two-loops calculation: NGLs and CLs +When employing the kt or anti-kt clustering algorithms with E-scheme recombination, the resummation +of the azimuthal decorrelation distribution requires the treatment of NGLs and/or CLs. The corresponding +cumulative distribution at O(α2 +s) can then be split into three contributions +Σ2(∆) = 1 +2! [Σ1(∆)]2 + ΣNG +2 +(∆) + ΣCL +2 (∆) , +(12) +with ΣCL +2 (∆) = 0 for anti-kt clustering. Let us first discuss the NGLs contribution ΣNG +2 +(∆) in both algo- +rithms, and then compute the CLs contribution ΣCL +2 (∆) for kt clustering. +3.1. Calculation of NGLs +The origin of NGLs at two loops is the emission of a soft gluon k1 inside any of the two outgoing jets +which itself emits a softer gluon k2 outside the jets without being clustered back to them. +While this +configuration results in a non-zero δφ, its virtual correction (specifically when k2 is virtual) gives δφ = 0, +4 + +and thus we have a real-virtual mis-cancellation of the soft singularities. We express the contribution of the +uncancelled virtual correction to the integrated azimuthal decorrelation distribution as follows +ΣNG +2 +(∆) = S2(R) t2 +2! , +(13a) +S2(R) = −2 CF CA +� +dc1 +1 − c2 +1 +dφ1 +2π +dc2 +1 − c2 +2 +dφ2 +2π A12 +q¯q ΞNG +2 +(R) , +(13b) +where CA is the color factor associated with the non-Abelian emission of gluon k2 off k1. The irreducible +two-loops antenna function A12 +q¯q is given by [27] +A12 +q¯q = ω1 +q¯q +� +ω2 +q1 + ω2 +1¯q − ω2 +q¯q +� += +1 − c1c2 +1 − c1c2 − s1s2 cos(φ1 − φ2) − 1 , +(14) +with si ≡ sin θi. The function ΞNG +2 +restricts the angular phase-space of integration and is given, in the +anti-kt and kt algorithms respectively, by +ΞNG, akt +2 += Θin(k1)Θout(k2) , +(15a) +ΞNG, kt +2 += Θin(k1)Θout(k2)Θ(d12 − d2) . +(15b) +The step function Θ(d12 − d2) forbids gluon k2 from being clustered back to the jet in the kt algorithm. It +is given by Θ(cos R − cos θ12), with cos θ12 = c1c2 + s1s2 cos(φ1 − φ2). +In the anti-kt algorithm the integration is simple and its result can be expressed in the same form as +that of the rapidity-gap NGLs coefficient found in ref. [19] +Sakt +2 +(R) = −CF CA +�π2 +6 + 2∆η2 − 2∆η ln +� +e2∆η − 1 +� +− Li2 +� +e−2∆η� +− Li2 +� +1 − e2∆η�� += −CF CA +�π2 +3 − R4 +8 − R6 +24 − 29 R8 +2560 + O +� +R10�� +, +(16) +where ∆η(R) is defined in eq. (9). The above formula shows that in the limit R → 0 the two-loops NGLs +coefficient does not vanish, but rather reaches its maximum value. This feature was observed in ref. [19] +and was ascribed to the fact that NGLs originate from the edge of jets, since this is the phase-space region +where gluons k1 and k2 are collinear and thus the amplitude squared (14) is most singular. +In the kt algorithm, and at small values of R (using small angles), we can write the NGLs coefficient as +Skt +2 (R ∼ 0) = −8 CF CA +� 1 +0 +dθ1 +� ∞ +1 +dθ2 +� 2π +0 +dφ +2π +1 +(θ2 +1 + θ2 +2) sec φ − 2 θ1 θ2 +Θ +� +θ2 +1 + θ2 +2 − 2 θ1 θ2 cos φ − 1 +� += −2π2 +27 CF CA , +(17) +where we made the following changes of variables: φ = φ1 − φ2 and θi → R θi. Away from the small-R +limit one may perform the integration numerically to obtain the full-R result for the two-loops coefficient of +NGLs. We present the results in the following subsection together with the CLs coefficient. +3.2. CLs with kt clustering +To compute the CLs we consider the Abelian primary emission of two strongly-ordered gluons directly +off the hard q¯q dipole, whereby the harder gluon k1 is inside one of the two jets and the softer k2 is outside +both of them, with the constraint d12 < d2, such that gluon k2 gets clustered into the jet by gluon k1, which +leads to δφ = 0. However, when k1 is virtual then gluon k2 remains in the gap causing the hard jets to +decorrelate. In this case we obtain a large single logarithmic contribution to the δφ distribution given by +ΣCL +2 (∆) = Ckt +2 (R) t2 +2! , +(18a) +Ckt +2 (R) = 4 C2 +F +� +dc1 +1 − c2 +1 +dφ1 +2π +dc2 +1 − c2 +2 +dφ2 +2π w1 +q¯q w2 +q¯q Θ(|c1| − cos R) Θ(cos R − |c2|) Θ(cos θ12 − cos R) . +(18b) +5 + +Note again that Cakt +2 +(R) = 0, as there are no CLs for anti-kt clustering. +First, let us consider the small-R limit of this integral. In this case we may write +Ckt +2 (R ∼ 0) = 8 C2 +F +� 1 +0 +dθ1 +θ1 +� ∞ +1 +dθ2 +θ2 +� 2π +0 +dφ +2π Θ +� +−θ2 +1 − θ2 +2 + 2 θ1 θ2 cos φ + 1 +� += 5π2 +27 C2 +F . +(19) +Away from this small-R limit we perform the integration numerically. We show in figure 2 a plot of the +coefficients of NGLs and CLs at O(α2 +s) as a function of the jet radius R. Also shown is the combined +coefficient of CLs and NGLs in the kt algorithm; Fkt +2 = Skt +2 + Ckt +2 . +Figure 2: CLs and NGLs coefficients at two loops with kt and anti-kt clustering. +Notice that NGLs coefficient in the kt clustering algorithm is significantly smaller than that in the anti- +kt. The CLs coefficient is positive and quite small, with the advantage that it cancels the NGLs coefficient, +particularly at small values of R. Note that the overall coefficient F2 is less than 1 for values of R smaller +than about 0.5. For small R values, the anti-kt NGLs coefficient computed here is identical to that found +for the single hemisphere mass [28] and jet mass with a jet veto [26]. +3.3. Comparison to EVENT2 +We compare our two-loops results with the exact MC distribution at O(α2 +s) obtained with the EVENT2 +program. The latter splits the distribution at NLO into three color contributions; O(C2 +F), O(CF CA) and +O(CF Tf nf), with Tf = 1/2 being the normalization constant of the generators of the SU(3) group in the +fundamental representation and nf = 5 is the number of active quark flavors. The expansion of the resummed +distribution at this order, including running coupling effects, is written, after differentiating with respect to +L, as +�2π +αs +�2 dΣ2 +dL = +� +C2 +F 4 +� +4 ∆η2 + C2 +� +− CF CA +4 +3 (3 S2 + 11∆η) + CF Tf nf +16 +3 ∆η +� +L + O(1) . +(20) +At this order this differential distribution is linear in L, but does not capture the O(1) constant, which, in +the cumulative integrated distribution, is an NLL O(α2 +s L) term. We plot the difference between the MC +distribution and the expansion (20) for each color contribution separately. All curves should tend towards a +constant when L grows large and negative. The results are shown in figure 3. Here the O(C2 +F) part contains +the CLs coefficient in kt clustering, while the O(CF CA) term contains the NGLs coefficient both in kt and +anti-kt algorithms. The O(CF Tf nf) contribution is algorithm independent at LL accuracy, but the NLL +O(1) constant does depend on the jet algorithm. +6 + +Figure 3: The difference between the NLO EVENT2 differential distribution (2π/αs)2 dΣ2/dL and the resummed distribution +expanded at O(α2 +s). The leading logarithmic behavior of the MC distribution O(α2 +sL) is cancelled, leaving a constant behavior +at large values of L. +4. NGLs and CLs at three loops +4.1. NGLs at three loops +At O(α3 +s), the cumulative distribution can be written as follows +Σ3(∆) = 1 +3! [Σ1(∆)]3 + Σ1(∆) × ΣNG +2 +(∆) + Σ1(∆) × ΣCL +2 (∆) + ΣNG +3 +(∆) + ΣCL +3 (∆) . +(21) +Focusing first on the pure NGLs contribution ΣNG +3 +(i.e., excluding the cross-talk between the one-loop global +and two-loops non-global logarithms) in the anti-kt algorithm, we may write it in the form +ΣNG,akt +3 +(∆) = Sakt +3 +(R) t3 +3! , +(22a) +Sakt +3 +(R) = 2 CF C2 +A +� � 3 +� +i=1 +dci +1 − c2 +i +dφi +2π +� +� +A12 +q¯q ¯ +A13 +q¯q Θin(k1)Θout(k2)Θout(k3) − B123 +q¯q Θin(k1)Θin(k2)Θout(k3) +� +, +(22b) +where we define ¯ +A13 +q¯q = A13 +q¯q/ω1 +q¯q, and the 3-loops irreducible cascade antenna function is given by +B123 +q¯q = ω1 +q¯q +� +A23 +q1 + A23 +1¯q − A23 +q¯q +� +. +(23) +It is worth mentioning that, for the cascade term, there is a non-negligible contribution from the configuration +in which gluon k1 is in one jet emitting gluon k2 in the other jet which itself emits the softest gluon k3 in +the gap between the two jets. At small values of R the integration is quite simple and yields the result +Sakt +3 +(R ∼ 0) = CF C2 +A 2 ζ3 . +(24) +Notice that this result is twice that found for the hemisphere mass observable [29]. Away from the small-R +limit the integration can be performed numerically and we shall present the results in the next subsection. +The pure NGLs contribution in the kt algorithm is given by an identical form to that of the anti-kt (22a) +ΣNG,kt +3 +(∆) = Skt +3 (R) t3 +3! . +(25) +We perform for the first time in the literature a calculation of NGLs in the kt algorithm beyond two loops. +Due to non-linearity of kt clustering we shall find a class of NGLs that have a non-standard color factor, +namely C2 +F CA at O(α3 +s). +Such terms usually (in anti-kt clustering) only arise in the cross-talk of the +expansion of the primary-emission global form factor (10) at O(αs) together with NGLs at O(α2 +s), i.e., the +term Σ1(∆) × ΣNG +2 +(∆) in eq. (21). However, in the kt algorithm, we find them as “pure” irreducible NGLs. +That is, they are part of the term ΣNG +3 +(∆) in eq. (21). +7 + +To proceed, we consider three types of emissions at O(α3 +s), as shown in figure 4: (a) one primary + two +correlated emissions, (b) ladder emissions, and (c) cascade emissions. In each case we consider all possible +virtual-correction Feynman diagrams as well as angular configurations of the emitted gluons that affect the +clustering procedure, and look for a mis-match between the soft divergences of these emissions. +Figure 4: The three types of emissions to consider for NGLs calculation at O(α3 +s): (a) one primary + two correlated emissions, +(b) ladder emissions, and (c) cascade emissions. +Starting first with type (a) contributions, there are three possible permutations of the gluons. +2 +For the permutation in which k3 is emitted in correlation with k2, and which has a squared amplitude +4 C2 +F CA ω1 +q¯q A23 +q¯q, we find that the angular phase space of integration that yields a logarithmic contribution +is given by +ΞNG,kt +31 +(R) = Θin(k1)Θin(k2)Θout(k3)Θ(d3 − d13)Θ(d23 − d3)+ ++ Θout(k1)Θin(k2)Θout(k3)Θ(d23 − d3)+ +− Θin(k1)Θout(k2)Θout(k3)Θ(d13 − d3)Θ(d23 − d3)Θ(d2 − d12) . +(26) +To see how one obtains this result let us give one example of angular configurations that result in a logarithmic +contribution. There are four Feynman diagrams in this case, shown in figure 5. Consider the situation when +particles k3 and k2 are outside the jet regions, d3j > d3 and d2j > d2, while particle k1 is inside, d1j < d1. In +this scenario, both diagrams in which k1 is virtual (i.e., diagrams (3) and (4) in figure 5) yield δφ ̸= 0, since +in both diagrams particle k2 is real and remains in the gap region after applying the clustering. However, +these two diagrams contribute equally and with opposite signs, so they cancel each other. For the remaining +two diagrams, (1) and (2), we have a mismatch when particle k2 gets pulled inside the jet by the real particle +k1 while k3 remains in the gap. This happens when d12 is smaller than d2, and both d13 and d23 are greater +than d3. While in diagram (1) we have a real unclustered gluon k3 in the gap region (i.e., it forms a jet +on its own) giving δφ ̸= 0, in diagram (2) the gap is empty and the hard jets are exactly back-to-back +with δφ = 0. The virtual-correction diagram (2) contributes fully to the cumulative distribution while the +real-emission diagram (1) cancels this contribution only up to δφ = ∆, leaving uncancelled virtual-correction +contributions with a negative sign. This is the last term in eq. (26). +Figure 5: Feynman diagrams corresponding to the squared amplitude 4 C2 +F CA ω1 +q¯q A23 +q¯q. +2Note that for all permutations the transverse momenta of the three gluons are strongly ordered as follows: kt1 ≫ kt2 ≫ kt3. +8 + +Similarly, we obtain for the second and third gluon permutations of type (a) diagrams, with squared +amplitudes 4 C2 +F CA ω2 +q¯q A13 +q¯q and 4 C2 +F CA ω3 +q¯q A12 +q¯q, respectively, as well as type (b) (ladder-emission) contri- +butions, with squared amplitude 2 CF C2 +A ¯ +A12 +q¯q A13 +q¯q, the same phase space function. It is given by +ΞNG,kt +32 +(R) = Θin(k1)Θin(k2)Θout(k3)Θ(d13 − d3)Θ(d3 − d23)+ ++ Θin(k1)Θout(k2)Θout(k3)Θ(d13 − d3)Θ(d3 − d23)+ ++ Θin(k1)Θout(k2)Θout(k3)Θ(d13 − d3)Θ(d23 − d3)Θ(d12 − d2) . +(27) +Finally, for type (c) (cascade emission) contributions, corresponding to the squared amplitude 2 CF C2 +A B123 +q¯q , +the phase space function reads +ΞNG,kt +33 +(R) = − Θin(k1)Θin(k2)Θout(k3)Θ(d13 − d3)Θ(d23 − d3)− +− Θin(k1)Θout(k2)Θout(k3)Θ(d13 − d3)Θ(d23 − d3)Θ(d2 − d12) . +(28) +Before performing the integration, we subtract off the part of the phase space that produces the interfer- +ence term between the one-loop global primary logarithm and the two-loops NGLs, which only comes from +type (a) emissions. For the first permutation of gluons, this part of phase space is identified by the second +term in eq. (26), Θout(k1)Θin(k2)Θout(k3)Θ(d23 − d3), where gluon k1 reproduces the one-loop global term +(8) and the other correlated gluons, k2 and k3, give the two-loops NGLs (eq. (13b) with phase space (15b)). +However, for the other two gluon permutations of type (a) emissions, the phase space (27) does not simply +contain such interference terms. Strictly speaking, this means that NGLs do not cleanly factorize from the +global form factor in the kt algorithm. Nevertheless, we can manually add and subtract the interference +terms and write the total distribution in the factorizable form (21). +We can then write the “pure” NGLs coefficient Skt +3 , given in eq. (25), in the following form +Skt +3 (R) = S(a) +3 (R) + S(b)+(c) +3 +(R) , +(29) +where we split the result according to the color factor, such that for type (a) emissions we have +S(a) +3 (R) = 4 C2 +F CA +� � 3 +� +i=1 +dci +1 − c2 +i +dφi +2π +� � +ω1 +q¯q A23 +q¯q �Ξ31(R) + ω2 +q¯q A13 +q¯q �Ξ32(R) + ω3 +q¯q A12 +q¯q �Ξ33(R) +� +, +(30) +with modified phase space that subtracts away the interference terms +�Ξ31(R) = ΞNG,kt +31 +(R) − Θout(k1)Θin(k2)Θout(k3)Θ(d23 − d3) , +(31a) +�Ξ32(R) = ΞNG,kt +32 +(R) − Θin(k1)Θout(k2)Θout(k3)Θ(d13 − d3) , +(31b) +�Ξ33(R) = ΞNG,kt +32 +(R) − Θin(k1)Θout(k2)Θout(k3)Θ(d12 − d2) , +(31c) +and for type (b) and (c) emissions +S(b)+(c) +3 +(R) = 2 CF C2 +A +� � 3 +� +i=1 +dci +1 − c2 +i +dφi +2π +� � +A12 +q¯q ¯ +A13 +q¯q ΞNG,kt +32 +(R) + B123 +q¯q ΞNG,kt +33 +(R) +� +. +(32) +We are now in a position to perform the integrations numerically as a function of the jet radius R. We +show the results in the next subsection, in which we also compute the clustering logarithmic contribution +at O(α3 +s). +4.2. CLs with kt clustering at three loops +Following the same steps as for NGLs calculation, the phase space clustering function at O(α3 +s) for the +CLs contribution, which results from the mismatch of soft singularities between real and virtual emissions +9 + +of three primary soft gluons, with a squared amplitude 8 C3 +F w1 +q¯q w2 +q¯q w3 +q¯q, is given by +ΞCL,kt +3 +(R) = − Θin(k1)Θin(k2)Θout(k3)Θ(d3 − d13)Θ(d3 − d23)− +− Θout(k1)Θin(k2)Θout(k3)Θ(d3 − d23)− +− Θin(k1)Θout(k2)Θout(k3)Θ(d3 − d13)− +− Θin(k1)Θout(k2)Θout(k3)Θ(d13 − d3)Θ(d23 − d3)Θ(d2 − d12) . +(33) +Note that the above phase-space clustering function is similar (but not exactly identical) to that found for +the jet mass observable [30]. Extracting the interference terms between the CLs at two loops and the global +logarithm at one loop, i.e., the term Σ1(∆) × ΣCL +2 (∆) in eq. (21), we reduce the above phase space function +to that of the “pure” CLs contribution as +�ΞCL,kt +3 +(R) = − Θin(k1)Θin(k2)Θout(k3)Θ(d3 − d13)Θ(d3 − d23)+ ++ Θin(k1)Θout(k2)Θout(k3)Θ(d2 − d12)[1 − Θ(d13 − d3)Θ(d23 − d3)] . +(34) +Then, the clustering logarithmic contribution to the cumulative cross-section is given by +ΣCL +3 (∆) = Ckt +3 (R) t3 +3! , +(35a) +Ckt +3 (R) = 8 C3 +F +� � 3 +� +i=1 +dci +1 − c2 +i +dφi +2π +� +w1 +q¯q w2 +q¯q w3 +q¯q �ΞCL,kt +3 +(R) . +(35b) +We show in figure 6 a plot of the coefficients of NGLs and CLs in the kt and anti-kt algorithms as a +function of the jet radius R. Shown also is the combined coefficient Fkt +3 = Skt +3 + Ckt +3 for the kt algorithm. +Figure 6: CLs and NGLs coefficients at three loops with kt and anti-kt clustering. +As in the previous section, we notice that the NGLs coefficient in the anti-kt algorithm at this order is +also quite large. Clearly, the application of the kt clustering has reduced the significance of NGLs by almost +a factor of 30 for values less than R ∼ 0.6. The CLs coefficient is also small such that the overall coefficient +F3 is smaller in magnitude than the Sakt +3 +by about a factor of 3 for most values of R. +5. Four loops and beyond +5.1. Four-loops NGLs with anti-kt at small R +The calculation of NGLs with anti-kt clustering proceeds in a similar manner at fourth order, and can +easily be deduced from previous calculations of NGLs in the literature. In fact, the phase space of integration +10 + +is similar to that of the hemisphere mass distribution reported in ref. [29], and thus the cumulative cross- +section, at this order, may be cast in the following way +Σakt +4 +(∆) = 1 +4! [Σ1(∆)]4+ 1 +2! [Σ1(∆)]2 ΣNG,akt +2 +(∆)+Σ1(∆) ΣNG,akt +3 +(∆)+ 1 +2! +� +ΣNG,akt +2 +(∆) +�2 ++ΣNG,akt +4 +(∆) , (36) +with pure NGLs contribution given by +ΣNG,akt +4 +(∆) = Sakt +4 +(R) t4 +4! , +(37a) +Sakt +4 +(R) = 2 CF C3 +A +� � 4 +� +i=1 +dci +1 − c2 +i +dφi +2π +� � +− A12 +q¯q ¯ +A13 +q¯q ¯ +A14 +q¯q Θin(k1)Θout(k2)Θout(k3)Θout(k4)+ ++ 3 ¯ +A12 +q¯q B134 +q¯q Θin(k1)Θout(k2)Θin(k3)Θout(k4) + U1234 +q¯q +Θin(k1)Θin(k2)Θout(k3)Θout(k4)− +− C1234 +q¯q +Θin(k1)Θin(k2)Θin(k3)Θout(k4) +� +− +− 2 CF C3 +A +� +1 − 2 CF +CA +� � � 4 +� +i=1 +dci +1 − c2 +i +dφi +2π +� +A1234 +q¯q +Θin(k1)Θin(k2)Θout(k3)Θout(k4) , +(37b) +where the irreducible antenna functions read [27] +C1234 +q¯q += w1 +q¯q +� +B234 +q1 + B234 +1¯q − B234 +q¯q +� +, +(38a) +U1234 +q¯q += w1 +q¯q +� +A23 +q1 ¯ +A24 +q1 + A23 +1¯q ¯ +A24 +1¯q − A23 +q¯q ¯ +A24 +q¯q +� +, +(38b) +A1234 +q¯q += ω1 +q¯q ω2 +q1 +� ¯ +A23 +q¯q − ¯ +A23 +q1 +� � ¯ +A24 +q1 − ¯ +A24 +1¯q +� ++ ω1 +q¯q ω2 +1¯q +� ¯ +A23 +q¯q − ¯ +A23 +1¯q +� � ¯ +A24 +1¯q − ¯ +A24 +q1 +� +− +− ω1 +q¯q ω2 +q¯q +� ¯ +A23 +q1 − ¯ +A23 +q¯q +� � ¯ +A24 +1¯q − ¯ +A24 +q¯q +� ++ k3 ↔ k4 . +(38c) +At small values of R the integration has been performed in ref. [29], and the corresponding result is +given by +Sakt +4 +(R ∼ 0) = −CF C3 +A ζ4 +�29 +4 − +� +1 − 2 CF +CA +�� +. +(39) +5.2. LL resummation +In this section we present numerical results for the resummation of NGLs and CLs in the large-Nc +approximation. For this we use the MC code first developed in refs. [18, 19] with modification of kt clustering +in terms of distances (1). The results are shown in figure 7 for the resummed cumulative distribution Σ as +a function of the evolution parameter t (7), for the particular value of the jet radius R = 0.5. Shown in the +figure are: results for the (primary) global distribution (black curve), obtained by running the MC program +using anti-kt clustering and allowing only for primary emissions, and the full anti-kt distribution (solid pink +curve) which additionally includes NGLs at large Nc. We observe the very large impact of NGLs on the +distribution, reducing the global form factor by a factor of 10 for t = 0.3. +We also show in the same figure the primary-emission distribution obtained by running the above- +mentioned program with kt clustering (solid green curve), which includes the global form factor together +with the resummed CLs, as well as the overall distribution in kt clustering which includes in addition the +resummed NGLs (solid purple curve). We observe that the distribution in kt clustering is affected by both +CLs and NGLs, but the combined impact of the two is noticeably small. This means that CLs tend to cancel +NGLs in kt clustering, as noted with the fixed-order calculations performed above. +Moreover, we show in figure 7 the analytical results for the resummed distribution in each case (dashed +lines), which are estimated from the observed pattern of exponentiation +Σ(∆) = exp [Σ1(∆)] exp +� ∞ +� +i=2 +ΣNG +i +(∆) +� +exp +� ∞ +� +i=2 +ΣCL +i +(∆) +� +. +(40) +11 + +Figure 7: Numerically resummed NGLs and CLs at large Nc. +It is clear that the truncation of the series at i = 3 in the exponent, though quite close to the numerical +result, does not give an accurate fit of the MC distribution. This means that higher-order contributions +cannot be ignored. +5.3. NLL resummation with anti-kt +We present here a resummed result for the azimuthal decorrelation distribution with anti-kt clustering +at NLL accuracy in the large-Nc limit, obtained using the recently-published program Gnole [24, 25]. The +distribution can be obtained from this program by defining our observable within the code, using the full +definition rather than the LL approximation (2). Explicitly written the former reads +δφ = +������ +sin−1 � +i/∈jets +k⊥i +ptr +������ +, +(41) +where k⊥i is the component of the transverse momentum of the emission i perpendicular to the thrust (or +leading jet) axis, and ptr is the recoiling jet’s transverse momentum. For simplicity we take the jets to be +at threshold, i.e., transverse to the beam direction. +Figure 8: NLL numerical resummation of the δφ distribution at large Nc. +In figure 8 we present the results for the NLL resummed distribution together with the LL one, both +obtained with Gnole. We note here that the LL distribution is obtained using the definition of the observable +(41), while that obtained with the MC code of refs. [18, 19] (figure 7) is essentially equivalent to the transverse +12 + +energy distribution (in other words, definition 2 without the sin φ part). This does in fact numerically affect +the distribution even at LL accuracy. 3 +We observe that the NLL corrections to the distribution are quite important, just like the transverse +energy distribution shown in ref. [25]. Furthermore, the scale-uncertainty band, obtained by varying the +renormalization and resummation scales by factors of 2 and 1/2 around their central values (µR = √s +and Q0 = √s/2, respectively, with √s = MZ), gets significantly reduced in the NLL curve. It is worth +mentioning that one still needs to account for the matching in order to fully control all sub-leading NLL +logarithms at the tail of the distribution. +We note that the actual distribution does not possess a Sudakov peak at low values of δφ, instead it tends +towards a constant value. This is explained by the fact that the very low values of δφ are not suppressed +by soft emissions, but are rather enhanced by vectorial cancellation of semi-hard emissions. +6. Conclusions +In this letter we have presented both fixed-order and all-orders results for the distribution of the azimuthal +decorrelation observable for the specific QCD process e+e− annihilation into two jets. The said observable +is of non-global nature and hence its distribution contains, in addition to the usual global logarithms, non- +global and/or clustering logarithms. These logarithms are jet-algorithm dependent, and start to appear at +two loops and are quite delicate to compute. +For NGLs, we have calculated the full-R expression analytically at two loops and numerically at three +loops for the anti-kt jet algorithm. At four loops, they have been determined only for small-R values for +the same said jet algorithm. For the kt clustering algorithm, calculations have been performed up to three +loops and only numerically. +Moreover, CLs, which are absent in the anti-kt algorithm, have been computed numerically up to three +loops. The usual reduction in the significance of NGLs due to kt clustering has been observed confirming +previous findings. Furthermore, the combined impact of NGLs and CLs on the distribution is observed to +be very small which has important phenomenological implications in terms of accuracy of the resummed +distribution. Our results at two loops have been checked against the output of the MC program EVENT2. +Numerical estimates of the all-orders distribution has been presented both at LL and NLL accuracy. +The achievement of the latter accuracy has been made possible by the recently-published Gnole code. NLL +resummation exhibits a better distribution both in terms of accuracy and scale uncertainty. It is thus worth +investigating the impact of NLL effects with kt clustering. Of similar worthiness is computing NGLs and +CLs at four loops with full-R dependence. +Acknowledgements +This work is supported by PRFU research project B00L02UN050120230003. The authors wish to thank +the Algerian Ministry of Higher Education and Scientific Research and DGRSDT for financial support. +The numerical calculations presented here have been performed in the HPC cluster at the University of +Batna 2 (UB2-HPC). +We thank Andrea Banfi for clarifications about using Gnole program. +References +[1] F. Hautmann, H. Jung, JHEP 10 (2008) 113. arXiv:0805.1049. +[2] A. Aktas, et al. (H1), Eur. Phys. J. C 33 (2004) 477–493. arXiv:hep-ex/0310019. +[3] M. Aaboud, et al. (ATLAS), Phys. Rev. D 98 (2018) 092004. arXiv:1805.04691. +[4] G. Aad, et al. (ATLAS), Phys. Rev. Lett. 106 (2011) 172002. arXiv:1102.2696. +[5] A. M. Sirunyan, et al. (CMS), Eur. Phys. J. C 78 (2018) 566. arXiv:1712.05471. +[6] V. Abazov, et al. (D0), Phys. Rev. Lett. 94 (2005) 221801. arXiv:hep-ex/0409040. +3Note that it is not possible to change the definition of the observable in the MC code of refs. [18, 19]. +13 + +[7] M. Aaboud, et al. (ATLAS), Phys. Rev. C 100 (2019) 034903. arXiv:1901.10440. +[8] A. Banfi, M. Dasgupta, Y. Delenda, Phys. Lett. B 665 (2008) 86–91. arXiv:0804.3786. +[9] S. Chatrchyan, et al. (CMS), Phys. Lett. B 722 (2013) 238–261. arXiv:1301.1646. +[10] X. Liu, F. Ringer, W. Vogelsang, F. Yuan, Phys. Rev. D 102 (2020) 094022. arXiv:2007.12866. +[11] H. Abramowicz, et al. (ZEUS), JHEP 01 (2018) 032. arXiv:1712.04273. +[12] S. Catani, Y. L. Dokshitzer, M. H. Seymour, B. R. Webber, Nucl. Phys. B 406 (1993) 187–224. +[13] S. D. Ellis, D. E. Soper, Phys. Rev. D 48 (1993) 3160–3166. arXiv:hep-ph/9305266. +[14] M. Cacciari, G. P. Salam, G. Soyez, Eur. Phys. J. C 72 (2012) 1896. arXiv:1111.6097. +[15] M. Cacciari, G. P. Salam, G. Soyez, JHEP 04 (2008) 063. arXiv:0802.1189. +[16] Y. L. Dokshitzer, G. D. Leder, S. Moretti, B. R. Webber, JHEP 08 (1997) 001. arXiv:hep-ph/9707323. +[17] M. Wobisch, T. Wengler, in: Workshop on Monte Carlo Generators for HERA Physics (Plenary Starting Meeting), pp. +270–279. arXiv:hep-ph/9907280. +[18] M. Dasgupta, G. Salam, Phys. Lett. B 512 (2001) 323–330. arXiv:hep-ph/0104277. +[19] M. Dasgupta, G. P. Salam, JHEP 03 (2002) 017. arXiv:hep-ph/0203009. +[20] A. Banfi, M. Dasgupta, Phys. Lett. B 628 (2005) 49–56. arXiv:hep-ph/0508159. +[21] Y. Delenda, R. Appleby, M. Dasgupta, A. Banfi, JHEP 12 (2006) 044. arXiv:hep-ph/0610242. +[22] S. Catani, M. H. Seymour, Nucl. Phys. B 485 (1997) 291–419. arXiv:hep-ph/9605323, [Erratum: Nucl.Phys.B 510, 503–504 +(1998)]. +[23] S. Catani, M. H. Seymour, Phys. Lett. B 378 (1996) 287–301. arXiv:hep-ph/9602277. +[24] A. Banfi, F. A. Dreyer, P. F. Monni, JHEP 10 (2021) 006. arXiv:2104.06416. +[25] A. Banfi, F. A. Dreyer, P. F. Monni, JHEP 03 (2022) 135. arXiv:2111.02413. +[26] K. Khelifa-Kerfa, JHEP 02 (2012) 072. arXiv:1111.2016. +[27] Y. Delenda, K. Khelifa-Kerfa, Phys. Rev. D 93 (2016) 054027. arXiv:1512.05401. +[28] A. Banfi, M. Dasgupta, K. Khelifa-Kerfa, S. Marzani, JHEP 08 (2010) 064. arXiv:1004.3483. +[29] K. Khelifa-Kerfa, Y. Delenda, JHEP 03 (2015) 094. arXiv:1501.00475. +[30] Y. Delenda, K. Khelifa-Kerfa, JHEP 09 (2012) 109. arXiv:1207.4528. +14 + diff --git a/UtAyT4oBgHgl3EQf8voh/content/tmp_files/load_file.txt b/UtAyT4oBgHgl3EQf8voh/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..e753a97a8b206a817c0055b0a302b90b6db35089 --- /dev/null +++ b/UtAyT4oBgHgl3EQf8voh/content/tmp_files/load_file.txt @@ -0,0 +1,540 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf,len=539 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content='00860v1 [hep-ph] 2 Jan 2023 Dijet azimuthal decorrelation in e+e− annihilation Hana Benslamaa,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Yazid Delendaa,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content='∗,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Kamel Khelifa-Kerfab aLaboratoire de Physique des Rayonnements et de leurs Interactions avec la Mati`ere,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' D´epartement de Physique,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Facult´e des Sciences de la Mati`ere,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Universit´e de Batna-1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Batna 05000,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Algeria bLaboratoire de Math´ematique et Applications,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' D´epartement de Physique,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Facult´e des Sciences et Technologies Universit´e Ahmed Zabana de Relizane,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Relizane 48000,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Algeria Abstract We examine non-global and clustering logarithms in the distribution of the azimuthal decorrelation between two jets in e+e− → dijet events,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' where the jets are defined with E-scheme recombination in the generalized kt algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' We calculate at one loop and to all orders the leading global single logarithms in the distribution of the said observable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' We also compute at fixed order up to four loops the non-global and clustering logarithms, and numerically resum them to all orders in the large-Nc approximation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' We compare our results at O(αs) and O(α2 s) with those of the EVENT2 fixed-order Monte Carlo program and find agreement of the leading singular behavior of the azimuthal decorrelation distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' We find that the impact of non-global logarithms on the resummed distribution in the anti-kt algorithm is substantial, while it is significantly smaller in the kt algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Furthermore, the combined clustering and non-global logarithms in the kt algorithm have an even smaller effect on the distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Finally, we use the program Gnole to calculate the resummed distribution at NLL accuracy, thus achieving state-of-the-art accuracy for the resummation of this quantity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Keywords: QCD, Jets, Resummation 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Introduction The production of jets in e+e− collisions is a simple and clean environment, yet rich of physics, to test QCD and the Standard Model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' It will be used in future colliders such as the ILC and FCC-ee in order to make precise measurements of QCD-related quantities, which together with detailed theoretical calculations will pave the way towards potential discovery of new-physics phenomena.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' At lowest order two correlated jets are produced back-to-back with a relative azimuthal angle equal to π.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' At higher orders the jets manifest a decorrelation of azimuthal angle δφ which is enhanced near the back-to-back limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' The quantity δφ, being sensitive to soft/collinear QCD effects, is of great interest in the phenomenology of perturbative and non-perturbative QCD dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' For instance it has been used to study unintegrated parton distribution functions in deep-inelastic e − p scattering (DIS) [1] and small-x BFKL effects [2], as well as measurements of the QCD coupling at various scales [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Many studies have been devoted to the distribution of δφ in various processes, such as dijet production in p − p [4, 5, 6] (and even p − pb [7]) collisions and DIS [2, 8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Experimentally, boson-jet (in pp collisions) [9] and lepton-jet or photon-jet (in DIS) [10, 11] decorrelations have been measured.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Near the back-to-back limit, the distribution of the azimuthal decorrelation is characterized by large logarithms preventing the convergence of the perturbative series, and thus need to be resummed to all ∗Corresponding author.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Email addresses: hana.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content='benslama@univ-batna.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content='dz (Hana Benslama), yazid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content='delenda@univ-batna.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content='dz (Yazid Delenda, kamel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content='khelifakerfa@univ-relizane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content='dz (Kamel Khelifa-Kerfa) Preprint submitted to Physics Letters B January 4, 2023 orders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Depending on the nature of the algorithm being used to define the jets, the leading logarithms in this distribution can be double or single logarithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' For instance, in pt-weighted recombination scheme of the kt [12, 13, 14], anti-kt [15] and Cambridge/Aachen algorithms [16, 17], the leading logarithms are double, αn s L2n, while in E-scheme recombination they are single, αn s Ln, with L = ln(1/δφ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' In the former scheme, the jets recoil against emissions everywhere in the phase space, and in particular soft and collinear emissions to these jets, which leads to the double logarithms in δφ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' On the other hand, in the latter (E-scheme), the jets recoil only against emissions that do not get clustered to them, and hence only away-from-jets emissions contribute to δφ, resulting in leading soft wide-angle single logarithmic contributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' In addition to this, the classification of the δφ observable, in E-scheme definition, falls in the “non-global” category, and as a consequence its distribution receives contributions from single non-global (NGLs) [18, 19] and/or clustering (CLs) [20, 21] logarithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' The resummation of these logarithms is not straightforward, and is usually performed numerically via Monte Carlo (MC) programs in the planar (large-Nc) limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' In this letter, we are interested in the calculation of NGLs and/or CLs for the δφ distribution both in the kt and anti-kt algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' We compute the coefficients of these logarithms as a function of the jet radius R up to O(α3 s), and at O(α4 s) in the anti-kt algorithm at small R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' We use the fixed-order MC program EVENT2 [22, 23] in order to compare the leading singular behavior of the δφ distribution with our results at O(αs) and O(α2 s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' We also compute the resummed NGLs and CLs at all orders in the large-Nc limit using the MC code of refs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' [18, 19] as well as the recently-published program Gnole [24, 25] (in the anti-kt algorithm).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' The latter program is also used to compute the resummed differential δφ distribution at next-to-leading logarithmic (NLL) accuracy, in which we additionally control all the sub-leading logarithms αn+1 s Ln in the exponent of the resummation, and quantify the corresponding scale uncertainties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' This letter is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' In the next section we compute at O(αs) the leading-order distribution focusing on the logarithmic contribution, and compare with fixed-order MC programs at this order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' In section 3, we present the calculation of NGLs and CLs at O(α2 s) and show plots of the coefficients of these logarithms as a function of the jet radius and comment on the relative size of these coefficients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' We also compare at this order the calculated δφ distribution with the output of the program EVENT2, thus confirming our results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' In section 4 we extend the calculation to O(α3 s) and (in the anti-kt algorithm and at small R) O(α4 s), and point out the significantly different color structure of NGLs in kt clustering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' In section 5 we present the all-orders resummation of the NGLs and/or CLs in the large-Nc limit up to LL accuracy for the kt algorithm, and NLL accuracy in the anti-kt clustering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Finally we draw our conclusions in section 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' One-loop calculation and the global form factor In this letter we consider the process of dijet production in e+e− annihilation at centre-of-mass energy √s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' The jets are reconstructed with the kt [14] or anti-kt [15] algorithms, suited for e+e− annihilation, with merging and stopping distances dij and di defined by dij = min � E2p i , E2p j � 1 − cos θij 1 − cos R , di = E2p i , (1) where p = +1 for the kt algorithm and p = −1 for the anti-kt algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Here R is the jet radius, Ei is the energy of the ith parton in the final state, and θij is the opening angle between partons i and j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' The algorithm sequentially merges objects i and j whenever dij is the smallest of all merging and stopping distances, and if an object i has its stopping distance as the smallest then it gets admitted to the list of final inclusive jets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' The algorithm keeps recursing until all partons are clustered into jets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' In this letter, we assume the jet kinematics to be defined with E-scheme recombination, such that the 4-momentum of a merged object simply equals the vectorial sum of the momenta of its constituents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' At the Born level, the two jets are produced back-to-back, and their relative azimuthal angle (with respect to the beam axis) is exactly π.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' The observable we are interested in is the deviation from π of this relative azimuthal angle, δφ, when soft gluons are emitted at higher orders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' It is straightforward to obtain the following expression for δφ in terms of the transverse momenta of the emitted gluons κti and their 2 azimuthal angles ϕi, with respect to the beam axis δφ = ������ � i/∈jets κti pt sin ϕi ������ , (2) where pt is the jet transverse momentum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' The (algebraic) sum is over all emitted gluons that are not clustered to any of the two measured (leading) jets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' This definition is valid only at single leading logarithmic (LL) accuracy, and we shall give the proper definition, valid at NLL accuracy, in section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Furthermore, the expression of δφ in eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' (2) only applies in E-scheme recombination.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Alternative jet recombination schemes exist for which the jet kinematics take a different form, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' the pt-weighted scheme, and the resummation takes an entirely different structure [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' At one loop the cumulative cross-section for events with azimuthal decorrelation δϕ less than some ∆,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' normalized to the Born cross-section,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' reads Σ1(∆) = −2 CF � αs(kt) π dkt kt d cos θ sin2 θ dφ 2π ωk q¯q Θout(k) Θ (κt| sin ϕ|/pt − ∆) ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' (3) where θ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' φ and kt are the polar angle,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' azimuthal angle and transverse momentum of the emitted soft gluon k,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' with respect to the jet (thrust) axis (the back-to-back outgoing jets are aligned along the z axis),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' CF is the color factor associated with the emission of the gluon off the hard q¯q dipole,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' and αs is the strong coupling with argument kt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' The invariant antenna function ωk q¯q is given by ωk q¯q = k2 t 2 pq · p¯q (pq · k)(p¯q · k) = 1 , (4) with pi denoting the momentum of particle i pq = √s 2 (1, 0, 0, 1) , (5a) p¯q = √s 2 (1, 0, 0, −1) , (5b) k = E (1, cos φ sin θ, sin φ sin θ, cos θ) , (5c) where kt = E sin θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' The constraint Θout(k) restricts the emitted gluon to be outside the jets and forbids it from being clustered to any of them in order to induce a non-zero azimuthal decorrelation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' It depends on the jet radius R and is given, in the generalized algorithm, by Θout(k) = Θ (cos R − | cos θ|) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' (6) Since the soft emission is restricted to be outside both jets then there are no collinear logarithms as- sociated with this observable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' This means that the leading logarithms are single, which allows us at LL accuracy to simply change Θ(κt| sin ϕ|/pt − ∆) → Θ(2 kt/√s − ∆), since any factor multiplying kt will only induce sub-leading logarithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' 1 We can then perform the integration over kt using the one-loop running of the coupling (which formally enters the distribution at higher orders), and write the result in terms of the evolution parameter t defined by t(∆) ≡ � √s/2 αs(kt) π dkt kt Θ � 2 kt/√s − ∆ � = − 1 2πβ0 ln(1 − 2λ) , (7) where λ = αs(√s/2)β0 ln(1/∆) and β0 is the one-loop coefficient of the QCD beta function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' The angular integration is straightforward and we obtain Σ1(∆) = −2 CF t(∆) � 1 −1 dc 1 − c2 Θ (cos R − |c|) = −2 CF t(∆) ln 1 + cos R 1 − cos R , (8) 1Notice that κt and ϕ are different from kt and φ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' 3 with c standing for cos θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Note that since only emissions in the inter-jet (gap) region are integrated over, this result may be cast in terms of the rapidity-gap width ∆η ∆η ≡ ln 1 + cos R 1 − cos R .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' (9) The all-orders resummed global form factor is simply the exponential of the one-loop distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' That is Σglobal(∆) = exp [−2 CF t(∆) ∆η] .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' (10) An identical expression was also arrived at in ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' [26] for jet shapes in e+e− annihilation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' The leading-order result can be verified by comparing it with the output of the MC program EVENT2 at O(αs) [22, 23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Specifically we compare the differential distribution 2π αs dΣ1 dL = 4 CF ln 1 + cos R 1 − cos R , (11) where L = ln ∆, with the same MC distribution, for the chosen value of R = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' We show in figure 1 a plot of the difference between the MC distribution and the expansion of the resummation at O(αs), where, as expected, this difference tends to zero in the logarithmically-enhanced region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Figure 1: The difference between the leading-order EVENT2 differential distribution 2π/αs dΣ1/dL and the resummed distribu- tion expanded at O(αs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' The singular behavior of the MC distribution is exactly cancelled by the expanded result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Two-loops calculation: NGLs and CLs When employing the kt or anti-kt clustering algorithms with E-scheme recombination, the resummation of the azimuthal decorrelation distribution requires the treatment of NGLs and/or CLs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' The corresponding cumulative distribution at O(α2 s) can then be split into three contributions Σ2(∆) = 1 2!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' [Σ1(∆)]2 + ΣNG 2 (∆) + ΣCL 2 (∆) , (12) with ΣCL 2 (∆) = 0 for anti-kt clustering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Let us first discuss the NGLs contribution ΣNG 2 (∆) in both algo- rithms, and then compute the CLs contribution ΣCL 2 (∆) for kt clustering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Calculation of NGLs The origin of NGLs at two loops is the emission of a soft gluon k1 inside any of the two outgoing jets which itself emits a softer gluon k2 outside the jets without being clustered back to them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' While this configuration results in a non-zero δφ, its virtual correction (specifically when k2 is virtual) gives δφ = 0, 4 and thus we have a real-virtual mis-cancellation of the soft singularities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' We express the contribution of the uncancelled virtual correction to the integrated azimuthal decorrelation distribution as follows ΣNG 2 (∆) = S2(R) t2 2!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' , (13a) S2(R) = −2 CF CA � dc1 1 − c2 1 dφ1 2π dc2 1 − c2 2 dφ2 2π A12 q¯q ΞNG 2 (R) , (13b) where CA is the color factor associated with the non-Abelian emission of gluon k2 off k1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' The irreducible two-loops antenna function A12 q¯q is given by [27] A12 q¯q = ω1 q¯q � ω2 q1 + ω2 1¯q − ω2 q¯q � = 1 − c1c2 1 − c1c2 − s1s2 cos(φ1 − φ2) − 1 , (14) with si ≡ sin θi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' The function ΞNG 2 restricts the angular phase-space of integration and is given, in the anti-kt and kt algorithms respectively, by ΞNG, akt 2 = Θin(k1)Θout(k2) , (15a) ΞNG, kt 2 = Θin(k1)Θout(k2)Θ(d12 − d2) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' (15b) The step function Θ(d12 − d2) forbids gluon k2 from being clustered back to the jet in the kt algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' It is given by Θ(cos R − cos θ12), with cos θ12 = c1c2 + s1s2 cos(φ1 − φ2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' In the anti-kt algorithm the integration is simple and its result can be expressed in the same form as that of the rapidity-gap NGLs coefficient found in ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' [19] Sakt 2 (R) = −CF CA �π2 6 + 2∆η2 − 2∆η ln � e2∆η − 1 � − Li2 � e−2∆η� − Li2 � 1 − e2∆η�� = −CF CA �π2 3 − R4 8 − R6 24 − 29 R8 2560 + O � R10�� , (16) where ∆η(R) is defined in eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' (9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' The above formula shows that in the limit R → 0 the two-loops NGLs coefficient does not vanish, but rather reaches its maximum value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' This feature was observed in ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' [19] and was ascribed to the fact that NGLs originate from the edge of jets, since this is the phase-space region where gluons k1 and k2 are collinear and thus the amplitude squared (14) is most singular.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' In the kt algorithm, and at small values of R (using small angles), we can write the NGLs coefficient as Skt 2 (R ∼ 0) = −8 CF CA � 1 0 dθ1 � ∞ 1 dθ2 � 2π 0 dφ 2π 1 (θ2 1 + θ2 2) sec φ − 2 θ1 θ2 Θ � θ2 1 + θ2 2 − 2 θ1 θ2 cos φ − 1 � = −2π2 27 CF CA , (17) where we made the following changes of variables: φ = φ1 − φ2 and θi → R θi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Away from the small-R limit one may perform the integration numerically to obtain the full-R result for the two-loops coefficient of NGLs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' We present the results in the following subsection together with the CLs coefficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' CLs with kt clustering To compute the CLs we consider the Abelian primary emission of two strongly-ordered gluons directly off the hard q¯q dipole, whereby the harder gluon k1 is inside one of the two jets and the softer k2 is outside both of them, with the constraint d12 < d2, such that gluon k2 gets clustered into the jet by gluon k1, which leads to δφ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' However, when k1 is virtual then gluon k2 remains in the gap causing the hard jets to decorrelate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' In this case we obtain a large single logarithmic contribution to the δφ distribution given by ΣCL 2 (∆) = Ckt 2 (R) t2 2!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' , (18a) Ckt 2 (R) = 4 C2 F � dc1 1 − c2 1 dφ1 2π dc2 1 − c2 2 dφ2 2π w1 q¯q w2 q¯q Θ(|c1| − cos R) Θ(cos R − |c2|) Θ(cos θ12 − cos R) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' (18b) 5 Note again that Cakt 2 (R) = 0, as there are no CLs for anti-kt clustering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' First, let us consider the small-R limit of this integral.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' In this case we may write Ckt 2 (R ∼ 0) = 8 C2 F � 1 0 dθ1 θ1 � ∞ 1 dθ2 θ2 � 2π 0 dφ 2π Θ � −θ2 1 − θ2 2 + 2 θ1 θ2 cos φ + 1 � = 5π2 27 C2 F .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' (19) Away from this small-R limit we perform the integration numerically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' We show in figure 2 a plot of the coefficients of NGLs and CLs at O(α2 s) as a function of the jet radius R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Also shown is the combined coefficient of CLs and NGLs in the kt algorithm;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Fkt 2 = Skt 2 + Ckt 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Figure 2: CLs and NGLs coefficients at two loops with kt and anti-kt clustering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Notice that NGLs coefficient in the kt clustering algorithm is significantly smaller than that in the anti- kt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' The CLs coefficient is positive and quite small, with the advantage that it cancels the NGLs coefficient, particularly at small values of R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Note that the overall coefficient F2 is less than 1 for values of R smaller than about 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' For small R values, the anti-kt NGLs coefficient computed here is identical to that found for the single hemisphere mass [28] and jet mass with a jet veto [26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Comparison to EVENT2 We compare our two-loops results with the exact MC distribution at O(α2 s) obtained with the EVENT2 program.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' The latter splits the distribution at NLO into three color contributions;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' O(C2 F), O(CF CA) and O(CF Tf nf), with Tf = 1/2 being the normalization constant of the generators of the SU(3) group in the fundamental representation and nf = 5 is the number of active quark flavors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' The expansion of the resummed distribution at this order, including running coupling effects, is written, after differentiating with respect to L, as �2π αs �2 dΣ2 dL = � C2 F 4 � 4 ∆η2 + C2 � − CF CA 4 3 (3 S2 + 11∆η) + CF Tf nf 16 3 ∆η � L + O(1) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' (20) At this order this differential distribution is linear in L, but does not capture the O(1) constant, which, in the cumulative integrated distribution, is an NLL O(α2 s L) term.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' We plot the difference between the MC distribution and the expansion (20) for each color contribution separately.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' All curves should tend towards a constant when L grows large and negative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' The results are shown in figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Here the O(C2 F) part contains the CLs coefficient in kt clustering, while the O(CF CA) term contains the NGLs coefficient both in kt and anti-kt algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' The O(CF Tf nf) contribution is algorithm independent at LL accuracy, but the NLL O(1) constant does depend on the jet algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' 6 Figure 3: The difference between the NLO EVENT2 differential distribution (2π/αs)2 dΣ2/dL and the resummed distribution expanded at O(α2 s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' The leading logarithmic behavior of the MC distribution O(α2 sL) is cancelled, leaving a constant behavior at large values of L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' NGLs and CLs at three loops 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' NGLs at three loops At O(α3 s), the cumulative distribution can be written as follows Σ3(∆) = 1 3!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' [Σ1(∆)]3 + Σ1(∆) × ΣNG 2 (∆) + Σ1(∆) × ΣCL 2 (∆) + ΣNG 3 (∆) + ΣCL 3 (∆) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' (21) Focusing first on the pure NGLs contribution ΣNG 3 (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=', excluding the cross-talk between the one-loop global and two-loops non-global logarithms) in the anti-kt algorithm, we may write it in the form ΣNG,akt 3 (∆) = Sakt 3 (R) t3 3!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' , (22a) Sakt 3 (R) = 2 CF C2 A � � 3 � i=1 dci 1 − c2 i dφi 2π � � A12 q¯q ¯ A13 q¯q Θin(k1)Θout(k2)Θout(k3) − B123 q¯q Θin(k1)Θin(k2)Θout(k3) � , (22b) where we define ¯ A13 q¯q = A13 q¯q/ω1 q¯q, and the 3-loops irreducible cascade antenna function is given by B123 q¯q = ω1 q¯q � A23 q1 + A23 1¯q − A23 q¯q � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' (23) It is worth mentioning that, for the cascade term, there is a non-negligible contribution from the configuration in which gluon k1 is in one jet emitting gluon k2 in the other jet which itself emits the softest gluon k3 in the gap between the two jets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' At small values of R the integration is quite simple and yields the result Sakt 3 (R ∼ 0) = CF C2 A 2 ζ3 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' (24) Notice that this result is twice that found for the hemisphere mass observable [29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Away from the small-R limit the integration can be performed numerically and we shall present the results in the next subsection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' The pure NGLs contribution in the kt algorithm is given by an identical form to that of the anti-kt (22a) ΣNG,kt 3 (∆) = Skt 3 (R) t3 3!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' (25) We perform for the first time in the literature a calculation of NGLs in the kt algorithm beyond two loops.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Due to non-linearity of kt clustering we shall find a class of NGLs that have a non-standard color factor, namely C2 F CA at O(α3 s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Such terms usually (in anti-kt clustering) only arise in the cross-talk of the expansion of the primary-emission global form factor (10) at O(αs) together with NGLs at O(α2 s), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=', the term Σ1(∆) × ΣNG 2 (∆) in eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' (21).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' However, in the kt algorithm, we find them as “pure” irreducible NGLs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' That is, they are part of the term ΣNG 3 (∆) in eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' (21).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' 7 To proceed, we consider three types of emissions at O(α3 s), as shown in figure 4: (a) one primary + two correlated emissions, (b) ladder emissions, and (c) cascade emissions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' In each case we consider all possible virtual-correction Feynman diagrams as well as angular configurations of the emitted gluons that affect the clustering procedure, and look for a mis-match between the soft divergences of these emissions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Figure 4: The three types of emissions to consider for NGLs calculation at O(α3 s): (a) one primary + two correlated emissions, (b) ladder emissions, and (c) cascade emissions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Starting first with type (a) contributions, there are three possible permutations of the gluons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' 2 For the permutation in which k3 is emitted in correlation with k2, and which has a squared amplitude 4 C2 F CA ω1 q¯q A23 q¯q, we find that the angular phase space of integration that yields a logarithmic contribution is given by ΞNG,kt 31 (R) = Θin(k1)Θin(k2)Θout(k3)Θ(d3 − d13)Θ(d23 − d3)+ + Θout(k1)Θin(k2)Θout(k3)Θ(d23 − d3)+ − Θin(k1)Θout(k2)Θout(k3)Θ(d13 − d3)Θ(d23 − d3)Θ(d2 − d12) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' (26) To see how one obtains this result let us give one example of angular configurations that result in a logarithmic contribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' There are four Feynman diagrams in this case, shown in figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Consider the situation when particles k3 and k2 are outside the jet regions, d3j > d3 and d2j > d2, while particle k1 is inside, d1j < d1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' In this scenario, both diagrams in which k1 is virtual (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=', diagrams (3) and (4) in figure 5) yield δφ ̸= 0, since in both diagrams particle k2 is real and remains in the gap region after applying the clustering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' However, these two diagrams contribute equally and with opposite signs, so they cancel each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' For the remaining two diagrams, (1) and (2), we have a mismatch when particle k2 gets pulled inside the jet by the real particle k1 while k3 remains in the gap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' This happens when d12 is smaller than d2, and both d13 and d23 are greater than d3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' While in diagram (1) we have a real unclustered gluon k3 in the gap region (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=', it forms a jet on its own) giving δφ ̸= 0, in diagram (2) the gap is empty and the hard jets are exactly back-to-back with δφ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' The virtual-correction diagram (2) contributes fully to the cumulative distribution while the real-emission diagram (1) cancels this contribution only up to δφ = ∆, leaving uncancelled virtual-correction contributions with a negative sign.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' This is the last term in eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' (26).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Figure 5: Feynman diagrams corresponding to the squared amplitude 4 C2 F CA ω1 q¯q A23 q¯q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' 2Note that for all permutations the transverse momenta of the three gluons are strongly ordered as follows: kt1 ≫ kt2 ≫ kt3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' 8 Similarly, we obtain for the second and third gluon permutations of type (a) diagrams, with squared amplitudes 4 C2 F CA ω2 q¯q A13 q¯q and 4 C2 F CA ω3 q¯q A12 q¯q, respectively, as well as type (b) (ladder-emission) contri- butions, with squared amplitude 2 CF C2 A ¯ A12 q¯q A13 q¯q, the same phase space function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' It is given by ΞNG,kt 32 (R) = Θin(k1)Θin(k2)Θout(k3)Θ(d13 − d3)Θ(d3 − d23)+ + Θin(k1)Θout(k2)Θout(k3)Θ(d13 − d3)Θ(d3 − d23)+ + Θin(k1)Θout(k2)Θout(k3)Θ(d13 − d3)Θ(d23 − d3)Θ(d12 − d2) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' (27) Finally, for type (c) (cascade emission) contributions, corresponding to the squared amplitude 2 CF C2 A B123 q¯q , the phase space function reads ΞNG,kt 33 (R) = − Θin(k1)Θin(k2)Θout(k3)Θ(d13 − d3)Θ(d23 − d3)− − Θin(k1)Θout(k2)Θout(k3)Θ(d13 − d3)Θ(d23 − d3)Θ(d2 − d12) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' (28) Before performing the integration, we subtract off the part of the phase space that produces the interfer- ence term between the one-loop global primary logarithm and the two-loops NGLs, which only comes from type (a) emissions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' For the first permutation of gluons, this part of phase space is identified by the second term in eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' (26), Θout(k1)Θin(k2)Θout(k3)Θ(d23 − d3), where gluon k1 reproduces the one-loop global term (8) and the other correlated gluons, k2 and k3, give the two-loops NGLs (eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' (13b) with phase space (15b)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' However, for the other two gluon permutations of type (a) emissions, the phase space (27) does not simply contain such interference terms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Strictly speaking, this means that NGLs do not cleanly factorize from the global form factor in the kt algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Nevertheless, we can manually add and subtract the interference terms and write the total distribution in the factorizable form (21).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' We can then write the “pure” NGLs coefficient Skt 3 , given in eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' (25),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' in the following form Skt 3 (R) = S(a) 3 (R) + S(b)+(c) 3 (R) ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' (29) where we split the result according to the color factor,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' such that for type (a) emissions we have S(a) 3 (R) = 4 C2 F CA � � 3 � i=1 dci 1 − c2 i dφi 2π � � ω1 q¯q A23 q¯q �Ξ31(R) + ω2 q¯q A13 q¯q �Ξ32(R) + ω3 q¯q A12 q¯q �Ξ33(R) � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' (30) with modified phase space that subtracts away the interference terms �Ξ31(R) = ΞNG,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content='kt 31 (R) − Θout(k1)Θin(k2)Θout(k3)Θ(d23 − d3) ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' (31a) �Ξ32(R) = ΞNG,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content='kt 32 (R) − Θin(k1)Θout(k2)Θout(k3)Θ(d13 − d3) ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' (31b) �Ξ33(R) = ΞNG,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content='kt 32 (R) − Θin(k1)Θout(k2)Θout(k3)Θ(d12 − d2) ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' (31c) and for type (b) and (c) emissions S(b)+(c) 3 (R) = 2 CF C2 A � � 3 � i=1 dci 1 − c2 i dφi 2π � � A12 q¯q ¯ A13 q¯q ΞNG,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content='kt 32 (R) + B123 q¯q ΞNG,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content='kt 33 (R) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' (32) We are now in a position to perform the integrations numerically as a function of the jet radius R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' We show the results in the next subsection, in which we also compute the clustering logarithmic contribution at O(α3 s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' CLs with kt clustering at three loops Following the same steps as for NGLs calculation,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' the phase space clustering function at O(α3 s) for the CLs contribution,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' which results from the mismatch of soft singularities between real and virtual emissions 9 of three primary soft gluons,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' with a squared amplitude 8 C3 F w1 q¯q w2 q¯q w3 q¯q,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' is given by ΞCL,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content='kt 3 (R) = − Θin(k1)Θin(k2)Θout(k3)Θ(d3 − d13)Θ(d3 − d23)− − Θout(k1)Θin(k2)Θout(k3)Θ(d3 − d23)− − Θin(k1)Θout(k2)Θout(k3)Θ(d3 − d13)− − Θin(k1)Θout(k2)Θout(k3)Θ(d13 − d3)Θ(d23 − d3)Θ(d2 − d12) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' (33) Note that the above phase-space clustering function is similar (but not exactly identical) to that found for the jet mass observable [30].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Extracting the interference terms between the CLs at two loops and the global logarithm at one loop, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=', the term Σ1(∆) × ΣCL 2 (∆) in eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' (21), we reduce the above phase space function to that of the “pure” CLs contribution as �ΞCL,kt 3 (R) = − Θin(k1)Θin(k2)Θout(k3)Θ(d3 − d13)Θ(d3 − d23)+ + Θin(k1)Θout(k2)Θout(k3)Θ(d2 − d12)[1 − Θ(d13 − d3)Θ(d23 − d3)] .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' (34) Then, the clustering logarithmic contribution to the cumulative cross-section is given by ΣCL 3 (∆) = Ckt 3 (R) t3 3!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' , (35a) Ckt 3 (R) = 8 C3 F � � 3 � i=1 dci 1 − c2 i dφi 2π � w1 q¯q w2 q¯q w3 q¯q �ΞCL,kt 3 (R) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' (35b) We show in figure 6 a plot of the coefficients of NGLs and CLs in the kt and anti-kt algorithms as a function of the jet radius R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Shown also is the combined coefficient Fkt 3 = Skt 3 + Ckt 3 for the kt algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Figure 6: CLs and NGLs coefficients at three loops with kt and anti-kt clustering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' As in the previous section, we notice that the NGLs coefficient in the anti-kt algorithm at this order is also quite large.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Clearly, the application of the kt clustering has reduced the significance of NGLs by almost a factor of 30 for values less than R ∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' The CLs coefficient is also small such that the overall coefficient F3 is smaller in magnitude than the Sakt 3 by about a factor of 3 for most values of R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Four loops and beyond 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Four-loops NGLs with anti-kt at small R The calculation of NGLs with anti-kt clustering proceeds in a similar manner at fourth order, and can easily be deduced from previous calculations of NGLs in the literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' In fact, the phase space of integration 10 is similar to that of the hemisphere mass distribution reported in ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' [29], and thus the cumulative cross- section, at this order, may be cast in the following way Σakt 4 (∆) = 1 4!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' [Σ1(∆)]4+ 1 2!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' [Σ1(∆)]2 ΣNG,akt 2 (∆)+Σ1(∆) ΣNG,akt 3 (∆)+ 1 2!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' � ΣNG,akt 2 (∆) �2 +ΣNG,akt 4 (∆) , (36) with pure NGLs contribution given by ΣNG,akt 4 (∆) = Sakt 4 (R) t4 4!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' (37a) Sakt 4 (R) = 2 CF C3 A � � 4 � i=1 dci 1 − c2 i dφi 2π � � − A12 q¯q ¯ A13 q¯q ¯ A14 q¯q Θin(k1)Θout(k2)Θout(k3)Θout(k4)+ + 3 ¯ A12 q¯q B134 q¯q Θin(k1)Θout(k2)Θin(k3)Θout(k4) + U1234 q¯q Θin(k1)Θin(k2)Θout(k3)Θout(k4)− − C1234 q¯q Θin(k1)Θin(k2)Θin(k3)Θout(k4) � − − 2 CF C3 A � 1 − 2 CF CA � � � 4 � i=1 dci 1 − c2 i dφi 2π � A1234 q¯q Θin(k1)Θin(k2)Θout(k3)Θout(k4) ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' (37b) where the irreducible antenna functions read [27] C1234 q¯q = w1 q¯q � B234 q1 + B234 1¯q − B234 q¯q � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' (38a) U1234 q¯q = w1 q¯q � A23 q1 ¯ A24 q1 + A23 1¯q ¯ A24 1¯q − A23 q¯q ¯ A24 q¯q � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' (38b) A1234 q¯q = ω1 q¯q ω2 q1 � ¯ A23 q¯q − ¯ A23 q1 � � ¯ A24 q1 − ¯ A24 1¯q � + ω1 q¯q ω2 1¯q � ¯ A23 q¯q − ¯ A23 1¯q � � ¯ A24 1¯q − ¯ A24 q1 � − − ω1 q¯q ω2 q¯q � ¯ A23 q1 − ¯ A23 q¯q � � ¯ A24 1¯q − ¯ A24 q¯q � + k3 ↔ k4 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' (38c) At small values of R the integration has been performed in ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' [29], and the corresponding result is given by Sakt 4 (R ∼ 0) = −CF C3 A ζ4 �29 4 − � 1 − 2 CF CA �� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' (39) 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' LL resummation In this section we present numerical results for the resummation of NGLs and CLs in the large-Nc approximation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' For this we use the MC code first developed in refs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' [18, 19] with modification of kt clustering in terms of distances (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' The results are shown in figure 7 for the resummed cumulative distribution Σ as a function of the evolution parameter t (7), for the particular value of the jet radius R = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Shown in the figure are: results for the (primary) global distribution (black curve), obtained by running the MC program using anti-kt clustering and allowing only for primary emissions, and the full anti-kt distribution (solid pink curve) which additionally includes NGLs at large Nc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' We observe the very large impact of NGLs on the distribution, reducing the global form factor by a factor of 10 for t = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' We also show in the same figure the primary-emission distribution obtained by running the above- mentioned program with kt clustering (solid green curve), which includes the global form factor together with the resummed CLs, as well as the overall distribution in kt clustering which includes in addition the resummed NGLs (solid purple curve).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' We observe that the distribution in kt clustering is affected by both CLs and NGLs, but the combined impact of the two is noticeably small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' This means that CLs tend to cancel NGLs in kt clustering, as noted with the fixed-order calculations performed above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Moreover, we show in figure 7 the analytical results for the resummed distribution in each case (dashed lines), which are estimated from the observed pattern of exponentiation Σ(∆) = exp [Σ1(∆)] exp � ∞ � i=2 ΣNG i (∆) � exp � ∞ � i=2 ΣCL i (∆) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' (40) 11 Figure 7: Numerically resummed NGLs and CLs at large Nc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' It is clear that the truncation of the series at i = 3 in the exponent, though quite close to the numerical result, does not give an accurate fit of the MC distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' This means that higher-order contributions cannot be ignored.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' NLL resummation with anti-kt We present here a resummed result for the azimuthal decorrelation distribution with anti-kt clustering at NLL accuracy in the large-Nc limit, obtained using the recently-published program Gnole [24, 25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' The distribution can be obtained from this program by defining our observable within the code, using the full definition rather than the LL approximation (2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Explicitly written the former reads δφ = ������ sin−1 � i/∈jets k⊥i ptr ������ , (41) where k⊥i is the component of the transverse momentum of the emission i perpendicular to the thrust (or leading jet) axis, and ptr is the recoiling jet’s transverse momentum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' For simplicity we take the jets to be at threshold, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=', transverse to the beam direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Figure 8: NLL numerical resummation of the δφ distribution at large Nc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' In figure 8 we present the results for the NLL resummed distribution together with the LL one, both obtained with Gnole.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' We note here that the LL distribution is obtained using the definition of the observable (41), while that obtained with the MC code of refs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' [18, 19] (figure 7) is essentially equivalent to the transverse 12 energy distribution (in other words, definition 2 without the sin φ part).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' This does in fact numerically affect the distribution even at LL accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' 3 We observe that the NLL corrections to the distribution are quite important, just like the transverse energy distribution shown in ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' [25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Furthermore, the scale-uncertainty band, obtained by varying the renormalization and resummation scales by factors of 2 and 1/2 around their central values (µR = √s and Q0 = √s/2, respectively, with √s = MZ), gets significantly reduced in the NLL curve.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' It is worth mentioning that one still needs to account for the matching in order to fully control all sub-leading NLL logarithms at the tail of the distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' We note that the actual distribution does not possess a Sudakov peak at low values of δφ, instead it tends towards a constant value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' This is explained by the fact that the very low values of δφ are not suppressed by soft emissions, but are rather enhanced by vectorial cancellation of semi-hard emissions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Conclusions In this letter we have presented both fixed-order and all-orders results for the distribution of the azimuthal decorrelation observable for the specific QCD process e+e− annihilation into two jets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' The said observable is of non-global nature and hence its distribution contains, in addition to the usual global logarithms, non- global and/or clustering logarithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' These logarithms are jet-algorithm dependent, and start to appear at two loops and are quite delicate to compute.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' For NGLs, we have calculated the full-R expression analytically at two loops and numerically at three loops for the anti-kt jet algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' At four loops, they have been determined only for small-R values for the same said jet algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' For the kt clustering algorithm, calculations have been performed up to three loops and only numerically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Moreover, CLs, which are absent in the anti-kt algorithm, have been computed numerically up to three loops.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' The usual reduction in the significance of NGLs due to kt clustering has been observed confirming previous findings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Furthermore, the combined impact of NGLs and CLs on the distribution is observed to be very small which has important phenomenological implications in terms of accuracy of the resummed distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Our results at two loops have been checked against the output of the MC program EVENT2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Numerical estimates of the all-orders distribution has been presented both at LL and NLL accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' The achievement of the latter accuracy has been made possible by the recently-published Gnole code.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' NLL resummation exhibits a better distribution both in terms of accuracy and scale uncertainty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' It is thus worth investigating the impact of NLL effects with kt clustering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Of similar worthiness is computing NGLs and CLs at four loops with full-R dependence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Acknowledgements This work is supported by PRFU research project B00L02UN050120230003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' The authors wish to thank the Algerian Ministry of Higher Education and Scientific Research and DGRSDT for financial support.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' The numerical calculations presented here have been performed in the HPC cluster at the University of Batna 2 (UB2-HPC).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' We thank Andrea Banfi for clarifications about using Gnole program.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' References [1] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Hautmann, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Jung, JHEP 10 (2008) 113.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' arXiv:0805.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content='1049.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' [2] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Aktas, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' (H1), Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' C 33 (2004) 477–493.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' arXiv:hep-ex/0310019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' [3] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Aaboud, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' (ATLAS), Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' D 98 (2018) 092004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' arXiv:1805.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content='04691.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' [4] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Aad, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' (ATLAS), Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' 106 (2011) 172002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' arXiv:1102.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content='2696.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' [5] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Sirunyan, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' (CMS), Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' C 78 (2018) 566.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' arXiv:1712.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content='05471.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' [6] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Abazov, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' (D0), Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' 94 (2005) 221801.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' arXiv:hep-ex/0409040.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' 3Note that it is not possible to change the definition of the observable in the MC code of refs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' [18, 19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' 13 [7] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Aaboud, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' (ATLAS), Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' C 100 (2019) 034903.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' arXiv:1901.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content='10440.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' [8] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Banfi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Dasgupta, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Delenda, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' B 665 (2008) 86–91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' arXiv:0804.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content='3786.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' [9] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Chatrchyan, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' (CMS), Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' B 722 (2013) 238–261.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' arXiv:1301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content='1646.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' [10] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Liu, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Ringer, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Vogelsang, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Yuan, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' D 102 (2020) 094022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' arXiv:2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content='12866.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' [11] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Abramowicz, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' (ZEUS), JHEP 01 (2018) 032.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' arXiv:1712.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content='04273.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' [12] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Catani, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Dokshitzer, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Seymour, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Webber, Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' B 406 (1993) 187–224.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' [13] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Ellis, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Soper, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' D 48 (1993) 3160–3166.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' arXiv:hep-ph/9305266.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' [14] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Cacciari, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Salam, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Soyez, Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' C 72 (2012) 1896.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' arXiv:1111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content='6097.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' [15] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Cacciari, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Salam, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Soyez, JHEP 04 (2008) 063.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' arXiv:0802.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content='1189.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' [16] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Dokshitzer, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Leder, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Moretti, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Webber, JHEP 08 (1997) 001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' arXiv:hep-ph/9707323.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' [17] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Wobisch, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Wengler, in: Workshop on Monte Carlo Generators for HERA Physics (Plenary Starting Meeting), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' 270–279.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' arXiv:hep-ph/9907280.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' [18] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Dasgupta, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Salam, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' B 512 (2001) 323–330.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' arXiv:hep-ph/0104277.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' [19] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Dasgupta, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Salam, JHEP 03 (2002) 017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' arXiv:hep-ph/0203009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' [20] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Banfi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Dasgupta, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' B 628 (2005) 49–56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' arXiv:hep-ph/0508159.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' [21] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Delenda, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Appleby, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Dasgupta, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Banfi, JHEP 12 (2006) 044.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' arXiv:hep-ph/0610242.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' [22] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Catani, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Seymour, Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' B 485 (1997) 291–419.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' arXiv:hep-ph/9605323, [Erratum: Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content='Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content='B 510, 503–504 (1998)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' [23] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Catani, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Seymour, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' B 378 (1996) 287–301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' arXiv:hep-ph/9602277.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' [24] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Banfi, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Dreyer, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Monni, JHEP 10 (2021) 006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' arXiv:2104.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content='06416.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' [25] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Banfi, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Dreyer, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Monni, JHEP 03 (2022) 135.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' arXiv:2111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content='02413.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' [26] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Khelifa-Kerfa, JHEP 02 (2012) 072.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' arXiv:1111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content='2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' [27] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Delenda, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Khelifa-Kerfa, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' D 93 (2016) 054027.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' arXiv:1512.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content='05401.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' [28] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Banfi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Dasgupta, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Khelifa-Kerfa, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Marzani, JHEP 08 (2010) 064.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' arXiv:1004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content='3483.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' [29] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Khelifa-Kerfa, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Delenda, JHEP 03 (2015) 094.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' arXiv:1501.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content='00475.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' [30] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Delenda, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' Khelifa-Kerfa, JHEP 09 (2012) 109.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' arXiv:1207.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content='4528.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} +page_content=' 14' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UtAyT4oBgHgl3EQf8voh/content/2301.00860v1.pdf'} diff --git a/V9AzT4oBgHgl3EQfJ_vP/vector_store/index.faiss b/V9AzT4oBgHgl3EQfJ_vP/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..48a41d8f41ded97306dd45be5d567b4451a70007 --- /dev/null +++ b/V9AzT4oBgHgl3EQfJ_vP/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ecdb273477403d6ce012466ac7b13da23120e12d1cd4758bf601eb5fb1944b51 +size 2490413 diff --git a/WdE1T4oBgHgl3EQfJAOq/content/tmp_files/2301.02947v1.pdf.txt b/WdE1T4oBgHgl3EQfJAOq/content/tmp_files/2301.02947v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..60395922bf56c0b843e9efd58932fc1b166f50bf --- /dev/null +++ b/WdE1T4oBgHgl3EQfJAOq/content/tmp_files/2301.02947v1.pdf.txt @@ -0,0 +1,1384 @@ +arXiv:2301.02947v1 [cond-mat.mes-hall] 7 Jan 2023 +Chiral organic molecular structures supported by multilayer surfaces +Alexander V. Savin1, 2, ∗ and Yuri S. Kivshar3, † +1Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia +2 Plekhanov Russian University of Economics, Moscow 117997, Russia +3Nonlinear Physics Center, Department of Fundamental and Theoretical Physics, +Research School of Physics, Australian National University, Canberra ACT 2601, Australia +We study numerically the dynamics of acetanilide (ACN) molecules placed on a flat surface of +a multilayer hexagonal boron nitride structure. We demonstrate that the ACN molecules, being +achiral in three dimensions, become chiral after being placed on the substrate. Homochirality of the +ACN molecules leads to stable secondary structures stabilized by hydrogen bonds between peptide +groups of the molecules. Numerical simulations of systems of such molecules reveal that the structure +of the resulting hydrogen-bond chains depends on the isomeric composition of the molecules. If all +molecules are homochiral (i.e. only one isomer is present), they form secondary structures (chains +of hydrogen bonds in the shapes of arcs, circles, and spirals). If the molecules at the substrate +form a racemic mixture, then no regular secondary structures appear, and only curvilinear chains of +hydrogen bonds of random shapes can emerge. A hydrogen-bond chain can form a straight zigzag +only if it has an alternation of isomers. Such chains can create two-dimensional (2D) regular lattices, +or 2D crystals. The melting scenarios of such 2D crystals depend on density of its coverage of the +substrate. At 25% coverage, melting occurs continuously in a certain temperature interval. For a +complete coverage, melting occurs at 415 ÷ 470 K due to a shift of 11% of all molecules into the +second layer of the substrate. +I. +INTRODUCTION +Two-dimensional (2D) materials such as graphene (G) +and hexagonal boron nitride (h-BN) have attracted a lot +of attention due to their unique electronic [1–3] and me- +chanical [4–7] properties. Currently, heterogeneous lay- +ered materials of such 2D materials, which can exhibit +various novel physical properties compared to their ho- +mogeneous counterparts, became a special focus of such +studies [8–10]. For example, the use of hybrid G/h-BN +structures allows to achieve some desired electronic prop- +erties [11, 12] and also reduce significantly friction be- +tween the layers [13]. +In general, such multilayer het- +erostructures are stabilized by van der Waals (vdW) in- +teractions between atoms of the neighboring layers. +The concept of vdW heterostructures can be extended +to the integration of 2D materials with molecular struc- +tures of different dimensions, such as nD/2D heterostruc- +tures, where n stands for the dimension (n = 0, 1, or +3) [14], describing flat molecules (n = 0), polymer chains +(n = 1), or three-dimensional molecular objects (n = 3). +For molecules and molecular chains with benzol rings, +flat layers of G and h-BN are strong adsorbents [15–19]. +Theoretical studies reveal that molecules adsorbed on G +and h-BN surfaces through non-covalent interactions can +modify the properties of the surface as solid-liquid, solid- +air, or solid-vacuum interfaces [20–22]. A strong stacking +interaction with a flat substrate allows such molecules +residing on a surface creating stable 2D supra-molecular +systems, as shown in the characteristic example of Fig. 1 +∗asavin@chph.ras.ru +†yuri.kivshar@anu.edu.au +FIG. 1: +Example of the molecular structures studied in +this paper. A spiral structure of 52 R-isomers of the ACN +molecules C6H5–NHCO–CH3 is stabilized on a h-BN multi- +layer surface. +By now, +the behavior of multifunctional organic +molecules placed on ideal metal surfaces has been stud- +ied in detail [23]. Such organometallic systems may ex- +hibit a variety of different structures induced by the sub- +strate. In many cases, complex organic molecules (such +as carboxylic acids, amino acids, anhydrides, and ring +systems) become self-organized on metal surfaces creat- +ing ordered super-structures stabilized by inter-molecular +interactions. Chirality is of a particular interest that can +appear for initially achiral metal surfaces by adsorbing +organic molecules [24]. Similar behavior is expected for +organic molecules adsorbed on flat surfaces of G and h- + +2 +BN molecular structures. +In this paper, we study nu- +merically the formation of supra-molecular complexes by +acetanilide molecules placed on the surface of a multilayer +h-BN sheet, see Fig. 1, serving as an introductory figure +explaining our problem and results discussed below. +For poly-cyclic aromatic hydrocarbons (for molecules +of benzol C6H6, naphthalene C10H8, pyrene C16H10,...), +graphene is a strong adsorbent [15, 17, 19, 25]. The in- +teraction of graphene with such molecules often causes +specific reactions that can be used in new types of sensors +[26, 27]. Non-covalent functionalization of the graphene +surface can significantly expand its potential range of +applications [20, 21]. +It has been shown experimen- +tally [25, 28] that benzol and pyrene molecules adsorbed +on graphene form densely packed monolayers. +For acetanilide (ACN, C6H5NHCOCH3) and parac- +etamol (PCM, C6H4OHNHCOCH3) molecules, graphene +and hexagonal boron nitride are also strong adsorbents. +Due to possible medical applications, much attention has +been paid to modeling the adsorption of PCM molecules, +which is a strong analgesic, on h-BN sheets and nan- +otubes [18, 29]. It has been shown in [30] that function- +alized graphene can be used as a highly sensitive parac- +etamol detection sensor. +An example of a 1D/2D heterostructure is a graphene +sheet with adsorbed Kevlar chains, kevlar-functionalized +graphene [31]. The presence of planar C6H4 benzol rings +and NHCO peptide groups in the polymer chain [–C6H4– +NHCO–]∞ provides a strong non-covalent (vdW) inter- +action of the chain with G and h-BN sheets. Such chains +on the surface of sheets G and h-BN will lie parallel to +the surface and form chains of hydrogen bonds between +each other · · ·HNCO· · ·HNCO· · ·. +Such 3D/2D heterostructures can form thin metal lay- +ers on the G and h-BN surfaces. In particular, numerical +modeling suggests that aluminum can form stable two- +layer structures on the G surface [32]. +It has been shown in Refs. [33–42] that n-alkanes (lin- +ear polymer chains CH3(CH2)lCH3 with internal units +2 ≤ l ≤ 388) form a dense ordered monolayer of parallel +linear chains on the graphite (graphene) surface. Inter- +est in alkanes is due to the fact that they belong to the +simplest families of polymer molecules, which members +of which differ only in their length. Placing linear poly- +mer chains on a flat graphite surface causes them to self- +assemble into 2D crystals. The self-assembly mechanism +depends on the chain length, temperature, and the level +of coverage of the substrate with chains [36, 40]. +Adsorption by the surface of a long single-chain +polyethylene molecule leads to its two-dimensional crys- +tallization – it passes from the form of a three- +dimensional globule into the form of a parallel folded +linear chain lying in the plane parallel to the substrate +surface [43–45]. +Thus, the flat surfaces of the G and h-BN substrates +create a 2D platform for flat molecules adsorbed on them +(for poly-cyclic aromatic hydrocarbons, for ACN and +PCM molecules, Kevlar chains, ...) +and linear poly- +mer molecules. At low temperatures, the molecules move +along the sheet, remaining parallel to its surface. They +interact with each other and form two-dimensional supra- +molecular structures. Such molecular adsorbents are con- +venient systems for studying phase transitions caused by +freedom restrictions. +To date, only phase transitions in monolayers of n- +alkanes have been well studied [33, 42, 46–48]. Modeling +and experimental studies show that a monolayer always +undergoes a transition from a solid-crystalline 2D phase +to a liquid phase (the transition occurs at a temperature +significantly lower than the desorption temperature of +molecules). The melting scenario depends on the poly- +mer chain length. +The melting temperature increases +monotonically with chain length, so for pentane, hep- +tane and nonane (l = 3, 5, 7) the melting temperature +is Tm = 92, 178 and 255K [46]. +A characteristic fea- +ture associated with the adsorption of molecules is the +continuity of melting of a 2D crystal – melting occurs in +the temperature interval. Thus, for the longest synthe- +sized monodisperse alkane C390H782 (l = 388), continu- +ous melting occurs at 393 < T < 484 K [42]. +Despite the large number of theoretical and experimen- +tal works on phase transitions in adsorbed monolayers of +alkanes and their derivatives, as far as we know, there +are no works on modeling phase transitions in adsorbed +monolayers of ACN, PCM, and Kevlar (para-aramid) +molecules. +A detailed description of adsorption simu- +lation methods is given in [49]. Unlike alkanes, the 2D +structures of these molecules adsorbed on a flat surface +are associated with the presence of chains of hydrogen +bonds. Molecules including amide and hydroxyl groups +can create 2D lattices and extended hydrogen chains. +We notice that the ACN molecules are often consid- +ered as a model system with chains of hydrogen bonds +between HNCO peptide groups. Acetanilide crystallizes +into an orthorhombic structure with ribbons of molecules +linked by hydrogen bonds [50]. The chains of hydrogen +bonds that stabilize the crystal structure are very similar +to the chains that stabilize the alpha-helices and beta- +sheets of proteins. Therefore, ACN was used as a model +for modeling the energy transfer of vibrations of peptide +groups along hydrogen bond chains in proteins [51–53]. +Living matter, unlike non-living matter, has chiral pu- +rity: all proteins consist of left-handed amino acids, while +DNA and RNA are built on right-handed ribose. In ex- +periments on abiogenic synthesis, left and right isomers of +sugars and proteins are formed in equal proportions. It is +believed that if you try to build proteins from such a mix- +ture, they will not be able to fold into a stable form and +therefore will not work as enzymes. In three dimensions, +the need for chiral purity to form stable protein struc- +tures requires complex analysis. +The situation is dra- +matically simplified if we move from three-dimensional +space to two-dimensional. Such a transition can be made +if flat molecules are placed on a flat molecular sheet of +graphene or hexagonal boron nitride (h-BN). Such a non- +valent modification of the sheet surface actually creates + +3 +FIG. 2: When an ACN molecule is placed on a flat surface +of a multilayer h-BN structure, it may create two isomers +with the mirror symmetry (shown by a straight line). Vectors +connecting the oxygen atom with the hydrogen atom of each +peptide group show the dipole moments. For the L-isomer, +the benzol ring is to the left of this vector, for the R-isomer +it is to the right. Gray balls stand for carbon atoms, white +balls – hydrogen, blue – nitrogen, red – oxygen, and green – +bromine atoms. +a 2D world for the flat molecules placed on it. At low +temperatures, the molecules move along the sheet all the +time remaining parallel to its surface. On the surface, +they can form complex two-dimensional structures. +An ACN molecule that is achiral in 3D becomes chiral +after being placed on a flat substrate (the chirality de- +pends on which side it lays on the surface of the sheet) +– see Fig. 2. It will be shown that the homochirality of +ACN molecules leads to the appearance on the surface +of the sheet of stable secondary structures stabilized by +hydrogen bonds: cyclic and spiral chains and complexes +of them. Modeling the formation of such structures will +make it possible to demonstrate the necessity of homochi- +rality (chiral purity) of biomolecules for the formation of +stable secondary molecular structures from them. +As a flat substrate, we consider a surface of a multilayer +h-BN structure, and for molecules we consider acetanilide +(ACN) C6H5NHCOCH3, as shown in Figs. 1 and 2. The +presence of a planar benzol ring C6H5 and a planar pep- +tide group (PG) HNCO leads to large interaction energy +of the molecule with the substrate, Esub = 0.762 eV. +Molecules can create chains of hydrogen bonds between +their peptide groups OCNH· · ·OCNH· · ·OCNH· · ·. Such +chains of hydrogen bonds stabilize the secondary struc- +tures of the protein molecules. +The paper is organized as follows. In the next section, +we describe our model. Section III is devoted to the study +of secondary structures of the ACN molecules placed on +a flat substrate. Self-assembly of such structures is simu- +lated numerically in Sec. IV. Then, in Sec. V we analyze +melting of 2D crystals. Section VI concludes the paper. +FIG. 3: Construction of a coarse-grained model of the ACN +molecule: (a) full-atomic view of the molecule, (b) coarse- +grained model (the used numbering of the united atoms is +shown). +II. +MODEL +For modeling of the dynamics of a system of the ACN +molecules, we will use the united-atoms approximation. +Let us consider the molecular groups CH and CH3 as +united atoms whose centers coincide with the centers of +carbon atoms. In this approximation, the ACN molecule +is described as a system of 11 united atoms – see Fig. 3. +The values of the masses of the united atoms are shown +in the table I. +To model a ACN molecule, we use the force field in +which distinct potentials describe the deformation of va- +lence bonds and valence, torsion and dihedral angles, and +non-valence atomic interacts [55]. In this model, the de- +formation energy of the valence bonds C–CH, CH–CH, +C–N, N–H, C=O and C–CH3 is described by the har- +monic potential: +V (ρ) = 1 +2K(ρ − ρ0)2, +(1) +where ρ and ρ0 are current and equilibrium bond lengths, +K is the bond stiffness. The values of potential parame- +ters for various valence bonds are presented in Table II. +TABLE I: +Masses and parameters of interaction potentials +for united atoms X of the ACN molecule: i – atom number, +Mi – atom mass (mp = 1.6603 × 10−27 kg – proton mass), εi +and ri are the energy and radius of the LJ interaction, qi is +the electric charge of the atom, ǫi and hi are the energy and +equilibrium distance for the interaction of an atom with a flat +substrate (with a crystal surface h- BN). +X +C +CH +N +H +C +O +CH3 +i +1 +2,3,4,5,6 +7 +8 +9 +10 +11 +Mi (mp) +12 +13 +14 +1 +12 +16 +15 +εi (meV) +4.284 +4.284 +4.080 0.434 4.284 6.344 4.284 +ri (˚A) +1.861 +1.861 +1.899 0.621 1.861 1.711 1.861 +qi (e) +0.066 +0 +-0.463 0.286 0.580 -0.504 0.035 +ǫi (meV) +61.5 +87.3 +47.7 +31.3 +61.5 +42.8 +87.3 +hi (˚A) +3.52 +3.44 +3.43 +3.08 +3.52 +3.36 +3.44 + +(a) +H +(b) +CH +6 +8 +5 +CH3 +4 +C +N +1 +9 +11 +3 +2 +10R +T4 +FIG. 4: Dimer of (a) RR and (b)LR isomers of the ACN +molecule on a flat substrate (shown in green). The vectors +show the dipole moments of the peptide groups. Hydrogen +bond energy of identical isomers Ehb = 0.330 eV, angle be- +tween dipole moments φhb = 17.05◦, for different isomers +Ehb = 0.322 eV, φhb = 33.98◦. +Energies of the deformation of the valence angles X– +Y–Z are described by the potential +U(u1, u2, u3) = U(φ) = ǫa(cos φ − cos φ0)2, +(2) +where the cosine of the valence angle φ is defined as +cos φ = −(v1, v2)/ρ1ρ2, with the vectors v1 = u2 − u1, +v2 = u3 − u2 and bond lengths ρ1 = |v1|, ρ2 = |v2|, the +vectors u1, u2, u3 specify the coordinates of the atoms +forming the valence angle φ, φ0 is the value of equilib- +rium valence angle. The values of potential parameters +used for various valence angles are presented in Table III. +Deformation of dihedral angles are described by the +potential +W(u1, u2, u3, u4) = ǫd(1 + zd cos kϕ), +(3) +where cos ϕ = (w1w2)/|w1||w2|, with the vectors w1 = +(u2 − u1) × (u3 − u2), w2 = (u3 − u2) × (u4 − u3). The +values of potential parameters used for various dihedral +angles are presented in Table IV. +For pairs of atoms Xi,Xj (i, j are the numbers of atoms +in the molecule) participating in the formation of the +dihedral angle Xi–Y–Z–Xj, their non-valence interaction +is also taken into account described by the Lennard-Jones +(LJ) potential +W0(r) = ε0[(r0/r)12 − 2(r0/r)6], +(4) +with halved interaction energy ε0 = √εiεj/2, where r is +current distance between interacting atoms, equilibrium +distance r0 = ri + rj. The LJ interaction of an oxygen +atom (i = 10) with two combined atoms CH (i = 2, 6) +was also taken into account with interaction energy ǫ0 = +TABLE II: Values of the harmonic potential parameters (1) +for different valence bonds X—Y. +X—Y +C–CH, CH–CH +C–N +N–H +C=O C–CH3 +K (N/m) +469 +427 +434 +570 +317 +ρ0 (˚A) +1.39 +1.405 +1.007 +1.222 +1.505 +√ε2ε10 and equilibrium distance r0 = r2+r10. Parameter +values εi and ri are shown in Table I. +The interaction of two ACN molecules is described by +the potential +U(X1, X2) = +11 +� +i=1 +11 +� +j=1 +{εij[(¯rij/rij)12 − 2(¯rij/rij)6] ++κqiqj/rij}, +(5) +where the 33-dimensional vector Xk = {uk,i}11 +i=1 (k = +1, 2) defines the coordinates of atoms of the k-th ACN +(vector uk,i specifies the coordinates of the i-th atom of +the k-th molecule), distance between atoms rij = |u1,i − +u2,j|. +Here energy εij = √εiεj, equilibrium distances +¯rij = ri + rj, qi is the electric charge of i-th atom (i, j = +1, ..., 11), coefficient κ = 14.400611 eV˚A/e2. The values +of the parameters εi, ri and qi are shown in Table I. All +values of parameters of interaction potentials (1), (2), (3) +and (5) are obtained from force field AMBER [55]. +The van der Waals interactions of the atoms of the +ACN molecule with flat substrate are described by the +LJ potential (m, l) +W(X) = +11 +� +i=1 +Wi(zi) = +11 +� +i=1 +ǫi +l − m[m(hi/zi)l − n(hi/zi)m], +(6) +where zi is the distance from i-th atom to the outer sur- +face of the substrate, which is plane z = 0. Potential +Wi(zi) in Eq. (6) is the interaction energy of i-th atom as +a function of the distance to the substrate. This energy +was found numerically for different substrates [56, 57]. +The calculations showed that interaction energy with +substrate Wi(z) can be described with a high accuracy +by LJ potential (6) with power l > k. Potential Wi(z) +has the minimum Wi(hi) = −ǫi (ǫi is the binding en- +ergy of the i-th atom with substrate). For the surface of +the h-BN crystal l = 10, m = 4.25. The values of the +parameters ǫi, hi, i = 1, ..., 11, are given in the table I. +The 10-layer fragment of h-BN crystal was used to find +values of this parameters. The interaction energy of an +atom with a substrate was found as the sum of all LJ +potentials (4) with parameters from the force field UFF +[58]. +Thus, +the Hamiltonian of a system of N +ACN +molecules located on the flat surface of h-BN crystal has +the form +H = +N +� +n=1 +1 +2(M ˙Xn, ˙Xn) + P, +(7) +where the first term specifies the kinetic and the second +– potential energy of the system +P = +N +� +n=1 +[V (Xn) + W(Xn)] + +N−1 +� +n=1 +N +� +k=n+1 +U(Xn, Xk). (8) +Here the vector Xn = {un,i}11 +i=1 specifies the coordinates +of the atoms of n-th ACN molecule, M is the diago- +nal matrix of atom masses of the molecule, V (Xn) and + +a +b5 +TABLE III: Values of the parameters of the potential of the valence angle X–Y–Z (2) for different atoms. +X–Y–Z +C–C–C +C–C–N +C–N–H +C–N–C +N–C–O +N–C–C +O–C–C +ǫa (eV) +3.643 +3.823 +2.781 +4.888 +4.932 +3.758 +4.625 +ϕ0 (◦) +120 +117 +118 +128 +123 +116 +120 +TABLE IV: Values of the parameters of the potential of the dihedral angle X–Y–Z–W (3) for different atoms. +X–Y–Z–W +C–C–C–C +C–C–C–N +C–C–N–H +C–C–N–C +C–N–C–O +C–N–C–CH3 +ǫd (eV) +0.63 +0.63 +0.21 +0.21 +0.42 +0.42 +zd +-1 +1 +-1 +-1 +-1 +1 +k +1 +1 +2 +2 +1 +1 +W(Xn) are deformation energy and energy of interac- +tion with the substrate of n-th molecule, U(Xn, Xk) is +the interaction energy of n and k molecules. +III. +SECONDARY STRUCTURES OF ACN +MOLECULES ON A FLAT SUBSTRATE +The ACN molecule is achiral, but it becomes chiral +when placed on a flat substrate. +Depending on which +side it lies on the substrate, it can be either right (when +the benzol ring is located to the right of the dipole mo- +ment vector of the peptide group +⃗ +OH) or left (the ben- +zol ring is located to the left). Two mirror-symmetrical +isomers of the molecule are shown in Fig. 2. To trans- +fer a molecule from one isomer to another, it must be +partially torn off the substrate and be placed on the sub- +strate with its other side. All this requires overcoming +the energy barrier ∆E = 0.466 eV. The total energy of +interaction with the h-BN substrate (desorption energy) +Esub = 0.762 eV. Therefore, the spontaneous transition +of the ACN molecule lying on the substrate from the L +to the R form and vice versa is possible only at temper- +atures T > 300 K. At lower temperatures, the molecule +will always stay on the substrate, adjoining it with the +same side, i.e. without changing the isomer type. +To find the stationary state of the system of N ACN +molecules lying on a flat h-BN substrate, it is necessary +to find the state of the system with a minimum potential +energy +P → min : {Xn}N +n=1. +(9) +The minimization problem (9) is solved numerically by +the conjugate gradient method. Choosing the starting +point of the minimization procedure, one can obtain all +the main stationary states of the molecular system. +Peptide groups of neighboring molecules can form hy- +drogen bonds, creating dimers – see Fig. 4. The numeri- +cal solution of the problem (9) shows that when molecules +are located on a flat substrate, two types of dimers are +FIG. 5: +Typical secondary structures of homochiral ACN +molecules on a flat substrate: +(a) arc (number of atoms +N = 15), (b) circle (N = 21), (c) single-beam spiral (N = 34), +(d) two-beam spiral (N = 23 + 23), (e) three-beam spiral +(N = 15 + 15 + 15), (f) nested circles (N = 12 + 24). +possible: dimers of molecules of the same and different +chirality. If a dimer is formed by identical isomers, then +its binding energy is slightly higher: the hydrogen bond +energy for RR and LL isomers is Ehb = 0.330 eV, and +for RL and LR isomers Ehb = 0.322 eV. This is due to +the fact that in this case the benzol rings C6H5 of the +molecules are on the same side and they make a larger +contribution to the interaction energy. +The hydrogen +bond angle also depends on the chirality of the dimer +molecules. For dimer molecules of the same chirality, the +angle between the dipole moments of the peptide groups +forming a hydrogen bond is φhb = 17◦, and for molecules +of different chirality φhb = 34◦. +Chains of hydrogen bonds of molecules of the same chi- +rality will always have benzol rings on one (outer) side, +so they will twist in the opposite (inner) direction and +have approximately the same curvature. On a plane, cir- +cular arcs, circles, and spirals have such properties. The +solution of the problem (9) has shown that on a flat sub- + +b +a +C6 +10 +20 +30 +40 +50 +−0.3 +−0.2 +−0.1 +1 +2 +3 +4 +5 +6 +Es (eV) +N +FIG. 6: Dependence of the specific energy of the secondary +structure of the homochiral ACN molecules Es on the num- +ber of molecules N for an arc, a circle, one-beam, two-beam, +three-beam spiral and nested two circles (curves 1, 2, 3, 4, +5 and 6). For the structure of two nested circles (curve 6), +the dependence on the number of atoms of the outer circle is +shown. +strate molecules of the same chirality form stable shape +structures with little changing curvature: arcs, spirals, +circles – see Fig. 1 and 5. Left isomers form structures +with a twist to the right, right – to the left. +Hydrogen bond chains of N ≤ 16 ACN molecules of +the same chirality form circular arcs of the same radius. +The step of such a chain (the distance between the oxy- +gen atoms of neighboring peptide groups) is a = 4.76 ˚A, +the angle between neighboring links is ϕ = 162◦, the ra- +dius of curvature by oxygen atoms is R = 15.2 ˚A – see +Fig. 5 (a). The specific energy of the chain Es = E/N +decreases monotonically with the growth of the number +of molecules N – see Fig. 6. When the number of links +is N > 16, the arcs cease to be stable; they either close +and form circular chains, or touch their ends and form +flat spirals – see Fig. 5 (b), (c). +Stable cyclic chains can be formed from N +≥ 5 +molecules of the same chirality. The dependence of the +specific energy of the cyclic chain Es on the number of +its links N is shown in Fig. 6. As can be seen from the +figure, the most energetically favorable are cyclic chains +of N = 20, 21, 22 links. Such chains form ring struc- +tures with inner R1 = 27.3, 28.8, 30.5 and outer radii +R2 = 40.4, 41.9, 43.6 ˚A. +The dependence Es(N) for a one-beam spiral actually +continues the dependence for an arc (see Fig. 6, curves +1 and 3). Two-beam and three-beam spirals are bound +states of arc structures. +The specific energy of helical +structures decreases monotonically with an increase in +the number of molecules. For N > 27, helical structures +are more energy efficient than ring structures (this is due +to their denser structure). +The most energy-efficient are nested structures of two +circles with the number of atoms N = 14 + 26, 15+27, +17+29 (the first number in the sum corresponds the num- +ber of atoms in the inner circle, the second – in the outer +FIG. 7: 2D crystals of ACN molecules on a flat substrate: +(a) with parallel packing of linear chains of hydrogen bonds +(periods ax = 9.81, ay = 10.24), (b) with antiparallel packing +(ax = 9.79, ay = 20.43 ˚A). On the surface of a flat substrate, +the chain of hydrogen bonds can be linear only if the L and +R isomers alternate. A crystal is formed by 6 linear chains of +24 molecules (the total number of molecules is N = 6 × 24). +The flat substrate is shown in green. +circle) – see Fig. 6, curve 6. +If the chain of hydrogen bonds consists of a random +sequence of isomers, then it will look like an irregular +broken line. The chain has the shape of a straight zigzag +only if there is a strict alternation of L and R isomers. +In this case, the zigzag step (the distance between the +oxygen atoms of neighboring molecules) is a = 4.85 ˚A, +the zigzag angle is ϕ = 170◦. Such chains on a flat sub- +strate surface can form two-dimensional regular lattices +(2D crystals) with parallel and antiparallel packing of +neighboring chains – see Fig. 7. With parallel packing, +the crystal periods are ax = 9.81˚A, ay = 10.24˚A, the +specific energy is Es = −0.325 eV. With antiparallel +packing, periods are ax = 9.79˚A, ay = 20.43˚A, energy +is Es = −0.322 eV. +IV. +SELF-ASSEMBLY OF MOLECULAR +STRUCTURES +Let us simulate the self-organization of the molecular +structures of ACN molecules on the flat surface of the h- + +a +b7 +100 +200 +300 +400 +500 +0.4 +0.6 +0.8 +1 +nhb +(a) +100 +200 +300 +400 +500 +1 +1.2 +1.4 +T (K) +c +(b) +FIG. 8: Dependence of (a) the normalized number of hydro- +gen bonds nhb and (b) the dimensionless heat capacity c on +temperature T for a system of N = 1024 ACN molecules +located on a flat substrate with the periodic square compu- +tational cell of size 33 × 33 nm2. Solid (blue) lines show de- +pendencies for a system of homochiral molecules, dotted (red) +lines – dependencies for a racemic mixture of molecules. Verti- +cal dotted straight lines correspond to temperatures T = 250, +330, and 480 K. +BN crystal. To do this, we take a square periodic cell of +size 33 × 33 nm2 on the surface of the substrate and ran- +domly place N = 1024 ACN molecules into it. Then we +immerse this molecular system in a Langevin thermostat +of temperature T and numerically simulate the dynamics +of the system during the time t = 10 ns. To do this, we +numerically integrate the system of Langevin equations +M ¨Xn = − +∂ +∂Xn +H − ΓM ˙Xn − Ξn, +n = 1, ..., N, +(10) +where Γ += +1/tr is the friction coefficient, +Ξn += +{ξn,i,k}11, 3 +i=1,k=1 is 33-dimensional vector of normally dis- +tributed random Langevin forces with the following cor- +relations: +⟨ξn1,i,k(t1)ξn2,j,l(t2)⟩ = 2MikBT Γδn1n2δijδklδ(t1 − t2). +Here Mi is mass of i-th atom of ACN molecule, kB is +Boltzmann constant, T is temperature of the Langevin +thermostat (temperature of the substrate), numbers +n1, n2 = 1, ..., N, i, j = 1, ..., 11, k, l = 1, 2, 3. +The parameter tr characterizes the intensity of energy +exchange between the molecular system and the ther- +mostat. Simulation of the dynamics of ACN molecules +on an h-BN sheet, taking into account the mobility of +the sheet atoms, makes it possible to estimate the relax- +ation time tr ∼ 100 ps. For the convenience of numer- +ical integration, we will use a smaller value tr = 10 ps. +FIG. 9: Structure of N = 1024 homochiral ACN molecules +appearing on the flat surface of the substrate at T = 240K. +The straight lines show the boundaries of the periodic calcu- +lation cell of size 33 × 33 nm2. The substrate surface is not +shown. +This makes it possible to significantly reduce the time of +numerical integration, which is sufficient to obtain reli- +able average values. After the dynamics of the molec- +ular system reaches the steady state, we will find the +time averages of the system energy ¯E(T ) and the num- +ber of hydrogen bonds ¯Nhb(T ). We assume that two ACN +molecules form a hydrogen bond if their interaction en- +ergy is greater than half of the hydrogen bond energy: +U(X1, X2) < −Ehb/2 = −0.16 eV. +The state of the system can be conveniently character- +ized by its dimensionless heat capacity +c = +1 +33NkB +d ¯E(T ) +dT +, +(11) +and the normalized number of hydrogen bonds nhb = +¯Nhb(T )/N. The dependence of these quantities on tem- +perature is shown in Fig. 8. +Numerical simulation shows the existence of three +characteristic temperature values T1 < T2 < T3. +At +T < T1 = 250K the molecules on a flat substrate form a +stable system of chains of hydrogen bonds. Here, almost +every molecule participates in the formation of one hy- +drogen bond (number nhb ≈ 1). The dimensionless heat +capacity of the system is c = 1. At T1 < T < T2 = 330K, +a slight decrease in the number of nhb bonds and a +monotonous increase in heat capacity begin to occur – +the process of melting of hydrogen bond chains begins. +At a temperature T > T2, the number of hydrogen bonds + +8 +FIG. 10: Structure of N = 1024 homochiral ACN molecules +appearing on the flat surface of the substrate at T = 300K. +The straight lines show the boundaries of the periodic calcu- +lation cell of size 33 × 33 nm2. +decreases in proportion to the increase in temperature, +and the heat capacity reaches a constant value c ≈ 1.23. +Here we have a melt of short chains of hydrogen bonds +(the average length of the chains decreases proportion- +ally to the increase in temperature). At T > T3 = 480K, +individual molecules can already be detached from the +substrate – desorption of molecules begins. +The structure of the resulting system of hydrogen +bond chains depends on the isomeric composition of the +molecules. If all molecules are homochiral (only one iso- +mer is present), then secondary structures form on the +surface of the substrate. +These structures are circular +and spiral hydrogen bond chains – see Figs. 9 and 10. The +substrate surface become optically active, the left isomers +form chains with a right twist, and the right ones with a +left twist. As can be seen from Fig. 9 for T = 240K on +a flat substrate all possible circular secondary structures +(arcs, circles, spirals) are formed (Fig. 5). An increase in +temperature leads, first of all, to the destruction of spiral +structures. As a result, the number of cyclic chains of +average radius increases since they are the most stable – +see Fig. 10. +If the isomers of molecules are taken randomly, we get +their racemic mixture. In this case, no secondary struc- +tures are formed. There are only curvilinear chains of +random shape – see Fig. 11. +FIG. 11: Structure formed on the flat surface of the sub- +strate at T = 240K from a racemic mixture of N = 1024 +ACN molecules. The straight lines show the boundaries of +the periodic calculation cell of size 33 × 33 nm2. +V. +MELTING OF 2D CRYSTALS +To simulate the dynamics of 2D crystals of ACN +molecules on a flat h-BN substrate, consider a crystal +formed by 22 linear chains of hydrogen bonds of 48 +molecules (total number of molecules N = 22 × 48 = +1056). A crystal with parallel chain packing has dimen- +sions of 23.3 × 22.5 nm2. +We place the crystal in the +center of the calculated periodic cell size 23.5×22.6 nm2. +In this case, the chains of hydrogen bonds located par- +allel to the x axis are closed, and the first chain begins +to come into contact with the last one – the 2D crystal +form a dense packing on the substrate that has no edges +and has normalized number of hydrogen bonds nhb = 1 +(the number of hydrogen bonds is equal to the number of +molecules). To simulate a rectangular crystal with edges +(square crystallite), we take a periodic computational cell +of size 47 × 45.2 nm2. In this case, the 2D crystal (crys- +tallite) covers only 25% substrate surface, the chains of +hydrogen bonds are not closed, the normalized number +of hydrogen bonds is nhb = (N − 22)/N = 0.979. +Then we numerically integrate the system of equations +of motion (10) with the initial condition corresponding to +the stationary state of the crystal. At different thermo- +stat temperatures, we find the average values of the sys- +tem energy ¯E(T ), the normalized number of hydrogen +bonds nhb, and the fraction of molecules that left the +substrate from the first layer p (the fraction of molecules +located on the substrate at distance z > 5 ˚A). Next, using + +9 +100 +200 +300 +400 +500 +0.4 +0.6 +0.8 +1 +1 +2 +(a) +nhb +100 +200 +300 +400 +500 +1 +1.5 +2 +2.5 +3 +4 +(b) +c +100 +200 +300 +400 +500 +0 +5 +10 +6 +5 +T (K) +p (%) +(c) +FIG. 12: Dependence of (a) the normalized number of hy- +drogen bonds nhb, (b) the dimensionless heat capacity c and +(c) the fraction of molecules that left the first layer p on the +temperature T for a 2D crystal of N = 1056 ACN molecules +located on a flat substrate with periodic computational cell +of size 46.6 × 45 nm2 (curves 1, 3, 5; 25% substrate coverage) +and 23.3 × 22.5 nm2 (curves 2, 4 , 6; 100% substrate cover- +age). Vertical dotted straight lines show temperature values +T = 295, 335, 365, 415, 445 and 470 K. +the formula (11), we find the temperature dependence of +the heat capacity of the molecular system c. +The dependence of nhb, c, and p on the thermostat +temperature (on the substrate temperature) T is shown +in Fig. 12. As can be seen from the figure, at 25% cover- +age of the substrate, the square crystallite begins to melt +at a temperature of T1 = 295K. At T < T1, the crystal +structure is preserved, the number of bonds, heat capac- +ity, and density of the first layer of the substrate coating +practically do not change with increasing temperature: +nhb(T ) ≡ nhb(0), c(T ) ≡ 1, p(T ) ≡ 0. Crystallite melt- +ing occurs in the temperature range T1 < T < T2 where +the upper temperature is T2 = 365 K. Here, a slight de- +crease in the number of bonds and an increase in heat +capacity begin to occur. The heat capacity reaches its +maximum value at the temperature Tm = 335 K. In the +temperature interval [T1, T2], an increasing destruction +of the edges of the initial crystallite occurs. The ends of +the chains peel off from the central part of the crystallite, +100 +200 +300 +400 +500 +1 +1.5 +2 +2.5 +c +1 +2 +3 +4 +T (K) +FIG. 13: Dependence of the dimensionless heat capacity c on +temperature T for a 2D square crystallite of N = 480, 1056, +2376 of the ACN molecules located on a flat substrate with +periodic computational cell of the size 31.2× 30.68, 46.6× 45, +70.2 × 67.5 nm2 (curves 1, 3, 5; 25% substrate coverage) and +for infinite 2D crystal (curve 4). Vertical dotted straight lines +mark the temperatures T = 315, 335, 365, and 445 K. +then break off and go to the free part of the substrate. +As a result of this ”continuous” melting, the crystallite +transforms into a melt consisting of short chains of hy- +drogen bonds, uniformly covering the entire substrate. +For T > T2, the number of hydrogen bonds decreases +in proportion to the increase in temperature, while the +heat capacity remains almost constant: c ≈ 1.4. It can +be concluded that a complete transition of the molecu- +lar system from a low-energy and low-entropy crystalline +state to a high-energy and high-entropy liquid state has +taken place. As a result of this transition, the substrate +is uniformly covered with a ”solution” of short chains of +hydrogen bonds. The chain lengths decreases monotoni- +cally with increasing temperature (on the Fig. 12 (a) this +manifests itself in a monotonous decrease in the number +of bonds). All molecules remain directly adjacent to the +substrate (p = 0), insignificant desorption is observed +only at T > 480 K – see Fig. 12 (c). +With 100% coverage of the substrate, due to the ab- +sence of edges in the crystal, its melting occurs at higher +temperatures and happens according to a different sce- +nario. +Here melting also occurs ”continuously” in the +temperature interval [T1, T2], where T1 = 415, T2 = +470 K. The peak of the heat capacity at Tm = 445 K +becomes more pronounced. Melting occurs due to the +expulsion of some molecules from the first layer to the +second, which manifests itself in a monotonous increase +in the fraction of displaced molecules p at T1 < T < T2 +– see Fig. 12 (c). +As a result, the density of the first +layer during melting decreases by 11%, and after melting +a dense melt of molecules is formed on the substrate, in +which 11% of the molecules are located on the second +layer from the substrate. +Conventionally, the temperature value Tm, at which + +10 +the heat capacity has reached its maximum value, can +be considered as the melting temperature of a 2D crystal. +However melting occurs not discretely, but continuously +in the temperature interval [T1, T2]. The value Tm is in +the center of this interval. +To study the dependence of the melting temperature +on the crystallite size, we analyze numerically the melt- +ing of 2D square crystallite of N = 480 and 2376 ACN +molecules placed on a flat substrate with periodic com- +putational cell of size 31.2 × 30.68 and 70.2 × 67.5 nm2. +Our results show that melting occurs continuously for all +crystallite sizes. When the crystallite size is increased, +the melting interval [T1, T2] shifts to the right and, in +the limit, coincides with the melting temperature inter- +val of a 2D crystal with 100% coverage of the substrate, +as shown in Fig. 13. +Let us note that the continuum melting scenario also +takes place for 2D n-alkane crystals lying on a flat sur- +face of graphite [42]. +This allows us to conclude that +the quasi-continuous melting scenario is a characteristic +feature of 2D systems of molecules adsorbed by a flat +surface. +VI. +CONCLUSION +Our numerical simulations of the dynamics of the sys- +tem of acetanilide molecules have revealed that the struc- +tures achiral in three-dimensional space become chiral +when being placed on a flat substrate: Depending on the +side it touches the substrate, the molecule has two iso- +mers L and R. The homochirality of the molecules leads +to the appearance of stable secondary structures stabi- +lized by hydrogen bonds on a flat substrate in the form +of arc, cyclic, and helical chains of hydrogen bonds and +their complexes. +Hydrogen-bond chains of N ≤ 16 molecules of the same +chirality form circular arcs of the same radius. +When +the number of molecules in the chain is N > 16, the +arcs becomes unstable, they either collapse into circles, +or touch their ends and form flat spirals. +In addition +to single-beam spirals, two- and three-beam spirals may +exist being bound states of arc chains. +Stable cyclic chains can be formed from N +≥ 5 +molecules of the same chirality. +The most energeti- +cally favorable are cyclic chains of 20, 21 and 22 links. +The structures of two circles with the number of atoms +N = 14 + 26, 15 + 27, 17 + 29 (where the first number of +the sum is the number of atoms in the inner circle, and +the second number is the number of atoms in the outer +circle) are more energy efficient. +If the chain of hydrogen bonds consists of a random +sequence of isomers, it look like an irregular broken line. +A chain can take the form of a rectilinear zigzag only if +there is a strict alternation of the L and R isomers. Such +chains can form regular two-dimensional crystals with +parallel and antiparallel packing of the adjacent chains. +Simulation of the dynamics of a system of molecules +shows that the homochirality of molecules(the presence +of only one isomer) leads to the appearance of stable sec- +ondary structures on the surface of the substrate, i.e. to +the appearance of chains of hydrogen bonds in the form +of arcs, circles and spirals. +As a result, the substrate +surface becomes optically active, the left isomers form +chains with a right twist, and the right ones form chain +with a left twist. At temperature T ≤ 240 K, all possible +secondary structures are formed on the substrate. An +increase in temperature leads, first of all, to the disinte- +gration of spiral structures. As a result, the number of +more stable circular chains increases. +If the molecules on the substrate form a racemic mix- +ture, no regular secondary structures are formed, so only +curvilinear chains of hydrogen bonds of random shape +can appear. Thus, our results demonstrate the impor- +tance of homochirality (chiral purity) of biomolecules for +the formation of stable secondary molecular structures. +Numerical simulations of the dynamics of a 2D crystal +of the ACN molecules shows that the scenario of crystal +melting depends on the density of its coverage of the +substrate. +At 25% coverage of the substrate the melting occurs +”continuously” in the temperature interval [T1, T2] from +the edges of the initial crystallite (for crystallite of 1056 +ACN molecules temperatures T1 = 295, T2 = 365 K). +The ends of the chains peel off from the central part of +the crystallite, then break off and go to the free part +of the substrate. As a result, the crystallite transforms +into a melt consisting of short chains of hydrogen bonds, +uniformly covering the entire substrate. When the size of +the crystallite is increased, the melting interval [T1, T2] +shifts to the right and, in the limit, will coincides with +the melting temperature interval of infinite crystal with +100% coverage of the substrate. +For 100% coverage of the substrate with no crystal +edges, the melting occurs at higher temperatures 415 ÷ +470 K by a shift of some molecules from the first to the +second layer in the substrate. As a result, the density of +the first layer during melting decreases by 11%, and after +melting, 11% of the molecules move to the second layer +formed on the substrate. +A continual melting scenario (the presence of a melting +temperature interval)has also been found in 2D n-alkane +crystals lying on a flat surface of graphite [42]. All this +leads us to conclusion that the quasi-continuous melt- +ing scenario is a characteristic feature of 2D systems of +molecules adsorbed by a flat surface. +ACKNOWLEDGMENTS +AVS acknowledges the use of the computational facilities +provided by the Interdepartmental Supercomputer Cen- +ter of the Russian Academy of Science. YSK acknowl- +edges a support from the Australian Research Council +(grant DP210101292) and the Strategic Fund of the Aus- +tralian National University. + +11 +[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. +Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov. +Electric Field Effect in Atomically Thin Carbon Films. +Science 306 (5696), 666-669 (2004). +[2] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. +Novoselov and A. K. Geim. The electronic properties of +graphene. Rev. Mod. Phys. 81, 109-162 (2009). +[3] E. Koren, I. Leven, E. Lortscher, A. Knoll, O. Hod and +U. Duerig. Coherent commensurate electronic states at +the interface between misoriented graphene layers. Na- +ture Nanotech. 11, 752-757 (2016). +[4] J. C. Meyer, A. K. Geim, M. Katsnelson, K. Novoselov, +T. Booth and S. Roth. The structure of suspended +graphene sheets. Nature 446, 60-63 (2007). +[5] C. Lee, X. Wei, J. W. Kysar and J. Hone. Measurement +of the Elastic Properties and Intrinsic Strength of Mono- +layer Graphene. Science 321, 385-388 (2008). +[6] A. Falin, Q. Cai, E. J. G. Santos, D. Scullion, D. Qian, R. +Zhang, Z. Yang, S. Huang, K. Watanabe, T. Taniguchi, +M. R. Barnett, Y. Chen, R. S. Ruoff and L. H. Li. +Mechanical properties of atomically thin boron nitride +and the role of interlayer interactions. Nat. Commun. 8, +15815 (2017). +[7] E. Han, J. Yu, E. Annevelink, J. Son, D. A. Kang, K. +Watanabe, T. Taniguchi, E. Ertekin, P. Y. Huang and +A. M. van der Zande. Ultrasoft slip-mediated bending in +few-layer graphene. Nature Materials 19, 305-309 (2020). +[8] I. Leven, D. Krepel, O. Shemesh, and O. Hod. Robust Su- +perlubricity in Graphene/h-BN Heterojunctions. J. Phys. +Chem. Lett. 4, 115-120 (2013). +[9] A. Geim and I. Grigorieva. Van der Waals heterostruc- +tures. Nature 499, 419-425 (2013). +[10] K. S. Novoselov, A. Mishchenko, A. Carvalho and A. +H. Castro Neto. 2D materials and van der Waals het- +erostructures. Science 353 (6298), 461 (2016). +[11] C. R. Woods, L. Britnell, A. Eckmann, R. S. Ma, J. +C. Lu, H. M. Guo, X. Lin, G. L. Yu, Y. Cao, R. V. +Gorbachev, A. V. Kretinin, J. Park, L. A. Ponomarenko, +M. I. Katsnelson, Y. N. Gornostyrev, K. Watanabe, T. +Taniguchi, C. Casiraghi, H. J. Gao, A. K. Geim and K. S. +Novoselov. Commensurate-incommensurate transition in +graphene on hexagonal boron nitride. Nature Phys. 10, +451-456 (2014). +[12] G. J. Slotman, M. M. van Wijk, P. L. Zhao, A. Fasolino, +M. I. Katsnelson and S. Yuan. Effect of Structural Relax- +ation on the Electronic Structure of Graphene on Hexag- +onal Boron Nitride. Phys. Rev. Lett. 115, 186801 (2015). +[13] D. Mandelli, I. Leven, O. Hod and M. Urbakh. Sliding +friction of graphene/hexagonal-boron nitride heterojunc- +tions: a route to robust superlubricity. Sci. Rep. 7 (1), +10851 (2017). +[14] D. Jariwala, T. J. Marks and M. C. Hersam. Mixed- +dimensional van der Waals heterostructures. Nature +Mater 16, 170-181 (2017). +[15] O. V. Ershova, T. C. Lillestolen and E. Bichoutskaia. +Study of polycyclic aromatic hydrocarbons adsorbed on +graphene using density functional theory with empiri- +cal dispersion correction. Phys. Chem. Chem. Phys., 12, +6483-6491 (2010). +[16] E. G. Gordeev, M. V. Polynski and V. P. Ananikov. +Fast and accurate computational modeling of adsorption +on graphene: a dispersion interaction challenge. Phys. +Chem. Chem. Phys., 15, 18815-18821 (2013). +[17] J. Wang, Z. Chen and B. Chen. Adsorption of polycyclic +aromatic hydrocarbons by graphene and graphene oxide +nanosheets. Environ. Sci. Technol., 48, 4817-4825 (2014). +[18] M. Castro and E. Chigo-Anota. BN and BN oxide +nanosheets based nanosensor for Paracetamol adsorp- +tion: A Density Functional investigation. Mex. J. Mat. +Sci. Eng., 1, 21-29 (2014). +[19] P. P. Zhou and R. Q. Zhang. Physisorption of benzene +derivatives on graphene: critical roles of steric and stere- +oelectronic effects of the substituent. Phys. Chem. Chem. +Phys., 17, 12185-12193 (2015). +[20] V. Georgakilas, M. Otyepka, A. B. Bourlinos, V. Chan- +dra, N. Kim, K. C. Kemp, P. Hobza, R. Zboril and K. +S. Kim. Functionalization of Graphene: Covalent and +Non-Covalent Approaches, Derivatives and Applications. +Chem. Rev., 112, 6156-6214 (2012). +[21] V. Georgakilas, J. N. Tiwari, K. C. Kemp, J. A. Perman, +A. B. Bourlinos, K. S. Kim, and R. Zboril. Noncovalent +Functionalization of Graphene and Graphene Oxide for +Energy Materials, Biosensing, Catalytic, and Biomedical +Applications. Chem. Rev., 116, 5464-5519 (2016). +[22] R. Thakkar, S. Gajaweera and J. Comer. Organic con- +taminants and atmospheric nitrogen at the graphene- +water interface: a simulation study. Nanoscale Adv., 4, +1741 (2022). +[23] S. M. Barlow, R. Raval. Complex organic molecules at +metal surfaces: bonding, organisation and chirality. Sur- +face Science Reports, 50, 201-341 (2003). +[24] H. Cao, M.-P. Van Den Eede, G. Koeckelberghs, K. S. +Mali and S. De Feyter. Direct observation of the influence +of chirality on the microstructure of regioregular poly- +(3-alkylthiophene)s at the liquid/solid interface. Chem. +Commun., 53, 153-156 (2017). +[25] E. Bahn, H. Hedgeland, A. P. Jardine, P. F. Henry, T. C. +Hansen and P. Fouquet. The structure of deuterated ben- +zene films adsorbed on the graphite (0001) basal plane: +what happens below and above the monolayer coverage? +Phys. Chem. Chem. Phys., 16, 22116 (2014). +[26] F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, +P. Blake, M. I. Katsnelson, K. S. Novoselov. Detection +of individual gas molecules adsorbed on graphene. Nat. +Mater., 6, 652-655 (2007). +[27] Y. Shao, J. Wang, H. Wu, J. Liu, I. a. Aksay and Y. Lin. +Graphene Based Electrochemical Sensors and Biosensors: +A Review. Electroanalysis, 22, 1027-1036 (2010). +[28] X. V. Zhen, E. G. Swanson, J. T. Nelson, Y. Zhang, Q. +Su, S. J. Koester, and P. Buhlmann. Noncovalent Mono- +layer Modification of Graphene Using Pyrene and Cy- +clodextrin Receptors for Chemical Sensing. ACS Appl. +Nano Mater. 1, 2718-2726 (2018). +[29] Z. Iranmanesh-Zarandy and M. Dehestani. Molecular +Dynamics Simulation of Paracetamol Drug Adsorption +on Boron Nitride Nanotube: +Effects of Temperature, +Nanotube Length, Diameter, and Chirality. ChemistryS- +elect, 4, 7866 -7873 (2019). +[30] X. Kang, J. Wang, H. Wu, J. Liu, I. A. Aksay, Y. Lin. +A graphene-based electrochemical sensor for sensitive de- +tection of paracetamol. Talanta, 81, 754-759 (2010). +[31] M. Lian, +J. Fan, +Z. Shi, +H. Li, +J. Yin. Kevlar- + +12 +functionalized graphene nanoribbon for polymer rein- +forcement. Polymer, 55(10), 2578-2587 (2014). +[32] S. Kumar. Graphene Engendered 2-D Structural Mor- +phology of Aluminium Atoms: Molecular Dynamics Sim- +ulation study. Materials Chemistry and Physics, 202, +329-339 (2017). +[33] M. W. Roth, C. L. Pint and C. Wexler. Phase transitions +in hexane monolayers physisorbed onto graphite. Phys. +Rev. B, 71, 155427 (2005). +[34] Cary L. Pint, M. W. Roth and C. Wexler. Behavior of +hexane on graphite at near-monolayer densities: Molec- +ular dynamics study. Phys. Rev. B, 73, 085422 (2006). +[35] K. E. Becker. Accelerated molecular dynamics simulation +of the thermal desorption of n-alkanes from the basal +plane of graphite. J. Chem. Phys. 125, 184706 (2006). +[36] Q. Chen, H.-J. Yan, C.-J. Yan, G.-B. Pan, L.-J. Wan, G.- +Y. Wen, D.-Q. Zhang. STM investigation of the depen- +dence of alkane and alkane (C18H38, C19H40) derivatives +self-assembly on molecular chemical structure on HOPG +surface. Surface Science, 602 1256-1266 (2008). +[37] M. J. Connolly, M. W. Roth, P. A. Gray, and C. Wexler. +Explicit Hydrogen Molecular Dynamics Simulations of +Hexane Deposited onto Graphite at Various Coverages. +Langmuir, 24(7), 3228-3234 (2008). +[38] T. Yang, S. Berber, J.-F. Liu, G. P. Miller and D. +Tomanek. Self-assembly of long chain alkanes and their +derivatives on graphite. J. Chem. Phes., 128, 124709 +(2008). +[39] M. W. Roth, L. Firlej, B. Kuchta, M. J. Connolly, E. +Maldonado, and C. Wexler. Simulation and Characteri- +zation of Tetracosane on Graphite: Molecular Dynamics +Beyond the Monolayer. J. Phys. Chem. C, 120(2), 984- +994 (2016). +[40] T. K. Piskorz, C. Gobbo, S. J. Marrink, S. De Feyter, A. +H. de Vries, and J. H. van Esch. Nucleation Mechanisms +of Self-Assembled Physisorbed Monolayers on Graphite. +J. Phys. Chem. C 123(28), 17510-17520 (2019). +[41] L. Y. Fang, Y. Hua, Z. Z. Meng, Z. Hui. Molecular +dynamics simulations on the orientation of n-alkanes +with different lengths on graphene. Surface Science, 690, +121468 (2019). +[42] R. Zhang, W. S. Fall, K. W. Hall, G. A. Gehring, X. Zeng, +G. Ungar. Quasi-continuous melting of model polymer +monolayers prompts reinterpretation of polymer melting. +Nat. Commun., 12, 1710 (2021). +[43] H. Yang, X. J. Zhao, and M. Sun. Induced crystalliza- +tion of single-chain polyethylene on a graphite surface: +Molecular dynamics simulation. Phys. Rev. E, 84, 011803 +(2011). +[44] M. Gulde, A. N. Rissanou, V. Harmandaris, M. M¨uller, +S. Sch¨afer, and C. Ropers. Dynamics and Structure of +Monolayer Polymer Crystallites on Graphene. Nano Lett. +16(11), 6994-7000 (2016). +[45] Y. F. Liu, H. Yang, H. Zhang. Molecular dynamics simu- +lation of the folding of single alkane chains with different +lengths on single-walled carbon nanotubes and graphene. +Journal of Molecular Modeling, 24, 140 (2018). +[46] C. L. Pint. Different melting behavior in pentane and +heptane monolayers on graphite: +Molecular dynamics +simulations. Phys. Rev. B, 73, 045415 (2006). +[47] H.Yang, Z.-S. Li, Z.-Y. Lu, C.-C. Sun. Molecular dynam- +ics simulations study on the melting process of n-heptane +layer(s) adsorbed on the graphite (0 0 1) surface. Surface +Science, 600(6), 1213-1220 (2006). +[48] C. Wexler, L. Firlej, B. Kuchta, and M. W. Roth. Melting +of Hexane Monolayers Adsorbed on Graphite: The Role +of Domains and Defect Formation. Langmuir, 25(12), +6596-6598 (2009). +[49] M. Pykal, P. Jurecka, F. Karlicky, and M. Otyepka. +Modelling of Graphene Functionalization. Phys. Chem. +Chem. Phys., 18, 6351-6372 (2016). +[50] S. W. Johnson, J. Eckert, M. Barthes, R. K. McMullan, +and M. Muller. Crystal Structure of Acetanilide at 15 +and 295 K by Neutron Diffraction. Lack of Evidence for +Proton Transfer along the N-H...O Hydrogen Bond. J. +Phys. Chem. 99(44), 16253-16260 (1995). +[51] G. Careri, U. Buontempo, F. Galluzzi, A. C. Scott, E. +Gratton, and E. Shyamsunder. Spectroscopic evidence +for Davydov-like solitons in acetanilide. Phys. Rev. B 30, +4689 (1984). +[52] A. Scott. Davydov’s soliton. Physics Reports 217(1), 1- +67 (1992). +[53] L. Cruzeiro, H. Freedman. The temperature dependent +amide I band of crystalline acetanilide. Physics Letters +A 377, 1593-1596 (2013). +[54] L. Cruzeiro. The Amide I Band of Crystalline Ac- +etanilide: +Old Data Under New Light. In: +Archilla, +J., +Jimenez, +N., Sanchez-Morcillo, +V., Garcia-Raffi, +L. +(eds) +Quodons +in +Mica. +Springer +Series +in +Materials +Science, +221, +Springer, +Cham. +(2015) +https://doi.org/10.1007/978-3-319-21045-2 17 +[55] W. D. Cornell, W. P. Cieplak, C. I. Bayly, I. R. Gould, K. +M. Merz, D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. +W. Caldwell, P. A. Kollman. A second generation force +field for the simulation of proteins, nucleic acids, and +organic molecules, J. Am. Chem. Soc. 117(19) 5179-5197 +(1995). +[56] A. V. Savin, E. A. Korznikova, and S. V. Dmitriev. +Dynamics of surface graphene ripplocations on a flat +graphite substrate. Phys. Rev. B 99, 235411 (2019). +[57] A. V. Savin. Eigenmodes and resonance vibrations of +graphene nanomembranes. Phys. Rev. B, 103, 195435 +(2021). +[58] A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. God- +dard III, and W. M. Skiff. UFF, a Full Periodic Table +Force Field for Molecular Dynamics Simulations., J. Am. +Chem. Soc. 114(25), 10024-10035 (1992). + diff --git a/WdE1T4oBgHgl3EQfJAOq/content/tmp_files/load_file.txt b/WdE1T4oBgHgl3EQfJAOq/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..369bae78255f70aa532b8f270a6820b868d9b66c --- /dev/null +++ b/WdE1T4oBgHgl3EQfJAOq/content/tmp_files/load_file.txt @@ -0,0 +1,1171 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf,len=1170 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='02947v1 [cond-mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='mes-hall] 7 Jan 2023 Chiral organic molecular structures supported by multilayer surfaces Alexander V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Savin1, 2, ∗ and Yuri S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Kivshar3, † 1Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia 2 Plekhanov Russian University of Economics, Moscow 117997, Russia 3Nonlinear Physics Center, Department of Fundamental and Theoretical Physics, Research School of Physics, Australian National University, Canberra ACT 2601, Australia We study numerically the dynamics of acetanilide (ACN) molecules placed on a flat surface of a multilayer hexagonal boron nitride structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' We demonstrate that the ACN molecules, being achiral in three dimensions, become chiral after being placed on the substrate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Homochirality of the ACN molecules leads to stable secondary structures stabilized by hydrogen bonds between peptide groups of the molecules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Numerical simulations of systems of such molecules reveal that the structure of the resulting hydrogen-bond chains depends on the isomeric composition of the molecules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' If all molecules are homochiral (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' only one isomer is present), they form secondary structures (chains of hydrogen bonds in the shapes of arcs, circles, and spirals).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' If the molecules at the substrate form a racemic mixture, then no regular secondary structures appear, and only curvilinear chains of hydrogen bonds of random shapes can emerge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' A hydrogen-bond chain can form a straight zigzag only if it has an alternation of isomers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Such chains can create two-dimensional (2D) regular lattices, or 2D crystals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' The melting scenarios of such 2D crystals depend on density of its coverage of the substrate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' At 25% coverage, melting occurs continuously in a certain temperature interval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' For a complete coverage, melting occurs at 415 ÷ 470 K due to a shift of 11% of all molecules into the second layer of the substrate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' INTRODUCTION Two-dimensional (2D) materials such as graphene (G) and hexagonal boron nitride (h-BN) have attracted a lot of attention due to their unique electronic [1–3] and me- chanical [4–7] properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Currently, heterogeneous lay- ered materials of such 2D materials, which can exhibit various novel physical properties compared to their ho- mogeneous counterparts, became a special focus of such studies [8–10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' For example, the use of hybrid G/h-BN structures allows to achieve some desired electronic prop- erties [11, 12] and also reduce significantly friction be- tween the layers [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' In general, such multilayer het- erostructures are stabilized by van der Waals (vdW) in- teractions between atoms of the neighboring layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' The concept of vdW heterostructures can be extended to the integration of 2D materials with molecular struc- tures of different dimensions, such as nD/2D heterostruc- tures, where n stands for the dimension (n = 0, 1, or 3) [14], describing flat molecules (n = 0), polymer chains (n = 1), or three-dimensional molecular objects (n = 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' For molecules and molecular chains with benzol rings, flat layers of G and h-BN are strong adsorbents [15–19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Theoretical studies reveal that molecules adsorbed on G and h-BN surfaces through non-covalent interactions can modify the properties of the surface as solid-liquid, solid- air, or solid-vacuum interfaces [20–22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' A strong stacking interaction with a flat substrate allows such molecules residing on a surface creating stable 2D supra-molecular systems, as shown in the characteristic example of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' 1 ∗asavin@chph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='ras.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='ru †yuri.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='kivshar@anu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='au FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' 1: Example of the molecular structures studied in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' A spiral structure of 52 R-isomers of the ACN molecules C6H5–NHCO–CH3 is stabilized on a h-BN multi- layer surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' By now, the behavior of multifunctional organic molecules placed on ideal metal surfaces has been stud- ied in detail [23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Such organometallic systems may ex- hibit a variety of different structures induced by the sub- strate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' In many cases, complex organic molecules (such as carboxylic acids, amino acids, anhydrides, and ring systems) become self-organized on metal surfaces creat- ing ordered super-structures stabilized by inter-molecular interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Chirality is of a particular interest that can appear for initially achiral metal surfaces by adsorbing organic molecules [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Similar behavior is expected for organic molecules adsorbed on flat surfaces of G and h- 2 BN molecular structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' In this paper, we study nu- merically the formation of supra-molecular complexes by acetanilide molecules placed on the surface of a multilayer h-BN sheet, see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' 1, serving as an introductory figure explaining our problem and results discussed below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' For poly-cyclic aromatic hydrocarbons (for molecules of benzol C6H6, naphthalene C10H8, pyrene C16H10,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='), graphene is a strong adsorbent [15, 17, 19, 25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' The in- teraction of graphene with such molecules often causes specific reactions that can be used in new types of sensors [26, 27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Non-covalent functionalization of the graphene surface can significantly expand its potential range of applications [20, 21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' It has been shown experimen- tally [25, 28] that benzol and pyrene molecules adsorbed on graphene form densely packed monolayers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' For acetanilide (ACN, C6H5NHCOCH3) and parac- etamol (PCM, C6H4OHNHCOCH3) molecules, graphene and hexagonal boron nitride are also strong adsorbents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Due to possible medical applications, much attention has been paid to modeling the adsorption of PCM molecules, which is a strong analgesic, on h-BN sheets and nan- otubes [18, 29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' It has been shown in [30] that function- alized graphene can be used as a highly sensitive parac- etamol detection sensor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' An example of a 1D/2D heterostructure is a graphene sheet with adsorbed Kevlar chains, kevlar-functionalized graphene [31].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' The presence of planar C6H4 benzol rings and NHCO peptide groups in the polymer chain [–C6H4– NHCO–]∞ provides a strong non-covalent (vdW) inter- action of the chain with G and h-BN sheets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Such chains on the surface of sheets G and h-BN will lie parallel to the surface and form chains of hydrogen bonds between each other · · ·HNCO· · ·HNCO· · ·.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Such 3D/2D heterostructures can form thin metal lay- ers on the G and h-BN surfaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' In particular, numerical modeling suggests that aluminum can form stable two- layer structures on the G surface [32].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' It has been shown in Refs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' [33–42] that n-alkanes (lin- ear polymer chains CH3(CH2)lCH3 with internal units 2 ≤ l ≤ 388) form a dense ordered monolayer of parallel linear chains on the graphite (graphene) surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Inter- est in alkanes is due to the fact that they belong to the simplest families of polymer molecules, which members of which differ only in their length.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Placing linear poly- mer chains on a flat graphite surface causes them to self- assemble into 2D crystals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' The self-assembly mechanism depends on the chain length, temperature, and the level of coverage of the substrate with chains [36, 40].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Adsorption by the surface of a long single-chain polyethylene molecule leads to its two-dimensional crys- tallization – it passes from the form of a three- dimensional globule into the form of a parallel folded linear chain lying in the plane parallel to the substrate surface [43–45].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Thus, the flat surfaces of the G and h-BN substrates create a 2D platform for flat molecules adsorbed on them (for poly-cyclic aromatic hydrocarbons, for ACN and PCM molecules, Kevlar chains, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=') and linear poly- mer molecules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' At low temperatures, the molecules move along the sheet, remaining parallel to its surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' They interact with each other and form two-dimensional supra- molecular structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Such molecular adsorbents are con- venient systems for studying phase transitions caused by freedom restrictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' To date, only phase transitions in monolayers of n- alkanes have been well studied [33, 42, 46–48].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Modeling and experimental studies show that a monolayer always undergoes a transition from a solid-crystalline 2D phase to a liquid phase (the transition occurs at a temperature significantly lower than the desorption temperature of molecules).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' The melting scenario depends on the poly- mer chain length.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' The melting temperature increases monotonically with chain length, so for pentane, hep- tane and nonane (l = 3, 5, 7) the melting temperature is Tm = 92, 178 and 255K [46].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' A characteristic fea- ture associated with the adsorption of molecules is the continuity of melting of a 2D crystal – melting occurs in the temperature interval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Thus, for the longest synthe- sized monodisperse alkane C390H782 (l = 388), continu- ous melting occurs at 393 < T < 484 K [42].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Despite the large number of theoretical and experimen- tal works on phase transitions in adsorbed monolayers of alkanes and their derivatives, as far as we know, there are no works on modeling phase transitions in adsorbed monolayers of ACN, PCM, and Kevlar (para-aramid) molecules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' A detailed description of adsorption simu- lation methods is given in [49].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Unlike alkanes, the 2D structures of these molecules adsorbed on a flat surface are associated with the presence of chains of hydrogen bonds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Molecules including amide and hydroxyl groups can create 2D lattices and extended hydrogen chains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' We notice that the ACN molecules are often consid- ered as a model system with chains of hydrogen bonds between HNCO peptide groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Acetanilide crystallizes into an orthorhombic structure with ribbons of molecules linked by hydrogen bonds [50].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' The chains of hydrogen bonds that stabilize the crystal structure are very similar to the chains that stabilize the alpha-helices and beta- sheets of proteins.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Therefore, ACN was used as a model for modeling the energy transfer of vibrations of peptide groups along hydrogen bond chains in proteins [51–53].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Living matter, unlike non-living matter, has chiral pu- rity: all proteins consist of left-handed amino acids, while DNA and RNA are built on right-handed ribose.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' In ex- periments on abiogenic synthesis, left and right isomers of sugars and proteins are formed in equal proportions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' It is believed that if you try to build proteins from such a mix- ture, they will not be able to fold into a stable form and therefore will not work as enzymes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' In three dimensions, the need for chiral purity to form stable protein struc- tures requires complex analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' The situation is dra- matically simplified if we move from three-dimensional space to two-dimensional.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Such a transition can be made if flat molecules are placed on a flat molecular sheet of graphene or hexagonal boron nitride (h-BN).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Such a non- valent modification of the sheet surface actually creates 3 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' 2: When an ACN molecule is placed on a flat surface of a multilayer h-BN structure, it may create two isomers with the mirror symmetry (shown by a straight line).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Vectors connecting the oxygen atom with the hydrogen atom of each peptide group show the dipole moments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' For the L-isomer, the benzol ring is to the left of this vector, for the R-isomer it is to the right.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Gray balls stand for carbon atoms, white balls – hydrogen, blue – nitrogen, red – oxygen, and green – bromine atoms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' a 2D world for the flat molecules placed on it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' At low temperatures, the molecules move along the sheet all the time remaining parallel to its surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' On the surface, they can form complex two-dimensional structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' An ACN molecule that is achiral in 3D becomes chiral after being placed on a flat substrate (the chirality de- pends on which side it lays on the surface of the sheet) – see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' It will be shown that the homochirality of ACN molecules leads to the appearance on the surface of the sheet of stable secondary structures stabilized by hydrogen bonds: cyclic and spiral chains and complexes of them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Modeling the formation of such structures will make it possible to demonstrate the necessity of homochi- rality (chiral purity) of biomolecules for the formation of stable secondary molecular structures from them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' As a flat substrate, we consider a surface of a multilayer h-BN structure, and for molecules we consider acetanilide (ACN) C6H5NHCOCH3, as shown in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' 1 and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' The presence of a planar benzol ring C6H5 and a planar pep- tide group (PG) HNCO leads to large interaction energy of the molecule with the substrate, Esub = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='762 eV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Molecules can create chains of hydrogen bonds between their peptide groups OCNH· · ·OCNH· · ·OCNH· · ·.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Such chains of hydrogen bonds stabilize the secondary struc- tures of the protein molecules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' The paper is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' In the next section, we describe our model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Section III is devoted to the study of secondary structures of the ACN molecules placed on a flat substrate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Self-assembly of such structures is simu- lated numerically in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Then, in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' V we analyze melting of 2D crystals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Section VI concludes the paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' 3: Construction of a coarse-grained model of the ACN molecule: (a) full-atomic view of the molecule, (b) coarse- grained model (the used numbering of the united atoms is shown).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' MODEL For modeling of the dynamics of a system of the ACN molecules, we will use the united-atoms approximation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Let us consider the molecular groups CH and CH3 as united atoms whose centers coincide with the centers of carbon atoms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' In this approximation, the ACN molecule is described as a system of 11 united atoms – see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' The values of the masses of the united atoms are shown in the table I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' To model a ACN molecule, we use the force field in which distinct potentials describe the deformation of va- lence bonds and valence, torsion and dihedral angles, and non-valence atomic interacts [55].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' In this model, the de- formation energy of the valence bonds C–CH, CH–CH, C–N, N–H, C=O and C–CH3 is described by the har- monic potential: V (ρ) = 1 2K(ρ − ρ0)2, (1) where ρ and ρ0 are current and equilibrium bond lengths, K is the bond stiffness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' The values of potential parame- ters for various valence bonds are presented in Table II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' TABLE I: Masses and parameters of interaction potentials for united atoms X of the ACN molecule: i – atom number, Mi – atom mass (mp = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='6603 × 10−27 kg – proton mass), εi and ri are the energy and radius of the LJ interaction, qi is the electric charge of the atom, ǫi and hi are the energy and equilibrium distance for the interaction of an atom with a flat substrate (with a crystal surface h- BN).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' X C CH N H C O CH3 i 1 2,3,4,5,6 7 8 9 10 11 Mi (mp) 12 13 14 1 12 16 15 εi (meV) 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='284 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='284 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='080 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='434 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='284 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='344 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='284 ri (˚A) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='861 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='861 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='899 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='621 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='861 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='711 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='861 qi (e) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='066 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='463 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='286 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='580 -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='504 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='035 ǫi (meV) 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='5 87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='3 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='7 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='3 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='5 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='8 87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='3 hi (˚A) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='52 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='44 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='43 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='08 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='52 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='36 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='44 (a) H (b) CH 6 8 5 CH3 4 C N 1 9 11 3 2 10R T4 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' 4: Dimer of (a) RR and (b)LR isomers of the ACN molecule on a flat substrate (shown in green).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' The vectors show the dipole moments of the peptide groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Hydrogen bond energy of identical isomers Ehb = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='330 eV, angle be- tween dipole moments φhb = 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='05◦, for different isomers Ehb = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='322 eV, φhb = 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='98◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Energies of the deformation of the valence angles X– Y–Z are described by the potential U(u1, u2, u3) = U(φ) = ǫa(cos φ − cos φ0)2, (2) where the cosine of the valence angle φ is defined as cos φ = −(v1, v2)/ρ1ρ2, with the vectors v1 = u2 − u1, v2 = u3 − u2 and bond lengths ρ1 = |v1|, ρ2 = |v2|, the vectors u1, u2, u3 specify the coordinates of the atoms forming the valence angle φ, φ0 is the value of equilib- rium valence angle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' The values of potential parameters used for various valence angles are presented in Table III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Deformation of dihedral angles are described by the potential W(u1, u2, u3, u4) = ǫd(1 + zd cos kϕ), (3) where cos ϕ = (w1w2)/|w1||w2|, with the vectors w1 = (u2 − u1) × (u3 − u2), w2 = (u3 − u2) × (u4 − u3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' The values of potential parameters used for various dihedral angles are presented in Table IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' For pairs of atoms Xi,Xj (i, j are the numbers of atoms in the molecule) participating in the formation of the dihedral angle Xi–Y–Z–Xj, their non-valence interaction is also taken into account described by the Lennard-Jones (LJ) potential W0(r) = ε0[(r0/r)12 − 2(r0/r)6], (4) with halved interaction energy ε0 = √εiεj/2, where r is current distance between interacting atoms, equilibrium distance r0 = ri + rj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' The LJ interaction of an oxygen atom (i = 10) with two combined atoms CH (i = 2, 6) was also taken into account with interaction energy ǫ0 = TABLE II: Values of the harmonic potential parameters (1) for different valence bonds X—Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' X—Y C–CH, CH–CH C–N N–H C=O C–CH3 K (N/m) 469 427 434 570 317 ρ0 (˚A) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='39 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='405 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='007 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='222 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='505 √ε2ε10 and equilibrium distance r0 = r2+r10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Parameter values εi and ri are shown in Table I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' The interaction of two ACN molecules is described by the potential U(X1, X2) = 11 � i=1 11 � j=1 {εij[(¯rij/rij)12 − 2(¯rij/rij)6] +κqiqj/rij}, (5) where the 33-dimensional vector Xk = {uk,i}11 i=1 (k = 1, 2) defines the coordinates of atoms of the k-th ACN (vector uk,i specifies the coordinates of the i-th atom of the k-th molecule), distance between atoms rij = |u1,i − u2,j|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Here energy εij = √εiεj, equilibrium distances ¯rij = ri + rj, qi is the electric charge of i-th atom (i, j = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=', 11), coefficient κ = 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='400611 eV˚A/e2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' The values of the parameters εi, ri and qi are shown in Table I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' All values of parameters of interaction potentials (1), (2), (3) and (5) are obtained from force field AMBER [55].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' The van der Waals interactions of the atoms of the ACN molecule with flat substrate are described by the LJ potential (m, l) W(X) = 11 � i=1 Wi(zi) = 11 � i=1 ǫi l − m[m(hi/zi)l − n(hi/zi)m], (6) where zi is the distance from i-th atom to the outer sur- face of the substrate, which is plane z = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Potential Wi(zi) in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' (6) is the interaction energy of i-th atom as a function of the distance to the substrate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' This energy was found numerically for different substrates [56, 57].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' The calculations showed that interaction energy with substrate Wi(z) can be described with a high accuracy by LJ potential (6) with power l > k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Potential Wi(z) has the minimum Wi(hi) = −ǫi (ǫi is the binding en- ergy of the i-th atom with substrate).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' For the surface of the h-BN crystal l = 10, m = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' The values of the parameters ǫi, hi, i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=', 11, are given in the table I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' The 10-layer fragment of h-BN crystal was used to find values of this parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' The interaction energy of an atom with a substrate was found as the sum of all LJ potentials (4) with parameters from the force field UFF [58].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Thus, the Hamiltonian of a system of N ACN molecules located on the flat surface of h-BN crystal has the form H = N � n=1 1 2(M ˙Xn, ˙Xn) + P, (7) where the first term specifies the kinetic and the second – potential energy of the system P = N � n=1 [V (Xn) + W(Xn)] + N−1 � n=1 N � k=n+1 U(Xn, Xk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' (8) Here the vector Xn = {un,i}11 i=1 specifies the coordinates of the atoms of n-th ACN molecule, M is the diago- nal matrix of atom masses of the molecule, V (Xn) and a b5 TABLE III: Values of the parameters of the potential of the valence angle X–Y–Z (2) for different atoms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' X–Y–Z C–C–C C–C–N C–N–H C–N–C N–C–O N–C–C O–C–C ǫa (eV) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='643 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='823 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='781 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='888 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='932 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='758 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='625 ϕ0 (◦) 120 117 118 128 123 116 120 TABLE IV: Values of the parameters of the potential of the dihedral angle X–Y–Z–W (3) for different atoms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' X–Y–Z–W C–C–C–C C–C–C–N C–C–N–H C–C–N–C C–N–C–O C–N–C–CH3 ǫd (eV) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='63 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='63 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='21 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='21 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='42 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='42 zd 1 1 1 1 1 1 k 1 1 2 2 1 1 W(Xn) are deformation energy and energy of interac- tion with the substrate of n-th molecule, U(Xn, Xk) is the interaction energy of n and k molecules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' SECONDARY STRUCTURES OF ACN MOLECULES ON A FLAT SUBSTRATE The ACN molecule is achiral, but it becomes chiral when placed on a flat substrate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Depending on which side it lies on the substrate, it can be either right (when the benzol ring is located to the right of the dipole mo- ment vector of the peptide group ⃗ OH) or left (the ben- zol ring is located to the left).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Two mirror-symmetrical isomers of the molecule are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' To trans- fer a molecule from one isomer to another, it must be partially torn off the substrate and be placed on the sub- strate with its other side.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' All this requires overcoming the energy barrier ∆E = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='466 eV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' The total energy of interaction with the h-BN substrate (desorption energy) Esub = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='762 eV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Therefore, the spontaneous transition of the ACN molecule lying on the substrate from the L to the R form and vice versa is possible only at temper- atures T > 300 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' At lower temperatures, the molecule will always stay on the substrate, adjoining it with the same side, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' without changing the isomer type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' To find the stationary state of the system of N ACN molecules lying on a flat h-BN substrate, it is necessary to find the state of the system with a minimum potential energy P → min : {Xn}N n=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' (9) The minimization problem (9) is solved numerically by the conjugate gradient method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Choosing the starting point of the minimization procedure, one can obtain all the main stationary states of the molecular system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Peptide groups of neighboring molecules can form hy- drogen bonds, creating dimers – see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' The numeri- cal solution of the problem (9) shows that when molecules are located on a flat substrate, two types of dimers are FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' 5: Typical secondary structures of homochiral ACN molecules on a flat substrate: (a) arc (number of atoms N = 15), (b) circle (N = 21), (c) single-beam spiral (N = 34), (d) two-beam spiral (N = 23 + 23), (e) three-beam spiral (N = 15 + 15 + 15), (f) nested circles (N = 12 + 24).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' possible: dimers of molecules of the same and different chirality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' If a dimer is formed by identical isomers, then its binding energy is slightly higher: the hydrogen bond energy for RR and LL isomers is Ehb = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='330 eV, and for RL and LR isomers Ehb = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='322 eV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' This is due to the fact that in this case the benzol rings C6H5 of the molecules are on the same side and they make a larger contribution to the interaction energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' The hydrogen bond angle also depends on the chirality of the dimer molecules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' For dimer molecules of the same chirality, the angle between the dipole moments of the peptide groups forming a hydrogen bond is φhb = 17◦, and for molecules of different chirality φhb = 34◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Chains of hydrogen bonds of molecules of the same chi- rality will always have benzol rings on one (outer) side, so they will twist in the opposite (inner) direction and have approximately the same curvature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' On a plane, cir- cular arcs, circles, and spirals have such properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' The solution of the problem (9) has shown that on a flat sub- b a C6 10 20 30 40 50 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='3 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='2 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='1 1 2 3 4 5 6 Es (eV) N FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' 6: Dependence of the specific energy of the secondary structure of the homochiral ACN molecules Es on the num- ber of molecules N for an arc, a circle, one-beam, two-beam, three-beam spiral and nested two circles (curves 1, 2, 3, 4, 5 and 6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' For the structure of two nested circles (curve 6), the dependence on the number of atoms of the outer circle is shown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' strate molecules of the same chirality form stable shape structures with little changing curvature: arcs, spirals, circles – see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' 1 and 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Left isomers form structures with a twist to the right, right – to the left.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Hydrogen bond chains of N ≤ 16 ACN molecules of the same chirality form circular arcs of the same radius.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' The step of such a chain (the distance between the oxy- gen atoms of neighboring peptide groups) is a = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='76 ˚A, the angle between neighboring links is ϕ = 162◦, the ra- dius of curvature by oxygen atoms is R = 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='2 ˚A – see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' 5 (a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' The specific energy of the chain Es = E/N decreases monotonically with the growth of the number of molecules N – see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' When the number of links is N > 16, the arcs cease to be stable;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' they either close and form circular chains, or touch their ends and form flat spirals – see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' 5 (b), (c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Stable cyclic chains can be formed from N ≥ 5 molecules of the same chirality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' The dependence of the specific energy of the cyclic chain Es on the number of its links N is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' As can be seen from the figure, the most energetically favorable are cyclic chains of N = 20, 21, 22 links.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Such chains form ring struc- tures with inner R1 = 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='3, 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='8, 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='5 and outer radii R2 = 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='4, 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='9, 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='6 ˚A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' The dependence Es(N) for a one-beam spiral actually continues the dependence for an arc (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' 6, curves 1 and 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Two-beam and three-beam spirals are bound states of arc structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' The specific energy of helical structures decreases monotonically with an increase in the number of molecules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' For N > 27, helical structures are more energy efficient than ring structures (this is due to their denser structure).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' The most energy-efficient are nested structures of two circles with the number of atoms N = 14 + 26, 15+27, 17+29 (the first number in the sum corresponds the num- ber of atoms in the inner circle, the second – in the outer FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' 7: 2D crystals of ACN molecules on a flat substrate: (a) with parallel packing of linear chains of hydrogen bonds (periods ax = 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='81, ay = 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='24), (b) with antiparallel packing (ax = 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='79, ay = 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='43 ˚A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' On the surface of a flat substrate, the chain of hydrogen bonds can be linear only if the L and R isomers alternate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' A crystal is formed by 6 linear chains of 24 molecules (the total number of molecules is N = 6 × 24).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' The flat substrate is shown in green.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' circle) – see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' 6, curve 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' If the chain of hydrogen bonds consists of a random sequence of isomers, then it will look like an irregular broken line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' The chain has the shape of a straight zigzag only if there is a strict alternation of L and R isomers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' In this case, the zigzag step (the distance between the oxygen atoms of neighboring molecules) is a = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='85 ˚A, the zigzag angle is ϕ = 170◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Such chains on a flat sub- strate surface can form two-dimensional regular lattices (2D crystals) with parallel and antiparallel packing of neighboring chains – see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' With parallel packing, the crystal periods are ax = 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='81˚A, ay = 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='24˚A, the specific energy is Es = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='325 eV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' With antiparallel packing, periods are ax = 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='79˚A, ay = 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='43˚A, energy is Es = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='322 eV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' SELF-ASSEMBLY OF MOLECULAR STRUCTURES Let us simulate the self-organization of the molecular structures of ACN molecules on the flat surface of the h- a b7 100 200 300 400 500 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='8 1 nhb (a) 100 200 300 400 500 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='4 T (K) c (b) FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' 8: Dependence of (a) the normalized number of hydro- gen bonds nhb and (b) the dimensionless heat capacity c on temperature T for a system of N = 1024 ACN molecules located on a flat substrate with the periodic square compu- tational cell of size 33 × 33 nm2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Solid (blue) lines show de- pendencies for a system of homochiral molecules, dotted (red) lines – dependencies for a racemic mixture of molecules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Verti- cal dotted straight lines correspond to temperatures T = 250, 330, and 480 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' BN crystal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' To do this, we take a square periodic cell of size 33 × 33 nm2 on the surface of the substrate and ran- domly place N = 1024 ACN molecules into it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Then we immerse this molecular system in a Langevin thermostat of temperature T and numerically simulate the dynamics of the system during the time t = 10 ns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' To do this, we numerically integrate the system of Langevin equations M ¨Xn = − ∂ ∂Xn H − ΓM ˙Xn − Ξn, n = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=', N, (10) where Γ = 1/tr is the friction coefficient, Ξn = {ξn,i,k}11, 3 i=1,k=1 is 33-dimensional vector of normally dis- tributed random Langevin forces with the following cor- relations: ⟨ξn1,i,k(t1)ξn2,j,l(t2)⟩ = 2MikBT Γδn1n2δijδklδ(t1 − t2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Here Mi is mass of i-th atom of ACN molecule, kB is Boltzmann constant, T is temperature of the Langevin thermostat (temperature of the substrate), numbers n1, n2 = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=', N, i, j = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=', 11, k, l = 1, 2, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' The parameter tr characterizes the intensity of energy exchange between the molecular system and the ther- mostat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Simulation of the dynamics of ACN molecules on an h-BN sheet, taking into account the mobility of the sheet atoms, makes it possible to estimate the relax- ation time tr ∼ 100 ps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' For the convenience of numer- ical integration, we will use a smaller value tr = 10 ps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' 9: Structure of N = 1024 homochiral ACN molecules appearing on the flat surface of the substrate at T = 240K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' The straight lines show the boundaries of the periodic calcu- lation cell of size 33 × 33 nm2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' The substrate surface is not shown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' This makes it possible to significantly reduce the time of numerical integration, which is sufficient to obtain reli- able average values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' After the dynamics of the molec- ular system reaches the steady state, we will find the time averages of the system energy ¯E(T ) and the num- ber of hydrogen bonds ¯Nhb(T ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' We assume that two ACN molecules form a hydrogen bond if their interaction en- ergy is greater than half of the hydrogen bond energy: U(X1, X2) < −Ehb/2 = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='16 eV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' The state of the system can be conveniently character- ized by its dimensionless heat capacity c = 1 33NkB d ¯E(T ) dT , (11) and the normalized number of hydrogen bonds nhb = ¯Nhb(T )/N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' The dependence of these quantities on tem- perature is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Numerical simulation shows the existence of three characteristic temperature values T1 < T2 < T3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' At T < T1 = 250K the molecules on a flat substrate form a stable system of chains of hydrogen bonds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Here, almost every molecule participates in the formation of one hy- drogen bond (number nhb ≈ 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' The dimensionless heat capacity of the system is c = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' At T1 < T < T2 = 330K, a slight decrease in the number of nhb bonds and a monotonous increase in heat capacity begin to occur – the process of melting of hydrogen bond chains begins.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' At a temperature T > T2, the number of hydrogen bonds 8 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' 10: Structure of N = 1024 homochiral ACN molecules appearing on the flat surface of the substrate at T = 300K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' The straight lines show the boundaries of the periodic calcu- lation cell of size 33 × 33 nm2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' decreases in proportion to the increase in temperature, and the heat capacity reaches a constant value c ≈ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Here we have a melt of short chains of hydrogen bonds (the average length of the chains decreases proportion- ally to the increase in temperature).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' At T > T3 = 480K, individual molecules can already be detached from the substrate – desorption of molecules begins.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' The structure of the resulting system of hydrogen bond chains depends on the isomeric composition of the molecules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' If all molecules are homochiral (only one iso- mer is present), then secondary structures form on the surface of the substrate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' These structures are circular and spiral hydrogen bond chains – see Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' 9 and 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' The substrate surface become optically active, the left isomers form chains with a right twist, and the right ones with a left twist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' As can be seen from Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' 9 for T = 240K on a flat substrate all possible circular secondary structures (arcs, circles, spirals) are formed (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' 5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' An increase in temperature leads, first of all, to the destruction of spiral structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' As a result, the number of cyclic chains of average radius increases since they are the most stable – see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' If the isomers of molecules are taken randomly, we get their racemic mixture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' In this case, no secondary struc- tures are formed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' There are only curvilinear chains of random shape – see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' 11: Structure formed on the flat surface of the sub- strate at T = 240K from a racemic mixture of N = 1024 ACN molecules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' The straight lines show the boundaries of the periodic calculation cell of size 33 × 33 nm2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' MELTING OF 2D CRYSTALS To simulate the dynamics of 2D crystals of ACN molecules on a flat h-BN substrate, consider a crystal formed by 22 linear chains of hydrogen bonds of 48 molecules (total number of molecules N = 22 × 48 = 1056).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' A crystal with parallel chain packing has dimen- sions of 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='3 × 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='5 nm2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' We place the crystal in the center of the calculated periodic cell size 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='5×22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='6 nm2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' In this case, the chains of hydrogen bonds located par- allel to the x axis are closed, and the first chain begins to come into contact with the last one – the 2D crystal form a dense packing on the substrate that has no edges and has normalized number of hydrogen bonds nhb = 1 (the number of hydrogen bonds is equal to the number of molecules).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' To simulate a rectangular crystal with edges (square crystallite), we take a periodic computational cell of size 47 × 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='2 nm2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' In this case, the 2D crystal (crys- tallite) covers only 25% substrate surface, the chains of hydrogen bonds are not closed, the normalized number of hydrogen bonds is nhb = (N − 22)/N = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='979.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Then we numerically integrate the system of equations of motion (10) with the initial condition corresponding to the stationary state of the crystal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' At different thermo- stat temperatures, we find the average values of the sys- tem energy ¯E(T ), the normalized number of hydrogen bonds nhb, and the fraction of molecules that left the substrate from the first layer p (the fraction of molecules located on the substrate at distance z > 5 ˚A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Next, using 9 100 200 300 400 500 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='8 1 1 2 (a) nhb 100 200 300 400 500 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='5 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='5 3 4 (b) c 100 200 300 400 500 0 5 10 6 5 T (K) p (%) (c) FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' 12: Dependence of (a) the normalized number of hy- drogen bonds nhb, (b) the dimensionless heat capacity c and (c) the fraction of molecules that left the first layer p on the temperature T for a 2D crystal of N = 1056 ACN molecules located on a flat substrate with periodic computational cell of size 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='6 × 45 nm2 (curves 1, 3, 5;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' 25% substrate coverage) and 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='3 × 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='5 nm2 (curves 2, 4 , 6;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' 100% substrate cover- age).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Vertical dotted straight lines show temperature values T = 295, 335, 365, 415, 445 and 470 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' the formula (11), we find the temperature dependence of the heat capacity of the molecular system c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' The dependence of nhb, c, and p on the thermostat temperature (on the substrate temperature) T is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' As can be seen from the figure, at 25% cover- age of the substrate, the square crystallite begins to melt at a temperature of T1 = 295K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' At T < T1, the crystal structure is preserved, the number of bonds, heat capac- ity, and density of the first layer of the substrate coating practically do not change with increasing temperature: nhb(T ) ≡ nhb(0), c(T ) ≡ 1, p(T ) ≡ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Crystallite melt- ing occurs in the temperature range T1 < T < T2 where the upper temperature is T2 = 365 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Here, a slight de- crease in the number of bonds and an increase in heat capacity begin to occur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' The heat capacity reaches its maximum value at the temperature Tm = 335 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' In the temperature interval [T1, T2], an increasing destruction of the edges of the initial crystallite occurs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' The ends of the chains peel off from the central part of the crystallite, 100 200 300 400 500 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='5 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='5 c 1 2 3 4 T (K) FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' 13: Dependence of the dimensionless heat capacity c on temperature T for a 2D square crystallite of N = 480, 1056, 2376 of the ACN molecules located on a flat substrate with periodic computational cell of the size 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='2× 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='68, 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='6× 45, 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='2 × 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='5 nm2 (curves 1, 3, 5;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' 25% substrate coverage) and for infinite 2D crystal (curve 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Vertical dotted straight lines mark the temperatures T = 315, 335, 365, and 445 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' then break off and go to the free part of the substrate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' As a result of this ”continuous” melting, the crystallite transforms into a melt consisting of short chains of hy- drogen bonds, uniformly covering the entire substrate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' For T > T2, the number of hydrogen bonds decreases in proportion to the increase in temperature, while the heat capacity remains almost constant: c ≈ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' It can be concluded that a complete transition of the molecu- lar system from a low-energy and low-entropy crystalline state to a high-energy and high-entropy liquid state has taken place.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' As a result of this transition, the substrate is uniformly covered with a ”solution” of short chains of hydrogen bonds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' The chain lengths decreases monotoni- cally with increasing temperature (on the Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' 12 (a) this manifests itself in a monotonous decrease in the number of bonds).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' All molecules remain directly adjacent to the substrate (p = 0), insignificant desorption is observed only at T > 480 K – see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' 12 (c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' With 100% coverage of the substrate, due to the ab- sence of edges in the crystal, its melting occurs at higher temperatures and happens according to a different sce- nario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Here melting also occurs ”continuously” in the temperature interval [T1, T2], where T1 = 415, T2 = 470 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' The peak of the heat capacity at Tm = 445 K becomes more pronounced.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Melting occurs due to the expulsion of some molecules from the first layer to the second, which manifests itself in a monotonous increase in the fraction of displaced molecules p at T1 < T < T2 – see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' 12 (c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' As a result, the density of the first layer during melting decreases by 11%, and after melting a dense melt of molecules is formed on the substrate, in which 11% of the molecules are located on the second layer from the substrate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Conventionally, the temperature value Tm, at which 10 the heat capacity has reached its maximum value, can be considered as the melting temperature of a 2D crystal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' However melting occurs not discretely, but continuously in the temperature interval [T1, T2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' The value Tm is in the center of this interval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' To study the dependence of the melting temperature on the crystallite size, we analyze numerically the melt- ing of 2D square crystallite of N = 480 and 2376 ACN molecules placed on a flat substrate with periodic com- putational cell of size 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='2 × 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='68 and 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='2 × 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='5 nm2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Our results show that melting occurs continuously for all crystallite sizes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' When the crystallite size is increased, the melting interval [T1, T2] shifts to the right and, in the limit, coincides with the melting temperature inter- val of a 2D crystal with 100% coverage of the substrate, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Let us note that the continuum melting scenario also takes place for 2D n-alkane crystals lying on a flat sur- face of graphite [42].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' This allows us to conclude that the quasi-continuous melting scenario is a characteristic feature of 2D systems of molecules adsorbed by a flat surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' CONCLUSION Our numerical simulations of the dynamics of the sys- tem of acetanilide molecules have revealed that the struc- tures achiral in three-dimensional space become chiral when being placed on a flat substrate: Depending on the side it touches the substrate, the molecule has two iso- mers L and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' The homochirality of the molecules leads to the appearance of stable secondary structures stabi- lized by hydrogen bonds on a flat substrate in the form of arc, cyclic, and helical chains of hydrogen bonds and their complexes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Hydrogen-bond chains of N ≤ 16 molecules of the same chirality form circular arcs of the same radius.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' When the number of molecules in the chain is N > 16, the arcs becomes unstable, they either collapse into circles, or touch their ends and form flat spirals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' In addition to single-beam spirals, two- and three-beam spirals may exist being bound states of arc chains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Stable cyclic chains can be formed from N ≥ 5 molecules of the same chirality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' The most energeti- cally favorable are cyclic chains of 20, 21 and 22 links.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' The structures of two circles with the number of atoms N = 14 + 26, 15 + 27, 17 + 29 (where the first number of the sum is the number of atoms in the inner circle, and the second number is the number of atoms in the outer circle) are more energy efficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' If the chain of hydrogen bonds consists of a random sequence of isomers, it look like an irregular broken line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' A chain can take the form of a rectilinear zigzag only if there is a strict alternation of the L and R isomers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Such chains can form regular two-dimensional crystals with parallel and antiparallel packing of the adjacent chains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Simulation of the dynamics of a system of molecules shows that the homochirality of molecules(the presence of only one isomer) leads to the appearance of stable sec- ondary structures on the surface of the substrate, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' to the appearance of chains of hydrogen bonds in the form of arcs, circles and spirals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' As a result, the substrate surface becomes optically active, the left isomers form chains with a right twist, and the right ones form chain with a left twist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' At temperature T ≤ 240 K, all possible secondary structures are formed on the substrate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' An increase in temperature leads, first of all, to the disinte- gration of spiral structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' As a result, the number of more stable circular chains increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' If the molecules on the substrate form a racemic mix- ture, no regular secondary structures are formed, so only curvilinear chains of hydrogen bonds of random shape can appear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Thus, our results demonstrate the impor- tance of homochirality (chiral purity) of biomolecules for the formation of stable secondary molecular structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Numerical simulations of the dynamics of a 2D crystal of the ACN molecules shows that the scenario of crystal melting depends on the density of its coverage of the substrate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' At 25% coverage of the substrate the melting occurs ”continuously” in the temperature interval [T1, T2] from the edges of the initial crystallite (for crystallite of 1056 ACN molecules temperatures T1 = 295, T2 = 365 K).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' The ends of the chains peel off from the central part of the crystallite, then break off and go to the free part of the substrate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' As a result, the crystallite transforms into a melt consisting of short chains of hydrogen bonds, uniformly covering the entire substrate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' When the size of the crystallite is increased, the melting interval [T1, T2] shifts to the right and, in the limit, will coincides with the melting temperature interval of infinite crystal with 100% coverage of the substrate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' For 100% coverage of the substrate with no crystal edges, the melting occurs at higher temperatures 415 ÷ 470 K by a shift of some molecules from the first to the second layer in the substrate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' As a result, the density of the first layer during melting decreases by 11%, and after melting, 11% of the molecules move to the second layer formed on the substrate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' A continual melting scenario (the presence of a melting temperature interval)has also been found in 2D n-alkane crystals lying on a flat surface of graphite [42].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' All this leads us to conclusion that the quasi-continuous melt- ing scenario is a characteristic feature of 2D systems of molecules adsorbed by a flat surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' ACKNOWLEDGMENTS AVS acknowledges the use of the computational facilities provided by the Interdepartmental Supercomputer Cen- ter of the Russian Academy of Science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' YSK acknowl- edges a support from the Australian Research Council (grant DP210101292) and the Strategic Fund of the Aus- tralian National University.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' 11 [1] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Novoselov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Geim, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Morozov, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Jiang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Zhang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Dubonos, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Grigorieva and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Firsov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Electric Field Effect in Atomically Thin Carbon Films.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Science 306 (5696), 666-669 (2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' [2] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Castro Neto, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Guinea, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Peres, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Novoselov and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Geim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' The electronic properties of graphene.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' 81, 109-162 (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' [3] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Koren, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Leven, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Lortscher, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Knoll, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Hod and U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Duerig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Coherent commensurate electronic states at the interface between misoriented graphene layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Na- ture Nanotech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' 11, 752-757 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' [4] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Meyer, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Geim, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Katsnelson, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Novoselov, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Booth and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Roth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' The structure of suspended graphene sheets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Nature 446, 60-63 (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' [5] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Lee, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Wei, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Kysar and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Hone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Measurement of the Elastic Properties and Intrinsic Strength of Mono- layer Graphene.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Science 321, 385-388 (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' [6] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Falin, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Cai, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Santos, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Scullion, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Qian, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Zhang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Yang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Huang, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Watanabe, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Taniguchi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Barnett, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Chen, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Ruoff and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Li.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Mechanical properties of atomically thin boron nitride and the role of interlayer interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' 8, 15815 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' [7] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Han, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Yu, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Annevelink, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Son, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Kang, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Watanabe, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Taniguchi, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Ertekin, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Huang and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' van der Zande.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Ultrasoft slip-mediated bending in few-layer graphene.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Nature Materials 19, 305-309 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' [8] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Leven, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Krepel, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Shemesh, and O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Hod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Robust Su- perlubricity in Graphene/h-BN Heterojunctions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' 4, 115-120 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' [9] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Geim and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Grigorieva.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Van der Waals heterostruc- tures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Nature 499, 419-425 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' [10] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Novoselov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Mishchenko, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Carvalho and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Castro Neto.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' 2D materials and van der Waals het- erostructures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Science 353 (6298), 461 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' [11] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Woods, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Britnell, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Eckmann, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Ma, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Lu, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Guo, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Lin, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Yu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Cao, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Gorbachev, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Kretinin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Park, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Ponomarenko, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Katsnelson, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Gornostyrev, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Watanabe, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Taniguchi, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Casiraghi, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Gao, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Geim and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Novoselov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Commensurate-incommensurate transition in graphene on hexagonal boron nitride.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Nature Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' 10, 451-456 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' [12] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Slotman, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' van Wijk, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Zhao, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Fasolino, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Katsnelson and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Yuan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Effect of Structural Relax- ation on the Electronic Structure of Graphene on Hexag- onal Boron Nitride.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' 115, 186801 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' [13] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Mandelli, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Leven, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Hod and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Urbakh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Sliding friction of graphene/hexagonal-boron nitride heterojunc- tions: a route to robust superlubricity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Rep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' 7 (1), 10851 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' [14] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Jariwala, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Marks and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Hersam.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Mixed- dimensional van der Waals heterostructures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Nature Mater 16, 170-181 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' [15] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Ershova, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Lillestolen and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Bichoutskaia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Study of polycyclic aromatic hydrocarbons adsorbed on graphene using density functional theory with empiri- cal dispersion correction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=', 12, 6483-6491 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' [16] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Gordeev, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Polynski and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Ananikov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Fast and accurate computational modeling of adsorption on graphene: a dispersion interaction challenge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=', 15, 18815-18821 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' [17] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Wang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Chen and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Chen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Adsorption of polycyclic aromatic hydrocarbons by graphene and graphene oxide nanosheets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Environ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Technol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=', 48, 4817-4825 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' [18] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Castro and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Chigo-Anota.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' BN and BN oxide nanosheets based nanosensor for Paracetamol adsorp- tion: A Density Functional investigation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Mex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Eng.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=', 1, 21-29 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' [19] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Zhou and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Zhang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Physisorption of benzene derivatives on graphene: critical roles of steric and stere- oelectronic effects of the substituent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=', 17, 12185-12193 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' [20] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Georgakilas, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Otyepka, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Bourlinos, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Chan- dra, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Kim, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Kemp, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Hobza, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Zboril and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Kim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Functionalization of Graphene: Covalent and Non-Covalent Approaches, Derivatives and Applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=', 112, 6156-6214 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' [21] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Georgakilas, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Tiwari, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Kemp, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Perman, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Bourlinos, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Kim, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Zboril.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Noncovalent Functionalization of Graphene and Graphene Oxide for Energy Materials, Biosensing, Catalytic, and Biomedical Applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=', 116, 5464-5519 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' [22] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Thakkar, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Gajaweera and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Comer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Organic con- taminants and atmospheric nitrogen at the graphene- water interface: a simulation study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Nanoscale Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=', 4, 1741 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' [23] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Barlow, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Raval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Complex organic molecules at metal surfaces: bonding, organisation and chirality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Sur- face Science Reports, 50, 201-341 (2003).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' [24] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Cao, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Van Den Eede, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Koeckelberghs, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Mali and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' De Feyter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Direct observation of the influence of chirality on the microstructure of regioregular poly- (3-alkylthiophene)s at the liquid/solid interface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=', 53, 153-156 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' [25] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Bahn, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Hedgeland, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Jardine, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Henry, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Hansen and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Fouquet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' The structure of deuterated ben- zene films adsorbed on the graphite (0001) basal plane: what happens below and above the monolayer coverage?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=', 16, 22116 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' [26] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Schedin, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Geim, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Morozov, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Hill, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Blake, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Katsnelson, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Novoselov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Detection of individual gas molecules adsorbed on graphene.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Mater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=', 6, 652-655 (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' [27] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Shao, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Wang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Wu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Liu, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Aksay and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Lin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Graphene Based Electrochemical Sensors and Biosensors: A Review.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Electroanalysis, 22, 1027-1036 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' [28] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Zhen, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Swanson, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Nelson, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Zhang, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Su, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Koester, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Buhlmann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Noncovalent Mono- layer Modification of Graphene Using Pyrene and Cy- clodextrin Receptors for Chemical Sensing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' ACS Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Nano Mater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' 1, 2718-2726 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' [29] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Iranmanesh-Zarandy and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Dehestani.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Molecular Dynamics Simulation of Paracetamol Drug Adsorption on Boron Nitride Nanotube: Effects of Temperature, Nanotube Length, Diameter, and Chirality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' ChemistryS- elect, 4, 7866 -7873 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' [30] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Kang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Wang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Wu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Liu, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Aksay, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Lin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' A graphene-based electrochemical sensor for sensitive de- tection of paracetamol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Talanta, 81, 754-759 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' [31] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Lian, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Fan, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Shi, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Li, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Yin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Kevlar- 12 functionalized graphene nanoribbon for polymer rein- forcement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Polymer, 55(10), 2578-2587 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' [32] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Kumar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Graphene Engendered 2-D Structural Mor- phology of Aluminium Atoms: Molecular Dynamics Sim- ulation study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Materials Chemistry and Physics, 202, 329-339 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' [33] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Roth, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Pint and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Wexler.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Phase transitions in hexane monolayers physisorbed onto graphite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' B, 71, 155427 (2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' [34] Cary L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Pint, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Roth and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Wexler.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Behavior of hexane on graphite at near-monolayer densities: Molec- ular dynamics study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' B, 73, 085422 (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' [35] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Becker.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Accelerated molecular dynamics simulation of the thermal desorption of n-alkanes from the basal plane of graphite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' 125, 184706 (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' [36] Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Chen, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='-J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Yan, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='-J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Yan, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='-B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Pan, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='-J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Wan, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='- Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Wen, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='-Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Zhang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' STM investigation of the depen- dence of alkane and alkane (C18H38, C19H40) derivatives self-assembly on molecular chemical structure on HOPG surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Surface Science, 602 1256-1266 (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' [37] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Connolly, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Roth, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Gray, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Wexler.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Explicit Hydrogen Molecular Dynamics Simulations of Hexane Deposited onto Graphite at Various Coverages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Langmuir, 24(7), 3228-3234 (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' [38] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Yang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Berber, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='-F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Liu, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Miller and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Tomanek.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Self-assembly of long chain alkanes and their derivatives on graphite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Phes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=', 128, 124709 (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' [39] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Roth, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Firlej, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Kuchta, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Connolly, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Maldonado, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Wexler.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Simulation and Characteri- zation of Tetracosane on Graphite: Molecular Dynamics Beyond the Monolayer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' C, 120(2), 984- 994 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' [40] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Piskorz, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Gobbo, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Marrink, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' De Feyter, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' de Vries, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' van Esch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Nucleation Mechanisms of Self-Assembled Physisorbed Monolayers on Graphite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' C 123(28), 17510-17520 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' [41] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Fang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Hua, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Meng, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Hui.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Molecular dynamics simulations on the orientation of n-alkanes with different lengths on graphene.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Surface Science, 690, 121468 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' [42] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Zhang, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Fall, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Hall, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Gehring, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Zeng, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Ungar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Quasi-continuous melting of model polymer monolayers prompts reinterpretation of polymer melting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=', 12, 1710 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' [43] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Yang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Zhao, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Sun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Induced crystalliza- tion of single-chain polyethylene on a graphite surface: Molecular dynamics simulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' E, 84, 011803 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' [44] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Gulde, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Rissanou, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Harmandaris, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' M¨uller, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Sch¨afer, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Ropers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Dynamics and Structure of Monolayer Polymer Crystallites on Graphene.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Nano Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' 16(11), 6994-7000 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' [45] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Liu, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Yang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Zhang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Molecular dynamics simu- lation of the folding of single alkane chains with different lengths on single-walled carbon nanotubes and graphene.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Journal of Molecular Modeling, 24, 140 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' [46] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Pint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Different melting behavior in pentane and heptane monolayers on graphite: Molecular dynamics simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' B, 73, 045415 (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' [47] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='Yang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Li, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Lu, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Sun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Molecular dynam- ics simulations study on the melting process of n-heptane layer(s) adsorbed on the graphite (0 0 1) surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Surface Science, 600(6), 1213-1220 (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' [48] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Wexler, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Firlej, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Kuchta, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Roth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Melting of Hexane Monolayers Adsorbed on Graphite: The Role of Domains and Defect Formation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Langmuir, 25(12), 6596-6598 (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' [49] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Pykal, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Jurecka, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Karlicky, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Otyepka.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Modelling of Graphene Functionalization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=', 18, 6351-6372 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' [50] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Johnson, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Eckert, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Barthes, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' McMullan, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Muller.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Crystal Structure of Acetanilide at 15 and 295 K by Neutron Diffraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Lack of Evidence for Proton Transfer along the N-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='O Hydrogen Bond.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' 99(44), 16253-16260 (1995).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' [51] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Careri, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Buontempo, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Galluzzi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Scott, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Gratton, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Shyamsunder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Spectroscopic evidence for Davydov-like solitons in acetanilide.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' B 30, 4689 (1984).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' [52] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Scott.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Davydov’s soliton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Physics Reports 217(1), 1- 67 (1992).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' [53] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Cruzeiro, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Freedman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' The temperature dependent amide I band of crystalline acetanilide.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Physics Letters A 377, 1593-1596 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' [54] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Cruzeiro.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' The Amide I Band of Crystalline Ac- etanilide: Old Data Under New Light.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' In: Archilla, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=', Jimenez, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=', Sanchez-Morcillo, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=', Garcia-Raffi, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' (eds) Quodons in Mica.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Springer Series in Materials Science, 221, Springer, Cham.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' (2015) https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content='1007/978-3-319-21045-2 17 [55] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Cornell, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Cieplak, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Bayly, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Gould, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Merz, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Ferguson, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Spellmeyer, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Fox, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Caldwell, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Kollman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' A second generation force field for the simulation of proteins, nucleic acids, and organic molecules, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Am.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' 117(19) 5179-5197 (1995).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' [56] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Savin, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Korznikova, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Dmitriev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Dynamics of surface graphene ripplocations on a flat graphite substrate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' B 99, 235411 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' [57] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Savin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Eigenmodes and resonance vibrations of graphene nanomembranes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' B, 103, 195435 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' [58] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Rappe, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Casewit, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Colwell, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' God- dard III, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Skiff.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' UFF, a Full Periodic Table Force Field for Molecular Dynamics Simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=', J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Am.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} +page_content=' 114(25), 10024-10035 (1992).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE1T4oBgHgl3EQfJAOq/content/2301.02947v1.pdf'} diff --git a/XNAyT4oBgHgl3EQf9PpX/content/2301.00870v1.pdf b/XNAyT4oBgHgl3EQf9PpX/content/2301.00870v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..57325798c117f72fd6c579d33f72e48ca6c9da04 --- /dev/null +++ b/XNAyT4oBgHgl3EQf9PpX/content/2301.00870v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ddfdeaf75fd96d5755f9110944c3fc8c7af9949e260adc01f3a80165c13f3cef +size 1047073 diff --git a/XNAyT4oBgHgl3EQfWPfd/content/tmp_files/2301.00161v1.pdf.txt b/XNAyT4oBgHgl3EQfWPfd/content/tmp_files/2301.00161v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..487d36cbf66e3a03bf1bc9ea194b0bf95625348c --- /dev/null +++ b/XNAyT4oBgHgl3EQfWPfd/content/tmp_files/2301.00161v1.pdf.txt @@ -0,0 +1,1135 @@ +Active RISs: Signal Modeling, Asymptotic +Analysis, and Beamforming Design +Zijian Zhang∗, Linglong Dai∗, Fellow, IEEE, Xibi Chen∗, Changhao Liu∗, Fan Yang∗, Fellow, IEEE, +Robert Schober†, Fellow, IEEE, and H. Vincent Poor§, Life Fellow, IEEE +∗Beijing National Research Center for Information Science and Technology (BNRist) +Department of Electronic Engineering, Tsinghua University, China +†Institute for Digital Communications, Friedrich-Alexander University Erlangen-N¨urnberg, Germany +§Department of Electrical and Computer Engineering, Princeton University, USA +E-mails: zhangzj20@mails.tsinghua.edu.cn; daill@tsinghua.edu.cn; cxb17@tsinghua.org.cn; liuch17@tsinghua.org.cn; +fan yang@tsinghua.edu.cn; robert.schober@fau.de; poor@princeton.edu +Abstract—Reconfigurable +intelligent +surfaces +(RISs) +have +emerged as a candidate technology for future 6G networks. +However, due to the “multiplicative fading” effect, the existing +passive RISs only achieve a negligible capacity gain in environ- +ments with strong direct links. In this paper, the concept of +active RISs is studied to overcome this fundamental limitation. +Unlike the existing passive RISs that reflect signals without +amplification, active RISs can amplify the reflected signals via +amplifiers integrated into their elements. To characterize the +signal amplification and incorporate the noise introduced by the +active components, we verify the signal model of active RISs +through the experimental measurements on a fabricated active +RIS element. Based on the verified signal model, we formulate +the sum-rate maximization problem for an active RIS aided +multi-user multiple-input single-output (MU-MISO) system and +a joint transmit precoding and reflect beamforming algorithm is +proposed to solve this problem. Simulation results show that, in +a typical wireless system, the existing passive RISs can realize +only a negligible sum-rate gain of 3%, while the active RISs can +achieve a significant sum-rate gain of 62%, thus overcoming the +“multiplicative fading” effect. Finally, we develop a 64-element +active RIS aided wireless communication prototype, and the +significant gain of active RISs is validated by field test. +I. INTRODUCTION +From the first generation (1G) to 5G wireless communica- +tions, the wireless channel has been considered to be uncon- +trollable. Recently, due to the advances in meta-materials, re- +configurable intelligent surfaces (RISs) have been proposed [1] +for the purpose of intelligently controlling wireless channels +to achieve improved communication performance. Specifically, +an RIS is an array composed of a very large number of passive +elements that reflects electromagnetic signals in a desired +manner so as to reconfigure the propagation properties of +wireless environment. As an important advantage of RIS, the +negligible noise introduced by passive RISs enables a high +array gain. Benefiting from this advantage, RISs are expected +to introduce significant capacity gains in wireless systems [2]. +However, in practice, the expected capacity gains are typ- +ically only observed in communication environments where +the direct link between transmitter and receiver is completely +blocked or very weak. By contrast, in many scenarios where +the direct link is not weak, conventional RISs can only +achieve negligible capacity gains [3]. The reason behind this +phenomenon is the “multiplicative fading” effect introduced +by RISs, i.e., the equivalent path loss of the transmitter-RIS- +receiver link is the product (instead of the sum) of the path +losses of the transmitter-RIS and RIS-receiver links, which is +usually thousands of times larger than that of the direct link +[1]–[3]. As a result, the “multiplicative fading” effect makes +it almost impossible for passive RISs to achieve noticeable +capacity gains in many wireless environments. Therefore, +to advance the practicability of RISs in future 6G wireless +networks, a critical issue for RISs to be addressed is: How to +break the fundamental performance bottleneck caused by the +“multiplicative fading” effect? +To overcome the fundamental physical limitation of con- +ventional passive RISs imposed by the “multiplicative fading” +effect, in this paper, we investigate the concept of active RISs +to overcome the “multiplicative fading” effect. Different from +the existing passive RISs that passively reflect signals without +amplification, the key feature of active RISs is their ability +to actively reflect signals with amplification at the expense +of additional power consumption. Firstly, through the experi- +mental measurements on a fabricated active RIS element, we +verify the signal model of active RISs, which characterizes the +amplification of the incident signal and accounts for the non- +negligible thermal noise introduced by the active elements. +Based on the verified signal model, we further analyze the +asymptotic performance of active RISs and formulate a sum- +rate maximization problem for an active RIS aided multi- +user multiple-input single-output (MU-MISO) system. Then, +a joint transmit precoding and reflect beamforming algorithm +is proposed to solve this problem. Simulation results show +that, in a typical wireless system, the existing passive RISs +achieve only a negligible sum-rate gain of 3%, while the active +RISs are able to achieve a substantial sum-rate gain of 62%. +Finally, we develop a 64-element active RIS aided wireless +communication prototype, and field tests are conducted to +validate the significant gain of active RISs. +The rest of this paper is organized as follows. In Section II, +the concept of RISs and their signal models are introduced. +In Section III, the asymptotic performance of active RISs is +analyzed. In Section IV, a sum-rate maximization problem is +978-1-6654-3540-6/22 © 2022 IEEE +arXiv:2301.00161v1 [cs.IT] 31 Dec 2022 + +formulated, and a joint precoding and beamforming design is +proposed to solve the problem. In Section V, simulation results +and experimental measurements are presented to validate the +signal model and evaluate the performance of active RISs. +Finally, conclusions are drawn in Section VI. +II. PASSIVE RISS AND ACTIVE RISS +A. Conventional Passive RISs +The RISs widely studied in most existing works are passive +[1]–[3]. In general, each passive RIS element consists of a re- +flective patch terminated with an impedance-adjustable circuit +for phase shifting. Thanks to the passive mode of operation, +the thermal noise at passive RISs is usually negligible [2]. +Thereby, the signal model of an N-element passive RIS widely +used in the literature is given as follows: +y = Θx, +(1) +where x +∈ +CN denotes the incident signal, y +∈ +CN +denotes +the +signal +reflected +by +the +RIS, +and +Θ +:= +diag +� +ejθ1, · · · , ejθN � +∈ CN×N denotes the phase shift matrix +of the RIS with diag(·) being the diagonalization operation. +By properly adjusting Θ to manipulate the N signals reflected +by the N RIS elements to coherently add with the same phase +at the receiver, a high array gain proportional to N 2 can be +achieved, which is expected to significantly increase the signal- +to-noise ratio (SNR) [1] at the receiver. +Unfortunately, this expected high capacity gain often cannot +be realized in practice, especially in communication scenarios +where the direct link between the transmitter and the receiver is +strong. The reason for this negative result is the “multiplicative +fading” effect introduced by passive RISs. Specifically, the +equivalent path loss of the transmitter-RIS-receiver reflected +link is the product (instead of the sum) of the path losses of +the transmitter-RIS and RIS-receiver links, and therefore, it is +thousands of times larger than that of the unobstructed direct +link. Thereby, for an RIS to realize a noticeable capacity gain, +thousands (or even millions) of RIS elements are required to +compensate for this extremely large path loss [3]. The resulting +high signaling overhead for channel estimation and the high +complexity of real-time beamforming make the application +of such a large number of passive RIS elements in practical +wireless networks very challenging. +B. Concept of Active RISs +To overcome the fundamental performance bottleneck +caused by the “multiplicative fading” effect of RISs, we study +the concept of active RISs as a promising solution1. As shown +in Fig. 1, similar to the existing passive RISs, active RISs +can also reflect the incident signals with reconfigurable phase +shifts. Different from passive RISs that just reflect the incident +signals without amplification, active RISs can further amplify +the reflected signals. To achieve this goal, the key component +1Note that active RISs are fundamentally different from relay-type RISs +equipped with RF components and relays. Due to space constraints, we refer +to the journal version of this paper for a more detailed discussion [4, Remark +1]. +input +BS +RIS +Active RIS +user 1 +user k +incident +signal +reflected signal +with amplification +phase- +shift +circuit +patch +reflection-type +amplifier +output +active element +power +supply +Fig. 1. The downlink transmission in an active RIS aided MU-MISO system. +of an active RIS element is the additionally integrated active +reflection-type amplifier, which can be realized by different +existing active components, such current-inverting converters +or some integrated circuits [5]. +With reflection-type amplifiers supported by a power supply, +the reflected and amplified signal of an N-element active RIS +can be modeled as follows: +y = +PΘx +� �� � +Desired signal ++ +PΘv +� �� � +Dynamic noise ++ +ns +���� +Static noise +, +(2) +where P := diag (p1, · · · , pN) ∈ RN×N denotes the amplifi- +cation factor matrix of the active RIS, wherein each element pn +can be larger than one thanks to the integrated reflection-type +amplifier. Due to the use of active components, active RISs +consume additional power for amplifying the reflected signals, +and the thermal noise introduced by active RIS elements +cannot be neglected as is done for passive RISs. Particularly, +as shown in (2), the introduced noise can be classified into +dynamic noise and static noise [5]. Specifically, v is related to +the input noise and the inherent device noise of the active RIS +elements [5], while the static noise ns is unrelated to P and +is usually negligible compared to the dynamic noise PΘv, as +will be verified by experimental results in Section V-A. Thus, +here we neglect ns and model v as v ∼ CN +� +0N, σ2 +vIN +� +, +where CN(µ, Σ) denotes the complex multivariate Gaussian +distribution with mean µ and variance Σ, IL is an L × L +identity matrix, and 0L is an L × 1 zero vector. +C. Active RIS Aided MU-MISO System +Consider an active RIS aided downlink MU-MISO system +as shown in Fig. 1, where an M-antenna base station (BS) +serves K single-antenna users simultaneously with the aid +of an N-element active RIS. Let s := [s1, · · · , sK]T ∈ CK +denote the transmitted symbol vector for the K users and let +wk ∈ CM×1 denote the BS precoding vector for symbol sk. +According to (2), signal rk ∈ C received at user k can be +modeled as follows: +rk = ( +hH +k +���� +Direct link ++ f H +k PΘG +� +�� +� +Reflected link +) +�K +j=1wjsj + +f H +k PΘv +� +�� +� +Noise introduced by active RIS + ++ +zk +���� +Noise introduced at user k +, +(3) +where [·]H denotes the conjugate-transpose operation; G ∈ +CN×M, hH +k +∈ C1×M, and f H +k +∈ C1×N characterize the +channels between the BS and the RIS, between the BS and +user k, and between the RIS and user k, respectively; and zk +denotes the additive white Gaussian noise (AWGN) at user k +with zero mean and variance σ2. +III. PERFORMANCE ANALYSIS +In this section, we analyze the performance of active RISs to +reveal their notable capacity gains compared to passive RISs. +To this end, in order to make the problem analytically tractable +and get insightful results, in this section, we consider a single- +user single-input single-output (SU-SISO) system with M = 1 +BS antenna and K = 1 user, while the general MU-MISO case +is studied in Section IV. +A. Asymptotic SNR for Passive RISs and Active RISs +To illustrate the capacity gain provided by passive/active +RIS aided reflected links, for the moment, we ignore the +direct link by setting hk to zero, as was done in, e.g., [6]. +Furthermore, for simplicity, we assume that each active RIS +element has the same amplification factor (i.e., pn := p). For +a fair comparison with the asymptotic performance of passive +RISs, similar to [6], we assume Rayleigh-fading channels. +We first redefine the BS-RIS channel matrix and the RIS- +user channel vector as G := g ∈ CN×1 and fk := f ∈ CN×1, +respectively. Then, we recall the following lemma from [6] for +the asymptotic SNR achieved by passive RISs. +Lemma 1 (Asymptotic SNR for passive RISs): Assuming +f ∼ CN +� +0N, ϱ2 +fIN +� +, g ∼ CN +� +0N, ϱ2 +gIN +� +and letting N → +∞, the asymptotic SNR γpassive of a passive RIS aided SU- +SISO system is given by +γpassive → N 2 P max +BS +π2ϱ2 +fϱ2 +g +16σ2 +, +(4) +where P max +BS +denotes the maximum transmit power at the BS. +Proof: The proof can be found in [6, Proposition 2]. +For comparison, under the same transmission conditions, we +provide the asymptotic SNR of an active RIS aided SU-SISO +system in the following lemma. +Lemma 2 (Asymptotic SNR for active RISs): Assuming +f ∼ CN +� +0N, ϱ2 +fIN +� +, g ∼ CN +� +0N, ϱ2 +gIN +� +and letting N → +∞, the asymptotic SNR γactive of an active RIS aided SU-SISO +system is given by +γactive → N +P max +BS +P max +A +π2ϱ2 +fϱ2 +g +16 +� +P max +A +σ2vϱ2 +f + P max +BS +σ2ϱ2g + σ2σ2v +�, +(5) +where P max +A +denotes the maximum reflect power of the active +RIS. +Proof: Please see the journal version [4, Appendix A]. +Remark 1: From (5) we observe that, the asymptotic SNR +of an active RIS aided SU-SISO system depends on both the +BS transmit power P max +BS +and the reflect power of the active +RIS P max +A +. When P max +BS +→ ∞, the asymptotic SNR will be +upper-bounded by γactive → NP max +A +π2ϱ2 +f/ +� +16σ2� +, which is +independent of the BS-RIS channel g and the noise power at +the active RIS σ2 +v. Similarly, if P max +A +→ ∞, the asymptotic +SNR will be upper-bounded by γactive → NP max +BS π2ϱ2 +g/16σ2 +v, +which is independent of the RIS-user channel f and the noise +power at the user σ2. These results reveal that, to increase the +sum-rate of active RIS aided systems, the negative impact of +small g and large σ2 +v on system performance can be alleviated +by increasing the BS transmit power P max +BS +, and the negative +impact of small f and large σ2 can be reduced by increasing +the reflect power of the active RIS P max +A +. +B. Comparisons between Passive RISs and Active RISs +We can observe from Lemma 1 and Lemma 2 that, compared +to the asymptotic SNR for passive RISs γpassive in (4) which is +proportional to N 2, the asymptotic SNR for active RISs γactive +in (5) is proportional to N due to the noises introduced by +the use of active components. At first glance, it seems that the +SNR achieved by passive RISs γpassive always exceeds the SNR +achieved by active RISs γactive. However, this is actually not the +case. The reason behind this counterintuitive behavior is that, +due to the large path loss caused by the “multiplicative fading” +effect and thanks to the use of the reflection-type amplifiers +in active RISs, only when N is unaffordably large can passive +RISs outperform active RISs. +To illustrate this claim, let us consider two different SU- +SISO systems, which are aided by an active RIS and a passive +RIS, respectively. Then, the following lemma specifies the +condition that has to be met for passive RISs to outperform +active RISs. +Lemma 3 (Case when passive RISs outperform active +RISs): Assuming the number of RIS elements N is large, +the required number of elements N for a passive RIS to +outperform an active RIS has to satisfy +N ≥ P max +BS-A +P max +BS-P +P max +A +σ2 +� +P max +A +σ2vϱ2 +f + P max +BS-Aσ2ϱ2g + σ2σ2v +�, +(6) +where P max +BS-A denotes the maximum BS transmit power for the +active RIS aided system and P max +BS-P denotes that for the passive +RIS aided system. +Proof: Please see the journal version [4, Appendix B]. +Next, we consider a specific setup to compare the user’s +achievable SNRs in the above two systems. For a fair com- +parison, we constrain the total power consumption P max of +the two systems to 2 W by setting P max +BS-P = 2 W for the +passive RIS aided system and P max +BS-A = P max +A += 1 W for +the active RIS aided system, respectively. Therefore, when +σ2 = σ2 +v = −70 dBm and ϱ2 +f = ϱ2 +g = −70 dB, the required +number of elements N for the passive RIS to outperform the +active RIS is 2.5 × 106 according to (6), which is impractical +to realize with current technology. Conversely, for a more +practical number of elements of N = 256, according to (5) +and (4), the SNR achieved by the passive RIS is γpassive ≈ 9.0 +dB, while the SNR achieved by the active RIS is γactive ≈ 49.0 +dB, which is about 10, 000 times higher than γpassive. + +IV. JOINT TRANSMIT PRECODING AND REFLECT +BEAMFORMING DESIGN +To investigate the capacity gain enabled by the use of +active RISs in typical wireless communication scenarios, in +this section, we consider more general MU-MISO systems. +According to the model in (3), the signal-to-interference-plus- +noise ratio (SINR) at user k can be obtained as +γk = +��¯hH +k wk +��2 +�K +j=1,j̸=k +��¯hH +k wj +��2 + +��f H +k PΘ +��2σ2v + σ2 , +(7) +wherein ¯hH +k = hH +k + fk +HPΘG ∈ C1×M is the equivalent +channel from the BS to user k, which includes both the direct +link and the reflected link. Therefore, the original problem of +sum-rate maximization, subject to the power constraints at the +BS and the active RIS, can be formulated as follows: +Po : max +w,P,Θ Rsum(w, P, Θ) = +�K +k=1 log2 (1 + γk), +(8a) +s.t. C1 : +�K +k=1 ∥wk∥2 ≤ P max +BS +, +(8b) +C2 : +�K +k=1∥PΘGwk∥2+∥PΘ∥2 σ2 +v ≤P max +A +, (8c) +where w := +� +wT +1 , · · · , wT +K +�T is the overall transmit precoding +vector for the K users; C1 and C2 are the power constraints at +the BS and active RIS, respectively. Due to the non-convexity +and the highly coupled variables in problem Po in (8), the +joint design of w, P, and Θ is challenging. +To efficiently solve the above problem, we develop a joint +precoding and beamforming algorithm based on alternating +optimization and fractional programming (FP). Note that P +and Θ always appear in product form in problem Po in +(8). Therefore, P and Θ can be merged as Ψ = PΘ = +diag +� +p1ejθ1, · · · , pNejθN � +∈ CN×N. We refer to Ψ as the +RIS beamforming matrix. Next, to deal with the non-convex +sum-of-logarithms and fractions in (8), we exploit the FP +methods proposed in [7] to decouple the variables in problem +Po in (8). This leads to the following lemma. +Lemma 4 (Equivalent problem for sum-rate maximiza- +tion): By introducing auxiliary variables ρ := [ρ1, · · · , ρK] ∈ +RK and ϖ := [ϖ1, · · · , ϖK] ∈ CK, the original problem Po +in (8) can be equivalently reformulated as follows +P1 : +max +w,Ψ,ρ,ϖ R′ +sum(w, Ψ, ρ, ϖ) = +�K +k=1 ln (1 + ρk)− +�K +k=1 ρk + +�K +k=1 g(w, Ψ, ρk, ϖk), +s.t. C1, C2, +(9) +where function g(w, Ψ, ρk, ϖk) is defined as +g(w, Ψ, ρk, ϖk) = 2 +� +(1 + ρk)R +� +ϖ∗ +k¯hH +k wk +� +− +|ϖk|2 +��K +j=1 +��¯hH +k wj +��2 + +��f H +k Ψ +��2σ2 +v + σ2 +� +. +(10) +Proof: Constructive proof can be found in [7, Subsection +III-C]. +Strong convergence of the FP methods was proved in [7]. +Thus, a locally optimal solution to (9) can be obtained by +alternately optimizing the variables. For clarity, we summarize +the proposed joint precoding and beamforming algorithm in +Algorithm 1, and the specific solutions for variables w, Ψ, +ρ, and ϖ are given in the following four steps, respectively. +Algorithm 1 Proposed joint transmit precoding and reflect +beamforming algorithm +Input: +Channels G, hk, and fk, ∀k ∈ {1, · · · , K}. +Output: +Optimized BS precoding vector w, amplification +factor matrix of active RIS P, phase shift matrix of active +RIS Θ, and sum-rate Rsum. +1: Randomly initialize w, P and Θ; +2: while no convergence of Rsum do +3: +Update ρ by (11); +4: +Update ϖ by (12); +5: +Update w by solving problem P2 in (14); +6: +Update Ψ by solving problem P3 in (15); +7: end while +8: Obtain P and Θ from Ψ; +9: return Optimized w, P, Θ, and Rsum. +1) Fix (w, Ψ, ϖ) and optimize ρ: After fixing precoding +vector w, beamforming matrix Ψ, and auxiliary variable ϖ, +the optimal ρ can be obtained by solving ∂R′ +sum +∂ρk += 0 as +ρopt +k += ξ2 +k + ξk +� +ξ2 +k + 4 +2 +, +∀k ∈ {1, · · · , K}, +(11) +where ξk = ℜ +� +ϖ∗ +k¯hH +k wk +� +. +2) Fix (w, Ψ, ρ) and optimize ϖ: After fixing the precod- +ing vector w, beamforming matrix Ψ, and auxiliary variable +ρ, the optimal ϖ can be derived by solving ∂R′ +sum +∂ϖk += 0 as +ϖopt +k += +� +(1 + ρk)¯hH +k wk +�K +j=1 +��¯hH +k wj +��2+ +��f H +k Ψ +��2σ2v + σ2 . +(12) +3) Fix (Ψ, ρ, ϖ) and optimize w: To simplify the nota- +tions, we first introduce the following definitions: +bH +k = +� +(1 + ρk)ϖ∗ +k¯hH +k , b = +� +bT +1 , bT +2 , · · · , bT +N +�T , +(13a) +A=IK ⊗ +�K +k=1|ϖk|2¯hk¯hH +k , Ξ=IK ⊗ +� +GHΨHΨG +� +, (13b) +P max +m += P max +A +− ∥Ψ∥2σ2 +v, +(13c) +where ⊗ denotes the Kronecker product. Then, problem P1 in +(9) can be reformulated as follows: +P2 : +max +w +R +� +2bHw +� +− wHAw, +s.t. +C1 : ∥w∥2 ≤ P max +BS +, +C2 : wHΞw ≤ P max +m +. +(14) +Note that P2 in (14) is a standard quadratic constraint +quadratic programming (QCQP) problem, which can be solved +by alternating direction method of multipliers (ADMM). +4) Fix +(w, ρ, ϖ) +and +optimize +Ψ: +Define +ψ += +� +p1ejθ1, · · · , pNejθN �H as the vectorized RIS beamforming +matrix Ψ, i.e., diag +� +ψH� +:= Ψ. While fixing w and ρ and +ϖ, problem P1 in (9) can be reformulated as follows: +P3 : +max +ψ +R +� +2ψHυ +� +− ψHΩψ, +s.t. C2 : ψHΠψ ≤ P max +A +, +(15) + +spectrum +analyzer +LNA +vector network +analyzer +DC source +active RIS +element +circulator +pump +source +noise source +Fig. 2. The experimental devices and environment used for validating the signal model (2) of active RISs. +2.359 +2.3595 +2.36 +2.3605 +2.361 +-15 +-10 +-5 +0 +5 +10 +15 +20 +25 +30 +Fig. 3. Experimental measurement result for reflection gain G versus signal +frequency f. +wherein +υ = +�K +k=1 +� +(1 + ρk)diag +� +ϖ∗ +kf H +k +� +Gwk− +�K +k=1 |ϖk|2diag +� +f H +k +� +G +�K +j=1 wjwH +j hk, +(16a) +Ω = +�K +k=1 |ϖk|2diag +� +f H +k +� +diag (fk) σ2 +v+ +�K +k=1 |ϖk|2 �K +j=1diag +� +f H +k +� +GwjwH +j GHdiag (fk), (16b) +Π = +�K +k=1 diag (Gwk) (diag (Gwk))H + σ2 +vIN. +(16c) +Note that problem P3 in (15) is also a standard QCQP +problem. Thus, the optimal solution ψopt can be obtained by +adopting ADMM. +V. VALIDATION RESULTS +A. Validation Results for Signal Model +To validate the signal model (2), we designed and fabri- +cated an active RIS element with an integrated reflection- +type amplifier for experimental measurements in [8]. Note +that this design can be directly extended to the large-array +case. Particularly, since the phase-shifting ability of RISs has +been widely verified, we focus on studying the reflection gain +-15 +-10 +-5 +0 +5 +10 +15 +20 +25 +-170 +-165 +-160 +-155 +-150 +-145 +-140 +-135 +-130 +Fig. 4. +Experimental measurement result for the density of noise power +Gσ2 +v + σ2 +s versus reflection gain G. +and the noise introduced by an active RIS element. Thus, the +validation of signal model (2) is equivalent to validating +Py = +GPx +���� +Desired-signal power ++ Gσ2 +v + σ2 +s +� +�� +� +noise power +, +(17) +where Py is the power of the signals reflected by the active +RIS element; Px is the power of the incident signal; G := p2 is +the reflection gain of the active RIS element; Gσ2 +v and σ2 +s are +the powers of the dynamic noise and static noise introduced +by the active RIS element, respectively. +1) Hardware platform: To validate the model in (17), we +first establish the hardware platform used for our experimental +measurements in Fig. 2. Due to space constraints, we refer +the reader to the journal version of this paper [4, Fig. 4] for +detailed information about the hardware platform. +2) Reflection gain measurement: Using the measurement +system for the reflection gain depicted in [4, Fig. 4 (b)], we +first investigate the reflection gain G of the active RIS element. +Note that the reflection gain G can be reconfigured by the +input power of the pump source Pp. By setting the input +power of the vector network analyzer as Px = −50 dBm, the +reflection gain G as a function of the signal frequency can be +directly measured via a vector network analyzer. Then, in Fig. + +-10 +-5 +0 +5 +10 +15 +20 +25 +30 +0 +10 +20 +30 +40 +50 +60 +507% +Fig. 5. Simulation results for the sum-rate versus total power consumption +P max in scenario 1 with a weak direct link.. +3, we show the measurement results for reflection gain G as +a function of signal frequency f for different input powers of +the pump source Pp. We observe that the active RIS element +can achieve a reflection gain G of more than 25 dB, when +Pp = 18.24 dBm, which confirms the significant reflection +gains enabled by active RISs. +3) Noise power measurement: We further study the noise +power introduced by the active RIS element, i.e., Gσ2 +v + σ2 +s +in (17), where Gσ2 +v and σ2 +s are the powers of the dynamic +noise and the static noise introduced at the active RIS element, +respectively. Using the noise measurement system in [4, Fig. 4 +(c)], we show the measurement results for the spectral density +of noise power Gσ2 +v + σ2 +s as a function of G for different +operating frequencies in Fig. 4. We can observe that the noise +power increases nearly linearly with G, which verifies the +noise model Gσ2 +v + σ2 +s in (17). Particularly, for f = 2.3601 +GHz, the spectral density of σ2 +s is about −174 dBm/Hz, while +that of σ2 +v is about −160 dBm/Hz, which is about 15 dB +higher. The reason for this is that the input noise is amplified +by the noise factor, and additional noises are also introduced +by the other active components such as the DC source used +to power the active RIS. +B. Simulation Results for Sum-Rate +1) Simulation setup: We consider an active RIS aided MU- +MISO system. Particularly, we consider two scenarios with dif- +ferent channel conditions. In scenario 1, the direct link is weak +due to severe obstruction, while the direct link is strong in +scenario 2. To be specific, two different path loss models from +the 3GPP TS 36.814 standard are utilized to characterize the +large-scale fading of the channels: i) PLs = 37.3+22.0 log d; +ii) PLw = 41.2 + 28.7 log d, where d is the distance between +two devices. Path loss model PLw is used to generate the weak +BS-user link in scenario 1, while PLs is used to generate the +strong BS-user link in scenario 2. For both scenarios, PLs is +used to generate the BS-RIS and the RIS-user channels. To +account for small-scale fading, we adopt the Ricean fading +channel model for all channels involved and we assume the +Ricean factor as κ = 1. +-10 +-5 +0 +5 +10 +15 +20 +25 +30 +0 +10 +20 +30 +40 +50 +60 +62% +Fig. 6. Simulation results for the sum-rate versus total power consumption +P max in scenario 2 with a strong direct link. +The BS and the active/passive RIS are located at (0, -60 +m) and (200 m, 30 m), respectively. Four users are randomly +located in a circle with a radius of 5 m from the center (200 +m, 0). The numbers of BS antennas and RIS elements are set +as M = 4 and N = 256, respectively. The noise power is set +as σ2 = σ2 +v = −70 dBm. For fair comparison, we constrain +the total power consumption P max := P max +BS ++ P max +A +. For the +active RIS, Algorithm 1 is employed for joint precoding and +beamforming design, while for the passive RIS, the algorithm +from [2] is adopted. +2) Simulation results: In Fig. 5 and Fig. 6, we plot the +sum-rate versus the total consumed power P max for the two +considered scenarios, where the direct link is weak and strong, +respectively. Firstly, in scenario 1 with a weak direct link, the +passive RIS can indeed achieve a performance improvement, +while the active RIS achieves a much higher sum-rate gain. +Secondly, in scenario 2 with a strong direct link, the passive +RIS achieves only a negligible sum-rate gain, while the active +RIS still realizes a noticeable sum-rate gain. For example, +when P max = 10 dBW, the capacities without RIS, with +passive RIS, and with active RIS in scenario 1 are 5.34 bps/Hz, +7.00 bps/Hz, and 32.41 bps/Hz respectively, while in scenario +2, these values are 19.87 bps/Hz, 20.51 bps/Hz, and 32.18 +bps/Hz, respectively. In this case, the passive RIS provides a +31% gain in scenario 1 and a negligible 3% gain in scenario 2. +By contrast, the active RIS achieves noticeable sum-rate gains +of 507% in scenario 1 and 62% in scenario 2, which are much +higher than those achieved by the passive RIS. +C. Field Test for a 64-Element Active RIS Aided Wireless +Communication Prototype +1) 64-element active RIS aided communication prototype: +To validate the significant gain of active RISs, we develop a +64-element active RIS aided wireless communication proto- +type, as shown in Fig. 7. Specifically, the hardware structure +of this prototype consists of three parts including a BS, a 64- +element active RIS, and a user. For the BS and the user, two +horn antennas with 13 dBi antenna gain are used to transmit + +Fig. 7. A photograph of the developed 64-element active RIS aided wireless +communication system. +and receive the signals, and the universal software radio +peripherals (USRPs) are deployed to generate and process the +baseband and RF signals (hardware version: USRP-2953R). +By periodically expanding the active RIS elements designed +in [8], the 64-element active RIS is an 8×8 plane array, of +which each element has a reflection gain of G = 10 dB. +2) Experimental environment: Based on the developed pro- +totype, we establish the experimental environment for further +validation. To match the transceivers, we configure the oper- +ating frequency of the active RIS to f = 3.5 GHz and the +bandwidth to 40 MHz by adjusting the circuit impedance of +active elements. The polarization of the antenna at the BS +and that at the user are selected as vertical and horizontal, +respectively. The transmit power is set to −10 mW. We fix the +heights of the BS, the RIS, and the user as 1 m. The horizontal +distance of the BS-RIS link and that of the RIS-user link are +set to 2 m and 3.5 m, respectively. The angle of arrival (AoA) +at the active RIS is fixed as 0◦, and the angle of departure +(AoD) will be specified to evaluate the performance gain of +active RISs at different orientations. To observe the reflection +gain of the active RIS, we use a metal plate with the same +aperture size as the active RIS for performance comparison. +3) Experimental results: By moving the user at different +AoDs and configuring the phase shift of the active RIS with +discrete Fourier transform (DFT) codebook, we obtain the +experimental results shown in Table I. One can observe that, +compared with the received power for the metal plate, the +active RIS can always achieve a gain of about 10 dB. The data +rate for the active RIS can hold at about 30 Mbps, while that +for the metal plate only ranges from 1 Mbps to 2Mbps. The +reason is that, the beamforming at the active RIS can make the +reflected beam with high array gain and reflection gain, while +the metal plate can only reflect the incident signals randomly +without in-phase combination or amplification, which validates +the significant gain of active RISs. +VI. CONCLUSIONS +In this paper, we have studied the concept of active RISs +to overcome the fundamental limitation of the “multiplicative +fading” effect. Firstly, we have verified the signal model of +TABLE I +EXPERIMENTAL RESULTS FOR THE DEVELOPED PROTOTYPE +AoD +Device +Received Power +Data Rate +15◦ +Metal plate +-110 dBm +1.2 Mbps +Active RIS +-100 dBm +28.5 Mbps +30◦ +Metal plate +-105 dBm +1.5 Mbps +Active RIS +-98 dBm +30.5 Mbps +45◦ +Metal plate +-105 dBm +1.5 Mbps +Active RIS +-95 dBm +30 Mbps +60◦ +Metal plate +-108 dBm +2 Mbps +Active RIS +-90 dBm +32 Mbps +active RISs through the experimental measurements on a fab- +ricated active RIS element. Based on the verified signal model, +we have formulated the sum-rate maximization problem for +an active RIS aided MU-MISO system and a joint precoding +and beamforming algorithm has been proposed to solve this +problem. Simulation results have shown that, in a typical +application scenario, the existing passive RIS can realize only +a negligible sum-rate gain of about 3%, while the active RIS +can achieve a substantial sum-rate gain of about 62%, thus +indeed overcoming the “multiplicative fading” effect. Finally, +we have developed a communication wireless communication +prototype aided by a 64-element active RIS, and the significant +gain of active RISs is validated by field test. In the future, +many research directions for active RISs are worth pursuing, +such as hardware design, prototype development, channel +estimation, and energy efficiency analysis. +ACKNOWLEDGMENT +This work was supported in part by the National Key +Research and Development Program of China (Grant No. +2020YFB1805005), in part by the National Natural Science +Foundation of China (Grant No. 62031019), and in part by the +European Commission through the H2020-MSCA-ITN META +WIRELESS Research Project under Grant 956256. +REFERENCES +[1] C. Huang, A. Zappone, G. C. Alexandropoulos, M. Debbah, and C. Yuen, +“Reconfigurable intelligent surfaces for energy efficiency in wireless +communication,” IEEE Trans. Wireless Commun., vol. 18, no. 8, pp. +4157–4170, Aug. 2019. +[2] C. Pan, H. Ren, K. Wang, W. Xu, M. Elkashlan, A. Nallanathan, +and L. Hanzo, “Multicell MIMO communications relying on intelligent +reflecting surfaces,” IEEE Trans. Wireless Commun., vol. 19, no. 8, pp. +5218–5233, Aug. 2020. +[3] M. Najafi, V. Jamali, R. Schober, and H. V. Poor, “Physics-based mod- +eling and scalable optimization of large intelligent reflecting surfaces,” +IEEE Trans. Commun., vol. 69, no. 4, pp. 2673–2691, Apr. 2021. +[4] Z. Zhang, L. Dai, X. Chen, C. Liu, F. Yang, R. Schober, and H. V. Poor, +“Active RIS vs. passive RIS: Which will prevail in 6G?” IEEE Trans. +Commun., Dec. 2022. +[5] J. Bousquet, S. Magierowski, and G. G. Messier, “A 4-GHz active +scatterer in 130-nm CMOS for phase sweep amplify-and-forward,” IEEE +Trans. Circuits Syst. I, vol. 59, no. 3, pp. 529–540, Mar. 2012. +[6] Q. Wu and R. Zhang, “Intelligent reflecting surface enhanced wireless +network via joint active and passive beamforming,” IEEE Trans. Wireless +Commun., vol. 18, no. 11, pp. 5394–5409, Nov. 2019. +[7] K. Shen and W. Yu, “Fractional programming for communication sys- +tems—part I: Power control and beamforming,” IEEE Trans. Signal +Process., vol. 66, no. 10, pp. 2616–2630, May 2018. +[8] X. Chen and F. Yang, “Nonlinear electromagnetic surfaces: Theory, +design and application,” Master Thesis in Tsinghua University, May 2020, +[Online] Available: http://etds.lib.tsinghua.edu.cn/Thesis. + +3.5GHz +有源RIS +8 X 8 Active RIS +BS +User \ No newline at end of file diff --git a/XNAyT4oBgHgl3EQfWPfd/content/tmp_files/load_file.txt b/XNAyT4oBgHgl3EQfWPfd/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..0cd527644057766484ae05f93817cf760480831d --- /dev/null +++ b/XNAyT4oBgHgl3EQfWPfd/content/tmp_files/load_file.txt @@ -0,0 +1,389 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf,len=388 +page_content='Active RISs: Signal Modeling, Asymptotic Analysis, and Beamforming Design Zijian Zhang∗, Linglong Dai∗, Fellow, IEEE, Xibi Chen∗, Changhao Liu∗, Fan Yang∗, Fellow, IEEE, Robert Schober†, Fellow, IEEE, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Vincent Poor§, Life Fellow, IEEE ∗Beijing National Research Center for Information Science and Technology (BNRist) Department of Electronic Engineering, Tsinghua University, China †Institute for Digital Communications, Friedrich-Alexander University Erlangen-N¨urnberg, Germany §Department of Electrical and Computer Engineering, Princeton University, USA E-mails: zhangzj20@mails.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content='tsinghua.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content='cn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' daill@tsinghua.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content='cn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' cxb17@tsinghua.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content='org.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content='cn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' liuch17@tsinghua.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content='org.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content='cn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' fan yang@tsinghua.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content='cn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' robert.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content='schober@fau.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content='de;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' poor@princeton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content='edu Abstract—Reconfigurable intelligent surfaces (RISs) have emerged as a candidate technology for future 6G networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' However, due to the “multiplicative fading” effect, the existing passive RISs only achieve a negligible capacity gain in environ- ments with strong direct links.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' In this paper, the concept of active RISs is studied to overcome this fundamental limitation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Unlike the existing passive RISs that reflect signals without amplification, active RISs can amplify the reflected signals via amplifiers integrated into their elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' To characterize the signal amplification and incorporate the noise introduced by the active components, we verify the signal model of active RISs through the experimental measurements on a fabricated active RIS element.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Based on the verified signal model, we formulate the sum-rate maximization problem for an active RIS aided multi-user multiple-input single-output (MU-MISO) system and a joint transmit precoding and reflect beamforming algorithm is proposed to solve this problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Simulation results show that, in a typical wireless system, the existing passive RISs can realize only a negligible sum-rate gain of 3%, while the active RISs can achieve a significant sum-rate gain of 62%, thus overcoming the “multiplicative fading” effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Finally, we develop a 64-element active RIS aided wireless communication prototype, and the significant gain of active RISs is validated by field test.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' INTRODUCTION From the first generation (1G) to 5G wireless communica- tions, the wireless channel has been considered to be uncon- trollable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Recently, due to the advances in meta-materials, re- configurable intelligent surfaces (RISs) have been proposed [1] for the purpose of intelligently controlling wireless channels to achieve improved communication performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Specifically, an RIS is an array composed of a very large number of passive elements that reflects electromagnetic signals in a desired manner so as to reconfigure the propagation properties of wireless environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' As an important advantage of RIS, the negligible noise introduced by passive RISs enables a high array gain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Benefiting from this advantage, RISs are expected to introduce significant capacity gains in wireless systems [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' However, in practice, the expected capacity gains are typ- ically only observed in communication environments where the direct link between transmitter and receiver is completely blocked or very weak.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' By contrast, in many scenarios where the direct link is not weak, conventional RISs can only achieve negligible capacity gains [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' The reason behind this phenomenon is the “multiplicative fading” effect introduced by RISs, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=', the equivalent path loss of the transmitter-RIS- receiver link is the product (instead of the sum) of the path losses of the transmitter-RIS and RIS-receiver links, which is usually thousands of times larger than that of the direct link [1]–[3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' As a result, the “multiplicative fading” effect makes it almost impossible for passive RISs to achieve noticeable capacity gains in many wireless environments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Therefore, to advance the practicability of RISs in future 6G wireless networks, a critical issue for RISs to be addressed is: How to break the fundamental performance bottleneck caused by the “multiplicative fading” effect?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' To overcome the fundamental physical limitation of con- ventional passive RISs imposed by the “multiplicative fading” effect, in this paper, we investigate the concept of active RISs to overcome the “multiplicative fading” effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Different from the existing passive RISs that passively reflect signals without amplification, the key feature of active RISs is their ability to actively reflect signals with amplification at the expense of additional power consumption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Firstly, through the experi- mental measurements on a fabricated active RIS element, we verify the signal model of active RISs, which characterizes the amplification of the incident signal and accounts for the non- negligible thermal noise introduced by the active elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Based on the verified signal model, we further analyze the asymptotic performance of active RISs and formulate a sum- rate maximization problem for an active RIS aided multi- user multiple-input single-output (MU-MISO) system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Then, a joint transmit precoding and reflect beamforming algorithm is proposed to solve this problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Simulation results show that, in a typical wireless system, the existing passive RISs achieve only a negligible sum-rate gain of 3%, while the active RISs are able to achieve a substantial sum-rate gain of 62%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Finally, we develop a 64-element active RIS aided wireless communication prototype, and field tests are conducted to validate the significant gain of active RISs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' The rest of this paper is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' In Section II, the concept of RISs and their signal models are introduced.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' In Section III, the asymptotic performance of active RISs is analyzed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' In Section IV, a sum-rate maximization problem is 978-1-6654-3540-6/22 © 2022 IEEE arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content='00161v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content='IT] 31 Dec 2022 formulated, and a joint precoding and beamforming design is proposed to solve the problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' In Section V, simulation results and experimental measurements are presented to validate the signal model and evaluate the performance of active RISs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Finally, conclusions are drawn in Section VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' PASSIVE RISS AND ACTIVE RISS A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Conventional Passive RISs The RISs widely studied in most existing works are passive [1]–[3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' In general, each passive RIS element consists of a re- flective patch terminated with an impedance-adjustable circuit for phase shifting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Thanks to the passive mode of operation, the thermal noise at passive RISs is usually negligible [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Thereby, the signal model of an N-element passive RIS widely used in the literature is given as follows: y = Θx, (1) where x ∈ CN denotes the incident signal, y ∈ CN denotes the signal reflected by the RIS, and Θ := diag � ejθ1, · · · , ejθN � ∈ CN×N denotes the phase shift matrix of the RIS with diag(·) being the diagonalization operation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' By properly adjusting Θ to manipulate the N signals reflected by the N RIS elements to coherently add with the same phase at the receiver, a high array gain proportional to N 2 can be achieved, which is expected to significantly increase the signal- to-noise ratio (SNR) [1] at the receiver.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Unfortunately, this expected high capacity gain often cannot be realized in practice, especially in communication scenarios where the direct link between the transmitter and the receiver is strong.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' The reason for this negative result is the “multiplicative fading” effect introduced by passive RISs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Specifically, the equivalent path loss of the transmitter-RIS-receiver reflected link is the product (instead of the sum) of the path losses of the transmitter-RIS and RIS-receiver links, and therefore, it is thousands of times larger than that of the unobstructed direct link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Thereby, for an RIS to realize a noticeable capacity gain, thousands (or even millions) of RIS elements are required to compensate for this extremely large path loss [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' The resulting high signaling overhead for channel estimation and the high complexity of real-time beamforming make the application of such a large number of passive RIS elements in practical wireless networks very challenging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Concept of Active RISs To overcome the fundamental performance bottleneck caused by the “multiplicative fading” effect of RISs, we study the concept of active RISs as a promising solution1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' As shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' 1, similar to the existing passive RISs, active RISs can also reflect the incident signals with reconfigurable phase shifts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Different from passive RISs that just reflect the incident signals without amplification, active RISs can further amplify the reflected signals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' To achieve this goal, the key component 1Note that active RISs are fundamentally different from relay-type RISs equipped with RF components and relays.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Due to space constraints, we refer to the journal version of this paper for a more detailed discussion [4, Remark 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' input BS RIS Active RIS user 1 user k incident signal reflected signal with amplification phase- shift circuit patch reflection-type amplifier output active element power supply Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' The downlink transmission in an active RIS aided MU-MISO system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' of an active RIS element is the additionally integrated active reflection-type amplifier, which can be realized by different existing active components, such current-inverting converters or some integrated circuits [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' With reflection-type amplifiers supported by a power supply, the reflected and amplified signal of an N-element active RIS can be modeled as follows: y = PΘx � �� � Desired signal + PΘv � �� � Dynamic noise + ns ���� Static noise , (2) where P := diag (p1, · · · , pN) ∈ RN×N denotes the amplifi- cation factor matrix of the active RIS, wherein each element pn can be larger than one thanks to the integrated reflection-type amplifier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Due to the use of active components, active RISs consume additional power for amplifying the reflected signals, and the thermal noise introduced by active RIS elements cannot be neglected as is done for passive RISs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Particularly, as shown in (2), the introduced noise can be classified into dynamic noise and static noise [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Specifically, v is related to the input noise and the inherent device noise of the active RIS elements [5], while the static noise ns is unrelated to P and is usually negligible compared to the dynamic noise PΘv, as will be verified by experimental results in Section V-A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Thus, here we neglect ns and model v as v ∼ CN � 0N, σ2 vIN � , where CN(µ, Σ) denotes the complex multivariate Gaussian distribution with mean µ and variance Σ, IL is an L × L identity matrix, and 0L is an L × 1 zero vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Active RIS Aided MU-MISO System Consider an active RIS aided downlink MU-MISO system as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' 1, where an M-antenna base station (BS) serves K single-antenna users simultaneously with the aid of an N-element active RIS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Let s := [s1, · · · , sK]T ∈ CK denote the transmitted symbol vector for the K users and let wk ∈ CM×1 denote the BS precoding vector for symbol sk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' According to (2), signal rk ∈ C received at user k can be modeled as follows: rk = ( hH k ���� Direct link + f H k PΘG � �� � Reflected link ) �K j=1wjsj + f H k PΘv � �� � Noise introduced by active RIS + zk ���� Noise introduced at user k , (3) where [·]H denotes the conjugate-transpose operation;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' G ∈ CN×M, hH k ∈ C1×M, and f H k ∈ C1×N characterize the channels between the BS and the RIS, between the BS and user k, and between the RIS and user k, respectively;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' and zk denotes the additive white Gaussian noise (AWGN) at user k with zero mean and variance σ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' PERFORMANCE ANALYSIS In this section, we analyze the performance of active RISs to reveal their notable capacity gains compared to passive RISs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' To this end, in order to make the problem analytically tractable and get insightful results, in this section, we consider a single- user single-input single-output (SU-SISO) system with M = 1 BS antenna and K = 1 user, while the general MU-MISO case is studied in Section IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Asymptotic SNR for Passive RISs and Active RISs To illustrate the capacity gain provided by passive/active RIS aided reflected links, for the moment, we ignore the direct link by setting hk to zero, as was done in, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=', [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Furthermore, for simplicity, we assume that each active RIS element has the same amplification factor (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=', pn := p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' For a fair comparison with the asymptotic performance of passive RISs, similar to [6], we assume Rayleigh-fading channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' We first redefine the BS-RIS channel matrix and the RIS- user channel vector as G := g ∈ CN×1 and fk := f ∈ CN×1, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Then, we recall the following lemma from [6] for the asymptotic SNR achieved by passive RISs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Lemma 1 (Asymptotic SNR for passive RISs): Assuming f ∼ CN � 0N, ϱ2 fIN � , g ∼ CN � 0N, ϱ2 gIN � and letting N → ∞, the asymptotic SNR γpassive of a passive RIS aided SU- SISO system is given by γpassive → N 2 P max BS π2ϱ2 fϱ2 g 16σ2 , (4) where P max BS denotes the maximum transmit power at the BS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Proof: The proof can be found in [6, Proposition 2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' For comparison, under the same transmission conditions, we provide the asymptotic SNR of an active RIS aided SU-SISO system in the following lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Lemma 2 (Asymptotic SNR for active RISs): Assuming f ∼ CN � 0N, ϱ2 fIN � , g ∼ CN � 0N, ϱ2 gIN � and letting N → ∞, the asymptotic SNR γactive of an active RIS aided SU-SISO system is given by γactive → N P max BS P max A π2ϱ2 fϱ2 g 16 � P max A σ2vϱ2 f + P max BS σ2ϱ2g + σ2σ2v �, (5) where P max A denotes the maximum reflect power of the active RIS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Proof: Please see the journal version [4, Appendix A].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Remark 1: From (5) we observe that, the asymptotic SNR of an active RIS aided SU-SISO system depends on both the BS transmit power P max BS and the reflect power of the active RIS P max A .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' When P max BS → ∞, the asymptotic SNR will be upper-bounded by γactive → NP max A π2ϱ2 f/ � 16σ2� , which is independent of the BS-RIS channel g and the noise power at the active RIS σ2 v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Similarly, if P max A → ∞, the asymptotic SNR will be upper-bounded by γactive → NP max BS π2ϱ2 g/16σ2 v, which is independent of the RIS-user channel f and the noise power at the user σ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' These results reveal that, to increase the sum-rate of active RIS aided systems, the negative impact of small g and large σ2 v on system performance can be alleviated by increasing the BS transmit power P max BS , and the negative impact of small f and large σ2 can be reduced by increasing the reflect power of the active RIS P max A .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Comparisons between Passive RISs and Active RISs We can observe from Lemma 1 and Lemma 2 that, compared to the asymptotic SNR for passive RISs γpassive in (4) which is proportional to N 2, the asymptotic SNR for active RISs γactive in (5) is proportional to N due to the noises introduced by the use of active components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' At first glance, it seems that the SNR achieved by passive RISs γpassive always exceeds the SNR achieved by active RISs γactive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' However, this is actually not the case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' The reason behind this counterintuitive behavior is that, due to the large path loss caused by the “multiplicative fading” effect and thanks to the use of the reflection-type amplifiers in active RISs, only when N is unaffordably large can passive RISs outperform active RISs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' To illustrate this claim, let us consider two different SU- SISO systems, which are aided by an active RIS and a passive RIS, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Then, the following lemma specifies the condition that has to be met for passive RISs to outperform active RISs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Lemma 3 (Case when passive RISs outperform active RISs): Assuming the number of RIS elements N is large, the required number of elements N for a passive RIS to outperform an active RIS has to satisfy N ≥ P max BS-A P max BS-P P max A σ2 � P max A σ2vϱ2 f + P max BS-Aσ2ϱ2g + σ2σ2v �, (6) where P max BS-A denotes the maximum BS transmit power for the active RIS aided system and P max BS-P denotes that for the passive RIS aided system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Proof: Please see the journal version [4, Appendix B].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Next, we consider a specific setup to compare the user’s achievable SNRs in the above two systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' For a fair com- parison, we constrain the total power consumption P max of the two systems to 2 W by setting P max BS-P = 2 W for the passive RIS aided system and P max BS-A = P max A = 1 W for the active RIS aided system, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Therefore, when σ2 = σ2 v = −70 dBm and ϱ2 f = ϱ2 g = −70 dB, the required number of elements N for the passive RIS to outperform the active RIS is 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content='5 × 106 according to (6), which is impractical to realize with current technology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Conversely, for a more practical number of elements of N = 256, according to (5) and (4), the SNR achieved by the passive RIS is γpassive ≈ 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content='0 dB, while the SNR achieved by the active RIS is γactive ≈ 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content='0 dB, which is about 10, 000 times higher than γpassive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' JOINT TRANSMIT PRECODING AND REFLECT BEAMFORMING DESIGN To investigate the capacity gain enabled by the use of active RISs in typical wireless communication scenarios, in this section, we consider more general MU-MISO systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' According to the model in (3), the signal-to-interference-plus- noise ratio (SINR) at user k can be obtained as γk = ��¯hH k wk ��2 �K j=1,j̸=k ��¯hH k wj ��2 + ��f H k PΘ ��2σ2v + σ2 , (7) wherein ¯hH k = hH k + fk HPΘG ∈ C1×M is the equivalent channel from the BS to user k, which includes both the direct link and the reflected link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Therefore, the original problem of sum-rate maximization, subject to the power constraints at the BS and the active RIS, can be formulated as follows: Po : max w,P,Θ Rsum(w, P, Θ) = �K k=1 log2 (1 + γk), (8a) s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' C1 : �K k=1 ∥wk∥2 ≤ P max BS , (8b) C2 : �K k=1∥PΘGwk∥2+∥PΘ∥2 σ2 v ≤P max A , (8c) where w := � wT 1 , · · · , wT K �T is the overall transmit precoding vector for the K users;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' C1 and C2 are the power constraints at the BS and active RIS, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Due to the non-convexity and the highly coupled variables in problem Po in (8), the joint design of w, P, and Θ is challenging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' To efficiently solve the above problem, we develop a joint precoding and beamforming algorithm based on alternating optimization and fractional programming (FP).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Note that P and Θ always appear in product form in problem Po in (8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Therefore, P and Θ can be merged as Ψ = PΘ = diag � p1ejθ1, · · · , pNejθN � ∈ CN×N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' We refer to Ψ as the RIS beamforming matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Next, to deal with the non-convex sum-of-logarithms and fractions in (8), we exploit the FP methods proposed in [7] to decouple the variables in problem Po in (8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' This leads to the following lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Lemma 4 (Equivalent problem for sum-rate maximiza- tion): By introducing auxiliary variables ρ := [ρ1, · · · , ρK] ∈ RK and ϖ := [ϖ1, · · · , ϖK] ∈ CK, the original problem Po in (8) can be equivalently reformulated as follows P1 : max w,Ψ,ρ,ϖ R′ sum(w, Ψ, ρ, ϖ) = �K k=1 ln (1 + ρk)− �K k=1 ρk + �K k=1 g(w, Ψ, ρk, ϖk), s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' C1, C2, (9) where function g(w, Ψ, ρk, ϖk) is defined as g(w, Ψ, ρk, ϖk) = 2 � (1 + ρk)R � ϖ∗ k¯hH k wk � − |ϖk|2 ��K j=1 ��¯hH k wj ��2 + ��f H k Ψ ��2σ2 v + σ2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' (10) Proof: Constructive proof can be found in [7, Subsection III-C].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Strong convergence of the FP methods was proved in [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Thus, a locally optimal solution to (9) can be obtained by alternately optimizing the variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' For clarity, we summarize the proposed joint precoding and beamforming algorithm in Algorithm 1, and the specific solutions for variables w, Ψ, ρ, and ϖ are given in the following four steps, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Algorithm 1 Proposed joint transmit precoding and reflect beamforming algorithm Input: Channels G, hk, and fk, ∀k ∈ {1, · · · , K}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Output: Optimized BS precoding vector w, amplification factor matrix of active RIS P, phase shift matrix of active RIS Θ, and sum-rate Rsum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' 1: Randomly initialize w, P and Θ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' 2: while no convergence of Rsum do 3: Update ρ by (11);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' 4: Update ϖ by (12);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' 5: Update w by solving problem P2 in (14);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' 6: Update Ψ by solving problem P3 in (15);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' 7: end while 8: Obtain P and Θ from Ψ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' 9: return Optimized w, P, Θ, and Rsum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' 1) Fix (w, Ψ, ϖ) and optimize ρ: After fixing precoding vector w, beamforming matrix Ψ, and auxiliary variable ϖ, the optimal ρ can be obtained by solving ∂R′ sum ∂ρk = 0 as ρopt k = ξ2 k + ξk � ξ2 k + 4 2 , ∀k ∈ {1, · · · , K}, (11) where ξk = ℜ � ϖ∗ k¯hH k wk � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' 2) Fix (w, Ψ, ρ) and optimize ϖ: After fixing the precod- ing vector w, beamforming matrix Ψ, and auxiliary variable ρ, the optimal ϖ can be derived by solving ∂R′ sum ∂ϖk = 0 as ϖopt k = � (1 + ρk)¯hH k wk �K j=1 ��¯hH k wj ��2+ ��f H k Ψ ��2σ2v + σ2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' (12) 3) Fix (Ψ, ρ, ϖ) and optimize w: To simplify the nota- tions, we first introduce the following definitions: bH k = � (1 + ρk)ϖ∗ k¯hH k , b = � bT 1 , bT 2 , · · · , bT N �T , (13a) A=IK ⊗ �K k=1|ϖk|2¯hk¯hH k , Ξ=IK ⊗ � GHΨHΨG � , (13b) P max m = P max A − ∥Ψ∥2σ2 v, (13c) where ⊗ denotes the Kronecker product.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Then, problem P1 in (9) can be reformulated as follows: P2 : max w R � 2bHw � − wHAw, s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' C1 : ∥w∥2 ≤ P max BS , C2 : wHΞw ≤ P max m .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' (14) Note that P2 in (14) is a standard quadratic constraint quadratic programming (QCQP) problem, which can be solved by alternating direction method of multipliers (ADMM).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' 4) Fix (w, ρ, ϖ) and optimize Ψ: Define ψ = � p1ejθ1, · · · , pNejθN �H as the vectorized RIS beamforming matrix Ψ, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=', diag � ψH� := Ψ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' While fixing w and ρ and ϖ, problem P1 in (9) can be reformulated as follows: P3 : max ψ R � 2ψHυ � − ψHΩψ, s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' C2 : ψHΠψ ≤ P max A , (15) spectrum analyzer LNA vector network analyzer DC source active RIS element circulator pump source noise source Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' The experimental devices and environment used for validating the signal model (2) of active RISs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content='359 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content='3595 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content='36 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content='3605 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content='361 15 10 5 0 5 10 15 20 25 30 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Experimental measurement result for reflection gain G versus signal frequency f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' wherein υ = �K k=1 � (1 + ρk)diag � ϖ∗ kf H k � Gwk− �K k=1 |ϖk|2diag � f H k � G �K j=1 wjwH j hk, (16a) Ω = �K k=1 |ϖk|2diag � f H k � diag (fk) σ2 v+ �K k=1 |ϖk|2 �K j=1diag � f H k � GwjwH j GHdiag (fk), (16b) Π = �K k=1 diag (Gwk) (diag (Gwk))H + σ2 vIN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' (16c) Note that problem P3 in (15) is also a standard QCQP problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Thus, the optimal solution ψopt can be obtained by adopting ADMM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' VALIDATION RESULTS A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Validation Results for Signal Model To validate the signal model (2), we designed and fabri- cated an active RIS element with an integrated reflection- type amplifier for experimental measurements in [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Note that this design can be directly extended to the large-array case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Particularly, since the phase-shifting ability of RISs has been widely verified, we focus on studying the reflection gain 15 10 5 0 5 10 15 20 25 170 165 160 155 150 145 140 135 130 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Experimental measurement result for the density of noise power Gσ2 v + σ2 s versus reflection gain G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' and the noise introduced by an active RIS element.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Thus, the validation of signal model (2) is equivalent to validating Py = GPx ���� Desired-signal power + Gσ2 v + σ2 s � �� � noise power , (17) where Py is the power of the signals reflected by the active RIS element;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Px is the power of the incident signal;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' G := p2 is the reflection gain of the active RIS element;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Gσ2 v and σ2 s are the powers of the dynamic noise and static noise introduced by the active RIS element, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' 1) Hardware platform: To validate the model in (17), we first establish the hardware platform used for our experimental measurements in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Due to space constraints, we refer the reader to the journal version of this paper [4, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' 4] for detailed information about the hardware platform.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' 2) Reflection gain measurement: Using the measurement system for the reflection gain depicted in [4, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' 4 (b)], we first investigate the reflection gain G of the active RIS element.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Note that the reflection gain G can be reconfigured by the input power of the pump source Pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' By setting the input power of the vector network analyzer as Px = −50 dBm, the reflection gain G as a function of the signal frequency can be directly measured via a vector network analyzer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Then, in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' 10 5 0 5 10 15 20 25 30 0 10 20 30 40 50 60 507% Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Simulation results for the sum-rate versus total power consumption P max in scenario 1 with a weak direct link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content='. 3, we show the measurement results for reflection gain G as a function of signal frequency f for different input powers of the pump source Pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' We observe that the active RIS element can achieve a reflection gain G of more than 25 dB, when Pp = 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content='24 dBm, which confirms the significant reflection gains enabled by active RISs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' 3) Noise power measurement: We further study the noise power introduced by the active RIS element, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=', Gσ2 v + σ2 s in (17), where Gσ2 v and σ2 s are the powers of the dynamic noise and the static noise introduced at the active RIS element, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Using the noise measurement system in [4, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' 4 (c)], we show the measurement results for the spectral density of noise power Gσ2 v + σ2 s as a function of G for different operating frequencies in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' We can observe that the noise power increases nearly linearly with G, which verifies the noise model Gσ2 v + σ2 s in (17).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Particularly, for f = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content='3601 GHz, the spectral density of σ2 s is about −174 dBm/Hz, while that of σ2 v is about −160 dBm/Hz, which is about 15 dB higher.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' The reason for this is that the input noise is amplified by the noise factor, and additional noises are also introduced by the other active components such as the DC source used to power the active RIS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Simulation Results for Sum-Rate 1) Simulation setup: We consider an active RIS aided MU- MISO system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Particularly, we consider two scenarios with dif- ferent channel conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' In scenario 1, the direct link is weak due to severe obstruction, while the direct link is strong in scenario 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' To be specific, two different path loss models from the 3GPP TS 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content='814 standard are utilized to characterize the large-scale fading of the channels: i) PLs = 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content='3+22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content='0 log d;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' ii) PLw = 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content='2 + 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content='7 log d, where d is the distance between two devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Path loss model PLw is used to generate the weak BS-user link in scenario 1, while PLs is used to generate the strong BS-user link in scenario 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' For both scenarios, PLs is used to generate the BS-RIS and the RIS-user channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' To account for small-scale fading, we adopt the Ricean fading channel model for all channels involved and we assume the Ricean factor as κ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' 10 5 0 5 10 15 20 25 30 0 10 20 30 40 50 60 62% Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Simulation results for the sum-rate versus total power consumption P max in scenario 2 with a strong direct link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' The BS and the active/passive RIS are located at (0, -60 m) and (200 m, 30 m), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Four users are randomly located in a circle with a radius of 5 m from the center (200 m, 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' The numbers of BS antennas and RIS elements are set as M = 4 and N = 256, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' The noise power is set as σ2 = σ2 v = −70 dBm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' For fair comparison, we constrain the total power consumption P max := P max BS + P max A .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' For the active RIS, Algorithm 1 is employed for joint precoding and beamforming design, while for the passive RIS, the algorithm from [2] is adopted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' 2) Simulation results: In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' 5 and Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' 6, we plot the sum-rate versus the total consumed power P max for the two considered scenarios, where the direct link is weak and strong, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Firstly, in scenario 1 with a weak direct link, the passive RIS can indeed achieve a performance improvement, while the active RIS achieves a much higher sum-rate gain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Secondly, in scenario 2 with a strong direct link, the passive RIS achieves only a negligible sum-rate gain, while the active RIS still realizes a noticeable sum-rate gain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' For example, when P max = 10 dBW, the capacities without RIS, with passive RIS, and with active RIS in scenario 1 are 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content='34 bps/Hz, 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content='00 bps/Hz, and 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content='41 bps/Hz respectively, while in scenario 2, these values are 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content='87 bps/Hz, 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content='51 bps/Hz, and 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content='18 bps/Hz, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' In this case, the passive RIS provides a 31% gain in scenario 1 and a negligible 3% gain in scenario 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' By contrast, the active RIS achieves noticeable sum-rate gains of 507% in scenario 1 and 62% in scenario 2, which are much higher than those achieved by the passive RIS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Field Test for a 64-Element Active RIS Aided Wireless Communication Prototype 1) 64-element active RIS aided communication prototype: To validate the significant gain of active RISs, we develop a 64-element active RIS aided wireless communication proto- type, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Specifically, the hardware structure of this prototype consists of three parts including a BS, a 64- element active RIS, and a user.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' For the BS and the user, two horn antennas with 13 dBi antenna gain are used to transmit Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' A photograph of the developed 64-element active RIS aided wireless communication system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' and receive the signals, and the universal software radio peripherals (USRPs) are deployed to generate and process the baseband and RF signals (hardware version: USRP-2953R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' By periodically expanding the active RIS elements designed in [8], the 64-element active RIS is an 8×8 plane array, of which each element has a reflection gain of G = 10 dB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' 2) Experimental environment: Based on the developed pro- totype, we establish the experimental environment for further validation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' To match the transceivers, we configure the oper- ating frequency of the active RIS to f = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content='5 GHz and the bandwidth to 40 MHz by adjusting the circuit impedance of active elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' The polarization of the antenna at the BS and that at the user are selected as vertical and horizontal, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' The transmit power is set to −10 mW.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' We fix the heights of the BS, the RIS, and the user as 1 m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' The horizontal distance of the BS-RIS link and that of the RIS-user link are set to 2 m and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content='5 m, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' The angle of arrival (AoA) at the active RIS is fixed as 0◦, and the angle of departure (AoD) will be specified to evaluate the performance gain of active RISs at different orientations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' To observe the reflection gain of the active RIS, we use a metal plate with the same aperture size as the active RIS for performance comparison.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' 3) Experimental results: By moving the user at different AoDs and configuring the phase shift of the active RIS with discrete Fourier transform (DFT) codebook, we obtain the experimental results shown in Table I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' One can observe that, compared with the received power for the metal plate, the active RIS can always achieve a gain of about 10 dB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' The data rate for the active RIS can hold at about 30 Mbps, while that for the metal plate only ranges from 1 Mbps to 2Mbps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' The reason is that, the beamforming at the active RIS can make the reflected beam with high array gain and reflection gain, while the metal plate can only reflect the incident signals randomly without in-phase combination or amplification, which validates the significant gain of active RISs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' CONCLUSIONS In this paper, we have studied the concept of active RISs to overcome the fundamental limitation of the “multiplicative fading” effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Firstly, we have verified the signal model of TABLE I EXPERIMENTAL RESULTS FOR THE DEVELOPED PROTOTYPE AoD Device Received Power Data Rate 15◦ Metal plate 110 dBm 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content='2 Mbps Active RIS 100 dBm 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content='5 Mbps 30◦ Metal plate 105 dBm 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content='5 Mbps Active RIS 98 dBm 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content='5 Mbps 45◦ Metal plate 105 dBm 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content='5 Mbps Active RIS 95 dBm 30 Mbps 60◦ Metal plate 108 dBm 2 Mbps Active RIS 90 dBm 32 Mbps active RISs through the experimental measurements on a fab- ricated active RIS element.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Based on the verified signal model, we have formulated the sum-rate maximization problem for an active RIS aided MU-MISO system and a joint precoding and beamforming algorithm has been proposed to solve this problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Simulation results have shown that, in a typical application scenario, the existing passive RIS can realize only a negligible sum-rate gain of about 3%, while the active RIS can achieve a substantial sum-rate gain of about 62%, thus indeed overcoming the “multiplicative fading” effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Finally, we have developed a communication wireless communication prototype aided by a 64-element active RIS, and the significant gain of active RISs is validated by field test.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' In the future, many research directions for active RISs are worth pursuing, such as hardware design, prototype development, channel estimation, and energy efficiency analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' ACKNOWLEDGMENT This work was supported in part by the National Key Research and Development Program of China (Grant No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' 2020YFB1805005), in part by the National Natural Science Foundation of China (Grant No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' 62031019), and in part by the European Commission through the H2020-MSCA-ITN META WIRELESS Research Project under Grant 956256.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' REFERENCES [1] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Huang, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Zappone, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Alexandropoulos, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Debbah, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Yuen, “Reconfigurable intelligent surfaces for energy efficiency in wireless communication,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Wireless Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' 18, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' 8, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' 4157–4170, Aug.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' [2] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Pan, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Ren, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Wang, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Xu, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Elkashlan, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Nallanathan, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Hanzo, “Multicell MIMO communications relying on intelligent reflecting surfaces,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Wireless Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' 19, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' 8, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' 5218–5233, Aug.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' [3] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Najafi, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Jamali, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Schober, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Poor, “Physics-based mod- eling and scalable optimization of large intelligent reflecting surfaces,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' 69, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' 4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' 2673–2691, Apr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' [4] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Zhang, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Dai, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Chen, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Liu, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Yang, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Schober, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Poor, “Active RIS vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' passive RIS: Which will prevail in 6G?”' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=', Dec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' [5] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Bousquet, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Magierowski, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Messier, “A 4-GHz active scatterer in 130-nm CMOS for phase sweep amplify-and-forward,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Circuits Syst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' I, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' 59, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' 529–540, Mar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' [6] Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Wu and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Zhang, “Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Wireless Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' 18, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' 11, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' 5394–5409, Nov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' [7] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Shen and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Yu, “Fractional programming for communication sys- tems—part I: Power control and beamforming,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Signal Process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' 66, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' 10, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' 2616–2630, May 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' [8] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Chen and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' Yang, “Nonlinear electromagnetic surfaces: Theory, design and application,” Master Thesis in Tsinghua University, May 2020, [Online] Available: http://etds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content='lib.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content='tsinghua.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content='cn/Thesis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} +page_content='5GHz 有源RIS 8 X 8 Active RIS BS User' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'} diff --git a/ZdE5T4oBgHgl3EQfeA8r/content/tmp_files/2301.05615v1.pdf.txt b/ZdE5T4oBgHgl3EQfeA8r/content/tmp_files/2301.05615v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..9f9b960c20e20294e7f0035f71838728da81e434 --- /dev/null +++ b/ZdE5T4oBgHgl3EQfeA8r/content/tmp_files/2301.05615v1.pdf.txt @@ -0,0 +1,475 @@ +Linear Computation Coding: +Exponential Search and Reduced-State Algorithms +Hans Rosenberger, Johanna S. Fr¨ohlich, Ali Bereyhi and Ralf R. M¨uller +Institute for Digital Communications (IDC) +Friedrich-Alexander-Universit¨at Erlangen-N¨urnberg +Erlangen, Germany +{hans.rosenberger, johanna.froehlich, ali.bereyhi, ralf.r.mueller}@fau.de +Abstract +Linear computation coding is concerned with the compression of multidimensional linear +functions, i.e. with reducing the computational effort of multiplying an arbitrary vector to +an arbitrary, but known, constant matrix. This paper advances over the state-of-the art, +that is based on a discrete matching pursuit (DMP) algorithm, by a step-wise optimal search. +Offering significant performance gains over DMP, it is however computationally infeasible +for large matrices and high accuracy. Therefore, a reduced-state algorithm is introduced +that offers performance superior to DMP, while still being computationally feasible even for +large matrices. Depending on the matrix size, the performance gain over DMP is on the +order of at least 10 %. +Introduction +Multiplying a vector by a constant matrix is an ubiquitous task performed in various +technical and scientific applications. The main body of earlier work is focused on +speeding up the calculation of matrix-vector multiplications in a structure-oriented +fashion. A well-known example is the fast implementation of the discrete fourier +transform (DFT). Here, the structure of the DFT matrix is exploited to eliminate +redundant computations and reduce the number of required operations as compared +to a naive implementation. For arbitrary constant matrices, redundancies within the +finite-precision representation of the matrix entries can be exploited as well, a method +that is typically known as common subexpression sharing/elimination. Earlier work +in this respect has either targeted special cases of constant multiplication [1, 2] or has +proposed schemes with high computational complexity, such that their implementation +in practice is difficult for medium to large size matrices [3, 4]. +Recently, linear computation coding (LCC) has been proposed in [5, 6, 7]. This +framework develops an information-theoretic scheme for the efficient calculation +of matrix-vector products that is especially well-suited for the implementation on +reconfigurable hardware, such as field programmable gate arrays (FPGAs) [8]. Similar +to rate-distortion theory, LCC is concerned with the tradeoff between distortion +and compression. However, instead of compressing data, LCC deals with the lossy +compression of multidimensional linear functions under a given fidelity constraint. An +This work was supported by Deutsche Forschungsgemeinschaft (DFG) under the project Compu- +tation Coding (MU-3735/8-1). +arXiv:2301.05615v1 [cs.IT] 13 Jan 2023 + +instance can be found in [7], where an optimal decomposition scheme is first defined +in terms of classical metrics for computation and distortion. A greedy approach is +then developed to approximate the proposed scheme sub-optimally with tractable +complexity. +Contributions +In this paper, we develop a new LCC scheme. Similar to earlier approaches discussed +in [7], the optimal decomposition deals with an exponentially complex problem. We first +address this problem via an exhaustive search procedure with a careful optimization. +This enables us to evaluate the performance of the optimal scheme for reasonable +matrix sizes. We then present a computationally tractable scheme by proposing a +reduced-state algorithm for the underlying search problem. Our investigations show +that the proposed algorithm can achieve a computation-distortion tradeoff close to the +exponentially-complex optimal scheme while drastically reducing the decomposition +complexity. +Notation +Vectors are denoted as lower-case boldface letters x and matrices as upper-case boldface +letters X. The Euclidean and the Frobenius norm are denoted by ∥ · ∥2 and ∥ · ∥F, +respectively. The symbol 0N×K denotes an N × K matrix with all zero elements, +IN×K denotes the augmented identity matrix of dimension N × K and 1j,K denotes +the j-th row unit vector in K dimensions. +Problem Formulation +We consider the problem of matrix-vector multiplication, i.e the calculation +y = Ax +(1) +for an arbitrary input vector x ∈ RK×1 and a constant matrix A ∈ RN×K. Commonly, +matrices are approximated by quantizing their entries independently. By using the +canonically signed digit (CSD) binary representation the quantization error can be +decreased on average by a factor of +√ +28 per CSD [9]. This still leaves room for +improvement. LCC instead suggests to approximate A by a product of matrices, i.e. +finding W and C such that +A ≈ W C. +(2) +The matrix C ∈ AN×K is termed the codebook matrix and W ∈ AN×N is termed the +wiring matrix in the sequel1. The entries of the wiring matrix are restricted to the set +of zero and signed powers of two (A ⊆ {0, ±2Z}). +Obtaining the wiring and codebook matrix jointly is typically NP-hard and infea- +sible. To overcome this computational intractability, [7] proposes a scheme where the +1In [6] the multiplication order of the decomposed matrices is reversed. Please note that this +change makes no difference to the general idea of the decomposition and to the following algorithms. +It is equal to the transposed version of the algorithm presented in [7]. + +n-th row of the wiring matrix is determined by solving the following sparse recovery +problem for some design parameter S < N controlling the cost between distortion and +computation effort [10] +wn = +argmin +ω∈{ω=�S +s=1 is1js,N: is∈A, js∈{1,...,N} ∀s} +∥an − ωC∥2 +∀n. +(3) +The new scheme is still NP-hard, but not in N, anymore, but in S. Thus, small values +of S are required, in practice. +In order to have a high accuracy despite small values of S, the factorization +procedure can be applied multiple times. Then the product Ci = W iCi−1 of the +previous wiring step acts as the new codebook for obtaining the following matrix +factor W i of the current wiring step. Hence, by setting2 C0 = IN×K, we obtain the +approximated matrix P after I wiring steps: +A ≈ P = +� I� +i=1 +W i +� +C0. +(4) +To quantify the accuracy of a given approximation P we use the signal-to- +quantization-noise-ratio (SQNR) +SQNR(A, P ) = +∥A∥2 +F +∥A − P ∥2 +F +. +(5) +Computational Cost +In a binary number representation the multiplication by a signed power of two +corresponds only to a bitshift. On reconfigurable hardware, this shift can be realized +simply by appropriate wiring without the need for dedicated processing elements +such as adders [8]. The parameter S in (3) determines the number of vectors from +the codebook to be used in forming the linear combination to approximate a row +an of A. It therefore directly controls the computational cost, as in computing the +linear combination, exactly S − 1 additions are required. No multiplications, except +by signed powers of two, are necessary due to the specific structure of the wiring +matrix. Therefore, the separate product of the decomposed matrices with the input +vector y ≈ W (Cx) is much simpler to compute than calculating the product in (1) +straightforwardly. +The total computational cost Cadd of a decomposition in (4) is given by the number +of additions (or subtractions) required to form the linear combinations +Cadd = IN(S − 1). +(6) +2In [6] this choice is termed the self-designing codebook. It was found to work very well for a +wide range of matrices. + +Algorithms +In this section we will briefly look at the state of the art for solving the optimization +problem in (3) to obtain the wiring matrices and then introduce two improved novel +algorithms. +State-of-the-Art: Discrete Matching Pursuit +The discrete matching pursuit (DMP) follows the matching pursuit approach to +successively determine the wiring coefficients. The algorithm can be summarized in +the following key steps; for details see [6]. +1. Start with iteration s ← 0. Initialize ω ← 01×N +2. Update ω in at most a single component, such that ∥an − ωC∥2 is minimized. +3. Increment s. +4. If s ≤ S, go to step 2, otherwise the procedure terminates. +It is straightforward to show that the time complexity of the DMP algorithm for +computing a single matrix factor scales with O(N 3S). +Exponential Search Algorithm +The row-wise optimization problem in (3) is NP-hard. However, for small S, reasonable +matrix sizes and some careful optimization it can be solved in a tractable timeframe. We +limit the set of scaling factors to a finite set of signed powers of two (Aexp ⊂ {0, ±2Z}), +as an exhaustive search over the whole set is infeasible. As the search procedure has +to be performed for each row of the target matrix individually, the time complexity +for the computation of each wiring step is given by O(N S|Aexp|S). +Generally, which and how many coefficients are included in the subset Aexp is a +design parameter and needs to be adapted to each specific decomposition. It depends +primarily on two factors. First, the current wiring step plays a crucial role. For +each additional wiring layer, the error between each row of the target matrix and +the approximated matrix decreases. Hence, for any subsequent wiring step, smaller +coefficients are needed to scale the rows of the newly found codebook matrix to +appropriately approximate the residual error. This also means that for high desired +accuracy the coefficient set needs to be chosen large, i.e. to include also many small +coefficients, to accurately approximate the error. Furthermore, relative variations +in the length of the row vectors of the target matrix require a larger coefficient +set to compensate for differences. Still, to keep the decomposition computationally +feasible, the number of elements in Aexp needs to be chosen as small as possible, as +the computational complexity scales exponentially in S with the product of the size +of the coefficient set |Aexp| and N as base. +A promising approach for further research is to adapt the coefficient set for each +wiring step dynamically based on the current fidelity of the approximation. The +coefficient set may then be determined from the probability distribution of the likely +entries of the wiring matrix. + +Reduced-State Algorithm +The runtime of the exponential algorithm for a matrix with N = 64 rows is on the +order of an hour3, for larger matrices the runtime scales up accordingly and can +become infeasible. Hence, for some applications the computational burden of the +exponential algorithm might consequently not be feasible. A reasonable compromise +between complexity and performance is desirable. +Unlike in DMP, we do not immediately update the components of the wiring +vector for the reduced-state algorithm. Instead, we keep updating in each iteration a +list of the M best vectors, which minimize (3) and select at the termination of the +algorithm the vector with minimum error from the list. Specifically, we apply the +following successive, greedy procedure for the optimization problem in (3): +1. Start with s ← 0. Initialize the set Ω with M all-zero vectors. +2. For each ω ∈ Ω find the set Ωm of M mutually distinct vectors ω ˜m with +˜m ∈ {1, ..., M} that minimize ∥an − ω ˜mC∥2 and differ from ω in at most a +single component. +3. Update the set Ω by selecting from �M +m=1 Ωm the M distinct vectors ω with +minimum ∥an − ωC∥2 +4. Increment s. +5. If s ≤ S, go to step 2, else, continue +6. Return argmin +ω∈Ω +∥an − ωC∥2 +By tuning M, we are able to adjust the space of possible combinations that the +algorithm explores. For each wiring step, we have to evaluate O(SN 3M 2) combinations. +Compared to DMP the complexity is increased by a factor of M 2. Note that for +M = 1 the algorithm reduces to the DMP. +Numerical Evaluation +In this section, we compare the performance of the proposed algorithms to the baseline +DMP [7]. We decompose matrices whose entries are drawn i.i.d. from a Gaussian +distribution with zero mean and unit variance. Similar to DMP, the performance of the +improved versions of the algorithm hardly depends on the distribution of the matrix +elements. The algorithms are invariant to scaling of the variance, however it is crucial +that for the exponential search algorithm the coefficient set Aexp is scaled appropriately +as well, as to not compromise performance. Throughout the simulations, we select the +coefficient set for the exponential search algorithm to Aexp = {±2−40, .., ±23}. +As a first experiment, we compare all three algorithms for fixed matrix sizes in +Figure 1. We choose matrices with N = 64 rows and vary the number of columns K +3For a multithreaded implementation in Python with Numba acceleration executed on an Intel +i9-12900@2.40 GHz and parameters S = 3, Aexp = +� +±2−40, . . . , ±23� +. + +0 +100 +200 +300 +400 +500 +600 +700 +800 +Cumulative number of additions +0 +20 +40 +60 +80 +100 +120 +SQNR [dB] +64x4 +64x6 +64x8 +Figure 1: Performance comparison for matrices with 64 rows and different aspect ratios. +Matrices of dimension 64×4 are indicated by crosses, 64×6 is indicated by squares and 64×8 +is indicated by triangles. The solid lines refer to the exponential search algorithm (S = 3), +the dashed lines to the DMP [7] (S = 2) and the dashed-dotted lines to the reduced state +algorithm with memory size M = 10 and S = 3. Results are averaged over 104 matrix entries +for the exponential search algorithm and over 105 matrix entries for the other algorithms. +from four to eight. Hence, we can compare the performance for different aspect ratios +of the matrices4. To quantify performance, we plot the tradeoff between distortion +and computational cost. The latter being measured by the number of cumulative +additions Cadd required for a given wiring step. +As Figure 1 shows, for all three matrix sizes there is a performance gain by both +proposed algorithms against DMP. Further, for memory size M = 10, the reduced +state algorithm performs only slightly worse than exhaustive search. +For the first two wiring steps, the performance of all three algorithms is equal +for a given matrix size. This is due to the fact that for the first two steps we use +DMP with S = 2 for an initial refinement of the codebook5. Applying any of the +4LCC works best for matrices with an exponential aspect ratio, i.e. for K ≈ log2 N. For square +matrices it is beneficial to cut these into multiple tall matrices and decompose each slice independently, +see [8] for details. +5Using any of the novel algorithms with S = 2 is possible as well with very similar performance, i.e. +a slight increase in SQNR by 0.2 dB to 0.5 dB for the novel algorithms and matrix sizes considered. + +0 +100 +200 +300 +400 +500 +600 +700 +800 +Cumulative number of additions +0 +10 +20 +30 +40 +50 +60 +70 +80 +SQNR [dB] +Increasing M +(2, 5, 10, 50) +DMP +Exponential Search +Reduced State (Variable M) +Figure 2: Performance comparison for different memory sizes M of the reduced state +algorithm of a 64 × 6 matrix. The solid line refers to the exponential search algorithm +(S = 3), the dashed line to the DMP [7] (S = 2) and the dashed-dotted lines to the reduced +state algorithm with 4 different memory sizes and S = 3. Results are averaged over 104 +matrix entries for the exponential search algorithm and over 105 matrix entries for the other +algorithms. +algorithms with S ≥ 3 directly to the initial codebook C0 = IN×K would lead to +degraded performance for the first few wiring steps. Instead it is beneficial to set S = 2 +to allow for more frequent updates of the codebook in the beginning. From empirical +investigations it seems that two wiring iterations with S = 2 are most beneficial for +the overall performance. +As the next experiment, we compare the performance of the reduced state algorithm +for different choices of the memory parameter M for given matrix size of 64 × 6 in +Figure 2. +From the figure we observe that even for small M the reduced state +algorithm offers a noticeable performance gain over DMP. As M grows, the reduced +state algorithm approaches the performance of the exponential search. The large +advantage of the reduced state algorithm is that the computation time is reduced +drastically6. For M = 1 the reduced state algorithm reduces to DMP and both lines +6For the considered matrix size the execution time differs from an hour for the exponential +algorithm to a few seconds for the reduced state algorithm in practice. + +0 +100 +200 +300 +400 +500 +600 +700 +800 +Cumulative number of additions +0 +20 +40 +60 +80 +100 +120 +SQNR [dB] +Increasing S +(3, 4, 8) +DMP +Exponential search (S = 3) +Reduced State (S = 3, 4, 8) +Figure 3: Performance comparison for different choices of the parameter S of a matrix +with dimension 64 × 4. The solid line refers to the exponential search algorithm (S = 3), +the dashed line to the DMP [7] (S = 2) and the dashed-dotted lines to the reduced state +algorithm with different choices of the parameter S and M = 10. Results are averaged over +104 matrix entries for the exponential search algorithm and over 105 matrix entries for the +other algorithms. +coincide for any given matrix size. +Table 1 lists the relative performance gains over DMP for various matrix sizes and +configurations of the algorithms. +Practical Considerations for the Choice of S +Figure 3 shows the performance of the reduced state algorithm for varying S. Due to +the exponentially growing complexity in S, the exponential algorithm is not feasible +for S > 3, except for very small matrices. We can observe, that by choosing S = 4 +for the reduced state algorithm, we approximately achieve the same distortion-cost +tradeoff as for the exponential algorithm with S = 3. For choosing S even larger the +gains increase likewise. +However for a practicable implementation S should not be chosen arbitrarily. In [8], +the performance of DMP is validated in an implementation on reconfigurable hardware +with S = 2. This means that on an FPGA exactly N adders are required per wiring +matrix. With the inputs depending only on the outputs of the previous wiring matrix, + +Table 1: Relative average gain in terms of SQNR of the novel algorithms over the baseline +DMP algorithm with S = 2 (For at least 8 bit signed integer accuracy (10 log(SQNR) ≥ +47 dB)). Results are averaged over 104 matrix entries for the exponential search algorithm +and over 105 matrix entries for the other algorithms. +Exponential +Reduced State +search +S = 3 +S = 4 +S = 8 +Matrix size +S = 3 +M = 5 +M = 10 +M = 5 +M = 10 +M = 5 +M = 10 +16 × 2 +17.8 % +10.4 % +13.4 % +14.1 % +17.8 % +16.7 % +21.9 % +16 × 4 +34.5 % +16.0 % +24.5 % +25.8 % +32.7 % +25.4 % +34.4 % +32 × 4 +15.7 % +10.5 % +12.9 % +14.0 % +17.2 % +18.4 % +22.3 % +32 × 6 +25.3 % +15.5 % +19.0 % +19.7 % +24.5 % +19.4 % +26.0 % +64 × 4 +12.9 % +7.5 % +9.8 % +11.0 % +13.8 % +13.5 % +16.8 % +64 × 6 +14.9 % +9.6 % +11.4 % +13.6 % +16.5 % +15.6 % +19.0 % +the decomposition is well suited for parallel execution and pipelining [8]. Due to the +greedy, step-wise nature of DMP S > 2 does not offer significant performance gains +over S = 2. Both novel algorithms behave differently. +From an implementation point of view, S = 3 is even more suitable than S = 2 +for an effective implementation in hardware due to the availability of efficient adders +with three inputs [11]. Interestingly, on modern FPGAs, these adders do not require +more hardware resources, in terms of Lookup-Tables (LUTs), than an adder with two +inputs. Any powers of two and three (S = 4, 8, 9, . . . ) can be realized efficiently as well +by the use of adder trees. However, it is questionable if choosing S > 4 is beneficial, +as performance gains over S = 3 or S = 4 are small and the desired fidelity of the +approximation cannot be chosen in a fine granularity anymore7. +Conclusion +In this paper, we have proposed two new algorithms for LCC, a framework for +the lossy compression of multidimensional linear functions. While the exponential +search algorithm shows the best performance, it is generally infeasible especially for +large matrices. The proposed reduced-state algorithm, performs close to exponential +search at a fraction of the computational complexity. The time complexity of the +decomposition compared to the baseline algorithm from earlier works is only mildly +increased, while the performance gains over the baseline DMP algorithm are on the +order of at least 10 %. +References +[1] Jason Thong and Nicola Nicolici, “An optimal and practical approach to single constant +multiplication,” IEEE Transactions on Computer-Aided Design of Integrated Circuits +and Systems, vol. 30, no. 9, pp. 1373–1386, Sep 2011. +[2] Yevgen Voronenko and Markus P¨uschel, “Multiplierless multiple constant multiplication,” +ACM Transactions on Algorithms, vol. 3, no. 2, May 2007. +7For a matrix of dimension 64 × 4 the reduced state algorithm with S = 8 improves the SQNR +approximately by 70 dB per matrix factor. + +[3] N. Boullis and A. Tisserand, “Some optimizations of hardware multiplication by constant +matrices,” in Proceedings 2003 16th IEEE Symposium on Computer Arithmetic, 2003, +pp. 20–27. +[4] Levent Aksoy, Paulo Flores, and Jose Monteiro, “A novel method for the approximation +of multiplierless constant matrix vector multiplication,” EURASIP Journal on Embedded +Systems, , no. 12, May 2016. +[5] Ralf R. M¨uller, Bernhard G¨ade, and Ali Bereyhi, “Efficient matrix multiplication: +The sparse power-of-2 factorization,” in 2020 Information Theory and Applications +Workshop (ITA), 2020, pp. 1–6. +[6] Ralf R. M¨uller, Bernhard G¨ade, and Ali Bereyhi, “Linear computation coding,” 2021, +arXiv:2102.00398. +[7] Ralf R. M¨uller, Bernhard M. W. G¨ade, and Ali Bereyhi, “Linear computation coding: +A framework for joint quantization and computing,” Algorithms, vol. 15, no. 7, 2022. +[8] Alexander Lehnert, Philipp Holzinger, Simon Pfenning, Ralf R. M¨uller, and Marc +Reichenbach, “Most ressource efficient matrix vector multiplication on FPGA,” IEEE +Access, 2022, Early Access. +[9] A. D. Booth, “A signed binary mutliplication technique,” The Quarterly Journal of +Mechanics and Applied Mathematics, vol. 4, no. 2, pp. 236 – 240, Jan 1951. +[10] Simon Foucart and Holger Rauhut, +A Mathematical Introduction to Compressive +Sensing, Springer New York, 2013. +[11] James M. Simkins and Brian D. Philofsky, “Structures and methods for implementing +ternary adders/subtractors in programmable logic devices,” Sep 2007, +US Patent +7,274,211. + diff --git a/ZdE5T4oBgHgl3EQfeA8r/content/tmp_files/load_file.txt b/ZdE5T4oBgHgl3EQfeA8r/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..f3019e4a3e86d39d4534ca31e1f75f4e9060a798 --- /dev/null +++ b/ZdE5T4oBgHgl3EQfeA8r/content/tmp_files/load_file.txt @@ -0,0 +1,277 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf,len=276 +page_content='Linear Computation Coding: Exponential Search and Reduced-State Algorithms Hans Rosenberger, Johanna S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' Fr¨ohlich, Ali Bereyhi and Ralf R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' M¨uller Institute for Digital Communications (IDC) Friedrich-Alexander-Universit¨at Erlangen-N¨urnberg Erlangen, Germany {hans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content='rosenberger, johanna.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content='froehlich, ali.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content='bereyhi, ralf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content='mueller}@fau.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content='de Abstract Linear computation coding is concerned with the compression of multidimensional linear functions, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' with reducing the computational effort of multiplying an arbitrary vector to an arbitrary, but known, constant matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' This paper advances over the state-of-the art, that is based on a discrete matching pursuit (DMP) algorithm, by a step-wise optimal search.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' Offering significant performance gains over DMP, it is however computationally infeasible for large matrices and high accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' Therefore, a reduced-state algorithm is introduced that offers performance superior to DMP, while still being computationally feasible even for large matrices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' Depending on the matrix size, the performance gain over DMP is on the order of at least 10 %.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' Introduction Multiplying a vector by a constant matrix is an ubiquitous task performed in various technical and scientific applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' The main body of earlier work is focused on speeding up the calculation of matrix-vector multiplications in a structure-oriented fashion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' A well-known example is the fast implementation of the discrete fourier transform (DFT).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' Here, the structure of the DFT matrix is exploited to eliminate redundant computations and reduce the number of required operations as compared to a naive implementation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' For arbitrary constant matrices, redundancies within the finite-precision representation of the matrix entries can be exploited as well, a method that is typically known as common subexpression sharing/elimination.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' Earlier work in this respect has either targeted special cases of constant multiplication [1, 2] or has proposed schemes with high computational complexity, such that their implementation in practice is difficult for medium to large size matrices [3, 4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' Recently, linear computation coding (LCC) has been proposed in [5, 6, 7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' This framework develops an information-theoretic scheme for the efficient calculation of matrix-vector products that is especially well-suited for the implementation on reconfigurable hardware, such as field programmable gate arrays (FPGAs) [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' Similar to rate-distortion theory, LCC is concerned with the tradeoff between distortion and compression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' However, instead of compressing data, LCC deals with the lossy compression of multidimensional linear functions under a given fidelity constraint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' An This work was supported by Deutsche Forschungsgemeinschaft (DFG) under the project Compu- tation Coding (MU-3735/8-1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content='05615v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content='IT] 13 Jan 2023 instance can be found in [7], where an optimal decomposition scheme is first defined in terms of classical metrics for computation and distortion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' A greedy approach is then developed to approximate the proposed scheme sub-optimally with tractable complexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' Contributions In this paper, we develop a new LCC scheme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' Similar to earlier approaches discussed in [7], the optimal decomposition deals with an exponentially complex problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' We first address this problem via an exhaustive search procedure with a careful optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' This enables us to evaluate the performance of the optimal scheme for reasonable matrix sizes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' We then present a computationally tractable scheme by proposing a reduced-state algorithm for the underlying search problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' Our investigations show that the proposed algorithm can achieve a computation-distortion tradeoff close to the exponentially-complex optimal scheme while drastically reducing the decomposition complexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' Notation Vectors are denoted as lower-case boldface letters x and matrices as upper-case boldface letters X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' The Euclidean and the Frobenius norm are denoted by ∥ · ∥2 and ∥ · ∥F, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' The symbol 0N×K denotes an N × K matrix with all zero elements, IN×K denotes the augmented identity matrix of dimension N × K and 1j,K denotes the j-th row unit vector in K dimensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' Problem Formulation We consider the problem of matrix-vector multiplication, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content='e the calculation y = Ax (1) for an arbitrary input vector x ∈ RK×1 and a constant matrix A ∈ RN×K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' Commonly, matrices are approximated by quantizing their entries independently.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' By using the canonically signed digit (CSD) binary representation the quantization error can be decreased on average by a factor of √ 28 per CSD [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' This still leaves room for improvement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' LCC instead suggests to approximate A by a product of matrices, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' finding W and C such that A ≈ W C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' (2) The matrix C ∈ AN×K is termed the codebook matrix and W ∈ AN×N is termed the wiring matrix in the sequel1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' The entries of the wiring matrix are restricted to the set of zero and signed powers of two (A ⊆ {0, ±2Z}).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' Obtaining the wiring and codebook matrix jointly is typically NP-hard and infea- sible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' To overcome this computational intractability, [7] proposes a scheme where the 1In [6] the multiplication order of the decomposed matrices is reversed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' Please note that this change makes no difference to the general idea of the decomposition and to the following algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' It is equal to the transposed version of the algorithm presented in [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' n-th row of the wiring matrix is determined by solving the following sparse recovery problem for some design parameter S < N controlling the cost between distortion and computation effort [10] wn = argmin ω∈{ω=�S s=1 is1js,N: is∈A, js∈{1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=',N} ∀s} ∥an − ωC∥2 ∀n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' (3) The new scheme is still NP-hard, but not in N, anymore, but in S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' Thus, small values of S are required, in practice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' In order to have a high accuracy despite small values of S, the factorization procedure can be applied multiple times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' Then the product Ci = W iCi−1 of the previous wiring step acts as the new codebook for obtaining the following matrix factor W i of the current wiring step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' Hence, by setting2 C0 = IN×K, we obtain the approximated matrix P after I wiring steps: A ≈ P = � I� i=1 W i � C0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' (4) To quantify the accuracy of a given approximation P we use the signal-to- quantization-noise-ratio (SQNR) SQNR(A, P ) = ∥A∥2 F ∥A − P ∥2 F .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' (5) Computational Cost In a binary number representation the multiplication by a signed power of two corresponds only to a bitshift.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' On reconfigurable hardware, this shift can be realized simply by appropriate wiring without the need for dedicated processing elements such as adders [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' The parameter S in (3) determines the number of vectors from the codebook to be used in forming the linear combination to approximate a row an of A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' It therefore directly controls the computational cost, as in computing the linear combination, exactly S − 1 additions are required.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' No multiplications, except by signed powers of two, are necessary due to the specific structure of the wiring matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' Therefore, the separate product of the decomposed matrices with the input vector y ≈ W (Cx) is much simpler to compute than calculating the product in (1) straightforwardly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' The total computational cost Cadd of a decomposition in (4) is given by the number of additions (or subtractions) required to form the linear combinations Cadd = IN(S − 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' (6) 2In [6] this choice is termed the self-designing codebook.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' It was found to work very well for a wide range of matrices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' Algorithms In this section we will briefly look at the state of the art for solving the optimization problem in (3) to obtain the wiring matrices and then introduce two improved novel algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' State-of-the-Art: Discrete Matching Pursuit The discrete matching pursuit (DMP) follows the matching pursuit approach to successively determine the wiring coefficients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' The algorithm can be summarized in the following key steps;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' for details see [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' Start with iteration s ← 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' Initialize ω ← 01×N 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' Update ω in at most a single component, such that ∥an − ωC∥2 is minimized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' Increment s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' If s ≤ S, go to step 2, otherwise the procedure terminates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' It is straightforward to show that the time complexity of the DMP algorithm for computing a single matrix factor scales with O(N 3S).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' Exponential Search Algorithm The row-wise optimization problem in (3) is NP-hard.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' However, for small S, reasonable matrix sizes and some careful optimization it can be solved in a tractable timeframe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' We limit the set of scaling factors to a finite set of signed powers of two (Aexp ⊂ {0, ±2Z}), as an exhaustive search over the whole set is infeasible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' As the search procedure has to be performed for each row of the target matrix individually, the time complexity for the computation of each wiring step is given by O(N S|Aexp|S).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' Generally, which and how many coefficients are included in the subset Aexp is a design parameter and needs to be adapted to each specific decomposition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' It depends primarily on two factors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' First, the current wiring step plays a crucial role.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' For each additional wiring layer, the error between each row of the target matrix and the approximated matrix decreases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' Hence, for any subsequent wiring step, smaller coefficients are needed to scale the rows of the newly found codebook matrix to appropriately approximate the residual error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' This also means that for high desired accuracy the coefficient set needs to be chosen large, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' to include also many small coefficients, to accurately approximate the error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' Furthermore, relative variations in the length of the row vectors of the target matrix require a larger coefficient set to compensate for differences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' Still, to keep the decomposition computationally feasible, the number of elements in Aexp needs to be chosen as small as possible, as the computational complexity scales exponentially in S with the product of the size of the coefficient set |Aexp| and N as base.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' A promising approach for further research is to adapt the coefficient set for each wiring step dynamically based on the current fidelity of the approximation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' The coefficient set may then be determined from the probability distribution of the likely entries of the wiring matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' Reduced-State Algorithm The runtime of the exponential algorithm for a matrix with N = 64 rows is on the order of an hour3, for larger matrices the runtime scales up accordingly and can become infeasible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' Hence, for some applications the computational burden of the exponential algorithm might consequently not be feasible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' A reasonable compromise between complexity and performance is desirable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' Unlike in DMP, we do not immediately update the components of the wiring vector for the reduced-state algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' Instead, we keep updating in each iteration a list of the M best vectors, which minimize (3) and select at the termination of the algorithm the vector with minimum error from the list.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' Specifically, we apply the following successive, greedy procedure for the optimization problem in (3): 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' Start with s ← 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' Initialize the set Ω with M all-zero vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' For each ω ∈ Ω find the set Ωm of M mutually distinct vectors ω ˜m with ˜m ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=', M} that minimize ∥an − ω ˜mC∥2 and differ from ω in at most a single component.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' Update the set Ω by selecting from �M m=1 Ωm the M distinct vectors ω with minimum ∥an − ωC∥2 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' Increment s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' If s ≤ S, go to step 2, else, continue 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' Return argmin ω∈Ω ∥an − ωC∥2 By tuning M, we are able to adjust the space of possible combinations that the algorithm explores.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' For each wiring step, we have to evaluate O(SN 3M 2) combinations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' Compared to DMP the complexity is increased by a factor of M 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' Note that for M = 1 the algorithm reduces to the DMP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' Numerical Evaluation In this section, we compare the performance of the proposed algorithms to the baseline DMP [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' We decompose matrices whose entries are drawn i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content='i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content='d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' from a Gaussian distribution with zero mean and unit variance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' Similar to DMP, the performance of the improved versions of the algorithm hardly depends on the distribution of the matrix elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' The algorithms are invariant to scaling of the variance, however it is crucial that for the exponential search algorithm the coefficient set Aexp is scaled appropriately as well, as to not compromise performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' Throughout the simulations, we select the coefficient set for the exponential search algorithm to Aexp = {±2−40, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content='., ±23}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' As a first experiment, we compare all three algorithms for fixed matrix sizes in Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' We choose matrices with N = 64 rows and vary the number of columns K 3For a multithreaded implementation in Python with Numba acceleration executed on an Intel i9-12900@2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content='40 GHz and parameters S = 3, Aexp = � ±2−40, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' , ±23� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' 0 100 200 300 400 500 600 700 800 Cumulative number of additions 0 20 40 60 80 100 120 SQNR [dB] 64x4 64x6 64x8 Figure 1: Performance comparison for matrices with 64 rows and different aspect ratios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' Matrices of dimension 64×4 are indicated by crosses, 64×6 is indicated by squares and 64×8 is indicated by triangles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' The solid lines refer to the exponential search algorithm (S = 3), the dashed lines to the DMP [7] (S = 2) and the dashed-dotted lines to the reduced state algorithm with memory size M = 10 and S = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' Results are averaged over 104 matrix entries for the exponential search algorithm and over 105 matrix entries for the other algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' from four to eight.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' Hence, we can compare the performance for different aspect ratios of the matrices4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' To quantify performance, we plot the tradeoff between distortion and computational cost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' The latter being measured by the number of cumulative additions Cadd required for a given wiring step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' As Figure 1 shows, for all three matrix sizes there is a performance gain by both proposed algorithms against DMP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' Further, for memory size M = 10, the reduced state algorithm performs only slightly worse than exhaustive search.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' For the first two wiring steps, the performance of all three algorithms is equal for a given matrix size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' This is due to the fact that for the first two steps we use DMP with S = 2 for an initial refinement of the codebook5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' Applying any of the 4LCC works best for matrices with an exponential aspect ratio, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' for K ≈ log2 N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' For square matrices it is beneficial to cut these into multiple tall matrices and decompose each slice independently, see [8] for details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' 5Using any of the novel algorithms with S = 2 is possible as well with very similar performance, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' a slight increase in SQNR by 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content='2 dB to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content='5 dB for the novel algorithms and matrix sizes considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' 0 100 200 300 400 500 600 700 800 Cumulative number of additions 0 10 20 30 40 50 60 70 80 SQNR [dB] Increasing M (2, 5, 10, 50) DMP Exponential Search Reduced State (Variable M) Figure 2: Performance comparison for different memory sizes M of the reduced state algorithm of a 64 × 6 matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' The solid line refers to the exponential search algorithm (S = 3), the dashed line to the DMP [7] (S = 2) and the dashed-dotted lines to the reduced state algorithm with 4 different memory sizes and S = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' Results are averaged over 104 matrix entries for the exponential search algorithm and over 105 matrix entries for the other algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' algorithms with S ≥ 3 directly to the initial codebook C0 = IN×K would lead to degraded performance for the first few wiring steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' Instead it is beneficial to set S = 2 to allow for more frequent updates of the codebook in the beginning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' From empirical investigations it seems that two wiring iterations with S = 2 are most beneficial for the overall performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' As the next experiment, we compare the performance of the reduced state algorithm for different choices of the memory parameter M for given matrix size of 64 × 6 in Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' From the figure we observe that even for small M the reduced state algorithm offers a noticeable performance gain over DMP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' As M grows, the reduced state algorithm approaches the performance of the exponential search.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' The large advantage of the reduced state algorithm is that the computation time is reduced drastically6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' For M = 1 the reduced state algorithm reduces to DMP and both lines 6For the considered matrix size the execution time differs from an hour for the exponential algorithm to a few seconds for the reduced state algorithm in practice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' 0 100 200 300 400 500 600 700 800 Cumulative number of additions 0 20 40 60 80 100 120 SQNR [dB] Increasing S (3, 4, 8) DMP Exponential search (S = 3) Reduced State (S = 3, 4, 8) Figure 3: Performance comparison for different choices of the parameter S of a matrix with dimension 64 × 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' The solid line refers to the exponential search algorithm (S = 3), the dashed line to the DMP [7] (S = 2) and the dashed-dotted lines to the reduced state algorithm with different choices of the parameter S and M = 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' Results are averaged over 104 matrix entries for the exponential search algorithm and over 105 matrix entries for the other algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' coincide for any given matrix size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' Table 1 lists the relative performance gains over DMP for various matrix sizes and configurations of the algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' Practical Considerations for the Choice of S Figure 3 shows the performance of the reduced state algorithm for varying S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' Due to the exponentially growing complexity in S, the exponential algorithm is not feasible for S > 3, except for very small matrices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' We can observe, that by choosing S = 4 for the reduced state algorithm, we approximately achieve the same distortion-cost tradeoff as for the exponential algorithm with S = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' For choosing S even larger the gains increase likewise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' However for a practicable implementation S should not be chosen arbitrarily.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' In [8], the performance of DMP is validated in an implementation on reconfigurable hardware with S = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' This means that on an FPGA exactly N adders are required per wiring matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' With the inputs depending only on the outputs of the previous wiring matrix, Table 1: Relative average gain in terms of SQNR of the novel algorithms over the baseline DMP algorithm with S = 2 (For at least 8 bit signed integer accuracy (10 log(SQNR) ≥ 47 dB)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' Results are averaged over 104 matrix entries for the exponential search algorithm and over 105 matrix entries for the other algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' Exponential Reduced State search S = 3 S = 4 S = 8 Matrix size S = 3 M = 5 M = 10 M = 5 M = 10 M = 5 M = 10 16 × 2 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content='8 % 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content='4 % 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content='4 % 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content='1 % 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content='8 % 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content='7 % 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content='9 % 16 × 4 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content='5 % 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content='0 % 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content='5 % 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content='8 % 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content='7 % 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content='4 % 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content='4 % 32 × 4 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content='7 % 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content='5 % 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content='9 % 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content='0 % 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content='2 % 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content='4 % 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content='3 % 32 × 6 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content='3 % 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content='5 % 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content='0 % 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content='7 % 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content='5 % 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content='4 % 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content='0 % 64 × 4 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content='9 % 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content='5 % 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content='8 % 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content='0 % 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content='8 % 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content='5 % 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content='8 % 64 × 6 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content='9 % 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content='6 % 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content='4 % 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content='6 % 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content='5 % 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content='6 % 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content='0 % the decomposition is well suited for parallel execution and pipelining [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' Due to the greedy, step-wise nature of DMP S > 2 does not offer significant performance gains over S = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' Both novel algorithms behave differently.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' From an implementation point of view, S = 3 is even more suitable than S = 2 for an effective implementation in hardware due to the availability of efficient adders with three inputs [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' Interestingly, on modern FPGAs, these adders do not require more hardware resources, in terms of Lookup-Tables (LUTs), than an adder with two inputs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' Any powers of two and three (S = 4, 8, 9, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' ) can be realized efficiently as well by the use of adder trees.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' However, it is questionable if choosing S > 4 is beneficial, as performance gains over S = 3 or S = 4 are small and the desired fidelity of the approximation cannot be chosen in a fine granularity anymore7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' Conclusion In this paper, we have proposed two new algorithms for LCC, a framework for the lossy compression of multidimensional linear functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' While the exponential search algorithm shows the best performance, it is generally infeasible especially for large matrices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' The proposed reduced-state algorithm, performs close to exponential search at a fraction of the computational complexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' The time complexity of the decomposition compared to the baseline algorithm from earlier works is only mildly increased, while the performance gains over the baseline DMP algorithm are on the order of at least 10 %.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' References [1] Jason Thong and Nicola Nicolici, “An optimal and practical approach to single constant multiplication,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' 30, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' 9, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' 1373–1386, Sep 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' [2] Yevgen Voronenko and Markus P¨uschel, “Multiplierless multiple constant multiplication,” ACM Transactions on Algorithms, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' 3, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' 2, May 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' 7For a matrix of dimension 64 × 4 the reduced state algorithm with S = 8 improves the SQNR approximately by 70 dB per matrix factor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' [3] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' Boullis and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' Tisserand, “Some optimizations of hardware multiplication by constant matrices,” in Proceedings 2003 16th IEEE Symposium on Computer Arithmetic, 2003, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' 20–27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' [4] Levent Aksoy, Paulo Flores, and Jose Monteiro, “A novel method for the approximation of multiplierless constant matrix vector multiplication,” EURASIP Journal on Embedded Systems, , no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' 12, May 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' [5] Ralf R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' M¨uller, Bernhard G¨ade, and Ali Bereyhi, “Efficient matrix multiplication: The sparse power-of-2 factorization,” in 2020 Information Theory and Applications Workshop (ITA), 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' 1–6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' [6] Ralf R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' M¨uller, Bernhard G¨ade, and Ali Bereyhi, “Linear computation coding,” 2021, arXiv:2102.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content='00398.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' [7] Ralf R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' M¨uller, Bernhard M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' G¨ade, and Ali Bereyhi, “Linear computation coding: A framework for joint quantization and computing,” Algorithms, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' 15, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' 7, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' [8] Alexander Lehnert, Philipp Holzinger, Simon Pfenning, Ralf R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' M¨uller, and Marc Reichenbach, “Most ressource efficient matrix vector multiplication on FPGA,” IEEE Access, 2022, Early Access.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' [9] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' Booth, “A signed binary mutliplication technique,” The Quarterly Journal of Mechanics and Applied Mathematics, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' 4, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' 236 – 240, Jan 1951.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' [10] Simon Foucart and Holger Rauhut, A Mathematical Introduction to Compressive Sensing, Springer New York, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' [11] James M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' Simkins and Brian D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} +page_content=' Philofsky, “Structures and methods for implementing ternary adders/subtractors in programmable logic devices,” Sep 2007, US Patent 7,274,211.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'} diff --git a/_9E5T4oBgHgl3EQfSQ7q/content/tmp_files/2301.05528v1.pdf.txt b/_9E5T4oBgHgl3EQfSQ7q/content/tmp_files/2301.05528v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..aba2900d784e68b8279e68dfe9b324b2531e6eda --- /dev/null +++ b/_9E5T4oBgHgl3EQfSQ7q/content/tmp_files/2301.05528v1.pdf.txt @@ -0,0 +1,725 @@ +Harold Costales et al., International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 7076 - 7081 +7076 + + + +ABSTRACT + +Rice is the number one staple food in the country, as this +serves as the primary livelihood for thousands of Filipino +households. However, as the tradition continues, farmers are +not familiar with the different types of rice leaf diseases that +might compromise the entire rice crop. The need to address +the common bacterial leaf blight in rice is a serious disease +that can lead to reduced yields and even crop loss of up to +75%. This paper is a design and development of a rice leaf +disease detection mobile application prototype using an +algorithm used for image analysis. The researchers also used +the Rice Disease Image Dataset by Huy Minh Do available at +https://www.kaggle.com/ +to +train +state-of-the-art +convolutional neural networks using transfer learning. +Moreover, we used image augmentation to increase the +number of image samples and the accuracy of the neural +networks as well. + +Key words : deep neural networks, convolutional neural +networks, agriculture, transfer learning, rice diseases + +1 INTRODUCTION + +Across the 20th century, our prospects of engineering have +rapidly changed. It was once thought of as impossible for +everyone, as all we had seen on earth showed us a manual +process that is uneasy for us; we would recognize as +technology. However, in the 21st century, our machines +continue to improve in what we conceive "Artificial +Intelligence," which makes it more even feasible for devices +to learn from experience, adjust to a high new level input and +perform human-like tasks. Methods such as the use of +convolutional neural networks may hold the key to +developing software applications, particularly in the field of +agriculture. + +Portability, efficiency, and affordability of agricultural +technology and information continue to be a major +interference for improving agricultural productivity among +small enterprises in the country. The Department of +Agriculture, in partnership with the Department of +Information and Communications Technology (DICT), has +furnished a possible solution to enhance this kind of situation. + + +Recently, they have launched the HACKATON to address +further innovations that integrate software applications and +systems into the development of agricultural technology, +especially to farmers, which have been conducted nationwide. +They have currently established outstanding software +applications and systems to aid the farmers for better +understanding when it comes to e-agriculture. + +This paper emphasizes the role of ICT and the functional +benefaction of software development to agriculture in the +Philippines. Data from Rice Disease Image Dataset by Huy +Minh Do available at https://www.kaggle.com are used to +train data using a convolutional neural network algorithm +using transfer learning. Moreover, we used image +augmentation to increase the number of image samples and +the neural network accuracy as well. It turns out that the +modified neural networks achieved a state-of-the-art result +with an accuracy closed to human-level performance. The +researchers have developed a prototype application for Rice +Leaf Disease Detection using Convolutional Neural Networks +(CNNs) for farmers in the local community. This application +will primarily install and use the said application on their +smartphone, simply took a picture of the infected area of the +rice leaf. Then the app gives a percentage of accuracy of rice +disease infected in rice leaf. + +Farmers were also able to grasp the knowledge of the different +rice leaf diseases because of the information that the +application is providing. This paper recommends the adoption +of such software applications by institutions such as the +Department of Agriculture to improve provision for +appropriate decision making by agricultural farmers in the +country. + +Related studies on rice leaf disease detection using neural +networks have been on-trend. According to [1] , "the use of +computational intelligence-based techniques has proven +successful in recent times for automated rice-disease detection +(p.21)". Another related study stated that [3] "an automated +system could have a feature on detection of diseases present in +a rice leaf using color image analysis". Furthermore, [4] cited +that "the management of perennial fruit crops requires close +monitoring especially for the management of diseases that can +affect production significantly and subsequently the +post-harvest life (p. 1)". Corollary to the contexts presented, +the researchers came up with a rice disease detection that + +Development of a Prototype Application for Rice Disease +Detection Using Convolutional Neural Networks +Harold Costales1, Arpee Callejo-Arruejo2, Noel Rafanan3 +1 University of Northern Philippines, Philippines, hlcostales@unp.edu.ph +2 University of Northern Philippines, Philippines, arpee.callejo@unp.edu.ph +3 University of Northern Philippines, Philippines, noel.rafanan@unp.edu.ph + ISSN 2347 - 3983 +Volume 8. No. 10, October 2020 +International Journal of Emerging Trends in Engineering Research +Available Online at http://www.warse.org/IJETER/static/pdf/file/ijeter708102020.pdf +https://doi.org/10.30534/ijeter/2020/708102020 + + + + +WARSEHarold Costales et al., International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 7076 - 7081 +7077 + + +integrates the use of an algorithm, specifically CNNs and an +image analysis, for immediate monitoring of the rice crops. + +Thus, this mobile application is needed to bring virtual IT +experts into the field to determine, examine, and to give +accurate results (on rice leaf diseases) that would inform the +farmers what to do next without any further expenses. +1.1 Objectives of the Study +This study aimed to design and develop a mobile application +for rice disease detection. Specifically, it sought to answer the +following objectives: +1. Propose an application to address the problem, issues +and challenges encountered; +2. Identify an appropriate algorithm for the application; and +3. Features for the Mobile application. + +1.2 Conceptual Framework + + + +Figure 1: Paradigm of the Study + +Figure 1 shows researcher used the input-process-output (IPO) +model as a guide in conducting the study. The Application is +proposed for the problems and issues encountered, +appropriate algorithm to be incorporated, and features for the +mobile application are the input of the study (input), which +served as the guide in designing the application. The software +development methodology, which is the Feature-Driven +Development Methodology, is the process for the +"Development of a Prototype Application for Rice Disease +Detection Using Convolutional Neural Networks"(output). + +2 METHODS + +This part presents the algorithm and the software development +methodology used in the development of the mobile +application. + +For the algorithm, the researchers chose Convolutional Neural +Networks (CNNs) for the mobile application. As stated by +[12], technological advancements in Computer Vision and +Deep Learning a subset of the Artificial Intelligence gains +more importance in the last decade especially in the field of +object detection using Convolutional Neural Networks (CNN) +became popular in many fields to address the current societal +issues. +2.1 Convolutional Neural Networks Deep Learning +Algorithm for the Prototype Mobile App + +A Convolutional Neural Network (CNN) is a deep learning +algorithm in which images serve as input to a learnable +process to analyze various aspects of the image and be able to +differentiate one from the other. A rice leaf is an input, and +images of diseases of rice leaves are stored in the database to +match the input. As cited by [11], many researchers use deep +learning method to classify an image automatically. The +purpose of classification is to arrange objects that will be +observed into categories that have been defined. Furthermore, +[14] cited that the detection technique assisted by simple +image processing in the evidence is very interesting to be +further researched. The researcher also utilized the method of +[16] for data processing for the realization of the study. + +Convolutional Neural Networks (CNNs) is the most +appropriate model of Rice Disease Image Dataset since it uses +image analysis. It was proven by [6] that convolutional neural +networks (CNNs) have used in the field of computer vision for +decades. Moreover, [5] proposes a convolutional autoencoder +deep learning framework to support unsupervised image +features learning for lung nodule through unlabeled data, +which only needs a small amount of labeled data for efficient +feature learning. Below are the steps on how the researchers +came up with the integration of the CNNs for the developed +application following the process of the CNNs in the study of +[6]. + + + +Figure 2. A Typical Architecture of CNNs by Tajbakhsh +(2016) + + +Figure 2 presents a typical architecture of a CNN. It consists +of an input layer (images), convolutional layer, pooling layer, +a fully connected layer, a classifier and an output layer. + +The convolutional layer is the most important layer in the +CNN hence the name Convolutional Neural Networks. It acts +as an automatic feature that extracts meaningful features of +the object in the image. In mathematics, convolution is the +operation of two functions to produce a third modified +function. + + + (1) + +WNPOI +PROCESS +OUIPUTAplicationcanbeproposedtoaddress +Development +icationttheproblem,issues +Methodology +eafDiseasepuoue +·DevelopanOverallencounterea +Model +CIgorithmforthe +·BuildaFeatureListdevelopedapplication; +PlanbyFeatureand +·DesignbyFeatureeFeaturesofthe +·BuildbyFeatureproposedsystembird +Prird +sunset +Psunset +dog +cat +Pol +o +convolution+ +maxpooling +vec +nonlinearity +convolution+pooling layers +fully connected layers +Nxbinaryclassification(f*g)(t) ≤ +f(T)g(t - T) dT +00Harold Costales et al., International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 7076 - 7081 +7078 + + + +In the context of CNNs, convolutional operation is simply a +matrix operation, specifically matrix multiplication and +addition. The byproduct of this operation called the feature +map. + +The pooling layer is used to down sample the feature map to +reduce computational complexity. It is common in the +literature to add the pooling layer after the convolution layer. +There are two main types of pooling the max pooling and the +average pooling. In the literature max pooling is preferred. It +calculates the maximum value for each patch of the feature +map. + + + (2) + +The fully connected layer, abbreviated FC is responsible for +vectorizing the features from the convolution and pooling +layers. This transforms the multi-dimensional feature map +into a row vector to be fed into a classifier. + +The classifier is responsible in outputing the probibilities of +the output layer. There are two commonly used activation +functions used in classifiers, the sigmoid activation function +and the softmax activation function. Since the problem of +detecting disease on rice leaf images is a multi-class +classification problem, the appropriate function to be used is +the softmax activation function. + + + + (3) + + +Another is the use of a software development methodology +which helped the researchers identify the problems, created an +overview of the concept for the mobile application and built +the application. + +2.2 Software Development Methodology + +The researcher used the Feature-driven Development (FDD) +under the family of Agile methodology for the software +development because it is the most suitable and it has a +customer-centric process. Its iterative feature allowed the +researchers to develop the application while it is being tested. +In the study of [7] stated that, “the iterative feature of the +methodology allowed the proponents to capitalize on the +learning that was accumulated during the development of +earlier parts or versions of the solution”. The figure below +presents the phases of FDD methodology. + +Figure 3: Feature-Driven Development Methodology + +Figure +3 +shows +the +Feature-Driven +Development +Methodology which has five phases, which include the (a) +Development of an Overall Model, (b) Build a Feature List, +(c) Plan by Feature, (d) Design by Feature, and (e) Build by +Feature. The phases of development are presented as follows. + +2.2.1 Develop Overall Model + +A stage where the researchers created a fundamental +foundation of the application and the variables it required. +This stage also identified the initial development of the +application. The researchers designed the application's overall +model and served it as a guideline in developing the +application. As the primary objective, the researchers develop +the mobile app for the farmers for the early detection of rice +diseases of rice-crops. + +2.2.2 Build Feature List + +The researchers created concrete plans for each feature of the +mobile application. The researchers created a prototype of the +user interfaces for the conceptualization of the mobile +application. + +2.2.3 Plan by Feature + +The researchers created concrete plans for each feature of the +mobile application. The researchers created a prototype of the +user interfaces for the conceptualization of the mobile +application. + +2.2.4 Design by Feature + +The researchers designed the features individually using the +needed preferences. To fulfill this stage, the researchers +designed the identified features with the help of the needed +tools and processes. + +2.2.5 Build by Feature +The last stage of the methodology wherein the researchers +created the planned and designed features for the application. +With the previous step as a guide, the researchers turned the +details of the features into a working application, with the help +of the tools and processes. After an inspection via a test run by +the researchers, the researchers created the planned and +designed features for the application. + + + +Mf(p) =max(f(q)-dmax(p-q)) +52berj +1xa7Modeling +Initial +Model +Storming +DevelopanOverall +Bulld a Features +Planby +Designby +Buildby +Model +List +Feature +Feature +Feature +(moreshape +Alistoffeatures +A developmentplan +Adesign package +Completed +thancontant) +grouped into sets +Class owners +client-valued +and subjectareas +Features setowners +function +Anobjectmodel +(addmorecontent ++notes +to the object model)Harold Costales et al., International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 7076 - 7081 +7079 + + +3 RESULTS +3.1 Prototype Mobile Application for Rice Disease +Detection + + +Figure 4: The Prototype of the Mobile Application + +Figure 4 shows the rice disease detection of the mobile +application. The researchers designed and develop a mobile +application to assist the farmers in disease detection. It aims to +help the farmers who are the backbone of the country to +increase rice crop productivity. The lack of knowledge of +farmers in the detection of rice diseases made the researchers +conceptualize the integration of the field of agriculture and +medicine in detecting diseases of rice crops. Also, Duterte's +Administration supports Research and Development along +with agriculture. It is stated in the Philippine Development +Plan (PDP) 2017-2022 that there is a need to conduct +researches in the field because of rice-crop yield losses. Thus, +the PDP 2017-2022 established a plan to support the +initiatives of the agriculture sector along with R&D. + +Moreover, the application is different from other similar apps +available in the market because it was developed specifically +for the Philippine agriculture setting. The application will be +stored with rice disease data exclusively for agriculture in the +northern Philippines and further validated by pathologists as +the researchers continue to gather data that will be for the +database of the system. +3.2 Convolutional Neural Networks Deep Learning +Algorithm for the Prototype Application + +The researchers utilized an Image Processing typical machine +learning workflow in the development of the model which +consists of the following Data Acquisition, Data Preparation, +and Training and Validation. As cited by [10] Image +processing is the method of using different manipulation +techniques and algorithms so that a desired features can be +extracted such as morphology, color and texture from an +image. Another study stated that [13] CNN proved to be best +among the results in terms of accuracy when compared to +other classifiers + +3.2.1. Image Acquisition + +The +dataset +by +Huy +Minh +Do +available +at +https://www.kaggle.com/ containing 1,260 labeled rice leaf +images was used for creating the model. The images were +labeled as Leaf Blast, Brown Spot, and Hispa, which are the +(3) three rice leaf diseases that the model will try to classify. + +3.2.2. Image Preprocessing + +The images were downscaled to 500 x 500 pixels to reduce +computational complexity. Image dataset were split into train +dataset (80% of the entire samples) and validation dataset +(20% of the entire samples). Image augmentation such as +flipping, shearing, and rescaling in order to increase dataset +samples as neural networks are data crunchers. + +3.2.3. Training and Validation + +To fast track the training process the researchers employed +transfer learning. Transfer learning, in general, is the process +of taking a previously trained model used in a problem and +apply in to another related problem. It is referring to the +knowledge transfer from pretrained network in one domain to +your own problem in a different domain. .[8] + +The researcher used MobileNet 2 [9] as the base model. It is a +state-of-the-art CNN model trained from ImageNet and one of +the winners of the ImageNet Large Scale Visual Recognition +Challenge (ILSVRC), a prestigious computer vision +competition. Since the target dataset is small and somewhat +different from the dataset where MobileNet 2 was trained, the +top layer of the network needs to be frozen. + +First Iteration +Base model mobile net Version 2.0 +Hyper-parameters: +Top layer = false +Initialweights + + + +.a58%12:57.PM +agDetect +blast +50.13% +brownspol +bacterial_leaf_blight +0.14%Harold Costales et al., International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 7076 - 7081 +7080 + + +Second Iteration +Base model mobile net Version 2.0 +Hyper-parameters: +Top layer = false +Initialweights = imagenet +Loss = categorical cross entropy +Metrics = accuracy +Optimization = ADAM +EPOCHS= 10 +TRAINABLE = FALSE +Result= 97% trained data set, 94% validation +Suffered from overfitting + +Third Iteration +Base model mobile net Version 2.0, +image augmentation +Hyper-parameters: +Top layer = false +Initialweights = imagenet +Loss = categorical cross entropy +Metrics = accuracy +Optimization = ADAM +EPOCHS= 20 +TRAINABLE = true +Result= 98.9% trained data set, 98% validation +Overfitting was solved + +The third iteration proved that the process for the image +analysis on the training and testing for the data sets was +validated with an accuracy rate of 98% from 94% from the +second iteration. This proved that the CNNs algorithm of the +mobile application was proven for use. +3.3 Features of the Prototype Mobile Application + +The features of the application include (1) real-time detection, +(2) artificial intelligence, and (3) image analysis. + +3.3.1 Real-time Detection + +One of the features of the mobile application is a real-time +detection. The application helps in the identification of the +rice leaf diseases using convolutional neural networks that +match the input data and the data stored in the database of the +application. + +The embed camera of the mobile application can detect the +diseases in real-time. This feature helps farmers to detect the +diseases even without the instruction of plant pathologists. + +3.3.2 Artificial Intelligence + +Experts in the field of Agriculture are marginal, especially in +rice leaf disease detection. This feature of the mobile +application replicates the knowledge about rice leaf disease +detection in the field, which is one of the features of the +mobile application. As data grows on the database of the +mobile application, the more accurate results it can give. + +3.3.3 Image Analysis + +Another feature is Image Analysis. This feature uses the +CNNs algorithm aspects and features of images were stored, +enabling the mobile application to analyze the rice leaf for +disease detection through the following steps of the algorithm. +4 CONCLUSION +In summary, the researchers have developed a mobile +application, which could help the agricultural sector. +Specifically, the researchers conclude that the mobile +application will help in the realization of the high-yield of rice +crops against rice diseases for preventive measures. Thus, this +study is helpful to the country, particularly the agricultural +sector. +5 RECOMMENDATION + +The +researchers +came +up +with +the +following +recommendations: +(1) The output of the Mobile Application will have its +validation of experts in rice disease for accuracy of the +information from the mobile application, (2) the mobile +application will have a series of tests for the implementation +for future use. Lastly, (3) the researchers highly recommend +that the application shall be introduced to the Department of +Agriculture for dissemination. + +ACKNOWLEDGEMENT + +The researchers would like to thank the following people: the +active UNP Research Office- Science and Technology +Coordinator, Prof. Redentor S. Rojas, the ever-supportive +UNP Research Director, Dr. Edelyn Cadorna and the dynamic +UNP President, Dr. Erwin F. Cadorna for pushing us to +enhance our research knowledge and capabilities. Also, the +researchers would like to thank the IMPACT HACKATON +2050 for organizing the IMPACT HACKATON 2019, where +they conceptualized this research study. Above all, thanks to +Almighty God for all the blessings for our families and the +society. +REFERENCES +1. E. G. Emberda, D. L. Dumas, and T. M. Rentillo, +Forecasting Coconut Yield: A Comparative Study +between the Use of Traditional Forecasting and Feed +Forward +Back +Propagation +Artificial +Neural +Network, UIC Research Journal, 18(2), 2012. +2. K. B. Francisco, J. D. Concepcion, A. R. Mojica, and , S. +B Montes. Philippines First: An Edutainment 3d +Game +For +Android +Mobile +Platform +Using +Separating Axis Theorem (Sat) Algorithm, Innovatus, +2(1). 2019. +3. Pugoy, Reinald Adrian D. L. and Mariano Vladimir Y. +Automated rice leaf disease detection using color image + +Harold Costales et al., International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 7076 - 7081 +7081 + + +analysis, +Proc. +SPIE +8009, +Third +International +Conference on Digital Image Processing. 2011. +4. P. Revathi and M. Hemalatha. Advance computing +enrichment evaluation of cotton leaf spot disease +detection using Image Edge detection, 2012 Third +International Conference on Computing, Communication +and Networking Technologies. 2012. +5. Talingdan, J. A., & Llanda, C. R., Assessment of the +effectiveness of learning theories using gamified +Android app in teaching C programming. Int. Proc. +IOP Conf. Ser. Mater. Sci. Eng, 482-1,1-6, 2019. +6. S. Chen, B. Mulgrew, and P. M. Grant. A clustering +technique +for +digital +communications +channel +equalization using radial basis function networks,, +IEEE Trans. on Neural Networks, 4, 570-578, 1993. +7. N. Tajbakhsh. Convolutional Neural Networks for +Medical Image Analysis: Full Training or Fine +Tuning?, IEEE Transactions on Medical Imaging, 35-5, +1299-1312, 2016. +8. A. Aitken and V. Ilango A Comparative Analysis of +Traditional Software Engineering and Agile Software +Development, 46th Hawaii International Conference on +System Sciences, Wailea, Maui, HI, 4751-4760, 2013. +9. M. Elgendy, Deep Learning for Vision Systems. +Manning Publications, 2019. +10. Olga Russakovsky, et al. ImageNet Large Scale Visual +Recognition +Challenge, +International +Journal +of +Comput. Vis. 115. 1-42, 2015. +11. W. Eustaquio and J. Dioses Jr., Artificial Neural +Network For Classification Of Immature And +Mature +Coffee +Beans +Using +RGB +Values, +International Journal of Emerging Technologies in +Engineering +Research, +9-4, +2020. +https://doi.org/10.30534/ijeter/2020/41882020 +12. Devi Devani, Alethea Suryadibrata, Julio Christian, +Young, Implementation of Siamese Convolutional +Neural Network from Cell Images for Malaria +Disease +Identification. +International +Journal +of +Advanced Trends in Computer Science and Engineering, +9-4, 2020. https://doi.org/10.30534/ijatcse/2020/0494 +13. Handayani, Indri, Supriyanti, Dedeh, Maulani, Giandari, +Liutfani, Ninda, Real Time Multi-Scale Facial Mask +Detection and Classification Using Deep Transfer +Learning +Techniques. +International +Journal +of +Advanced Trends in Computer Science and Engineering, +9-4, +2020. +https://doi.org/10.30534/ijatcse/2020/33942020 +14. Simhadri Chinna Gopi et al., Fuzzy Based Classification +of X-Ray Images with Convolution Neural Network, +International Journal of Emerging Trends in Engineering +Research, +8(8), +4433 +- +4436 +, +2020. +https://doi.org/10.30534/ijeter/2020/63882020 +15. Fitria Hidayanti et al., Upper Stomach Disorder +Detection System using Backpropagation Artificial +Neural Network, International Journal of Emerging +Trends in Engineering Research, 8(8), 4426 - 4432 , +2020. https://doi.org/10.30534/ijeter/2020/62882020 +16. Lamarca, Bryan Irvin J, et al, The Development of a +Performance Appraisal System Using Decision Tree +Analysis and Fuzzy Logic, International Journal of +Intelligent Engineering and Systems, 11-4, 2018. DOI: +10.22266/ijies2018.0831.02 + diff --git a/_9E5T4oBgHgl3EQfSQ7q/content/tmp_files/load_file.txt b/_9E5T4oBgHgl3EQfSQ7q/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..5cb5876cf859215754b75c878607b13fa83b7e54 --- /dev/null +++ b/_9E5T4oBgHgl3EQfSQ7q/content/tmp_files/load_file.txt @@ -0,0 +1,315 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf,len=314 +page_content='Harold Costales et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=', International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 7076 - 7081 7076 \uf020 ABSTRACT Rice is the number one staple food in the country, as this serves as the primary livelihood for thousands of Filipino households.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' However, as the tradition continues, farmers are not familiar with the different types of rice leaf diseases that might compromise the entire rice crop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' The need to address the common bacterial leaf blight in rice is a serious disease that can lead to reduced yields and even crop loss of up to 75%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' This paper is a design and development of a rice leaf disease detection mobile application prototype using an algorithm used for image analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' The researchers also used the Rice Disease Image Dataset by Huy Minh Do available at https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content='kaggle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content='com/ to train state-of-the-art convolutional neural networks using transfer learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Moreover, we used image augmentation to increase the number of image samples and the accuracy of the neural networks as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Key words : deep neural networks, convolutional neural networks, agriculture, transfer learning, rice diseases 1 INTRODUCTION Across the 20th century, our prospects of engineering have rapidly changed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' It was once thought of as impossible for everyone, as all we had seen on earth showed us a manual process that is uneasy for us;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' we would recognize as technology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' However, in the 21st century, our machines continue to improve in what we conceive "Artificial Intelligence," which makes it more even feasible for devices to learn from experience, adjust to a high new level input and perform human-like tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Methods such as the use of convolutional neural networks may hold the key to developing software applications, particularly in the field of agriculture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Portability, efficiency, and affordability of agricultural technology and information continue to be a major interference for improving agricultural productivity among small enterprises in the country.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' The Department of Agriculture, in partnership with the Department of Information and Communications Technology (DICT), has furnished a possible solution to enhance this kind of situation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Recently, they have launched the HACKATON to address further innovations that integrate software applications and systems into the development of agricultural technology, especially to farmers, which have been conducted nationwide.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' They have currently established outstanding software applications and systems to aid the farmers for better understanding when it comes to e-agriculture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' This paper emphasizes the role of ICT and the functional benefaction of software development to agriculture in the Philippines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Data from Rice Disease Image Dataset by Huy Minh Do available at https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content='kaggle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content='com are used to train data using a convolutional neural network algorithm using transfer learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Moreover, we used image augmentation to increase the number of image samples and the neural network accuracy as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' It turns out that the modified neural networks achieved a state-of-the-art result with an accuracy closed to human-level performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' The researchers have developed a prototype application for Rice Leaf Disease Detection using Convolutional Neural Networks (CNNs) for farmers in the local community.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' This application will primarily install and use the said application on their smartphone, simply took a picture of the infected area of the rice leaf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Then the app gives a percentage of accuracy of rice disease infected in rice leaf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Farmers were also able to grasp the knowledge of the different rice leaf diseases because of the information that the application is providing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' This paper recommends the adoption of such software applications by institutions such as the Department of Agriculture to improve provision for appropriate decision making by agricultural farmers in the country.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Related studies on rice leaf disease detection using neural networks have been on-trend.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' According to [1] , "the use of computational intelligence-based techniques has proven successful in recent times for automated rice-disease detection (p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content='21)".' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Another related study stated that [3] "an automated system could have a feature on detection of diseases present in a rice leaf using color image analysis".' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Furthermore, [4] cited that "the management of perennial fruit crops requires close monitoring especially for the management of diseases that can affect production significantly and subsequently the post-harvest life (p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' 1)".' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Corollary to the contexts presented, the researchers came up with a rice disease detection that Development of a Prototype Application for Rice Disease Detection Using Convolutional Neural Networks Harold Costales1, Arpee Callejo-Arruejo2, Noel Rafanan3 1 University of Northern Philippines, Philippines, hlcostales@unp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content='ph 2 University of Northern Philippines, Philippines, arpee.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content='callejo@unp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content='ph 3 University of Northern Philippines, Philippines, noel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content='rafanan@unp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content='ph ISSN 2347 - 3983 Volume 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' 10, October 2020 International Journal of Emerging Trends in Engineering Research Available Online at http://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content='warse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content='org/IJETER/static/pdf/file/ijeter708102020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content='pdf https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content='30534/ijeter/2020/708102020 WARSEHarold Costales et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=', International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 7076 - 7081 7077 integrates the use of an algorithm, specifically CNNs and an image analysis, for immediate monitoring of the rice crops.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Thus, this mobile application is needed to bring virtual IT experts into the field to determine, examine, and to give accurate results (on rice leaf diseases) that would inform the farmers what to do next without any further expenses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content='1 Objectives of the Study This study aimed to design and develop a mobile application for rice disease detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Specifically, it sought to answer the following objectives: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Propose an application to address the problem, issues and challenges encountered;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Identify an appropriate algorithm for the application;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Features for the Mobile application.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content='2 Conceptual Framework Figure 1: Paradigm of the Study Figure 1 shows researcher used the input-process-output (IPO) model as a guide in conducting the study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' The Application is proposed for the problems and issues encountered, appropriate algorithm to be incorporated, and features for the mobile application are the input of the study (input), which served as the guide in designing the application.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' The software development methodology, which is the Feature-Driven Development Methodology, is the process for the "Development of a Prototype Application for Rice Disease Detection Using Convolutional Neural Networks"(output).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' 2 METHODS This part presents the algorithm and the software development methodology used in the development of the mobile application.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' For the algorithm, the researchers chose Convolutional Neural Networks (CNNs) for the mobile application.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' As stated by [12], technological advancements in Computer Vision and Deep Learning a subset of the Artificial Intelligence gains more importance in the last decade especially in the field of object detection using Convolutional Neural Networks (CNN) became popular in many fields to address the current societal issues.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content='1 Convolutional Neural Networks Deep Learning Algorithm for the Prototype Mobile App A Convolutional Neural Network (CNN) is a deep learning algorithm in which images serve as input to a learnable process to analyze various aspects of the image and be able to differentiate one from the other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' A rice leaf is an input, and images of diseases of rice leaves are stored in the database to match the input.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' As cited by [11], many researchers use deep learning method to classify an image automatically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' The purpose of classification is to arrange objects that will be observed into categories that have been defined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Furthermore, [14] cited that the detection technique assisted by simple image processing in the evidence is very interesting to be further researched.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' The researcher also utilized the method of [16] for data processing for the realization of the study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Convolutional Neural Networks (CNNs) is the most appropriate model of Rice Disease Image Dataset since it uses image analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' It was proven by [6] that convolutional neural networks (CNNs) have used in the field of computer vision for decades.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Moreover, [5] proposes a convolutional autoencoder deep learning framework to support unsupervised image features learning for lung nodule through unlabeled data, which only needs a small amount of labeled data for efficient feature learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Below are the steps on how the researchers came up with the integration of the CNNs for the developed application following the process of the CNNs in the study of [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' A Typical Architecture of CNNs by Tajbakhsh (2016) Figure 2 presents a typical architecture of a CNN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' It consists of an input layer (images), convolutional layer, pooling layer, a fully connected layer, a classifier and an output layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' The convolutional layer is the most important layer in the CNN hence the name Convolutional Neural Networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' It acts as an automatic feature that extracts meaningful features of the object in the image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' In mathematics, convolution is the operation of two functions to produce a third modified function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' (1) WNPOI PROCESS OUIPUTAplicationcanbeproposedtoaddress Development icationttheproblem,issues Methodology eafDiseasepuoue ·DevelopanOverallencounterea Model CIgorithmforthe ·BuildaFeatureListdevelopedapplication;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' PlanbyFeatureand ·DesignbyFeatureeFeaturesofthe ·BuildbyFeatureproposedsystembird Prird sunset Psunset dog cat Pol o convolution+ maxpooling vec nonlinearity convolution+pooling layers fully connected layers Nxbinaryclassification(f*g)(t) ≤ f(T)g(t - T) dT 00Harold Costales et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=', International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 7076 - 7081 7078 In the context of CNNs, convolutional operation is simply a matrix operation, specifically matrix multiplication and addition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' The byproduct of this operation called the feature map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' The pooling layer is used to down sample the feature map to reduce computational complexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' It is common in the literature to add the pooling layer after the convolution layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' There are two main types of pooling the max pooling and the average pooling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' In the literature max pooling is preferred.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' It calculates the maximum value for each patch of the feature map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' (2) The fully connected layer, abbreviated FC is responsible for vectorizing the features from the convolution and pooling layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' This transforms the multi-dimensional feature map into a row vector to be fed into a classifier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' The classifier is responsible in outputing the probibilities of the output layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' There are two commonly used activation functions used in classifiers, the sigmoid activation function and the softmax activation function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Since the problem of detecting disease on rice leaf images is a multi-class classification problem, the appropriate function to be used is the softmax activation function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' (3) Another is the use of a software development methodology which helped the researchers identify the problems, created an overview of the concept for the mobile application and built the application.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content='2 Software Development Methodology The researcher used the Feature-driven Development (FDD) under the family of Agile methodology for the software development because it is the most suitable and it has a customer-centric process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Its iterative feature allowed the researchers to develop the application while it is being tested.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' In the study of [7] stated that, “the iterative feature of the methodology allowed the proponents to capitalize on the learning that was accumulated during the development of earlier parts or versions of the solution”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' The figure below presents the phases of FDD methodology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Figure 3: Feature Driven Development Methodology Figure 3 shows the Feature-Driven Development Methodology which has five phases, which include the (a) Development of an Overall Model, (b) Build a Feature List, (c) Plan by Feature, (d) Design by Feature, and (e) Build by Feature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' The phases of development are presented as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content='1 Develop Overall Model A stage where the researchers created a fundamental foundation of the application and the variables it required.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' This stage also identified the initial development of the application.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=" The researchers designed the application's overall model and served it as a guideline in developing the application." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' As the primary objective, the researchers develop the mobile app for the farmers for the early detection of rice diseases of rice-crops.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content='2 Build Feature List The researchers created concrete plans for each feature of the mobile application.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' The researchers created a prototype of the user interfaces for the conceptualization of the mobile application.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content='3 Plan by Feature The researchers created concrete plans for each feature of the mobile application.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' The researchers created a prototype of the user interfaces for the conceptualization of the mobile application.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content='4 Design by Feature The researchers designed the features individually using the needed preferences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' To fulfill this stage, the researchers designed the identified features with the help of the needed tools and processes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content='5 Build by Feature The last stage of the methodology wherein the researchers created the planned and designed features for the application.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' With the previous step as a guide, the researchers turned the details of the features into a working application, with the help of the tools and processes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' After an inspection via a test run by the researchers, the researchers created the planned and designed features for the application.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Mf(p) =max(f(q)-dmax(p-q)) 52berj 1xa7Modeling Initial Model Storming DevelopanOverall Bulld a Features Planby Designby Buildby Model List Feature Feature Feature (moreshape Alistoffeatures A developmentplan Adesign package Completed thancontant) grouped into sets Class owners client-valued and subjectareas Features setowners function Anobjectmodel (addmorecontent +notes to the object model)Harold Costales et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=', International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 7076 - 7081 7079 3 RESULTS 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content='1 Prototype Mobile Application for Rice Disease Detection Figure 4: The Prototype of the Mobile Application Figure 4 shows the rice disease detection of the mobile application.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' The researchers designed and develop a mobile application to assist the farmers in disease detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' It aims to help the farmers who are the backbone of the country to increase rice crop productivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' The lack of knowledge of farmers in the detection of rice diseases made the researchers conceptualize the integration of the field of agriculture and medicine in detecting diseases of rice crops.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=" Also, Duterte's Administration supports Research and Development along with agriculture." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' It is stated in the Philippine Development Plan (PDP) 2017-2022 that there is a need to conduct researches in the field because of rice-crop yield losses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Thus, the PDP 2017-2022 established a plan to support the initiatives of the agriculture sector along with R&D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Moreover, the application is different from other similar apps available in the market because it was developed specifically for the Philippine agriculture setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' The application will be stored with rice disease data exclusively for agriculture in the northern Philippines and further validated by pathologists as the researchers continue to gather data that will be for the database of the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content='2 Convolutional Neural Networks Deep Learning Algorithm for the Prototype Application The researchers utilized an Image Processing typical machine learning workflow in the development of the model which consists of the following Data Acquisition, Data Preparation, and Training and Validation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' As cited by [10] Image processing is the method of using different manipulation techniques and algorithms so that a desired features can be extracted such as morphology, color and texture from an image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Another study stated that [13] CNN proved to be best among the results in terms of accuracy when compared to other classifiers 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Image Acquisition The dataset by Huy Minh Do available at https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content='kaggle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content='com/ containing 1,260 labeled rice leaf images was used for creating the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' The images were labeled as Leaf Blast, Brown Spot, and Hispa, which are the (3) three rice leaf diseases that the model will try to classify.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Image Preprocessing The images were downscaled to 500 x 500 pixels to reduce computational complexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Image dataset were split into train dataset (80% of the entire samples) and validation dataset (20% of the entire samples).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Image augmentation such as flipping, shearing, and rescaling in order to increase dataset samples as neural networks are data crunchers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Training and Validation To fast track the training process the researchers employed transfer learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Transfer learning, in general, is the process of taking a previously trained model used in a problem and apply in to another related problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' It is referring to the knowledge transfer from pretrained network in one domain to your own problem in a different domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' [8] The researcher used MobileNet 2 [9] as the base model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' It is a state-of-the-art CNN model trained from ImageNet and one of the winners of the ImageNet Large Scale Visual Recognition Challenge (ILSVRC), a prestigious computer vision competition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Since the target dataset is small and somewhat different from the dataset where MobileNet 2 was trained, the top layer of the network needs to be frozen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' First Iteration Base model mobile net Version 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content='0 Hyper-parameters: Top layer = false Initialweights .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content='a58%12:57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content='PM agDetect blast 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content='13% brownspol bacterial_leaf_blight 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content='14%Harold Costales et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=', International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 7076 - 7081 7080 Second Iteration Base model mobile net Version 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content='0 Hyper-parameters: Top layer = false Initialweights = imagenet Loss = categorical cross entropy Metrics = accuracy Optimization = ADAM EPOCHS= 10 TRAINABLE = FALSE Result= 97% trained data set, 94% validation Suffered from overfitting Third Iteration Base model mobile net Version 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content='0, image augmentation Hyper-parameters: Top layer = false Initialweights = imagenet Loss = categorical cross entropy Metrics = accuracy Optimization = ADAM EPOCHS= 20 TRAINABLE = true Result= 98.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content='9% trained data set, 98% validation Overfitting was solved The third iteration proved that the process for the image analysis on the training and testing for the data sets was validated with an accuracy rate of 98% from 94% from the second iteration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' This proved that the CNNs algorithm of the mobile application was proven for use.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content='3 Features of the Prototype Mobile Application The features of the application include (1) real-time detection, (2) artificial intelligence, and (3) image analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content='1 Real time Detection One of the features of the mobile application is a real-time detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' The application helps in the identification of the rice leaf diseases using convolutional neural networks that match the input data and the data stored in the database of the application.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' The embed camera of the mobile application can detect the diseases in real-time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' This feature helps farmers to detect the diseases even without the instruction of plant pathologists.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content='2 Artificial Intelligence Experts in the field of Agriculture are marginal, especially in rice leaf disease detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' This feature of the mobile application replicates the knowledge about rice leaf disease detection in the field, which is one of the features of the mobile application.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' As data grows on the database of the mobile application, the more accurate results it can give.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content='3 Image Analysis Another feature is Image Analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' This feature uses the CNNs algorithm aspects and features of images were stored, enabling the mobile application to analyze the rice leaf for disease detection through the following steps of the algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' 4 CONCLUSION In summary, the researchers have developed a mobile application, which could help the agricultural sector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Specifically, the researchers conclude that the mobile application will help in the realization of the high-yield of rice crops against rice diseases for preventive measures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Thus, this study is helpful to the country, particularly the agricultural sector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' 5 RECOMMENDATION The researchers came up with the following recommendations: (1) The output of the Mobile Application will have its validation of experts in rice disease for accuracy of the information from the mobile application, (2) the mobile application will have a series of tests for the implementation for future use.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Lastly, (3) the researchers highly recommend that the application shall be introduced to the Department of Agriculture for dissemination.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' ACKNOWLEDGEMENT The researchers would like to thank the following people: the active UNP Research Office- Science and Technology Coordinator, Prof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Redentor S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Rojas, the ever-supportive UNP Research Director, Dr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Edelyn Cadorna and the dynamic UNP President, Dr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Erwin F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Cadorna for pushing us to enhance our research knowledge and capabilities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Also, the researchers would like to thank the IMPACT HACKATON 2050 for organizing the IMPACT HACKATON 2019, where they conceptualized this research study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Above all, thanks to Almighty God for all the blessings for our families and the society.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' REFERENCES 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Emberda, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Dumas, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Rentillo, Forecasting Coconut Yield: A Comparative Study between the Use of Traditional Forecasting and Feed Forward Back Propagation Artificial Neural Network, UIC Research Journal, 18(2), 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Francisco, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Concepcion, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Mojica, and , S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' B Montes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Philippines First: An Edutainment 3d Game For Android Mobile Platform Using Separating Axis Theorem (Sat) Algorithm, Innovatus, 2(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Pugoy, Reinald Adrian D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' and Mariano Vladimir Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Automated rice leaf disease detection using color image Harold Costales et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=', International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 7076 - 7081 7081 analysis, Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' SPIE 8009, Third International Conference on Digital Image Processing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Revathi and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Hemalatha.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Advance computing enrichment evaluation of cotton leaf spot disease detection using Image Edge detection, 2012 Third International Conference on Computing, Communication and Networking Technologies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Talingdan, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=', & Llanda, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=', Assessment of the effectiveness of learning theories using gamified Android app in teaching C programming.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' IOP Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Mater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Eng, 482-1,1-6, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Chen, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Mulgrew, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Grant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' A clustering technique for digital communications channel equalization using radial basis function networks,, IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' on Neural Networks, 4, 570-578, 1993.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Tajbakhsh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Convolutional Neural Networks for Medical Image Analysis: Full Training or Fine Tuning?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=', IEEE Transactions on Medical Imaging, 35-5, 1299-1312, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Aitken and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Ilango A Comparative Analysis of Traditional Software Engineering and Agile Software Development, 46th Hawaii International Conference on System Sciences, Wailea, Maui, HI, 4751-4760, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Elgendy, Deep Learning for Vision Systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Manning Publications, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Olga Russakovsky, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' ImageNet Large Scale Visual Recognition Challenge, International Journal of Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Vis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' 115.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' 1-42, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Eustaquio and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Dioses Jr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=', Artificial Neural Network For Classification Of Immature And Mature Coffee Beans Using RGB Values, International Journal of Emerging Technologies in Engineering Research, 9-4, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content='30534/ijeter/2020/41882020 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Devi Devani, Alethea Suryadibrata, Julio Christian, Young, Implementation of Siamese Convolutional Neural Network from Cell Images for Malaria Disease Identification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' International Journal of Advanced Trends in Computer Science and Engineering, 9-4, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content='30534/ijatcse/2020/0494 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Handayani, Indri, Supriyanti, Dedeh, Maulani, Giandari, Liutfani, Ninda, Real Time Multi-Scale Facial Mask Detection and Classification Using Deep Transfer Learning Techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' International Journal of Advanced Trends in Computer Science and Engineering, 9-4, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content='30534/ijatcse/2020/33942020 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Simhadri Chinna Gopi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=', Fuzzy Based Classification of X-Ray Images with Convolution Neural Network, International Journal of Emerging Trends in Engineering Research, 8(8), 4433 - 4436 , 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content='30534/ijeter/2020/63882020 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Fitria Hidayanti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=', Upper Stomach Disorder Detection System using Backpropagation Artificial Neural Network, International Journal of Emerging Trends in Engineering Research, 8(8), 4426 - 4432 , 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content='30534/ijeter/2020/62882020 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' Lamarca, Bryan Irvin J, et al, The Development of a Performance Appraisal System Using Decision Tree Analysis and Fuzzy Logic, International Journal of Intelligent Engineering and Systems, 11-4, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content=' DOI: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content='22266/ijies2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content='0831.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} +page_content='02' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'} diff --git a/adE3T4oBgHgl3EQfdAqs/content/tmp_files/2301.04531v1.pdf.txt b/adE3T4oBgHgl3EQfdAqs/content/tmp_files/2301.04531v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..8ae1538f2340d7deab7b17c0828cbd3d734bf92e --- /dev/null +++ b/adE3T4oBgHgl3EQfdAqs/content/tmp_files/2301.04531v1.pdf.txt @@ -0,0 +1,925 @@ +arXiv:2301.04531v1 [physics.optics] 11 Jan 2023 +Unified Model for Nonlinear Pulse Propagation in Composites and Optimization of +THz Generation +A. Husakou∗ +Max Born Institute, Max Born Str. +2a, D-12489 Berlin, Germany +O. Fedotova, R. Rusetsky, and O. Khasanov +Scientific-Practical Materials Research Centre of National Academy +of Sciences of Belarus, P.Brovki str. +19, 220072 Minsk, Belarus +T. Smirnova and A. Fedotov +Belarus State University, Niezalieˇznasci ave 4, 220030 Minsk, Belarus +T. Apostolova +Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, +Tsarigradsko Chausse 72, 1784 Sofia, Bulgaria and +Institute for Advanced Physical Studies, New Bulgarian University, 1618 Sofia, Bulgaria +I. Babushkin +Institute of Quantum Optics, Leibniz University Hannover, Welfengarten 1, 30167, Hannover, Germany +Cluster of Excellence PhoenixD (Photonics, Optics, +and Engineering-Innovation Across Disciplines), 30167, Hannover, Germany and +Max Born Institute, Max-Born-Str. 2a, 12489, Berlin, Germany +U. Sapaev +Tashkent State Technical University, University street 2, 100097 Tashkent, Uzbekistan +We describe a unified numerical model which allows fast and accurate simulation of nonlinear light +propagation in nanoparticle composites, including various effects such as group velocity dispersion, +second- and third-order nonlinearity, quasi-free-carrier formation and plasma contribution, exciton +dynamics, scattering and so on. The developed software package SOLPIC is made available for +the community. Using this model, we analyze and optimize efficient generation of THz radiation +by two-color pulses in ZnO/fused silica composite, predicting an efficiency of 3%. We compare the +role of various nonlinear effects contributing to the frequency conversion, and show that optimum +conditions of THz generation differ from those expected intuitively. +I. +INTRODUCTION +THz technology has attracted a lot of attention in +the recent years, since it provides unique experimental +tools and techniques in nonlinear and time-domain spec- +troscopy, biology and medicine, remote sensing, security +screening, as well as information and communication sys- +tems (see e.g. [1–4]). For generation of THz radiation, +different techniques were proposed, such as two-color ion- +izing femtosecond pulses in gases [5–10] and plasmas, +produced at the surface of solids (e.g. metal foil) with +high intensities [11] that are free from optical damage +threshold and phase-matching drawbacks; optical rectifi- +cation of the transmitted intense ultrashort laser pulses +in non-linear crystals [12–16], which provide a basis for +compact low-intensity devices. +The needs of the THz +technology require, however, extension of the range of +the available techniques and materials, in order to pro- +vide flexible designs required in multifarious applications. +∗ gusakov@mbi-berlin.de +Following this line, investigations of THz generation in +various media such as water [17] and strongly magnetized +plasmas [18] were performed. Emission of terahertz radi- +ation with broad bandwidth by femtosecond photoexcita- +tion of spintronic materials (ferromagnetic and synthetic +multiferroic heterostructures) was also reported recently +[19, 20]. +Nanoparticle composites were actively investigated in +the past as a nonlinear material, e.g. [21–23], and their +particular strength lies in the flexibility of their design +leading to unusual properties such as e.g. negative re- +fractive index [24]. +However, surprisingly, up to our +knowledge they have not attracted attention as a medium +for THz generation. In this paper, we close this gap by +developing a numerical model suitable for simulation of +THz generation in nanocomposites. +A range of linear +and nonlinear effects such as group velocity dispersion, +second- and third-order nonlinearity, quasi-free-carrier +formation, exciton dynamics and so on are encompassed +by the developed model. We use it to explore THz gen- +eration by two-color pulses in nanoparticle composites, +to elucidate the contributions of different frequency con- +version mechanisms, and to predict efficiencies in few- + +2 +percent range. +The applicability of the above model is, in fact, much +broader than mere simulation of THz generation; a wide +range of nonlinear effects such as soliton dynamics and +supercontinuum generation, frequency conversion, multi- +level dynamics and electromagnetically-induced trans- +parency and so on can be studied using this unified ap- +proach. With this is mind, we have created the extensive +documentation of the code and made the code publicly +available [25], in a hope that it will be useful to the optical +community for investigations of the nonlinear processes +in nanocomposites and other materials. +The paper is organized as follows. In Section 2, we +present the numerical model, including detailed formal- +ism for all the relevant mechanisms. +In Section 3, we +optimize the THz generation by two-color pulses, and +analyze the role of different parameters. A summary of +the paper is given in the conclusion. +II. +THEORETICAL MODEL +We consider a composite consisting of two components, +a homogeneous host material and spherical nanoparticles +(inclusions) randomly distributed in space. We assume +a sufficiently low (typically few percent or below) filling +fraction of the inclusions so that neither percolation nor +interaction between the inclusions play a role. We con- +sider homogeneous inclusions to be sufficiently small with +diameter below the light wavelength so that effective- +medium theory can be applied. +Note that we do not +place any limitations on the nature of host and inclu- +sion materials, i.e., either of them could be a dielectric, +a metal, or a semiconductor. We do not require point +symmetry in host material or in the inclusions, so that +the second-order susceptibility can be non-zero in either +material. +The model is designed to simulate propaga- +tion over relatively short distances of few millimeters, be- +low the damage threshold, and without back-reflection, +therefore (1+1)D treatment using unidirectional propa- +gation equation [26] is the most suitable. +Under these conditions, the following effects have to +be taken into account: linear dispersion including intrin- +sic and scattering losses, second- and third-order optical +nonlinearities and photoionization accompanied by ion- +ization losses and plasma dynamics. In addition, transi- +tions between excitonic states can play a significant role +in the inclusion response, in particular for the genera- +tion of new frequencies in the THz range. Among the +effects which were neglected in this treatment are ther- +mal effects (due to slow ns-scale response), coupling to +phonons (because of relatively slow ps-scale response), +Raman scattering (which is typically weaker than in- +stantaneous nonlinearities), anisotropy of the host ma- +terial (due to manufacturing limitations for composites), +deviations of the inclusion form from a sphere (because +of typical manufacturing conditions), and generation of +high-order harmonics (because of the considered inten- +sity ranges). +The following unidirectional propagation equation is +used to model the light propagation in a homogeneous +medium [26, 27]: +∂E(z, ω) +∂z += −i +� +[ +� +ǫ(ω) − ng]ω +c +− β(ω0) +� +E(z, ω) +− +iω +2c +� +ǫ(ω) +PNL(z, ω), +(1) +where E(z, ω) = ˆFE(z, t) = +� ∞ +−∞ E(z, t) exp(−iωt)dt +is the Fourier transform ˆF of the electric field E(z, t), z +is the propagation coordinate, ǫ(ω) is the linear dielec- +tric permittivity (generally speaking, complex-valued to +include loss mechanisms), ng is the group refractive in- +dex, ω0 is a characteristic frequency of the pulse spec- +trum, β(ω) = +� +ǫ(ω)ω/c, and PNL(z, ω) is the Fourier +transform of the nonlinear part of the polarization. We +would like to empathise that no slowly-varying envelope +approximation is used, and E(z, t) represents the real- +valued field including the carrier oscillations. This ap- +proach yields a unified treatment for a pulse with arbi- +trary spectral content, which is particularly important +for extremely broad spectra. +A. +Linear dispersion +The effective-medium theory allows to substitute the +composite material by a homogenised medium with ap- +propriately defined effective material parameters. +The +effective refractive index of a composite can be expressed +as [27] +neff = +� +(1 − f)ǫh + fǫi +3ǫh +2ǫh + ǫi ++ 2i +� ǫh − ǫi +2ǫh + ǫi +�2 �rNPω√ǫh +c +�3�1/2 +, +(2) +where f is the volume filling factor of the inclusions, +rNP is their radius, and ǫh,i are the frequency-dependent +dielectric functions of the host and of the inclusions, cor- +respondingly. The last term in the square brackets de- +scribes scattering losses. +B. +Second- and third-order nonlinearities +The second- and third-order nonlinear processes can +also be described in the framework of the effective- +medium theory. The expressions for the effective second- +order susceptibility looks like [28] + +3 +χ(2) +eff (ω1 = ω2 + ω3; ω2, ω3) = (1 − f)χ(2) +h ++ ++ fx(ω1)x(ω2)x(ω3)χ(2) +i , +(3) +where χ(2) +h +and χ(2) +i +are the susceptibilities of host and +inclusion materials, correspondingly. Note that we ne- +glected the frequency dependence of the susceptibilities +of host and inclusions, which is a good assumption far +from resonances. Quantity x(ω) is the ratio of local field +inside the inclusion and the incident field: +x(ω) = +3ǫh(ω) +2ǫh(ω) + ǫi(ω). +(4) +Here we note that, due to photoionization as described +below, the ǫi(ω) and therefore x, strictly speaking, de- +pend on time due to buildup of plasma during the pulse. +However, in the current simulation we neglect this de- +pendence, assuming that corresponding change of ǫi(ω) +is small and that we are far from the plasmonic resonance +given by 2ǫh(ω) = −ǫi(ω). +Similarly, for the effective third-order susceptibility we +write [28] +χ(3) +eff (ω1 = ω2 + ω3 + ω4; ω2, ω3, ω4) = (1 − f)χ(3) +h ++ ++ fx(ω1)x(ω2)x(ω3)x(ω4)χ(3) +i , +(5) +where χ(3) +h +and χ(3) +i +are the susceptibilities of host and +inclusion materials, correspondingly. The final expres- +sions which were used to calculate the corresponding po- +larizations look like +Pχ(2)(z, ω) = (1 − f)ǫ0χ(2) +h +ˆFE(z, t)2 + ++ fǫ0χ(2) +i +ˆF[ ˆF −1{E(z, ω)x(ω)}2], +(6) +Pχ(3)(z, ω) = (1 − f)ǫ0χ(3) +h +ˆFE(z, t)3 + ++ fǫ0χ(3) +i +ˆF[ ˆF −1{E(z, ω)x(ω)}3]. +(7) +C. +Plasma dynamics +Let us turn to the description of plasma formation and +dynamics. In the framework of SOLPIC, we consider a +case when the ionization potential Ip of the inclusions +is lower than that of the host material, so that due to +the sensitive dependence of the polarization rate on the +ionization potential we can neglect plasma formation in +host material. +The contribution from the plasma is determined by the +average displacement ⟨d⟩(z, t) of the electron from the +equilibrium position in the parent ”molecule”, whereby +by a ”molecule” we denote an atom or a group of atoms of +the solid-state material which can provide a single ioniza- +tion event. Furthermore, it is determined by the relative +ionization of the solid state ρ(z, t), which is the ratio of +the conduction-band electron density to the density of +”molecules”: +Pplasma(z, ω) = −Nmole ˆF[⟨d⟩(z, t)ρ(z, t)] +(8) +Here Nmol is the concentration of the molecules and +e = 1.6×10−19 is the electron charge. The above expres- +sion would be valid in a homogeneous medium; however, +as it refers to a polarization which occurs inside of inclu- +sions, in contrast to averaged macroscopic polarization, +in the case of effective-medium theory it has to be addi- +tionally multiplied by x(ω). For the origin of this factor +and further details see Ref. [28]. +The dynamics of the quantity ⟨d⟩(z, t)ρ(z, t) is given +by [33] +∂(⟨d⟩(z, t)ρ(z, t)) +∂t += ⟨v⟩(z, t) + x0Γ(t), +(9) +where ⟨v⟩ is the average velocity of electrons and +x0 ≃ −Ip/eE(t) is the initial displacement of the elec- +tron immediately after the ionization event, Ip being the +bandgap. It can be shown that the second term describes +the energy loss of the pulse due to photoionization. The +dynamics of the ⟨v⟩(z, t)ρ(z, t) is given by second New- +ton’s law as +∂(⟨d⟩(z, t)ρ(z, t)) +∂t += −eE(z, t) +me +ρ, +(10) +where me is the effective electron mass near the bot- +tom of the conduction band. Here we neglect the initial +displacement and velocity of electron just after the ion- +ization. +The dynamics of the relative plasma density ρ is given +by +∂ρ +∂t = Γ( ˆF −1[x(ω)E(z, ω)]), +(11) +where x(ω)E(z, ω) is the local field inside of inclusions +which determines the photoionization rate Γ. +D. +Ionization rate +Depending on the relation between the frequency of +pump light and the ionization potential of inclusions, we +consider two models for the ionization rate. For the case +when the energy of pump photons is much smaller than +the ionization potential, the photoionization occurs ei- +ther by multiphoton regime or by tunneling regime, as +determined by intensity and Keldysh parameter. Here we + +4 +10-4 +10-3 +10-2 +0.1 +1 + 1 + 2 + 3 + 4 + 5 +(a) +I(ω) (arb. units) +ω (fs-1) +-6 +-4 +-2 + 0 + 2 + 4 + 6 +-40 +-20 + 0 + 20 + 40 + 0 + 0.005 + 0.01 +(b) +E (GV/m) +ρ +t (fs) +FIG. 1. Dependence of the spectra (a) and the electric field +(b) on the propagation length. 15-fs pulses at 2.26 fs−1 and +4.58 fs−1 are considered, with intensity of 1 TW/cm2 and +propagation length of 0.75 µm (magenta curves), 2.25 µm +(green curves), and 6.75 µm (bluecurves). In (b), additionally +the relative plasma density is shown for propagation length +of 6.75 µm. A composite of ZnO inclusions with f = 0.03 in +fused silica is considered. +utilize so-called Yudin-Ivanov model [29], which provides +a formalism for both of these regimes in a unified way. +This model was initially developed for isolated atoms; its +use for solid state is justified in a case a negligible an- +harmonicity of the bands in the center of the Brillouin +zone. +The cycle-resolved ionization rate Γ is given (in atomic +units, that is, with frequency ω, time t and field E mea- +sured in the corresponding Hartree units ωa = 0.26 +rad/as, ta = 24.2 as, xa = 0.0529 nm, and Ea = 514.2 +V/nm) by +Γ(z, t) = π +τT +exp +� +−σ0 +⟨2E(z, t)2⟩ +ω3 +� � +2κ3 +� +⟨2E(z, t)2⟩ +�2Z/κ +× exp +� +−E(z, t)2 +2ω3 +σ1 +� +. +(12) +Here τT = κ/E(z, t), κ = +� +Ip/(ℏωa), σ0 = +1 +2(γ2 + +1 +2) ln C − 1 +2γ +� +1 + γ2, γ = ωτT , Z is the effective atomic +charge, C = 1 + 2γ +� +1 + γ2 + 2γ2, and σ1 = ln C- +2γ/ +� +1 + γ2. +The quantity ⟨E(z, t)2⟩ is the averaged +value of the squared electric field over few past periods +(5 fs is assumed in this work). +The Yudin-Ivanov model was initially derived for gases; +its applicability for solid state, while generally justi- +fied for materials with tight binding, is not strictly es- +tablished. +We have benchmarked Yudin-Ivanov model +by comparing it to the numerical solution of the time- +dependent Schrodinger equation in single active electron +approximation [30]. In this approach the empirical pseu- +dopotential method was used for describing the electron +band structure of ZnO [31]. We have found that the dif- +ference of the ionization rate does not typically exceed +one order of magnitude. This difference is, in fact, not +very significant: because of the threshold-like behavior of +the ionization rate, it leads to only a slight shift of the +intensity at which a strong plasma generation is reached. +For the specal case when the energy of pump photons +is around two ionization potentials, it is preferable to +use the two-photon formalism [32] and write the cycle- +resolved ionization rate Γ (in SI units) as +Γ(z, t) = +2e4x4 +aν +ℏ4ω2 +0[(2ω0 − Ip/ℏ)2 + ν2 ⟨E(z, t)2⟩E(z, t)2, +(13) +where ν is the relaxation constant of the two-photon +transition. +E. +Contribution by excitons +Finally, we include the nonlinear polarization due to +excitons into treatment. We consider multiple excitonic +levels and utilize the standard Bloch equations for the de- +scription of the ionization. The dynamics of the density +matrix ρe is given by (see e.g. [32]) +iℏ∂ρe +∂t = [H, ρe], +(14) +where H = H0 + Hint, H0 is the Hamiltonian of the +system in the absence of excitation, Hint is the interaction +Hamiltonian, which components Hij are related with the +corresponding dipole transition moments eMij: +Hij = eMij ˆF −1[E(z, ω)x(ω)]. +(15) +In addition, polarization decay (decay of the off- +diagonal elements of ρe) with decay time T2 and decay +of the population to the ground state with decay time T1 +are included. In order to avoid numerical instabilities, +the normalization of the density matrix ρ is performed +each few steps in time, by a) enforcing 0 ≤ ρe,ii ≤ 1, b) +enforcing T r(ρe) = 1, and c) adjusting the non-diagonal +elements which exceed the maximum possible value de- +termined by the corresponding level populations. +The excitonic polarization is then defined in a standard +way as +Pexc(z, ω) = x(ω) ˆF[fTr(ρeM)]. +(16) +We solve the propagation equation by an extended +split-step method, whereby each of the contributions to + +5 +the polarization is treated subsequently, which allows to +reduce the accumulation of numerical error. Nonlinear +steps are performed using the Runge-Kutta approach, +the order of which can be selected between 1,2, and 4. +Fixed step of the grid both in time and in the propa- +gation coordinate is used. The appearance of numerical +artifacts during the propagation is monitored by tracing +the total pulse energy as well as the total energy absorbed +at the boundaries of the numerical time window. +III. +NUMERICAL RESULTS AND DISCUSSION +In order to exemplify the above model and function- +ing of SOLPIC, we present in this section a simulation of +THz generation. We consider a composite of ZnO inclu- +sions in SiO2 matrix. Phenomenological Sellmeyer-type +expressions were used to describe dispersion on ZnO [35] +and SiO2 [36]. Similarly, experimental data on second- +order [37] and third-order [38] susceptibility of bulk ZnO +and third-order susceptibility of SiO2 [40] were used. We +estimated the value of T2 as 50 fs from Ref. [41] and used +T1 = 2T2. For ZnO, the typical exciton size is larger than +interatomic distance, meaning that we are dealing with +Wannier-Mott type of excitons. In a case of sufficiently +small inclusions, the exciton is bounded by the inclu- +sion boundaries, therefore its wavefunctions (as well as +energy levels and dipole momenta) are better described, +instead of hydrogen-like potential, by a constant poten- +tial inside a sphere [42] with a step on its boundary. We +have taken into account 5 lowest excitonic levels, and +typical values of the off-diagonal dipole momenta, as cal- +culated by this approach, are around 3×10−28 C·m, for +same-size nanoparticles with a radius of 2.5 nm which +are considered here and hereafter. +For the permanent +dipole momenta of ZnO, we have adopted a typical value +of 6.66×10−30 C·m per ZnO molecule, which was used +to define the on-diagonal elements of the dipole matrix. +We used the ionization potential of 3.37 eV equal to the +bandgap of ZnO to characterize the transition from va- +lence band to conduction band, and all the presented +numerical results correspond to the conditions below the +damage threshold of ZnO [43]. +The evolution of the field profile and spectra with prop- +agation is illustrated in Fig. 1, for two-color pulsed exci- +tation with pump pulses around 800 nm and 400 nm, for +conditions given in the caption. In Fig. 1(a) one can see +that initial stages of the propagation are characterized by +self-phase modulation with typical spectral side lobes. At +later stages, spectrum becomes irregular and transform +into a supercontinuum extending up to the absorption +edge given by the bandgap. The evolution of the tempo- +ral profile, shown in Fig. 1(b), shows gradual reduction +of the enegry of electric field, as well as significantly ir- +regular envelope for longer propagation. This reduction +of the maximum field determines the saturation of the +THz generation efficiency and is caused both by strong +group-velocity dispersion for broad spectrum and energy +absorption due to transition to conduction band. One +can see from the red curve in Fig. +1(b) that relative +plasma density reaches values of roughly 0.01 after the +pulse, which is sufficient to induce significant energy ab- +sorption. +10-4 +10-3 +10-2 +0.1 +1 + 10 + 20 + 30 +I(ν) (arb. units) + ν (THz) +FIG. 2. Dependence of the spectra in the THz range on the +propagation distance. We consider 1-TW/cm2, 15-fs pump +pulses at 2.26 fs−1 and 4.58 fs−1, in a composite of ZnO +nanoparticles with filling fraction of f = 0.03 in a fused-silica +matrix, after propagation length of 5 µm (magenta curve), +15 µm (green curve), 45 µm (blue curve), and 50 µm (yellow +curve). +In Fig. 2 the evolution of the spectrum in the THz +range is shown. One can see that while the spectrum is +flat at early stages of propagation, for larger propagation +lengths the spectrum is localized around 28 THz, proba- +bly due to phase-matching effects with a phase-mismatch +length of 10.5 µm for the four-wave mixing between the +two photons at 2.26 fs−1, one photon at 4.58 fs−1, and a +THz photon. Losses around 15 THz and below can also +contribute to saturation of generation. After 45 µm prop- +agation length, the efficiency of the generation reaches +3.05%, which is sufficiently high for practical applica- +tions. +In order to determine the optimum conditions of the +THz generation, in Fig. 3 we plot the dependence of the +generation efficiency on the distribution of energy be- +tween the 830-nm pulse and 412-nm pulse (a), intensity +of pulses (b), and wavelength of the short-wavelength +pulse (c). One can see that the efficiency of THz gen- +eration is non-zero but very small for the cases when +only one of the pulses is present (energy fraction of 0 +or 1). This indicates that the optical rectification based +the second-order susceptibility of ZnO cannot efficiently +generate THz for the considered conditions, and that +the dominant contribution comes from the third-order +susceptibility of ZnO nanoparticles, third-order suscep- +tibility of SiO2 being comparatively weak. In an ideal +case without pump pulses modification, the efficiency of +the THz generation is proportional to E2 +830(Etot − E830), +where E830 is the energy of the pulse at 830 nm and +Etot = E830 + E412 is the total energy of the pulses. The +maximum efficiency is then reached at E830/Etot = 1/3, + +6 +0% +0.5% +1% +1.5% +2% +2.5% +3% + 0 + 0.25 + 0.5 + 0.75 + 1 +(a) +THz efficiency +Energy fraction of 800-nm pulse +0% +0.5% +1% +1.5% +2% +2.5% +3% + 0 + 0.25 + 0.5 + 0.75 + 1 + 1.25 + 1.5 +(b) +THz efficiency +I, TW/cm2 +0% +0.5% +1% +1.5% +2% +2.5% +3% + 405 + 410 + 415 + 420 + 425 + 430 +(c) +THz efficiency +λ (nm) +FIG. 3. Dependence of the THz generation efficiency on en- +ergy fraction of the 800-nm pulse (a), intensity of each of the +pump pulses (b), and the wavelength of the second-harmonic +pulse (c). A composite of ZnO nanoparticles with f = 0.03 in +fused silica is considered. In (a), 15-fs pulses at 2.26 fs−1 and +4.58 fs−1 are considered, with total intensity of 2 TW/cm2 +and propagation length of 50 µm. In (b) we consider 15-fs +(red curve) and 150-fs (green curve) pulses at 2.26 fs−1 and +4.58 fs−1. In (c), 1 TW/cm2, 15-fs pulses are considered, with +IR pulse frequency of 2.26 fs−1 and propagation length of 50 +µm. +however, as shown in Fig. 3(a), maximum numerical ef- +ficiency is achieved for E830/Etot = 0.5. This could be +due to strong SPM-induced spectral spreading of high- +frequency pulse during the propagation, which needs to +be compensated by relatively higher value of E412. In +Fig. 3(b), the dependence of the efficiency on the pulse +intensity is shown, exhibiting saturation and decrease +after a certain intensity as well as lower efficiencies for +longer pulses. We attribute these features to detrimen- +tal contribution of the accumulated plasma, which grows +with intensity and pulse duration [cf. Fig. 4(a)]. In Fig. +3(c), the dependence of the efficiency on the wavelength +of the short-wavelength pulse exhibits several maxima. +Note that while one might expect an optimum THz gen- +eration for 415 nm, which would correspond to generation +of frequencies near zero, our simulation in fact predict a +minimum around this value, determined most probably +by phase mismatch and losses below 15 THz. +Finally, in order to access the role of plasma and ex- +citons in the THz generation in composites, in Fig. 4 +we compare the spectra for plasma contribution (a) and +exciton contribution (b) switched on/off. One can see +that the plasma contribution is significant, both due to +contribution to refractive index and due to losses, and +absence of plasma contribution leads to a notable (more +than twofold) increase of the efficiency. +On the other +hand, from Fig. +4(b) one can see that exciton polar- +ization do not provide a strong contribution to the effi- +ciency for the considered parameters. Also, additionally +including the permanent dipole momenta, described in +10-3 +10-2 +0.1 +1 + 10 + 20 + 30 +(a) +I(ν) (arb. units) + ν (THz) +10-3 +10-2 +0.1 +1 + 10 + 20 + 30 +(b) +I(ν) (arb. units) + ν (THz) +FIG. 4. Spectra in the THz range with (a) plasma contri- +bution on (red) and off (green) and (b) exciton contribution +on (red) and off (green), as well including both exciton con- +tribution and permanent dipole moment (blue). We consider +1-TW/cm2, 15-fs pump pulses at 2.26 fs−1 and 4.58 fs−1, in a +composite of ZnO inclusions with filling fraction of f = 0.03 +in a fused-silica matrix, after propagation length of 10 µm (a) +and 0.75 µm (b). +the model above, does not significantly increase the effi- +ciency of THz generation, as indicated by the blue curve +in Fig. 4(b) which is close to the red and green curves. +We note, however, that this conclusion is of limited gen- +erality; for other parameters of the medium excitons can +provide the key mechanism of THz generation (see e.g. +[44, 45] and references therein). +IV. +CONCLUSION +In this paper we have established a comprehensive nu- +merical model for the simulation of light propagation in +composites, including all the relevant physical effects for +a broad range of parameters, such as linear dispersion +of the composite, second- and third-order nonlinear ef- +fects, plasma contribution, excitons contribution and so +on. The model was applied to simulate the generation of +THz radiation in a ZnO-SiO2 composite. We have per- +formed optimization of the frequency conversion process, +predicting an efficiency of 3.05%. +We show that sim- +ulations provide insights into the optimization, such as +the power distribution between the pump pulses, which +would not be accessible intuitively. We hope that the nu- +merical model and the corresponding software solution, +which we make available for the community, will con- +tribute to the capacity of the simulations in the area of +nonlinear optics. +ACKNOWLEDGMENTS +Authors acknowledge financial support +from Eu- +ropean Union project H2020-MSCA-RISE-2018-823897 +”Atlantic”. I.B. thanks Cluster of Excellence PhoenixD +(EXC 2122, project ID 390833453) for financial support. + +7 +[1] M. Tonouchi, ”Cutting-edge terahertz technology” Nat. +Photon. 1, 97–105 (2007). +[2] K. Sakai (ed.), +Terahertz Optoelectronics, +Springer, +Berlin, 2005. +[3] D. +Mittleman, +Sensing +with +Terahertz +Radiation +Springer, Berlin, 2002. +[4] J. Liu, J. Dai, S. L. Chin, and X. C. Zhang, ”Broadband +terahertz wave remote sensing using coherent manipula- +tion of fluorescence from asymmetrically ionized gases”, +Nat Photon 4, 627–631 (2010). +[5] D. J. Cook and R. M. Hochstrasser, ”Intense terahertz +pulses by four-wave rectification in air”, Opt. Lett. 25, +1210–1212 (2000). +[6] M. Kress, T. Loffler, S. Eden, M. Thomson, and H. G. +Roskos, ”Terahertz-pulse generation by photoionization +of airwith laser pulses composed of both fundamental +and second-harmonic waves”, Opt. Lett. 29, 1120–1122 +(2004). +[7] T. Bartel, P. Gaal, K. Reimann, M. Woerner, and T. El- +saesser, ”Generation of single-cycle THz transients with +high electric-field amplitudes”, Opt. Lett. 30, 2805–2807 +(2005). +[8] X. Xie, J. Dai, and X.-C. Zhang, ”Coherent control of +THz wave generation in ambient air”, Phys. Rev. Lett. +96, 075005 (2006). +[9] M. D. Thomson, M. Kress, T. Loffler, and H. G. Roskos, +”Broadband THz emission from gas plasmas induced by +femtosecond optical pulses: From fundamentals to appli- +cations”, Laser Photon. Rev. 1, 349–368 (2007). +[10] I. Babushkin, S. Skupin, A. Husakou, C. Kohler, E. +Cabrera-Granado, L. Berge and J. Herrmann, ”Tailoring +terahertz radiation by controlling tunnel photoionization +events in gases”, New J. Phys. 13, 123029 (2011). +[11] S. Herzer, A. Woldegeorgis, J. Polz, A. Reinhard, M. Al- +massarani, B. Beleites, F. Ronneberger, R. Grosse, G.G. +Paulus, U. H¨ubner, T. May, A. Gopal, “An investigation +on THz yield from laser-produced solid density plasmas +at relativistic laser intensities”, New J. Phys. 20 , 063019, +((2018) +[12] F. Blanchard, B. E. Schmidt, X. Ropagnol, N. Thir´e, +T. Ozaki, R. Morandotti, D. G. Cooke, and F. Legare, +“Terahertz pulse generation from bulk GaAs by a tilted- +pulse-front excitation at 1.8 µm,” Appl. Phys. Lett. 105, +241106 (2014). +[13] K. Aoki, J. Savolainen, and M. Havenith, “Broadband +terahertz pulse generation by optical rectification in GaP +crystals,” Appl. Phys. Lett. 110, 201103 (2017). +[14] G. L. Dakovski, B. Kubera, and J. Shan, “Localized ter- +ahertz generation via optical rectification in ZnTe,” J. +Opt. Soc. Am. B 22, 1667–1670 (2005). +[15] S.-C. Zhong, J. Li, Z.-H. Zhai, L.-G. Zhu, J. Li, P. W. +Zhou, J. H. Zhao, and Z. R. Li, “Generation of 0.19-mJ +THz pulses in LiNbO3 driven by 800-nm femtosecond +laser,” Opt. Express 24, 14828–14835 (2016). +[16] T. Apostolova, B. Obreshkov “High harmonic generation +in crystalline silicon irradiated by an intense ultrashort +laser pulse,” The European Physical Journal D. 75, 1 +(2021). +[17] Q. Jin, E. Yiwen, K. Williams, J. Dai, and X.-C. Zhang, +”Observation of broadband terahertz wave generation +from liquid water”, Appl. Phys. Lett. 111, 071103 (2017). +[18] C. Tailliez, X. Davoine, A. Debayle, L. Gremillet, and +L. Berge, ”Terahertz Pulse Generation by Strongly Mag- +netized, Laser-Created Plasmas”, Phys. Rev. Lett. 128, +174802. +[19] C. Zhou, Y. P. Liu, Z. Wang, S. J. Ma, M. W. Jia, R. +Q. Wu, L. Zhou, W. Zhang, M. K. Liu, Y. Z. Wu, J. Qi, +Phys. Rev. Lett. , 121, 086801, 2018 +[20] P. Agarwal, L. Huang, S. Ter Lim, R. Singh, Nat. Com- +mun. , 13, 4072, 2022 +[21] D.Ricard, ”Nonlinear optics in composites and in hetero- +geneous media”, Physica A 157, 301-308 (1989). +[22] V. M. Shalaev, Nonlinear Optics of Random Media, +Springer, Berlin, 2000. +[23] R. Driben, A. Husakou, and J. Herrmann, ”Supercon- +tinuum generation in aqueous colloids containing silver +nanoparticles”, Opt. Lett. 34, 2132-2134 (2009). +[24] J. B. Pendry, ”Negative Refraction Makes a Perfect Lens” +Phys. Rev. Lett. 85, 3966-3969 (2000). +[25] https://github.com/F1Ulia/SOLPIC/tree/main +[26] A. Husakou and J. Herrmann, ”Supercontinuum Gen- +eration of Higher-Order Solitons by Fission in Photonic +Crystal Fibers”, Physical Review Letters 87 (20), 203901 +(2001). +[27] J. C. Maxwell Garnett, ”Colours in Metal Glasses and in +Metallic Films”, Philos. Trans. R. Soc. London 203, 385 +(1904). +[28] J. E. Sipe and R. W. Boyd, ”Nonlinear susceptibility +of composite optical materials in the Maxwell Garnett +model”, Phys. Rev. A 46, 1614 (1992). +[29] G. L. Yudin and M. Y. Ivanov, ”Nonadiabatic tunnel +ionization: Looking inside a laser cycle”, Phys. Rev. A +64, 013409 (2001). +[30] T. Apostolova and B. Obreshkov, ”High harmonic gener- +ation from bulk diamond driven by intense femtosecond +laser pulse”, Diam. Relat. Mater. 82, 165 (2018). +[31] Fan, W. J.; Abiyasa, A. P.; Tan, S. T.; Yu, S. F.; Sun, +X. W.; Xia, J. B.; Yeo, Y. C.; Li, M. F.; Chong, T. C, +”Electronic structures of wurtzite ZnO and ZnO/MgZnO +quantum well” Journal of Crystal Growth 287, 28 (2006) +[32] L. S. Meng, ”Continuous-wave Raman laser in H2 : semi- +classical theory and diode-pumping experiments”, PhD +thesis, Montana State University, 2002. +[33] A. Husakou and J. Herrmann, +”High-power, +high- +coherence supercontinuum generation in dielectric-coated +metallic hollow waveguides”, Opt. Express 17, 12481 +(2009). +[34] P. J¨urgens, B. Liewehr, B. Kruse, C. Peltz, D. Engel, +A. Husakou, T. Witting, M. Ivanov, M. J. J. Vrakking, +T. Fennel and A. Mermillod-Blondin, ”Origin of strong- +field-induced low-order harmonic generation in amor- +phous quartz”, Nature Physics 16, 1035–1039 (2020). +[35] I. Bodurov, I. Vlaeva, A. Viraneva, T. Yovcheva, S. +Sainov, +”Modified design of a laser refractometer”, +Nanoscience Nanotechnology 16, 31-33 (2016). +[36] C. Z. Tan, ”Determination of refractive index of silica +glass for infrared wavelengths by IR spectroscopy”, J. +Non-Cryst. Solids 223, 158-163 (1998). +[37] G. Wang, G. K. L. Wong, and J. B. Ketterson, ”Rede- +termination of second-order susceptibility of zinc oxide +single crystals,” Appl. Opt. 40, 5436-5438 (2001). + +8 +[38] M. C. Larciprete, D. Haertle, A. Belardini, M. Bertolotti, +F. Sarto and P. G¨unter, ”Characterization of second and +third order optical nonlinearities of ZnO sputtered films”, +Appl. Phys. B 82, 431–437 (2006). +[39] V. V. Multian, J. Riporto, M. Urbain, Y. Mugnier, G. +Djanta, S. Beauquis, C. Galez, V. Ya Gayvoronsky, and +R. Le Dantec, ”Averaged third-order susceptibility of +ZnO nanocrystals from Third Harmonic Generation and +Third Harmonic Scattering”, Optical Materials 84, 579- +585 (2018). +[40] D. Milam, ”Review and assessment of measured values of +the nonlinear refractive-index coefficient of fused silica,” +Appl. Opt. 37, 546-550 (1998). +[41] D. Golde, T. Meier, and S. W. Koch, ”High harmon- +ics generated in semiconductor nanostructures by the +coupled dynamics of optical inter- and intraband exci- +tations”, Phys. Rev. B 77, 075330 (2008). +[42] I. Babushkin, L. Shi, A. Demircan, U. Morgner, J. Her- +rmann, and A. Husakou, ”Metallic nanostructures as +electronic billiards”, https://arxiv.org/abs/2104.14637 +[43] C. Li, D. Feng, T. Jia, H. Sun, X. Li, S. Xu, X. Wang, +and Z. Xu, ”Ultrafast dynamics in ZnO thin films irradi- +ated by femtosecond lasers”, Solid State Communications +136, 389-394 (2005). +[44] O. Khasanov, O. Fedotova, G. Rusetsky and V. Niki- +forov, ”Echo-Spectroscopy of Nanocomposites”, Laser +Physics 29, 124011 (2019). +[45] O. Fedotova, A. Husakou, G. Rusetsky, O. Khasanov, +A. Fedotov, T. Smirnova, U. Sapaev, and I. Babushkin, +”Mechanisms of Terahertz Generation under Femtosec- +ond Pulses propagation in Nanocomposites”, jsii 1 4, +CLEO-Europe - European Quantum Electronics Confer- +ence, Munich, Germany (2021). + diff --git a/adE3T4oBgHgl3EQfdAqs/content/tmp_files/load_file.txt b/adE3T4oBgHgl3EQfdAqs/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..bc1b0b9d339a589b5b8ad06c35b75cd8bc95e9d2 --- /dev/null +++ b/adE3T4oBgHgl3EQfdAqs/content/tmp_files/load_file.txt @@ -0,0 +1,646 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf,len=645 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='04531v1 [physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='optics] 11 Jan 2023 Unified Model for Nonlinear Pulse Propagation in Composites and Optimization of THz Generation A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Husakou∗ Max Born Institute, Max Born Str.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' 2a, D-12489 Berlin, Germany O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Fedotova, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Rusetsky, and O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Khasanov Scientific-Practical Materials Research Centre of National Academy of Sciences of Belarus, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='Brovki str.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' 19, 220072 Minsk, Belarus T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Smirnova and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Fedotov Belarus State University, Niezalieˇznasci ave 4, 220030 Minsk, Belarus T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Apostolova Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Tsarigradsko Chausse 72, 1784 Sofia, Bulgaria and Institute for Advanced Physical Studies, New Bulgarian University, 1618 Sofia, Bulgaria I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Babushkin Institute of Quantum Optics, Leibniz University Hannover, Welfengarten 1, 30167, Hannover, Germany Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering-Innovation Across Disciplines), 30167, Hannover, Germany and Max Born Institute, Max-Born-Str.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' 2a, 12489, Berlin, Germany U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Sapaev Tashkent State Technical University, University street 2, 100097 Tashkent, Uzbekistan We describe a unified numerical model which allows fast and accurate simulation of nonlinear light propagation in nanoparticle composites, including various effects such as group velocity dispersion, second- and third-order nonlinearity, quasi-free-carrier formation and plasma contribution, exciton dynamics, scattering and so on.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' The developed software package SOLPIC is made available for the community.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Using this model, we analyze and optimize efficient generation of THz radiation by two-color pulses in ZnO/fused silica composite, predicting an efficiency of 3%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' We compare the role of various nonlinear effects contributing to the frequency conversion, and show that optimum conditions of THz generation differ from those expected intuitively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' INTRODUCTION THz technology has attracted a lot of attention in the recent years, since it provides unique experimental tools and techniques in nonlinear and time-domain spec- troscopy, biology and medicine, remote sensing, security screening, as well as information and communication sys- tems (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' [1–4]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' For generation of THz radiation, different techniques were proposed, such as two-color ion- izing femtosecond pulses in gases [5–10] and plasmas, produced at the surface of solids (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' metal foil) with high intensities [11] that are free from optical damage threshold and phase-matching drawbacks;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' optical rectifi- cation of the transmitted intense ultrashort laser pulses in non-linear crystals [12–16], which provide a basis for compact low-intensity devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' The needs of the THz technology require, however, extension of the range of the available techniques and materials, in order to pro- vide flexible designs required in multifarious applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' ∗ gusakov@mbi-berlin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='de Following this line, investigations of THz generation in various media such as water [17] and strongly magnetized plasmas [18] were performed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Emission of terahertz radi- ation with broad bandwidth by femtosecond photoexcita- tion of spintronic materials (ferromagnetic and synthetic multiferroic heterostructures) was also reported recently [19, 20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Nanoparticle composites were actively investigated in the past as a nonlinear material, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' [21–23], and their particular strength lies in the flexibility of their design leading to unusual properties such as e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' negative re- fractive index [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' However, surprisingly, up to our knowledge they have not attracted attention as a medium for THz generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' In this paper, we close this gap by developing a numerical model suitable for simulation of THz generation in nanocomposites.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' A range of linear and nonlinear effects such as group velocity dispersion, second- and third-order nonlinearity, quasi-free-carrier formation, exciton dynamics and so on are encompassed by the developed model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' We use it to explore THz gen- eration by two-color pulses in nanoparticle composites, to elucidate the contributions of different frequency con- version mechanisms, and to predict efficiencies in few- 2 percent range.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' The applicability of the above model is, in fact, much broader than mere simulation of THz generation;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' a wide range of nonlinear effects such as soliton dynamics and supercontinuum generation, frequency conversion, multi- level dynamics and electromagnetically-induced trans- parency and so on can be studied using this unified ap- proach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' With this is mind, we have created the extensive documentation of the code and made the code publicly available [25], in a hope that it will be useful to the optical community for investigations of the nonlinear processes in nanocomposites and other materials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' The paper is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' In Section 2, we present the numerical model, including detailed formal- ism for all the relevant mechanisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' In Section 3, we optimize the THz generation by two-color pulses, and analyze the role of different parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' A summary of the paper is given in the conclusion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' THEORETICAL MODEL We consider a composite consisting of two components, a homogeneous host material and spherical nanoparticles (inclusions) randomly distributed in space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' We assume a sufficiently low (typically few percent or below) filling fraction of the inclusions so that neither percolation nor interaction between the inclusions play a role.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' We con- sider homogeneous inclusions to be sufficiently small with diameter below the light wavelength so that effective- medium theory can be applied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Note that we do not place any limitations on the nature of host and inclu- sion materials, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=', either of them could be a dielectric, a metal, or a semiconductor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' We do not require point symmetry in host material or in the inclusions, so that the second-order susceptibility can be non-zero in either material.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' The model is designed to simulate propaga- tion over relatively short distances of few millimeters, be- low the damage threshold, and without back-reflection, therefore (1+1)D treatment using unidirectional propa- gation equation [26] is the most suitable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Under these conditions, the following effects have to be taken into account: linear dispersion including intrin- sic and scattering losses, second- and third-order optical nonlinearities and photoionization accompanied by ion- ization losses and plasma dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' In addition, transi- tions between excitonic states can play a significant role in the inclusion response, in particular for the genera- tion of new frequencies in the THz range.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Among the effects which were neglected in this treatment are ther- mal effects (due to slow ns-scale response),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' coupling to phonons (because of relatively slow ps-scale response),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Raman scattering (which is typically weaker than in- stantaneous nonlinearities),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' anisotropy of the host ma- terial (due to manufacturing limitations for composites),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' deviations of the inclusion form from a sphere (because of typical manufacturing conditions),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' and generation of high-order harmonics (because of the considered inten- sity ranges).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' The following unidirectional propagation equation is used to model the light propagation in a homogeneous medium [26,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' 27]: ∂E(z,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' ω) ∂z = −i � [ � ǫ(ω) − ng]ω c − β(ω0) � E(z,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' ω) − iω 2c � ǫ(ω) PNL(z,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' ω),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' (1) where E(z,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' ω) = ˆFE(z,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' t) = � ∞ −∞ E(z,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' t) exp(−iωt)dt is the Fourier transform ˆF of the electric field E(z,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' t),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' z is the propagation coordinate,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' ǫ(ω) is the linear dielec- tric permittivity (generally speaking,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' complex-valued to include loss mechanisms),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' ng is the group refractive in- dex,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' ω0 is a characteristic frequency of the pulse spec- trum,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' β(ω) = � ǫ(ω)ω/c,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' and PNL(z,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' ω) is the Fourier transform of the nonlinear part of the polarization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' We would like to empathise that no slowly-varying envelope approximation is used, and E(z, t) represents the real- valued field including the carrier oscillations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' This ap- proach yields a unified treatment for a pulse with arbi- trary spectral content, which is particularly important for extremely broad spectra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Linear dispersion The effective-medium theory allows to substitute the composite material by a homogenised medium with ap- propriately defined effective material parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' The effective refractive index of a composite can be expressed as [27] neff = � (1 − f)ǫh + fǫi 3ǫh 2ǫh + ǫi + 2i � ǫh − ǫi 2ǫh + ǫi �2 �rNPω√ǫh c �3�1/2 , (2) where f is the volume filling factor of the inclusions, rNP is their radius, and ǫh,i are the frequency-dependent dielectric functions of the host and of the inclusions, cor- respondingly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' The last term in the square brackets de- scribes scattering losses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Second- and third-order nonlinearities The second- and third-order nonlinear processes can also be described in the framework of the effective- medium theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' The expressions for the effective second- order susceptibility looks like [28] 3 χ(2) eff (ω1 = ω2 + ω3;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' ω2, ω3) = (1 − f)χ(2) h + + fx(ω1)x(ω2)x(ω3)χ(2) i , (3) where χ(2) h and χ(2) i are the susceptibilities of host and inclusion materials, correspondingly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Note that we ne- glected the frequency dependence of the susceptibilities of host and inclusions, which is a good assumption far from resonances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Quantity x(ω) is the ratio of local field inside the inclusion and the incident field: x(ω) = 3ǫh(ω) 2ǫh(ω) + ǫi(ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' (4) Here we note that, due to photoionization as described below, the ǫi(ω) and therefore x, strictly speaking, de- pend on time due to buildup of plasma during the pulse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' However, in the current simulation we neglect this de- pendence, assuming that corresponding change of ǫi(ω) is small and that we are far from the plasmonic resonance given by 2ǫh(ω) = −ǫi(ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Similarly, for the effective third-order susceptibility we write [28] χ(3) eff (ω1 = ω2 + ω3 + ω4;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' ω2, ω3, ω4) = (1 − f)χ(3) h + + fx(ω1)x(ω2)x(ω3)x(ω4)χ(3) i , (5) where χ(3) h and χ(3) i are the susceptibilities of host and inclusion materials, correspondingly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' The final expres- sions which were used to calculate the corresponding po- larizations look like Pχ(2)(z, ω) = (1 − f)ǫ0χ(2) h ˆFE(z, t)2 + + fǫ0χ(2) i ˆF[ ˆF −1{E(z, ω)x(ω)}2], (6) Pχ(3)(z, ω) = (1 − f)ǫ0χ(3) h ˆFE(z, t)3 + + fǫ0χ(3) i ˆF[ ˆF −1{E(z, ω)x(ω)}3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' (7) C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Plasma dynamics Let us turn to the description of plasma formation and dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' In the framework of SOLPIC, we consider a case when the ionization potential Ip of the inclusions is lower than that of the host material, so that due to the sensitive dependence of the polarization rate on the ionization potential we can neglect plasma formation in host material.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' The contribution from the plasma is determined by the average displacement ⟨d⟩(z, t) of the electron from the equilibrium position in the parent ”molecule”, whereby by a ”molecule” we denote an atom or a group of atoms of the solid-state material which can provide a single ioniza- tion event.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Furthermore, it is determined by the relative ionization of the solid state ρ(z, t), which is the ratio of the conduction-band electron density to the density of ”molecules”: Pplasma(z, ω) = −Nmole ˆF[⟨d⟩(z, t)ρ(z, t)] (8) Here Nmol is the concentration of the molecules and e = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='6×10−19 is the electron charge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' The above expres- sion would be valid in a homogeneous medium;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' however, as it refers to a polarization which occurs inside of inclu- sions, in contrast to averaged macroscopic polarization, in the case of effective-medium theory it has to be addi- tionally multiplied by x(ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' For the origin of this factor and further details see Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' [28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' The dynamics of the quantity ⟨d⟩(z, t)ρ(z, t) is given by [33] ∂(⟨d⟩(z, t)ρ(z, t)) ∂t = ⟨v⟩(z, t) + x0Γ(t), (9) where ⟨v⟩ is the average velocity of electrons and x0 ≃ −Ip/eE(t) is the initial displacement of the elec- tron immediately after the ionization event, Ip being the bandgap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' It can be shown that the second term describes the energy loss of the pulse due to photoionization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' The dynamics of the ⟨v⟩(z, t)ρ(z, t) is given by second New- ton’s law as ∂(⟨d⟩(z, t)ρ(z, t)) ∂t = −eE(z, t) me ρ, (10) where me is the effective electron mass near the bot- tom of the conduction band.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Here we neglect the initial displacement and velocity of electron just after the ion- ization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' The dynamics of the relative plasma density ρ is given by ∂ρ ∂t = Γ( ˆF −1[x(ω)E(z, ω)]), (11) where x(ω)E(z, ω) is the local field inside of inclusions which determines the photoionization rate Γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Ionization rate Depending on the relation between the frequency of pump light and the ionization potential of inclusions, we consider two models for the ionization rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' For the case when the energy of pump photons is much smaller than the ionization potential, the photoionization occurs ei- ther by multiphoton regime or by tunneling regime, as determined by intensity and Keldysh parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Here we 4 10-4 10-3 10-2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='1 1 1 2 3 4 5 (a) I(ω) (arb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' units) ω (fs-1) 6 4 2 0 2 4 6 40 20 0 20 40 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='01 (b) E (GV/m) ρ t (fs) FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Dependence of the spectra (a) and the electric field (b) on the propagation length.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' 15-fs pulses at 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='26 fs−1 and 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='58 fs−1 are considered, with intensity of 1 TW/cm2 and propagation length of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='75 µm (magenta curves), 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='25 µm (green curves), and 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='75 µm (bluecurves).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' In (b), additionally the relative plasma density is shown for propagation length of 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='75 µm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' A composite of ZnO inclusions with f = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='03 in fused silica is considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' utilize so-called Yudin-Ivanov model [29], which provides a formalism for both of these regimes in a unified way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' This model was initially developed for isolated atoms;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' its use for solid state is justified in a case a negligible an- harmonicity of the bands in the center of the Brillouin zone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' The cycle-resolved ionization rate Γ is given (in atomic units, that is, with frequency ω, time t and field E mea- sured in the corresponding Hartree units ωa = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='26 rad/as, ta = 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='2 as, xa = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='0529 nm, and Ea = 514.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='2 V/nm) by Γ(z, t) = π τT exp � −σ0 ⟨2E(z, t)2⟩ ω3 � � 2κ3 � ⟨2E(z, t)2⟩ �2Z/κ × exp � −E(z, t)2 2ω3 σ1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' (12) Here τT = κ/E(z, t), κ = � Ip/(ℏωa), σ0 = 1 2(γ2 + 1 2) ln C − 1 2γ � 1 + γ2, γ = ωτT , Z is the effective atomic charge, C = 1 + 2γ � 1 + γ2 + 2γ2, and σ1 = ln C- 2γ/ � 1 + γ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' The quantity ⟨E(z, t)2⟩ is the averaged value of the squared electric field over few past periods (5 fs is assumed in this work).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' The Yudin-Ivanov model was initially derived for gases;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' its applicability for solid state, while generally justi- fied for materials with tight binding, is not strictly es- tablished.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' We have benchmarked Yudin-Ivanov model by comparing it to the numerical solution of the time- dependent Schrodinger equation in single active electron approximation [30].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' In this approach the empirical pseu- dopotential method was used for describing the electron band structure of ZnO [31].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' We have found that the dif- ference of the ionization rate does not typically exceed one order of magnitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' This difference is, in fact, not very significant: because of the threshold-like behavior of the ionization rate, it leads to only a slight shift of the intensity at which a strong plasma generation is reached.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' For the specal case when the energy of pump photons is around two ionization potentials, it is preferable to use the two-photon formalism [32] and write the cycle- resolved ionization rate Γ (in SI units) as Γ(z, t) = 2e4x4 aν ℏ4ω2 0[(2ω0 − Ip/ℏ)2 + ν2 ⟨E(z, t)2⟩E(z, t)2, (13) where ν is the relaxation constant of the two-photon transition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Contribution by excitons Finally, we include the nonlinear polarization due to excitons into treatment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' We consider multiple excitonic levels and utilize the standard Bloch equations for the de- scription of the ionization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' The dynamics of the density matrix ρe is given by (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' [32]) iℏ∂ρe ∂t = [H, ρe], (14) where H = H0 + Hint, H0 is the Hamiltonian of the system in the absence of excitation, Hint is the interaction Hamiltonian, which components Hij are related with the corresponding dipole transition moments eMij: Hij = eMij ˆF −1[E(z, ω)x(ω)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' (15) In addition, polarization decay (decay of the off- diagonal elements of ρe) with decay time T2 and decay of the population to the ground state with decay time T1 are included.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' In order to avoid numerical instabilities, the normalization of the density matrix ρ is performed each few steps in time, by a) enforcing 0 ≤ ρe,ii ≤ 1, b) enforcing T r(ρe) = 1, and c) adjusting the non-diagonal elements which exceed the maximum possible value de- termined by the corresponding level populations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' The excitonic polarization is then defined in a standard way as Pexc(z, ω) = x(ω) ˆF[fTr(ρeM)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' (16) We solve the propagation equation by an extended split-step method, whereby each of the contributions to 5 the polarization is treated subsequently, which allows to reduce the accumulation of numerical error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Nonlinear steps are performed using the Runge-Kutta approach, the order of which can be selected between 1,2, and 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Fixed step of the grid both in time and in the propa- gation coordinate is used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' The appearance of numerical artifacts during the propagation is monitored by tracing the total pulse energy as well as the total energy absorbed at the boundaries of the numerical time window.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' NUMERICAL RESULTS AND DISCUSSION In order to exemplify the above model and function- ing of SOLPIC, we present in this section a simulation of THz generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' We consider a composite of ZnO inclu- sions in SiO2 matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Phenomenological Sellmeyer-type expressions were used to describe dispersion on ZnO [35] and SiO2 [36].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Similarly, experimental data on second- order [37] and third-order [38] susceptibility of bulk ZnO and third-order susceptibility of SiO2 [40] were used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' We estimated the value of T2 as 50 fs from Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' [41] and used T1 = 2T2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' For ZnO, the typical exciton size is larger than interatomic distance, meaning that we are dealing with Wannier-Mott type of excitons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' In a case of sufficiently small inclusions, the exciton is bounded by the inclu- sion boundaries, therefore its wavefunctions (as well as energy levels and dipole momenta) are better described, instead of hydrogen-like potential, by a constant poten- tial inside a sphere [42] with a step on its boundary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' We have taken into account 5 lowest excitonic levels, and typical values of the off-diagonal dipole momenta, as cal- culated by this approach, are around 3×10−28 C·m, for same-size nanoparticles with a radius of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='5 nm which are considered here and hereafter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' For the permanent dipole momenta of ZnO, we have adopted a typical value of 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='66×10−30 C·m per ZnO molecule, which was used to define the on-diagonal elements of the dipole matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' We used the ionization potential of 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='37 eV equal to the bandgap of ZnO to characterize the transition from va- lence band to conduction band, and all the presented numerical results correspond to the conditions below the damage threshold of ZnO [43].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' The evolution of the field profile and spectra with prop- agation is illustrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' 1, for two-color pulsed exci- tation with pump pulses around 800 nm and 400 nm, for conditions given in the caption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' 1(a) one can see that initial stages of the propagation are characterized by self-phase modulation with typical spectral side lobes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' At later stages, spectrum becomes irregular and transform into a supercontinuum extending up to the absorption edge given by the bandgap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' The evolution of the tempo- ral profile, shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' 1(b), shows gradual reduction of the enegry of electric field, as well as significantly ir- regular envelope for longer propagation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' This reduction of the maximum field determines the saturation of the THz generation efficiency and is caused both by strong group-velocity dispersion for broad spectrum and energy absorption due to transition to conduction band.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' One can see from the red curve in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' 1(b) that relative plasma density reaches values of roughly 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='01 after the pulse, which is sufficient to induce significant energy ab- sorption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' 10-4 10-3 10-2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='1 1 10 20 30 I(ν) (arb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' units) ν (THz) FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Dependence of the spectra in the THz range on the propagation distance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' We consider 1-TW/cm2, 15-fs pump pulses at 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='26 fs−1 and 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='58 fs−1, in a composite of ZnO nanoparticles with filling fraction of f = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='03 in a fused-silica matrix, after propagation length of 5 µm (magenta curve), 15 µm (green curve), 45 µm (blue curve), and 50 µm (yellow curve).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' 2 the evolution of the spectrum in the THz range is shown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' One can see that while the spectrum is flat at early stages of propagation, for larger propagation lengths the spectrum is localized around 28 THz, proba- bly due to phase-matching effects with a phase-mismatch length of 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='5 µm for the four-wave mixing between the two photons at 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='26 fs−1, one photon at 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='58 fs−1, and a THz photon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Losses around 15 THz and below can also contribute to saturation of generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' After 45 µm prop- agation length, the efficiency of the generation reaches 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='05%, which is sufficiently high for practical applica- tions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' In order to determine the optimum conditions of the THz generation, in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' 3 we plot the dependence of the generation efficiency on the distribution of energy be- tween the 830-nm pulse and 412-nm pulse (a), intensity of pulses (b), and wavelength of the short-wavelength pulse (c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' One can see that the efficiency of THz gen- eration is non-zero but very small for the cases when only one of the pulses is present (energy fraction of 0 or 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' This indicates that the optical rectification based the second-order susceptibility of ZnO cannot efficiently generate THz for the considered conditions, and that the dominant contribution comes from the third-order susceptibility of ZnO nanoparticles, third-order suscep- tibility of SiO2 being comparatively weak.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' In an ideal case without pump pulses modification, the efficiency of the THz generation is proportional to E2 830(Etot − E830), where E830 is the energy of the pulse at 830 nm and Etot = E830 + E412 is the total energy of the pulses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' The maximum efficiency is then reached at E830/Etot = 1/3, 6 0% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='5% 1% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='5% 2% 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='5% 3% 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='75 1 (a) THz efficiency Energy fraction of 800-nm pulse 0% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='5% 1% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='5% 2% 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='5% 3% 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='75 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='25 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='5 (b) THz efficiency I, TW/cm2 0% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='5% 1% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='5% 2% 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='5% 3% 405 410 415 420 425 430 (c) THz efficiency λ (nm) FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Dependence of the THz generation efficiency on en- ergy fraction of the 800-nm pulse (a), intensity of each of the pump pulses (b), and the wavelength of the second-harmonic pulse (c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' A composite of ZnO nanoparticles with f = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='03 in fused silica is considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' In (a), 15-fs pulses at 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='26 fs−1 and 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='58 fs−1 are considered, with total intensity of 2 TW/cm2 and propagation length of 50 µm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' In (b) we consider 15-fs (red curve) and 150-fs (green curve) pulses at 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='26 fs−1 and 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='58 fs−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' In (c), 1 TW/cm2, 15-fs pulses are considered, with IR pulse frequency of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='26 fs−1 and propagation length of 50 µm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' however, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' 3(a), maximum numerical ef- ficiency is achieved for E830/Etot = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' This could be due to strong SPM-induced spectral spreading of high- frequency pulse during the propagation, which needs to be compensated by relatively higher value of E412.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' 3(b), the dependence of the efficiency on the pulse intensity is shown, exhibiting saturation and decrease after a certain intensity as well as lower efficiencies for longer pulses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' We attribute these features to detrimen- tal contribution of the accumulated plasma, which grows with intensity and pulse duration [cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' 4(a)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' 3(c), the dependence of the efficiency on the wavelength of the short-wavelength pulse exhibits several maxima.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Note that while one might expect an optimum THz gen- eration for 415 nm, which would correspond to generation of frequencies near zero, our simulation in fact predict a minimum around this value, determined most probably by phase mismatch and losses below 15 THz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Finally, in order to access the role of plasma and ex- citons in the THz generation in composites, in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' 4 we compare the spectra for plasma contribution (a) and exciton contribution (b) switched on/off.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' One can see that the plasma contribution is significant, both due to contribution to refractive index and due to losses, and absence of plasma contribution leads to a notable (more than twofold) increase of the efficiency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' On the other hand, from Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' 4(b) one can see that exciton polar- ization do not provide a strong contribution to the effi- ciency for the considered parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Also, additionally including the permanent dipole momenta, described in 10-3 10-2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='1 1 10 20 30 (a) I(ν) (arb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' units) ν (THz) 10-3 10-2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='1 1 10 20 30 (b) I(ν) (arb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' units) ν (THz) FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Spectra in the THz range with (a) plasma contri- bution on (red) and off (green) and (b) exciton contribution on (red) and off (green), as well including both exciton con- tribution and permanent dipole moment (blue).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' We consider 1-TW/cm2, 15-fs pump pulses at 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='26 fs−1 and 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='58 fs−1, in a composite of ZnO inclusions with filling fraction of f = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='03 in a fused-silica matrix, after propagation length of 10 µm (a) and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='75 µm (b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' the model above, does not significantly increase the effi- ciency of THz generation, as indicated by the blue curve in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' 4(b) which is close to the red and green curves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' We note, however, that this conclusion is of limited gen- erality;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' for other parameters of the medium excitons can provide the key mechanism of THz generation (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' [44, 45] and references therein).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' CONCLUSION In this paper we have established a comprehensive nu- merical model for the simulation of light propagation in composites, including all the relevant physical effects for a broad range of parameters, such as linear dispersion of the composite, second- and third-order nonlinear ef- fects, plasma contribution, excitons contribution and so on.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' The model was applied to simulate the generation of THz radiation in a ZnO-SiO2 composite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' We have per- formed optimization of the frequency conversion process, predicting an efficiency of 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='05%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' We show that sim- ulations provide insights into the optimization, such as the power distribution between the pump pulses, which would not be accessible intuitively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' We hope that the nu- merical model and the corresponding software solution, which we make available for the community, will con- tribute to the capacity of the simulations in the area of nonlinear optics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' ACKNOWLEDGMENTS Authors acknowledge financial support from Eu- ropean Union project H2020-MSCA-RISE-2018-823897 ”Atlantic”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' thanks Cluster of Excellence PhoenixD (EXC 2122, project ID 390833453) for financial support.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' 7 [1] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Tonouchi, ”Cutting-edge terahertz technology” Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Photon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' 1, 97–105 (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' [2] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Sakai (ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' ), Terahertz Optoelectronics, Springer, Berlin, 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' [3] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Mittleman, Sensing with Terahertz Radiation Springer, Berlin, 2002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' [4] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Liu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Dai, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Chin, and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Zhang, ”Broadband terahertz wave remote sensing using coherent manipula- tion of fluorescence from asymmetrically ionized gases”, Nat Photon 4, 627–631 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' [5] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Cook and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Hochstrasser, ”Intense terahertz pulses by four-wave rectification in air”, Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' 25, 1210–1212 (2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' [6] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Kress, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Loffler, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Eden, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Thomson, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Roskos, ”Terahertz-pulse generation by photoionization of airwith laser pulses composed of both fundamental and second-harmonic waves”, Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' 29, 1120–1122 (2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' [7] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Bartel, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Gaal, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Reimann, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Woerner, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' El- saesser, ”Generation of single-cycle THz transients with high electric-field amplitudes”, Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' 30, 2805–2807 (2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' [8] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Xie, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Dai, and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Zhang, ”Coherent control of THz wave generation in ambient air”, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' 96, 075005 (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' [9] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Thomson, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Kress, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Loffler, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Roskos, ”Broadband THz emission from gas plasmas induced by femtosecond optical pulses: From fundamentals to appli- cations”, Laser Photon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' 1, 349–368 (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' [10] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Babushkin, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Skupin, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Husakou, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Kohler, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Cabrera-Granado, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Berge and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Herrmann, ”Tailoring terahertz radiation by controlling tunnel photoionization events in gases”, New J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' 13, 123029 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' [11] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Herzer, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Woldegeorgis, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Polz, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Reinhard, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Al- massarani, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Beleites, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Ronneberger, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Grosse, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Paulus, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' H¨ubner, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' May, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Gopal, “An investigation on THz yield from laser-produced solid density plasmas at relativistic laser intensities”, New J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' 20 , 063019, ((2018) [12] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Blanchard, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Schmidt, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Ropagnol, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Thir´e, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Ozaki, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Morandotti, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Cooke, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Legare, “Terahertz pulse generation from bulk GaAs by a tilted- pulse-front excitation at 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='8 µm,” Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' 105, 241106 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' [13] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Aoki, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Savolainen, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Havenith, “Broadband terahertz pulse generation by optical rectification in GaP crystals,” Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' 110, 201103 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' [14] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Dakovski, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Kubera, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Shan, “Localized ter- ahertz generation via optical rectification in ZnTe,” J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Am.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' B 22, 1667–1670 (2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' [15] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Zhong, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Li, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Zhai, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='-G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Zhu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Li, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Zhou, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Zhao, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Li, “Generation of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='19-mJ THz pulses in LiNbO3 driven by 800-nm femtosecond laser,” Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Express 24, 14828–14835 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' [16] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Apostolova, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Obreshkov “High harmonic generation in crystalline silicon irradiated by an intense ultrashort laser pulse,” The European Physical Journal D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' 75, 1 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' [17] Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Jin, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Yiwen, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Williams, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Dai, and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Zhang, ”Observation of broadband terahertz wave generation from liquid water”, Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' 111, 071103 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' [18] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Tailliez, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Davoine, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Debayle, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Gremillet, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Berge, ”Terahertz Pulse Generation by Strongly Mag- netized, Laser-Created Plasmas”, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' 128, 174802.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' [19] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Zhou, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Liu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Wang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Ma, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Jia, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Wu, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Zhou, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Zhang, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Liu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Wu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Qi, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' , 121, 086801, 2018 [20] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Agarwal, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Huang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Ter Lim, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Singh, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Com- mun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' , 13, 4072, 2022 [21] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='Ricard, ”Nonlinear optics in composites and in hetero- geneous media”, Physica A 157, 301-308 (1989).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' [22] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Shalaev, Nonlinear Optics of Random Media, Springer, Berlin, 2000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' [23] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Driben, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Husakou, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Herrmann, ”Supercon- tinuum generation in aqueous colloids containing silver nanoparticles”, Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' 34, 2132-2134 (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' [24] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Pendry, ”Negative Refraction Makes a Perfect Lens” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' 85, 3966-3969 (2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' [25] https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='com/F1Ulia/SOLPIC/tree/main [26] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Husakou and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Herrmann, ”Supercontinuum Gen- eration of Higher-Order Solitons by Fission in Photonic Crystal Fibers”, Physical Review Letters 87 (20), 203901 (2001).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' [27] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Maxwell Garnett, ”Colours in Metal Glasses and in Metallic Films”, Philos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' London 203, 385 (1904).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' [28] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Sipe and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Boyd, ”Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model”, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' A 46, 1614 (1992).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' [29] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Yudin and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Ivanov, ”Nonadiabatic tunnel ionization: Looking inside a laser cycle”, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' A 64, 013409 (2001).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' [30] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Apostolova and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Obreshkov, ”High harmonic gener- ation from bulk diamond driven by intense femtosecond laser pulse”, Diam.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Relat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Mater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' 82, 165 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' [31] Fan, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Abiyasa, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Tan, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Yu, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Sun, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Xia, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Yeo, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Li, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Chong, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' C, ”Electronic structures of wurtzite ZnO and ZnO/MgZnO quantum well” Journal of Crystal Growth 287, 28 (2006) [32] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Meng, ”Continuous-wave Raman laser in H2 : semi- classical theory and diode-pumping experiments”, PhD thesis, Montana State University, 2002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' [33] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Husakou and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Herrmann, ”High-power, high- coherence supercontinuum generation in dielectric-coated metallic hollow waveguides”, Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Express 17, 12481 (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' [34] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' J¨urgens, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Liewehr, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Kruse, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Peltz, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Engel, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Husakou, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Witting, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Ivanov, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Vrakking, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Fennel and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Mermillod-Blondin, ”Origin of strong- field-induced low-order harmonic generation in amor- phous quartz”, Nature Physics 16, 1035–1039 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' [35] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Bodurov, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Vlaeva, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Viraneva, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Yovcheva, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Sainov, ”Modified design of a laser refractometer”, Nanoscience Nanotechnology 16, 31-33 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' [36] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Tan, ”Determination of refractive index of silica glass for infrared wavelengths by IR spectroscopy”, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Non-Cryst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Solids 223, 158-163 (1998).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' [37] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Wang, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Wong, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Ketterson, ”Rede- termination of second-order susceptibility of zinc oxide single crystals,” Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' 40, 5436-5438 (2001).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' 8 [38] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Larciprete, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Haertle, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Belardini, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Bertolotti, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Sarto and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' G¨unter, ”Characterization of second and third order optical nonlinearities of ZnO sputtered films”, Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' B 82, 431–437 (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' [39] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Multian, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Riporto, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Urbain, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Mugnier, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Djanta, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Beauquis, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Galez, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Ya Gayvoronsky, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Le Dantec, ”Averaged third-order susceptibility of ZnO nanocrystals from Third Harmonic Generation and Third Harmonic Scattering”, Optical Materials 84, 579- 585 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' [40] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Milam, ”Review and assessment of measured values of the nonlinear refractive-index coefficient of fused silica,” Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' 37, 546-550 (1998).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' [41] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Golde, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Meier, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Koch, ”High harmon- ics generated in semiconductor nanostructures by the coupled dynamics of optical inter- and intraband exci- tations”, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' B 77, 075330 (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' [42] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Babushkin, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Shi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Demircan, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Morgner, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Her- rmann, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Husakou, ”Metallic nanostructures as electronic billiards”, https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='org/abs/2104.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content='14637 [43] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Li, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Feng, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Jia, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Sun, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Li, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Xu, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Wang, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Xu, ”Ultrafast dynamics in ZnO thin films irradi- ated by femtosecond lasers”, Solid State Communications 136, 389-394 (2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' [44] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Khasanov, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Fedotova, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Rusetsky and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Niki- forov, ”Echo-Spectroscopy of Nanocomposites”, Laser Physics 29, 124011 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' [45] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Fedotova, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Husakou, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Rusetsky, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Khasanov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Fedotov, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Smirnova, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Sapaev, and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} +page_content=' Babushkin, ”Mechanisms of Terahertz Generation under Femtosec- ond Pulses propagation in Nanocomposites”, jsii 1 4, CLEO-Europe - European Quantum Electronics Confer- ence, Munich, Germany (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/adE3T4oBgHgl3EQfdAqs/content/2301.04531v1.pdf'} diff --git a/b9E_T4oBgHgl3EQfzxyC/content/tmp_files/2301.08325v1.pdf.txt b/b9E_T4oBgHgl3EQfzxyC/content/tmp_files/2301.08325v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..a17cf37d46bde1c1c2c95eeb7604e68e5e7eda52 --- /dev/null +++ b/b9E_T4oBgHgl3EQfzxyC/content/tmp_files/2301.08325v1.pdf.txt @@ -0,0 +1,1411 @@ +Advanced Scaling Methods for VNF deployment with +Reinforcement Learning +Namjin Seoa, DongNyeong Heoa, Heeyoul Choia +aHandong Global University, Pohang, 37554, Gyeongbuk, South Korea +Abstract +Network function virtualization (NFV) and software-defined network (SDN) +have become emerging network paradigms, allowing virtualized network func- +tion (VNF) deployment at a low cost. Even though VNF deployment can be +flexible, it is still challenging to optimize VNF deployment due to its high +complexity. Several studies have approached the task as dynamic program- +ming, e.g., integer linear programming (ILP). However, optimizing VNF de- +ployment for highly complex networks remains a challenge. Alternatively, re- +inforcement learning (RL) based approaches have been proposed to optimize +this task, especially to employ a scaling action-based method which can de- +ploy VNFs within less computational time. However, the model architecture +can be improved further to generalize to the different networking settings. +In this paper, we propose an enhanced model which can be adapted to more +general network settings. We adopt the improved GNN architecture and a +few techniques to obtain a better node representation for the VNF deploy- +ment task. Furthermore, we apply a recently proposed RL method, phasic +policy gradient (PPG), to leverage the shared representation of the service +function chain (SFC) generation model from the value function. We evaluate +the proposed method in various scenarios, achieving a better QoS with min- +imum resource utilization compared to the previous methods. Finally, as a +qualitative evaluation, we analyze our proposed encoder’s representation for +the nodes, which shows a more disentangled representation. +Keywords: +Network Function Virtualization, Software Defined Networking, +Reinforcement Learning, Graph Neural Network +Preprint submitted to +January 23, 2023 +arXiv:2301.08325v1 [cs.NI] 19 Jan 2023 + +1. Introduction +Softwarization of the Internet network, such as software-defined network- +ing (SDN) and network function virtualization (NFV), has emerged as a +new network paradigm. In this paradigm, the network functions provided +by hardware-based middleboxes (e.g., Network Address Translation (NAT), +Firewall, Proxy) are replaced with virtualized network functions (VNFs), +running on virtual machines as VNF instances. By decoupling the network +functions from the hardware, NFV allows the network service providers to +deploy VNFs with low capital expenses (CAPEX) and operating expenses +(OPEX). In addition, the traffics and network devices are managed and +monitored by NFV orchestration (NFVO) in the centralized NFV frame- +work. Hence, the VNF instances can be deployed by NFVO adaptable to the +traffic requirements, which is the VNF deployment task. +Even though VNF deployment can be accomplished dynamically with +flexibility, requirements for the VNF deployment task are also getting more +complex. +The first requirement is that the service function chain (SFC) +should be generated efficiently while maintaining an acceptable quality of +service (QoS). SFC requires the traffics of a request to be routed through +multiple stages of VNFs in NFV. Fig. 1 shows an example of SFC where the +SFC request (Req1) demands an SFC: “NAT (‘N’) → Firewall(‘F’)”. This +SFC request should be sequentially processed at these VNF instances as it +travels from its ingress to its egress. +These types of VNF should be de- +ployed, taking into account the path of the requests, to meet the pre-defined +service-level agreement (SLA) for QoS. Another requirement is to optimize +resource utilization while satisfying the QoS. Redundantly deployed VNF in- +stances could preserve high QoS, but it incurs unnecessary operating costs +and energy consumption. Therefore, it is essential to improve the QoS while +maintaining minimized resource consumption for the efficient management +of VNF deployment. +To achieve such efficient management of VNF deployment, the existing +works have exploited dynamic programming algorithms, like integer linear +programming (ILP) [1, 2, 3]. However, even though the ILP-based approach +exhibits acceptable performance in networks with a low level of complex- +ity, its computational cost becomes too expensive as the network scales up. +Therefore, the ILP-based approach is not suitable for large-scale networks +and the dynamical adjustment for traffic lifespans. +As an alternative solution, ML-based approaches have been proposed +2 + +Figure 1: Overview of VNF Deployment task: SFC requests are required to pass through +the VNFs sequentially as well as satisfy the SLA. Optimal deployment (Right) takes +into account the paths of SFC requests, while sub-optimal deployment (Left) is deployed +regardless of the paths of SFC request. Red boxes indicate inefficiently deployed VNF +instances, which are on the wrong path and redundant. +employing deep learning models, and reinforcement learning (RL) for VNF +deployment [4, 5, 6, 7]. Especially, an RL-based method for VNF deployment +was proposed to scale in and out VNFs on the network nodes [8]. +They +adapted the graph neural network (GNN) model and RL algorithms on top +of previously deployed VNF instances. Their action controls the number of +VNFs on each node by scaling in, scaling out, or doing nothing. It showed +that the agent was able to make appropriate scaling decisions for all the nodes +and VNF types with a single forwarding process, involving fewer computation +times for VNF deployment compared to other ML-based VNF deployment +approaches. However, their model could not obtain the node representations +in a general deployment setting where the networks include some nodes which +cannot have VNF instances (e.g., switches) deployed on them due to its model +setting for the node features. +In this paper, we propose to enhance the neural network model and adapt +new learning techniques so that the model can be adapted to the general +deployment setting. +First, we redesign the GNN architecture, and adapt +a few techniques motivated from other domains, such as natural language +processing and image processing [9, 10, 11, 12, 13], to effectively obtain a +node representation of the networking information for the VNF deployment +task. As the new GNN-based architecture, we employ the graph attention +network (GAT) [14] and separately process different types of nodes: VNF +deployable or non-deployable nodes. +This architecture allows an effective +propagation of node information from the network with different types of +nodes. In addition, we adapt the positional encoding [11] to preserve the +3 + +SFC +Qos +SFC +Qos +Delay > SLA +SRC→NF→DST +Delay < SLA +F +N +F +Npositional information in the node representations. +Furthermore, we apply a recently proposed RL algorithm, phasic policy +gradient (PPG) [15], which is a variation of the policy gradient algorithm to +optimize the policy network efficiently. By jointly optimizing the objectives +of the policy network and the value network, the policy network can share +representation with the value network, which helps the policy network obtain +a more effective representation for the VNF deployment task. +In the experiment, our approach optimizes the policy network to obtain a +higher reward with rapid convergence compared to the previous approaches. +Also, it proves that our approach can work in various scenarios. In addition, +we analyze the result of our approach to show the robustness in the various +topology and compare the processing time with ILP to show the practicality +for the dynamic adaptation of the traffic lifespans. Finally, as a qualitative +evaluation, we analyze the representation from the encoder of the policy +network, and it demonstrates that our method obtains more disentangled +representations of nodes. +2. Background +In this section, we briefly review graph neural networks and reinforcement +learning for VNF deployment. +2.1. Graph Neural Network +Graph neural networks (GNN) [16] were proposed to effectively handle +the graph-structured data consisting of a set of nodes V = {v1, · · · , v|V|} and +edges E = {ˆeij|vi, vj ∈ V} [17, 18, 19, 14, 20, 21]. GNNs aim to address +graph-related tasks (e.g., node/edge/graph classification) in an end-to-end +manner with neural network model [17]. In the training process, GNNs are +trained to extract nodes’ representations which reflect the graph information +for the target tasks. +In GNNs, a graph is represented as the following two matrix forms: the +adjacency matrix A and the node feature matrix X. The adjacency matrix +A ∈ R|V|×|V| represents the connections between pairs of nodes. The node +feature matrix X contains node features xi ∈ R|V|×d. With A, X is trans- +formed into node representation H = [h1, ..., h|V|]. Finally, these node repre- +sentations are adapted to the target task in an end-to-end manner, which is +implemented with a multi-layer perceptron (MLP) and a softmax layer. +4 + +GNN models are designed under the assumption that a node represen- +tation for the target task is trained by propagating node information to its +neighbors [17]. There are many different types of GNN models depending on +the way how the node information propagates, like recurrent connection, con- +volution, or attention. Among many GNN models, we review and compare +gated graph neural network (GGNN) and graph attention network (GAT) +which are used in the baseline and our approach, respectively. +2.1.1. Gated Graph Neural Network +In gated graph neural network (GGNN) [19], propagation between neigh- +bors is implemented as recurrent connection as in recurrent neural networks +(RNNs), and the node representation is calculated iteratively by RNN-like +updates. For the recurrent connection, they use gated recurrent unit (GRU) +[9], and the node representations are updated as follows: +h′ +i = GRU(hi, +� +j∈Ni +Whj), +(1) +where GRU is the GRU-like update function, Ni are the neighbors of node +vi, W is a weight matrix, and the initial node representation is set to X. +The recurrent updates are repeated a fixed number of times. Then, node +representations are fed into the output layers. +2.1.2. Graph Attention Network +Graph attention network (GAT) [14] was proposed to update node repre- +sentations with attention mechanism [10], while node information is propa- +gated through recurrent steps in GGNN. GAT computes the attention scores +of its neighbors so that the node representations can be updated according +to the different importance of its neighbors as follows: +h′ +i = +� +j∈Ni∪{i} +ˆαijWhi, +(2) +ˆαij = +exp(σ(a⊤ [Whi||Whj||Weˆeij])) +� +j′∈Ni∪{i} exp(σ(a⊤ [Whi||Whj′||Weˆeij′])), +(3) +where αij is the attention score of node vj for node vi, and ˆeij is edge at- +tributes between nodes vi and vj. W, We, and a are weight matrices, σ is a +non-linear function, and [·||·] indicates concatenation. +5 + +2.2. Reinforcement Learning +Reinforcement learning (RL) trains an agent to maximize the expected +reward by interacting with the environment. It formulates the task as Markov +decision process (MDP) described as a sequence of state st, action at, and +reward rt over discrete time steps. At discrete time-step t, the agent observes +the state st of the environment and takes an action at. Subsequently, the +current state st transitions into the next state st+1 along with the transition +probability P(st+1|st, at), and finally, the agent receives a reward rt+1. This +process is repeated until the agent reaches the terminal state which ends one +episode. As the agent experiences many episodes, the agent could maximize +the return, Gt = rt+1 + γrt+2 + γ2rt+3 + · · · , where γ is the discount factor. +To maximize Gt over an episode, the RL agent needs to update policy +π(at|st), a probability distribution of possible actions given state st. +To +estimate how good the action is at discrete time t, the agent should learn the +state value V (st) = E[Gt|st] (or action-state value Q(st, at) at action-state +pair (at, st)). In other words, the goal of an RL agent is to optimize its π(a|s) +based on the trained state value V (s) (or action value Q(s, a)) to maximize +the expected return in any episode. +2.2.1. Policy Gradient +Policy gradient (PG) is an RL method to model policy π(a|s) as a param- +eterized function with neural networks called the policy network πθ(a|s). It +trains the parameter of the policy network optimizing the objective function +defined as follows: +LPG(θ) = Et +� +log πθ(at|st) ˆAt +� +, +(4) +where ˆAt is the advantage estimator. For example, the REINFORCE algo- +rithm [22] trains the parameters of the policy network defining advantage +estimator ˆAt as return Gt. +2.2.2. Proximal Policy Optimization +Proximal policy optimization (PPO) [23] is one of the actor-critic (AC) +based RL algorithms [24] with the trust-region method [25]. +In addition +to the policy network, the AC algorithm employs the value network Vθ(s) +estimating the state value V (st) in order to mitigate the variance in the +training process. Furthermore, PPO has an additional constraint on the step +size of the policy update to prevent inappropriate update of parameters, +6 + +called the trust-region method [25, 26]. Let ˆrt(θ) be the probability ratio +ˆrt(θ) = +πθ(at|st) +πθold(at|st), then PPO maximizes +LPPO(θ) = Et +� +min(ˆrt(θ) ˆAt, clip(ˆrt(θ), 1 − ϵ, 1 + ϵ) ˆAt) +� +, +(5) +where clip(·, x, y) is an operation clamping in range over x and y, and ϵ +is a hyper-parameter of the clipping. The clipping operation constrains the +probability ratio ˆrt to be close to 1 so that the parameters cannot be updated +radically. +2.2.3. Phasic Policy Gradient +The phasic policy gradient (PPG) [15] algorithm was proposed to share +parameters between the policy and value networks in the AC algorithms. +Even though parameter sharing allows both networks to learn features jointly +with a higher level of sample reuses, it is unclear whether it optimizes effi- +ciently both networks jointly or not. Thus, they employ two value networks +to avoid conflicts between competing objectives of the policy and value net- +works. The one is value network VθV (s) not sharing parameters, and the +other shares the parameter, called the auxiliary value head Vθπ(s). +The PPG algorithm divides the policy and value network training phases +into policy and auxiliary phases. In the policy phase, the policy is optimized +in the same manner as PPO. Then, in every NPPG +th iterations, an auxiliary +loss is minimized in the auxiliary phase, and the auxiliary loss is defined by +Laux = Et +�1 +2(Vθπ(st) − VθV (st))2 +� ++ βcloneEt [KL [πθold(·|st), πθ(·|st)]] , +(6) +where βclone is the hyper-parameter controlling how much the original policy +is preserved. +2.3. Scaling Agent for VNF Deployment +Scaling of VNF deployment monitors VNF instances deployed in a net- +work and adjusts the number of instances to maintain reliable QoS at min- +imized cost by scaling in (removing instances), keeping, and scaling out +(adding new instances). An RL-based method was proposed for VNF scaling +[8] to optimize QoS and resource utilization, simultaneously. They adapted +the graph neural network (GNN) models and RL algorithms on top of pre- +viously deployed VNF instances. The GNN-based model inputs the network +7 + +information, and then produces the probabilities of scaling actions: scale +in/out and keep. The parameters of the model were updated by PG-based +RL algorithms, such as REINFORCE [22] and PPO [23]. In this section, we +briefly review the model of the policy network and the RL formulation in [8]. +2.3.1. GNN based Policy Network +The policy network has an encoder-decoder architecture. The encoder re- +ceives the network information (e.g., network topology, deployed VNFs, and +SFC requests.) and outputs the node representation reflecting the network +information. +The decoder reads the representations and produces action +probabilities for ‘scaling in/out and keep’ of nodes and VNF types. To com- +pute node representations that reflect diverse network topologies, the encoder +is designed based on GNN [27], which is implemented with Gated Graph +Neural Network (GGNN) [19]. Additionally, the network topology-related +knowledge is transferred from the trained model for the SFC task, and the +parameters are frozen so that the model could obtain proper representations +of the network information. +2.3.2. RL formulation for VNF scaling +In the RL formulation, the RL agent observes the VNF deployment and +a set of SFC requests as the initial state and produces the scaling actions for +all the nodes and VNF types from the policy network. Then, after scaling +from the initial VNF deployment, the reward is computed 1, which is defined +as follows: +R = − 1 +Nreq +� +k +δk +δk +SLA +− α +� +vnf +Nvnf, +(7) +where Nreq and Nvnf are the number of SFC requests and the instances of +VNF type vnf ∈ {Firewall, NAT, · · · }. δk and δk +SLA are the traversing delay +and SLA of request k, and α is the coefficient of penalty for restriction of +resource utilization. The RL scenario is illustrated in Fig. 2. +3. Proposed Method +In this paper, we propose to enhance the neural network model and adapt +new learning techniques. First, we enhance the previous VNF scaling model +1The traversing path of the requests is generated by GNN-based SFC model [27]. +8 + +Figure 2: Overview of the RL pipeline for VNF scaling: 1) The initial deployment is ob- +served as the state from the environment. 2) Then, the RL agent updates the deployment +by scaling action. 3) Finally, the reward is given, and one episode ends. +[8] so that the model can be adaptable to more general deployment settings +which includes nodes which cannot have any VNF instances deployed on +them. Then, we apply new RL algorithms like PPG to train the model more +efficiently. +3.1. Model Architecture +As in [8], the encoder-decoder based model reads the network information +and produces the action probabilities for all the nodes and VNF types. The +pipeline of the model architecture is presented in Fig. 3. +The encoder computes the node representations H(k) by forwarding the +pair of the adjacency matrix A and node feature matrix X(k) for each SFC +request, where X(k) = [x(k) +1 , · · · , x(k) +|V|] is the node feature matrix for SFC +request k. Specifically, node vi’s feature is defined by +x(k) +i += [src(k)(i), N (k) +i,Firewall, N (k) +i,NAT, · · · , dst(k)(i)], +(8) +where src(k)(i) and dst(k)(i) indicate whether node vi is the ingress or egress +of request k. N (k) +i,Firewall, N (k) +i,NAT, · · · are the instance numbers of VNF type +vnf ∈ {Firewall, NAT, · · · } deployed on node vi if needed for request k, +otherwise set to 0. After encoding all the SFC requests, the encoder outputs +the sets of node representations {H(k)}. Then, {H(k)} are averaged into a +single representation ¯H, which is broadcasted and concatenated with each +VNF embeddings evnf ∈ {eFirewall, eNAT, · · · } to make target VNF represen- +tations ¯hi,vnf at the target nodes. +The RNN-based decoder consisting of GRU and MLP layers reads the +target representation ¯hi,vnf at each decoding step i, then outputs the action +probabilities of the target VNF type vnf on target node vi. The actions +9 + +GNN-based +RNN-based +Encoder +Decoder +Initial +Scaled +Compute +Deployment +Deployment +QoS&Resource(a) Encoding +(b) Decoding (Example of Firewall as target VNF type) +Figure 3: The proposed model architecture and the pipeline. (a) Node representations +{H(k)} are obtained from all the pairs of an SFC request and the VNF deployment, +and the target representation ¯hi,vnf for the target VNF type vnf on target node vi is +obtained by averaging the node representations {H(k)} and concatenating with target +VNF embeddings evnf as well as a positional encoding li (“P.E.”). (b) The decoder reads +the target representation ¯hi,vnf to make a decision for scaling action of the target at the +decoding step i. Over every decoding step, the decoder generates actions for the target +VNF type, and the iteration stops after the number of target nodes. Scaling for all the +VNF types can be performed in parallel. +include three types of scaling actions for the target: ‘scale-in’, ‘scale-keep’, +and ‘scale-out’. +Over every decoding step, the decoder generates actions +for the target VNF type, and the iteration stops after the number of target +nodes. Scaling for all the VNF types can be performed in parallel, with this +single process. +3.1.1. GAT-based Encoder +We apply the graph attention network (GAT) for the encoder instead of +GGNN [27]. GAT has several training advantages compared to GGNN for +VNF deployment. First, GAT could effectively propagate the node informa- +tion from the previous layers through the attention mechanism, while GGNN +10 + +Ex.) +Reqk5→NEP→1 +X +N +X +GAT-based +Encoder +d +Auxiliary +ModuleDecoder +Decoder +Decoder +N +N +Erelies on RNN-like updates. Next, GAT updates the node representation with +different importance of the neighbor nodes as the attention score, which is +helpful to train the model for requests with multiple hops between ingress +and egress. Due to the fact that the VNF deployment is highly related to +the paths of the requests, it is essential to train the importance of neighbors +on the paths. +The input of the GAT encoder is the adjacency matrix A and the in- +put node feature matrix X given the input pair of the VNF deployment +and an SFC request. +The encoder produces node representation matrix +H = +� +h1, ..., h|V| +� +. +The input node features and edge weights defined as +link latency are first forwarded through a shared linear transformation, pa- +rameterized by weight matrices W, We, where W, We are weight matrices +for node features and edge latency. +Then, self-attention is performed on +the nodes, where attention scores αij between node vi and vj are computed +only for neighbor nodes, which is defined by Eq. 3. In addition, we employ +multi-head attention to stabilize the learning process [14]. Finally, the node +representation hi is updated as a weighted sum with the attention scores over +nodes. +3.1.2. Auxiliary Encoding Module with Node Embedding +In the general deployment setting, the nodes in the network can be classi- +fied into 2 different types: non-resource-allocating nodes (“non-deployable”) +and resource-allocating nodes (“deployable”). As defined in Eq. 8, node fea- +ture xi contains the number of instances for each VNF type, which are always +zero-valued for the non-deployable nodes (N (k) +i,vnf = 0). Fig. 4a represents an +example of node features. +Given the different node types, the model cannot update enough the +representation of non-deployable nodes since the zero-valued features cannot +have enough attention, which could cause a bottleneck when propagating +node information through these nodes. To overcome the issue, we designed +an auxiliary encoding module that provides additional neighbor information +to the GNN-based encoder, as illustrated in Fig. 4b. This information is then +utilized by the next module of the encoder to complement for information +propagation when updating the representation of deployable nodes. +The auxiliary encoding module consists of vectorized embeddings and a +GAT layer. We first initialize vectorized embeddings {n1, n2, · · · } randomly +and assign them to each non-deployable node, and then update them along +with other parameters. As these embeddings are optimized during the train- +11 + +(a) +Illustrative +example +of +how +non- +deployable nodes could be bottlenecks, +which hinder the information propagation +from node#5 to node#1. +(b) The auxiliary module provides the neighboring infor- +mation of non-deployable nodes so that the GNN-based +encoder could update node representation efficiently. +Figure 4: Example of the general deployment setting and architecture of the encoder. +ing process, the model could provide the non-deployable nodes’ neighboring +information to mitigate the bottleneck effect. We refer to these embeddings +as node embeddings (‘N.E.’). In addition, we define and assign the same node +embedding n0 to all deployable nodes, allowing the module to focus on non- +deployable cases. Subsequently, we process these node embeddings through +a GAT layer to further reflect relations between multi-hops neighbors. We +implement the GAT layer of this auxiliary module with less parameters than +the encoder’s GAT layers to avoid over-fitting. +Finally, we concatenate the output of the auxiliary module and the output +of the GNN-based encoder’s first layer (refer to Fig. 4b) and forward to the +second layer of the encoder to get a final nodes representations Hk. +3.1.3. Positional Encoding +To pass spatial information of nodes, we employ positional encoding, as in +the Transformer [11]. Positional encoding could alleviate the decoder’s bur- +den of transferring knowledge from previous nodes to decode hidden states. +Before forwarding the aggregated representation ¯H, the location vector li is +computed with sine and cosine functions of different frequencies as in the +Transformer, then concatenated with ¯hi. +Finally, the decoder inputs the +representation of node vi partitioned into three parts: aggregated node vi’s +representation ¯hi, target VNF embeddings evnf, and location vector li. +12 + +Ex.) +Reqk +5 +N +1→1 +Bottleneck +N +P +XE. +#1 +0 +0 +1 +0 +0 +X#2 +0 +0 +0 +0 +0 +0 +GAT +GAT +H +... +1#5 +0 +0 +0 +0 +0 +Additional Info +Node Feature Mat. Xk +forefficientpropagation +#1 +n +X#2 - +ni +X#3 > +n2 +GAT +#5一 +no +NodeEmb3.2. RL for VNF Deployment +In this section, we discuss how we optimize the policy network with RL +algorithms. We follow the setting for RL formation and the perturbation +scenario as in [8]. In the perturbation scenario where the VNF deployment +is perturbed from the optimal deployment, the RL agent needs to remove +the redundant VNFs or add necessary VNF instances to reconstruct optimal +deployment by making scaling decisions for all the nodes and VNF types in +the current deployment. +In the perturbation scenario, we optimize the proposed model as the +policy network. Moreover, we propose an architecture of the value network +to apply the PPG algorithm, with which the policy network can leverage the +shared representation of the SFC generation from the value network. The +new value network architecture is described in the next section. +3.2.1. Auxiliary Value Head for PPG +The PPG algorithm jointly optimizes the objectives of the policy network +and value function, where the policy network and value function share the +parameters. In the optimization process, the objective of the value function +is to minimize the error of the estimation for the state value, and the value +function extracts the useful representation for the estimation of the SFC +generation. The policy network can incorporate the representation from the +value function to achieve a better policy. +However, to avoid a conflict between both objectives of the policy and +value network, PPG utilizes the auxiliary value head Vaux(s) as well as the +value network V (s) to estimate the state value. The value head shares the +parameters with the policy network, while the value network is implemented +with the separated parameters. Thus, we design these two value functions +and then apply the PPG to update the policy network. +Fig. 5 presents the architectures of the value network and the auxiliary +value head. The value network is implemented as a 2-layer MLP forwarding +the mean of the aggregated representations ¯H to produce the state value +V (st). For the auxiliary value head, we design the architecture to reflect the +action’s state value for the node at each decoding step. The value head is +implemented as a 2-layer MLP which is connected to the GRU layer of the +decoder of the policy network. The value head estimates Vi when the policy +network produces the node vi’s action probabilities. Finally, the state value +13 + +Vaux(st) is computed by averaging ¯Vi over nodes. This can be formulated by +Vaux(s) = 1 +|V| +� +vi∈V +Vi, +(9) +where Vi = f aux(� +vnf zi,vnf), zi,vnf is the output of the decoder’s GRU layer +from target VNF representation ¯hi,vnf, and f aux is the MLP layer of the +auxiliary value head. +Figure 5: Architectures of the value network and the auxiliary value head: PPO optimizes +the policy and the value networks (orange box). In addition, PPG optimizes the auxiliary +value head (green box) sharing parameters with the policy network. +We apply the PPG algorithms with the value network and the auxiliary +value head. After one episode, the agent gets reward R from the updated +deployment, and then it stores the tuple (R, st, πθ(at|st)) in the buffer. Then, +for NPPO episodes, the agent updates the parameter of the policy network +to optimize the surrogate objective defined in Eq. 5. At the same time, +the RL agent updates the parameter of the value network to minimize the +mean squared error (MSE) between the return and the estimated state value. +Lastly, for NPPG episodes, the parameter of the auxiliary value head is up- +dated to minimize the auxiliary loss, defined in Eq. 6, which jointly updates +the parameter of the policy network. +14 + +GRU4. Experiments +4.1. Dataset and Configuration +In this section, we describe the experiment settings and configurations +to train the proposed model. The dataset was created from two networks: +Internet2 [28] and Mobile Edge Computing (MEC), represented in Fig. 6. +In the Internet2 network, the topology consists of 12 nodes with 15 links. +SFC requests are created by normalizing Abilene traffic matrices proposed +by [4]. In the MEC network, the topology consists of 14 nodes with 13 links. +We followed [4] for other configurations, and specifically for the generation +of SFC requests, we set the SLA as 95% of the latency computed from the +SFC path generated by ILP [1]. The SFC requests contain the ingress and +egress nodes, and the SFC path includes 3 or 4 services out of 5 VNF types. +(a) Internet2 +(b) MEC +Figure 6: Internet2 and MEC networks in the experiment settings. The nodes with ‘X’ +are non-deployable nodes like switches. +First, we generated the ILP-based deployment to determine the optimal +number and location of VNF instances for the set of active requests at each +interval. Then, we created a VNF deployment dataset of which each entry +contains an ILP-based deployment and a set of SFC requests. The dataset +was then divided into training, validation, and testing sets with the ratio +of 8:1:1. +Lastly, we implemented a simulation environment for the same +topology with each network and calculated the latency of the requests in the +same manner as [27]. +Then, we trained the models on perturbed deployments by perturbing the +ILP-based deployment. To perturb the deployment, an integer noise -1, 0 or ++1 is added on nodes and VNF types, and these deployments are set as the +15 + +X +70 +23 +86 +209 +26 +129 +54 +63 +58 +84 +36 +90 +X +117 +6812000 +1000 +1000 +5000 +5000 +1000 +X +100 +100 +100 +100 +100 +100 +100initial states. Furthermore, we made random and zero deployments to evalu- +ate the generalizability of the models. We set the number of VNF instances +as 0 or 1 for the random deployment and only 0 for the zero deployment. +For the details of hyper-parameters, we mainly followed the setting of [27] +to pre-train the encoder and the configurations shown in Table 1 to train the +decoder. The decoder architecture is implemented with layer normalization, +1-layer GRU with 64 hidden units. +We use three linear layers with the +same number of hidden units in the decoder for the value function. As the +activation function, ReLU (Rectified Linear Unit) is used. On each epoch, +we measured the average reward in the validation set, and after the training, +we selected the final model with the best reward in the validation set. +Table 1: Hyper-Parameters for Training. +Parameter +Value +Learning rate (LR)2 +3e-4 +Decoder dim. (GRU) +32 +Decoder dim. (decoder-layer1) +32 +Decoder dim. (decoder-layer2) +32 +Decoder dim. (VNF embedding) +5 +Decoder dim. (Positional Encoding) +4 +Discount factor (γ) +0.995 +PPO value network dim. (layer1) +128 +PPO value network dim. (layer2) +64 +PPO aux. value head dim. (layer1) +32 +PPO aux. value head dim. (layer2) +32 +PPO epsilon (ϵ) +0.2 +PPO epoch (K) +4 +PPO minibatch size (M) +4 +PPO interval & PPG interval (policy phase) (NP P O) +16 +PPG interval (auxiliary phase) (NP P G) +64 +PPG hyper-parameter (βclone) +1 +4.2. Quantitative Results +We evaluate the performance of the method in both networks: Internet2 +and MEC. +Internet2 Network: +Table 2 shows an ablation study on Internet2 where we trained the models +with PPO and tested them. For the metric, we measured the average number +16 + +of VNF instances (‘Avg. #VNF’), the average of delay time, and the average +SLA violation ratio (‘Avg. SLAV’), as well as a reward (Eq. 7). Furthermore, +we train the agent with different coefficient value (α) of instance penalty in +Eq. 7 to show the effect of restriction for the level of the resource utilization, +which controls the trade-off between the resource utilization and the QoS. We +trained the agent with different seeds three times and reported the averages. +Models (SFC) +α +Reward +Avg. #VNF +Avg. Delay +Avg. SLAV +ILP (GGNN) +- +-0.922 +12.86 +575.57 +0.197 +ILP (GAT) +- +-0.881 +12.86 +545.42 +0.167 +ILP (GAT+N.E.) +- +-0.876 +12.86 +542.11 +0.162 +GGNN (GGNN) +0.15 +-1.796 +19.89 +1158.01 +0.279 +GGNN (GGNN) +0.20 +-1.877 +18.44 +1226.94 +0.260 +GGNN (GGNN) +0.25 +-2.345 +16.57 +1580.09 +0.354 +GAT(GAT) +0.15 +-1.376 +17.81 +868.16 +0.141 +GAT(GAT) +0.20 +-1.580 +17.58 +1018.22 +0.179 +GAT(GAT) +0.25 +-2.018 +16.40 +1343.65 +0.255 +GAT+N.E. (GAT+N.E.) +0.15 +-1.062 +17.71 +641.21 +0.086 +GAT+N.E. (GAT+N.E.) +0.20 +-1.314 +16.04 +836.31 +0.117 +GAT+N.E. (GAT+N.E.) +0.25 +-1.345 +15.75 +860.86 +0.122 +GAT+P.E. (GAT) +0.15 +-1.084 +16.59 +665.61 +0.093 +GAT+P.E. (GAT) +0.20 +-1.283 +15.89 +815.00 +0.122 +GAT+P.E. (GAT) +0.25 +-1.409 +15.17 +911.44 +0.135 +GAT+P.E.+N.E. (GAT+N.E.) +0.15 +-1.029 +17.39 +619.91 +0.081 +GAT+P.E.+N.E. (GAT+N.E.) +0.20 +-1.240 +15.85 +784.09 +0.108 +GAT+P.E.+N.E. (GAT+N.E.) +0.25 +-1.499 +14.87 +978.89 +0.139 +Table 2: Comparison of different models in the Internet2 network. The models are used +to adjust VNF deployment based on scaling in/out/keep, while the methods in the paren- +theses indicate how the SFC path was created for evaluation. +Each row indicates the method to make VNF deployments and the method +to generate SFC paths. For example, the row “ILP (GAT)” shows the re- +sults when VNFs were deployed by the ILP method and the deployments +were evaluated on the path generated by GAT for SFC. For the RL models, +the same encoders were used for the policy networks and for the SFC path +generation, though positional encoding was not used for SFC. +From the table, we can see that the GAT-based models (‘GAT’) outper- +form the baseline models (i.e., GGNN-based models). For example, ‘GAT +(GAT)’ decreases the SLA violation rates from 0.279 (by ‘GGNN(GGNN)’) +to 0.141 when the coefficient α for the instance penalty is 0.15. Furthermore, +it improved the level of QoS and decreased the delay time with less number of +instances. We believe that GAT models can be trained more efficiently, while +GGNN-based models are hard to be optimized on our deployment settings, +including many non-deployable nodes. +17 + +Moreover, ‘GAT+N.E.’ models outperform GGNN as well as GAT mod- +els. +They decrease the SLA violation rate, the number of instances and +the delay time. This means that the node embedding-based approach, de- +scribed in Section 3.1.2 can get better representations separating the VNF +deployable and non-deployable nodes. In addition, the positional encoding +(‘GAT+P.E.’) shows an even further improvement on SLAV compared to +the corresponding methods. It implies that the positional encoding provides +more distinguishable information for the policy network to find a better pol- +icy for deployment. Lastly, we trained GAT models with both positional en- +coding and node embedding (GAT+P.E.+N.E.). This method increases the +reward and SLAV, while keeping the same level of the other metrics (‘Avg. +#VNF’ and ‘Avg. Delay’), compared to the GAT-based models using only +the positional encoding. +MEC network: +We experimented in the MEC network, where 5 nodes out of a total of +12 nodes are non-deployable. +We train the models with PPG, and com- +pare GAT-based models to ILP approaches, which is summarized in Table +3. The reward is computed using the SFC model, which employs the same +architecture as the policy network. In the table, we can see that Positional +Encoding (‘GAT+P.E.’) significantly decreases the SLA violation rate, the +number of instances as well as the delay time. For the node embedding- +based approach, ‘GAT+P.E.+N.E.’ has similar performance as ‘GAT+P.E.’. +It means node embedding does not have additional information compared +to positional embedding. Actually, as shown in Fig. 6, MEC has a regu- +lar structure separating deployable and non-deployable nodes, which might +be a possible explanation of why ‘N.E.’ does not additionally increase the +performance on top of ‘GAT+P.E.’ +For the GGNN-based approach, it does not optimize the reward effec- +tively, because links of the MEC network contain high latency3 and high +variance, which hinders updating node representation in the model. Espe- +cially, GGNN uses a weighted sum of its node representation with the edge +attribute when updating the node representation, which causes it to under- +estimate of the information from nodes connected with high latency. On the +other hand, the GAT-based approach employs the attention mechanism to +3The edge attribute is set as the reciprocal of latency. +18 + +Models (SFC) +α +Reward +Avg. #VNF +Avg. Delay +Avg. SLAV +ILP (GAT) +0 +-0.702 +13.00 +29097.86 +0.046 +ILP (GAT+N.E.) +- +-0.707 +13.00 +29282.68 +0.045 +GAT (GAT) +0.15 +-1.658 +20.33 +74682.66 +0.121 +GAT (GAT) +0.20 +-1.867 +18.75 +87157.00 +0.146 +GAT (GAT) +0.25 +-2.136 +18.75 +97987.34 +0.174 +GAT+P.E. (GAT) +0.15 +-0.887 +16.84 +37044.12 +0.052 +GAT+P.E. (GAT) +0.20 +-0.956 +16.25 +41100.82 +0.060 +GAT+P.E. (GAT) +0.25 +-1.316 +15.41 +58091.53 +0.096 +GAT+P.E.+N.E. (GAT+N.E.) +0.15 +-0.915 +16.55 +38930.56 +0.055 +GAT+P.E.+N.E. (GAT+N.E.) +0.20 +-1.119 +16.29 +48965.09 +0.075 +GAT+P.E.+N.E. (GAT+N.E.) +0.25 +-1.350 +15.95 +60878.52 +0.099 +Table 3: Comparison of different models in the MEC network. The positional encoding +helps the training process more effective, while the node embedding does not additionally +increase the performance on top of ‘GAT+P.E.’. +compute the different importance of its neighbors and the edges so that it +could mitigate the underestimation problem. +4.2.1. Comparison of Various RL algorithms +Since we propose to use the PPG algorithms, we compare them to other +RL algorithms in the Internet2 network. In the experiment, we trained the +GAT-based models with positional encoding with the various RL algorithms. +As a result, the PPG algorithms can obtain better rewards, compared to +DQN and PPO. PPG decreases the SLA violation rate and the delay time +with a similar number of VNFs as presented in Table 4. +Method +α +Reward +Avg. #VNF +Avg. Delay +Avg. SLAV +DQN +0.15 +-1.317 +32.00 +718.56 +0.112 +DQN +0.20 +-1.311 +25.00 +765.22 +0.174 +DQN +0.25 +-2.701 +21.90 +1793.06 +0.285 +PPO +0.15 +-1.084 +16.59 +665.62 +0.093 +PPO +0.20 +-1.283 +15.89 +815.00 +0.122 +PPO +0.25 +-1.409 +15.17 +911.44 +0.135 +PPG +0.15 +-1.053 +16.30 +644.77 +0.091 +PPG +0.20 +-1.164 +16.19 +726.24 +0.101 +PPG +0.25 +-1.353 +15.51 +868.61 +0.130 +Table 4: Comparison of the various RL algorithms. PPG can optimize the reward more +effectively compared to DQN and PPO. +Moreover, as shown in Fig. +7, PPG can optimize the average loss of +the policy network more effectively than PPO. We believe that the auxiliary +19 + +Figure 7: Comparison of policy loss (α = 0.2) in training process. +The loss of PPG +decreases faster than PPO after around 40k iterations. +Initial Deployment +Reward +Avg. #VNF +Avg. Delay +Avg. SLAV +ILP-perturbed +-1.029 +17.03 +622.59 +0.087 +Random +-1.060 +16.95 +646.12 +0.090 +Zero +-1.060 +16.94 +646.00 +0.090 +Table 5: Evaluations from different initial deployments in testing for the trained GAT +model with α = 0.2. +value head helps the policy network converge more efficiently, even though +parameter sharing might make the training slow at the beginning of the +training process. +4.2.2. Analysis with Random and Zero Deployments +To analyze further the performance of the trained models, we trained the +GAT-based model (α = 0.2) optimized with PPG as before, and tested the +trained model on different settings, where initial deployment is random or no +VNFs are deployed (random deployment or zero deployment). The experi- +ment results are presented in Table 5, where “Random” and “Zero” initial +deployments are compared to the ILP-perturbed initial deployment. As the +result, the performance on both initial deployments shows the same level of +QoS and resource utilization as the ILP-perturbed case. It demonstrates that +our approach can work on any sub-optimal initial deployment. Furthermore, +our method can deploy VNFs without the ILP-based initial deployment. +20 + +Avg. Policy Loss +PPG + agent: PPO +0 +-0.01 +-0.02 +-0.03 +-0.04 +-0.05 +Valid/iter +20k +40k +60k +80kMethod +Avg. Time (sec) +ILP +14.06 +GAT +0.431 +Table 6: Average of execution times of 10 VNF-deployments. +Figure 8: The VNF deployment generated from the model (Left), target SFC requests +(Middle), and generated paths (Right). Given the target SFC request, VNF deployment +and path are generated by the proposed method and the SFC model. +4.2.3. Execution Time +To show how fast our method works, we measured the average execution +times to make decisions for VNF deployments and compared the proposed +GAT-based model to ILP. The execution time includes the VNF deployment +actions by the agent as well as SFC path generation by the SFC model [27]. +Each approach makes 10 deployments on a machine with 24 x 12-Core AMD +Ryzen 9 3900X CPUs. Table 6 presents the average results of each approach. +Our method can process VNF deployment about 30 times faster than ILP. +4.3. Qualitative Evaluation +In this section, we discuss the quality of the results by our approach. We +analyze the VNF deployment generated from the agent and plot t-SNE [29] +of the representation computed from the encoder of the policy networks. +4.3.1. Generated Deployment +We plot the VNF deployment generated from the GAT-based model +trained with PPG as presented in Fig. 8, which shows VNF deployment +generated from the SFC requests, and paths generated for the requests by +the SFC model [27]. The VNF deployment is generated with more than 20 +requests, so we omitted the other requests in the figure for simplicity. +21 + +Req1 +6 → +个N +个 +6→1→1→11→8 (275.0 / 735) +NW +Req2 +←m +N +个 +个山 +7 +3→10→4→4→7 (765.0 / 722) +23 +86 +209 +26 +N +Req3 +← +个N +H个山 +个 +7 +5→1→4→4→7 (420.0 /723) +129 +63 +Req4 +2 → +个N +8个 +2→ 11→ 11→ 11→ 8 (172.0 / 729) +主E +W +36 +90 +WNPN +117 +189 +Req23 +S个d个个 +4→1→1→5 (225.0 /700) +Req24 +个个M个F个N个 +0→1→1→1→4→4(179.0 /705)The most VNF instances are deployed in the middle of the shortest paths +for the traffics. For example, the first traffic (‘Req1’) has node 6 and node 8 +as the ingress and egress, and is required to pass through NAT (‘N’), Firewall +(‘F’), and IDS (‘I’). In the network, the traffic goes through NAT at node 1, +Firewall at node 11, and IDS at node 8. This traffic takes 275 ms while SLA +for the SFC path is 735 ms. That is, all the VNFs of ‘Req1’ are deployed on +the shortest path of its ingress and its egress. +In addition, the generated deployment needs to meet the QoS with the +optimized amount of resources. As shown in Fig. 8, VNF instances are de- +ployed on the intersection of the shortest paths for the traffics. For example, +the VNF instances at node 1 process more than four requests, like NAT for +‘Req1’, ‘Req2’, ‘Req23’ and ‘Req24’. That is, our approach can deploy the +instances at the shared nodes of the paths for many requests, which can +reduce the number of VNF instances. +4.3.2. Node Representations by t-SNE +In the section, to analyze how the network information is represented by +the encoder, we plot the 2D representation of node embeddings by t-SNE [29] +as in Fig. 9, which shows the representations from the GGNN-based encoder +and our proposed GAT-based encoder. +Each dot represents one node of +network, and the nodes are located in the Internet2 network as shown in Fig. +6a. +(a) GGNN +(b) GAT +Figure 9: Node representations by t-SNE. The GAT-based model gets more disentangled +representations, compared to the GGNN-based model. +Even though the GGNN-based encoder has multiple clusters, the nodes +within each cluster are not distinguishable. However, the GAT-based en- +coder’s representations are disentangled so that each cluster contains only +22 + +0 +60 +1 +2 +40 +3 +4 +5 +20 +6 +0 +8 +9 +-20 +10 +-40 +-60 +-80 +-60 +-40 +-20 +0 +20 +40 +600 +60 +1 +2 +40 +3 +4 +20 +5 +6 +7 +0 +8 +9 +-20 +10 +11 +-40 +-60 +-80 +-60 +-40 +-20 +0 +20 +40 +60 +80one or two nodes. Furthermore, the representations of neighbors in the net- +work are close to each other in the plot. +For example, clusters for node +8 (‘brown’) and node 2 (‘green’) are close to each other, which reflects its +neighborhood with the same node type as presented in Fig. 6a. This demon- +strates the representation by GAT-based model reflects the network topology +effectively. +5. Conclusion +In this paper, we proposed enhanced models which can be adapted to +more general network settings. We proposed an improved GNN architecture +and a few techniques to obtain a better node representation for the VNF +deployment task. Furthermore, we optimized the model with PPG, a variant +policy gradient-based algorithm. In the experiment, we evaluated the pro- +posed method in various scenarios, achieving a better QoS with minimum +resource utilization compared to the previous methods. Finally, we analyzed +the generated VNF deployment and compare the node representations of our +model to the baseline. +Acknowledgement +This research was supported by Basic Science Research Program through +the National Research Foundation of Korea funded by the Ministry of Edu- +cation (NRF-2022R1A2C1012633), and by Institute for Information & com- +munications Technology Promotion (IITP) grant funded by the Korea gov- +ernment(MSIT) (No. 2018-0-00749, Development of virtual network man- +agement technology based on artificial intelligence). +References +[1] M. F. Bari, S. R. Chowdhury, R. Ahmed, R. Boutaba, On orchestrating +virtual network functions, in: 2015 11th International Conference on +Network and Service Management (CNSM), 2015, pp. 50–56. doi:10. +1109/CNSM.2015.7367338. +[2] H. Moens, F. D. Turck, VNF-P: A model for efficient placement of virtu- +alized network functions, in: 10th International Conference on Network +and Service Management (CNSM) and Workshop, 2014, pp. 418–423. +doi:10.1109/CNSM.2014.7014205. +23 + +[3] M. A. Abdelaal, G. A. Ebrahim, W. R. Anis, Efficient placement of +service function chains in cloud computing environments, Electronics +10 (3) (2021). doi:10.3390/electronics10030323. +URL https://www.mdpi.com/2079-9292/10/3/323 +[4] S. Lange, A. Grigorjew, T. Zinner, P. Tran-Gia, M. Jarschel, A multi- +objective heuristic for the optimization of virtual network function chain +placement, in: 2017 29th International Teletraffic Congress (ITC 29), +Vol. 1, IEEE, 2017, pp. 152–160. +[5] M. Karimzadeh-Farshbafan, V. Shah-Mansouri, D. Niyato, A dynamic +reliability-aware service placement for network function virtualization +(nfv), IEEE Journal on Selected Areas in Communications 38 (2) (2020) +318–333. doi:10.1109/JSAC.2019.2959196. +[6] N. He, S. Yang, F. Li, S. Trajanovski, F. A. Kuipers, X. Fu, A-ddpg: +Attention mechanism-based deep reinforcement learning for nfv, in: +2021 IEEE/ACM 29th International Symposium on Quality of Service +(IWQOS), 2021, pp. 1–10. doi:10.1109/IWQOS52092.2021.9521285. +[7] P. Sun, J. Lan, J. Li, Z. Guo, Y. Hu, Combining deep reinforcement +learning with graph neural networks for optimal VNF placement, IEEE +Communications Letters 25 (1) (2021) 176–180. doi:10.1109/LCOMM. +2020.3025298. +[8] N. Seo, D. Heo, J. Hong, H.-G. Kim, J.-H. Yoo, J. W.-K. Hong, H. Choi, +Updating VNF deployment with scaling actions using reinforcement al- +gorithms (2022). +[9] K. Cho, B. van Merrienboer, C¸. G¨ul¸cehre, F. Bougares, H. Schwenk, +Y. Bengio, Learning phrase representations using RNN encoder-decoder +for statistical machine translation, CoRR abs/1406.1078 (2014). arXiv: +1406.1078. +URL http://arxiv.org/abs/1406.1078 +[10] D. Bahdanau, K. Cho, Y. Bengio, Neural machine translation by jointly +learning to align and translate (2014). +doi:10.48550/ARXIV.1409. +0473. +URL https://arxiv.org/abs/1409.0473 +24 + +[11] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, +L. Kaiser, I. Polosukhin, Attention is all you need, in: I. Guyon, U. V. +Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, R. Garnett +(Eds.), Advances in Neural Information Processing Systems, Vol. 30, +Curran Associates, Inc., 2017. +[12] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, +T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, +J. Uszkoreit, N. Houlsby, An image is worth 16x16 words: +Trans- +formers for image recognition at scale, CoRR abs/2010.11929 (2020). +arXiv:2010.11929. +URL https://arxiv.org/abs/2010.11929 +[13] H. Lee, H. Choi, Partitioning image representation in contrastive learn- +ing (2022). doi:10.48550/ARXIV.2203.10454. +URL https://arxiv.org/abs/2203.10454 +[14] P. Veliˇckovi´c, G. Cucurull, A. Casanova, A. Romero, P. Li`o, Y. Bengio, +Graph Attention Networks, International Conference on Learning Rep- +resentations (2018). +URL https://openreview.net/forum?id=rJXMpikCZ +[15] K. Cobbe, J. Hilton, O. Klimov, J. Schulman, Phasic policy gradient +(2020). doi:10.48550/ARXIV.2009.04416. +URL https://arxiv.org/abs/2009.04416 +[16] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, G. Monfardini, The +graph neural network model, IEEE Transactions on Neural Networks +20 (1) (2009) 61–80. +[17] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, +M. Sun, Graph neural networks: A review of methods and applications, +AI Open 1 (2020) 57–81. doi:https://doi.org/10.1016/j.aiopen. +2021.01.001. +[18] T. N. Kipf, M. Welling, Semi-supervised classification with graph con- +volutional networks (2016). doi:10.48550/ARXIV.1609.02907. +URL https://arxiv.org/abs/1609.02907 +25 + +[19] Y. Li, D. Tarlow, M. Brockschmidt, R. Zemel, Gated graph sequence +neural networks (2015). doi:10.48550/ARXIV.1511.05493. +URL https://arxiv.org/abs/1511.05493 +[20] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, G. E. Dahl, Neural +message passing for quantum chemistry (2017). doi:10.48550/ARXIV. +1704.01212. +URL https://arxiv.org/abs/1704.01212 +[21] X. Wang, H. Ji, C. Shi, B. Wang, P. Cui, P. Yu, Y. Ye, Heterogeneous +graph attention network (2019). doi:10.48550/ARXIV.1903.07293. +URL https://arxiv.org/abs/1903.07293 +[22] R. S. Sutton, D. McAllester, S. Singh, Y. Mansour, Policy gradient +methods for reinforcement learning with function approximation, in: +Proceedings of the 12th International Conference on Neural Informa- +tion Processing Systems, NIPS’99, MIT Press, Cambridge, MA, USA, +1999, p. 1057–1063. +[23] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov, Proximal +policy optimization algorithms (2017). +doi:10.48550/ARXIV.1707. +06347. +URL https://arxiv.org/abs/1707.06347 +[24] V. Konda, J. Tsitsiklis, Actor-critic algorithms, in: S. Solla, T. Leen, +K. M¨uller (Eds.), Advances in Neural Information Processing Systems, +Vol. 12, MIT Press, 1999. +[25] A. Conn, N. Gould, P. Toint, Trust Region Methods, MPS-SIAM Series +on Optimization, Society for Industrial and Applied Mathematics, 2000. +URL https://books.google.co.kr/books?id=5kNC4fqssYQC +[26] J. Schulman, S. Levine, P. Moritz, M. I. Jordan, P. Abbeel, Trust region +policy optimization (2015). doi:10.48550/ARXIV.1502.05477. +URL https://arxiv.org/abs/1502.05477 +[27] D. Heo, S. Lange, H.-G. Kim, H. Choi, Graph neural network based +service function chaining for automatic network control (2020). doi: +10.48550/ARXIV.2009.05240. +URL https://arxiv.org/abs/2009.05240 +26 + +[28] Internet2 research network topology and traffic matrix. +URL +https://www.cs.utexas.edu/$\sim$yzhang/research/ +AbileneTM/ +[29] L. van der Maaten, G. Hinton, Visualizing data using t-SNE, Journal of +Machine Learning Research 9 (86) (2008) 2579–2605. +URL http://jmlr.org/papers/v9/vandermaaten08a.html +27 + diff --git a/b9E_T4oBgHgl3EQfzxyC/content/tmp_files/load_file.txt b/b9E_T4oBgHgl3EQfzxyC/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..5c4972f96bba24517202fd9cf0e1891e553697e7 --- /dev/null +++ b/b9E_T4oBgHgl3EQfzxyC/content/tmp_files/load_file.txt @@ -0,0 +1,1058 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf,len=1057 +page_content='Advanced Scaling Methods for VNF deployment with Reinforcement Learning Namjin Seoa, DongNyeong Heoa, Heeyoul Choia aHandong Global University, Pohang, 37554, Gyeongbuk, South Korea Abstract Network function virtualization (NFV) and software-defined network (SDN) have become emerging network paradigms, allowing virtualized network func- tion (VNF) deployment at a low cost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Even though VNF deployment can be flexible, it is still challenging to optimize VNF deployment due to its high complexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Several studies have approached the task as dynamic program- ming, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=', integer linear programming (ILP).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' However, optimizing VNF de- ployment for highly complex networks remains a challenge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Alternatively, re- inforcement learning (RL) based approaches have been proposed to optimize this task, especially to employ a scaling action-based method which can de- ploy VNFs within less computational time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' However, the model architecture can be improved further to generalize to the different networking settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' In this paper, we propose an enhanced model which can be adapted to more general network settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' We adopt the improved GNN architecture and a few techniques to obtain a better node representation for the VNF deploy- ment task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Furthermore, we apply a recently proposed RL method, phasic policy gradient (PPG), to leverage the shared representation of the service function chain (SFC) generation model from the value function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' We evaluate the proposed method in various scenarios, achieving a better QoS with min- imum resource utilization compared to the previous methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Finally, as a qualitative evaluation, we analyze our proposed encoder’s representation for the nodes, which shows a more disentangled representation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Keywords: Network Function Virtualization, Software Defined Networking, Reinforcement Learning, Graph Neural Network Preprint submitted to January 23, 2023 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='08325v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='NI] 19 Jan 2023 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Introduction Softwarization of the Internet network, such as software-defined network- ing (SDN) and network function virtualization (NFV), has emerged as a new network paradigm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' In this paradigm, the network functions provided by hardware-based middleboxes (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=', Network Address Translation (NAT), Firewall, Proxy) are replaced with virtualized network functions (VNFs), running on virtual machines as VNF instances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' By decoupling the network functions from the hardware, NFV allows the network service providers to deploy VNFs with low capital expenses (CAPEX) and operating expenses (OPEX).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' In addition, the traffics and network devices are managed and monitored by NFV orchestration (NFVO) in the centralized NFV frame- work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Hence, the VNF instances can be deployed by NFVO adaptable to the traffic requirements, which is the VNF deployment task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Even though VNF deployment can be accomplished dynamically with flexibility, requirements for the VNF deployment task are also getting more complex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' The first requirement is that the service function chain (SFC) should be generated efficiently while maintaining an acceptable quality of service (QoS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' SFC requires the traffics of a request to be routed through multiple stages of VNFs in NFV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' 1 shows an example of SFC where the SFC request (Req1) demands an SFC: “NAT (‘N’) → Firewall(‘F’)”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' This SFC request should be sequentially processed at these VNF instances as it travels from its ingress to its egress.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' These types of VNF should be de- ployed, taking into account the path of the requests, to meet the pre-defined service-level agreement (SLA) for QoS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Another requirement is to optimize resource utilization while satisfying the QoS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Redundantly deployed VNF in- stances could preserve high QoS, but it incurs unnecessary operating costs and energy consumption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Therefore, it is essential to improve the QoS while maintaining minimized resource consumption for the efficient management of VNF deployment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' To achieve such efficient management of VNF deployment, the existing works have exploited dynamic programming algorithms, like integer linear programming (ILP) [1, 2, 3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' However, even though the ILP-based approach exhibits acceptable performance in networks with a low level of complex- ity, its computational cost becomes too expensive as the network scales up.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Therefore, the ILP-based approach is not suitable for large-scale networks and the dynamical adjustment for traffic lifespans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' As an alternative solution, ML-based approaches have been proposed 2 Figure 1: Overview of VNF Deployment task: SFC requests are required to pass through the VNFs sequentially as well as satisfy the SLA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Optimal deployment (Right) takes into account the paths of SFC requests, while sub-optimal deployment (Left) is deployed regardless of the paths of SFC request.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Red boxes indicate inefficiently deployed VNF instances, which are on the wrong path and redundant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' employing deep learning models, and reinforcement learning (RL) for VNF deployment [4, 5, 6, 7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Especially, an RL-based method for VNF deployment was proposed to scale in and out VNFs on the network nodes [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' They adapted the graph neural network (GNN) model and RL algorithms on top of previously deployed VNF instances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Their action controls the number of VNFs on each node by scaling in, scaling out, or doing nothing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' It showed that the agent was able to make appropriate scaling decisions for all the nodes and VNF types with a single forwarding process, involving fewer computation times for VNF deployment compared to other ML-based VNF deployment approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' However, their model could not obtain the node representations in a general deployment setting where the networks include some nodes which cannot have VNF instances (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=', switches) deployed on them due to its model setting for the node features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' In this paper, we propose to enhance the neural network model and adapt new learning techniques so that the model can be adapted to the general deployment setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' First, we redesign the GNN architecture, and adapt a few techniques motivated from other domains, such as natural language processing and image processing [9, 10, 11, 12, 13], to effectively obtain a node representation of the networking information for the VNF deployment task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' As the new GNN-based architecture, we employ the graph attention network (GAT) [14] and separately process different types of nodes: VNF deployable or non-deployable nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' This architecture allows an effective propagation of node information from the network with different types of nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' In addition, we adapt the positional encoding [11] to preserve the 3 SFC Qos SFC Qos Delay > SLA SRC→NF→DST Delay < SLA F N F Npositional information in the node representations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Furthermore, we apply a recently proposed RL algorithm, phasic policy gradient (PPG) [15], which is a variation of the policy gradient algorithm to optimize the policy network efficiently.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' By jointly optimizing the objectives of the policy network and the value network, the policy network can share representation with the value network, which helps the policy network obtain a more effective representation for the VNF deployment task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' In the experiment, our approach optimizes the policy network to obtain a higher reward with rapid convergence compared to the previous approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Also, it proves that our approach can work in various scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' In addition, we analyze the result of our approach to show the robustness in the various topology and compare the processing time with ILP to show the practicality for the dynamic adaptation of the traffic lifespans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Finally, as a qualitative evaluation, we analyze the representation from the encoder of the policy network, and it demonstrates that our method obtains more disentangled representations of nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Background In this section, we briefly review graph neural networks and reinforcement learning for VNF deployment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Graph Neural Network Graph neural networks (GNN) [16] were proposed to effectively handle the graph-structured data consisting of a set of nodes V = {v1, · · · , v|V|} and edges E = {ˆeij|vi, vj ∈ V} [17, 18, 19, 14, 20, 21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' GNNs aim to address graph-related tasks (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=', node/edge/graph classification) in an end-to-end manner with neural network model [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' In the training process, GNNs are trained to extract nodes’ representations which reflect the graph information for the target tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' In GNNs, a graph is represented as the following two matrix forms: the adjacency matrix A and the node feature matrix X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' The adjacency matrix A ∈ R|V|×|V| represents the connections between pairs of nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' The node feature matrix X contains node features xi ∈ R|V|×d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' With A, X is trans- formed into node representation H = [h1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=', h|V|].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Finally, these node repre- sentations are adapted to the target task in an end-to-end manner, which is implemented with a multi-layer perceptron (MLP) and a softmax layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' 4 GNN models are designed under the assumption that a node represen- tation for the target task is trained by propagating node information to its neighbors [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' There are many different types of GNN models depending on the way how the node information propagates, like recurrent connection, con- volution, or attention.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Among many GNN models, we review and compare gated graph neural network (GGNN) and graph attention network (GAT) which are used in the baseline and our approach, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Gated Graph Neural Network In gated graph neural network (GGNN) [19], propagation between neigh- bors is implemented as recurrent connection as in recurrent neural networks (RNNs), and the node representation is calculated iteratively by RNN-like updates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' For the recurrent connection, they use gated recurrent unit (GRU) [9], and the node representations are updated as follows: h′ i = GRU(hi, � j∈Ni Whj), (1) where GRU is the GRU-like update function, Ni are the neighbors of node vi, W is a weight matrix, and the initial node representation is set to X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' The recurrent updates are repeated a fixed number of times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Then, node representations are fed into the output layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Graph Attention Network Graph attention network (GAT) [14] was proposed to update node repre- sentations with attention mechanism [10], while node information is propa- gated through recurrent steps in GGNN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' GAT computes the attention scores of its neighbors so that the node representations can be updated according to the different importance of its neighbors as follows: h′ i = � j∈Ni∪{i} ˆαijWhi, (2) ˆαij = exp(σ(a⊤ [Whi||Whj||Weˆeij])) � j′∈Ni∪{i} exp(σ(a⊤ [Whi||Whj′||Weˆeij′])), (3) where αij is the attention score of node vj for node vi, and ˆeij is edge at- tributes between nodes vi and vj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' W, We, and a are weight matrices, σ is a non-linear function, and [·||·] indicates concatenation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' 5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Reinforcement Learning Reinforcement learning (RL) trains an agent to maximize the expected reward by interacting with the environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' It formulates the task as Markov decision process (MDP) described as a sequence of state st, action at, and reward rt over discrete time steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' At discrete time-step t, the agent observes the state st of the environment and takes an action at.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Subsequently, the current state st transitions into the next state st+1 along with the transition probability P(st+1|st, at), and finally, the agent receives a reward rt+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' This process is repeated until the agent reaches the terminal state which ends one episode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' As the agent experiences many episodes, the agent could maximize the return, Gt = rt+1 + γrt+2 + γ2rt+3 + · · · , where γ is the discount factor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' To maximize Gt over an episode, the RL agent needs to update policy π(at|st), a probability distribution of possible actions given state st.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' To estimate how good the action is at discrete time t, the agent should learn the state value V (st) = E[Gt|st] (or action-state value Q(st, at) at action-state pair (at, st)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' In other words, the goal of an RL agent is to optimize its π(a|s) based on the trained state value V (s) (or action value Q(s, a)) to maximize the expected return in any episode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Policy Gradient Policy gradient (PG) is an RL method to model policy π(a|s) as a param- eterized function with neural networks called the policy network πθ(a|s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' It trains the parameter of the policy network optimizing the objective function defined as follows: LPG(θ) = Et � log πθ(at|st) ˆAt � , (4) where ˆAt is the advantage estimator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' For example, the REINFORCE algo- rithm [22] trains the parameters of the policy network defining advantage estimator ˆAt as return Gt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Proximal Policy Optimization Proximal policy optimization (PPO) [23] is one of the actor-critic (AC) based RL algorithms [24] with the trust-region method [25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' In addition to the policy network, the AC algorithm employs the value network Vθ(s) estimating the state value V (st) in order to mitigate the variance in the training process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Furthermore, PPO has an additional constraint on the step size of the policy update to prevent inappropriate update of parameters, 6 called the trust-region method [25, 26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Let ˆrt(θ) be the probability ratio ˆrt(θ) = πθ(at|st) πθold(at|st), then PPO maximizes LPPO(θ) = Et � min(ˆrt(θ) ˆAt, clip(ˆrt(θ), 1 − ϵ, 1 + ϵ) ˆAt) � , (5) where clip(·, x, y) is an operation clamping in range over x and y, and ϵ is a hyper-parameter of the clipping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' The clipping operation constrains the probability ratio ˆrt to be close to 1 so that the parameters cannot be updated radically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Phasic Policy Gradient The phasic policy gradient (PPG) [15] algorithm was proposed to share parameters between the policy and value networks in the AC algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Even though parameter sharing allows both networks to learn features jointly with a higher level of sample reuses, it is unclear whether it optimizes effi- ciently both networks jointly or not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Thus, they employ two value networks to avoid conflicts between competing objectives of the policy and value net- works.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' The one is value network VθV (s) not sharing parameters, and the other shares the parameter, called the auxiliary value head Vθπ(s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' The PPG algorithm divides the policy and value network training phases into policy and auxiliary phases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' In the policy phase, the policy is optimized in the same manner as PPO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Then, in every NPPG th iterations, an auxiliary loss is minimized in the auxiliary phase, and the auxiliary loss is defined by Laux = Et �1 2(Vθπ(st) − VθV (st))2 � + βcloneEt [KL [πθold(·|st), πθ(·|st)]] , (6) where βclone is the hyper-parameter controlling how much the original policy is preserved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Scaling Agent for VNF Deployment Scaling of VNF deployment monitors VNF instances deployed in a net- work and adjusts the number of instances to maintain reliable QoS at min- imized cost by scaling in (removing instances), keeping, and scaling out (adding new instances).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' An RL-based method was proposed for VNF scaling [8] to optimize QoS and resource utilization, simultaneously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' They adapted the graph neural network (GNN) models and RL algorithms on top of pre- viously deployed VNF instances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' The GNN-based model inputs the network 7 information, and then produces the probabilities of scaling actions: scale in/out and keep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' The parameters of the model were updated by PG-based RL algorithms, such as REINFORCE [22] and PPO [23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' In this section, we briefly review the model of the policy network and the RL formulation in [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' GNN based Policy Network The policy network has an encoder-decoder architecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' The encoder re- ceives the network information (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=', network topology, deployed VNFs, and SFC requests.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=') and outputs the node representation reflecting the network information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' The decoder reads the representations and produces action probabilities for ‘scaling in/out and keep’ of nodes and VNF types.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' To com- pute node representations that reflect diverse network topologies, the encoder is designed based on GNN [27], which is implemented with Gated Graph Neural Network (GGNN) [19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Additionally, the network topology-related knowledge is transferred from the trained model for the SFC task, and the parameters are frozen so that the model could obtain proper representations of the network information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' RL formulation for VNF scaling In the RL formulation, the RL agent observes the VNF deployment and a set of SFC requests as the initial state and produces the scaling actions for all the nodes and VNF types from the policy network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Then, after scaling from the initial VNF deployment, the reward is computed 1, which is defined as follows: R = − 1 Nreq � k δk δk SLA − α � vnf Nvnf, (7) where Nreq and Nvnf are the number of SFC requests and the instances of VNF type vnf ∈ {Firewall, NAT, · · · }.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' δk and δk SLA are the traversing delay and SLA of request k, and α is the coefficient of penalty for restriction of resource utilization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' The RL scenario is illustrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Proposed Method In this paper, we propose to enhance the neural network model and adapt new learning techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' First, we enhance the previous VNF scaling model 1The traversing path of the requests is generated by GNN-based SFC model [27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' 8 Figure 2: Overview of the RL pipeline for VNF scaling: 1) The initial deployment is ob- served as the state from the environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' 2) Then, the RL agent updates the deployment by scaling action.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' 3) Finally, the reward is given, and one episode ends.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' [8] so that the model can be adaptable to more general deployment settings which includes nodes which cannot have any VNF instances deployed on them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Then, we apply new RL algorithms like PPG to train the model more efficiently.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Model Architecture As in [8], the encoder-decoder based model reads the network information and produces the action probabilities for all the nodes and VNF types.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' The pipeline of the model architecture is presented in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' The encoder computes the node representations H(k) by forwarding the pair of the adjacency matrix A and node feature matrix X(k) for each SFC request, where X(k) = [x(k) 1 , · · · , x(k) |V|] is the node feature matrix for SFC request k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Specifically, node vi’s feature is defined by x(k) i = [src(k)(i), N (k) i,Firewall, N (k) i,NAT, · · · , dst(k)(i)], (8) where src(k)(i) and dst(k)(i) indicate whether node vi is the ingress or egress of request k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' N (k) i,Firewall, N (k) i,NAT, · · · are the instance numbers of VNF type vnf ∈ {Firewall, NAT, · · · } deployed on node vi if needed for request k, otherwise set to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' After encoding all the SFC requests, the encoder outputs the sets of node representations {H(k)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Then, {H(k)} are averaged into a single representation ¯H, which is broadcasted and concatenated with each VNF embeddings evnf ∈ {eFirewall, eNAT, · · · } to make target VNF represen- tations ¯hi,vnf at the target nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' The RNN-based decoder consisting of GRU and MLP layers reads the target representation ¯hi,vnf at each decoding step i, then outputs the action probabilities of the target VNF type vnf on target node vi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' The actions 9 GNN-based RNN-based Encoder Decoder Initial Scaled Compute Deployment Deployment QoS&Resource(a) Encoding (b) Decoding (Example of Firewall as target VNF type) Figure 3: The proposed model architecture and the pipeline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' (a) Node representations {H(k)} are obtained from all the pairs of an SFC request and the VNF deployment, and the target representation ¯hi,vnf for the target VNF type vnf on target node vi is obtained by averaging the node representations {H(k)} and concatenating with target VNF embeddings evnf as well as a positional encoding li (“P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='E.”).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' (b) The decoder reads the target representation ¯hi,vnf to make a decision for scaling action of the target at the decoding step i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Over every decoding step, the decoder generates actions for the target VNF type, and the iteration stops after the number of target nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Scaling for all the VNF types can be performed in parallel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' include three types of scaling actions for the target: ‘scale-in’, ‘scale-keep’, and ‘scale-out’.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Over every decoding step, the decoder generates actions for the target VNF type, and the iteration stops after the number of target nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Scaling for all the VNF types can be performed in parallel, with this single process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' GAT-based Encoder We apply the graph attention network (GAT) for the encoder instead of GGNN [27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' GAT has several training advantages compared to GGNN for VNF deployment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' First, GAT could effectively propagate the node informa- tion from the previous layers through the attention mechanism, while GGNN 10 Ex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=') Reqk5→NEP→1 X N X GAT-based Encoder d Auxiliary ModuleDecoder Decoder Decoder N N Erelies on RNN-like updates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Next, GAT updates the node representation with different importance of the neighbor nodes as the attention score, which is helpful to train the model for requests with multiple hops between ingress and egress.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Due to the fact that the VNF deployment is highly related to the paths of the requests, it is essential to train the importance of neighbors on the paths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' The input of the GAT encoder is the adjacency matrix A and the in- put node feature matrix X given the input pair of the VNF deployment and an SFC request.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' The encoder produces node representation matrix H = � h1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=', h|V| � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' The input node features and edge weights defined as link latency are first forwarded through a shared linear transformation, pa- rameterized by weight matrices W, We, where W, We are weight matrices for node features and edge latency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Then, self-attention is performed on the nodes, where attention scores αij between node vi and vj are computed only for neighbor nodes, which is defined by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' In addition, we employ multi-head attention to stabilize the learning process [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Finally, the node representation hi is updated as a weighted sum with the attention scores over nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Auxiliary Encoding Module with Node Embedding In the general deployment setting, the nodes in the network can be classi- fied into 2 different types: non-resource-allocating nodes (“non-deployable”) and resource-allocating nodes (“deployable”).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' As defined in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' 8, node fea- ture xi contains the number of instances for each VNF type, which are always zero-valued for the non-deployable nodes (N (k) i,vnf = 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' 4a represents an example of node features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Given the different node types, the model cannot update enough the representation of non-deployable nodes since the zero-valued features cannot have enough attention, which could cause a bottleneck when propagating node information through these nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' To overcome the issue, we designed an auxiliary encoding module that provides additional neighbor information to the GNN-based encoder, as illustrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' 4b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' This information is then utilized by the next module of the encoder to complement for information propagation when updating the representation of deployable nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' The auxiliary encoding module consists of vectorized embeddings and a GAT layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' We first initialize vectorized embeddings {n1, n2, · · · } randomly and assign them to each non-deployable node, and then update them along with other parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' As these embeddings are optimized during the train- 11 (a) Illustrative example of how non- deployable nodes could be bottlenecks, which hinder the information propagation from node#5 to node#1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' (b) The auxiliary module provides the neighboring infor- mation of non-deployable nodes so that the GNN-based encoder could update node representation efficiently.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Figure 4: Example of the general deployment setting and architecture of the encoder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' ing process, the model could provide the non-deployable nodes’ neighboring information to mitigate the bottleneck effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' We refer to these embeddings as node embeddings (‘N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='E.’).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' In addition, we define and assign the same node embedding n0 to all deployable nodes, allowing the module to focus on non- deployable cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Subsequently, we process these node embeddings through a GAT layer to further reflect relations between multi-hops neighbors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' We implement the GAT layer of this auxiliary module with less parameters than the encoder’s GAT layers to avoid over-fitting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Finally, we concatenate the output of the auxiliary module and the output of the GNN-based encoder’s first layer (refer to Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' 4b) and forward to the second layer of the encoder to get a final nodes representations Hk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Positional Encoding To pass spatial information of nodes, we employ positional encoding, as in the Transformer [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Positional encoding could alleviate the decoder’s bur- den of transferring knowledge from previous nodes to decode hidden states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Before forwarding the aggregated representation ¯H, the location vector li is computed with sine and cosine functions of different frequencies as in the Transformer, then concatenated with ¯hi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Finally, the decoder inputs the representation of node vi partitioned into three parts: aggregated node vi’s representation ¯hi, target VNF embeddings evnf, and location vector li.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' 12 Ex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=') Reqk 5 N 1→1 Bottleneck N P XE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' #1 0 0 1 0 0 X#2 0 0 0 0 0 0 GAT GAT H .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' 1#5 0 0 0 0 0 Additional Info Node Feature Mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Xk forefficientpropagation #1 n X#2 - ni X#3 > n2 GAT #5一 no NodeEmb3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' RL for VNF Deployment In this section, we discuss how we optimize the policy network with RL algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' We follow the setting for RL formation and the perturbation scenario as in [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' In the perturbation scenario where the VNF deployment is perturbed from the optimal deployment, the RL agent needs to remove the redundant VNFs or add necessary VNF instances to reconstruct optimal deployment by making scaling decisions for all the nodes and VNF types in the current deployment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' In the perturbation scenario, we optimize the proposed model as the policy network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Moreover, we propose an architecture of the value network to apply the PPG algorithm, with which the policy network can leverage the shared representation of the SFC generation from the value network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' The new value network architecture is described in the next section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Auxiliary Value Head for PPG The PPG algorithm jointly optimizes the objectives of the policy network and value function, where the policy network and value function share the parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' In the optimization process, the objective of the value function is to minimize the error of the estimation for the state value, and the value function extracts the useful representation for the estimation of the SFC generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' The policy network can incorporate the representation from the value function to achieve a better policy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' However, to avoid a conflict between both objectives of the policy and value network, PPG utilizes the auxiliary value head Vaux(s) as well as the value network V (s) to estimate the state value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' The value head shares the parameters with the policy network, while the value network is implemented with the separated parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Thus, we design these two value functions and then apply the PPG to update the policy network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' 5 presents the architectures of the value network and the auxiliary value head.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' The value network is implemented as a 2-layer MLP forwarding the mean of the aggregated representations ¯H to produce the state value V (st).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' For the auxiliary value head, we design the architecture to reflect the action’s state value for the node at each decoding step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' The value head is implemented as a 2-layer MLP which is connected to the GRU layer of the decoder of the policy network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' The value head estimates Vi when the policy network produces the node vi’s action probabilities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Finally, the state value 13 Vaux(st) is computed by averaging ¯Vi over nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' This can be formulated by Vaux(s) = 1 |V| � vi∈V Vi, (9) where Vi = f aux(� vnf zi,vnf), zi,vnf is the output of the decoder’s GRU layer from target VNF representation ¯hi,vnf, and f aux is the MLP layer of the auxiliary value head.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Figure 5: Architectures of the value network and the auxiliary value head: PPO optimizes the policy and the value networks (orange box).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' In addition, PPG optimizes the auxiliary value head (green box) sharing parameters with the policy network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' We apply the PPG algorithms with the value network and the auxiliary value head.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' After one episode, the agent gets reward R from the updated deployment, and then it stores the tuple (R, st, πθ(at|st)) in the buffer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Then, for NPPO episodes, the agent updates the parameter of the policy network to optimize the surrogate objective defined in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' At the same time, the RL agent updates the parameter of the value network to minimize the mean squared error (MSE) between the return and the estimated state value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Lastly, for NPPG episodes, the parameter of the auxiliary value head is up- dated to minimize the auxiliary loss, defined in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' 6, which jointly updates the parameter of the policy network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' 14 GRU4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Experiments 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Dataset and Configuration In this section, we describe the experiment settings and configurations to train the proposed model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' The dataset was created from two networks: Internet2 [28] and Mobile Edge Computing (MEC), represented in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' In the Internet2 network, the topology consists of 12 nodes with 15 links.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' SFC requests are created by normalizing Abilene traffic matrices proposed by [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' In the MEC network, the topology consists of 14 nodes with 13 links.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' We followed [4] for other configurations, and specifically for the generation of SFC requests, we set the SLA as 95% of the latency computed from the SFC path generated by ILP [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' The SFC requests contain the ingress and egress nodes, and the SFC path includes 3 or 4 services out of 5 VNF types.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' (a) Internet2 (b) MEC Figure 6: Internet2 and MEC networks in the experiment settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' The nodes with ‘X’ are non-deployable nodes like switches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' First, we generated the ILP-based deployment to determine the optimal number and location of VNF instances for the set of active requests at each interval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Then, we created a VNF deployment dataset of which each entry contains an ILP-based deployment and a set of SFC requests.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' The dataset was then divided into training, validation, and testing sets with the ratio of 8:1:1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Lastly, we implemented a simulation environment for the same topology with each network and calculated the latency of the requests in the same manner as [27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Then, we trained the models on perturbed deployments by perturbing the ILP-based deployment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' To perturb the deployment, an integer noise -1, 0 or +1 is added on nodes and VNF types, and these deployments are set as the 15 X 70 23 86 209 26 129 54 63 58 84 36 90 X 117 6812000 1000 1000 5000 5000 1000 X 100 100 100 100 100 100 100initial states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Furthermore, we made random and zero deployments to evalu- ate the generalizability of the models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' We set the number of VNF instances as 0 or 1 for the random deployment and only 0 for the zero deployment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' For the details of hyper-parameters, we mainly followed the setting of [27] to pre-train the encoder and the configurations shown in Table 1 to train the decoder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' The decoder architecture is implemented with layer normalization, 1-layer GRU with 64 hidden units.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' We use three linear layers with the same number of hidden units in the decoder for the value function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' As the activation function, ReLU (Rectified Linear Unit) is used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' On each epoch, we measured the average reward in the validation set, and after the training, we selected the final model with the best reward in the validation set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Table 1: Hyper-Parameters for Training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Parameter Value Learning rate (LR)2 3e-4 Decoder dim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' (GRU) 32 Decoder dim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' (decoder-layer1) 32 Decoder dim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' (decoder-layer2) 32 Decoder dim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' (VNF embedding) 5 Decoder dim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' (Positional Encoding) 4 Discount factor (γ) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='995 PPO value network dim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' (layer1) 128 PPO value network dim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' (layer2) 64 PPO aux.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' value head dim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' (layer1) 32 PPO aux.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' value head dim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' (layer2) 32 PPO epsilon (ϵ) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='2 PPO epoch (K) 4 PPO minibatch size (M) 4 PPO interval & PPG interval (policy phase) (NP P O) 16 PPG interval (auxiliary phase) (NP P G) 64 PPG hyper-parameter (βclone) 1 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Quantitative Results We evaluate the performance of the method in both networks: Internet2 and MEC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Internet2 Network: Table 2 shows an ablation study on Internet2 where we trained the models with PPO and tested them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' For the metric, we measured the average number 16 of VNF instances (‘Avg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' #VNF’), the average of delay time, and the average SLA violation ratio (‘Avg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' SLAV’), as well as a reward (Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' 7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Furthermore, we train the agent with different coefficient value (α) of instance penalty in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' 7 to show the effect of restriction for the level of the resource utilization, which controls the trade-off between the resource utilization and the QoS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' We trained the agent with different seeds three times and reported the averages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Models (SFC) α Reward Avg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' #VNF Avg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Delay Avg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' SLAV ILP (GGNN) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='922 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='86 575.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='57 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='197 ILP (GAT) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='881 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='86 545.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='42 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='167 ILP (GAT+N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=') 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='876 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='86 542.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='11 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='162 GGNN (GGNN) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='15 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='796 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='89 1158.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='279 GGNN (GGNN) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='20 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='877 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='44 1226.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='94 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='260 GGNN (GGNN) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='25 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='345 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='57 1580.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='09 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='354 GAT(GAT) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='15 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='376 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='81 868.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='16 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='141 GAT(GAT) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='20 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='580 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='58 1018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='22 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='179 GAT(GAT) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='25 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='018 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='40 1343.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='65 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='255 GAT+N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' (GAT+N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=') 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='15 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='062 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='71 641.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='21 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='086 GAT+N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' (GAT+N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=') 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='20 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='314 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='04 836.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='31 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='117 GAT+N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' (GAT+N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=') 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='25 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='345 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='75 860.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='86 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='122 GAT+P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' (GAT) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='15 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='084 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='59 665.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='61 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='093 GAT+P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' (GAT) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='20 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='283 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='89 815.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='122 GAT+P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' (GAT) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='25 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='409 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='17 911.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='44 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='135 GAT+P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='+N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' (GAT+N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=') 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='15 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='029 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='39 619.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='91 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='081 GAT+P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='+N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' (GAT+N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=') 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='20 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='240 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='85 784.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='09 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='108 GAT+P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='+N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' (GAT+N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=') 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='25 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='499 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='87 978.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='89 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='139 Table 2: Comparison of different models in the Internet2 network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' The models are used to adjust VNF deployment based on scaling in/out/keep, while the methods in the paren- theses indicate how the SFC path was created for evaluation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Each row indicates the method to make VNF deployments and the method to generate SFC paths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' For example, the row “ILP (GAT)” shows the re- sults when VNFs were deployed by the ILP method and the deployments were evaluated on the path generated by GAT for SFC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' For the RL models, the same encoders were used for the policy networks and for the SFC path generation, though positional encoding was not used for SFC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' From the table, we can see that the GAT-based models (‘GAT’) outper- form the baseline models (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=', GGNN-based models).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' For example, ‘GAT (GAT)’ decreases the SLA violation rates from 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='279 (by ‘GGNN(GGNN)’) to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='141 when the coefficient α for the instance penalty is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Furthermore, it improved the level of QoS and decreased the delay time with less number of instances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' We believe that GAT models can be trained more efficiently, while GGNN-based models are hard to be optimized on our deployment settings, including many non-deployable nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' 17 Moreover, ‘GAT+N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='E.’ models outperform GGNN as well as GAT mod- els.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' They decrease the SLA violation rate, the number of instances and the delay time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' This means that the node embedding-based approach, de- scribed in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='2 can get better representations separating the VNF deployable and non-deployable nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' In addition, the positional encoding (‘GAT+P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='E.’) shows an even further improvement on SLAV compared to the corresponding methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' It implies that the positional encoding provides more distinguishable information for the policy network to find a better pol- icy for deployment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Lastly, we trained GAT models with both positional en- coding and node embedding (GAT+P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='+N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=').' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' This method increases the reward and SLAV, while keeping the same level of the other metrics (‘Avg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' #VNF’ and ‘Avg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Delay’), compared to the GAT-based models using only the positional encoding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' MEC network: We experimented in the MEC network, where 5 nodes out of a total of 12 nodes are non-deployable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' We train the models with PPG, and com- pare GAT-based models to ILP approaches, which is summarized in Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' The reward is computed using the SFC model, which employs the same architecture as the policy network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' In the table, we can see that Positional Encoding (‘GAT+P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='E.’) significantly decreases the SLA violation rate, the number of instances as well as the delay time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' For the node embedding- based approach, ‘GAT+P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='+N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='E.’ has similar performance as ‘GAT+P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='E.’.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' It means node embedding does not have additional information compared to positional embedding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Actually, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' 6, MEC has a regu- lar structure separating deployable and non-deployable nodes, which might be a possible explanation of why ‘N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='E.’ does not additionally increase the performance on top of ‘GAT+P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='E.’ For the GGNN-based approach, it does not optimize the reward effec- tively, because links of the MEC network contain high latency3 and high variance, which hinders updating node representation in the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Espe- cially, GGNN uses a weighted sum of its node representation with the edge attribute when updating the node representation, which causes it to under- estimate of the information from nodes connected with high latency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' On the other hand, the GAT-based approach employs the attention mechanism to 3The edge attribute is set as the reciprocal of latency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' 18 Models (SFC) α Reward Avg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' #VNF Avg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Delay Avg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' SLAV ILP (GAT) 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='702 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='00 29097.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='86 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='046 ILP (GAT+N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=') 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='707 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='00 29282.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='68 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='045 GAT (GAT) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='15 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='658 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='33 74682.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='66 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='121 GAT (GAT) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='20 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='867 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='75 87157.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='146 GAT (GAT) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='25 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='136 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='75 97987.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='34 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='174 GAT+P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' (GAT) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='887 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='84 37044.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='12 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='052 GAT+P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' (GAT) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='956 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='25 41100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='82 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='060 GAT+P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' (GAT) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='25 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='316 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='41 58091.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='53 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='096 GAT+P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='+N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' (GAT+N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=') 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='915 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='55 38930.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='56 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='055 GAT+P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='+N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' (GAT+N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=') 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='20 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='119 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='29 48965.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='09 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='075 GAT+P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='+N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' (GAT+N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=') 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='25 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='350 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='95 60878.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='52 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='099 Table 3: Comparison of different models in the MEC network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' The positional encoding helps the training process more effective, while the node embedding does not additionally increase the performance on top of ‘GAT+P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='E.’.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' compute the different importance of its neighbors and the edges so that it could mitigate the underestimation problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Comparison of Various RL algorithms Since we propose to use the PPG algorithms, we compare them to other RL algorithms in the Internet2 network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' In the experiment, we trained the GAT-based models with positional encoding with the various RL algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' As a result, the PPG algorithms can obtain better rewards, compared to DQN and PPO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' PPG decreases the SLA violation rate and the delay time with a similar number of VNFs as presented in Table 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Method α Reward Avg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' #VNF Avg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Delay Avg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' SLAV DQN 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='15 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='317 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='00 718.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='56 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='112 DQN 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='20 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='311 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='00 765.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='22 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='174 DQN 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='25 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='701 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='90 1793.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='285 PPO 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='15 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='084 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='59 665.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='62 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='093 PPO 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='20 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='283 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='89 815.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='122 PPO 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='25 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='409 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='17 911.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='44 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='135 PPG 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='15 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='053 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='30 644.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='77 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='091 PPG 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='20 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='164 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='19 726.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='24 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='101 PPG 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='25 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='353 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='51 868.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='61 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='130 Table 4: Comparison of the various RL algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' PPG can optimize the reward more effectively compared to DQN and PPO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Moreover, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' 7, PPG can optimize the average loss of the policy network more effectively than PPO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' We believe that the auxiliary 19 Figure 7: Comparison of policy loss (α = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='2) in training process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' The loss of PPG decreases faster than PPO after around 40k iterations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Initial Deployment Reward Avg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' #VNF Avg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Delay Avg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' SLAV ILP-perturbed 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='029 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='03 622.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='59 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='087 Random 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='060 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='95 646.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='12 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='090 Zero 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='060 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='94 646.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='090 Table 5: Evaluations from different initial deployments in testing for the trained GAT model with α = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' value head helps the policy network converge more efficiently, even though parameter sharing might make the training slow at the beginning of the training process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Analysis with Random and Zero Deployments To analyze further the performance of the trained models, we trained the GAT-based model (α = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='2) optimized with PPG as before, and tested the trained model on different settings, where initial deployment is random or no VNFs are deployed (random deployment or zero deployment).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' The experi- ment results are presented in Table 5, where “Random” and “Zero” initial deployments are compared to the ILP-perturbed initial deployment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' As the result, the performance on both initial deployments shows the same level of QoS and resource utilization as the ILP-perturbed case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' It demonstrates that our approach can work on any sub-optimal initial deployment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Furthermore, our method can deploy VNFs without the ILP-based initial deployment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' 20 Avg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Policy Loss PPG agent: PPO 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='05 Valid/iter 20k 40k 60k 80kMethod Avg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Time (sec) ILP 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='06 GAT 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='431 Table 6: Average of execution times of 10 VNF-deployments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Figure 8: The VNF deployment generated from the model (Left), target SFC requests (Middle), and generated paths (Right).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Given the target SFC request, VNF deployment and path are generated by the proposed method and the SFC model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Execution Time To show how fast our method works, we measured the average execution times to make decisions for VNF deployments and compared the proposed GAT-based model to ILP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' The execution time includes the VNF deployment actions by the agent as well as SFC path generation by the SFC model [27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Each approach makes 10 deployments on a machine with 24 x 12-Core AMD Ryzen 9 3900X CPUs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Table 6 presents the average results of each approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Our method can process VNF deployment about 30 times faster than ILP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Qualitative Evaluation In this section, we discuss the quality of the results by our approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' We analyze the VNF deployment generated from the agent and plot t-SNE [29] of the representation computed from the encoder of the policy networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Generated Deployment We plot the VNF deployment generated from the GAT-based model trained with PPG as presented in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' 8, which shows VNF deployment generated from the SFC requests, and paths generated for the requests by the SFC model [27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' The VNF deployment is generated with more than 20 requests, so we omitted the other requests in the figure for simplicity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' 21 Req1 6 → 个N 个 6→1→1→11→8 (275.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='0 / 735) NW Req2 ←m N 个 个山 7 3→10→4→4→7 (765.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='0 / 722) 23 86 209 26 N Req3 ← 个N H个山 个 7 5→1→4→4→7 (420.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='0 /723) 129 63 Req4 2 → 个N 8个 2→ 11→ 11→ 11→ 8 (172.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='0 / 729) 主E W 36 90 WNPN 117 189 Req23 S个d个个 4→1→1→5 (225.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='0 /700) Req24 个个M个F个N个 0→1→1→1→4→4(179.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='0 /705)The most VNF instances are deployed in the middle of the shortest paths for the traffics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' For example, the first traffic (‘Req1’) has node 6 and node 8 as the ingress and egress, and is required to pass through NAT (‘N’), Firewall (‘F’), and IDS (‘I’).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' In the network, the traffic goes through NAT at node 1, Firewall at node 11, and IDS at node 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' This traffic takes 275 ms while SLA for the SFC path is 735 ms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' That is, all the VNFs of ‘Req1’ are deployed on the shortest path of its ingress and its egress.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' In addition, the generated deployment needs to meet the QoS with the optimized amount of resources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' As shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' 8, VNF instances are de- ployed on the intersection of the shortest paths for the traffics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' For example, the VNF instances at node 1 process more than four requests, like NAT for ‘Req1’, ‘Req2’, ‘Req23’ and ‘Req24’.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' That is, our approach can deploy the instances at the shared nodes of the paths for many requests, which can reduce the number of VNF instances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Node Representations by t-SNE In the section, to analyze how the network information is represented by the encoder, we plot the 2D representation of node embeddings by t-SNE [29] as in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' 9, which shows the representations from the GGNN-based encoder and our proposed GAT-based encoder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Each dot represents one node of network, and the nodes are located in the Internet2 network as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' 6a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' (a) GGNN (b) GAT Figure 9: Node representations by t-SNE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' The GAT-based model gets more disentangled representations, compared to the GGNN-based model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Even though the GGNN-based encoder has multiple clusters, the nodes within each cluster are not distinguishable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' However, the GAT-based en- coder’s representations are disentangled so that each cluster contains only 22 0 60 1 2 40 3 4 5 20 6 0 8 9 20 10 40 60 80 60 40 20 0 20 40 600 60 1 2 40 3 4 20 5 6 7 0 8 9 20 10 11 40 60 80 60 40 20 0 20 40 60 80one or two nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Furthermore, the representations of neighbors in the net- work are close to each other in the plot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' For example, clusters for node 8 (‘brown’) and node 2 (‘green’) are close to each other, which reflects its neighborhood with the same node type as presented in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' 6a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' This demon- strates the representation by GAT-based model reflects the network topology effectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Conclusion In this paper, we proposed enhanced models which can be adapted to more general network settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' We proposed an improved GNN architecture and a few techniques to obtain a better node representation for the VNF deployment task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Furthermore, we optimized the model with PPG, a variant policy gradient-based algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' In the experiment, we evaluated the pro- posed method in various scenarios, achieving a better QoS with minimum resource utilization compared to the previous methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Finally, we analyzed the generated VNF deployment and compare the node representations of our model to the baseline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Acknowledgement This research was supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Edu- cation (NRF-2022R1A2C1012633), and by Institute for Information & com- munications Technology Promotion (IITP) grant funded by the Korea gov- ernment(MSIT) (No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' 2018-0-00749, Development of virtual network man- agement technology based on artificial intelligence).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' References [1] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Bari, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Chowdhury, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Ahmed, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Boutaba, On orchestrating virtual network functions, in: 2015 11th International Conference on Network and Service Management (CNSM), 2015, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' 50–56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' 1109/CNSM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='7367338.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' [2] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Moens, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Turck, VNF-P: A model for efficient placement of virtu- alized network functions, in: 10th International Conference on Network and Service Management (CNSM) and Workshop, 2014, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' 418–423.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='1109/CNSM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='7014205.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' 23 [3] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Abdelaal, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Ebrahim, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Anis, Efficient placement of service function chains in cloud computing environments, Electronics 10 (3) (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='3390/electronics10030323.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' URL https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='mdpi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='com/2079-9292/10/3/323 [4] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Lange, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Grigorjew, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Zinner, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Tran-Gia, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Jarschel, A multi- objective heuristic for the optimization of virtual network function chain placement, in: 2017 29th International Teletraffic Congress (ITC 29), Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' 1, IEEE, 2017, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' 152–160.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' [5] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Karimzadeh-Farshbafan, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Shah-Mansouri, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Niyato, A dynamic reliability-aware service placement for network function virtualization (nfv), IEEE Journal on Selected Areas in Communications 38 (2) (2020) 318–333.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='1109/JSAC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='2959196.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' [6] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' He, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Yang, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Li, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Trajanovski, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Kuipers, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Fu, A-ddpg: Attention mechanism-based deep reinforcement learning for nfv, in: 2021 IEEE/ACM 29th International Symposium on Quality of Service (IWQOS), 2021, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' 1–10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='1109/IWQOS52092.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='9521285.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' [7] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Sun, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Lan, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Li, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Guo, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Hu, Combining deep reinforcement learning with graph neural networks for optimal VNF placement, IEEE Communications Letters 25 (1) (2021) 176–180.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='1109/LCOMM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='3025298.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' [8] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Seo, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Heo, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Hong, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='-G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Kim, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Yoo, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='-K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Hong, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Choi, Updating VNF deployment with scaling actions using reinforcement al- gorithms (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' [9] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Cho, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' van Merrienboer, C¸.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' G¨ul¸cehre, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Bougares, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Schwenk, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Bengio, Learning phrase representations using RNN encoder-decoder for statistical machine translation, CoRR abs/1406.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='1078 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' arXiv: 1406.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='1078.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' URL http://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='org/abs/1406.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='1078 [10] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Bahdanau, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Cho, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Bengio, Neural machine translation by jointly learning to align and translate (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='48550/ARXIV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='1409.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' 0473.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' URL https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='org/abs/1409.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='0473 24 [11] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Vaswani, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Shazeer, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Parmar, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Uszkoreit, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Jones, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Gomez, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Kaiser, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Polosukhin, Attention is all you need, in: I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Guyon, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Luxburg, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Bengio, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Wallach, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Fergus, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Vishwanathan, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Garnett (Eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' ), Advances in Neural Information Processing Systems, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' 30, Curran Associates, Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=', 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' [12] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Dosovitskiy, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Beyer, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Kolesnikov, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Weissenborn, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Zhai, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Unterthiner, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Dehghani, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Minderer, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Heigold, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Gelly, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Uszkoreit, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Houlsby, An image is worth 16x16 words: Trans- formers for image recognition at scale, CoRR abs/2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='11929 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' arXiv:2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='11929.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' URL https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='org/abs/2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='11929 [13] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Lee, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Choi, Partitioning image representation in contrastive learn- ing (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='48550/ARXIV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='2203.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='10454.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' URL https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='org/abs/2203.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='10454 [14] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Veliˇckovi´c, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Cucurull, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Casanova, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Romero, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Li`o, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Bengio, Graph Attention Networks, International Conference on Learning Rep- resentations (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' URL https://openreview.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='net/forum?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='id=rJXMpikCZ [15] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Cobbe, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Hilton, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Klimov, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Schulman, Phasic policy gradient (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='48550/ARXIV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='04416.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' URL https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='org/abs/2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='04416 [16] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Scarselli, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Gori, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Tsoi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Hagenbuchner, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Monfardini, The graph neural network model, IEEE Transactions on Neural Networks 20 (1) (2009) 61–80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' [17] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Zhou, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Cui, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Hu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Zhang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Yang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Liu, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Wang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Li, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Sun, Graph neural networks: A review of methods and applications, AI Open 1 (2020) 57–81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' doi:https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='aiopen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' [18] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Kipf, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Welling, Semi-supervised classification with graph con- volutional networks (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='48550/ARXIV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='1609.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='02907.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' URL https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='org/abs/1609.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='02907 25 [19] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Li, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Tarlow, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Brockschmidt, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Zemel, Gated graph sequence neural networks (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='48550/ARXIV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='1511.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='05493.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' URL https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='org/abs/1511.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='05493 [20] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Gilmer, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Schoenholz, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Riley, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Vinyals, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Dahl, Neural message passing for quantum chemistry (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='48550/ARXIV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' 1704.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='01212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' URL https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='org/abs/1704.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='01212 [21] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Wang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Ji, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Shi, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Wang, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Cui, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Yu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Ye, Heterogeneous graph attention network (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='48550/ARXIV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='1903.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='07293.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' URL https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='org/abs/1903.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='07293 [22] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Sutton, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' McAllester, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Singh, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Mansour, Policy gradient methods for reinforcement learning with function approximation, in: Proceedings of the 12th International Conference on Neural Informa- tion Processing Systems, NIPS’99, MIT Press, Cambridge, MA, USA, 1999, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' 1057–1063.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' [23] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Schulman, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Wolski, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Dhariwal, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Radford, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Klimov, Proximal policy optimization algorithms (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='48550/ARXIV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='1707.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' 06347.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' URL https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='org/abs/1707.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='06347 [24] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Konda, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Tsitsiklis, Actor-critic algorithms, in: S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Solla, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Leen, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' M¨uller (Eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' ), Advances in Neural Information Processing Systems, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' 12, MIT Press, 1999.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' [25] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Conn, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Gould, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Toint, Trust Region Methods, MPS-SIAM Series on Optimization, Society for Industrial and Applied Mathematics, 2000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' URL https://books.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='google.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='co.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='kr/books?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='id=5kNC4fqssYQC [26] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Schulman, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Levine, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Moritz, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Jordan, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Abbeel, Trust region policy optimization (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='48550/ARXIV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='1502.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='05477.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' URL https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='org/abs/1502.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='05477 [27] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Heo, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Lange, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='-G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Kim, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Choi, Graph neural network based service function chaining for automatic network control (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='48550/ARXIV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='05240.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' URL https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='org/abs/2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='05240 26 [28] Internet2 research network topology and traffic matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' URL https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='utexas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='edu/$\\sim$yzhang/research/ AbileneTM/ [29] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' van der Maaten, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' Hinton, Visualizing data using t-SNE, Journal of Machine Learning Research 9 (86) (2008) 2579–2605.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content=' URL http://jmlr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='org/papers/v9/vandermaaten08a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} +page_content='html 27' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/b9E_T4oBgHgl3EQfzxyC/content/2301.08325v1.pdf'} diff --git a/cNE2T4oBgHgl3EQfaQf4/content/tmp_files/2301.03874v1.pdf.txt b/cNE2T4oBgHgl3EQfaQf4/content/tmp_files/2301.03874v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..367550e49009ae0d05c96f9e139e7bc0b74a2e72 --- /dev/null +++ b/cNE2T4oBgHgl3EQfaQf4/content/tmp_files/2301.03874v1.pdf.txt @@ -0,0 +1,1379 @@ +arXiv:2301.03874v1 [math.OA] 10 Jan 2023 +INNERNESS OF DERIVATIONS INTO NONCOMMUTATIVE SYMMETRIC +SPACES IS DETERMINED COMMUTATIVELY +JINGHAO HUANG AND FEDOR SUKOCHEV +Abstract. Let E = E(0, ∞) be a symmetric function space and E(M, τ) be a symmet- +ric operator space associated with a semifinite von Neumann algebra with a faithful normal +semifinite trace. +Our main result identifies the class of spaces E for which every derivation +δ : A → E(M, τ) is necessarily inner for each C∗-subalgebra A in the class of all semifinite von +Neumann algebras M as those with the Levi property. +1. Introduction +Let A be a C∗-algebra and let J be an A-bimodule [80]. A derivation δ : A → J is a linear +mapping satisfying δ(xy) = δ(x)y + xδ(y), x, y ∈ A. In particular, if a ∈ J, then δa(x) := xa − ax +is a derivation. Such derivations implemented by elements in J are said to be inner. One of the +classical problems in operator algebra theory is the question whether every derivation from A into +J is automatically inner. +The celebrated Kadison–Sakai theorem [50,76] states that derivations are always inner when A +is a von Neumann algebra and the A-bimodule J coincides with the algebra A itself. Further, it was +proved that every derivation from a von Neumann algebra into any of its ideal s is automatically +inner [15,16]. However, when one considers more general C∗-algebras A and A-bimodules J, there +are examples of non-inner derivations for some specific A and J (see e.g. [8, 11, 36–38, 72, 77]). +We quote the following from the memoir by Johnson [47, Section 10.11]): “It would be desirable +to identify those spaces X with H1(G, X∗) = 0 for all G ”. A similar statement appeared in [43] +(see also [80, p.60]): “Here again it can be asked if such derivations are inner; that is, are they +induced by an element of J as above? In fancier language, the question asks if the cohomology +group H1(A, J) is trivial.” During the past decades, a number of important special cases have +been studied (see e.g. [5,13,21,22,26,47,48,53,54,63,69,71,74]). +Due to the rapid development of noncommutative analysis and motivated by questions due +to Johnson et al., there are a number of papers concerning various versions of the following +question [5,7,10,18,83]: +Question 1. Assume that M is a von Neumann algebra equipped with a faithful normal semifinite +trace τ. Let E(M, τ) be a symmetric space of τ-compact operators affiliated with M. How can +one identity those E(M, τ) such that derivations from an arbitrary C∗-subalgebra A of M into +E(M, τ) are necessarily inner? +Experts in the operator theory are probably more familiar with symmetrically normed ideals +in B(H), which are a special case of noncommutative symmetric spaces. +Various versions of +Question 1 for derivations with values in ideals of a von Neumann algebra were asked and discussed +in [11,12,43,44,48,55,71,72]. +It was a long-standing open question whether every derivation a C∗-subalgebra of a semifinite +von Neumann algebra M into M∗ must be inner (see e.g. [18, p.247]), which in our setting +is equivalent to the special version of Question 1 with E = L1. +This question was resolved +completely by Bader, Gelander and Monod in 2012 [5] (see also [70] for a slightly different proof +2010 Mathematics Subject Classification. 46L57, 47A56, 46L52, 46L10, 46E30. +Key words and phrases. derivation; symmetric space; measurable operator. +J. Huang was supported by the NNSF of China (No.12031004). F. Sukochev’s research was supported by the +Australian Research Council (FL170100052). +1 + +2 +J. HUANG AND F. SUKOCHEV +due to Pfitzner). The method used in [5] (or [70]) does not have any chance to deliver the full +answer on Question 1. This fact was emphaiszed in [5, Section 3], where the following points were +raised: +a. In marked contrast to the classical fixed point theorems, there is no hope to +find a fixed point inside a general bounded closed convex subset of L1 · · · the +weak compactness · · · seems almost unavoidable · · · +b. · · · a canonical norm one projection V ∗∗ → V is not enough. +c. It would be interesting to find a purely geometric version of the proposition +· · · +The fact that the “fixed point” obtained in [5] is not inside a general bounded closed convex subset +of L1 leads to extra difficulties in the general case. +In this paper, we completely resolve Question 1 above, see Theorem 4.8 and Corollary 5.4 below. +We show that the Levi property1 of a symmetric space is a sufficient and necessary condition for +the Question 1 above having an affirmative answer for every semifinite von Neumann algebra +M. Thus, the derivation theorem for preduals of von Neumann algebras in [5] (in the semifinite +setting) becomes a trivial corollary of our Theorem 4.8. +The new approach devised in this paper answers to points (a), (b) and (c) above raised +in [5], which provides an alternative proof for the resolution of the question raised by Bunce +and Paschke [18], without involving weak compactness of a subset in a L-embedded space as [5] +and [70] did. This enables us to find a “fixed point” (implementing the derivation) from a not +necessarily weakly compact closed convex subset of a noncommutative symmetric space which is +1-complemented subspace of its bidual but not necessarily an L-embedded Banach space (i.e., a +symmetric space having the Levi property [30, 31]2), see Theorem 4.8. On the other hand, the +Levi property of the space E(M, τ) means that E(M, τ) coincides with its second K¨othe dual +and this geometrical condition is the only one required in Theorem 4.8 thus delivering (at least +spiritually) an answer to the question suggested in [5, Comment c] above. We believe that the +method developed in this work is of interest in its own right. +It is important to emphasize that the Fatou/Levi property was hatched in the theory of Banach +lattices [1,17], and was even included into the original definition of Banach function spaces over +σ-finite measure spaces (see [6, 65]). The property is somewhat analogous to the so-called “dual +normal” property3. The importance of the Fatou/Levi property in the theory of Banach function +spaces and symmetric operator spaces is hard to overestimate [29–31]. It seems appropriate to +recall here that every derivation from a hyperfinite von Neumann algebra A into a dual normal +A-bimodule is inner (see e.g. [80, Theorem 2.4.3], [23] and [49]). Recall also, that derivations from +a nuclear C∗-algebra A into a dual Banach A-module are inner [24, 42]. However, Theorem 4.8 +below holds for arbitrary C∗-subalgebras A of M and for symmetric spaces which may not have +a predual space. +The reflexive gate type result (see e.g. [68, Corollary 3.2.3]) is relatively unknown but plays +a significant role in our approach. In Section 3, we establish a noncommutative version of this +result and lay the groundwork for its usage in the derivation problem. In Section 4, using the +weak compactness criteria for noncommutative symmetric spaces obtained in [28,35], we show that +the Ryll-Nardzewski fixed point theorem is applicable to any noncommutative strongly symmetric +KB-space (or a Kantorovich–Banach space, see Section 2.2) whose bounded part does not coincides +with C1(M, τ) = L1(M, τ) ∩ M. This is the key technical step in the proof of the main result +of the present paper, Theorem 4.8. In Section 5, we demonstrate why the Fatou/Levi property of +1A symmetric function space E(0, ∞) having the Levi property has an equivalent symmetric norm such that +E(0, ∞) has the Fatou property, see Remark 4.7. The Soviet school on Banach lattices used the term monotone +complete norm or property (B) [58, Chapter X.4], see also [1, p.89]. In the theory of operator algebras, a similar +property is called ‘monotone closed’ [81, Chapter III, Definition 3.13]. +2Indeed, Theorem 4.8 holds for the case when the projection constant is not necessarily 1. +3Let M be a von Neumann algebra. An M-bimodule X is said to be a dual normal X-bimodule if X is a dual +space and the maps m �→ mx and m �→ xm are both ultraweak-weak∗ continuous from M into X for each fixed +element x ∈ X [80, p.6]. + +DERIVATIONS INTO NONCOMMUTATIVE SYMMETRIC SPACES +3 +the space E(M, τ) is a necessary condition for an affirmative answer to Question 1 in the class of +all semifinite von Neumann algebras. +2. Preliminaries +In this section, we recall some notions of the theory of noncommutative integration. +In what follows, H is a Hilbert space and B(H) is the ∗-algebra of all bounded linear operators +on H equipped with the uniform norm ∥·∥∞, and 1 is the identity operator on H. Let M be a +von Neumann algebra on H. We denote by P(M) the collection of all projections in M, by M′ +the commutant of M and by Z(M) the center of M. For details on von Neumann algebra theory, +the reader is referred to e.g. [51,52] or [81]. General facts concerning measurable operators may +be found in [67], [78] (see also [82, Chapter IX] and the forthcoming book [34]). For convenience +of the reader, some of the basic definitions are recalled. +2.1. τ-measurable operators and generalized singular value functions. A closed, densely +defined operator x : D (x) → H with the domain D (x) is said to be affiliated with M if yx ⊆ xy for +all y ∈ M′, where M′ is the commutant of M. A closed, densely defined operator x : D (x) → H +affiliated with M is said to be measurable if there exists a sequence {pn}∞ +n=1 ⊂ P (M), such that +pn ↑ 1, pn(H) ⊆ D (x) and 1−pn is a finite projection (with respect to M) for all n. The collection +of all measurable operators with respect to M is denoted by S (M), which is a unital ∗-algebra +with respect to strong sums and products (denoted simply by x + y and xy for all x, y ∈ S (M)). +Let x be a self-adjoint operator affiliated with M. We denote its spectral measure by {ex}. It is +well known that if x is an operator affiliated with M with the polar decomposition x = u|x|, then +u ∈ M and e ∈ M for all projections e ∈ {e|x|}. Moreover, x ∈ S(M) if and only if e|x|(λ, ∞) is a +finite projection for some λ > 0. It follows immediately that in the case when M is a von Neumann +algebra of type III or a type I factor, we have S(M) = M. For type II von Neumann algebras, +this is no longer true. From now on, let M be a semifinite von Neumann algebra equipped with +a faithful normal semifinite trace τ. +An operator x ∈ S (M) is called τ-measurable if there exists a sequence {pn}∞ +n=1 in P (M) +such that pn ↑ 1, pn(H) ⊆ D (x) and τ(1 − pn) < ∞ for all n. The collection S (M, τ) of all +τ-measurable operators is a unital ∗-subalgebra of S (M). It is well known that a linear operator +x belongs to S (M, τ) if and only if x ∈ S(M) and there exists λ > 0 such that τ(e|x|(λ, ∞)) < ∞. +Alternatively, an unbounded operator x affiliated with M is τ-measurable (see [39]) if and only if +τ +� +e|x|� +n, ∞ +�� +→ 0, +n → ∞. +For convenience of the reader, we also recall the definition of the measure topology tτ on the +algebra S(M, τ). For every ε, δ > 0, we define the set +V (ε, δ) = {x ∈ S(M, τ) : ∃p ∈ P (M) such that ∥x(1 − p)∥∞ ≤ ε, τ(p) ≤ δ} . +The topology generated by the sets V (ε, δ), ε, δ > 0, is called the measure topology tτ on S(M, τ) +[34, 39, 67]. It is well known that the algebra S(M, τ) equipped with the measure topology is a +complete metrizable topological algebra. A sequence {xn}∞ +n=1 ⊂ S(M, τ) converges to zero with +respect to measure topology tτ if and only if τ +� +e|xn|(ε, ∞) +� +→ 0 as n → ∞ for all ε > 0 [34]. +Another important vector topology on S(M, τ) is the local measure topology. For convenience +we denote by Pf(M) the collection of all τ-finite projections in M, that is, the set of all e ∈ P(M) +satisfying τ(e) < ∞. A neighbourhood base for this topology is given by the sets V (ε, δ; e), ε, δ > 0, +e ∈ Pf(M), where +V (ε, δ; e) = {x ∈ S(M, τ) : exe ∈ V (ε, δ)} . +Obviously, local measure topology is weaker than measure topology [32]. We note here, that the +local measure topology used in the present paper differs from the local measure topology defined +in e.g. [9,10]. +Definition 2.1. Let M be a von Neumann algebra equipped with a faithful normal semi-finite +trace τ and let x ∈ S(M, τ). The generalized singular value function µ(x) : t �→ µ(t; x) of the + +4 +J. HUANG AND F. SUKOCHEV +operator x is defined by setting +µ(s; x) = inf{∥xp∥∞ : p ∈ P(M) with τ(1 − p) ≤ s}, ∀s ∈ (0, ∞). +An equivalent definition in terms of the distribution function of the operator |x| is the following. +for every operator x ∈ S(M, τ), setting d|x|(t) = τ(e|x|(t, ∞)), +t > 0, we have (see e.g. [39]) +µ(t; x) = inf{s ≥ 0 : d|x|(s) ≤ t}. +(1) +Note that µ(x) is a function defined on (0, ∞) even if the trace τ is finite. +In particular, +µ(s; x) = 0 when s ≥ τ(1). +Consider the algebra M = L∞(0, ∞) of all Lebesgue measurable essentially bounded functions +on (0, ∞). The algebra M can be seen as an abelian von Neumann algebra acting via multiplication +on the Hilbert space H = L2(0, ∞), with the trace given by integration with respect to Lebesgue +measure m. It is easy to see that the algebra of all τ-measurable operators affiliated with M can be +identified with the subalgebra S(0, ∞) of the algebra of Lebesgue measurable functions L0(0, ∞) +which consists of all functions x such that m({|x| > s}) is finite for some s > 0. +It should +also be pointed out that the generalized singular value function µ(x) is precisely the decreasing +rearrangement µ(x) of the function |x| (see e.g. [60]) defined by +µ(t; x) = inf{s ≥ 0 : m({|x| ≥ s}) ≤ t}. +If M = B(H) (respectively, ℓ∞) and τ is the standard trace Tr (respectively, the counting +measure on N), then it is not difficult to see that S(M) = S(M, τ) = M. In this case, for +x ∈ S(M, τ) we have +µ(n; x) = µ(t; x), +t ∈ [n, n + 1), +n ≥ 0. +The sequence {µ(n; x)}n≥0 is just the sequence of singular values of the operator x. +If x, y ∈ S(M, τ), then x is said to be submajorized by y, denoted by x ≺≺ y, if +� t +0 +µ(s; x)ds ≤ +� t +0 +µ(s; y)ds for all t ≥ 0. +In particular, for x, y ∈ S(0, ∞), x ≺≺ y if and only if +� t +0 µ(s; x)ds ≤ +� t +0 µ(s; y)ds, t ≥ 0. +2.2. Symmetric spaces. +Definition 2.2. A linear subspace E of S(M, τ) equipped with a complete norm ∥·∥E, is called a +symmetric space (of τ-measurable operators) if x ∈ S(M, τ), y ∈ E and µ(x) ≤ µ(y) imply that +x ∈ E and ∥x∥E ≤ ∥y∥E. +It is well-known that any symmetric space E is a normed M-bimodule, that is, axb ∈ E for any +x ∈ E, a, b ∈ M and ∥axb∥E ≤ ∥a∥∞ ∥b∥∞ ∥x∥E [32,34]. A symmetric space E(M, τ) ⊂ S(M, τ) +is called strongly symmetric if its norm ∥·∥E has the additional property that ∥x∥E ≤ ∥y∥E +whenever x, y ∈ E(M, τ) satisfy x ≺≺ y. In addition, if x ∈ S(M, τ), y ∈ E(M, τ) and x ≺≺ y +imply that x ∈ E(M, τ) and ∥x∥E ≤ ∥y∥E, then E(M, τ) is called fully symmetric space (of +τ-measurable operators). +If E ⊂ S(M, τ) is a symmetric space, then the norm ∥·∥E is called order continuous if ∥xα∥E → +0 whenever {xα} is a downwards directed net in E+ satisfying xα ↓ 0. A symmetric space E(M, τ) +is said to have the Fatou property if for every upwards directed net {xβ} in E(M, τ)+, satisfying +supβ ∥xβ∥E < ∞, there exists an element x ∈ E(M, τ)+ such that xβ ↑ x in E(M, τ) and +∥x∥E = supβ ∥xβ∥E. Examples such as Schatten–von Neumann operator ideals, Lorentz operator +ideals, etc. all have symmetric norms which have the Fatou property [34,60,61]. If E has the Fatou +property and order continuous norm, then it is said to be a KB-space (or Kantorovich–Banach +space) [32]. +If E(M, τ) is a symmetric space, then the carrier projection cE ∈ P(M) is defined by setting +cE = +� +{p : p ∈ P(M), p ∈ E(M, τ)}. +We remark that, replacing the von Neumann algebra M by the reduced von Neumann algebra +McE (note that E(M, τ) = cEE(M, τ)cE, see e.g. [32, Corollary 6]), it is often assumed that the +carrier projection of E(M, τ) is equal to 1. + +DERIVATIONS INTO NONCOMMUTATIVE SYMMETRIC SPACES +5 +If E(M, τ) is a symmetric space, then the K¨othe dual E(M, τ)× of E(M, τ) is defined by +E(M, τ)× = {x ∈ S(M, τ) : +sup +∥y∥E≤1,y∈E +τ(|xy|) < ∞}, +and for every x ∈ E(M, τ)×, we set ∥x∥E× = sup {τ(|yx|) : y ∈ E(M, τ), ∥y∥E ≤ 1} (see e.g. [32, +Section 5.2], see also [28,62]). It is well-known that ∥·∥E× is a norm on E(M, τ)× if and only if +the carrier projection cE of E(M, τ) is equal to 1. In this case, for a strongly symmetric space +E(M, τ), the following statements are equivalent [31,32]. +• E(M, τ) has the Fatou property. +• E(M, τ)×× = E(M, τ) and ∥x∥E = ∥x∥E×× for all X ∈ E(M, τ). +• The norm closed unit ball BE of E(M, τ) is closed in S(M, τ) with respect to the local +measure topology . +If E(M, τ) is a strongly symmetric space with cE = 1 (or a symmetric space affiliated with a +semifinite von Neumann algebra which is either atomless or atomic with all minimal projections +having equal trace), then [32, Lemma 30] (see also [34, Theorem IV.5.7] and [60]) +∥x∥E = ∥x∥E×× , x ∈ (L1 ∩ L∞)(M, τ), +(2) +and +L1 ∩ L∞(M, τ) ⊂ E(M, τ) ⊂ (L1 + L∞)(M, τ). +(3) +A wide class of symmetric operator spaces associated with the von Neumann algebra M can +be constructed from concrete symmetric function spaces studied extensively in e.g. [60]. +Let +(E(0, ∞), ∥·∥E(0,∞)) be a symmetric function space on the semi-axis (0, ∞). The pair +E(M, τ) = {x ∈ S(M, τ) : µ(x) ∈ E(0, ∞)}, +∥x∥E(M,τ) := ∥µ(x)∥E(0,∞) +is a symmetric operator space affiliated with M with cE = 1 [56] (see also [62]). For convenience, +we denote ∥·∥E(M,τ) by ∥·∥E. +Let E(0, ∞) be a symmetric function space. We define a symmetric space [60, Chapter I.3] +(L1 + E)(0, ∞) := {f ∈ S(0, ∞) : ∥f∥L1+E := +inf +x=u+v,u∈L1(0,∞),v∈E(0,∞) {∥u∥1 + ∥v∥E} < ∞}. +2.3. The ideal of τ-compact operators. For a self-adjoint operator x ∈ S(M, τ), we denote +by s(x) its support. The two-sided ideal F(M, τ) in M consisting of all elements of τ-finite range +is defined by setting +F(M, τ) = {x ∈ M : τ(s(|x|)) < ∞}. +The C∗-algebra C0(M, τ) of all τ-compact bounded operators can be described as the closure +in the norm ∥ · ∥∞ of the linear span of all τ-finite projections [62, Definition 2.6.8]. Equivalently, +C0(M, τ) the set of all elements x ∈ M such that τ(E|x|(λ, ∞)) < ∞ for every λ > 0 (see +e.g. [34, Chapter II, Section 4]). +The space C0(M, τ) is associated to the ideal of essentially +bounded functions vanishing at infinity (see [62, Lemma 2.6.9]), that is, +C0(M, τ) = +� +a ∈ S(M, τ) : µ(a) ∈ L∞(0, ∞), µ(∞; a) := lim +t→∞ µ(t; a) = 0 +� +. +In particular, if τ is finite, then M = C0(M, τ) (see e.g. [62, Page 64]). The space S0(M, τ) of +τ-compact operators is the space associated to the algebra of functions from S(0, ∞) vanishing at +infinity, that is, +S0(M, τ) = {x ∈ S(M, τ) : µ(∞; x) = 0}. +This is a two-sided ideal in S(M, τ) and, clearly, C0(M, τ) = S0(M, τ) ∩ M. +We denote +C0(0, ∞) := {f ∈ L∞(0, ∞) : µ(∞; f) = 0}, +and +(L1 + C0)(0, ∞) := {f ∈ L1 + L∞(0, ∞) : µ(∞; f) = 0}. + +6 +J. HUANG AND F. SUKOCHEV +3. A noncommutative reflexive gate type theorem +Recall the reflexive gate type result for symmetric function spaces E(0, 1) [68, Corollary 3.2.3], +i.e., if E(0, 1) ̸= L1(0, 1) and E(0, 1) ̸= L∞(0, 1), then there exist two reflexive symmetric space +F1(0, 1) and F2(0, 1) such that F2(0, 1) ⊂ E(0, 1) ⊂ F1(0, 1). For a symmetric sequence space +ℓE such that ℓE ⫋ c0, by the well-known construction of Davis–Figiel–Johnson–Pe�lczy´nski [27] +(see [4, Theorem 5.37], [25, Chapter VI, Lemma 5.3] or [57, p. 255] for detailed expositions), +there exists a reflexive sequence space ℓF ⫋ ℓE, see e.g. the proof of [57, Proposition 3.4]. In the +following lemma, we show that this reflexive sequence is actually symmetric, which is a discrete +analogue of the reflexive gate result [68, Corollary 3.2.3] for symmetric function spaces on the unit +interval. +Lemma 3.1. Let ℓE be a symmetric sequence space which does not coincide with ℓ1 (up to equiv- +alent norms). Then, there exists a reflexive symmetric sequence space ℓF such that ℓF ⊂ ℓE. +Proof. The proof relies on the construction of Davis–Figiel–Johnson–Pe�lczy´nski [27, p.313]. +Let {en}n≥1 be the standard symmetric basis of ℓE. Since ℓE ̸= ℓ1, it follows that {en}n≥1 +is weakly null. By the Krein–Smulian theorem [4, Theorem 3.42], the convex circled4 hull W of +{en}n≥1 is weakly compact. +Let Un = 2nW +2−nU, where U stands for the unit ball of ℓE, and ∥·∥n denotes the Minkowski +functional of Un, i.e., +∥x∥n := inf {λ > 0 : x ∈ λUn} . +Put ℓF := +� +x ∈ ℓE : ∥x∥F := +��∞ +n=1 ∥x∥2 +n +�1/2 +< ∞ +� +. By [27, Lemma 1] (see also [4, Theorem +5.37]), ℓF is reflexive. +The ideal property of ℓF was asserted in [57, Proposition 3.4]. For the sake of completeness, we +include a short proof below. Let y = (y(k))k≥1 ∈ ℓF and x = (x(k))k≥1 ∈ ℓ∞ such that |x| ≤ |y|. +We have y ∈ (∥y∥n + ε)Un for any ε > 0, i.e., +y = +N +� +k=1 +skek + yn,ε, +where �N +k=1 |sk| ≤ 2n (∥y∥n + ε) , 1 ≤ N < ∞ and (yn,ε(k))k≥1 ∈ ∥y∥n+ε +2n +U. Note that +x = +� +yk̸=0 +sk +xk +yk +ek + +�xk +yk +yn,ε(k) +� +k≥1 +, +� +yk̸=0 +���sk +xk +yk +��� ≤ � +yk̸=0 |sk| ≤ 2n (∥y∥n + ε) and +� +xk +yk yn,ε(k) +� +k≥1 ∈ ∥y∥n+ε +2n +U. Therefore, ∥x∥n ≤ +∥y∥n for every n ≥ 1, and x ∈ ℓF with with ∥x∥F ≤ ∥y∥F . +To show that ℓF is symmetric, one only need to observe that for any permutation π and n ≥ 1, +we have π(W) = W and π(U) = U. Therefore, +���(y(k))k≥1 +��� +n = +���(y (π(k)))k≥1 +��� +n for any y ∈ ℓF +and any permutation π. +□ +Corollary 3.2. Let ℓE be a symmetric sequence space which does not coincide with c0 and ℓ∞ +(up to equivalent norms). Then, there exists a reflexive symmetric sequence space ℓF such that +ℓF ⊃ ℓE. +4A nonempty subset A of a vector space is said to circled (or balanced) whenever x ∈ A and 0 ≤ λ ≤ 1 imply +λx ∈ A) [4, p.134]. A convex circled hull of A is +� +n +� +i=1 +λixi : xi ∈ A for each i and +n +� +i=1 +|λi| ≤ 1 +� +. + +DERIVATIONS INTO NONCOMMUTATIVE SYMMETRIC SPACES +7 +Proof. Since ℓE ̸= c0, ℓ∞, it follows that ℓ× +E ̸= ℓ1 (see e.g. [46, Proposition 11] and [59]). By +Lemma 3.1, we obtain that there exists a reflexive symmetric sequence space ℓG ⊂ ℓ× +E. Therefore, +letting ℓF := ℓ× +G, which is a reflexive symmetric sequence space [32, Section 8.3] (see also [34,60, +66]), we have +ℓF = ℓ× +G ⊃ ℓ×× +E +⊃ ℓE, +which completes the proof. +□ +Now, we prove the main theorem of this section, which is an infinite measure version of [68, +Corollary 3.2.3]. +Theorem 3.3. Let E(0, ∞) be a symmetric function space such that +E(0, ∞) ∩ L∞(0, ∞) ⫋ C0(0, ∞). +Then, there exists a symmetric KB-function space such that F(0, ∞) containing E(0, ∞). If, in +addition, E(0, 1) := +� +f ∈ L1(0, 1) : g(x) := +� +f(x), +if x ∈ (0, 1); +0, +otherwise +∈ E(0, ∞), ∥f∥E(0,1) = ∥g∥E(0,∞) +� +satisfies that +E(0, 1) ̸= L1(0, 1), +then F(0, ∞) can be chosen as a reflexive symmetric space. +Proof. Let ℓE be the symmetric sequence space generated by E(0, ∞) by setting +ℓE := + + +(αn)n≥1 : +� +n≥1 +αnχ(n−1,n] ∈ E(0, ∞) + + + , ∥(αn)n≥1∥ℓE := +������ +� +n≥1 +αnχ(n−1,n] +������ +E(0,∞) +. +(4) +By condition E(0, ∞) ∩ L∞(0, ∞) ⫋ C0(0, ∞), we obtain that ℓE ⫋ c0. +Indeed, E(0, ∞) ∩ +L∞(0, ∞) ⫋ C0(0, ∞) implies that there exists z = µ(z) ∈ C0(0, ∞) such that µ(z) /∈ E(0, ∞) ∩ +L∞(0, ∞), and therefore, by (4), we obtain that (µ(n; z))n≥1 ∈ c0 but (µ(n; z))n≥1 /∈ ℓE. +By Corollary 3.2, there exists a reflexive symmetric sequence space ℓG ⊃ ℓE. Observe that ℓG +is fully symmetric [34,60,61]. +Now, we define a symmetric function space F1(0, ∞) by setting +F1(0, ∞) := +� +f ∈ (L1 + L∞)(0, ∞) : +�� n +n−1 +µ(t; f)dt +� +n≥1 +∈ ℓG +� +(5) +equipped with the norm [62, Theorem 3.6.6] +∥f∥F1(0,∞) := +����� +�� n +n−1 +µ(t; f)dt +� +n≥1 +����� +ℓG +, f ∈ F1(0, ∞), +which also has the Fatou property and order continuous norm, i.e., F1(0, ∞) is a symmetric KB- +space. Indeed, let {xβ} be an upwards directed net in F1(0, ∞)+ satisfying supβ ∥xβ∥F1(0,∞) < ∞. +By the definition of F1(0, ∞), +��� n +n−1 µ(t; xβ)dt +� +n≥1 +� +β +is an upwards directed net in ℓ+ +G with +supβ +���� +�� n +n−1 µ(t; xβ)dt +� +n≥1 +���� +ℓG +< ∞. Let x ∈ S(0, ∞) be such that xβ ↑ x. Then, we have µ(xβ) ↑ +x and +� n +n−1 µ(t; xβ)dt ↑ +� n +n−1 µ(t; x)dt for each n ≥ 1. By the Fatou property of ℓG, we obtain +that +�� n +n−1 µ(t; x)dt +� +n≥1 ∈ ℓG with +���� +�� n +n−1 µ(t; x)dt +� +n≥1 +���� +ℓG += supβ +���� +�� n +n−1 µ(t; xβ)dt +� +n≥1 +���� +ℓG +, +i.e., x ∈ F1(0, ∞) with ∥x∥F1(0,∞) = supβ ∥xβ∥F1(0,∞) = supβ ∥xβ∥F1(0,∞). Therefore, F1(0, ∞) +has the Fatou property. The order continuity of ∥·∥F1(0,∞) can be proved by a similar argument. +Note that for any f = µ(f) ∈ E(0, ∞), we have +� +n≥1 +µ(n; f)χ(n−1,n] ≤ µ(f) and +� +n≥1 +µ(n; f)χ(n−1,n] ∈ E(0, ∞). + +8 +J. HUANG AND F. SUKOCHEV +By (4), we have (µ(n; f))n≥1 ∈ ℓE. Therefore, +�� n +n−1 +µ(t; f)dt +� +n≥2 += +�� n+1 +n +µ(t; f)dt +� +n≥1 +≤ (µ(n; f))n≥1 ∈ ℓE ⊂ ℓG. +Therefore, +�� n +n−1 µ(t; f)dt +� +n≥1 ∈ ℓG, i.e., +f +(5) +∈ F1(0, ∞). +That is, E(0, ∞) ⊂ F1(0, ∞). The proof for the first assertion is complete by defining F(0, ∞) := +F1(0, ∞). +Assume that E(0, 1) ̸= L1(0, 1). +If E(0, 1) = L∞(0, 1), then, defining G(0, 1) := L2(0, 1) +(which is a reflexive symmetric function space), we have G(0, 1) ⊃ E(0, 1). If E(0, 1) ̸= L∞(0, 1), +then, by [68, Corollary 3.2.3], there exists a reflexive symmetric function space G(0, 1) such that +E(0, 1) ⊂ G(0, 1). We define +G(0, ∞) := +� +f ∈ (L1 + L∞)(0, ∞) : µ(f)χ(0,1) ∈ G(0, 1) +� +equipped with the norm5 +∥f∥G := +inf +f=u+v, u∈G(0,∞),v∈L∞(0,∞) +���µ(u)χ(0,1) +�� +G(0,1) + ∥v∥∞ +� +, f ∈ G(0, ∞). +By the definition of a K¨othe dual (see e.g. [60, (4.31)]), it is readily verified that the K¨othe dual +G(0, ∞)× of G(0, ∞) is given by +� +f ∈ (L1 + L∞)(0, ∞) : +��µ(f)χ(0,1) +�� +G(0,1)× < ∞ +� +∩ L1(0, ∞) += +� +f ∈ (L1 + L∞)(0, ∞) : µ(f)χ(0,1) ∈ G(0, 1)× and µ(f)χ[1,∞) ∈ L1(0, ∞) +� +. +equipped with the norm +∥f∥G(0,∞)× := max +���µ(f)χ(0,1) +�� +G(0,1)× , ∥f∥1 +� +, f ∈ G(0, ∞)×. +For any decreasing net S0(0, ∞) ⊃ E(0, ∞) ∋ fi ↓ 0, we have µ(fi) ↓i 0 (see e.g [32, Proposition +2(iv)]) and therefore, there exists a constant c(G) depending on G(0, 1) only [6, Chapter I, Theorem +1.8] such that +∥fi∥G(0,∞)× ≤ c(G) +���µ(fi)χ(0,1) +�� +G(0,1)× + ∥µ(fi)∥L1(0,∞) +� +↓i 0, +(6) +which shows that G(0, ∞)× has an order continuous norm. +Now, we define +F(0, ∞) := G(0, ∞) ∩ F1(0, ∞), +equipped with ∥·∥F := max +� +∥·∥G , ∥·∥F1 +� +. +Since both G(0, ∞) and F1(0, ∞) have the Fatou +property, it follows that F(0, ∞) has the Fatou property. The same reasoning as in (6) shows that +∥·∥F is order continuous. Observe that [79, Section 2.3] (see also [64]) +F(0, ∞)× = G(0, ∞)× + F1(0, ∞)× +is equipped with the norm +∥f∥F (0,∞)× := +inf +f=u+v, u∈G(0,∞)×,v∈F1(0,∞)× +� +∥u∥G× + ∥v∥F × +1 +� +. +We claim that ∥·∥F (0,∞)× is order continuous. Indeed, for any decreasing net F1(0, ∞) ∋ fi ↓ 0, +we have µ(fi) ↓i 0. In particular, we have µ(n; fi) ↓i 0 for each n ≥ 1. By the triangle inequality, +we have +∥fi∥F (0,∞)× ≤ +��µ(fi)χ(0,1) +�� +G(0,∞)× + +��µ(fi)χ[1,∞) +�� +F1(0,∞)× . +5Let f, g ∈ G(0, ∞). By [6, Corollary 7.6], there exists A ⊂ (0, ∞) such that µ((f + g)χA) = µ(f + g)χ(0,1). +Therefore, we have ��µ(f + g)χ(0,1) +�� +G(0,1) = ∥(f + g)χA∥G(0,1) ≤ ∥fχA∥G(0,1) +∥gχA∥G(0,1) ≤ ��fχ(0,1) +�� +G(0,1) + +��gχ(0,1) +�� +G(0,1). Hence, ∥·∥G(0,1) generates a symmetric norm on G(0, ∞). Since ∥·∥∞ is a symmetric norm, it +follows ∥·∥G is a complete symmetric norm on G(0, ∞), see e.g. [60, Chapter I.3]. + +DERIVATIONS INTO NONCOMMUTATIVE SYMMETRIC SPACES +9 +By (6), it suffices to prove that +��µ(fi)χ[1,∞) +�� +F1(0,∞)× →i 0. By the definition of ∥·∥F1(0,∞), we +have +��µ(fi)χ[1,∞) +�� +F1(0,∞)× +[32, Prop. 26] += +sup +∥x∥F1(0,∞)=1 +� ∞ +0 +µ(t; µ(fi)χ[1,∞))µ(t; x)dt += +sup +∥x∥F1(0,∞)=1 +� +n≥1 +� n +n−1 +µ(t; µ(fi)χ[1,∞))µ(t; x)dt +and +� +n≥1 +µ(n + 1; fi) +� n +n−1 +µ(t; x)dt = +� +n≥1 +µ(n; µ(fi)χ[1,∞)) +� n +n−1 +µ(t; x)dt +≤ +� +n≥1 +� n +n−1 +µ(t; µ(fi)χ[1,∞))µ(t; x)dt +≤ +� +n≥1 +µ(n − 1; µ(fi)χ[1,∞)) +� n +n−1 +µ(t; x)dt = +� +n≥1 +µ(n; fi) +� n +n−1 +µ(t; x)dt. +By the definition of F1(0, ∞), we have (µ(n; fi))n≥1 ∈ ℓ× +G and +��µ(fi)χ[1,∞) +�� +F1(0,∞)× ≤ ∥{µ(n; fi)}n≥1∥ℓ× +G ↓i 0. +By [61, Theorem 1.c.5] (see also [66, Theorem 2.4.14] or [34,60]), F(0, ∞) is reflexive. +□ +The following lemma is folklore, it provides a characterization for symmetric spaces whose ‘tail’ +is a proper subspace of C0(M, τ). For the sake of completeness, we include the full proof. +Lemma 3.4. Assume that +(1) E(M, τ) is a strongly symmetric space affiliated with a von Neumann algebra equipped +with a semifinite infinite faithful normal trace τ, with cE = 1; +(2) M is an atomless von Neumann algebra equipped with a semifinite infinite faithful normal +trace τ or M is atomic equipped with a semifinite infinite faithful normal trace τ such that +all minimal projections having equal trace. +Then, E(M, τ)×× ⊂ S0(M, τ) if and only if E(M, τ) ∩ M ⫋ C0(M, τ). +Proof. (⇒). Assume, contrapositively, that E(M, τ) ∩ M is not a proper subspace of C0(M, τ). +Note that, if E(M, τ) contains some element x such that µ(∞; x) > 0, then E(M, τ) ⊃ M ⊃ +C0(M, τ). If for every x ∈ E(M, τ), we have µ(∞; x) = 0, then E(M, τ) ∩ M ⊂ C0(M, τ). +Therefore, E(M, τ) ∩ M = C0(M, τ) or E(M, τ) ∩ M = M, i.e., E(M, τ) ⊃ E(M, τ) ∩ M ⊃ +C0(M, τ). +By [29, Definition 5.1] (see also [34, Chapter IV, Proposition 3.12]), we have +E(M, τ)× = {y ∈ S(M, τ) : xy ∈ L1(M, τ) for all x ∈ E(M, τ)} +⊂ {y ∈ S(M, τ) : xy ∈ L1(M, τ) for all x ∈ C0(M, τ)} += C0(M, τ)× see e.g. [79, Lemma 8] += +L1(M, τ), +and +E(M, τ)×× = +� +y ∈ S(M, τ) : xy ∈ L1(M, τ) for all x ∈ E(M, τ)×� +⊃ {y ∈ S(M, τ) : xy ∈ L1(M, τ) for all x ∈ L1(M, τ)} = M, +which is a contradiction with the assumption that E(M, τ)×× ⊂ S0(M, τ). +(⇐). Assume by contradiction that E(M, τ)×× ⊃ M. +By [32, Proposition 28] (see also [29,31]), there exists a fully symmetric function space G(0, ∞) +having the Fatou property such that +E(M, τ)×× = G(M, τ) + +10 +J. HUANG AND F. SUKOCHEV +with ∥y∥E(M,τ)×× = ∥µ(y)∥G(0,∞), y ∈ E(M, τ)××. +Since G(M, τ) ⊃ M, it follows that +G(0, ∞) ⊃ L∞(0, ∞) and therefore, we have ∥·∥∞ ≥ c(G) ∥·∥G for some constant c(G) depending +on G(0, ∞) only [6, Chapter I, Theorem 1.8]. Therefore, we have +E(M, τ) ∩ M +(3) +⊃ (L1 ∩ L∞)(M, τ) +∥·∥E ∩ M +(2) += (L1 ∩ L∞)(M, τ) +∥·∥G ∩ M +⊃ (L1 ∩ L∞)(M, τ) +∥·∥∞ = C0(M, τ), +which is a contradiction with the assumption that E(M, τ) ∩ M ⫋ C0(M, τ). +□ +Below, we establish a noncommutative version of Theorem 3.3. +Observe that the result of +Proposition 3.5 below holds for both finite and infinite traces. +Proposition 3.5. Let M be a von Neumann algebra equipped with a semifinite faithful normal +trace τ. Let E(M, τ) be a strongly symmetric space such that E(M, τ)×× ⊂ S0(M, τ)6. Then, +there exists a symmetric KB-function space F(0, ∞) such that +E(M, τ) ⊂ F(M, τ). +Proof. Without loss of generality, we may assume that cE = 1. If τ(1) < ∞, then the assertion is +trivial as E(M, τ) +(3) +⊂ L1(M, τ) and we can take F(0, ∞) := L1(0, ∞). +Now, we assume that τ(1) = ∞. +By [32, Proposition 28] (see also [29]), there exists a fully symmetric function space G(0, ∞) +having the Fatou property such that +E(M, τ)× = G(M, τ) +with ∥y∥E×(M,τ) = ∥µ(y)∥G(0,∞), y ∈ E(M, τ)×. +Let F1(0, ∞) := G(0, ∞)×. In particular, F1(0, ∞) has the Fatou property [32, Theorem 27]. +Observe that F1(M, τ) = E(M, τ)×× [32, Theorem 53]. We have [32, Section 5.3] +E(M, τ) ⊂ E(M, τ)×× = F1(M, τ) ⊂ S0(M, τ). +In particular, F1(0, ∞) ⊂ S0(0, ∞). Since both F1(0, ∞) and L∞(0, ∞) have the Fatou property, +it follows that F1(0, ∞) ∩ L∞(0, ∞) has the Fatou property and therefore, F1(0, ∞) ∩ L∞(0, ∞) ̸= +C0(0, ∞). +By Theorem 3.3, there exists a symmetric KB-function space F(0, ∞) such that F1(0, ∞) ⊂ +F(0, ∞), which completes the proof. +□ +4. Main results +The starting point of this section is the following important result due to Akemann, Dodds and +Gamlen [3, Theorem 4.2] (see also [2, Corollary II.9 and Theorem IV.3] and [75]). It should be +viewed as a noncommutative version of Grothendieck’s theorem [41], which states that an arbitrary +bounded operator from C(K) into a weakly sequentially complete Banach space is necessarily +weakly compact. +Theorem 4.1. A bounded linear map from a C∗-algebra into a weakly sequentially complete +Banach space is weakly compact. +Recall that a noncommutative strongly symmetric space is a KB-space if and only if it is weakly +sequentially complete [33, Theorem 6.5], see also [28,31,32,34]. We have the following consequence +of Theorem 4.1. +Corollary 4.2. Let M be a von Neumann algebra equipped with a semifinite faithful normal trace +τ, and let E(M, τ) be a strongly symmetric KB-space affiliated with M. Then every bounded map +from a C∗-algebra into E(M, τ) is weakly compact. +Proposition 4.3 below is a consequence of Corollary 4.2 and [28, Corollary 2.9] (see also [35, +Theorem 5.4]). For a Banach space X, we denote by BX the unit ball of X. +6Observe that if τ(1) < ∞, then S0(M, τ) = S(M, τ). + +DERIVATIONS INTO NONCOMMUTATIVE SYMMETRIC SPACES +11 +Proposition 4.3. Let M be a von Neumann algebra equipped with a semifinite faithful normal +trace τ. Assume that E(M, τ) is a strongly symmetric KB-space such that E(M, τ)× ⊂ S0(M, τ). +Let A be a C∗-subalgebra M and let T be a bounded linear operator from A into E(M, τ). Then, +the set +BMT (BA)BM := {aT (x)b : a, b ∈ BM, x ∈ BA} +is relatively weakly compact in E(M, τ). +Proof. Without loss of generality, we may assume that cE = 1. +Since every weakly compact operator sends bounded sets into weakly compact ones, we infer +from Corollary 4.2 that the set +T (BA) +is relatively weakly compact in E(M, τ). Since E(M, τ) has the Fatou property, it follows that +E(M, τ) = E(M, τ)×× ⊂ S0(M, τ) (see Section 2.2). Since E(M, τ)× ⊂ S0(M, τ), it follows +from [28, Corollary 2.9] (or to [35, Theorem 5.4]) that +� +y∈BA +Ω(T (y)) +is relatively σ(E××, E×)-compact (equivalently, relatively σ(E, E×)-compact, or weakly com- +pact) in E(M, τ), where Ω(x) := {z ∈ (L1 + L∞)(M, τ) : z ≺≺ y}. Since BMT (BA)BM ⊂ +� +y∈BA Ω(T (y)), it follows that +BMT (BA)BM +is weakly compact in E(M, τ) +□ +Remark 4.4. Assume that E(M, τ) is a strongly symmetric space with cE = 1. Note that, if +τ(1) < ∞, then the condition E(M, τ)× ⊂ S0(M, τ) holds for any symmetric space E(M, τ). +If τ(1) = ∞, then E(M, τ)× ⊂ S0(M, τ) if and only if E(M, τ)∩M ⫌ L1(M, τ)∩M. Indeed, +assume that E(M, τ) ∩ M ⫌ L1(M, τ) ∩ M. Then, there exists an element 0 ≤ z ∈ E(M, τ) ∩ M +but z /∈ L1(M, τ). In particular, we have τ(z) = ∞. By the definition of K¨othe duals, we infer +that 1 /∈ E(M, τ)×, which, in turn, implies that E(M, τ)× ⊂ S0(M, τ). +On the other hand, +assume by contradiction that L1(M, τ) ∩ M is not a proper subspace of E(M, τ) ∩ M. By (3), we +have L1(M, τ) ∩ M ⊂ E(M, τ) ∩ M. Therefore, we obtain that E(M, τ) ∩ M = L1(M, τ) ∩ M. +By the fact that E(M, τ) +(3) +⊂ (L1 + L∞)(M, τ), we obtain that for any element x ∈ E(M, τ), +µ(x)χ(0,1) ∈ L1(0, 1). Hence, all elements in E(M, τ) belong to L1(M, τ). Therefore, E(M, τ)× ⊃ +L1(M, τ)× = M [29, Definition 5.1]. That is, E(M, τ)× ̸⊂ S0(M, τ), which completes the proof. +Let U(A) denote the set of all unitary elements in a C∗-algebra A. +Proposition 4.5. Let M be a von Neumann algebra equipped with a semifinite faithful normal +trace τ and let A be a unital C∗-subalgebra M. Assume that E(M, τ) is a strongly symmetric +KB-space such that E(M, τ)× ⊂ S0(M, τ). Let δ : A → E(M, τ) be a derivation. Then, +{δ(u)u∗ | u ∈ U(A)} +is relatively weakly compact in E(M, τ). Consequently, the closure conv{δ(u)u∗ | u ∈ U(A)} +∥·∥E +of the convex hull is weak compact. +Proof. By Ringrose’s theorem [73, Theorem 2], δ is bounded from (A, ∥·∥∞) into (E(M, τ), ∥·∥E). +By Proposition 4.3, {δ(u)u∗ | u ∈ U(A)} is relatively weakly compact in E(M, τ). +The second assertion follows from the Krein–Smulian theorem (see e.g. [84]). +□ +The following lemma shows that derivations into a “large” symmetric space are inner. +Lemma 4.6. Let M be a von Neumann algebra with a faithful normal semifinite trace τ and +let A be a unital C∗-subalgebra of M. Let E(M, τ) a strongly symmetric KB-space such that +E(M, τ)× ⊂ S0(M, τ). +For every derivation δ : A → E(M, τ), there exists an element a ∈ +conv{δ(u)u∗ | u ∈ U(A)} +∥·∥E such that δ = δa on A. In particular, ∥a∥ ≤ ∥δ∥A→E. + +12 +J. HUANG AND F. SUKOCHEV +Proof. Without loss of generality, we may assume that the carrier projection cE = 1. +For every u ∈ U(A), we have δ(u) ∈ E(M, τ), and therefore we can define the mapping +αu : E(M, τ) −→ E(M, τ), by setting +αu(x) := uxu∗ + δ(u)u∗. +For every u, v ∈ U(A), we have +αu(αv(x)) = uvxv∗u∗ + uδ(v)v∗u∗ + δ(u)u∗ += (uv)x(uv)∗ + uδ(v)v∗u∗ + δ(u)vv∗u∗ += (uv)x(uv)∗ + δ(uv)(uv)∗ = αuv(x). +In addition, the equality δ(1) = δ(12) = 2δ(1) implies that δ(1) = 0, and therefore α1(x) = x, x ∈ +E(M, τ). Thus, α is an action of the group U(A) on E(M, τ). +We claim that the set +K := conv {δ(u)u∗ | u ∈ U(A)} +∥·∥E +is invariant with respect to α. Since δ(u)u∗ = αu(0), it follows that k00 := {δ(u)u∗ | u ∈ U(A)} is +an orbit of 0 with respect to α, and therefore, is an invariant subset with respect to α. In addition, +for any positive scalars s and t with s + t = 1, we have +αu(s · x + t · y) = s · uxu∗ + t · uyu∗ + (s + t) · δ(u)u∗ = s · αu(x) + t · αu(y), +∀x, y ∈ E(M, τ). +Hence, for every u ∈ U(A) the mapping αu is affine, which implies that conv(K00) is also an +invariant subset with respect to α. Now, the equality αu(x) − αu(y) = u(x − y)u∗, x, y ∈ E(M, τ) +implies that every αu, u ∈ U(A), is an isometry on E(M, τ). Hence, K is an invariant subset with +respect to α. +Furthermore, the fact that αU is an isometry combined with [25, Chapter V, Lemma 10.7] +implies that the family {αu : u ∈ U(A)} is a noncontracting family of affine mappings. Clearly, +αu is weakly continuous for every u ∈ U(A). +On the other hand, by Proposition 4.5, K is weakly compact. Thus, the set K and the family +{αu : u ∈ U(A)} satisfy the assumptions of the Ryll-Nardzewski fixed-point theorem [25, Chapter +V, Theorem 10.8]. Hence, there exists a point a ∈ K fixed with respect to α, that is, we have +a = αu(a) = uau∗ + δ(u)u∗ +for every u ∈ U(A) and ∥a∥E ≤ ∥δ∥A→E. Therefore au = ua + δ(u) for every u ∈ U(A). Thus, +δ(u) = [a, u] for every u ∈ U(A). Since every element x ∈ A is a linear combination of four +elements from U(A) [51, Theorem 4.1.7], we obtain that δ = δa on A. +□ +A symmetric function space E(M, τ) is said to have the Levi property [1, Definition 7], or a +monotone complete norm, or to satisfy property (B) [58, Chapter X.4], if for every upwards directed +net {xβ} in E(M, τ)+, satisfying supβ ∥xβ∥E < ∞, there exists an element x ∈ E(M, τ)+ such +that xβ ↑ x in E(M, τ). It is well known that if a norm is Levi, then necessarily it is also weak +Fatou [1, p.89], i.e., there exists a constant K ≥ 1 such that +0 ≤ xβ ↑ x ⇒ ∥x∥E ≤ K lim +β ∥xβ∥E . +Remark 4.7. For a symmetric function space E(0, ∞), it has the Levi property if and only if it +has an equivalent symmetric norm having the Fatou property. The (⇐) implication is clear. For +the (⇒) implication, one only need to observe that for any 0 ≤ x ∈ E(0, ∞), there exists a net +(xβ)β ⊂ (L1 ∩ L∞)(0, ∞) such that xβ ↑ x [32, Proposition 1(vii)], and therefore, +1 +K ∥x∥E ≤ sup +β +∥xβ∥E +(2) += sup +β +∥xβ∥E×× = ∥x∥E×× +[32, Section 5.3] +≤ +∥x∥E , +and (E(0, ∞)××, ∥·∥E××) has the Fatou property (see [30, Theorem 4.1] and [60]). +Recall that E(0, ∞) has the Fatou property if and only E(0, ∞) is isometric to E(0, ∞)××. We +obtain that E(0, ∞) has the Levi property if and only E(0, ∞) = E(0, ∞)×× (up to equivalent +norms). + +DERIVATIONS INTO NONCOMMUTATIVE SYMMETRIC SPACES +13 +The following theorem is the main result of the present paper, which resolves problems consid- +ered in a numbers of papers, see e.g. [11,12,14,43,45,47,55,83] and references therein. +Theorem 4.8. Let M be a von Neumann algebra with a faithful normal semifinite trace τ and let +A be a C∗-subalgebra of M. If E(M, τ) is a strongly symmetric space of τ-compact operators (i.e., +E(M, τ) ⊂ S0(M, τ)7) having the Fatou property (resp., the Levi property), then every derivation +δ : A → E(M, τ) is inner. That is, there exists an element a ∈ conv {δ(u)u∗ | u ∈ U(A)} +tτ ⊂ +E(M, τ) with ∥a∥E ≤ ∥δ∥A→E (∥a∥E ≤ c ∥δ∥A→E for some constant c depending on E(0, ∞) +only) such that δ = δa on A. +Proof. Without loss of generality, we may assume that the carrier projection cE = 1 and assume +that A is unital (see e.g. the proof of [11, Proposition 3.4]). By Remark 4.7, we may assume that +E(M, τ) has the Fatou property. +Since E(M, τ) has the Fatou property and E(M, τ) ⊂ S0(M, τ), it follows that E(M, τ)×× ⊂ +S0(M, τ). By Proposition 3.5, there exists a symmetric KB-function space F(0, ∞) ⫋ (L1 + +C0)(0, ∞) such that +E(M, τ) ⊂ F(M, τ) ⊂ S0(M, τ). +Without loss of generality, we may assume that L2(0, ∞) ⊂ F(0, ∞) by replacing F(0, ∞) with +L2(0, ∞) + F(0, ∞). In particular, F(0, ∞) ∩ L∞(0, ∞) ⫌ L1(0, ∞) ∩ L∞(0, ∞). By Remark 4.4, +F(0, ∞)× ⊂ S0(0, ∞), and therefore, F(M, τ)× ⊂ S0(M, τ). +Note that δ(A) ⊂ E(M, τ) ⊂ F(M, τ). By Lemma 4.6, there is an element +a ∈ conv {δ(u)u∗ | u ∈ U(A)} +∥·∥F +such that δ = δa on A. Hence, there exists a sequence +(xn)∞ +n=1 ⊂ conv {δ(u)u∗ | u ∈ U(A)} +such that ∥xn − a∥F →n 0. Since F(M, τ) is a symmetric space, it follows from [32, Proposition +20] that xn →tτ a as n → ∞. +By Ringrose’s theorem [73], we have that δ : (A, ∥·∥∞) → (E(M, τ), ∥·∥E) is a bounded map- +ping. Since E(M, τ) has the Fatou property, it follows that the closed ball (E(M, τ), ∥·∥E) with +radius ∥δ∥A→E is closed in S(M, τ) with respect to the local measure topology (see Section 2.2). +Noticing that every element xn, n ≥ 1 belongs to the ball of radius ∥δ∥A→E in E(M, τ) and +xn → a in the local measure topology, we conclude that a ∈ E(M, τ) with ∥a∥E ≤ ∥δ∥A→E. +□ +Recall that a symmetric function space having the Fatou/Levi property generates a noncommu- +tative strongly symmetric space having the Fatou/Levi property (see e.g. [61, Proposition 2.a.8] +and [32, Theorem 54]). We have the following consequence of Theorem 4.8. +Corollary 4.9. Assume that E(0, ∞) ⊂ S0(0, ∞) is a symmetric function space having the Fatou +property (resp., the Levi property). Then, a derivation +δ : A → E(M, τ) +is necessarily inner for any von Neumann algebra M with a semifinite faithful normal trace τ +and a C∗-subalgebra A of M. That is, there exists an element a ∈ conv {δ(u)u∗ | u ∈ U(A)} +tτ ⊂ +E(M, τ) with ∥a∥E ≤ ∥δ∥A→E (∥a∥E ≤ c ∥δ∥A→E for some constant c depending on E(0, ∞) +only) such that δ = δa on A. +Corollary 4.9 provides an alternative proof for the resolution of the derivation problem due +to Bunce and Paschke [18], which differs from those in [5, 70] involving L-embeddedness of the +predual of a von Neumann algebra. Moreover, we provide new information that implementing +element a of the derivation can be found in the measure (or any symmetric norm topology which +is weaker than the L1-topology) closure of the convex hull of {δ(u)u∗ | u ∈ U(A)}, which seems +to be more natural in fixed point theory and derivation theory. +7If τ(1) < ∞, then E(M, τ) ⊂ S0(M, τ) holds for any symmetric space E(M, τ) affiliated with M. + +14 +J. HUANG AND F. SUKOCHEV +Corollary 4.10. Let M be a semifinite von Neumann algebra and let A be a C∗-subalgebra of M. +Then, any derivation from A into M∗ is inner, and there exists an element a ∈ conv{δ(u)u∗ | u ∈ U(A)} +tτ +with ∥a∥L1 ≤ ∥δ∥A→L1 such that δ = δa on A. +The following corollary significantly extends results from [11,43,55] for derivations into symmet- +ric ideals. On the other hand, it shows that [12, Theorem 1.3] holds true even for C∗-subalgebras +rather than von Neumann subalgebras. +Corollary 4.11. Let M be a semifinite von Neumann algebra equipped with a semifinite faithful +normal trace τ and let A be a C∗-subalgebra of M. Let E(M, τ) be an ideal of C0(M, τ) having +strongly symmetric norm and the Levi property. Then, every derivation from A into E(M, τ) is +inner. +For a von Neumann algebra M equipped with a faithful normal tracial state, M ⊂ S0(M, τ) +and M has the Fatou/Levi property. Therefore, we have the following consequence of Theorem 4.8. +Corollary 4.12. +[19, Section 5] [80] Let M be a von Neumann algebra equipped with a faithful +normal tracial state and let A be a C∗-subalgebra of M. Then every derivation from A into M is +inner. +5. Outer derivations +In this section, we present several examples of outer derivations with values in a symmetric +space failing the Levi property. +The study of derivations into ideals of a von Neumann algebra was initiated Johnson and +Parrott [48] by showing that derivations from an abelian/properly infinite von Neumann subalgebra +of B(H) into the algebra K(H) of all compact operators on H are inner. This result may be well +seen as a precursor to Question 1 in the setting of symmetrically normed ideals in M = B(H). +After that, the innerness of derivations into ideals of a von Neumann algebra have been studied +extensively in [11,12,15,16,20,40,43,55,72]. +Recall that the Fatou/Levi property can not be dropped in Theorem 4.8, which has been +demonstrated in [77, Example 4.1.8], [11, Theorem 3.8] and [44, Theorem 4.2.1]. The following +theorem demonstrates that there exist outer derivations into E(M, τ) ∩ M whenever the ideal +E(M, τ) ∩ M does not have the Levi property. +Theorem 5.1. Let M be a non-finite factor equipped with a semifinite faithful normal trace τand +let E(M, τ) be a symmetric space affiliated with M such that E(M, τ)∩M does not have the Levi +property. Then, there exist outer derivations from the C∗-algebra C0(M, τ) into E(M, τ) ∩ M. +Proof. Since M is a factor, it follows that it is either atomless or is atomic with all atoms having +equal trace. Therefore, +E(M, τ)×× +is a fully symmetric space having the Fatou property (see e.g. [29], [34, Chapter IV, Theorem +5.4], [32, Remarks 5 and 6]). Hence, +E(M, τ)×× ∩ M, +equipped with the norm ∥x∥E(M,τ)××∩M = max {∥x∥E×× , ∥x∥∞} , x ∈ E(M, τ)×× ∩ M, has the +Fatou property. On the other hand, the lack of the Levi property of E(M, τ) ∩ M implies that +there exists a net (xi)i∈I of positive elements in E(M, τ) ∩ M increasing to 0 ≤ x ∈ M such +that sup ∥xi∥E < ∞ but x /∈ E(M, τ). By the Fatou property of E(M, τ)×× and E(M, τ) ⊂ +E(M, τ)×× [32, Section 5.3], we have x ∈ E(M, τ)×× ∩ M. +Since E(M, τ)∩M does not have the Levi property, it follows that E(M, τ)∩M ̸= M. Hence, +E(M, τ) ⊂ S0(M, τ). There are two possible cases: +(1) If E(M, τ)×× ⊂ C0(M, τ), then we consider δx. +We claim that δx is a non-inner derivation from C0(M, τ) into E(M, τ) ∩ M. Recall that +∥z∥E +(2) += ∥z∥E×× , ∀z ∈ F(M, τ). + +DERIVATIONS INTO NONCOMMUTATIVE SYMMETRIC SPACES +15 +For every y ∈ C0(M, τ), the projections e|y|(ε, ∞) and e|y|(ε1, ∞) are τ-finite for every ε > ε1 > 0. +Thus, we have +���xye|y|(ε, ∞) − xye|y|(ε1, ∞) +��� +E ≤ +���xye|y|(ε1, ε] +��� +E = +���xye|y|(ε1, ε] +��� +E×× ≤ ε ∥x∥E×× , +which shows that +� +xye|y|( 1 +n, ∞) +� +n≥1 is a Cauchy sequence in E(M, τ). +On the other hand, +xye|y|( 1 +n, ∞) → xy in measure, which implies that xy ∈ E(M, τ). +Similarly, yx ∈ E(M, τ) +and therefore δx(C0(M, τ)) ⊂ E(M, τ). Moreover, x ∈ M and C0(M, τ) ⊂ M imply that +δx(C0(M, τ)) ⊂ E(M, τ) ∩ M. +Finally, if there exists an operator x′ ∈ E(M, τ) ∩ M such that δx = δx′, then +x − x′ commutes with all elements in C0(M, τ). +Noticing that M is the closure of C0(M, τ) in the weak operator topology (see e.g. [62, Definition +2.6.8]), we obtain that +x − x′ commutes with all elements in M. +However, M is a factor and therefore x − x′ ∈ C1, which is a contradiction with the assumption +that E(M, τ)×× ⊂ C0(M, τ). +(2) If E(M, τ)×× ⊃ M, then, by Lemma 3.4, we have E(M, τ) ∩ M ⊃ C0(M, τ). Recall that +E(M, τ) ∩ M ̸= M. We have E(M, τ) ∩ M = C0(M, τ). Now, the existence of outer derivations +follows from [11, Theorem 3.8] immediately. +□ +Corollary 5.2. Let E(0, ∞) be a symmetric function space. If E(0, ∞)∩L∞(0, ∞) does not have +the Levi property, then for any infinite factor M equipped with a semifinite faithful normal trace +τ, there exists outer derivations from the C∗-algebra C0(M, τ) into E(M, τ) ∩ M. +Proof. By Theorem 5.1, it suffices to prove that E(M, τ) ∩ M does not have the Levi property. +Since E(0, ∞) ∩ L∞(0, ∞) has no Levi property, it follows that (see e.g. Remark 4.7) +E(0, ∞) ∩ L∞(0, ∞) ̸= (E(0, ∞) ∩ L∞(0, ∞))×× = E(0, ∞)×× ∩ L∞(0, ∞). +That is, there exists 0 ≤ x = µ(x) ∈ E(0, ∞)×× ∩ L∞(0, ∞) such that x /∈ E(0, ∞) ∩ L∞(0, ∞). +Observe that +� +n≥1 +µ(n; x)χ(n−1,n] ≤ µ(x) ∈ E(0, ∞)×× ∩ L∞(0, ∞). +There exists y ∈ M such that +µ(y) = +� +n≥1 +µ(n; x)χ(n−1,n] ≤ µ(x) ∈ E(0, ∞)×× ∩ L∞(0, ∞). +However, we have +µ(y) ≥ µ +� +µ(x) − µ(x)χ(0,1] +� +. +Since µ(x)χ(0,1] ∈ E(0, ∞)∩L∞(0, ∞) (see e.g. [32, p.245] or [60]), it follows that y /∈ E(M, τ)∩M. +This shows that E(M, τ)∩M does not have the Levi property when M a semifinite infinite (atomic +or atomless) factor, see Remark 4.7. +□ +Recall that the dilation operator σs, s > 0, on S(0, ∞) is defined by [60–62] +(σs)f(t) = f +� t +s +� +, ∀f ∈ S(0, ∞), s ∈ (0, ∞). +For the case of unbounded operators, the example of an outer derivation is more involved. The +result presented below is perhaps the first example of an outer derivation into a symmetric space +affiliated with a finite von Neumann algebra. +Example 5.3. Let M be the von Neumann algebra which is the closure of ⊕n≥1M2 in the weak +operator topology equipped with the trace τ := ⊕n≥1 +1 +2n+1 Tr2, where Tr2 is the standard trace of +M2. Let E(0, 1) be a symmetric function space without the Levi property. Then, there exist outer +derivations from the C∗-algebra A := ⊕M2n +∥·∥∞ into E(M, τ). + +16 +J. HUANG AND F. SUKOCHEV +Proof. The lack of the Levi property of E(0, 1) shows that E(0, 1) ̸= E(0, 1)×× (see e.g. Re- +mark 4.7), and there exists a positive function a ∈ E(0, 1)×× but a /∈ E(0, 1). Define +b := +� +n≥1 +µ +� +1 +2n−1 ; a +� +χ[ 1 +2n , +1 +2n−1 ). +We have +b ≤ a ≤ +� +n≥1 +µ +� 1 +2n ; a +� +χ[ 1 +2n , +1 +2n−1 ) = σ2(b). +Therefore, b ∈ E(0, 1)×× but b /∈ E(0, 1). +Now, we define a self-adjoint element y by setting +z := +� +n≥1 +an (pn1 − pn2) , an = µ +� 1 +2n ; a +� +, n ≥ 1, +where pn1 and pn2 are mutually orthogonal non-trivial projections in the n-th direct summand +M2, and the series is taken in the measure topology. In particular, µ(z) = σ2(b) and therefore, +z ∈ E(M, τ)×× but z /∈ E(M, τ). +We claim that δz(A) ⊂ E(M, τ)b, the closure of M in E(M, τ). Indeed, since δz has image in +E××(M, τ) (generated by E(0, 1)××), it follows from Ringrose’s theorem [73] that δz is bounded +from (A, ∥·∥∞) into (E××(M, τ), ∥·∥E××). Let pn be the identity of the n-th direct summand M2. +For any element y ∈ A, we have yn := y �n +k=1 pk → y in the uniform norm topology. Note that +ynz, zyn ∈ M. Hence, for any n > m, we have +∥δz(yn) − δz(ym)∥E(M,τ) = ∥µ(δz(yn) − δz(ym))∥E(0,1) +(2) += ∥µ(δz(yn) − δz(ym))∥E(0,1)×× += ∥δz(yn) − δz(ym)∥E××(M,τ) +≤ 2 ∥yn − ym∥∞ ∥z∥E××(M,τ) → 0 as n → ∞. +Therefore, (δz(yn))n≥1 is a Cauchy sequence in E(M, τ), which implies that (δz(yn))n≥1 converges +to some element in E(M, τ) (in particular, (δz(yn))n≥1 is tτ-convergent). On the other hand, +δz(yn) →tτ δz(y) as n → ∞. +Therefore, ∥δz(yn)n≥1 − δz(y)∥E(M,τ) →n 0. +Hence, δz(y) ∈ +E(M, τ) for all y ∈ A. +Assume that there exist z1 ∈ E(M, τ) such that δz1 = δz, i.e., z1 − z commutes with A. That +is, z1 −z = � +n≥1 bnpn for some sequence (bn)n≥1 of complex numbers, where the series converges +in the measure topology. However, +E(0, 1) ∋ µ(z1) = µ + +z + +� +n≥1 +bnpn + + = µ + +� +n≥1 +an (pn1 − pn2) + +� +n≥1 +bnpn + + += µ + +� +n≥1 +(an + bn)pn1 − (an − bn)pn2 + + +≥ µ + +� +n≥1 +max{|an + bn|, |an − bn|}pn1 + + +≥ µ + +� +n≥1 +anpn1 + + = µ + +� +n≥1 +anpn2 + + = σ1/2µ(z), +which implies that z ∈ E(M, τ) [60, Theorem II.4.4]. This is a contradiction to the assumption. +□ +The following result is an immediate consequence of Corollaries 4.9, 5.2 and Example 5.3. + +DERIVATIONS INTO NONCOMMUTATIVE SYMMETRIC SPACES +17 +Corollary 5.4. For a given symmetric function space E(0, ∞) ⊂ S0(0, ∞), the following two +statements are equivalent: +(1) for any von Neumann algebra M equipped with a semifinite faithful normal trace τ and +any C∗-subalgebra A of M, derivations δ : A → E(M, τ) are necessarily inner; +(2) E(0, ∞) has the Levi property. +The following result is an immediate consequence of Corollary 4.9 and Theorem 5.1. +Corollary 5.5. Let CE be a symmetric ideal of compact operators in B(H). Then, the following +two statements are equivalent: +(1) for any C∗-subalgebra A of B(H), derivations δ : A → CE are necessarily inner; +(2) the commutative core ℓE of CE has the Levi property. +References +[1] Yu.A. Abramovich, C. Aliprantis, Positive operators, Handbook of the geometry of Banach spaces, Vol. I, +85–122, North-Holland, Amsterdam, 2001. +[2] C. Akemann, The dual space of an operator algebra, Trans. Amer. Math. Soc. 126 (1967), 286–302. +[3] C. Akemann, P. Dodds, J. Gamlen, Weak compactness in the dual space of C∗-algebra, J. Funct. Anal. 10 +(1972), 446–450. +[4] C. Aliprantis, O. Burkinshaw, Positive operators, Academic Press, New York, 1985. +[5] U. Bader, T. Gelander, N. Monod, A fixed point theorem for L1 spaces, Invent. Math. 189 (2012), 143–148. +[6] C. Bennett, R. Sharpley, Interpolation of operators, Academic Press, Boston, 1988. +[7] A. Ber, V. Chilin, G. Levitina, F. Sukochev, D. Zanin, Derivations on algebras of unbounded operators, to +appear. +[8] A. Ber, V. Chilin, F. Sukochev, Non-trivial derivations on commutative regular algebras, Extracta Math. 21(2) +(2006), 107–147. +[9] A. Ber, V. Chilin, F. Sukochev, Continuity of derivations of algebras of locally measurable operators, Integr. +Equ. Oper. Theory 75 (2013), 527–557. +[10] A. Ber, V. Chilin, F. Sukochev, Continuous derivations on algebras of locally measurable operators are inner, +Proc. London Math. Soc. 109(1) (2014), 65–89. +[11] A. Ber, J. Huang, G. Levitina, F. Sukochev, Derivations with values in ideals of semifinite von Neumann +algebras, J. Funct. Anal. 272(12) (2017), 4984–4997. +[12] A. Ber, J. Huang, G. Levitina, F. Sukochev, Derivations with values in the ideal of τ-compact operators +affiliated with a semifinite von Neumann algebra, Comm. Math. Phys. 390(2) (2022), 577–616. +[13] A. Ber, K. Kudaybergenov, F. Sukochev, Derivations on Murray–von Neumann algebras associated with type +II1-algebras are all inner, J. Reine Angew. Math. 791 (2022), 283–301. +[14] A. Ber, F. Sukochev, Derivations in the Banach ideals of τ-compact operators, arXiv:1204.4052v1, 12pp. +[15] A. Ber, F. Sukochev, Commutator estimates in W ∗-factors, Trans. Amer. Math. Soc. 364(10) (2012), 5571– +5587. +[16] A. Ber, F. Sukochev, Commutator estimates in W ∗-algebras, J. Funct. Anal. 262(2) (2012), 537–568. +[17] A. Buhvalov, A. Veksler, V. Ge˘ıler, Normed lattices, (Russian) Mathematical analysis, Vol. 18, pp. 125–184, +Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii, Moscow, 1980. +[18] J. Bunce, W. Paschke, Derivations on a C∗-algebra and its double dual, J. Funct. Anal. 37 (1980), 235–247. +[19] E. Christensen, Extension of derivations, J. Funct. Anal. 27 (1978), 234–247. +[20] E. Christensen, The C∗-algebra of generalized compacts associated with a von Neumann algebra, Operators +in indefinite metric spaces, scattering theory and other topics (Bucharest, 1985), 51–58, Oper. Theory Adv. +Appl., 24, Birkh¨auser, Basel, 1987. +[21] E. Christensen, E. Effros, A. Sinclair, Completely bounded multilinear maps and C∗-algebraic cohomology, +Invent. Math. 90 (1987), 279–296. +[22] E. Christensen, F. Pop, A. Sinclair, R. Smith, Hochschild cohomology of factors with property Γ, Ann. of Math. +158 (2003), 635–659. +[23] A. Connes, Classification of injective factors, Ann. of Math. 104 (1976), 73–115. +[24] A. Connes, On the cohomology of operator algebras, J. Funct. Anal. 28 (1978), 248-253. +[25] J. Conway, A course in functional analysis, Springer-Verlag, New York, 1985. +[26] K. Davidson, Nest algebras, Longman Scientific & Technical, Harlow, 1988. +[27] W. Davis, T. Figiel, W. Johnson, A. Pe�lczy´nski, Factoring weakly compact operators, J. Funct. Anal. 17 (1974), +311–327. +[28] P. Dodds, T. Dodds, B. de Pagter, Weakly compact subsets of symmetric operator spaces, Math. Proc. Camb. +Phil. Soc. 110 (1991), 169–182. +[29] P. Dodds, T. Dodds, B. de Pagter, Noncommutative K¨othe Duality, Trans. Amer. Math. Soc. 339 (1993), +717–750. + +18 +J. HUANG AND F. SUKOCHEV +[30] P. Dodds, T. Dodds, F. Sukochev, S. Tikhonov, A non-commutative Yosida-Hewitt theorem and convex sets +of measurable operators closed locally in measure, Positivity 9 (2005), 457–484. +[31] P. Dodds, B. de Pagter, The non-commutative Yosida–Hewitt decomposition revisited, Trans. Amer. Math. +Soc. 364(12) (2012), 6425–6457. +[32] P. Dodds, B. de Pagter, Normed K¨othe spaces: A non-commutative viewpoint, Indag. Math. 25 (2014), 206– +249. +[33] P. Dodds, B. de Pagter, F. Sukochev, Sets of uniformly absolutely continuous norm in symmetric spaces of +measurable operators, Trans. Amer. Math. Soc., 368 (2016), 6, 4315–4355. +[34] P. Dodds, B. de Pagter, F. Sukochev, Theory of noncommutative integration, to appear. +[35] P. Dodds, F. Sukochev, G. Schluchtermann, Weak compactness criteria in symmetric spaces of measurable +spaces, Math. Proc. Cambridge Phil. Soc. 131 (2001), 363–384. +[36] G. Elliott, Some C∗-algebras with outer derivations, Rocky Mountain J. Math. 3 (1973), 501–506. +[37] G. Elliott, Some C∗-algebras with outer derivations II, Canad. J. Math. 26 (1974), 185–189. +[38] G. Elliott, Some C∗-algebras with outer derivations III, Ann. Math. 106 (1977), 121–143. +[39] T. Fack, H. Kosaki, Generalized s-numbers of τ-measurable operators, Pacific J. Math., 123 (1986), 269–300. +[40] A. Galatan, S. Popa, Smooth bimodules and cohomology of II1 factors, J. Inst. Math. Jussieu 16(1) (2017), +155–187. +[41] A. Grothendieck, Sur les applications lin´eaires faiblement compactes d’espaces du type C(K), Canad. J. Math., +5 (1953), 129–173. +[42] U. Haagerup, All nuclear C∗-algebras are amenable, Invent. Math. 74(2) (1983), 305–319. +[43] T. Hoover, Derivations, homomorphisms, and operator ideals, Proc. Amer. Math. Soc. 62(2) (1977), 293–298. +[44] J. Huang, Derivations wuth values into ideals of a semifinite von Neumann algebra, Ph.D. thesis, UNSW, +2019. +[45] J. Huang, G. Levitina, F. Sukochev, M-embedded symmetric operator spaces and the derivation problem, +Math. Proc. Cambridge Philos. Soc. 169(3) (2020), 607–622. +[46] J. Huang, M. Pliev, F. Sukochev, (Non-)Dunford–Pettis operators on noncommutative symmetric spaces, J. +Funct. Anal. 282 (2022), 109443. +[47] B. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc., Vol. 127, American Mathematical +Society, Providence, RI (1972). +[48] B. Johnson, S. Parrott, Operators commuting with a von Neumann algebras modulo the set of compact oper- +ators, J. Funct. Anal. 11 (1972), 39–61. +[49] B. Johnson, R. Kadison, J. Ringrose, Cohomology of operator algebras III, Bull. Soc. Mat. France 100 (1972), +73–96. +[50] R. Kadison, Derivations of operator algebras, Ann. of Math. 83 (1966), 280–293. +[51] R. Kadison, J. Ringrose, Fundamentals of the Theory of Operator Algebras I, Academic Press, Orlando, 1983. +[52] R. Kadison, J. Ringrose, Fundamentals of the Theory of Operator Algebras II, Academic Press, Orlando, 1986. +[53] R. Kadison, Z. Liu, A note on derivations of Murray–von Neumann algebras, Proc. Natl. Acad. Sci. USA 11 +(2014), 2087–2093. +[54] R. Kadison, Z. Liu, Derivations of Murray–von Neumann algebras, Math. Scand. 115 (2014), 206–228. +[55] V. Kaftal, G. Weiss, Compact derivations relative to semifinite von Neumann algebras, J. Funct. Anal. 62 +(1985), 202–220. +[56] N. Kalton, F. Sukochev, Symmetric norms and spaces of operators, J. Reine Angew. Math. 621 (2008), 81–121. +[57] A. Kaminska, M. Masty�lo, The Schur and (weak) Dunford–Pettis properties in Banach lattices, J. Austral. +Math. Soc. 73 (2002), 251–278. +[58] L. Kantorovich, G. Akilov, Functional Analysis, Nauka, Moscow, 1984. +[59] A. Kaminska, M. Masty�lo, The Dunford–Pettis property for symmetric spaces, Canad. J. Math. 52 (2000), +789–803. +[60] S. Krein, Yu. Petunin, E. Semenov, Interpolation of linear operators. Translations of Mathematical Mono- +graphs, 54. American Mathematical Society, Providence, R.I., 1982. +[61] J. Lindenstrauss, L. Tzafriri, Classical Banach spaces. II. Function spaces, Ergebnisse der Mathematik und +ihrer Grenzgebiete, 97, Springer-Verlag, Berlin-New York, 1979. +[62] S. Lord, F. Sukochev, D. Zanin, Singular traces: Theory and applications, De Gruyter Studies in Mathematics, +46. De Gruyter, Berlin, 2013. +[63] V. Losert, The derivation problem for group algebras, Ann. of Math. 168 (2008), 221–246. +[64] G.Ya. Lozanovskiˇi, Mappings of Banach lattices of measurable functions, Izv. Vyssh. Uchebn. Zaved. Mat. +5(192) (1978), 84–86 (in Russian). +[65] W.A.J. Luxemburg, Banach function spaces, Thesis. Technische Hogeschool te Delft, Delft, 1955. 70 pp. +[66] P. Meyer-Nieberg, Banach lattices, Springer–Verlag, Berlin–Heidelberg–New York, 1991. +[67] E. Nelson, Notes on non-commutative integration, J. Funct. Anal. 15 (1974), 103–116. +[68] S.Ya. Novikov, Sequences of functions in symmetric spaces, Publishing house “Samara University”, Samara, +2008 (in Russian). +[69] G. Pisier, Similarity Problems and Completely Bounded Maps, Springer-Verlag, Berlin, 2001. +[70] H. Pfitzner, L-embedded Banach spaces and measure topology, Israel J. Math. 205 (2015), 421–451. + +DERIVATIONS INTO NONCOMMUTATIVE SYMMETRIC SPACES +19 +[71] S. Popa, The commutant modulo the set of compact operators of a von Neumann algebra, J. Funct. Anal. 71 +(1987), 393–408. +[72] S. Popa, F. R˘adulescu, Derivations of von Neumann algebras into the compact ideal space of a semifinite +algebra, Duke Math. J. 57(2) (1988), 485–518. +[73] J. Ringrose, Automatic continuity of derivations of operator algebras, J. London Math. Soc. 5 (1972), 432–438. +[74] V. Runde, B(ℓp) is never amenable, J. Amer. Math. Soc. 23(4) (2010), 1175–1185. +[75] S. Sakai, Weakly compact operators on operator algebras, Pacific J. Math. 14 (1964), 659–664. +[76] S. Sakai, Derivations of W ∗-algebras, Ann. of Math. 83 (1966), 273–279. +[77] S. Sakai, C∗-Algebras and W ∗-Algebras, Reprint of the 1971 edition, Classics Math., Springer-Verlag, Berlin, +1998, xii+256 pp. +[78] I. Segal, A non-commutative extension of abstract integration, Ann. of Math. 57 (1953), 401–457. +[79] E. Semenov, F. Sukochev, Sums and intersections of symmetric operator spaces, J. Math. Anal. Appl., 414 +(2014), 742–755. +[80] A. Sinclair, R. Smith, Hochschild cohomology of von Neumann algebras, London Mathematical Society Lecture +Note Series 203, Cambridge University Press, Cambridge, 1995. +[81] M. Takesaki, Theory of Operator Algebras I, Springer-Verlag, New York, 1979. +[82] M. Takesaki, Theory of Operator Algebras II, Springer-Verlag, Berlin-Heidelberg-New York, 2003. +[83] M. Weigt, Derivations of τ-measurable operators, In Operator Theory: Advances and Applications, Vol. 195, +273–286, Birkhauser Verlag, Basel, 2009. +[84] R. Whitley, The Krein–Smulian theorem, Proc. Amer. Math. Soc. 97(2) (1986), 376–377. +Institute for Advanced Study in Mathematics of HIT, Harbin Institute of Technology, Harbin, +150001, China +Email address: jinghao.huang@hit.edu.cn +School of Mathematics and Statistics, University of New South Wales, Kensington, 2052, Australiaa +Email address: f.sukochev@unsw.edu.au + diff --git a/cNE2T4oBgHgl3EQfaQf4/content/tmp_files/load_file.txt b/cNE2T4oBgHgl3EQfaQf4/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..c6da61761266d520562f23b9d9f557702bdffa85 --- /dev/null +++ b/cNE2T4oBgHgl3EQfaQf4/content/tmp_files/load_file.txt @@ -0,0 +1,1254 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf,len=1253 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='03874v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='OA] 10 Jan 2023 INNERNESS OF DERIVATIONS INTO NONCOMMUTATIVE SYMMETRIC SPACES IS DETERMINED COMMUTATIVELY JINGHAO HUANG AND FEDOR SUKOCHEV Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Let E = E(0, ∞) be a symmetric function space and E(M, τ) be a symmet- ric operator space associated with a semifinite von Neumann algebra with a faithful normal semifinite trace.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Our main result identifies the class of spaces E for which every derivation δ : A → E(M, τ) is necessarily inner for each C∗-subalgebra A in the class of all semifinite von Neumann algebras M as those with the Levi property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Introduction Let A be a C∗-algebra and let J be an A-bimodule [80].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' A derivation δ : A → J is a linear mapping satisfying δ(xy) = δ(x)y + xδ(y), x, y ∈ A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' In particular, if a ∈ J, then δa(x) := xa − ax is a derivation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Such derivations implemented by elements in J are said to be inner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' One of the classical problems in operator algebra theory is the question whether every derivation from A into J is automatically inner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' The celebrated Kadison–Sakai theorem [50,76] states that derivations are always inner when A is a von Neumann algebra and the A-bimodule J coincides with the algebra A itself.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Further, it was proved that every derivation from a von Neumann algebra into any of its ideal s is automatically inner [15,16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' However, when one considers more general C∗-algebras A and A-bimodules J, there are examples of non-inner derivations for some specific A and J (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [8, 11, 36–38, 72, 77]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' We quote the following from the memoir by Johnson [47, Section 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='11]): “It would be desirable to identify those spaces X with H1(G, X∗) = 0 for all G ”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' A similar statement appeared in [43] (see also [80, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='60]): “Here again it can be asked if such derivations are inner;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' that is, are they induced by an element of J as above?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' In fancier language, the question asks if the cohomology group H1(A, J) is trivial.” During the past decades, a number of important special cases have been studied (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [5,13,21,22,26,47,48,53,54,63,69,71,74]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Due to the rapid development of noncommutative analysis and motivated by questions due to Johnson et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=', there are a number of papers concerning various versions of the following question [5,7,10,18,83]: Question 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Assume that M is a von Neumann algebra equipped with a faithful normal semifinite trace τ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Let E(M, τ) be a symmetric space of τ-compact operators affiliated with M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' How can one identity those E(M, τ) such that derivations from an arbitrary C∗-subalgebra A of M into E(M, τ) are necessarily inner?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Experts in the operator theory are probably more familiar with symmetrically normed ideals in B(H), which are a special case of noncommutative symmetric spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Various versions of Question 1 for derivations with values in ideals of a von Neumann algebra were asked and discussed in [11,12,43,44,48,55,71,72].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' It was a long-standing open question whether every derivation a C∗-subalgebra of a semifinite von Neumann algebra M into M∗ must be inner (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [18, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='247]), which in our setting is equivalent to the special version of Question 1 with E = L1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' This question was resolved completely by Bader, Gelander and Monod in 2012 [5] (see also [70] for a slightly different proof 2010 Mathematics Subject Classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 46L57, 47A56, 46L52, 46L10, 46E30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Key words and phrases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' derivation;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' symmetric space;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' measurable operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Huang was supported by the NNSF of China (No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='12031004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Sukochev’s research was supported by the Australian Research Council (FL170100052).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 1 2 J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' HUANG AND F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' SUKOCHEV due to Pfitzner).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' The method used in [5] (or [70]) does not have any chance to deliver the full answer on Question 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' This fact was emphaiszed in [5, Section 3], where the following points were raised: a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' In marked contrast to the classical fixed point theorems, there is no hope to find a fixed point inside a general bounded closed convex subset of L1 · · · the weak compactness · · · seems almost unavoidable · · · b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' · · · a canonical norm one projection V ∗∗ → V is not enough.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' It would be interesting to find a purely geometric version of the proposition · · The fact that the “fixed point” obtained in [5] is not inside a general bounded closed convex subset of L1 leads to extra difficulties in the general case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' In this paper, we completely resolve Question 1 above, see Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='8 and Corollary 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='4 below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' We show that the Levi property1 of a symmetric space is a sufficient and necessary condition for the Question 1 above having an affirmative answer for every semifinite von Neumann algebra M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Thus, the derivation theorem for preduals of von Neumann algebras in [5] (in the semifinite setting) becomes a trivial corollary of our Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' The new approach devised in this paper answers to points (a), (b) and (c) above raised in [5], which provides an alternative proof for the resolution of the question raised by Bunce and Paschke [18], without involving weak compactness of a subset in a L-embedded space as [5] and [70] did.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' This enables us to find a “fixed point” (implementing the derivation) from a not necessarily weakly compact closed convex subset of a noncommutative symmetric space which is 1-complemented subspace of its bidual but not necessarily an L-embedded Banach space (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=', a symmetric space having the Levi property [30, 31]2), see Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' On the other hand, the Levi property of the space E(M, τ) means that E(M, τ) coincides with its second K¨othe dual and this geometrical condition is the only one required in Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='8 thus delivering (at least spiritually) an answer to the question suggested in [5, Comment c] above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' We believe that the method developed in this work is of interest in its own right.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' It is important to emphasize that the Fatou/Levi property was hatched in the theory of Banach lattices [1,17], and was even included into the original definition of Banach function spaces over σ-finite measure spaces (see [6, 65]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' The property is somewhat analogous to the so-called “dual normal” property3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' The importance of the Fatou/Levi property in the theory of Banach function spaces and symmetric operator spaces is hard to overestimate [29–31].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' It seems appropriate to recall here that every derivation from a hyperfinite von Neumann algebra A into a dual normal A-bimodule is inner (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [80, Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='3], [23] and [49]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Recall also, that derivations from a nuclear C∗-algebra A into a dual Banach A-module are inner [24, 42].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' However, Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='8 below holds for arbitrary C∗-subalgebras A of M and for symmetric spaces which may not have a predual space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' The reflexive gate type result (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [68, Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='3]) is relatively unknown but plays a significant role in our approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' In Section 3, we establish a noncommutative version of this result and lay the groundwork for its usage in the derivation problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' In Section 4, using the weak compactness criteria for noncommutative symmetric spaces obtained in [28,35], we show that the Ryll-Nardzewski fixed point theorem is applicable to any noncommutative strongly symmetric KB-space (or a Kantorovich–Banach space, see Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='2) whose bounded part does not coincides with C1(M, τ) = L1(M, τ) ∩ M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' This is the key technical step in the proof of the main result of the present paper, Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' In Section 5, we demonstrate why the Fatou/Levi property of 1A symmetric function space E(0, ∞) having the Levi property has an equivalent symmetric norm such that E(0, ∞) has the Fatou property, see Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' The Soviet school on Banach lattices used the term monotone complete norm or property (B) [58, Chapter X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='4], see also [1, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='89].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' In the theory of operator algebras, a similar property is called ‘monotone closed’ [81, Chapter III, Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 2Indeed, Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='8 holds for the case when the projection constant is not necessarily 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 3Let M be a von Neumann algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' An M-bimodule X is said to be a dual normal X-bimodule if X is a dual space and the maps m �→ mx and m �→ xm are both ultraweak-weak∗ continuous from M into X for each fixed element x ∈ X [80, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' DERIVATIONS INTO NONCOMMUTATIVE SYMMETRIC SPACES 3 the space E(M, τ) is a necessary condition for an affirmative answer to Question 1 in the class of all semifinite von Neumann algebras.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Preliminaries In this section, we recall some notions of the theory of noncommutative integration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' In what follows, H is a Hilbert space and B(H) is the ∗-algebra of all bounded linear operators on H equipped with the uniform norm ∥·∥∞, and 1 is the identity operator on H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Let M be a von Neumann algebra on H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' We denote by P(M) the collection of all projections in M, by M′ the commutant of M and by Z(M) the center of M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' For details on von Neumann algebra theory, the reader is referred to e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [51,52] or [81].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' General facts concerning measurable operators may be found in [67], [78] (see also [82, Chapter IX] and the forthcoming book [34]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' For convenience of the reader, some of the basic definitions are recalled.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' τ-measurable operators and generalized singular value functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' A closed, densely defined operator x : D (x) → H with the domain D (x) is said to be affiliated with M if yx ⊆ xy for all y ∈ M′, where M′ is the commutant of M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' A closed, densely defined operator x : D (x) → H affiliated with M is said to be measurable if there exists a sequence {pn}∞ n=1 ⊂ P (M), such that pn ↑ 1, pn(H) ⊆ D (x) and 1−pn is a finite projection (with respect to M) for all n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' The collection of all measurable operators with respect to M is denoted by S (M), which is a unital ∗-algebra with respect to strong sums and products (denoted simply by x + y and xy for all x, y ∈ S (M)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Let x be a self-adjoint operator affiliated with M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' We denote its spectral measure by {ex}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' It is well known that if x is an operator affiliated with M with the polar decomposition x = u|x|, then u ∈ M and e ∈ M for all projections e ∈ {e|x|}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Moreover, x ∈ S(M) if and only if e|x|(λ, ∞) is a finite projection for some λ > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' It follows immediately that in the case when M is a von Neumann algebra of type III or a type I factor, we have S(M) = M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' For type II von Neumann algebras, this is no longer true.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' From now on, let M be a semifinite von Neumann algebra equipped with a faithful normal semifinite trace τ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' An operator x ∈ S (M) is called τ-measurable if there exists a sequence {pn}∞ n=1 in P (M) such that pn ↑ 1, pn(H) ⊆ D (x) and τ(1 − pn) < ∞ for all n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' The collection S (M, τ) of all τ-measurable operators is a unital ∗-subalgebra of S (M).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' It is well known that a linear operator x belongs to S (M, τ) if and only if x ∈ S(M) and there exists λ > 0 such that τ(e|x|(λ, ∞)) < ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Alternatively, an unbounded operator x affiliated with M is τ-measurable (see [39]) if and only if τ � e|x|� n, ∞ �� → 0, n → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' For convenience of the reader, we also recall the definition of the measure topology tτ on the algebra S(M, τ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' For every ε, δ > 0, we define the set V (ε, δ) = {x ∈ S(M, τ) : ∃p ∈ P (M) such that ∥x(1 − p)∥∞ ≤ ε, τ(p) ≤ δ} .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' The topology generated by the sets V (ε, δ), ε, δ > 0, is called the measure topology tτ on S(M, τ) [34, 39, 67].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' It is well known that the algebra S(M, τ) equipped with the measure topology is a complete metrizable topological algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' A sequence {xn}∞ n=1 ⊂ S(M, τ) converges to zero with respect to measure topology tτ if and only if τ � e|xn|(ε, ∞) � → 0 as n → ∞ for all ε > 0 [34].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Another important vector topology on S(M, τ) is the local measure topology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' For convenience we denote by Pf(M) the collection of all τ-finite projections in M, that is, the set of all e ∈ P(M) satisfying τ(e) < ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' A neighbourhood base for this topology is given by the sets V (ε, δ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' e), ε, δ > 0, e ∈ Pf(M), where V (ε, δ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' e) = {x ∈ S(M, τ) : exe ∈ V (ε, δ)} .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Obviously, local measure topology is weaker than measure topology [32].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' We note here, that the local measure topology used in the present paper differs from the local measure topology defined in e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [9,10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Let M be a von Neumann algebra equipped with a faithful normal semi-finite trace τ and let x ∈ S(M, τ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' The generalized singular value function µ(x) : t �→ µ(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' x) of the 4 J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' HUANG AND F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' SUKOCHEV operator x is defined by setting µ(s;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' x) = inf{∥xp∥∞ : p ∈ P(M) with τ(1 − p) ≤ s}, ∀s ∈ (0, ∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' An equivalent definition in terms of the distribution function of the operator |x| is the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' for every operator x ∈ S(M, τ), setting d|x|(t) = τ(e|x|(t, ∞)), t > 0, we have (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [39]) µ(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' x) = inf{s ≥ 0 : d|x|(s) ≤ t}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' (1) Note that µ(x) is a function defined on (0, ∞) even if the trace τ is finite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' In particular, µ(s;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' x) = 0 when s ≥ τ(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Consider the algebra M = L∞(0, ∞) of all Lebesgue measurable essentially bounded functions on (0, ∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' The algebra M can be seen as an abelian von Neumann algebra acting via multiplication on the Hilbert space H = L2(0, ∞), with the trace given by integration with respect to Lebesgue measure m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' It is easy to see that the algebra of all τ-measurable operators affiliated with M can be identified with the subalgebra S(0, ∞) of the algebra of Lebesgue measurable functions L0(0, ∞) which consists of all functions x such that m({|x| > s}) is finite for some s > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' It should also be pointed out that the generalized singular value function µ(x) is precisely the decreasing rearrangement µ(x) of the function |x| (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [60]) defined by µ(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' x) = inf{s ≥ 0 : m({|x| ≥ s}) ≤ t}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' If M = B(H) (respectively, ℓ∞) and τ is the standard trace Tr (respectively, the counting measure on N), then it is not difficult to see that S(M) = S(M, τ) = M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' In this case, for x ∈ S(M, τ) we have µ(n;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' x) = µ(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' x), t ∈ [n, n + 1), n ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' The sequence {µ(n;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' x)}n≥0 is just the sequence of singular values of the operator x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' If x, y ∈ S(M, τ), then x is said to be submajorized by y, denoted by x ≺≺ y, if � t 0 µ(s;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' x)ds ≤ � t 0 µ(s;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' y)ds for all t ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' In particular, for x, y ∈ S(0, ∞), x ≺≺ y if and only if � t 0 µ(s;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' x)ds ≤ � t 0 µ(s;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' y)ds, t ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Symmetric spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' A linear subspace E of S(M, τ) equipped with a complete norm ∥·∥E, is called a symmetric space (of τ-measurable operators) if x ∈ S(M, τ), y ∈ E and µ(x) ≤ µ(y) imply that x ∈ E and ∥x∥E ≤ ∥y∥E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' It is well-known that any symmetric space E is a normed M-bimodule, that is, axb ∈ E for any x ∈ E, a, b ∈ M and ∥axb∥E ≤ ∥a∥∞ ∥b∥∞ ∥x∥E [32,34].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' A symmetric space E(M, τ) ⊂ S(M, τ) is called strongly symmetric if its norm ∥·∥E has the additional property that ∥x∥E ≤ ∥y∥E whenever x, y ∈ E(M, τ) satisfy x ≺≺ y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' In addition, if x ∈ S(M, τ), y ∈ E(M, τ) and x ≺≺ y imply that x ∈ E(M, τ) and ∥x∥E ≤ ∥y∥E, then E(M, τ) is called fully symmetric space (of τ-measurable operators).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' If E ⊂ S(M, τ) is a symmetric space, then the norm ∥·∥E is called order continuous if ∥xα∥E → 0 whenever {xα} is a downwards directed net in E+ satisfying xα ↓ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' A symmetric space E(M, τ) is said to have the Fatou property if for every upwards directed net {xβ} in E(M, τ)+, satisfying supβ ∥xβ∥E < ∞, there exists an element x ∈ E(M, τ)+ such that xβ ↑ x in E(M, τ) and ∥x∥E = supβ ∥xβ∥E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Examples such as Schatten–von Neumann operator ideals, Lorentz operator ideals, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' all have symmetric norms which have the Fatou property [34,60,61].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' If E has the Fatou property and order continuous norm, then it is said to be a KB-space (or Kantorovich–Banach space) [32].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' If E(M, τ) is a symmetric space, then the carrier projection cE ∈ P(M) is defined by setting cE = � {p : p ∈ P(M), p ∈ E(M, τ)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' We remark that, replacing the von Neumann algebra M by the reduced von Neumann algebra McE (note that E(M, τ) = cEE(M, τ)cE, see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [32, Corollary 6]), it is often assumed that the carrier projection of E(M, τ) is equal to 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' DERIVATIONS INTO NONCOMMUTATIVE SYMMETRIC SPACES 5 If E(M, τ) is a symmetric space, then the K¨othe dual E(M, τ)× of E(M, τ) is defined by E(M, τ)× = {x ∈ S(M, τ) : sup ∥y∥E≤1,y∈E τ(|xy|) < ∞}, and for every x ∈ E(M, τ)×, we set ∥x∥E× = sup {τ(|yx|) : y ∈ E(M, τ), ∥y∥E ≤ 1} (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [32, Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='2], see also [28,62]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' It is well-known that ∥·∥E× is a norm on E(M, τ)× if and only if the carrier projection cE of E(M, τ) is equal to 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' In this case, for a strongly symmetric space E(M, τ), the following statements are equivalent [31,32].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' E(M, τ) has the Fatou property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' E(M, τ)×× = E(M, τ) and ∥x∥E = ∥x∥E×× for all X ∈ E(M, τ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' The norm closed unit ball BE of E(M, τ) is closed in S(M, τ) with respect to the local measure topology .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' If E(M, τ) is a strongly symmetric space with cE = 1 (or a symmetric space affiliated with a semifinite von Neumann algebra which is either atomless or atomic with all minimal projections having equal trace), then [32, Lemma 30] (see also [34, Theorem IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='7] and [60]) ∥x∥E = ∥x∥E×× , x ∈ (L1 ∩ L∞)(M, τ), (2) and L1 ∩ L∞(M, τ) ⊂ E(M, τ) ⊂ (L1 + L∞)(M, τ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' (3) A wide class of symmetric operator spaces associated with the von Neumann algebra M can be constructed from concrete symmetric function spaces studied extensively in e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [60].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Let (E(0, ∞), ∥·∥E(0,∞)) be a symmetric function space on the semi-axis (0, ∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' The pair E(M, τ) = {x ∈ S(M, τ) : µ(x) ∈ E(0, ∞)}, ∥x∥E(M,τ) := ∥µ(x)∥E(0,∞) is a symmetric operator space affiliated with M with cE = 1 [56] (see also [62]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' For convenience, we denote ∥·∥E(M,τ) by ∥·∥E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Let E(0, ∞) be a symmetric function space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' We define a symmetric space [60, Chapter I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='3] (L1 + E)(0, ∞) := {f ∈ S(0, ∞) : ∥f∥L1+E := inf x=u+v,u∈L1(0,∞),v∈E(0,∞) {∥u∥1 + ∥v∥E} < ∞}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' The ideal of τ-compact operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' For a self-adjoint operator x ∈ S(M, τ), we denote by s(x) its support.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' The two-sided ideal F(M, τ) in M consisting of all elements of τ-finite range is defined by setting F(M, τ) = {x ∈ M : τ(s(|x|)) < ∞}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' The C∗-algebra C0(M, τ) of all τ-compact bounded operators can be described as the closure in the norm ∥ · ∥∞ of the linear span of all τ-finite projections [62, Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Equivalently, C0(M, τ) the set of all elements x ∈ M such that τ(E|x|(λ, ∞)) < ∞ for every λ > 0 (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [34, Chapter II, Section 4]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' The space C0(M, τ) is associated to the ideal of essentially bounded functions vanishing at infinity (see [62, Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='9]), that is, C0(M, τ) = � a ∈ S(M, τ) : µ(a) ∈ L∞(0, ∞), µ(∞;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' a) := lim t→∞ µ(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' a) = 0 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' In particular, if τ is finite, then M = C0(M, τ) (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [62, Page 64]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' The space S0(M, τ) of τ-compact operators is the space associated to the algebra of functions from S(0, ∞) vanishing at infinity, that is, S0(M, τ) = {x ∈ S(M, τ) : µ(∞;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' x) = 0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' This is a two-sided ideal in S(M, τ) and, clearly, C0(M, τ) = S0(M, τ) ∩ M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' We denote C0(0, ∞) := {f ∈ L∞(0, ∞) : µ(∞;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' f) = 0}, and (L1 + C0)(0, ∞) := {f ∈ L1 + L∞(0, ∞) : µ(∞;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' f) = 0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 6 J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' HUANG AND F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' SUKOCHEV 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' A noncommutative reflexive gate type theorem Recall the reflexive gate type result for symmetric function spaces E(0, 1) [68, Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='3], i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=', if E(0, 1) ̸= L1(0, 1) and E(0, 1) ̸= L∞(0, 1), then there exist two reflexive symmetric space F1(0, 1) and F2(0, 1) such that F2(0, 1) ⊂ E(0, 1) ⊂ F1(0, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' For a symmetric sequence space ℓE such that ℓE ⫋ c0, by the well-known construction of Davis–Figiel–Johnson–Pe�lczy´nski [27] (see [4, Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='37], [25, Chapter VI, Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='3] or [57, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 255] for detailed expositions), there exists a reflexive sequence space ℓF ⫋ ℓE, see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' the proof of [57, Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' In the following lemma, we show that this reflexive sequence is actually symmetric, which is a discrete analogue of the reflexive gate result [68, Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='3] for symmetric function spaces on the unit interval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Let ℓE be a symmetric sequence space which does not coincide with ℓ1 (up to equiv- alent norms).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Then, there exists a reflexive symmetric sequence space ℓF such that ℓF ⊂ ℓE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' The proof relies on the construction of Davis–Figiel–Johnson–Pe�lczy´nski [27, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='313].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Let {en}n≥1 be the standard symmetric basis of ℓE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Since ℓE ̸= ℓ1, it follows that {en}n≥1 is weakly null.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' By the Krein–Smulian theorem [4, Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='42], the convex circled4 hull W of {en}n≥1 is weakly compact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Let Un = 2nW +2−nU, where U stands for the unit ball of ℓE, and ∥·∥n denotes the Minkowski functional of Un, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=', ∥x∥n := inf {λ > 0 : x ∈ λUn} .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Put ℓF := � x ∈ ℓE : ∥x∥F := ��∞ n=1 ∥x∥2 n �1/2 < ∞ � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' By [27, Lemma 1] (see also [4, Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='37]), ℓF is reflexive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' The ideal property of ℓF was asserted in [57, Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' For the sake of completeness, we include a short proof below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Let y = (y(k))k≥1 ∈ ℓF and x = (x(k))k≥1 ∈ ℓ∞ such that |x| ≤ |y|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' We have y ∈ (∥y∥n + ε)Un for any ε > 0, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=', y = N � k=1 skek + yn,ε, where �N k=1 |sk| ≤ 2n (∥y∥n + ε) , 1 ≤ N < ∞ and (yn,ε(k))k≥1 ∈ ∥y∥n+ε 2n U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Note that x = � yk̸=0 sk xk yk ek + �xk yk yn,ε(k) � k≥1 , � yk̸=0 ���sk xk yk ��� ≤ � yk̸=0 |sk| ≤ 2n (∥y∥n + ε) and � xk yk yn,ε(k) � k≥1 ∈ ∥y∥n+ε 2n U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Therefore, ∥x∥n ≤ ∥y∥n for every n ≥ 1, and x ∈ ℓF with with ∥x∥F ≤ ∥y∥F .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' To show that ℓF is symmetric, one only need to observe that for any permutation π and n ≥ 1, we have π(W) = W and π(U) = U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Therefore, ���(y(k))k≥1 ��� n = ���(y (π(k)))k≥1 ��� n for any y ∈ ℓF and any permutation π.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' □ Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Let ℓE be a symmetric sequence space which does not coincide with c0 and ℓ∞ (up to equivalent norms).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Then, there exists a reflexive symmetric sequence space ℓF such that ℓF ⊃ ℓE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 4A nonempty subset A of a vector space is said to circled (or balanced) whenever x ∈ A and 0 ≤ λ ≤ 1 imply λx ∈ A) [4, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='134].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' A convex circled hull of A is � n � i=1 λixi : xi ∈ A for each i and n � i=1 |λi| ≤ 1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' DERIVATIONS INTO NONCOMMUTATIVE SYMMETRIC SPACES 7 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Since ℓE ̸= c0, ℓ∞, it follows that ℓ× E ̸= ℓ1 (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [46, Proposition 11] and [59]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' By Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='1, we obtain that there exists a reflexive symmetric sequence space ℓG ⊂ ℓ× E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Therefore, letting ℓF := ℓ× G, which is a reflexive symmetric sequence space [32, Section 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='3] (see also [34,60, 66]), we have ℓF = ℓ× G ⊃ ℓ×× E ⊃ ℓE, which completes the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' □ Now, we prove the main theorem of this section, which is an infinite measure version of [68, Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Let E(0, ∞) be a symmetric function space such that E(0, ∞) ∩ L∞(0, ∞) ⫋ C0(0, ∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Then, there exists a symmetric KB-function space such that F(0, ∞) containing E(0, ∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' If, in addition, E(0, 1) := � f ∈ L1(0, 1) : g(x) := � f(x), if x ∈ (0, 1);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 0, otherwise ∈ E(0, ∞), ∥f∥E(0,1) = ∥g∥E(0,∞) � satisfies that E(0, 1) ̸= L1(0, 1), then F(0, ∞) can be chosen as a reflexive symmetric space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Let ℓE be the symmetric sequence space generated by E(0, ∞) by setting ℓE := \uf8f1 \uf8f2 \uf8f3(αn)n≥1 : � n≥1 αnχ(n−1,n] ∈ E(0, ∞) \uf8fc \uf8fd \uf8fe , ∥(αn)n≥1∥ℓE := ������ � n≥1 αnχ(n−1,n] ������ E(0,∞) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' (4) By condition E(0, ∞) ∩ L∞(0, ∞) ⫋ C0(0, ∞), we obtain that ℓE ⫋ c0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Indeed, E(0, ∞) ∩ L∞(0, ∞) ⫋ C0(0, ∞) implies that there exists z = µ(z) ∈ C0(0, ∞) such that µ(z) /∈ E(0, ∞) ∩ L∞(0, ∞), and therefore, by (4), we obtain that (µ(n;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' z))n≥1 ∈ c0 but (µ(n;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' z))n≥1 /∈ ℓE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' By Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='2, there exists a reflexive symmetric sequence space ℓG ⊃ ℓE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Observe that ℓG is fully symmetric [34,60,61].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Now, we define a symmetric function space F1(0, ∞) by setting F1(0, ∞) := � f ∈ (L1 + L∞)(0, ∞) : �� n n−1 µ(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' f)dt � n≥1 ∈ ℓG � (5) equipped with the norm [62, Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='6] ∥f∥F1(0,∞) := ����� �� n n−1 µ(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' f)dt � n≥1 ����� ℓG , f ∈ F1(0, ∞), which also has the Fatou property and order continuous norm, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=', F1(0, ∞) is a symmetric KB- space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Indeed, let {xβ} be an upwards directed net in F1(0, ∞)+ satisfying supβ ∥xβ∥F1(0,∞) < ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' By the definition of F1(0, ∞), ��� n n−1 µ(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' xβ)dt � n≥1 � β is an upwards directed net in ℓ+ G with supβ ���� �� n n−1 µ(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' xβ)dt � n≥1 ���� ℓG < ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Let x ∈ S(0, ∞) be such that xβ ↑ x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Then, we have µ(xβ) ↑ x and � n n−1 µ(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' xβ)dt ↑ � n n−1 µ(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' x)dt for each n ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' By the Fatou property of ℓG, we obtain that �� n n−1 µ(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' x)dt � n≥1 ∈ ℓG with ���� �� n n−1 µ(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' x)dt � n≥1 ���� ℓG = supβ ���� �� n n−1 µ(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' xβ)dt � n≥1 ���� ℓG , i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=', x ∈ F1(0, ∞) with ∥x∥F1(0,∞) = supβ ∥xβ∥F1(0,∞) = supβ ∥xβ∥F1(0,∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Therefore, F1(0, ∞) has the Fatou property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' The order continuity of ∥·∥F1(0,∞) can be proved by a similar argument.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Note that for any f = µ(f) ∈ E(0, ∞), we have � n≥1 µ(n;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' f)χ(n−1,n] ≤ µ(f) and � n≥1 µ(n;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' f)χ(n−1,n] ∈ E(0, ∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 8 J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' HUANG AND F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' SUKOCHEV By (4), we have (µ(n;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' f))n≥1 ∈ ℓE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Therefore, �� n n−1 µ(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' f)dt � n≥2 = �� n+1 n µ(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' f)dt � n≥1 ≤ (µ(n;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' f))n≥1 ∈ ℓE ⊂ ℓG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Therefore, �� n n−1 µ(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' f)dt � n≥1 ∈ ℓG, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=', f (5) ∈ F1(0, ∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' That is, E(0, ∞) ⊂ F1(0, ∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' The proof for the first assertion is complete by defining F(0, ∞) := F1(0, ∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Assume that E(0, 1) ̸= L1(0, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' If E(0, 1) = L∞(0, 1), then, defining G(0, 1) := L2(0, 1) (which is a reflexive symmetric function space), we have G(0, 1) ⊃ E(0, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' If E(0, 1) ̸= L∞(0, 1), then, by [68, Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='3], there exists a reflexive symmetric function space G(0, 1) such that E(0, 1) ⊂ G(0, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' We define G(0, ∞) := � f ∈ (L1 + L∞)(0, ∞) : µ(f)χ(0,1) ∈ G(0, 1) � equipped with the norm5 ∥f∥G := inf f=u+v, u∈G(0,∞),v∈L∞(0,∞) ���µ(u)χ(0,1) �� G(0,1) + ∥v∥∞ � , f ∈ G(0, ∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' By the definition of a K¨othe dual (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [60, (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='31)]), it is readily verified that the K¨othe dual G(0, ∞)× of G(0, ∞) is given by � f ∈ (L1 + L∞)(0, ∞) : ��µ(f)χ(0,1) �� G(0,1)× < ∞ � ∩ L1(0, ∞) = � f ∈ (L1 + L∞)(0, ∞) : µ(f)χ(0,1) ∈ G(0, 1)× and µ(f)χ[1,∞) ∈ L1(0, ∞) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' equipped with the norm ∥f∥G(0,∞)× := max ���µ(f)χ(0,1) �� G(0,1)× , ∥f∥1 � , f ∈ G(0, ∞)×.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' For any decreasing net S0(0, ∞) ⊃ E(0, ∞) ∋ fi ↓ 0, we have µ(fi) ↓i 0 (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='g [32, Proposition 2(iv)]) and therefore, there exists a constant c(G) depending on G(0, 1) only [6, Chapter I, Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='8] such that ∥fi∥G(0,∞)× ≤ c(G) ���µ(fi)χ(0,1) �� G(0,1)× + ∥µ(fi)∥L1(0,∞) � ↓i 0, (6) which shows that G(0, ∞)× has an order continuous norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Now, we define F(0, ∞) := G(0, ∞) ∩ F1(0, ∞), equipped with ∥·∥F := max � ∥·∥G , ∥·∥F1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Since both G(0, ∞) and F1(0, ∞) have the Fatou property, it follows that F(0, ∞) has the Fatou property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' The same reasoning as in (6) shows that ∥·∥F is order continuous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Observe that [79, Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='3] (see also [64]) F(0, ∞)× = G(0, ∞)× + F1(0, ∞)× is equipped with the norm ∥f∥F (0,∞)× := inf f=u+v, u∈G(0,∞)×,v∈F1(0,∞)× � ∥u∥G× + ∥v∥F × 1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' We claim that ∥·∥F (0,∞)× is order continuous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Indeed, for any decreasing net F1(0, ∞) ∋ fi ↓ 0, we have µ(fi) ↓i 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' In particular, we have µ(n;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' fi) ↓i 0 for each n ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' By the triangle inequality, we have ∥fi∥F (0,∞)× ≤ ��µ(fi)χ(0,1) �� G(0,∞)× + ��µ(fi)χ[1,∞) �� F1(0,∞)× .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 5Let f, g ∈ G(0, ∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' By [6, Corollary 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='6], there exists A ⊂ (0, ∞) such that µ((f + g)χA) = µ(f + g)χ(0,1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Therefore, we have ��µ(f + g)χ(0,1) �� G(0,1) = ∥(f + g)χA∥G(0,1) ≤ ∥fχA∥G(0,1) +∥gχA∥G(0,1) ≤ ��fχ(0,1) �� G(0,1) + ��gχ(0,1) �� G(0,1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Hence, ∥·∥G(0,1) generates a symmetric norm on G(0, ∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Since ∥·∥∞ is a symmetric norm, it follows ∥·∥G is a complete symmetric norm on G(0, ∞), see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [60, Chapter I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' DERIVATIONS INTO NONCOMMUTATIVE SYMMETRIC SPACES 9 By (6), it suffices to prove that ��µ(fi)χ[1,∞) �� F1(0,∞)× →i 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' By the definition of ∥·∥F1(0,∞), we have ��µ(fi)χ[1,∞) �� F1(0,∞)× [32, Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 26] = sup ∥x∥F1(0,∞)=1 � ∞ 0 µ(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' µ(fi)χ[1,∞))µ(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' x)dt = sup ∥x∥F1(0,∞)=1 � n≥1 � n n−1 µ(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' µ(fi)χ[1,∞))µ(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' x)dt and � n≥1 µ(n + 1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' fi) � n n−1 µ(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' x)dt = � n≥1 µ(n;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' µ(fi)χ[1,∞)) � n n−1 µ(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' x)dt ≤ � n≥1 � n n−1 µ(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' µ(fi)χ[1,∞))µ(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' x)dt ≤ � n≥1 µ(n − 1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' µ(fi)χ[1,∞)) � n n−1 µ(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' x)dt = � n≥1 µ(n;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' fi) � n n−1 µ(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' x)dt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' By the definition of F1(0, ∞), we have (µ(n;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' fi))n≥1 ∈ ℓ× G and ��µ(fi)χ[1,∞) �� F1(0,∞)× ≤ ∥{µ(n;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' fi)}n≥1∥ℓ× G ↓i 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' By [61, Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='5] (see also [66, Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='14] or [34,60]), F(0, ∞) is reflexive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' □ The following lemma is folklore, it provides a characterization for symmetric spaces whose ‘tail’ is a proper subspace of C0(M, τ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' For the sake of completeness, we include the full proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Assume that (1) E(M, τ) is a strongly symmetric space affiliated with a von Neumann algebra equipped with a semifinite infinite faithful normal trace τ, with cE = 1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' (2) M is an atomless von Neumann algebra equipped with a semifinite infinite faithful normal trace τ or M is atomic equipped with a semifinite infinite faithful normal trace τ such that all minimal projections having equal trace.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Then, E(M, τ)×× ⊂ S0(M, τ) if and only if E(M, τ) ∩ M ⫋ C0(M, τ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' (⇒).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Assume, contrapositively, that E(M, τ) ∩ M is not a proper subspace of C0(M, τ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Note that, if E(M, τ) contains some element x such that µ(∞;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' x) > 0, then E(M, τ) ⊃ M ⊃ C0(M, τ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' If for every x ∈ E(M, τ), we have µ(∞;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' x) = 0, then E(M, τ) ∩ M ⊂ C0(M, τ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Therefore, E(M, τ) ∩ M = C0(M, τ) or E(M, τ) ∩ M = M, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=', E(M, τ) ⊃ E(M, τ) ∩ M ⊃ C0(M, τ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' By [29, Definition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='1] (see also [34, Chapter IV, Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='12]), we have E(M, τ)× = {y ∈ S(M, τ) : xy ∈ L1(M, τ) for all x ∈ E(M, τ)} ⊂ {y ∈ S(M, τ) : xy ∈ L1(M, τ) for all x ∈ C0(M, τ)} = C0(M, τ)× see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [79, Lemma 8] = L1(M, τ), and E(M, τ)×× = � y ∈ S(M, τ) : xy ∈ L1(M, τ) for all x ∈ E(M, τ)×� ⊃ {y ∈ S(M, τ) : xy ∈ L1(M, τ) for all x ∈ L1(M, τ)} = M, which is a contradiction with the assumption that E(M, τ)×× ⊂ S0(M, τ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' (⇐).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Assume by contradiction that E(M, τ)×× ⊃ M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' By [32, Proposition 28] (see also [29,31]), there exists a fully symmetric function space G(0, ∞) having the Fatou property such that E(M, τ)×× = G(M, τ) 10 J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' HUANG AND F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' SUKOCHEV with ∥y∥E(M,τ)×× = ∥µ(y)∥G(0,∞), y ∈ E(M, τ)××.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Since G(M, τ) ⊃ M, it follows that G(0, ∞) ⊃ L∞(0, ∞) and therefore, we have ∥·∥∞ ≥ c(G) ∥·∥G for some constant c(G) depending on G(0, ∞) only [6, Chapter I, Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Therefore, we have E(M, τ) ∩ M (3) ⊃ (L1 ∩ L∞)(M, τ) ∥·∥E ∩ M (2) = (L1 ∩ L∞)(M, τ) ∥·∥G ∩ M ⊃ (L1 ∩ L∞)(M, τ) ∥·∥∞ = C0(M, τ), which is a contradiction with the assumption that E(M, τ) ∩ M ⫋ C0(M, τ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' □ Below, we establish a noncommutative version of Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Observe that the result of Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='5 below holds for both finite and infinite traces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Let M be a von Neumann algebra equipped with a semifinite faithful normal trace τ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Let E(M, τ) be a strongly symmetric space such that E(M, τ)×× ⊂ S0(M, τ)6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Then, there exists a symmetric KB-function space F(0, ∞) such that E(M, τ) ⊂ F(M, τ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Without loss of generality, we may assume that cE = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' If τ(1) < ∞, then the assertion is trivial as E(M, τ) (3) ⊂ L1(M, τ) and we can take F(0, ∞) := L1(0, ∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Now, we assume that τ(1) = ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' By [32, Proposition 28] (see also [29]), there exists a fully symmetric function space G(0, ∞) having the Fatou property such that E(M, τ)× = G(M, τ) with ∥y∥E×(M,τ) = ∥µ(y)∥G(0,∞), y ∈ E(M, τ)×.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Let F1(0, ∞) := G(0, ∞)×.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' In particular, F1(0, ∞) has the Fatou property [32, Theorem 27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Observe that F1(M, τ) = E(M, τ)×× [32, Theorem 53].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' We have [32, Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='3] E(M, τ) ⊂ E(M, τ)×× = F1(M, τ) ⊂ S0(M, τ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' In particular, F1(0, ∞) ⊂ S0(0, ∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Since both F1(0, ∞) and L∞(0, ∞) have the Fatou property, it follows that F1(0, ∞) ∩ L∞(0, ∞) has the Fatou property and therefore, F1(0, ∞) ∩ L∞(0, ∞) ̸= C0(0, ∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' By Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='3, there exists a symmetric KB-function space F(0, ∞) such that F1(0, ∞) ⊂ F(0, ∞), which completes the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' □ 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Main results The starting point of this section is the following important result due to Akemann, Dodds and Gamlen [3, Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='2] (see also [2, Corollary II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='9 and Theorem IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='3] and [75]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' It should be viewed as a noncommutative version of Grothendieck’s theorem [41], which states that an arbitrary bounded operator from C(K) into a weakly sequentially complete Banach space is necessarily weakly compact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' A bounded linear map from a C∗-algebra into a weakly sequentially complete Banach space is weakly compact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Recall that a noncommutative strongly symmetric space is a KB-space if and only if it is weakly sequentially complete [33, Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='5], see also [28,31,32,34].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' We have the following consequence of Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Let M be a von Neumann algebra equipped with a semifinite faithful normal trace τ, and let E(M, τ) be a strongly symmetric KB-space affiliated with M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Then every bounded map from a C∗-algebra into E(M, τ) is weakly compact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='3 below is a consequence of Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='2 and [28, Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='9] (see also [35, Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='4]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' For a Banach space X, we denote by BX the unit ball of X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 6Observe that if τ(1) < ∞, then S0(M, τ) = S(M, τ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' DERIVATIONS INTO NONCOMMUTATIVE SYMMETRIC SPACES 11 Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Let M be a von Neumann algebra equipped with a semifinite faithful normal trace τ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Assume that E(M, τ) is a strongly symmetric KB-space such that E(M, τ)× ⊂ S0(M, τ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Let A be a C∗-subalgebra M and let T be a bounded linear operator from A into E(M, τ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Then, the set BMT (BA)BM := {aT (x)b : a, b ∈ BM, x ∈ BA} is relatively weakly compact in E(M, τ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Without loss of generality, we may assume that cE = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Since every weakly compact operator sends bounded sets into weakly compact ones, we infer from Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='2 that the set T (BA) is relatively weakly compact in E(M, τ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Since E(M, τ) has the Fatou property, it follows that E(M, τ) = E(M, τ)×× ⊂ S0(M, τ) (see Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Since E(M, τ)× ⊂ S0(M, τ), it follows from [28, Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='9] (or to [35, Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='4]) that � y∈BA Ω(T (y)) is relatively σ(E××, E×)-compact (equivalently, relatively σ(E, E×)-compact, or weakly com- pact) in E(M, τ), where Ω(x) := {z ∈ (L1 + L∞)(M, τ) : z ≺≺ y}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Since BMT (BA)BM ⊂ � y∈BA Ω(T (y)), it follows that BMT (BA)BM is weakly compact in E(M, τ) □ Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Assume that E(M, τ) is a strongly symmetric space with cE = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Note that, if τ(1) < ∞, then the condition E(M, τ)× ⊂ S0(M, τ) holds for any symmetric space E(M, τ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' If τ(1) = ∞, then E(M, τ)× ⊂ S0(M, τ) if and only if E(M, τ)∩M ⫌ L1(M, τ)∩M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Indeed, assume that E(M, τ) ∩ M ⫌ L1(M, τ) ∩ M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Then, there exists an element 0 ≤ z ∈ E(M, τ) ∩ M but z /∈ L1(M, τ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' In particular, we have τ(z) = ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' By the definition of K¨othe duals, we infer that 1 /∈ E(M, τ)×, which, in turn, implies that E(M, τ)× ⊂ S0(M, τ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' On the other hand, assume by contradiction that L1(M, τ) ∩ M is not a proper subspace of E(M, τ) ∩ M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' By (3), we have L1(M, τ) ∩ M ⊂ E(M, τ) ∩ M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Therefore, we obtain that E(M, τ) ∩ M = L1(M, τ) ∩ M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' By the fact that E(M, τ) (3) ⊂ (L1 + L∞)(M, τ), we obtain that for any element x ∈ E(M, τ), µ(x)χ(0,1) ∈ L1(0, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Hence, all elements in E(M, τ) belong to L1(M, τ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Therefore, E(M, τ)× ⊃ L1(M, τ)× = M [29, Definition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' That is, E(M, τ)× ̸⊂ S0(M, τ), which completes the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Let U(A) denote the set of all unitary elements in a C∗-algebra A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Let M be a von Neumann algebra equipped with a semifinite faithful normal trace τ and let A be a unital C∗-subalgebra M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Assume that E(M, τ) is a strongly symmetric KB-space such that E(M, τ)× ⊂ S0(M, τ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Let δ : A → E(M, τ) be a derivation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Then, {δ(u)u∗ | u ∈ U(A)} is relatively weakly compact in E(M, τ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Consequently, the closure conv{δ(u)u∗ | u ∈ U(A)} ∥·∥E of the convex hull is weak compact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' By Ringrose’s theorem [73, Theorem 2], δ is bounded from (A, ∥·∥∞) into (E(M, τ), ∥·∥E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' By Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='3, {δ(u)u∗ | u ∈ U(A)} is relatively weakly compact in E(M, τ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' The second assertion follows from the Krein–Smulian theorem (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [84]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' □ The following lemma shows that derivations into a “large” symmetric space are inner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Let M be a von Neumann algebra with a faithful normal semifinite trace τ and let A be a unital C∗-subalgebra of M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Let E(M, τ) a strongly symmetric KB-space such that E(M, τ)× ⊂ S0(M, τ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' For every derivation δ : A → E(M, τ), there exists an element a ∈ conv{δ(u)u∗ | u ∈ U(A)} ∥·∥E such that δ = δa on A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' In particular, ∥a∥ ≤ ∥δ∥A→E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 12 J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' HUANG AND F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' SUKOCHEV Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Without loss of generality, we may assume that the carrier projection cE = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' For every u ∈ U(A), we have δ(u) ∈ E(M, τ), and therefore we can define the mapping αu : E(M, τ) −→ E(M, τ), by setting αu(x) := uxu∗ + δ(u)u∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' For every u, v ∈ U(A), we have αu(αv(x)) = uvxv∗u∗ + uδ(v)v∗u∗ + δ(u)u∗ = (uv)x(uv)∗ + uδ(v)v∗u∗ + δ(u)vv∗u∗ = (uv)x(uv)∗ + δ(uv)(uv)∗ = αuv(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' In addition, the equality δ(1) = δ(12) = 2δ(1) implies that δ(1) = 0, and therefore α1(x) = x, x ∈ E(M, τ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Thus, α is an action of the group U(A) on E(M, τ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' We claim that the set K := conv {δ(u)u∗ | u ∈ U(A)} ∥·∥E is invariant with respect to α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Since δ(u)u∗ = αu(0), it follows that k00 := {δ(u)u∗ | u ∈ U(A)} is an orbit of 0 with respect to α, and therefore, is an invariant subset with respect to α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' In addition, for any positive scalars s and t with s + t = 1, we have αu(s · x + t · y) = s · uxu∗ + t · uyu∗ + (s + t) · δ(u)u∗ = s · αu(x) + t · αu(y), ∀x, y ∈ E(M, τ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Hence, for every u ∈ U(A) the mapping αu is affine, which implies that conv(K00) is also an invariant subset with respect to α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Now, the equality αu(x) − αu(y) = u(x − y)u∗, x, y ∈ E(M, τ) implies that every αu, u ∈ U(A), is an isometry on E(M, τ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Hence, K is an invariant subset with respect to α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Furthermore, the fact that αU is an isometry combined with [25, Chapter V, Lemma 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='7] implies that the family {αu : u ∈ U(A)} is a noncontracting family of affine mappings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Clearly, αu is weakly continuous for every u ∈ U(A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' On the other hand, by Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='5, K is weakly compact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Thus, the set K and the family {αu : u ∈ U(A)} satisfy the assumptions of the Ryll-Nardzewski fixed-point theorem [25, Chapter V, Theorem 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Hence, there exists a point a ∈ K fixed with respect to α, that is, we have a = αu(a) = uau∗ + δ(u)u∗ for every u ∈ U(A) and ∥a∥E ≤ ∥δ∥A→E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Therefore au = ua + δ(u) for every u ∈ U(A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Thus, δ(u) = [a, u] for every u ∈ U(A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Since every element x ∈ A is a linear combination of four elements from U(A) [51, Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='7], we obtain that δ = δa on A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' □ A symmetric function space E(M, τ) is said to have the Levi property [1, Definition 7], or a monotone complete norm, or to satisfy property (B) [58, Chapter X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='4], if for every upwards directed net {xβ} in E(M, τ)+, satisfying supβ ∥xβ∥E < ∞, there exists an element x ∈ E(M, τ)+ such that xβ ↑ x in E(M, τ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' It is well known that if a norm is Levi, then necessarily it is also weak Fatou [1, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='89], i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=', there exists a constant K ≥ 1 such that 0 ≤ xβ ↑ x ⇒ ∥x∥E ≤ K lim β ∥xβ∥E .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' For a symmetric function space E(0, ∞), it has the Levi property if and only if it has an equivalent symmetric norm having the Fatou property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' The (⇐) implication is clear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' For the (⇒) implication, one only need to observe that for any 0 ≤ x ∈ E(0, ∞), there exists a net (xβ)β ⊂ (L1 ∩ L∞)(0, ∞) such that xβ ↑ x [32, Proposition 1(vii)], and therefore, 1 K ∥x∥E ≤ sup β ∥xβ∥E (2) = sup β ∥xβ∥E×× = ∥x∥E×× [32, Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='3] ≤ ∥x∥E , and (E(0, ∞)××, ∥·∥E××) has the Fatou property (see [30, Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='1] and [60]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Recall that E(0, ∞) has the Fatou property if and only E(0, ∞) is isometric to E(0, ∞)××.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' We obtain that E(0, ∞) has the Levi property if and only E(0, ∞) = E(0, ∞)×× (up to equivalent norms).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' DERIVATIONS INTO NONCOMMUTATIVE SYMMETRIC SPACES 13 The following theorem is the main result of the present paper, which resolves problems consid- ered in a numbers of papers, see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [11,12,14,43,45,47,55,83] and references therein.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Let M be a von Neumann algebra with a faithful normal semifinite trace τ and let A be a C∗-subalgebra of M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' If E(M, τ) is a strongly symmetric space of τ-compact operators (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=', E(M, τ) ⊂ S0(M, τ)7) having the Fatou property (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=', the Levi property), then every derivation δ : A → E(M, τ) is inner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' That is, there exists an element a ∈ conv {δ(u)u∗ | u ∈ U(A)} tτ ⊂ E(M, τ) with ∥a∥E ≤ ∥δ∥A→E (∥a∥E ≤ c ∥δ∥A→E for some constant c depending on E(0, ∞) only) such that δ = δa on A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Without loss of generality, we may assume that the carrier projection cE = 1 and assume that A is unital (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' the proof of [11, Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='4]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' By Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='7, we may assume that E(M, τ) has the Fatou property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Since E(M, τ) has the Fatou property and E(M, τ) ⊂ S0(M, τ), it follows that E(M, τ)×× ⊂ S0(M, τ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' By Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='5, there exists a symmetric KB-function space F(0, ∞) ⫋ (L1 + C0)(0, ∞) such that E(M, τ) ⊂ F(M, τ) ⊂ S0(M, τ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Without loss of generality, we may assume that L2(0, ∞) ⊂ F(0, ∞) by replacing F(0, ∞) with L2(0, ∞) + F(0, ∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' In particular, F(0, ∞) ∩ L∞(0, ∞) ⫌ L1(0, ∞) ∩ L∞(0, ∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' By Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='4, F(0, ∞)× ⊂ S0(0, ∞), and therefore, F(M, τ)× ⊂ S0(M, τ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Note that δ(A) ⊂ E(M, τ) ⊂ F(M, τ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' By Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='6, there is an element a ∈ conv {δ(u)u∗ | u ∈ U(A)} ∥·∥F such that δ = δa on A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Hence, there exists a sequence (xn)∞ n=1 ⊂ conv {δ(u)u∗ | u ∈ U(A)} such that ∥xn − a∥F →n 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Since F(M, τ) is a symmetric space, it follows from [32, Proposition 20] that xn →tτ a as n → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' By Ringrose’s theorem [73], we have that δ : (A, ∥·∥∞) → (E(M, τ), ∥·∥E) is a bounded map- ping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Since E(M, τ) has the Fatou property, it follows that the closed ball (E(M, τ), ∥·∥E) with radius ∥δ∥A→E is closed in S(M, τ) with respect to the local measure topology (see Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Noticing that every element xn, n ≥ 1 belongs to the ball of radius ∥δ∥A→E in E(M, τ) and xn → a in the local measure topology, we conclude that a ∈ E(M, τ) with ∥a∥E ≤ ∥δ∥A→E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' □ Recall that a symmetric function space having the Fatou/Levi property generates a noncommu- tative strongly symmetric space having the Fatou/Levi property (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [61, Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='8] and [32, Theorem 54]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' We have the following consequence of Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Assume that E(0, ∞) ⊂ S0(0, ∞) is a symmetric function space having the Fatou property (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=', the Levi property).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Then, a derivation δ : A → E(M, τ) is necessarily inner for any von Neumann algebra M with a semifinite faithful normal trace τ and a C∗-subalgebra A of M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' That is, there exists an element a ∈ conv {δ(u)u∗ | u ∈ U(A)} tτ ⊂ E(M, τ) with ∥a∥E ≤ ∥δ∥A→E (∥a∥E ≤ c ∥δ∥A→E for some constant c depending on E(0, ∞) only) such that δ = δa on A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='9 provides an alternative proof for the resolution of the derivation problem due to Bunce and Paschke [18], which differs from those in [5, 70] involving L-embeddedness of the predual of a von Neumann algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Moreover, we provide new information that implementing element a of the derivation can be found in the measure (or any symmetric norm topology which is weaker than the L1-topology) closure of the convex hull of {δ(u)u∗ | u ∈ U(A)}, which seems to be more natural in fixed point theory and derivation theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 7If τ(1) < ∞, then E(M, τ) ⊂ S0(M, τ) holds for any symmetric space E(M, τ) affiliated with M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 14 J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' HUANG AND F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' SUKOCHEV Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Let M be a semifinite von Neumann algebra and let A be a C∗-subalgebra of M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Then, any derivation from A into M∗ is inner, and there exists an element a ∈ conv{δ(u)u∗ | u ∈ U(A)} tτ with ∥a∥L1 ≤ ∥δ∥A→L1 such that δ = δa on A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' The following corollary significantly extends results from [11,43,55] for derivations into symmet- ric ideals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' On the other hand, it shows that [12, Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='3] holds true even for C∗-subalgebras rather than von Neumann subalgebras.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Let M be a semifinite von Neumann algebra equipped with a semifinite faithful normal trace τ and let A be a C∗-subalgebra of M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Let E(M, τ) be an ideal of C0(M, τ) having strongly symmetric norm and the Levi property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Then, every derivation from A into E(M, τ) is inner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' For a von Neumann algebra M equipped with a faithful normal tracial state, M ⊂ S0(M, τ) and M has the Fatou/Levi property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Therefore, we have the following consequence of Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [19, Section 5] [80] Let M be a von Neumann algebra equipped with a faithful normal tracial state and let A be a C∗-subalgebra of M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Then every derivation from A into M is inner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Outer derivations In this section, we present several examples of outer derivations with values in a symmetric space failing the Levi property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' The study of derivations into ideals of a von Neumann algebra was initiated Johnson and Parrott [48] by showing that derivations from an abelian/properly infinite von Neumann subalgebra of B(H) into the algebra K(H) of all compact operators on H are inner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' This result may be well seen as a precursor to Question 1 in the setting of symmetrically normed ideals in M = B(H).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' After that, the innerness of derivations into ideals of a von Neumann algebra have been studied extensively in [11,12,15,16,20,40,43,55,72].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Recall that the Fatou/Levi property can not be dropped in Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='8, which has been demonstrated in [77, Example 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='8], [11, Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='8] and [44, Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' The following theorem demonstrates that there exist outer derivations into E(M, τ) ∩ M whenever the ideal E(M, τ) ∩ M does not have the Levi property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Let M be a non-finite factor equipped with a semifinite faithful normal trace τand let E(M, τ) be a symmetric space affiliated with M such that E(M, τ)∩M does not have the Levi property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Then, there exist outer derivations from the C∗-algebra C0(M, τ) into E(M, τ) ∩ M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Since M is a factor, it follows that it is either atomless or is atomic with all atoms having equal trace.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Therefore, E(M, τ)×× is a fully symmetric space having the Fatou property (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [29], [34, Chapter IV, Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='4], [32, Remarks 5 and 6]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Hence, E(M, τ)×× ∩ M, equipped with the norm ∥x∥E(M,τ)××∩M = max {∥x∥E×× , ∥x∥∞} , x ∈ E(M, τ)×× ∩ M, has the Fatou property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' On the other hand, the lack of the Levi property of E(M, τ) ∩ M implies that there exists a net (xi)i∈I of positive elements in E(M, τ) ∩ M increasing to 0 ≤ x ∈ M such that sup ∥xi∥E < ∞ but x /∈ E(M, τ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' By the Fatou property of E(M, τ)×× and E(M, τ) ⊂ E(M, τ)×× [32, Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='3], we have x ∈ E(M, τ)×× ∩ M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Since E(M, τ)∩M does not have the Levi property, it follows that E(M, τ)∩M ̸= M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Hence, E(M, τ) ⊂ S0(M, τ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' There are two possible cases: (1) If E(M, τ)×× ⊂ C0(M, τ), then we consider δx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' We claim that δx is a non-inner derivation from C0(M, τ) into E(M, τ) ∩ M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Recall that ∥z∥E (2) = ∥z∥E×× , ∀z ∈ F(M, τ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' DERIVATIONS INTO NONCOMMUTATIVE SYMMETRIC SPACES 15 For every y ∈ C0(M, τ), the projections e|y|(ε, ∞) and e|y|(ε1, ∞) are τ-finite for every ε > ε1 > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Thus, we have ���xye|y|(ε, ∞) − xye|y|(ε1, ∞) ��� E ≤ ���xye|y|(ε1, ε] ��� E = ���xye|y|(ε1, ε] ��� E×× ≤ ε ∥x∥E×× , which shows that � xye|y|( 1 n, ∞) � n≥1 is a Cauchy sequence in E(M, τ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' On the other hand, xye|y|( 1 n, ∞) → xy in measure, which implies that xy ∈ E(M, τ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Similarly, yx ∈ E(M, τ) and therefore δx(C0(M, τ)) ⊂ E(M, τ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Moreover, x ∈ M and C0(M, τ) ⊂ M imply that δx(C0(M, τ)) ⊂ E(M, τ) ∩ M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Finally, if there exists an operator x′ ∈ E(M, τ) ∩ M such that δx = δx′, then x − x′ commutes with all elements in C0(M, τ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Noticing that M is the closure of C0(M, τ) in the weak operator topology (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [62, Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='8]), we obtain that x − x′ commutes with all elements in M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' However, M is a factor and therefore x − x′ ∈ C1, which is a contradiction with the assumption that E(M, τ)×× ⊂ C0(M, τ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' (2) If E(M, τ)×× ⊃ M, then, by Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='4, we have E(M, τ) ∩ M ⊃ C0(M, τ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Recall that E(M, τ) ∩ M ̸= M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' We have E(M, τ) ∩ M = C0(M, τ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Now, the existence of outer derivations follows from [11, Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='8] immediately.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' □ Corollary 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Let E(0, ∞) be a symmetric function space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' If E(0, ∞)∩L∞(0, ∞) does not have the Levi property, then for any infinite factor M equipped with a semifinite faithful normal trace τ, there exists outer derivations from the C∗-algebra C0(M, τ) into E(M, τ) ∩ M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' By Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='1, it suffices to prove that E(M, τ) ∩ M does not have the Levi property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Since E(0, ∞) ∩ L∞(0, ∞) has no Levi property, it follows that (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='7) E(0, ∞) ∩ L∞(0, ∞) ̸= (E(0, ∞) ∩ L∞(0, ∞))×× = E(0, ∞)×× ∩ L∞(0, ∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' That is, there exists 0 ≤ x = µ(x) ∈ E(0, ∞)×× ∩ L∞(0, ∞) such that x /∈ E(0, ∞) ∩ L∞(0, ∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Observe that � n≥1 µ(n;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' x)χ(n−1,n] ≤ µ(x) ∈ E(0, ∞)×× ∩ L∞(0, ∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' There exists y ∈ M such that µ(y) = � n≥1 µ(n;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' x)χ(n−1,n] ≤ µ(x) ∈ E(0, ∞)×× ∩ L∞(0, ∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' However, we have µ(y) ≥ µ � µ(x) − µ(x)χ(0,1] � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Since µ(x)χ(0,1] ∈ E(0, ∞)∩L∞(0, ∞) (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [32, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='245] or [60]), it follows that y /∈ E(M, τ)∩M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' This shows that E(M, τ)∩M does not have the Levi property when M a semifinite infinite (atomic or atomless) factor, see Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' □ Recall that the dilation operator σs, s > 0, on S(0, ∞) is defined by [60–62] (σs)f(t) = f � t s � , ∀f ∈ S(0, ∞), s ∈ (0, ∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' For the case of unbounded operators, the example of an outer derivation is more involved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' The result presented below is perhaps the first example of an outer derivation into a symmetric space affiliated with a finite von Neumann algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Example 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Let M be the von Neumann algebra which is the closure of ⊕n≥1M2 in the weak operator topology equipped with the trace τ := ⊕n≥1 1 2n+1 Tr2, where Tr2 is the standard trace of M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Let E(0, 1) be a symmetric function space without the Levi property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Then, there exist outer derivations from the C∗-algebra A := ⊕M2n ∥·∥∞ into E(M, τ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 16 J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' HUANG AND F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' SUKOCHEV Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' The lack of the Levi property of E(0, 1) shows that E(0, 1) ̸= E(0, 1)×× (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Re- mark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='7), and there exists a positive function a ∈ E(0, 1)×× but a /∈ E(0, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Define b := � n≥1 µ � 1 2n−1 ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' a � χ[ 1 2n , 1 2n−1 ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' We have b ≤ a ≤ � n≥1 µ � 1 2n ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' a � χ[ 1 2n , 1 2n−1 ) = σ2(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Therefore, b ∈ E(0, 1)×× but b /∈ E(0, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Now, we define a self-adjoint element y by setting z := � n≥1 an (pn1 − pn2) , an = µ � 1 2n ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' a � , n ≥ 1, where pn1 and pn2 are mutually orthogonal non-trivial projections in the n-th direct summand M2, and the series is taken in the measure topology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' In particular, µ(z) = σ2(b) and therefore, z ∈ E(M, τ)×× but z /∈ E(M, τ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' We claim that δz(A) ⊂ E(M, τ)b, the closure of M in E(M, τ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Indeed, since δz has image in E××(M, τ) (generated by E(0, 1)××), it follows from Ringrose’s theorem [73] that δz is bounded from (A, ∥·∥∞) into (E××(M, τ), ∥·∥E××).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Let pn be the identity of the n-th direct summand M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' For any element y ∈ A, we have yn := y �n k=1 pk → y in the uniform norm topology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Note that ynz, zyn ∈ M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Hence, for any n > m, we have ∥δz(yn) − δz(ym)∥E(M,τ) = ∥µ(δz(yn) − δz(ym))∥E(0,1) (2) = ∥µ(δz(yn) − δz(ym))∥E(0,1)×× = ∥δz(yn) − δz(ym)∥E××(M,τ) ≤ 2 ∥yn − ym∥∞ ∥z∥E××(M,τ) → 0 as n → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Therefore, (δz(yn))n≥1 is a Cauchy sequence in E(M, τ), which implies that (δz(yn))n≥1 converges to some element in E(M, τ) (in particular, (δz(yn))n≥1 is tτ-convergent).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' On the other hand, δz(yn) →tτ δz(y) as n → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Therefore, ∥δz(yn)n≥1 − δz(y)∥E(M,τ) →n 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Hence, δz(y) ∈ E(M, τ) for all y ∈ A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Assume that there exist z1 ∈ E(M, τ) such that δz1 = δz, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=', z1 − z commutes with A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' That is, z1 −z = � n≥1 bnpn for some sequence (bn)n≥1 of complex numbers, where the series converges in the measure topology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' However, E(0, 1) ∋ µ(z1) = µ \uf8eb \uf8edz + � n≥1 bnpn \uf8f6 \uf8f8 = µ \uf8eb \uf8ed� n≥1 an (pn1 − pn2) + � n≥1 bnpn \uf8f6 \uf8f8 = µ \uf8eb \uf8ed� n≥1 (an + bn)pn1 − (an − bn)pn2 \uf8f6 \uf8f8 ≥ µ \uf8eb \uf8ed� n≥1 max{|an + bn|, |an − bn|}pn1 \uf8f6 \uf8f8 ≥ µ \uf8eb \uf8ed� n≥1 anpn1 \uf8f6 \uf8f8 = µ \uf8eb \uf8ed� n≥1 anpn2 \uf8f6 \uf8f8 = σ1/2µ(z), which implies that z ∈ E(M, τ) [60, Theorem II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' This is a contradiction to the assumption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' □ The following result is an immediate consequence of Corollaries 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='9, 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='2 and Example 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' DERIVATIONS INTO NONCOMMUTATIVE SYMMETRIC SPACES 17 Corollary 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' For a given symmetric function space E(0, ∞) ⊂ S0(0, ∞), the following two statements are equivalent: (1) for any von Neumann algebra M equipped with a semifinite faithful normal trace τ and any C∗-subalgebra A of M, derivations δ : A → E(M, τ) are necessarily inner;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' (2) E(0, ∞) has the Levi property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' The following result is an immediate consequence of Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='9 and Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Corollary 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Let CE be a symmetric ideal of compact operators in B(H).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Then, the following two statements are equivalent: (1) for any C∗-subalgebra A of B(H), derivations δ : A → CE are necessarily inner;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' (2) the commutative core ℓE of CE has the Levi property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' References [1] Yu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Abramovich, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Aliprantis, Positive operators, Handbook of the geometry of Banach spaces, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' I, 85–122, North-Holland, Amsterdam, 2001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [2] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Akemann, The dual space of an operator algebra, Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 126 (1967), 286–302.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [3] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Akemann, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Dodds, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Gamlen, Weak compactness in the dual space of C∗-algebra, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Funct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 10 (1972), 446–450.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [4] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Aliprantis, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Burkinshaw, Positive operators, Academic Press, New York, 1985.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [5] U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Bader, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Gelander, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Monod, A fixed point theorem for L1 spaces, Invent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 189 (2012), 143–148.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [6] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Bennett, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Sharpley, Interpolation of operators, Academic Press, Boston, 1988.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [7] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Ber, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Chilin, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Levitina, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Sukochev, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Zanin, Derivations on algebras of unbounded operators, to appear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [8] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Ber, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Chilin, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Sukochev, Non-trivial derivations on commutative regular algebras, Extracta Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 21(2) (2006), 107–147.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [9] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Ber, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Chilin, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Sukochev, Continuity of derivations of algebras of locally measurable operators, Integr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Equ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Oper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Theory 75 (2013), 527–557.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [10] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Ber, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Chilin, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Sukochev, Continuous derivations on algebras of locally measurable operators are inner, Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' London Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 109(1) (2014), 65–89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [11] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Ber, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Huang, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Levitina, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Sukochev, Derivations with values in ideals of semifinite von Neumann algebras, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Funct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 272(12) (2017), 4984–4997.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [12] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Ber, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Huang, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Levitina, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Sukochev, Derivations with values in the ideal of τ-compact operators affiliated with a semifinite von Neumann algebra, Comm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 390(2) (2022), 577–616.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [13] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Ber, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Kudaybergenov, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Sukochev, Derivations on Murray–von Neumann algebras associated with type II1-algebras are all inner, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Reine Angew.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 791 (2022), 283–301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [14] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Ber, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Sukochev, Derivations in the Banach ideals of τ-compact operators, arXiv:1204.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='4052v1, 12pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [15] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Ber, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Sukochev, Commutator estimates in W ∗-factors, Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 364(10) (2012), 5571– 5587.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [16] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Ber, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Sukochev, Commutator estimates in W ∗-algebras, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Funct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 262(2) (2012), 537–568.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [17] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Buhvalov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Veksler, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Ge˘ıler, Normed lattices, (Russian) Mathematical analysis, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 18, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 125–184, Akad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Nauk SSSR, Vsesoyuz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Inst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Nauchn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' i Tekhn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Informatsii, Moscow, 1980.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [18] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Bunce, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Paschke, Derivations on a C∗-algebra and its double dual, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Funct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 37 (1980), 235–247.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [19] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Christensen, Extension of derivations, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Funct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 27 (1978), 234–247.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [20] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Christensen, The C∗-algebra of generalized compacts associated with a von Neumann algebra, Operators in indefinite metric spaces, scattering theory and other topics (Bucharest, 1985), 51–58, Oper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Theory Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=', 24, Birkh¨auser, Basel, 1987.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [21] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Christensen, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Effros, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Sinclair, Completely bounded multilinear maps and C∗-algebraic cohomology, Invent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 90 (1987), 279–296.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [22] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Christensen, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Pop, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Sinclair, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Smith, Hochschild cohomology of factors with property Γ, Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' of Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 158 (2003), 635–659.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [23] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Connes, Classification of injective factors, Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' of Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 104 (1976), 73–115.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [24] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Connes, On the cohomology of operator algebras, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Funct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 28 (1978), 248-253.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [25] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Conway, A course in functional analysis, Springer-Verlag, New York, 1985.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [26] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Davidson, Nest algebras, Longman Scientific & Technical, Harlow, 1988.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [27] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Davis, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Figiel, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Johnson, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Pe�lczy´nski, Factoring weakly compact operators, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Funct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 17 (1974), 311–327.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [28] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Dodds, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Dodds, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' de Pagter, Weakly compact subsets of symmetric operator spaces, Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Camb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Phil.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 110 (1991), 169–182.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [29] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Dodds, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Dodds, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' de Pagter, Noncommutative K¨othe Duality, Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 339 (1993), 717–750.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 18 J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' HUANG AND F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' SUKOCHEV [30] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Dodds, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Dodds, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Sukochev, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Tikhonov, A non-commutative Yosida-Hewitt theorem and convex sets of measurable operators closed locally in measure, Positivity 9 (2005), 457–484.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [31] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Dodds, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' de Pagter, The non-commutative Yosida–Hewitt decomposition revisited, Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 364(12) (2012), 6425–6457.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [32] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Dodds, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' de Pagter, Normed K¨othe spaces: A non-commutative viewpoint, Indag.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 25 (2014), 206– 249.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [33] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Dodds, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' de Pagter, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Sukochev, Sets of uniformly absolutely continuous norm in symmetric spaces of measurable operators, Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=', 368 (2016), 6, 4315–4355.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [34] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Dodds, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' de Pagter, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Sukochev, Theory of noncommutative integration, to appear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [35] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Dodds, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Sukochev, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Schluchtermann, Weak compactness criteria in symmetric spaces of measurable spaces, Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Cambridge Phil.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 131 (2001), 363–384.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [36] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Elliott, Some C∗-algebras with outer derivations, Rocky Mountain J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 3 (1973), 501–506.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [37] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Elliott, Some C∗-algebras with outer derivations II, Canad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 26 (1974), 185–189.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [38] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Elliott, Some C∗-algebras with outer derivations III, Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 106 (1977), 121–143.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [39] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Fack, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Kosaki, Generalized s-numbers of τ-measurable operators, Pacific J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=', 123 (1986), 269–300.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [40] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Galatan, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Popa, Smooth bimodules and cohomology of II1 factors, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Inst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Jussieu 16(1) (2017), 155–187.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [41] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Grothendieck, Sur les applications lin´eaires faiblement compactes d’espaces du type C(K), Canad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=', 5 (1953), 129–173.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [42] U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Haagerup, All nuclear C∗-algebras are amenable, Invent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 74(2) (1983), 305–319.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [43] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Hoover, Derivations, homomorphisms, and operator ideals, Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 62(2) (1977), 293–298.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [44] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Huang, Derivations wuth values into ideals of a semifinite von Neumann algebra, Ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' thesis, UNSW, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [45] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Huang, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Levitina, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Sukochev, M-embedded symmetric operator spaces and the derivation problem, Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Cambridge Philos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 169(3) (2020), 607–622.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [46] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Huang, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Pliev, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Sukochev, (Non-)Dunford–Pettis operators on noncommutative symmetric spaces, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Funct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 282 (2022), 109443.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [47] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Johnson, Cohomology in Banach algebras, Mem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=', Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 127, American Mathematical Society, Providence, RI (1972).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [48] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Johnson, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Parrott, Operators commuting with a von Neumann algebras modulo the set of compact oper- ators, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Funct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 11 (1972), 39–61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [49] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Johnson, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Kadison, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Ringrose, Cohomology of operator algebras III, Bull.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' France 100 (1972), 73–96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [50] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Kadison, Derivations of operator algebras, Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' of Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 83 (1966), 280–293.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [51] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Kadison, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Ringrose, Fundamentals of the Theory of Operator Algebras I, Academic Press, Orlando, 1983.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [52] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Kadison, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Ringrose, Fundamentals of the Theory of Operator Algebras II, Academic Press, Orlando, 1986.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [53] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Kadison, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Liu, A note on derivations of Murray–von Neumann algebras, Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Natl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Acad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' USA 11 (2014), 2087–2093.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [54] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Kadison, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Liu, Derivations of Murray–von Neumann algebras, Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Scand.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 115 (2014), 206–228.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [55] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Kaftal, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Weiss, Compact derivations relative to semifinite von Neumann algebras, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Funct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 62 (1985), 202–220.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [56] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Kalton, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Sukochev, Symmetric norms and spaces of operators, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Reine Angew.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 621 (2008), 81–121.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [57] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Kaminska, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Masty�lo, The Schur and (weak) Dunford–Pettis properties in Banach lattices, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Austral.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 73 (2002), 251–278.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [58] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Kantorovich, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Akilov, Functional Analysis, Nauka, Moscow, 1984.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [59] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Kaminska, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Masty�lo, The Dunford–Pettis property for symmetric spaces, Canad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 52 (2000), 789–803.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [60] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Krein, Yu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Petunin, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Semenov, Interpolation of linear operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Translations of Mathematical Mono- graphs, 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' American Mathematical Society, Providence, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=', 1982.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [61] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Lindenstrauss, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Tzafriri, Classical Banach spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Function spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, 97, Springer-Verlag, Berlin-New York, 1979.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [62] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Lord, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Sukochev, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Zanin, Singular traces: Theory and applications, De Gruyter Studies in Mathematics, 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' De Gruyter, Berlin, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [63] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Losert, The derivation problem for group algebras, Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' of Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 168 (2008), 221–246.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [64] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='Ya.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Lozanovskiˇi, Mappings of Banach lattices of measurable functions, Izv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Vyssh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Uchebn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Zaved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 5(192) (1978), 84–86 (in Russian).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [65] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Luxemburg, Banach function spaces, Thesis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Technische Hogeschool te Delft, Delft, 1955.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 70 pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [66] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Meyer-Nieberg, Banach lattices, Springer–Verlag, Berlin–Heidelberg–New York, 1991.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [67] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Nelson, Notes on non-commutative integration, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Funct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 15 (1974), 103–116.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [68] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='Ya.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Novikov, Sequences of functions in symmetric spaces, Publishing house “Samara University”, Samara, 2008 (in Russian).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [69] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Pisier, Similarity Problems and Completely Bounded Maps, Springer-Verlag, Berlin, 2001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [70] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Pfitzner, L-embedded Banach spaces and measure topology, Israel J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 205 (2015), 421–451.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' DERIVATIONS INTO NONCOMMUTATIVE SYMMETRIC SPACES 19 [71] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Popa, The commutant modulo the set of compact operators of a von Neumann algebra, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Funct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 71 (1987), 393–408.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [72] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Popa, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' R˘adulescu, Derivations of von Neumann algebras into the compact ideal space of a semifinite algebra, Duke Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 57(2) (1988), 485–518.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [73] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Ringrose, Automatic continuity of derivations of operator algebras, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' London Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 5 (1972), 432–438.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [74] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Runde, B(ℓp) is never amenable, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 23(4) (2010), 1175–1185.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [75] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Sakai, Weakly compact operators on operator algebras, Pacific J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 14 (1964), 659–664.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [76] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Sakai, Derivations of W ∗-algebras, Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' of Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 83 (1966), 273–279.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [77] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Sakai, C∗-Algebras and W ∗-Algebras, Reprint of the 1971 edition, Classics Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=', Springer-Verlag, Berlin, 1998, xii+256 pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [78] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Segal, A non-commutative extension of abstract integration, Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' of Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 57 (1953), 401–457.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [79] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Semenov, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Sukochev, Sums and intersections of symmetric operator spaces, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=', 414 (2014), 742–755.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [80] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Sinclair, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Smith, Hochschild cohomology of von Neumann algebras, London Mathematical Society Lecture Note Series 203, Cambridge University Press, Cambridge, 1995.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [81] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Takesaki, Theory of Operator Algebras I, Springer-Verlag, New York, 1979.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [82] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Takesaki, Theory of Operator Algebras II, Springer-Verlag, Berlin-Heidelberg-New York, 2003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [83] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Weigt, Derivations of τ-measurable operators, In Operator Theory: Advances and Applications, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 195, 273–286, Birkhauser Verlag, Basel, 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' [84] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Whitley, The Krein–Smulian theorem, Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' 97(2) (1986), 376–377.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content=' Institute for Advanced Study in Mathematics of HIT, Harbin Institute of Technology, Harbin, 150001, China Email address: jinghao.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='huang@hit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='cn School of Mathematics and Statistics, University of New South Wales, Kensington, 2052, Australiaa Email address: f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='sukochev@unsw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} +page_content='au' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE2T4oBgHgl3EQfaQf4/content/2301.03874v1.pdf'} diff --git a/cdE0T4oBgHgl3EQfnwHq/content/tmp_files/2301.02518v1.pdf.txt b/cdE0T4oBgHgl3EQfnwHq/content/tmp_files/2301.02518v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..1fab302299224979e150e28ddc8d1db63c10da7e --- /dev/null +++ b/cdE0T4oBgHgl3EQfnwHq/content/tmp_files/2301.02518v1.pdf.txt @@ -0,0 +1,574 @@ +Higher Order Dynamics in the Replicator Equation Produce a Limit Cycle in +Rock-Paper-Scissors +Christopher Griffin1, ∗ and Rongling Wu2, 3, † +1Applied Research Laboratory, The Pennsylvania State University, University Park, PA 16802 +2Beijing Institute of Mathematical Sciences and Applications, Beijing 101408, China +3Yau Mathematical Sciences Center, Tsinghua University, Beijing 100084, China +Recent work has shown that pairwise interactions may not be sufficient to fully model ecological +dynamics in the wild. In this letter, we consider a replicator dynamic that takes both pairwise +and triadic interactions into consideration using a rank three tensor. We study this new nonlinear +dynamics using a generalised rock-paper-scissors game whose dynamics are well understood in the +classic replicator sense. We show that the addition of higher-order dynamics leads to the creation +of a subcritical Hopf bifurcation and consequently an unstable limit cycle. It is known that this +kind of behaviour cannot occur in the pairwise replicator in any three strategy games, showing the +effect higher-order interactions can have on the resulting dynamics of the system. We numerically +characterise parameter regimes in which limit cycles exist and discuss possible ways to generalise +this approach to studying higher-order interactions. +I. +INTRODUCTION +Pairwise interactions are frequently assumed in constructing dynamical systems models of ecological systems [1–4]. +This is a foundational assumption of classical evolutionary game theory in which the replicator dynamic is built +from a matrix game [5–7]. In this case, pairwise interactions of players define the fitness function that governs the +dynamics. This simplifying assumption is violated by the intrinsic existence of high-order interactions (HOI’s), for +which there is growing evidence [8–18]. A higher-order interaction occurs when three or more species act together as a +subgroup to shape community behaviour[2, 8–12, 19–21]. In the case of random interactions in ecological communities, +the occurrence of HOIs can alter the established relationship between diversity and stability [10], leading to new +evolutionary trajectories. +In this letter we show how to modify the standard game matrix replicator dynamic by defining fitness in terms of +both a game matrix (for pairwise interactions) and a game tensor (for triadic interactions). This work is related to the +prior work of Gokhale and Traulsen [22] who studied evolutionary games with multiple (more than two) strategies and +multiple players. In this work, they study the maximum number of mixed strategy equilibria that may emerge in the +replicator dynamic. More recently, Zhang et al. [23] study multiplayer evolutionary games in the context of asymmetric +payoffs, which we do not consider. In particular, we study the resulting dynamics on a generalised rock-paper-scissors +game (RPS) [5]. We show that the resulting dynamics arising from triadic interactions are fundamentally different +from those dynamics arising from RPS in the replicator equation with only pairwise interactions by showing that the +HOI’s lead to the emergence of a limit cycle. +Rock-paper-scissors (and its generalisations) has been studied in multiple different contexts [24–43] and there are +at least two schools of partially compatible dynamics. Postlewaite and Rucklidge [26, 28–30, 33, 38] have extensively +studied a dynamical systems model of RPS in both spatial and aspatial cases. Their dynamics are distinct [44] from +the dynamics arising from the replicator equation as given in [5–7]. We do not consider their dynamics but instead +focus on the replicator equation. In particular, Zeeman [45] showed that RPS dynamics under the replicator exhibit a +degenerate Hopf bifurcation and cannot produce limit cycles. More generally, Zeeman showed that no three strategy +game can produce a limit cycle under the replicator dynamics. However, since every dynamical system arising from +the replicator equation is diffeomorphic to a generalised Lotka-Volterra system, limit cycles and chaos may emerge +for games with more than three strategies. +The main results of this letter are: (i) We show how to incorporate triadic interactions using a simple rank 3 +tensor and note that the replicator equation ansatz does not change as a result of these interactions. (ii) We show +(numerically) that in generalised RPS with HOI’s a subcritical Hopf bifurcation occurs and a limit cycle emerges for +appropriate parameter choices. This behaviour must be caused by the HOI’s, since such dynamics cannot emerge +with only pairwise interactions. (iii) We use a statistical analysis to construct a three-dimensional bifurcation surface, +∗ griffinch@psu.edu +† ronglingwu@mail.tsinghua.edu.cn +arXiv:2301.02518v1 [nlin.AO] 6 Jan 2023 + +2 +showing parameter regions where the (unique) interior fixed point is stable and admits a limit cycle, is stable with no +limit cycle, and is unstable. +II. +MODEL +Let ∆n−1 be the n − 1 dimensional unit simplex embedded in Rn composed of vectors u = ⟨u1, . . . , un⟩ so that +u1 + · · · + un = 1 and ui ≥ 0 for all i ∈ {1, . . . , n}. Consider a simple ecological model with n species where Ui is the +size of the population of species i ∈ {1, . . . , n}. Let +M = +n +� +i=1 +Ui +be the total number of organisms present. The following observation can be found in [46] and sets the stage for our +analysis. Let ui = Ui/M be the proportion of biomass composed of species i. If fi : ∆n−1 → R is the fitness function +so that: +˙Ui = Uifi(u), +then it is easy to show (with the quotient rule) that: +˙ui = ui +� +f(u − ¯f(u) +� +, +(1) +where +¯f(u) = +n +� +i=1 +uifi(u). +Eq. (1) is the standard replicator [5–7]. In classical evolutionary game theory, we assume there is a (payoff) matrix +A ∈ Rn×n so that fi(u) = eT +i Au, where ei is the standard basis vector in Euclidean space in direction i. This model +assumes simple binary interactions among species with the payoff resulting from an interaction between species i +and species j given by Aij and going to the first (row) player in an imaginary game. Consequently single matrix +evolutionary game theory makes the most sense when the game described by A is symmetric. When A is skew- +symmetric, the game is not only symmetric but also zero-sum [47] as in the case of rock-paper-scissors, whose +interaction matrix is cyclic [48, 49] with +A = +� +� +0 +−1 +1 +1 +0 +−1 +−1 +1 +0 +� +� . +(2) +In this matrix, index 1 corresponds to rock, index 2 to paper, and index 3 to scissors. We will maintain this convention +when we analyse a generalisation of this game. +Paik and Griffin [49] (as well as Itoh [50], Bogoyavlensky [51] and Vesselov & Shabbat[52] in different contexts) +show that for generalisations of rock-paper-scissors to cyclic skew-symmetric game matrices with ±1 entries, the +resulting dynamics are Liouville-Arnold integrable. This is an (almost) immediate consequence of the fact that all +zero-sum replicator dynamics arise from a non-linear Poisson bracket as shown in [48]. In particular, this automatically +precludes the emergence of more interesting dynamics in simple cyclic games with Zeeman [45] going so far as to show +that in all three-strategy matrix games, the replicator dynamics cannot exhibit limit cycles. +In the case of higher-order interactions, it suffices to redefine fi(u) to be +fi(u) = eT +i Au + uT Biu, +(3) +where Bi is a quadratic form (matrix) that takes two copies of the population proportion vector u and returns a payoff +to species i that occurs when one member of species i meets two members of the population. In general, we could +think of Bi as being a slice of a (0, 3) tensor B : ∆n−1 × ∆n−1 × ∆n−1 → R. Using Eq. (3), it is clear that Eq. (1) +(the replicator equation) still holds for the dynamics of ui, but now incorporates payoffs from three-way interactions. +In what follows, we will define +Bi,j,k = pijkAij + qijkAik, + +3 +for constants of proportionality pijk and qijk. That is we assume that the three-way payoff is composed of payoffs from +binary interactions that are scaled to model the ecological effects of the more complex interactions. In our analysis +of generalised rock-paper-scissors, we choose pijk and qijk so that the Nash equilibria remain fixed points but the +stability of the fixed points change, showing that the Folk theorem of evolutionary game theory (see [7]) need not hold +in models of higher order interactions. It is left as a question for future work whether there are sufficient conditions +on the tensor B that ensure the Nash equilibria of the game matrix A are preserved as fixed points in three-way +dynamics. +Before proceeding to the analysis of a specific case, we note that Eq. (3) could be generalised to include as many +as n-way interactions by using higher rank tensors [22]. However, it is unlikely that such interactions are biologically +meaningful. Statistical tests for these kinds of interactions are discussed in [53]. +III. +HIGHER ORDER ROCK-PAPER-SCISSORS +The remainder of this paper is dedicated to showing that higher-order-interactions in a generalised rock-paper- +scissors game produce dynamics not seen when only pairwise interactions are modelled. For the remainder of this +paper fix a parameterised payoff matrix +A = +� +� +0 +−b − 1 +a + 1 +a + 1 +0 +−b − 1 +−b − 1 +a + 1 +0 +� +� , +(4) +where we assume a, b ≥ 0. This matrix will govern the payoff from simple pairwise interactions. We now define the +tensor B using its slices so that +B1 = +� +� +0 +1 +2(−b − 1) +1 +2(a + 1)β +1 +2(−b − 1) +−b − 1 +0 +1 +2(a + 1)β +0 +(a + 1)α +� +� +(5) +B2 = +� +� +(a + 1)α +1 +2(a + 1)β +0 +1 +2(a + 1)β +0 +1 +2(−b − 1) +0 +1 +2(−b − 1) +−b − 1 +� +� +(6) +B3 = +� +� +−b − 1 +0 +1 +2(−b − 1) +0 +(a + 1)α +1 +2(a + 1)β +1 +2(−b − 1) +1 +2(a + 1)β +0 +� +� . +(7) +Here we assume α ∈ (1, 2] and β ∈ +� +0, 1 +2 +� +for ecological sensibility. The reasoning behind defining B in this way is +justified by considering the payoff associated to rock (index 1). If a rock plays against two other rocks, it receives no +payoff – as expected from Eq. (4). If it meets two papers or a paper and a rock, then it receives the same net negative +payoff −b − 1 as if it met one paper. On the other hand, if it meets two scissors, then its payoff increases by a factor +of α ≥ 1. If a rock meets a rock and scissors, then the rocks split the payoff and each receives a payoff decreased by a +factor β. Finally if a rock meets both a paper and a scissors, then mutual destruction leads to no net payoff for any +player. The same logic is used for all other players. +There are several ways to realise the logic described above in the tensor B. Eqs. (5) to (7) enforce symmetry in +each slice and preserve a generalised cyclic property. Note that B1 can be recovered from B2 by rotating the rows +and columns of B1 down and to the right (just as row i + 1 can be obtained from row i in A by rotating to the right). +Thus B is a circulant (or Toeplitz) tensor. +It is straightforward to see that ¯ui = ei (i ∈ {1, 2, 3}) are fixed points as is the symmetric Nash equilibrium +¯u = ⟨ 1 +3, 1 +3, 1 +3⟩. The fact that A is a circulant matrix and B is a circulant tensor ensures that these are the only +equilibria in the system occurring in ∆2 and ¯u is the only interior equilibrium. +A. +Fixed Point Analysis +The eigenvalues of the Jacobian matrix at any fixed point ¯ui (i ∈ {1, 2, 3}) are +Λ = {0, −2(b + 1), (a + 1)(α + 1)}. +Based on the assumptions on the values of a, b and α, these are hyperbolic saddles, just as in the case of ordinary +rock-paper-scissors in the replicator dynamic [7]. This is in contrast to the behaviour at the interior fixed point. + +4 +There are one real and two complex eigenvalues of the Jacobian matrix at the interior fixed point ¯u given by +Λ = +� +r1 +9 , r2 ± i +√ +3q +18 +� +, +where +r1 = 2 + 5b − α − β − a(α + β + 3) +and +r2 = 1 + a(β − 2α − 3) + 4b − 2α + β +and +q = 9 + 6b + 2α + β + a(3 + 2α + β). +The first (real) eigenvalue is extraneous since the dynamics evolve on ∆2. Assuming α, β and b are free, r2 = 0 when +a = a∗ = 1 + 4b + β − 2α +3 + 2α − β +. +(8) +When a = a∗ + ϵ, then +r2 = ϵ(β − 2α − 3). +If follows from our assumptions on α and β that if ϵ > 0, then a > a∗ and r2 < 0 and ¯u∗ is attracting. Otherwise, ¯u∗ +is repelling. For ϵ = 0, the system has two pure imaginary eigenvalues, which satisfies the first requirement of Hopf’s +theorem (see [54], Page 152). Our assumptions that α ∈ (1, 2] and β ∈ +� +0, 1 +2 +� +ensures that +r′ +2(ϵ) = (β − 2α − 3) ̸= 0. +Thus the real part of the eigenvalues must cross the imaginary axis with non-zero speed, satisfying the second criterion +of Hopf’s theorem. Thus the system exhibits a Hopf bifurcation. +It is interesting to note that if we adhere to our ecological assumptions that α ∈ (1, 2] and β ∈ +� +0, 1 +2 +� +, then the +ordinary rock-paper-scissors matrix has r2 < 0. Thus the mixed strategy equilibrium becomes stable for all values of +α and β. To see this note that if b = 0 and we require a∗ = 0, then we must have α = (1 + β)/2, which takes values +between 1 +2 and 3 +4, outside of the ecologically sensible range. +B. +Numerical Illustration of a Subcritical Limit Cycle +We can show numerically that a subcritical limit cycle emerges for example parameters. For the remainder of this +section, let b = 0. In our initial limit cycle construction we assume α = 2 and β = 1 +2. In this case, the interaction +of (e.g.) a rock with two scissors doubles the payoff to rock, while two rocks interacting with a scissors will split +the payoff associated to the interaction. We set ϵ = +1 +100, implying the interior fixed point will be stable. In Fig. 1 +(left) we see an (approximated) limit cycle surrounding a stable interior fixed point. Outside the limit cycle, flow +goes to the boundary. To complete the numeric proof, we apply the Poincar´e-Bendixson theorem. In Fig. 1 (right) +we compute the distance from the three trajectories to the interior fixed point after a ternary transform. This is a +true representation of the distance seen in the trajectories in Fig. 1 (left). We can see that the distance from the +(approximated) limit cycle oscillates around a constant mean. The trajectory outside the limit cycle increases its +distance to the interior fixed point, while the trajectory inside the limit cycle decreases its distance to the interior +fixed point as expected. Thus the numerically identified limit cycle is subcritical. +When ϵ < 0, the interior fixed point becomes unstable (as expected) and the limit cycle vanishes as shown in +Fig. 2 (left). All trajectories approach the boundary as confirmed numerically in Fig. 2 (right), which again shows +the normalised distance from the trajectory to the interior fixed point. +When ϵ is increased beyond a certain value, the limit cycle disappears while the interior fixed point remains stable. +This is illustrated in Fig. 3. In Fig. 3 (right) we show that the distance from any trajectory to the interior fixed point +collapses to zero as time goes to infinity. +We can numerically approximate the value of ϵ where the limit cycle disappears for arbitrarily values of α ∈ (1, 2] +and β ∈ (0, 1 +2]. To do this, use the following steps: +1. Input: α, β. + +5 +R +P +S +0 +50 +100 +150 +200 +0.0 +0.1 +0.2 +0.3 +0.4 +0.5 +Time +Normalized Distance +IC=(0.7,0.15,0.15) +IC=(0.4,0.117,0.483) +IC=(0.4,0.2,0.4) +FIG. 1. (Top) Example trajectories with a subcritical limit cycle are shown. (Bottom) The distance of the trajectories to the +interior fixed point as a function of time. This proves numerically that there is a subcritical Hopf bifurcation in these dynamics +via the Poincar´e-Bendixson theorem. +2. Initialize: ϵ = +1 +100. Compute a = a∗ + ϵ, where a∗ is given by Eq. (8). +3. Numerically integrate the time-inverted dynamics: +˙ui = −ui +� +f(u − ¯f(u) +� +, +with u0 = ⟨0.99, 0.005, 0.005⟩. This accomplishes two things: (i) The modified dynamics invert the stability of +the limit cycle and (ii) the initial condition starts the trajectory close to the boundary. Let u(t) be the resulting +solution. +4. Compute d(t) = ∥u(t) − ˆ¯u∥2. +5. Fit d(t) ∼ γ0 + γ1t. +6. If γ1 < 0 with p-value less than 0.001, then statistically the trajectory is decaying toward a limit cycle and we +set ϵ := ϵ + +1 +1000 and goto Step 3. Otherwise, stop and return ϵ. +Using this technique, we can generate a surface showing the dependence of ϵ on the parameters α and β (see Fig. 4). +Before continuing our analysis, we note that a similar procedure can be used to identify limit cycles within this +dynamical system. Mathematica code to generate all figures is provided in the SI. +There are five outlier points that are significantly above or below the trend surface. These are most likely due to +numerical errors (from the integration) or sensitivity to the p-value test used in Line 6 of the procedure. The surface + +6 +R +P +S +0 +50 +100 +150 +200 +0.0 +0.1 +0.2 +0.3 +0.4 +0.5 +0.6 +Time +Normalized Distance +IC=(0.7,0.15,0.15) +IC=(0.4,0.117,0.483) +IC=(0.4,0.2,0.4) +FIG. 2. (Top) Sett ϵ below zero destabilises the interior fixed point and destroys the limit cycle (as expected). All trajectories +approach the boundary. +(Bottom) The distances of the trajectories to the interior fixed point increase as the trajectories +approach the boundary of ∆2. +was fit using non-outlier points and is given by the expression: +ˆϵmax(α, β) ≈ 0.063αβ − 0.075α − 0.191β + 0.217. +The adjusted r2 of this fit is 0.98 showing good explanatory power. The parameter table for the model is +Est. +SE +t-Stat p-val +1 +0.217 +0.002 104.8 +1.09 × 10−170 +α +−0.0751 0.001 −56.4 5.446 × 10−121 +β +−0.191 +0.007 −28.7 3.098 × 10−71 +αβ 0.063 +0.004 14.7 +3.00 × 10−33 +This statistical analysis shows that the the maximum period of a limit cycle (correlated to ϵmax) is negatively propor- +tional to both α and β. However, since interaction term is non-trivial the interaction between α and β can interact to +increase the ϵmax before the limit cycle disappears. Fig. 4 illustrates a type of bifurcation diagram (for b = 0) with a +triple (α, β, ϵ) generating a limit cycle if it falls below the surface and the interior fixed point being globally attracting +if (α, β, ϵ) is above the surface. + +7 +R +P +S +0 +50 +100 +150 +200 +0.00 +0.05 +0.10 +0.15 +0.20 +0.25 +0.30 +Time +Normalized Distance +IC=(0.7,0.15,0.15) +IC=(0.4,0.117,0.483) +IC=(0.4,0.2,0.4) +FIG. 3. (Top) If ϵ is increased beyond a critical value, the limit cycle is destroyed and all trajectories approach the interior +fixed point. (Bottom) The distances of the trajectories to the interior fixed point decrease as expected. +FIG. 4. Compute (α, β, ϵmax) points and the resulting fit surface showing the lifetime (ϵ) of the limit cycle as a function of α +and β. Outlier points are most likely due to numerical errors or sensitivity to the p-value test. + +β +Emax +α8 +IV. +CONCLUSION +In this letter we used the replicator equation to model higher-order interactions between three (or more) species +through the introduction of an interaction tensor. We showed that the dynamics that results in this case are fun- +damentally different from the ordinary binary interactions modelled by the usual replicator dynamics with a payoff +matrix. In particular, we studied a generalised rock-paper-scissors model and showed the existence of a non-degenerate +Hopf bifurcation that allows a subcritical limit cycle to emerge when higher order interactions are allowed. This is in +contrast to classical results on three strategy games in the ordinary replicator equation in which limit cycles cannot +emerge as a result of the degeneracy of a similar Hopf bifurcation. +While this letter provides a framework for modelling higher-order interactions within a replicator framework, there +are several possible future directions. Generalising the interaction rules used to construct the three-way interaction +tensor could lead to a generalisation of the Folk theorem in certain cases. It also would be interesting to introduce +a spatial component as in [44, 55–58] and determine what spatial dynamics emerge as a result of these higher-order +interactions. +V. +ACKNOWLEDGEMENTS +C.G. was supported in part by the National Science Foundation under grant DMS-1814876. R.W. was supported +by the Talents Grants at Beijing Forestry University. +[1] R. M. May, Will a large complex system be stable?, Nature 238, 413 (1972). +[2] M. J. Pomerantz, Do” higher order interactions” in competition systems really exist?, The American Naturalist 117, 583 +(1981). +[3] R. A. Relyea and K. L. Yurewicz, Predicting community outcomes from pairwise interactions: integrating density-and +trait-mediated effects, Oecologia 131, 569 (2002). +[4] S. M. Kodera, P. Das, J. A. Gilbert, and H. L. Lutz, Conceptual strategies for characterizing interactions in microbial +communities, Iscience , 103775 (2022). +[5] J. W. Weibull, Evolutionary Game Theory (MIT Press, 1997). +[6] J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics (Cambridge University Press, 1998). +[7] J. Hofbauer and K. Sigmund, Evolutionary Game Dynamics, Bulletin of the American Mathematical Society 40, 479 +(2003). +[8] J. M. Levine, J. Bascompte, P. B. Adler, and S. Allesina, Beyond pairwise mechanisms of species coexistence in complex +communities, Nature 546, 56 (2017). +[9] J. Grilli, G. Barab´as, M. J. Michalska-Smith, and S. Allesina, Higher-order interactions stabilize dynamics in competitive +network models, Nature 548, 210 (2017). +[10] E. Bairey, E. D. Kelsic, and R. Kishony, High-order species interactions shape ecosystem diversity, Nature communications +7, 1 (2016). +[11] D. McClean, V.-P. Friman, A. Finn, L. I. Salzberg, and I. Donohue, Coping with multiple enemies: pairwise interactions +do not predict evolutionary change in complex multitrophic communities, Oikos 128, 1588 (2019). +[12] P. S. Skardal, L. Arola-Fern´andez, D. Taylor, and A. Arenas, Higher-order interactions can better optimize network +synchronization, Physical Review Research 3, 043193 (2021). +[13] A. R. Kleinhesselink, N. J. Kraft, S. W. Pacala, and J. M. Levine, Detecting and interpreting higher-order interactions in +ecological communities, Ecology letters 25, 1604 (2022). +[14] T. Gibbs, S. A. Levin, and J. M. Levine, Coexistence in diverse communities with higher-order interactions, Proceedings +of the National Academy of Sciences 119, e2205063119 (2022), https://www.pnas.org/doi/pdf/10.1073/pnas.2205063119. +[15] F. Battiston, E. Amico, A. Barrat, G. Bianconi, G. Ferraz de Arruda, B. Franceschiello, I. Iacopini, S. K´efi, V. Latora, +Y. Moreno, et al., The physics of higher-order interactions in complex systems, Nature Physics 17, 1093 (2021). +[16] F. Battiston, G. Cencetti, I. Iacopini, V. Latora, M. Lucas, A. Patania, J.-G. Young, and G. Petri, Networks beyond +pairwise interactions: structure and dynamics, Physics Reports 874, 1 (2020). +[17] R. Lambiotte, M. Rosvall, and I. Scholtes, From networks to optimal higher-order models of complex systems, Nature +physics 15, 313 (2019). +[18] A. Swain, L. Fussell, and W. F. Fagan, Higher-order effects, continuous species interactions, and trait evolution shape +microbial spatial dynamics, Proceedings of the National Academy of Sciences 119, e2020956119 (2022). +[19] M. M. Mayfield and D. B. Stouffer, Higher-order interactions capture unexplained complexity in diverse communities, +Nature ecology & evolution 1, 1 (2017). +[20] H. Mickalide and S. Kuehn, Higher-order interaction between species inhibits bacterial invasion of a phototroph-predator +microbial community, Cell Systems 9, 521 (2019). + +9 +[21] J. Deng, W. Taylor, and S. Saavedra, Understanding the impact of third-party species on pairwise coexistence, PLOS +Computational Biology 18, e1010630 (2022). +[22] C. S. Gokhale and A. Traulsen, Evolutionary games in the multiverse, Proceedings of the National Academy of Sciences +107, 5500 (2010). +[23] X. Zhang, P. Peng, Y. Zhou, H. Wang, and W. Li, Evolutionary game-theoretical analysis for general multiplayer asym- +metric games, arXiv preprint arXiv:2206.11114 (2022). +[24] R. M. May and W. J. Leonard, Nonlinear aspects of competition between three species, SIAM journal on applied mathe- +matics 29, 243 (1975). +[25] M. Mobilia, Oscillatory dynamics in rock–paper–scissors games with mutations, Journal of Theoretical Biology 264, 1 +(2010). +[26] C. M. Postlethwaite and A. M. Rucklidge, A trio of heteroclinic bifurcations arising from a model of spatially-extended +rock–paper–scissors, Nonlinearity 32, 1375 (2019). +[27] D.-y. Hua, L.-c. Dai, and C. Lin, Four-and three-state rock-paper-scissors games with long-range selection, EPL (Euro- +physics Letters) 101, 38004 (2013). +[28] B. Szczesny, M. Mobilia, and A. M. Rucklidge, Characterization of spiraling patterns in spatial rock-paper-scissors games, +Physical Review E 90, 032704 (2014). +[29] B. Szczesny, M. Mobilia, and A. M. Rucklidge, When does cyclic dominance lead to stable spiral waves?, EPL (Europhysics +Letters) 102, 28012 (2013). +[30] A. Szolnoki, M. Mobilia, L.-L. Jiang, B. Szczesny, A. M. Rucklidge, and M. Perc, Cyclic dominance in evolutionary games: +a review, Journal of the Royal Society Interface 11, 20140735 (2014). +[31] T. Reichenbach, M. Mobilia, and E. Frey, Self-organization of mobile populations in cyclic competition, Journal of Theo- +retical Biology 254, 368 (2008). +[32] T. Reichenbach, M. Mobilia, and E. Frey, Mobility promotes and jeopardizes biodiversity in rock–paper–scissors games, +Nature 448, 1046 (2007). +[33] C. Postlethwaite and A. Rucklidge, Spirals and heteroclinic cycles in a spatially extended rock-paper-scissors model of +cyclic dominance, EPL (Europhysics Letters) 117, 48006 (2017). +[34] D. Bazeia, J. Menezes, B. De Oliveira, and J. Ramos, Hamming distance and mobility behavior in generalized rock-paper- +scissors models, EPL (Europhysics Letters) 119, 58003 (2017). +[35] Q. He, M. Mobilia, and U. C. T¨auber, Spatial rock-paper-scissors models with inhomogeneous reaction rates, Physical +Review E 82, 051909 (2010). +[36] K. A. Kabir and J. Tanimoto, The role of pairwise nonlinear evolutionary dynamics in the rock–paper–scissors game with +noise, Applied Mathematics and Computation 394, 125767 (2021). +[37] C. Griffin, J. Semonsen, and A. Belmonte, Generalized hamiltonian dynamics and chaos in evolutionary games on networks, +Physica A: Statistical Mechanics and its Applications 597, 127281 (2022). +[38] C. M. Postlethwaite and A. M. Rucklidge, Stability of cycling behaviour near a heteroclinic network model of rock–paper– +scissors–lizard–spock, Nonlinearity 35, 1702 (2022). +[39] J. Menezes, B. Moura, and T. Pereira, Uneven rock-paper-scissors models: patterns and coexistence, EPL (Europhysics +Letters) 126, 18003 (2019). +[40] P. Avelino, B. de Oliveira, and R. Trintin, Weak species in rock-paper-scissors models, EPL (Europhysics Letters) 134, +48001 (2021). +[41] J. Park, Fitness-based mutation in the spatial rock-paper-scissors game: Shifting of critical mobility for extinction, EPL +(Europhysics Letters) 126, 38004 (2019). +[42] M. Mugnaine, F. Andrade, J. Szezech, and D. Bazeia, Basin entropy behavior in a cyclic model of the rock-paper-scissors +type, EPL (Europhysics Letters) 125, 58003 (2019). +[43] J. Menezes, S. Batista, M. Tenorio, E. Triaca, and B. Moura, How local antipredator response unbalances the rock-paper- +scissors model, Chaos: An Interdisciplinary Journal of Nonlinear Science 32, 123142 (2022). +[44] C. Griffin, R. Mummah, and R. deForest, A finite population destroys a traveling wave in spatial replicator dynamics, +Chaos, Solitons & Fractals 146, 110847 (2021). +[45] E. C. Zeeman, Population dynamics from game theory, in Global Theory of Dynamical Systems, Springer Lecture Notes in +Mathematics No. 819 (Springer, 1980) pp. 471–497. +[46] C. Griffin and A. Belmonte, Cyclic public goods games: Compensated coexistence among mutual cheaters stabilized by +optimized penalty taxation, Physical Review E 95, 052309 (2017). +[47] E. Akin and V. Losert, Evolutionary dynamics of zero-sum games, J. Math. Bio. 20, 231 (1984). +[48] C. Griffin, The replicator dynamics of zero-sum games arise from a novel poisson algebra, Chaos, Solitons & Fractals 153, +111508 (2021). +[49] J. Paik and C. Griffin, Completely integrable replicator dynamics associated to competitive networks, arXiv preprint +arXiv:2211.06501 (2022). +[50] Y. Itoh, Integrals of a lotka-volterra system of odd number of variables, Progress of theoretical physics 78, 507 (1987). +[51] O. Bogoyavlensky, Integrable discretizations of the kdv equation, Physics Letters A 134, 34 (1988). +[52] A. P. Veselov and A. B. Shabat, Dressing chains and spectral theory of the schrodinger operator, Funktsional’nyi Analiz i +ego Prilozheniya 27, 1 (1993). +[53] L. Feng, X. Liu, X. He, Y. Jin, J. Wang, J. Yin, X. Cao, H. Huang, C. Griffin, and R. Wu, Ecological statistical mechanics +of high-order interactions in complex communities, Submitted (2023). + +10 +[54] J. Guckenheimer and P. Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Vol. 42 +(Springer Science & Business Media, 2013). +[55] R. Cressman and G. Vickers, Spatial and density effects in evolutionary game theory, Journal of theoretical biology 184, +359 (1997). +[56] G. Vickers, Spatial patterns and ESS’s, Journal of Theoretical Biology 140, 129 (1989). +[57] G. Vickers, Spatial patterns and travelling waves in population genetics, Journal of Theoretical Biology 150, 329 (1991). +[58] R. deForest and A. Belmonte, Spatial pattern dynamics due to the fitness gradient flux in evolutionary games, Physical +Review E 87 (2013). + diff --git a/cdE0T4oBgHgl3EQfnwHq/content/tmp_files/load_file.txt b/cdE0T4oBgHgl3EQfnwHq/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..df9287aa1f794b6ef72139a1eea3737eac9d57ac --- /dev/null +++ b/cdE0T4oBgHgl3EQfnwHq/content/tmp_files/load_file.txt @@ -0,0 +1,577 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf,len=576 +page_content='Higher Order Dynamics in the Replicator Equation Produce a Limit Cycle in Rock-Paper-Scissors Christopher Griffin1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' ∗ and Rongling Wu2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' 3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' † 1Applied Research Laboratory,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' The Pennsylvania State University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' University Park,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' PA 16802 2Beijing Institute of Mathematical Sciences and Applications,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Beijing 101408,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' China 3Yau Mathematical Sciences Center,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Tsinghua University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Beijing 100084,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' China Recent work has shown that pairwise interactions may not be sufficient to fully model ecological dynamics in the wild.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' In this letter, we consider a replicator dynamic that takes both pairwise and triadic interactions into consideration using a rank three tensor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' We study this new nonlinear dynamics using a generalised rock-paper-scissors game whose dynamics are well understood in the classic replicator sense.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' We show that the addition of higher-order dynamics leads to the creation of a subcritical Hopf bifurcation and consequently an unstable limit cycle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' It is known that this kind of behaviour cannot occur in the pairwise replicator in any three strategy games, showing the effect higher-order interactions can have on the resulting dynamics of the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' We numerically characterise parameter regimes in which limit cycles exist and discuss possible ways to generalise this approach to studying higher-order interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' INTRODUCTION Pairwise interactions are frequently assumed in constructing dynamical systems models of ecological systems [1–4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' This is a foundational assumption of classical evolutionary game theory in which the replicator dynamic is built from a matrix game [5–7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' In this case, pairwise interactions of players define the fitness function that governs the dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' This simplifying assumption is violated by the intrinsic existence of high-order interactions (HOI’s), for which there is growing evidence [8–18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' A higher-order interaction occurs when three or more species act together as a subgroup to shape community behaviour[2, 8–12, 19–21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' In the case of random interactions in ecological communities, the occurrence of HOIs can alter the established relationship between diversity and stability [10], leading to new evolutionary trajectories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' In this letter we show how to modify the standard game matrix replicator dynamic by defining fitness in terms of both a game matrix (for pairwise interactions) and a game tensor (for triadic interactions).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' This work is related to the prior work of Gokhale and Traulsen [22] who studied evolutionary games with multiple (more than two) strategies and multiple players.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' In this work, they study the maximum number of mixed strategy equilibria that may emerge in the replicator dynamic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' More recently, Zhang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' [23] study multiplayer evolutionary games in the context of asymmetric payoffs, which we do not consider.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' In particular, we study the resulting dynamics on a generalised rock-paper-scissors game (RPS) [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' We show that the resulting dynamics arising from triadic interactions are fundamentally different from those dynamics arising from RPS in the replicator equation with only pairwise interactions by showing that the HOI’s lead to the emergence of a limit cycle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Rock-paper-scissors (and its generalisations) has been studied in multiple different contexts [24–43] and there are at least two schools of partially compatible dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Postlewaite and Rucklidge [26, 28–30, 33, 38] have extensively studied a dynamical systems model of RPS in both spatial and aspatial cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Their dynamics are distinct [44] from the dynamics arising from the replicator equation as given in [5–7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' We do not consider their dynamics but instead focus on the replicator equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' In particular, Zeeman [45] showed that RPS dynamics under the replicator exhibit a degenerate Hopf bifurcation and cannot produce limit cycles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' More generally, Zeeman showed that no three strategy game can produce a limit cycle under the replicator dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' However, since every dynamical system arising from the replicator equation is diffeomorphic to a generalised Lotka-Volterra system, limit cycles and chaos may emerge for games with more than three strategies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' The main results of this letter are: (i) We show how to incorporate triadic interactions using a simple rank 3 tensor and note that the replicator equation ansatz does not change as a result of these interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' (ii) We show (numerically) that in generalised RPS with HOI’s a subcritical Hopf bifurcation occurs and a limit cycle emerges for appropriate parameter choices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' This behaviour must be caused by the HOI’s, since such dynamics cannot emerge with only pairwise interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' (iii) We use a statistical analysis to construct a three-dimensional bifurcation surface, ∗ griffinch@psu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='edu † ronglingwu@mail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='tsinghua.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='cn arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='02518v1 [nlin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='AO] 6 Jan 2023 2 showing parameter regions where the (unique) interior fixed point is stable and admits a limit cycle, is stable with no limit cycle, and is unstable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' MODEL Let ∆n−1 be the n − 1 dimensional unit simplex embedded in Rn composed of vectors u = ⟨u1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' , un⟩ so that u1 + · · · + un = 1 and ui ≥ 0 for all i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' , n}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Consider a simple ecological model with n species where Ui is the size of the population of species i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' , n}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Let M = n � i=1 Ui be the total number of organisms present.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' The following observation can be found in [46] and sets the stage for our analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Let ui = Ui/M be the proportion of biomass composed of species i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' If fi : ∆n−1 → R is the fitness function so that: ˙Ui = Uifi(u), then it is easy to show (with the quotient rule) that: ˙ui = ui � f(u − ¯f(u) � , (1) where ¯f(u) = n � i=1 uifi(u).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' (1) is the standard replicator [5–7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' In classical evolutionary game theory, we assume there is a (payoff) matrix A ∈ Rn×n so that fi(u) = eT i Au, where ei is the standard basis vector in Euclidean space in direction i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' This model assumes simple binary interactions among species with the payoff resulting from an interaction between species i and species j given by Aij and going to the first (row) player in an imaginary game.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Consequently single matrix evolutionary game theory makes the most sense when the game described by A is symmetric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' When A is skew- symmetric, the game is not only symmetric but also zero-sum [47] as in the case of rock-paper-scissors, whose interaction matrix is cyclic [48, 49] with A = � � 0 −1 1 1 0 −1 −1 1 0 � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' (2) In this matrix, index 1 corresponds to rock, index 2 to paper, and index 3 to scissors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' We will maintain this convention when we analyse a generalisation of this game.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Paik and Griffin [49] (as well as Itoh [50], Bogoyavlensky [51] and Vesselov & Shabbat[52] in different contexts) show that for generalisations of rock-paper-scissors to cyclic skew-symmetric game matrices with ±1 entries, the resulting dynamics are Liouville-Arnold integrable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' This is an (almost) immediate consequence of the fact that all zero-sum replicator dynamics arise from a non-linear Poisson bracket as shown in [48].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' In particular, this automatically precludes the emergence of more interesting dynamics in simple cyclic games with Zeeman [45] going so far as to show that in all three-strategy matrix games, the replicator dynamics cannot exhibit limit cycles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' In the case of higher-order interactions, it suffices to redefine fi(u) to be fi(u) = eT i Au + uT Biu, (3) where Bi is a quadratic form (matrix) that takes two copies of the population proportion vector u and returns a payoff to species i that occurs when one member of species i meets two members of the population.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' In general, we could think of Bi as being a slice of a (0, 3) tensor B : ∆n−1 × ∆n−1 × ∆n−1 → R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Using Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' (3), it is clear that Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' (1) (the replicator equation) still holds for the dynamics of ui, but now incorporates payoffs from three-way interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' In what follows, we will define Bi,j,k = pijkAij + qijkAik, 3 for constants of proportionality pijk and qijk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' That is we assume that the three-way payoff is composed of payoffs from binary interactions that are scaled to model the ecological effects of the more complex interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' In our analysis of generalised rock-paper-scissors, we choose pijk and qijk so that the Nash equilibria remain fixed points but the stability of the fixed points change, showing that the Folk theorem of evolutionary game theory (see [7]) need not hold in models of higher order interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' It is left as a question for future work whether there are sufficient conditions on the tensor B that ensure the Nash equilibria of the game matrix A are preserved as fixed points in three-way dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Before proceeding to the analysis of a specific case, we note that Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' (3) could be generalised to include as many as n-way interactions by using higher rank tensors [22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' However, it is unlikely that such interactions are biologically meaningful.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Statistical tests for these kinds of interactions are discussed in [53].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' HIGHER ORDER ROCK-PAPER-SCISSORS The remainder of this paper is dedicated to showing that higher-order-interactions in a generalised rock-paper- scissors game produce dynamics not seen when only pairwise interactions are modelled.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' For the remainder of this paper fix a parameterised payoff matrix A = � � 0 −b − 1 a + 1 a + 1 0 −b − 1 −b − 1 a + 1 0 � � , (4) where we assume a, b ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' This matrix will govern the payoff from simple pairwise interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' We now define the tensor B using its slices so that B1 = � � 0 1 2(−b − 1) 1 2(a + 1)β 1 2(−b − 1) −b − 1 0 1 2(a + 1)β 0 (a + 1)α � � (5) B2 = � � (a + 1)α 1 2(a + 1)β 0 1 2(a + 1)β 0 1 2(−b − 1) 0 1 2(−b − 1) −b − 1 � � (6) B3 = � � −b − 1 0 1 2(−b − 1) 0 (a + 1)α 1 2(a + 1)β 1 2(−b − 1) 1 2(a + 1)β 0 � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' (7) Here we assume α ∈ (1, 2] and β ∈ � 0, 1 2 � for ecological sensibility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' The reasoning behind defining B in this way is justified by considering the payoff associated to rock (index 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' If a rock plays against two other rocks, it receives no payoff – as expected from Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' (4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' If it meets two papers or a paper and a rock, then it receives the same net negative payoff −b − 1 as if it met one paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' On the other hand, if it meets two scissors, then its payoff increases by a factor of α ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' If a rock meets a rock and scissors, then the rocks split the payoff and each receives a payoff decreased by a factor β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Finally if a rock meets both a paper and a scissors, then mutual destruction leads to no net payoff for any player.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' The same logic is used for all other players.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' There are several ways to realise the logic described above in the tensor B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' (5) to (7) enforce symmetry in each slice and preserve a generalised cyclic property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Note that B1 can be recovered from B2 by rotating the rows and columns of B1 down and to the right (just as row i + 1 can be obtained from row i in A by rotating to the right).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Thus B is a circulant (or Toeplitz) tensor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' It is straightforward to see that ¯ui = ei (i ∈ {1, 2, 3}) are fixed points as is the symmetric Nash equilibrium ¯u = ⟨ 1 3, 1 3, 1 3⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' The fact that A is a circulant matrix and B is a circulant tensor ensures that these are the only equilibria in the system occurring in ∆2 and ¯u is the only interior equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Fixed Point Analysis The eigenvalues of the Jacobian matrix at any fixed point ¯ui (i ∈ {1, 2, 3}) are Λ = {0, −2(b + 1), (a + 1)(α + 1)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Based on the assumptions on the values of a, b and α, these are hyperbolic saddles, just as in the case of ordinary rock-paper-scissors in the replicator dynamic [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' This is in contrast to the behaviour at the interior fixed point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' 4 There are one real and two complex eigenvalues of the Jacobian matrix at the interior fixed point ¯u given by Λ = � r1 9 , r2 ± i √ 3q 18 � , where r1 = 2 + 5b − α − β − a(α + β + 3) and r2 = 1 + a(β − 2α − 3) + 4b − 2α + β and q = 9 + 6b + 2α + β + a(3 + 2α + β).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' The first (real) eigenvalue is extraneous since the dynamics evolve on ∆2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Assuming α, β and b are free, r2 = 0 when a = a∗ = 1 + 4b + β − 2α 3 + 2α − β .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' (8) When a = a∗ + ϵ, then r2 = ϵ(β − 2α − 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' If follows from our assumptions on α and β that if ϵ > 0, then a > a∗ and r2 < 0 and ¯u∗ is attracting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Otherwise, ¯u∗ is repelling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' For ϵ = 0, the system has two pure imaginary eigenvalues, which satisfies the first requirement of Hopf’s theorem (see [54], Page 152).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Our assumptions that α ∈ (1, 2] and β ∈ � 0, 1 2 � ensures that r′ 2(ϵ) = (β − 2α − 3) ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Thus the real part of the eigenvalues must cross the imaginary axis with non-zero speed, satisfying the second criterion of Hopf’s theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Thus the system exhibits a Hopf bifurcation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' It is interesting to note that if we adhere to our ecological assumptions that α ∈ (1, 2] and β ∈ � 0, 1 2 � , then the ordinary rock-paper-scissors matrix has r2 < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Thus the mixed strategy equilibrium becomes stable for all values of α and β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' To see this note that if b = 0 and we require a∗ = 0, then we must have α = (1 + β)/2, which takes values between 1 2 and 3 4, outside of the ecologically sensible range.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Numerical Illustration of a Subcritical Limit Cycle We can show numerically that a subcritical limit cycle emerges for example parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' For the remainder of this section, let b = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' In our initial limit cycle construction we assume α = 2 and β = 1 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' In this case, the interaction of (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=') a rock with two scissors doubles the payoff to rock, while two rocks interacting with a scissors will split the payoff associated to the interaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' We set ϵ = 1 100, implying the interior fixed point will be stable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' 1 (left) we see an (approximated) limit cycle surrounding a stable interior fixed point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Outside the limit cycle, flow goes to the boundary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' To complete the numeric proof, we apply the Poincar´e-Bendixson theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' 1 (right) we compute the distance from the three trajectories to the interior fixed point after a ternary transform.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' This is a true representation of the distance seen in the trajectories in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' 1 (left).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' We can see that the distance from the (approximated) limit cycle oscillates around a constant mean.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' The trajectory outside the limit cycle increases its distance to the interior fixed point, while the trajectory inside the limit cycle decreases its distance to the interior fixed point as expected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Thus the numerically identified limit cycle is subcritical.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' When ϵ < 0, the interior fixed point becomes unstable (as expected) and the limit cycle vanishes as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' 2 (left).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' All trajectories approach the boundary as confirmed numerically in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' 2 (right), which again shows the normalised distance from the trajectory to the interior fixed point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' When ϵ is increased beyond a certain value, the limit cycle disappears while the interior fixed point remains stable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' This is illustrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' 3 (right) we show that the distance from any trajectory to the interior fixed point collapses to zero as time goes to infinity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' We can numerically approximate the value of ϵ where the limit cycle disappears for arbitrarily values of α ∈ (1, 2] and β ∈ (0, 1 2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' To do this, use the following steps: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Input: α, β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' 5 R P S 0 50 100 150 200 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='5 Time Normalized Distance IC=(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='7,0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='15,0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='15) IC=(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='4,0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='117,0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='483) IC=(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='4,0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='2,0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='4) FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' (Top) Example trajectories with a subcritical limit cycle are shown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' (Bottom) The distance of the trajectories to the interior fixed point as a function of time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' This proves numerically that there is a subcritical Hopf bifurcation in these dynamics via the Poincar´e-Bendixson theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Initialize: ϵ = 1 100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Compute a = a∗ + ϵ, where a∗ is given by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' (8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Numerically integrate the time-inverted dynamics: ˙ui = −ui � f(u − ¯f(u) � , with u0 = ⟨0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='99, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='005, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='005⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' This accomplishes two things: (i) The modified dynamics invert the stability of the limit cycle and (ii) the initial condition starts the trajectory close to the boundary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Let u(t) be the resulting solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Compute d(t) = ∥u(t) − ˆ¯u∥2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Fit d(t) ∼ γ0 + γ1t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' If γ1 < 0 with p-value less than 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='001, then statistically the trajectory is decaying toward a limit cycle and we set ϵ := ϵ + 1 1000 and goto Step 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Otherwise, stop and return ϵ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Using this technique, we can generate a surface showing the dependence of ϵ on the parameters α and β (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Before continuing our analysis, we note that a similar procedure can be used to identify limit cycles within this dynamical system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Mathematica code to generate all figures is provided in the SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' There are five outlier points that are significantly above or below the trend surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' These are most likely due to numerical errors (from the integration) or sensitivity to the p-value test used in Line 6 of the procedure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' The surface 6 R P S 0 50 100 150 200 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='6 Time Normalized Distance IC=(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='7,0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='15,0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='15) IC=(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='4,0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='117,0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='483) IC=(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='4,0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='2,0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='4) FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' (Top) Sett ϵ below zero destabilises the interior fixed point and destroys the limit cycle (as expected).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' All trajectories approach the boundary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' (Bottom) The distances of the trajectories to the interior fixed point increase as the trajectories approach the boundary of ∆2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' was fit using non-outlier points and is given by the expression: ˆϵmax(α, β) ≈ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='063αβ − 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='075α − 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='191β + 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='217.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' The adjusted r2 of this fit is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='98 showing good explanatory power.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' The parameter table for the model is Est.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' SE t-Stat p-val 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='217 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='002 104.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='09 × 10−170 α −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='0751 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='001 −56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='4 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='446 × 10−121 β −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='191 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='007 −28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='7 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='098 × 10−71 αβ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='063 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='004 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='7 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='00 × 10−33 This statistical analysis shows that the the maximum period of a limit cycle (correlated to ϵmax) is negatively propor- tional to both α and β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' However, since interaction term is non-trivial the interaction between α and β can interact to increase the ϵmax before the limit cycle disappears.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' 4 illustrates a type of bifurcation diagram (for b = 0) with a triple (α, β, ϵ) generating a limit cycle if it falls below the surface and the interior fixed point being globally attracting if (α, β, ϵ) is above the surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' 7 R P S 0 50 100 150 200 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='30 Time Normalized Distance IC=(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='7,0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='15,0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='15) IC=(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='4,0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='117,0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='483) IC=(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='4,0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='2,0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='4) FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' (Top) If ϵ is increased beyond a critical value, the limit cycle is destroyed and all trajectories approach the interior fixed point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' (Bottom) The distances of the trajectories to the interior fixed point decrease as expected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Compute (α, β, ϵmax) points and the resulting fit surface showing the lifetime (ϵ) of the limit cycle as a function of α and β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Outlier points are most likely due to numerical errors or sensitivity to the p-value test.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' β Emax α8 IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' CONCLUSION In this letter we used the replicator equation to model higher-order interactions between three (or more) species through the introduction of an interaction tensor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' We showed that the dynamics that results in this case are fun- damentally different from the ordinary binary interactions modelled by the usual replicator dynamics with a payoff matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' In particular, we studied a generalised rock-paper-scissors model and showed the existence of a non-degenerate Hopf bifurcation that allows a subcritical limit cycle to emerge when higher order interactions are allowed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' This is in contrast to classical results on three strategy games in the ordinary replicator equation in which limit cycles cannot emerge as a result of the degeneracy of a similar Hopf bifurcation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' While this letter provides a framework for modelling higher-order interactions within a replicator framework, there are several possible future directions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Generalising the interaction rules used to construct the three-way interaction tensor could lead to a generalisation of the Folk theorem in certain cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' It also would be interesting to introduce a spatial component as in [44, 55–58] and determine what spatial dynamics emerge as a result of these higher-order interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' ACKNOWLEDGEMENTS C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' was supported in part by the National Science Foundation under grant DMS-1814876.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' was supported by the Talents Grants at Beijing Forestry University.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' [1] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' May, Will a large complex system be stable?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=', Nature 238, 413 (1972).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' [2] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Pomerantz, Do” higher order interactions” in competition systems really exist?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=', The American Naturalist 117, 583 (1981).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' [3] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Relyea and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Yurewicz, Predicting community outcomes from pairwise interactions: integrating density-and trait-mediated effects, Oecologia 131, 569 (2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' [4] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Kodera, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Das, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Gilbert, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Lutz, Conceptual strategies for characterizing interactions in microbial communities, Iscience , 103775 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' [5] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Weibull, Evolutionary Game Theory (MIT Press, 1997).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' [6] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Hofbauer and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Sigmund, Evolutionary Games and Population Dynamics (Cambridge University Press, 1998).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' [7] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Hofbauer and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Sigmund, Evolutionary Game Dynamics, Bulletin of the American Mathematical Society 40, 479 (2003).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' [8] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Levine, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Bascompte, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Adler, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Allesina, Beyond pairwise mechanisms of species coexistence in complex communities, Nature 546, 56 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' [9] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Grilli, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Barab´as, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Michalska-Smith, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Allesina, Higher-order interactions stabilize dynamics in competitive network models, Nature 548, 210 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' [10] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Bairey, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Kelsic, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Kishony, High-order species interactions shape ecosystem diversity, Nature communications 7, 1 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' [11] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' McClean, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Friman, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Finn, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Salzberg, and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Donohue, Coping with multiple enemies: pairwise interactions do not predict evolutionary change in complex multitrophic communities, Oikos 128, 1588 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' [12] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Skardal, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Arola-Fern´andez, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Taylor, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Arenas, Higher-order interactions can better optimize network synchronization, Physical Review Research 3, 043193 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' [13] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Kleinhesselink, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Kraft, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Pacala, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Levine, Detecting and interpreting higher-order interactions in ecological communities, Ecology letters 25, 1604 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' [14] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Gibbs, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Levin, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Levine, Coexistence in diverse communities with higher-order interactions, Proceedings of the National Academy of Sciences 119, e2205063119 (2022), https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='pnas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='org/doi/pdf/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='1073/pnas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='2205063119.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' [15] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Battiston, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Amico, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Barrat, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Bianconi, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Ferraz de Arruda, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Franceschiello, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Iacopini, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' K´efi, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Latora, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Moreno, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=', The physics of higher-order interactions in complex systems, Nature Physics 17, 1093 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' [16] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Battiston, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Cencetti, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Iacopini, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Latora, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Lucas, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Patania, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='-G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Young, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Petri, Networks beyond pairwise interactions: structure and dynamics, Physics Reports 874, 1 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' [17] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Lambiotte, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Rosvall, and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Scholtes, From networks to optimal higher-order models of complex systems, Nature physics 15, 313 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' [18] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Swain, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Fussell, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Fagan, Higher-order effects, continuous species interactions, and trait evolution shape microbial spatial dynamics, Proceedings of the National Academy of Sciences 119, e2020956119 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' [19] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Mayfield and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Stouffer, Higher-order interactions capture unexplained complexity in diverse communities, Nature ecology & evolution 1, 1 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' [20] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Mickalide and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Kuehn, Higher-order interaction between species inhibits bacterial invasion of a phototroph-predator microbial community, Cell Systems 9, 521 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' 9 [21] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Deng, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Taylor, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Saavedra, Understanding the impact of third-party species on pairwise coexistence, PLOS Computational Biology 18, e1010630 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' [22] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Gokhale and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Traulsen, Evolutionary games in the multiverse, Proceedings of the National Academy of Sciences 107, 5500 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' [23] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Zhang, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Peng, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Zhou, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Wang, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Li, Evolutionary game-theoretical analysis for general multiplayer asym- metric games, arXiv preprint arXiv:2206.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='11114 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' [24] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' May and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Leonard, Nonlinear aspects of competition between three species, SIAM journal on applied mathe- matics 29, 243 (1975).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' [25] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Mobilia, Oscillatory dynamics in rock–paper–scissors games with mutations, Journal of Theoretical Biology 264, 1 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' [26] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Postlethwaite and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Rucklidge, A trio of heteroclinic bifurcations arising from a model of spatially-extended rock–paper–scissors, Nonlinearity 32, 1375 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' [27] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='-y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Hua, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='-c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Dai, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Lin, Four-and three-state rock-paper-scissors games with long-range selection, EPL (Euro- physics Letters) 101, 38004 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' [28] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Szczesny, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Mobilia, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Rucklidge, Characterization of spiraling patterns in spatial rock-paper-scissors games, Physical Review E 90, 032704 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' [29] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Szczesny, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Mobilia, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Rucklidge, When does cyclic dominance lead to stable spiral waves?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=', EPL (Europhysics Letters) 102, 28012 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' [30] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Szolnoki, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Mobilia, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='-L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Jiang, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Szczesny, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Rucklidge, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Perc, Cyclic dominance in evolutionary games: a review, Journal of the Royal Society Interface 11, 20140735 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' [31] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Reichenbach, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Mobilia, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Frey, Self-organization of mobile populations in cyclic competition, Journal of Theo- retical Biology 254, 368 (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' [32] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Reichenbach, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Mobilia, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Frey, Mobility promotes and jeopardizes biodiversity in rock–paper–scissors games, Nature 448, 1046 (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' [33] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Postlethwaite and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Rucklidge, Spirals and heteroclinic cycles in a spatially extended rock-paper-scissors model of cyclic dominance, EPL (Europhysics Letters) 117, 48006 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' [34] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Bazeia, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Menezes, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' De Oliveira, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Ramos, Hamming distance and mobility behavior in generalized rock-paper- scissors models, EPL (Europhysics Letters) 119, 58003 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' [35] Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' He, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Mobilia, and U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' T¨auber, Spatial rock-paper-scissors models with inhomogeneous reaction rates, Physical Review E 82, 051909 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' [36] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Kabir and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Tanimoto, The role of pairwise nonlinear evolutionary dynamics in the rock–paper–scissors game with noise, Applied Mathematics and Computation 394, 125767 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' [37] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Griffin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Semonsen, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Belmonte, Generalized hamiltonian dynamics and chaos in evolutionary games on networks, Physica A: Statistical Mechanics and its Applications 597, 127281 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' [38] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Postlethwaite and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Rucklidge, Stability of cycling behaviour near a heteroclinic network model of rock–paper– scissors–lizard–spock, Nonlinearity 35, 1702 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' [39] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Menezes, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Moura, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Pereira, Uneven rock-paper-scissors models: patterns and coexistence, EPL (Europhysics Letters) 126, 18003 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' [40] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Avelino, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' de Oliveira, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Trintin, Weak species in rock-paper-scissors models, EPL (Europhysics Letters) 134, 48001 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' [41] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Park, Fitness-based mutation in the spatial rock-paper-scissors game: Shifting of critical mobility for extinction, EPL (Europhysics Letters) 126, 38004 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' [42] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Mugnaine, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Andrade, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Szezech, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Bazeia, Basin entropy behavior in a cyclic model of the rock-paper-scissors type, EPL (Europhysics Letters) 125, 58003 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' [43] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Menezes, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Batista, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Tenorio, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Triaca, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Moura, How local antipredator response unbalances the rock-paper- scissors model, Chaos: An Interdisciplinary Journal of Nonlinear Science 32, 123142 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' [44] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Griffin, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Mummah, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' deForest, A finite population destroys a traveling wave in spatial replicator dynamics, Chaos, Solitons & Fractals 146, 110847 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' [45] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Zeeman, Population dynamics from game theory, in Global Theory of Dynamical Systems, Springer Lecture Notes in Mathematics No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' 819 (Springer, 1980) pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' 471–497.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' [46] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Griffin and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Belmonte, Cyclic public goods games: Compensated coexistence among mutual cheaters stabilized by optimized penalty taxation, Physical Review E 95, 052309 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' [47] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Akin and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Losert, Evolutionary dynamics of zero-sum games, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Bio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' 20, 231 (1984).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' [48] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Griffin, The replicator dynamics of zero-sum games arise from a novel poisson algebra, Chaos, Solitons & Fractals 153, 111508 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' [49] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Paik and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Griffin, Completely integrable replicator dynamics associated to competitive networks, arXiv preprint arXiv:2211.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content='06501 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' [50] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Itoh, Integrals of a lotka-volterra system of odd number of variables, Progress of theoretical physics 78, 507 (1987).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' [51] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Bogoyavlensky, Integrable discretizations of the kdv equation, Physics Letters A 134, 34 (1988).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' [52] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Veselov and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Shabat, Dressing chains and spectral theory of the schrodinger operator, Funktsional’nyi Analiz i ego Prilozheniya 27, 1 (1993).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' [53] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Feng, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Liu, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' He, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Jin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Wang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Yin, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Cao, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Huang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Griffin, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Wu, Ecological statistical mechanics of high-order interactions in complex communities, Submitted (2023).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' 10 [54] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Guckenheimer and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' 42 (Springer Science & Business Media, 2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' [55] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Cressman and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Vickers, Spatial and density effects in evolutionary game theory, Journal of theoretical biology 184, 359 (1997).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' [56] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Vickers, Spatial patterns and ESS’s, Journal of Theoretical Biology 140, 129 (1989).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' [57] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Vickers, Spatial patterns and travelling waves in population genetics, Journal of Theoretical Biology 150, 329 (1991).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' [58] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' deForest and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} +page_content=' Belmonte, Spatial pattern dynamics due to the fitness gradient flux in evolutionary games, Physical Review E 87 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cdE0T4oBgHgl3EQfnwHq/content/2301.02518v1.pdf'} diff --git a/eNE2T4oBgHgl3EQfxQh6/content/tmp_files/2301.04109v1.pdf.txt b/eNE2T4oBgHgl3EQfxQh6/content/tmp_files/2301.04109v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..92ce7a4905480e324f25d07a83dae0854bc397cb --- /dev/null +++ b/eNE2T4oBgHgl3EQfxQh6/content/tmp_files/2301.04109v1.pdf.txt @@ -0,0 +1,3329 @@ +Matching calipers and the precision of index +estimation +Ben B. Hansen∗ +January 11, 2023 +Abstract +This paper characterizes the precision of index estimation as it car- +ries over into precision of matching. In a model assuming Gaussian +covariates and making best-case assumptions about matching quality, +it sharply characterizes average and worst-case discrepancies between +paired differences of true versus estimated index values. In this op- +timistic setting, worst-case true and estimated index differences de- +cline to zero if p = o[n/(log n)], the same restriction on model size +that is needed for consistency of common index models. +This re- +mains so as the Gaussian assumption is relaxed to sub-gaussian, if +in that case the characterization of paired index errors is less sharp. +The formula derived under Gaussian assumptions is used as the basis +for a matching caliper. Matching such that paired differences on the +estimated index fall below this caliper brings the benefit that after +matching, worst-case differences onan underlying index tend to 0 if +p = o{[n/(log n)]2/3}. (With a linear index model, p = o[n/(log n)] +suffices.) A proposed refinement of the caliper condition brings the +same benefits without the sub-gaussian condition on covariates. When +strong ignorability holds and the index is a well-specified propensity +or prognostic score, ensuring in this way that worst-case matched dis- +crepancies on it tend to 0 with increasing n also ensures the consistency +of matched estimators of the treatment effect. +∗This work has benefitted from comments of Jake Bowers, Joshua Errickson, Mark +Fredrickson, Xuming He, Peter Schochet, Stilian Stoev and Lan Wang. Responsibility +rests with the author for any shortcomings that remain. +1 +arXiv:2301.04109v1 [stat.ME] 10 Jan 2023 + +Key words and phrases: +Matching, caliper, overlap, positivity, propensity +score, prognostic score +1 +Introduction +In preparing a matched observational study, estimation of a treatment propensity +briefly takes center stage, as covariates are chosen and a model specification is +selected. These models quickly recede from view once propensity score estimates +have been extracted from them, despite their carrying essential information about +those estimates’ likely precision. The situation is little different in matching on +prognostic or principal stratum scores: sampling variability of the model standing +behind a matching index is rarely so much as even appraised. We seem to take it +for granted that errors of estimation of a matching index can’t possibly be so large +as to threaten the integrity of matching. +Propensity matching is understood to be a large sample technique, as are +logistic and other regression methods typically used for index model estimation, +and classical asymptotics may seem to encourage inattention to index estimation +error. +As treatment/covariate samples (zi, ⃗xi) accumulate from any reasonable +distribution of fixed dimension p+1, one expects errors of estimation of the index, +{|⃗xi ˆβ −⃗xiβn| : i}, to be increasingly negligible, decreasing with or near n−1/2, just +as |ˆβ − βn|2 = O(n−1/2). The problem is that the matching canon discourages +parsimony in propensity modeling (Rubin and Thomas, 1996), and fixed-p large +sample theory may describe non-parsimonious models poorly. +Increasing-p asymptotics for logistic regression and similar techniques are avail- +able (Portnoy, 1988; He and Shao, 2000), if less widely known. Given that p = +o[(log n)/n], they deliver |ˆβ − βn|2 = OP [(p/n)1/2], not OP (n−1/2), as reviewed in +§ 2 below. This suggests a still larger order, p/n1/2, for errors of form ⃗X(ˆβ − βn), +�p +j=1 X2 +j = O(p) corresponding to | ⃗X|2 = +��p +j=1 X2 +j +�1/2 += O(p1/2). While some- +what of a simplification, the suggestion is correct in its implication that if p in- +creases in proportion with n1/2, for example, then index estimation errors need not +diminish even as coefficient estimation errors do. Outside of fixed-p asymptotics, +consistency of the index model does not in itself make index errors asymptotically +negligible: that calls for stronger assumptions, specialized matching techniques or +a combination of the two. +For control of index estimation error by way of stronger assumptions, note +that if p is assumed to increase slowly enough, increasing dimension regression +asymptotics resemble those with fixed p. It happens that p ∝ n1/2 is slightly too +large for such correspondence to obtain, so it is unsurprising that fixed-p intuitions +should fail in that regime. +(Asymptotic normality of ˆβ, for example, calls for +2 + +p2 log(p) = o(n), not p = o(n1/2) [He and Shao, 2000].) But say the index model +has sub-√n dimension, in the specific sense that p = o[(n/ log n)1/2]. Section 3.1 +of this paper shows that for consistently estimated index models with sub-gaussian +covariates and sub-√n dimension, estimation errors of realized values of the index +tend to zero. +This convergence is in the strong, l∞, sense of maxi≤n | ⃗Xi(ˆβ − +βn)| = oP (1), so it justifies the common practices of matching, subclassifying or +simply trimming on the estimated propensity score, as analytic interventions to +secure overlap assumptions of the stronger type, cl ≤ P(Z = 1| ⃗X) ≤ cu with +[cl, cu] ⊂ (0, 1), as applied to the subset of available observations that remain after +pruning. +Section 3.3 goes on to study ordinary Cov(ˆβ) estimates’ adaptability to char- +acterizing likely sizes of index estimation errors, ⃗xi(ˆβ −βn). A fitted index model’s +Fisher information gives an estimate ˆC of Cˆβ = Cov(ˆβ), either directly or as part of +an Eicker-Huber-White sandwich. In sub-n1/2 dimensional regimes, corresponding +standard errors s. e.(⃗xˆβ) = [⃗x ˆC⃗x′]1/2 will be seen to estimate closely1 the sampling +variabilities Var1/2[(⃗x − ¯⃗x)(ˆβ − βn)]. As the sub-√n condition is relaxed to sub- +n (p = o[n/ log(n)]), information- and sandwich-based estimators underestimate +Cov(ˆβ). This limits their utility for inference about βn, and according their behav- +ior outside of sub-√n regimes has received less study. It does not follow, however, +that they are are ill-suited to inform the selection of index-based matches. We +explore conditions under which analytic Cov(ˆβ)-estimators continue to character- +ize sampling variabilities of a linearization of ˆβ, offering a basis for estimators +capturing the better part of Var[⃗x(ˆβ − βn)]. In both regimes, the largest values +of {Var1/2[⃗xi(ˆβ − βn)] : i} may be well separated from the rest, in themselves ap- +preciably increasing E[maxi≤n | ⃗Xi(ˆβ − βn)|]. Results presented in Section 4 are +helpful for identifying the worst offenders, subjects i with large s. e.[⃗xi ˆβ]. Either +or both of the sub-gaussian and sub-√n conditions can be relaxed, but then con- +trol of index estimation errors necessitates that such subjects be pruned from the +sample. +In such circumstances, matching offers alternate practical remedies that can +retain more of the sample. +It helps first by shifting attention from particular +{⃗xi ˆβ : i} or {⃗xiβn : i} to paired differences of indices, (⃗xi − ⃗xj)ˆβ or (⃗xi − ⃗xj)βn, as +does § 4 below. While underestimates of Var1/2[(⃗xi − ⃗xj)ˆβ] may be unhelpful for +inference about (⃗xi − ⃗xj)βn, but they can certainly inform matching procedures. +Section 3.2 uses ˆCˆβ to associate deliberately reduced standard errors with paired +contrasts such as (⃗xi − ⃗xj)ˆβ, so constructed that their average, the paired index +contrast summary standard error (PIC SE), inexpensively approximates the root +1For |⃗v|2 ̸= 0, |⃗v|−1 +2 {s. e.[⃗v(ˆβ − βn)] − Var1/2[⃗v(ˆβ − βn)]} is oP [(p/n)1/2], whereas +|⃗v|−1 +2 +s. e.[⃗v(ˆβ − βn)] and |⃗v|−1 +2 +Var1/2[⃗v(ˆβ − βn)] are both OP [(p/n)1/2]. +3 + +mean square of matched discrepancies on estimated scores, (⃗xi −⃗xj)ˆβ, across pairs +{i, j} with little or no discrepancy on the true score, ⃗xiβ ≈ ⃗xjβ. +The PIC SE tends to zero at the same rate as |ˆβ − βn|2, making it useful as +a yardstick for matching. With sub-gaussian data and sub-√n model dimension, +using it to set the width of a caliper on the index — permitting i’s pairing with j +only if |(⃗xi − ⃗xj)ˆβ| ≤ cn pic se(ˆβ), with cn = 2, say — forces matched differences +on the true index to vanish in the asymptotic limit: +max +1≤i∼j≤n |(⃗xi − ⃗xj)βn| P→ 0 +(where “i ∼ j” means “i is matched to j”), +(1) +in virtue of pic se(ˆβ) = OP [(p/n)1/2]. Indeed, under the p = o(n−1 log n) growth +condition needed for consistency of common index models, (1) holds with non- +constant cn, provided that cn = OP [(log n)1/2]. Such matching requirements are +generally less likely to exclude subjects then comparable trimming rules, as they +permit inclusion even of subjects far from the center of the distribution whenever +the contrasting study arm has similarly situated subjects. If i is excluded from the +matched sample for lack of counterparts j within caliper distance, it must have +been separated from its comparison group by a distance exceeding the resolution +of the estimate of the index. As will be seen in the data example, this resolution +can be strikingly large, much larger than extant caliper width recommendations +(Rosenbaum and Rubin, 1985; Rubin and Thomas, 2000; Austin, 2011; Wang et al., +2013); in many cases it will be much more sparing in its exclusions from the +matched sample. +This is fortunate, because the paper will recommend a nonstandard strength- +ening of the requirement that |(⃗xi−⃗xj)ˆβ| be less than the designated caliper width, +excluding potential pairs {i, j} either because |(⃗xi − ⃗xj)ˆβ| is too large or because +s. e.[(⃗xi − ⃗xj)ˆβ] is. (Alternately put, because ⃗xi and ⃗xj are too separated on either +the index itself or on a certain index estimator-dependent Mahalanobis distance.) +The pairs E ⊆ {{i, j} : 1 ≤ i ̸= j ≤ n} that remain eligible by this criterion +satisfy max{i,j}∈E |(⃗xi − ⃗xj)(ˆβ − βn)| = oP (1), even as maxi≤n | ⃗Xi(ˆβ − βn)| may no +longer tend to 0. Thus (1) is maintained, even as the sub-gaussian assumption on +⃗X is relaxed to a fourth moment condition, and p = o{[n/ log(n)]1/2} is relaxed +to p = o{[n/ log(n)]2/3}. In matching on propensity scores, selecting pairs from +within such an E ensures that the overlap criterion can be assessed in terms of +estimated scores, because maxi∼j |(⃗xi − ⃗xj)ˆβ − (⃗xi − ⃗xj)βn| = oP (1). As the rec- +ommended requirement can be viewed as a varying (by value of s. e.[(⃗xi − ⃗xj)ˆβ]) +limit on |(⃗xi − ⃗xj)ˆβ|, I continue to call it a caliper. In many cases, these PICSE +calipers continue to be more inclusive than would Rosenbaum and Rubin’s (1985) +canonical |(⃗xi − ⃗xj)ˆβ| ≤ 0.2 s. d.(xˆβ) requirement, and in all cases PICSE calipers +4 + +cause exclusion of a unit i only when our best estimate of the index distances from +it to each potential counterpart j exceeds the resolution of the index’s estimation. +2 +Context +2.1 +Estimable index scores +In an observational study with a treatment and a control condition, the propensity +score is a function ⃗x �→ g−1[P(Z = 1 | ⃗X = ⃗x)], where g : ℜ → [0, 1] is continuous +and increasing (Rosenbaum and Rubin, 1983). +The z-on-⃗x regression is often +assumed to follow a generalized linear model such as the logistic, P(Z = 1 | ⃗X = +⃗x) = [1 + e−⃗xβ]−1. Taking g as that model’s link function identifies the propensity +score with the index ⃗xβ. Rosenbaum and Rubin (1985) recommended matching on +⃗xˆβ, not g−1(⃗xˆβ). Similarly prognostic scoring, confounder and risk scoring, and +principal stratum scoring fit (parametric) regression models in order to extract +indices ⃗xˆβ for use in matching, subclassification or sample trimming, if not also +in weighting- or covariance adjustments to be applied once an analysis sample has +been selected. +Let R denote the dependent variable of the index model, e.g. Z for a propensity +score or a response Y for a prognostic score. Let ˆβ be the solution of +� n +� +i=1 +ψ(ri, ⃗xi; β) +� ++ α(β) = 0 +(2) +in β, where ψ(r, ⃗x; β) is the ℜp-valued gradient of a scalar-valued function ρ(r, ⃗x; β) +that is convex in β. (In maximum likelihood estimation α(·) = 0, but Bayesian +estimation [e.g., Gelman et al., 2008] and certain frequentist bias-reduction schemes +[Firth, 1993; Kosmidis and Firth, 2009] minimize a penalized objective, in which +cases α(·) is the penalty term’s gradient.) The index score (IS) is estimable if +E +� +[ +n +� +i=1 +ψ(Ri, ⃗xi; β)] + α(β) +� += 0 +(3) +has a unique root βn, with supγ:|γ−βn|2≤1 |α(γ)|2 = oP (n1/2). Following He and +Shao (2000), near-roots of (2) and/or (3) are acceptable when the equations do not +have exact solutions, provided that there is a unique nearest root, but these exact +or nearest roots are assumed to satisfy �p +j=1 +��n +i=1 ψj(ri, ⃗xi; ˆβ) +�2 += oP (n1/2) and +�p +j=1[E [�n +i=1 ψj(Ri, ⃗xi; βn)]]2 = o(n1/2). Assume there are functions c0(·, ·, ·) and +w(·) such that +ψ(r, ⃗x, β) = c0(r, ⃗x, β0 + ⃗xβ)w(⃗x)(1, ⃗x)′. +(4) +5 + +This structure accommodates robust (Cantoni and Ronchetti, 2001) and general- +ized (Liang and Zeger, 1986) estimating equations as well as score functions such +as logistic regression’s, ψ(r, ⃗x, β) = {r − [1 + exp(−β0 − ⃗xβ)]−1}(1, ⃗x)′. If there +are pre-existing strata 1, . . . , L, with matches to be made within strata and any +subclasses to further divide them, then (4) may be modified by replacement of β0 +with stratum-specific intercepts β1, . . . , βL. Sufficient conditions for consistency of +an IS will be reviewed in § 2.3. +2.2 +Sub-gaussian random variables +A real-valued random variable V is sub-gaussian if its tails are no heavier than +that of a centered Normal distribution: there is a finite constant sV such that for +t > 0, +P(V < t) ≤ exp[−t2/(2s2 +V )], +P(V > t) ≤ exp[−t2/(2s2 +V )]. +When this holds, sV can be taken to be a constant multiple of ∥V ∥ψ2, the sub- +gaussian norm of V . This norm is defined as the infimum of {t > 0 : E[exp(V 2/t2)] ≤ +2}, a nonempty set for sub-gaussian V , or as ∞ if V is not sub-gaussian. For vec- +tor ⃗V , ∥⃗V ∥ψ2 = sup{∥⃗V γ∥ψ2 : |γ|2 = 1}, and ⃗V is said to be sub-gaussian if +∥⃗V ∥ψ2 < ∞ (Vershynin, 2018, § 2.5, 3.4). It follows directly from these defini- +tions that for fixed vectors γ, ∥V γ∥ψ2 = |γ|2∥V ∥ψ2, ∥⃗V γ∥ψ2 ≤ |γ|2∥⃗V ∥ψ2 and +∥γ∥ψ2 = (log 2)−1/2|γ|2; and that for fixed matrices M, ∥⃗V M∥ψ2 ≤ |M|2∥⃗V ∥ψ2. +Sums of sub-gaussian variables are sub-gaussian. Hoeffding’s inequality bounds +tails of sums of independent sub-gaussians in terms of the sum of the summands’ +squared sub-gaussian norms. Maxima of sequences of sub-gaussian random vari- +ables grow slowly: for an absolute constant k0, +E max +1≤i≤n Vi ≤ k0 +� +max +1≤i≤n ∥Vi∥ψ2 +� +(log n)1/2, +(5) +with {Vi : i} independent or dependent. For {Gi : i} Normal with variance 1 or less, +(5) holds with √2 in place of k0 maxi≤n ∥Vi∥ψ2; if {Gi : i} are independent N(0, 1) +then this bound is sharp, in the sense of limn↑∞(log n)−1/2 E max1≤i≤n Gi = √2 +(Boucheron et al., 2013, § 2.5). Maxima of sub-gaussian vector sequences grow +slowly as well: there are absolute constants k1 and k2 such that for any sub- +gaussian {⃗Vi} +with mean 0 and covariance I, and any deterministic matrices +{Mi} with column dimension matching the extent of ⃗V , +E +� +max +1≤i≤n |Mi⃗V ′ +i |2 +� +≤ max +i≤n ∥⃗Vi∥ψ2 +� +k1 max +i≤n |Mi|F + k2 +� +max +i≤n |Mi|2 +� +(log n)1/2 +� +(6) +6 + +where |M|F = tr(M′M)1/2 (Vershynin, 2018, Ex. 6.3.5). A consequence is that +if for each n { ⃗Xni : 1 ≤ i ≤ n} are independent random vectors of length pn +such that | Cov( ⃗Xni)|2 and ∥ ⃗Xni∥ψ2 are uniformly bounded, then max1≤i≤n | ⃗Xi|2 = +OP [max(pn, log n)1/2]. This property of sub-gaussian covariates, A11 in Section 2.3 +below, will be assumed in Section 3 but then relaxed in Section 4. The scalar +c0(R, ⃗x, ⃗xβ) in (4) above, on the other hand, will consistently be required to be +sub-gaussian, via Section 2.3’s A5. +2.3 +Consistently estimable index scores +Let the data and model parameter be arranged in triangular arrays, with sample +and model n having n observations of p independent variables xi, p (strictly, pn) +increasing with n. Consistency of ˆβ for (βn : n) will mean that p = o(n) and +|ˆβ−βn|2 +2 = OP (p/n). Conditions for such consistency are available in the literature. +We orderto present them along with accompanying conditions characterizing the +ˆβ’s relationship to its closest linear approximation. +For estimable βn, define An = An(βn) and ˆAn = An(ˆβ), where +An(γ) = 1 +n +� +n +� +i=1 +∇β E [ψ(Ri, ⃗xi; β)]|β=γ + α(γ) +� +, +(7) +with “∇β” interpreted in terms of weak differentiation if ordinary partial deriva- +tives do not exist for some β values. For invertible An, the linearization of estimator +ˆβ is given by +˜βn = A−1 +n +1 +n{[ +n +� +i=1 +ψ(ri, ⃗xi; βn)] + α(βn)}. +(8) +The random vector n−1 �n +i=1 ψ(Ri, ⃗xi; βn) has covariance n−1Bn where +Bn = Bn(βn) and Bn(γ) = n−1 E +n +� +i=1 +ψ(Ri, ⃗xi; γ)ψ(Ri, ⃗xi; γ)′. +(9) +Proposition 1 (He and Shao, 2000). Under A2, A4, A6 and A9 as stated below: +1. |ˆβ − βn|2 +P→ 0, with rate OP [(p/n)1/2]; +2. |ˆβ − ˜βn|2 +P→ 0, with rate OP [(p/n)(log n)1/2]. +Proposition 1 restates He and Shao’s Theorems 2.1 and 2.2 as applied to models +in which only the coefficient parameter βn grows in dimension with n, with a +slight strengthening of rate condition. (They assume p log(p) = o(n), while A9 +7 + +says p log(n) = o(n).) Their Theorem 2.2 characterizes decline of the linearization +error only for sub-√n dimensional models, but a straightforward adaptation of its +proof gives part 2 of the proposition. See also He and Shao’s Example 3. +Our regularity assumptions are as follows. +A1. The columns of x are centered. There may be pre-existing strata 1, . . . , L, +with L/n → 0. In this case the columns of x are also stratum-centered: for +stratifying variable v, � +i:vi=ℓ ⃗xi = 0, ℓ = 1, . . . , L. +A2. The IS is estimable (as defined in § 2.1) and linear in x. +A3. An is invertible. Furthermore there is δ > 0 such that An(γ) is invertible +whenever |γ − βn|2 < δ, and supγ:|γ−βn|2<δ |An(γ)−1|2 is bounded. +A4. ψ(r, x, β) is of form (4). The functions c0(r, ⃗x, ·) (i.e. η �→ c0(r, ⃗x, η)) are Lip- +schitz continuous with a common Lipschitz constant, as are (∂/∂η) E c0(R, ⃗x, η). +A5. The random variables c0(Ri, ⃗xi, ⃗xiβn) have bounded sub-gaussian norm. +A6. For ℓ = 0, 2 and 4, +max +γ,δ:|γ|2= +|δ|2=1 +n +� +i=1 +w(⃗xi)ℓ(⃗xiγ)2(⃗xiδ)2 = O(n). +A7. p−1|βn|2 +2 = p−1 � +k β2 +nk is bounded. +A8. s2(xβn) = β′ +nS(x)βn tends to a limit in (0, ∞]. +A9. p = o[n/(log n)], i.e. (p log n)/n → 0 (sub-n model dimension). +While the link function g is assumed the same for each n, the coefficient vector +β grows in length, and βn needn’t converge. Indeed, according to A8 s(sβn) is +permitted to diverge (but not tend to 0). +It is less burdensome here to assume invertibility of An, as A3 does, than in +other regression contexts, as for present applications one can freely change the basis +of the design matrix, there being no interest in particular elements or contrasts of β. +Via the Cauchy-Schwartz inequality, A6 entails that maxγ:|γ|2=1 n−1 �n +i=1 w(⃗xi)ℓ(⃗xiγ)2 = +O(1) for ℓ ∈ {0, 1, 2}, in turn giving |S(x)|2 = O(1). The appropriateness of these +commitments can be evaluated in advance of IS estimation, whereas A3 calls for +inspection of model-fitting artifacts after estimation of β. A simple measure to +improve the fit of A3, as well as A12 below, is to trim explanatory variables that +contribute relatively little to index model fit, as indicated by common model se- +lection criteria. +Certain results take stronger forms with one or more secondary conditions. +8 + +A10. p2 = o[n/(log n)] (sub-√n model dimension). +A11. maxi≤n |⃗xi|2 +2 = O[max(p, log n)], and maxi≤n w(⃗xi)2 = O(log n) (sub-gaussian +covariates). +A12. Each S(x) = (n − L)−1x′x and Bn are of full rank, with |(S(x))−1|2 and +|B−1 +n |2 bounded (full-rank covariance). +If the ⃗xes (and w(⃗x)) are sub-gaussian in the sense of being realizations of ⃗X with +E | ⃗X|ψ2 uniformly bounded, while also A6 holds in the sense of | Cov( ⃗X)|2 (and +thus p−1 E | ⃗X|2 +2) being uniformly bounded as well, then A11 follows from (6), as +discussed in § 2.2 following (6). +According to Proposition 4 below, sandwich +estimators of Cov(ˆβ) generally require sub-gaussian covariates, and A10, sub-√n +model dimension; but the covariance estimator based on ˆAn but not ˆBn generally +requires only sub-n model dimension, A9, and for present purposes will be simi- +larly beneficial even when it lacks Fisher consistency as compared to the sandwich +estimator. According to Proposition 6, full-rank covariance (A12) makes index +sampling variabilities Var(⃗xˆβ) and Var +� +(⃗xi − ⃗xj)ˆβ +� +estimable without attention +to size of ⃗x or ⃗xi − ⃗xj. However, our method for asymptotically exact matching +does not require this, and is valid with S or Bn of less than full rank. +3 +Asymptotically exact matching with Gaus- +sian or sub-gaussian ⃗X +For each n let Sn be a random partition of {1, . . . , n}. It is not presumed that +Sn expands or extends any earlier partition S1, . . . , Sn−1. +Denote by [i]Sn the +unique Sn element containing i ≤ n, and write i Sn +∼ j when there is s ∈ Sn such +that i, j ∈ s. Absent ambiguity as to which n or partition sequence is intended, +these symbols are given as “i∼j” or “[i],” respectively. +The progression {Sn} +constitutes an asymptotically exact index post-stratification if Sn-stratum width +in the direction of the underlying index, max{|(⃗xi − ⃗xj)βn| : i Sn +∼ j}, tends in +probability to 0. This section presents a tolerance for Sn-stratum width in the +direction of the estimated index, max{|(⃗xi − ⃗xj)ˆβ| : i Sn +∼ j}, that is narrow enough +to ensure asymptotic exactness in the special case of a sub-gaussian covariate +(A11). It is also is sufficiently wide that, in a further special case to be described +in Section 3.2, no i meriting placement in a poststratum with representation of +the contrasting group can be excluded from such placement in virtue of ⃗xi ˆβ being +isolated relative to {⃗xj ˆβ : zj ̸= zi}. +9 + +When βn is subject to estimation, the observable counterparts of differences +(⃗xi − ⃗xj)βn, 1 ≤ i, j ≤ n, that is contrasts of form (⃗xi − ⃗xj)ˆβ, are termed paired +index contrasts (PICs). The discrepancy between a PIC and the paired contrast +it estimates, (⃗xi − ⃗xj)(ˆβ − βn), is a PIC error. Ensuring that a post-stratification +is asymptotically exact calls for separate attention to PIC errors versus the PICs +themselves. Our width tolerance will involve a novel estimate of PIC error size, +the PIC SE. +3.1 +PIC errors in the sub-gaussian case +Recall that errors ˆβ − βn of index coefficient estimates decompose as (ˆβ − ˜β) + +(˜β − βn), with ˜β the linearization defined in (8). Index and PIC errors decompose +similarly. +Corollary (of Proposition 1 part 2). If A2, A4, A6, A9, and A11, then maxi |⃗xi(ˆβ− +˜βn)| = OP [p3/2(log n)1/2/n]. (Unless p = o(log n), in which case maxi |⃗xi(ˆβ − +˜βn)| = OP [p(log n)/n]). +Proposition 2. If A1, A2, A5, and A6, then ∥˜βn − βn∥ψ2 = O(n−1/2). +Corollary (of Proposition 2). If A1, A2, A5, A6, and A11, then E maxi≤n |⃗xi(˜βn − βn)| = +O +� +[(p log n)/n]1/2� +. (Unless p = o(log n), in which case E maxi≤n |⃗xi(˜βn − βn)| = +O +� +[(log n)/n1/2] +� +.) +Proposition 1’s corollary is immediate from its part 2 in combination with A11. +Prop. 2 is proved in the appendix; its corollary flows from A11 and (5). They follow +D’Amour et al. (2021) in assuming sub-gaussian covariates, in the sense of A11, +an assumption to be relaxed in Section 4 below. +The corollaries characterize errors of estimation of index values rather than +paired contrasts of them, but they have immediate extensions giving the same +rates of decline for maxi,j≤n |(⃗xi−⃗xj)(ˆβ− ˜βn)| and E maxi,j≤n |(⃗xi − ⃗xj)(˜βn − βn)|, +respectively. Because for any collection of W of of length-p row vectors, +sup +⃗w∈W +|⃗w(ˆβ − βn)| ≤ sup +⃗w∈W +|⃗w(ˆβ − ˜β)| + sup +⃗w∈W +|⃗w(˜β − βn)|, +(10) +it follows that with sub-gaussian covariates the worst-case PIC or index error tends +to 0 provided that (p3/2/n) log n does, i.e. if p = o{[n/(log n)]2/3}. +When the covariate has sub-√n dimension, the corollaries indicate that in large +samples the suprema of {|⃗xi(ˆβ− ˜β)| : i ≤ n} and {|(⃗xi−⃗xj)(ˆβ− ˜β)| : i, j ≤ n} will be +smaller by an order of magnitude, p/n1/2 = oP (1), than those of {|⃗xi(˜β − βn)| : i} +and {|(⃗xi − ⃗xj)(˜β − βn)| : i, j} (both of which are OP +� +((p/n)1/2 log n) +� +). Of the +two errors at right of (10), the sup |⃗w(˜β − βn)| term ordinarily dominates; we turn +attention to it. +10 + +3.2 +A thought experiment +In a special case making both ⃗X and ˆβ Gaussian, sizes of PIC errors admit specific +characterization in terms of readily estimable quantities. Ghosh and Cort´es (2019), +among others, consider related issues under an assumption of Gaussian ⃗X. For +vectors v ∈ ℜm let |v|2 and |v|∞ have their usual meanings, (m−1 �m +i=1 v2 +i )1/2 and +� +i≤m |vi| respectively. For matrices M and N of like dimension, ⟨M, N⟩F denotes +the Frobenius inner product tr(M′N). +Proposition 3. Let S be a partition of {1, . . . , n} with an associated mapping ⃗µ : +S → ℜp, and let ES(·) and CovS(·) denote expectations calculated with S and {µs : +s ∈ S} held fixed. Given S and {µs : s ∈ S} let (˜βn − βn; ⃗Xi − ⃗µ([i]S); ⃗Xj − ⃗µ([j]S)) +be jointly multivariate Normal, for each i, j ≤ n, with mean zero, CovS(˜β) = C, +CovS( ⃗Xi) = CovS( ⃗Xj) = Σ and, if i ̸= j, CovS( ⃗Xi, ⃗Xj) = 0. Then we have +ES +���[( ⃗Xi − ⃗Xj)(˜β − βn) : i S∼ j, i < j] +��2 +2 +� += ⟨2Σ, C⟩F +and +(11) +ES +���[( ⃗Xi − ⃗Xj)(˜β − βn) : i S∼ j] +�� +∞ +� +≤ z∗ +nS⟨2Σ, C⟩1/2 +F , +(12) +where nS := card({{i, j} : i S∼ j, i < j}) and z∗ +nS := (2 log 2nS)1/2 bounds E max1≤i≤n |Gi|, +(Gi : i) independent N(0, 1), as described in Section 2.2. +Given its strong assumptions on the covariate, Proposition 3 has limited prac- +tical use for PIC error control; we shall arrive at methods for containment of +[( ⃗Xi − ⃗Xj)(˜β − βn) : i S∼ j] that relax those assumptions to the moment condition +A6. +But these methods call for a limit on sizes of PIC errors that are to be +tolerated, and (12) will turn out to be helpfully specific in this regard. +The statistician who sets out to select a matched sample has it as her oper- +ating hypothesis that each member of the focal group has counterparts that are +close enough, in terms of ⃗xβn, within the alternate group. Simplifying, so as to +remove the question-begging “close enough,” let us suppose provisionally that for +each focal group member i, the available sample contains within it at least one +contrasting group member j that would be a perfect match on the underlying in- +dex, ⃗xiβn = ⃗xjβn. Continue the thought experiment by supposing ˆβ and ⃗X to +be as described in Proposition 3, and by taking the focal group to be the smaller +of the treatment and control groups, implying no fewer than min(n0, n1) perfect +pairs. Let S to be the collection of equivalence classes induced by the relation +that i S∼ j if and only if ⃗xiβn = ⃗xjβn. The proposition then characterizes PICs +|(⃗xi − ⃗xj)ˆβ| for which the contrast on the underlying index, |(⃗xi − ⃗xj)βn|, is 0. +Each simplification made thus far in order to apply the proposition should err in +the direction of understating the maximum PIC among pairs closely matched on +11 + +⃗xβn; but even if we continue to arrange our thought experiment so as to minimize +this quantity we will find it to be almost unworkably large, in a sense to be given +presently. +As specified so far, our perfect pairing thought experiment permits no ⃗Xβn +variation within strata of S. This means the stratified covariance CovS( ⃗X) must +satisfy β′ +nΣβn = 0. Bending available covariate data to this constraint, take ⃗X +to be distributed as in Proposition 3 with Σ = S⊥βn := (n − L)−1x⊥xβn′x⊥xβn, +the observed covariates’ covariance as projected onto the orthocomplement of the +index, x⊥xβn. (Here x is the n × p matrix of covariates as observed; x⊥v denotes +the n×p matrix of residuals arising from the p regressions of x-columns on n-vector +v; and L is the number of overt, preexisting strata, if such exist, and 1 otherwise. +Following A1, x is assumed to be centered or stratum-centered, as appropriate, and +x⊥xβn inherits this centering.) The natural estimate S⊥ˆβ = (n − L)−1x⊥xˆβ′x⊥xˆβ +of S⊥βn is appropriately consistent for S⊥βn, as noted in Proposition 5 below. +Observe that use of S⊥ˆβ (as opposed to S) again reduces (11) and (12), if in +increasing-p regimes it leaves their order unchanged. +The maximum PIC bound (12) is at its smallest, with nS = min(n0, n1), +when each member of the smaller of the focal and comparison groups has just one +perfectly matching counterpart. Among such configurations, the bound is sharpest +when the pairs do not overlap, as in matching without replacement. (Conditionally +given ˜β as well as S and {⃗µ(s) : s ∈ S}, ( ⃗Xi − ⃗Xj)(˜β − βn) is independent of +( ⃗Xi′− ⃗Xj′)(˜β−βn), for i, j, i′, j′ with {i, j} ̸= {i′, j′}; by the discussion following (5) +in Section 2.2, this causes inequality (31) in Appendix B.2 to be sharp.) Complete +the specification of our perfect-pairing thought experiment by supposing its nS = +min(n0, n1) pairs to be nonoverlapping. +Then (12) more closely estimates the +width in ⃗xˆβ of S. +Across pairs S constituting the thought experiment, the maximum PIC error is +expected to be z∗ +min(n0,n1)⟨2S⊥βn, C⟩1/2 +F , of order O{[(p log n)/n]1/2}. The accom- +panying estimate is z∗ +min(n0,n1)⟨2S⊥ˆβ, ˆC⟩1/2 +F . These quantities are small enough to +tend to zero, but only barely so: [(p log n)/n]1/2 is precisely the rate that A9 re- +quires to decline to 0. Among pairs {i, j} that in actuality are perfectly matched, +(⃗xi −⃗xj)βn = 0, even tame, Gaussian variation in other covariate directions engen- +ders a maximum PIC |[( ⃗Xi − ⃗Xi)ˆβ : i S∼ j]|∞ of as large an order as can be tolerated +of separations on the actual index, |[( ⃗Xi − ⃗Xi)βn : i S∼ j]|∞, if the matching is to +be asymptotically exact. So we will recommend this number as a matching toler- +ance, not only when making the restrictive assumptions of Proposition 3 but also +when entertaining only the weaker A1–A9. +12 + +3.3 +A summary standard error for PICs +In light of (8) and (9), the covariance of ˜βn is +Cn = n−1A−1 +n Bn(A−1 +n )′. +(13) +This Cn approximates the covariance of ˆβ, particularly when the index model +has sub-√n dimension. +When p = o{[n/ log(n)]1/2}, Prop. 1 says |˜β − ˆβ|2 = +oP (n−1/2), small enough to obviate distinctions between Cn = Cov(˜β) and Cov(ˆβ). +For example, Lemma 1 below entails that s. d.(⃗x˜β) = [⃗xCn⃗x′]1/2 shares the or- +der OP (n−1/2|⃗x|2) with ⃗x(ˆβ − βn), whereas part 2 of Prop. 1 says ⃗x(˜β − ˆβ) = +oP (n−1/2|⃗x|2). The proposition following the lemma will show the larger order +OP (n−1/2|⃗x|2) also to be shared by s. e.(⃗x˜β) = [⃗x ˆCn⃗x′]1/2. +Lemma 1. Under A3, A5 and A6, |Bn|2 = O(1) and |Cn|2 = O(n−1). +If ψ is the gradient a (well-specified) log-likelihood, then An = Bn, and n−1 ˆA−1 +n +estimates Cn. More broadly, Cn is estimated by n−1 ˆA−1 +n +ˆBn( ˆA−1 +n )′, where +ˆBn = ˆBn(ˆβ), +ˆBn(β) = n−1 +n +� +i=1 +ψ(ri, ⃗xi; β)ψ(ri, ⃗xi; β)′. +The propositions that follow establish the consistency of natural covariance esti- +mators and related quantities. +Proposition 4. Under A1–A9, | ˆA−1 +n +− A−1 +n |2 +P→ 0. If also A10 (sub-√n dimen- +sion) and A11 (sub-gaussian covariates), then | ˆA−1 +n +ˆBn( ˆA−1 +n )′ − nCn|2 +P→ 0. +Proposition 5. Let A1–A9 hold, let ˆCn be a consistent estimate of Cn (| ˆCn − +Cn|2 = oP (n−1)) and let S, S⊥βn and S⊥ˆβ be as defined in Section 3.2. Then +|⟨S, ˆC⟩F − ⟨S, C⟩F | = oP (p/n) +and +|⟨S⊥ˆβ, ˆC⟩F − ⟨S⊥βn, C⟩F | = oP (p/n), +whereas ⟨S, C⟩F = OP (p/n) and ⟨S⊥βn, C⟩F = OP (p/n). +The quantity ⟨2S⊥ˆβ, ˆCˆβ⟩1/2 +F +will be termed the PIC standard error (PIC SE); +Proposition 5 says that it consistently estimates the analogous parameter appear- +ing at right of (11) and (12) in Proposition 3. Proposition 4 is new as applied to +increasing-p regimes; Proposition 5 is entirely new. Their proofs are given in Ap- +pendix B.3, along with demonstrations of intermediate results including Lemma 1. +13 + +3.4 +PIC SE calipers +We recommend matching within limits of z∗ +min(n0,n1) times the PIC SE ⟨S⊥ˆβ, ˆC⟩1/2 +F , +whether or not the Gaussian model of Proposition 3 applies. If it does apply, this +ensures that the same multiple of the PIC SE characterizes matched discrepancies +on the underlying index (Sections 3.2 and 3.3). If it does not apply but the covari- +ate is sub-gaussian, (12) may no longer limit sizes of PIC errors, but they continue +to tend to 0 as long as p = o{[n/(log n)]2/3} (Section 3.1). If neither the Gaussian +nor sub-gaussian modeling assumptions apply, additional matching requirements +to be described below will be necessary to force the PIC errors towards 0, but +z∗ +min(n0,n1) times the PIC SE remains an appropriate tolerance for PICs. It tends +to zero, so its use as a caliper width forces PICs toward zero; it tends to zero +at the same [(p log n)/n]1/2 rate that Proposition 1 requires to tend to zero for +index model consistency, making it no more restrictive than is necessary to force +the PIC maximum to tend to 0. In the context of the idealized setting studied in +Section 3.2 it was seen also to be minimal in a more quantitatively specific sense, +in virtue of its sharp characterization of the notional experiment’s maximum PIC +error: if such a paired experiment were to be lurking within the actual data, set- +ting a tolerance for matching on xˆβ any smaller than z∗ +min(n0,n1) times the PIC SE +would exclude pairs that are in fact perfectly matched on xβn. +4 +Deconstructing Gaussian and sub-gaussian +assumptions +4.1 +PIC SEs with unrestricted X +The PIC SE averages expected PIC errors in either of two ways. +First, if the +sample available for matching contains a subsample of perfectly matched subjects +(as envisioned in Section 3.2) for which the within-pair covariance of covariates +is S⊥βn, then the squared PIC SE estimates the expected mean of squared PIC +errors, [(⃗xi − ⃗xj)(ˆβ − βn)]2, across perfectly matched pairs (i, j). Second, taking +the entirety of the sample as-is but residualizing each subject’s covariate for xβn (as +also discussed in Section 3.2), the squared PIC SE is approximately the expected +mean square of reduced PIC errors, [(⃗x⊥xβn +i +− ⃗x⊥xβn +j +)(ˆβ − βn)]2, now across all +pairs {i, j}, 1 ≤ i < j ≤ n. +To see this, for 1 ≤ i, j ≤ n write ⃗d⊥βn +ij +:= ⃗x⊥xβn +i +− ⃗x⊥xβn +j +, noting that ⃗d⊥βn +ij += +14 + +⃗xi − ⃗xj for pairs {i, j} that are perfectly matched for the index. Observe that +[⃗d⊥βn +ij +(˜β − βn)]2 = [⃗d⊥βn +ij +(˜β − βn)]′[⃗d⊥βn +ij +(˜β − βn)] += (˜β − βn)′(⃗d⊥βn′ +ij +⃗d⊥βn +ij +)(˜β − βn). +Summing over perfectly matched pairs, for the first scenario, or all +�n +2 +� +possible +pairs, for the second, and in either case letting np denote the number of pairs +contributing to the sum, we have +1 +np +� +[⃗d⊥βn +ij +(˜β − βn)]2 = (˜β − βn)′� +n−1 +m +� ⃗d⊥βn′ +ij +⃗d⊥βn +ij +� +(˜β − βn) += (˜β − βn)′(2S⊥βn)(˜β − βn) +(14) += ⟨2S⊥βn, (˜β − βn)(˜β − βn)′⟩F , +(15) +where (14) invokes the U-statistic representation of covariance, (n−1)−1 � +i=1(wi− +¯w)(vi − ¯v) = +�n +2 +�−1 �n−1 +i=1 +�n +j=i+1 +1 +2(wi − wj)(vi − vj), and (15) uses the sum of ele- +mentwise products ⟨M, N⟩F of matrices M and N to re-express (14). Accordingly +E +� 1 +np +� +[⃗d⊥βn +ij +(˜β − βn)]2 +� += ⟨2S⊥βn, Cn⟩F . +A similar argument reveals the PIC SE’s alternate interpretation as root mean +square of pairwise distances |⃗d⊥ˆβ +ij ˆC1/2|2 = (⃗d⊥ˆβ +ij ˆC ⃗d⊥ˆβ′ +ij )1/2 over pairs {i, j}. Invok- +ing in turn the cyclic property of the matrix trace, the definition of the Frobenius +matrix product ⟨·, ·⟩F , the Frobenius product’s bilinearity, and the U-statistic rep- +resentation of sample covariance: +� ⃗d⊥ˆβ +ij ˆCd⊥ˆβ′ +ij += +� +tr(⃗d⊥ˆβ +ij ˆC ⃗d⊥ˆβ′ +ij ) = +� +tr(⃗d⊥ˆβ′ +ij +⃗d⊥ˆβ +ij ˆC) += +� +⟨⃗d⊥ˆβ′ +ij +⃗d⊥ˆβ +ij , ˆC⟩F = ⟨ +� ⃗d⊥ˆβ′ +ij +⃗d⊥ˆβ +ij , ˆC⟩F = np⟨2S⊥ˆβ, ˆC⟩F . +When the average is only over {i, j} that are perfectly matched for the index, +(⃗d⊥ˆβ +ij ˆCd⊥ˆβ′ +ij )1/2 approximates s. d.[(⃗xi − ⃗xj)ˆβ], because ⃗xiβn = ⃗xjβn means that +⃗d⊥ˆβ +ij +approximates ⃗xi − ⃗xj. The interpretation as a pairwise covariate distance, +within the orthocomplement in x of xˆβ and after rescaling by ˆC1/2, is available +both for the perfect pairing thought experiment and also when the mean is over +all {i, j}, 1 ≤ i < j ≤ n. +These arguments rely implicitly on A1–A9, via Proposition 5, but do not call for +Gaussian covariates, nor for boundedness of covariates’ sub-gaussian norms. By +the same token, none admit extensions offering maximum, rather than average, +PIC error control, as is necessary for asymptotically exact matching. +15 + +4.2 +Caliper refinement with attention to index error +distances +It is intuitive that with covariates drawn from heavy tailed distributions there +may be PICs exceeding the PIC SE by factors well above z∗ +np = √(2 log 2np), +in contrast to the Gaussian situation described in Proposition 2. +Writing δ[x] +for the distribution placing point mass at x, heavier tails on the covariate mean +heavier tails on the empirical distributions +�n +2 +�−1 �n−1 +i=1 +�n +j=i+1 δ[s. d.[(⃗xi − ⃗xj)˜β]], +�n +2 +�−1 �n−1 +i=1 +�n +j=i+1 δ[(⃗xi − ⃗xj)(˜β − βn)], and in turn +�n +2 +�−1 �n−1 +i=1 +�n +j=i+1 δ[(⃗xi − ⃗xj)(ˆβ − βn)]. +Fortunately, estimates |(⃗xi−⃗xj) ˆC1/2|2 of standard deviations s. d.(i, j) = |(⃗xi− +⃗xj) ˆC1/2|2 are available at the time of matching: one can simply avoid pairings {i, j} +for which |(⃗xi−⃗xj) ˆC1/2|2 is too large. Call |(⃗xi−⃗xj) ˆC1/2|2 the index error distance +separating i from j. Proposition 6 says index error distances can estimate pairwise +index sampling variabilities uniformly well, even for models of sub-√n dimension +if the estimator ˆC is appropriately chosen. +Proposition 6. i. Let ψ(r, ⃗x, β) be the gradient of a likelihood function governing +the conditional distribution of R given ⃗X, with ˆCn = n−1 ˆA−1 +n . Under A1–A9, +����� +� +1 − |⃗xi ˆC1/2|2 +|⃗xiC1/2|2 +: i ≤ n +������ +∞ +, +����� +� +1 − |(⃗xi − ⃗xj) ˆC1/2|2 +|(⃗xi − ⃗xj)C1/2|2 +: i, j ≤ n +������ +∞ +P→ 0. +(16) +(Here 0/0 is taken to be 1.) +ii. Let {ϵn : n} satisfy ϵ−1 +n += O[n/ max(p, log n)]. Under A1–A11 with ˆCn = +n−1 ˆA−1 +n +ˆBn ˆA−1 +n , +����� +� +1 − max(ϵ1/2 +n , |⃗xi ˆC1/2|2) +max(ϵ1/2 +n , |⃗xiC1/2|2) +: i +������ +∞ +P→ 0. +If x and En ⊆ {{i, j} : 1 ≤ i, j ≤ n} satisfy |(|⃗xi − ⃗xj|2 +2 : {i, j} ∈ En)|∞ = +OP (max(p, log n)), then under A1–A10 +����� +� +1 − max[ϵ1/2 +n , |(⃗xi − ⃗xj) ˆC1/2|2] +max[ϵ1/2 +n , |(⃗xi − ⃗xj)C1/2|2] +: {i, j} ∈ En +������ +∞ +P→ 0. +iii. Under A1–A12, (16) holds with ˆCn = n−1 ˆA−1 +n +ˆBn ˆA−1 +n . +We focus on situations conforming to the hypotheses of (i) or of (iii), warranting +uniform convergence (16) of index error distances. +Let us calibrate sizes of index error distances with reference to Section 3.2’s +perfect pairing thought experiment. Proposition 7 adapts extant results about +Gaussian chaos to characterize that setting’s maximum of |( ⃗Xi − ⃗Xj)C1/2|2. +16 + +Proposition 7. Let ⃗Xi, i ≤ n, be independent MVN(µ, Σ). Let C be a second +positive semidefinite matrix of the same dimension as Σ, let E ⊆ {{i, j} : 1 ≤ i ̸= +j ≤ n} and let nE := card(E). Then +� +E +���{|( ⃗Xi − ⃗Xj)C1/2|2 : {i, j} ∈ E} +��2 +∞ +��1/2 +≤ +⟨2Σ, C⟩1/2 +F +� +�1 + +� +log nE +p[Σ1/2CΣ1/2] +�1/2� +�, +(17) +where p[M] denotes intrinsic dimension, tr(M)/|M|2, for positive semidefinite M. +Proposition 7 is proved in Appendix B.2. With Σ = S⊥βn and C = Cn, it +explicitly bounds the worst-case pairwise distance |( ⃗Xi − ⃗Xj)C1/2|2 within the +perfect-pairing thought experiment of Section 3.2. To contain PIC errors of actual +experiments to a similar level, I recommend the match-eligibility requirement that +|(⃗xi − ⃗xj) ˆC1/2|2 ≤ ⟨2S⊥ˆβ, ˆC⟩1/2 +F +� +2 + +�log min(n0, n1) +p − 1 +�1/2� +, +(18) +as a complement to the z∗ +min(n0,n1)⟨2S⊥ˆβ, ˆC⟩1/2 +F +limit on PICs |(⃗xi − ⃗xj)ˆβ| that +was recommended in Section 3.4. The heuristic by which Proposition 7 supports +constraint (18), to be explained presently, more simply suggests the stricter cap +on |(⃗xi − ⃗xj) ˆC1/2|2 of +⟨2S⊥ˆβ, ˆC⟩1/2 +F +� +1 + +�log min(n0, n1) +p − 1 +�1/2� +; +(19) +but it will subsequently be shown that (18) together with a softer penalty on +index error distances respecting (18) while exceeding (19) is sufficient for present +purposes. +To relate (17) to (19), first recall that min(n0, n1) is the size of the perfect- +pairing thought experiment (Sec. 3.2) and ⟨2S⊥ˆβ, ˆC⟩F is consistent for ⟨2S⊥βn, Cn⟩F +(Prop. 5). In general 0 ≤ p[Σ1/2CΣ1/2] ≤ p, by definition (see also Tropp, 2015; +Vershynin, 2018, §7.8). In the special cases that (R, ⃗X) has linear discriminant +structure with Cor( ⃗X) known, or that R is linear in ⃗X, with ⃗X Gaussian and βn +estimated accordingly in either case, intrinsic and extrinsic dimensions coincide: +p[Σ1/2CnΣ1/2] = p or p − 1, depending as Σ = S(x) or S⊥βn. If supposed to contain +min(n0, n1) distinct pairs {i, j} for which i ̸= j but ⃗xiβn = ⃗xjβn, then either of +these Gaussian- ⃗X special cases closely models Section 3.2’s notional perfect pair- +ing, with Σ = S⊥βn, and (19) estimates the expected maximum covariate distance +17 + +|(⃗xi − ⃗xj)C1/2|2 among perfect pairs. At the same time, an |(⃗xi − ⃗xj) ˆC1/2|2 limit +of form (19) should rarely exclude perfect pairs because of separation in direc- +tions orthogonal to the index, since (17) approximates such separations’ expected +maximum from above. +Regardless of what distribution the covariate may have been drawn from, limits +(19) or (18) on covariate distances |(⃗xi − ⃗xj) ˆC1/2|2 also engender limits on PIC +errors |(⃗xi −⃗xj)(ˆβ −βn)|. In part this is because (⃗xi −⃗xj)(˜β −βn) is sub-gaussian if +˜β is, and is N[0, |(⃗xi − ⃗xj)C1/2 +n +|2 +2] if ˜β ∼ MVN(βn, Cn). Proposition 8, stated here +without proof, collects the relevant facts reviewed in Section 2.2. +Proposition 8. Let E ⊆ {{i, j} : 1 ≤ i, j ≤ n} satisfy |(⃗xi − ⃗xj)C1/2 +n +|2 > 0 for all +{i, j} ∈ E, and let nE = card(E). If ˜β ∼ MVN(βn, Cn), +E +������ +� +(⃗xi − ⃗xj)(˜β − βn) +|(⃗xi − ⃗xj)C1/2 +n +|2 +: {i, j} ∈ E +������ +∞ +� +≤ z∗ +nE = [2 log(2nE)]1/2 +and +E +� +� +����� +� +(⃗x⊥xβn +i +− ⃗x⊥xβn +j +)(˜β − βn) +|(⃗x⊥xβn +i +− ⃗x⊥xβn +j +)C1/2 +n +|2 +: {i, j} ∈ E +������ +∞ +� +� ≤ z∗ +nE. +(20) +If ˜β − βn is non-Normal but sub-gaussian with ∥˜β − βn∥ψ2 bounded, these expected +maximums continue to be of order (log nE)1/2. +Together with Prop. 6, Proposition 8 says requiring each of min(n0, n1) pairs +{i, j} to have |(⃗xi −⃗xj) ˆC1/2 +n +|2 below (19) puts the corresponding PIC errors below +z∗ +min(n0,n1) times (19). If p increases faster than log n, then the ratio in (19) tends to +0, and (19) is asymptotically equivalent to the PIC SE. That is, confining matching +to pairs {i, j} for which |(⃗xi − ⃗xj) ˆC1/2 +n +|2 falls left of (19) makes the supremum of +matched errors |(⃗xi − ⃗xj)(˜β − βn)| asymptotically as it would be in the perfect- +pairing thought experiment, given log n = o(p) but not special conditions on the +distribution of the covariate. (If p increases no faster than log n, p = O(log n), +these errors somewhat exceed those of the corresponding thought experiment, but +they tend quickly to zero anyway, due to the p’s slow increase.) +These considerations suggest (19) as a hard limit for pair distances |(⃗xi − +⃗xj) ˆC1/2|2, but similar control of PIC errors can be had with a simple policy that +encourages matches with |(⃗xi − ⃗xj) ˆC1/2|2 beneath (19) while only requiring (18). +Make i is eligible for pairing to j if +|(⃗xi − ⃗xj)ˆβ| ≤ z∗ +min(n0,n1)[⟨2S⊥ˆβ, ˆC⟩1/2 +F +− ˆe(i, j)] +(21) +18 + +where +ˆe(i, j) := +� +|(⃗xi − ⃗xj) ˆC1/2|2 − ⟨2S⊥ˆβ, ˆC⟩1/2 +F +� +1 + +�log min(n0, n1) +p − 1 +�1/2�� ++ +, (22) +v+ := max(0, v), represents excess in index error distance as compared to its nomi- +nal supremum (19). If |(⃗xi −⃗xj) ˆC1/2|2 never exceeds this nominal supremum, (21) +reduces to the requirement that |(⃗xi −⃗xj)ˆβ| ≤ z∗ +min(n0,n1)⟨2S⊥ˆβ, ˆC⟩1/2 +F , as proposed +in Section 3.4. For potential pairings {i, j} with |(⃗xi − ⃗xj) ˆC1/2|2 exceeding (19), +Section 3.4’s PIC allowance of z∗ +min(n0,n1)⟨2S⊥ˆβ, ˆC⟩1/2 +F +is reduced in recognition of +the pairing’s large standard error. When the index error distance |(⃗xi − ⃗xj) ˆC1/2|2 +is so large that its excess ˆe(i, j) exceeds the PIC SE — or equivalently, so large +that (18) fails — (21) forbids i’s pairing with j. +This selectively narrowed PIC SE caliper has important advantages over non- +varying PIC SE calipers, alone or in combination with calipers of width (19) on +the pairwise index error distance. Non-varying PIC SE calipers secure asymptotic +exactness of a match only for sub-gaussian covariates, an assumption that selective +narrowing of the caliper enables us to do without. Coupling a non-varying PIC +SE caliper with a limit on the pairwise index error distance of (19) contains the +sum +|[(⃗xi − ⃗xj)ˆβ : i S∼ j]|∞ + |[(⃗xi − ⃗xj)(˜β − βn) : i S∼ j]|∞ +(23) +at the product of z∗ +min(n0,n1) with the right hand side of (18), just as the selectively +narrowed PIC SE caliper does, but at the cost of categorically disallowing pairwise +index error distances in excess of (19). In contrast, the selectively narrowed caliper +permits those pairings if their PICs are sufficient small. This additional tolerance +is important because (19) systematically underestimates suprema of pairwise index +error distances for some index models, even with Gaussian ⃗X, because of its use of +p − 1 in lieu of Proposition 7’s p[(S⊥βn)1/2C(S⊥βn)1/2]. That minor embarrassment +could be remedied by replacing p − 1 in (19) by p[(S⊥ ˆβ)1/2 ˆC((S⊥ ˆβ))1/2], but then as- +sumption A12 would become necessary for asymptotic equivalence of (19) and the +PIC SE — an equivalence needed even under A9, the weakest of the model dimen- +sionality restrictions considered in this paper, to force (23) toward an asymptote +of 0. Assumption A12 is discussed in the next section. +4.3 +The contribution of linearization error +Display (23) omits linearization error. Unless the estimator of the index regression +is linear in its dependent variable R, to estimate |[(⃗xi − ⃗xj)βn : i ∼ j]| we must +attend to |[(⃗xi − ⃗xj)(ˆβ − ˜β) : i ∼ j]| as well as |[(⃗xi − ⃗xj)ˆβ : i ∼ j]| and |[(⃗xi − +19 + +⃗xj)(˜β − βn) : i ∼ j]|. +Index estimators are linear in R in the special cases of +linear regression and linear discriminant modeling with fixed correlation, but not +for indices estimated with probit or logistic regression. +Recall from Section 3.1 that with sub-gaussian covariates (A11), |[(⃗xi−⃗xj)(ˆβ− +˜β) : i, j ≤ n]|∞ tends to 0 provided that p = o{[n/(log n)]2/3}, and is smaller by an +order of magnitude than |[(⃗xi − ⃗xj)(˜β − βn) : ⃗xiβn ≈ ⃗xjβn]|2 measured in the PIC +SE, provided that p = o{[n/(log n)]1/2}. Matching within selectively narrowed +PIC SE calipers secures these conclusions under conditions not including A11. +However, depending on the specific side conditions and estimation routines that +are employed, the matching procedure may need to observe additional caliper +restrictions. +First consider the case that A1–A9 hold, with Cn estimated by n−1 ˆA−1 +n . The +matching requirement (18), a consequence of (21), ensures that |[|(⃗xi −⃗xj) ˆC1/2|2 : +i ∼ j]|∞ = OP {[max(p, log n)/n]1/2}, since (by Proposition 5) the PIC SE is +OP [(p/n)1/2] and since (p − 1)−1 log min(n0, n1) = O[max(1, p−1 log n)]. Proposi- +tion 6 and ˆC = n−1 ˆA−1 +n in turn give |[|(⃗xi−⃗xj)A−1/2|2 : i ∼ j]|∞ = OP [max(p, log n)1/2]. +As A3 and Lemma 3 in Appendix B.3 entail |An|2 = O(1), |[|(⃗xi−⃗xj)|2 : i ∼ j]|∞ = +OP [max(p, log n)1/2]. Whether or not ⃗X was drawn from a sub-gaussian distribu- +tion, pairs {i, j} selected within selectively narrowed PIC SE calipers can be no +more separated on ⃗x than they would have been under sub-gaussian sampling, and +Proposition 1 entails +|[(⃗xi − ⃗xj)(ˆβ − ˜β) : i ∼ j]|∞ = OP [pn−1(log n)1/2max(p, log n)1/2]. +(24) +Within matched pairs, linearization error is as described in Section 3.1, even with- +out A11 or additional matching restrictions. +When Cn is instead estimated by n−1 ˆA−1 +n Bn ˆA−1 +n , A10 is needed in addition +to A1–A9, for consistency of ˆCn (by Proposition 4). +Then |[|(⃗xi − ⃗xj) ˆC1/2|2 : +i ∼ j]|∞ = OP {[max(p, log n)/n]1/2}, by a similar argument as above. Case (ii) of +Proposition 6 then gives that |[|(⃗xi − ⃗xj)C1/2|2 : i ∼ j]|∞ = OP {[max(p, log n)/n]1/2}, +provided that ⟨2S⊥ˆβ, ˆC⟩F +� +1 + +� +log min(n0,n1) +p−1 +�1/2� +is of the same order as max(p, log n)/n. +(Proposition 5 gives that it is OP [max(p, log n)/n], but here we also require its +reciprocal to be OP {[max(p, log n)/n]−1}.) At this point A12 also becomes nec- +essary, to ensure |B−1/2 +n +|2 = OP (1) and thus that |C−1/2 +n +|2 = OP (n1/2). If so, +Proposition 1 again gives (24). +The full-rank covariance condition A12 merits careful consideration in prac- +tice, however. +It will poorly describe some otherwise unassailable index mod- +els, as partitioners have long been encouraged to add covariates in such models +without regard to their mutual correlations (Rubin and Thomas, 1996). Fortu- +20 + +nately A12 is straightforward to diagnose, by checking that neither S nor ˆBn is +ill-conditioned. If sustainable, it delivers (in combination with Lemma 1 and A6) +the needed assurance that the PIC SE declines no faster than (p/n)1/2. If A12 +cannot be sustained while an assumption that ⟨S⊥βn, Cn⟩F = O(p/n) can be, we +can instead combine that weaker assumption with additional matching restrictions +ensuring that maxi∼j |⃗xi −⃗xj| = OP [max(p, log n)1/2]. Matches can be required to +fall within Euclidean distance calipers of width tr(S)1/2{1 + [(log n)/(p − 1)]1/2}, +or with calipers of width s(xj){1 + [(log n)/(p − 1)]1/2} on each dimension j = +1, . . . p of ⃗x separately. Either way, the combination of additional assumptions and +matching restrictions secures (24), and that the dominant part of the PIC error +|[(⃗xi − ⃗xj)(ˆβ − βn)]|∞ is |[(⃗xi − ⃗xj)(˜β − βn)]|∞, not |[(⃗xi − ⃗xj)(ˆβ − ˜β)]|∞. +5 +Asymptotically exact matching and consis- +tency of impact estimation +Matching within PIC SE calipers arranges that paired differences of the index tend +uniformly to zero, given mild conditions on the index model. For propensity and +certain other index models, this convergence is precisely what is needed to ensure +that in the absence of unmeasured confounding, the matched structure enjoys the +same consistency properties as would be enjoyed were paired differences on the +index uniformly and identically zero. In this section we assume Z ∈ {0, 1}; the +very weak overlap condition +P[0 < P(Z = 1 | Xβn) < 1] = 1; +(25) +that E |YC|1+δ, E |YT |1+δ < ∞ for some δ > 0; and that the mapping v �→ +logit[P(Z = 1|Xβ = v)] is Lipschitz. If Xβ is a propensity score modeled on the +logit scale, this mapping is the identity and (25) follows from Rosenbaum and Ru- +bin’s (1983) overlap condition, 0 < P(Z = 1 | X) < 1; if Xβ is a risk or prognostic +score, (25) is less restrictive than their already weak overlap requirement. +A partition Sn is a finely stratified design (Fogarty, 2018) if it divides {1, . . . , n} +into partition elements s ∈ Sn that satisfy � +i∈s�zi = z� ≤ 1 for either or both of +z = 0, 1. These can be 1 : m0 or m1 : 1 matched sets, for natural numbers m0, m1, +if not m1 : m0 blocks with both m0, m1 ≥ 2; singleton elements, s of size ns = 1, +represent unmatched units. +Such Sn may emerge from pair matching, where each +s ∈ Sn is either a 1:1 pair, � +i∈s�zi = 1� = � +i∈s�zi = 0� = 1, or an unmatched 0:1 +or 1 : 0 singleton; from matching with multiple controls, permitting 1 : m, m ≥ 1, +matches as well as singletons; from 1-nearest neighbor matching, in which m:1 but +not 1:m sets may arise; or from full matching (Rosenbaum, 1991), permitting both +21 + +m : 1 and 1 : m configurations for any m; or from full matching with symmetric +restrictions (Stuart and Green, 2006; Fredrickson et al., 2020), permitting both +m : 1 and 1 : m matched sets, but only for m falling below a designated m0. The +notation [i]Sn for the partition element s ∈ Sn containing i is abbreviated to [i] +when no partition other than Sn is under consideration. +Consider estimates defined as roots of ψSn(·) = 0, where +ψSn(η) := +� +s∈Sn +� +i∈s ψsi(η) +� +s∈Sn wsns ¯Zs(1 − ¯Zs), +ψsi(η) := ws[Yi − η(Zi − ¯Zs)](Zi − ¯Zs), (26) +¯zs := ns−1� +j∈s zj and ws is a nonnegative weight determined by zs and/or ns. +For example, the z-coefficient in an ordinary regression of outcomes y on z and +matched-set indicator variables is expressible as the solution ˆτ of ψSn(τ) = 0 for +ws ≡ 1, since (zi − ¯z[i] : i) is the residual of z’s ordinary regression on matched- +set indicator variables. As a second example, the effect of treatment-on-treated +estimator +n−1 +{i:Zi=1,n[i]>1} +� +{i:Zi=1,n[i]>1} +Yi − avg(Yj : Zj = 0, j ∼ i) +uniquely solves ψSn(·) = 0 with w[i]Sn = 0 for unmatched i and ws = (1 − ¯Zs)−1 +for s with ns > 1. +Inferences will reflect Sn by conditioning on stratum-wise treatment alloca- +tions, that is on a sigma field containing Fn := σ +�� +i∈s Zi : s ∈ Sn +� +. Desite this +notation, {Fn : n} is not a nested filtration: as a rule Sm ̸⊆ Sm, as strict contain- +ment does not permit the maximum index discrepancy, |{⃗xiβn − ⃗xjβn : i Sn +∼ j}|∞, +to decline with increasing n. The statistic [� +i∈s Zi : s ∈ Sn] that defines Fn is in +itself uninformative, S-ancillary (Severini, 2000; Lehmann and Romano, 2022) to +parameters defined as roots of η �→ E[ψSn(η)], ψSn as defined in (26). +Proposition 9 says that under mild assumptions about the regularity of {Sn : n} +and (YT , YC, Z), the solution of (26) tends to a probability limit. To state the +regularity assumptions, write ¯Ys(z) = 0 if � +i∈s�Zi = z� = 0, for z = 0 or 1, +and (� +i∈s�Zi = z�)−1� +i∈s Yi�Zi = z� otherwise; and let V (n,s) := ¯Ys(1) − ¯Ys(0) − +E( ¯Ys(1) − ¯Ys(0) | Fn). +Proposition 9. Let {( ⃗Xi, YCi, YTi, Zi) : i} be i.i.d., let {Sn : n} be finely stratified +designs and let Fn = σ((� +i∈s Zi : s ∈ Sn)). Assume the moment condition that +for some δ > 0 either: (i) E |YC|1+δ, E |YT |1+δ < ∞ and ns is bounded; or (ii) +there is a V and δ > 0 with E |V |1+δ < ∞ such that for each n and s ∈ Sn, |V | +22 + +stochastically dominates |V (n,s)| given Fn. 2 Let {ws : s ∈ Sn} be nonnegative, Fn- +measurable weights, and let ψSn(·) be as in (26). Assume that with probability one: +mn → ∞, where mn := � +s∈Sn�ws ¯Zs(1− ¯Zs) > 0� is the cardinality of Sn exclusive +of unmatched singletons and strata receiving zero weight; wsns ¯Zs(1− ¯Zs) is bounded +above; and m−1 +n +� +s∈Sn wsns ¯Zs(1− ¯Zs) is bounded away from 0. Conditionally given +Fn we then have, for any sigma fields {Gn : n} with Fn ⊆ Gn: +i. for each η, ψSn(η) − E[ψSn(η)|Gn] → 0 in probability and in L1; and +ii. η �→ ψSn(η) and η �→ E[ψSn(η) | Gn] have unique roots ˆτn and τn. +iii. In addition, if there is τ0 ∈ (−∞, ∞) such that τn +P→ τ0, then ˆτn +P→ τ0. +As compared to the classical consistency principle for i.i.d. observations (Hu- +ber, 1964; Serfling, 1980, Lemma A of § 7.2.1), Proposition 9 upgrades moment +requirements from estimating equation contributions ψ(W; θ) being L1 to V (n,s) +being L1+δ, some δ > 0. This enables conclusions in terms of L1 as well as in- +probability convergence, which in turn accommodates refinement of Fn-conditioning +to conditioning on finer sigma fields reflecting matched variation in index scores. +Specifically, consider +Gn := σ +� +( ⃗Xiβn : i ≤ n) ∪ Fn +� +. +The generating statistic ( ⃗Xiβn, 1 ≤ i ≤ n; � +j∈s Zj, s ∈ Sn) is again S-ancillary to +matched treatment-control contrasts such as τn. +Because remaining information about ( ⃗Xi, Zi), 1 ≤ i ≤ n, is barred, the trans- +formed index scores θi := logit[P(Z = 1|Xβn = xiβn)] determine Gn-conditional +assignment probabilities as follows. If s ∈ Sn and ζ : s → {0, 1} satisfies � +i∈s ζi = +� +i∈s zi, then +πs(ζ) := P(Zi = ζi all i ∈ s | Gn) += +� +� +� +exp(θi) +� +j∈s exp(θj), +any i ∈ s s.t. ζi = 1, and ζj = 0 for all j ∈ s \ {i} +exp(−θi) +� +j∈s exp(−θj), +any i ∈ s s.t. ζi = 0, and ζj = 1 for all j ∈ s \ {i}. +(27) +(Because we assume (25), θi ∈ (−∞, ∞) for all i. When s = {i} is an unmatched +singleton, πs(ζ) = 1 for the sole permissible ζ, {i �→ zi}. When s is a 1 : 1 matched +pair {i1, i2}, one condition in (27) obtains with i = i1 while the other obtains +2That is, the Fn-conditional distribution of |V (n,s)| falls at or below the unconditional +distribution of |V | in the usual stochastic ordering where W ⪯ V iff P(W > a) ≤ P(V > a) +for all a. +23 + +with i = i2, so that (27) presents two distinct expressions for πs(ζ). But these +expressions then assign the same value to πs(ζ), for each ζ : {i1, i2} → {0, 1}.) +Now define +˜ψs(η) := +� +i∈s ψsi(η) +nsπs(Zs) ; +˜ψSn(η) := +� +s∈Sn ˜ψs(η) +� +s∈Sn wsns ¯Zs(1 − ¯Zs). +(28) +In contrast to ψs(η) := � +i∈s ψsi(η), ˜ψs(η) cannot be calculated in practice, as +its random denominator involves the unknown βn. Accordingly ˜ψSn(·) lacks direct +application to effect estimation. +However, it is useful for analysis of estimates +based on ψSn(·). +Proposition 10. i. The unique root of η �→ E[ ˜ψSn(η)|Gn] is +� � +s∈Sn +˜wsns +�−1 � +s∈Sn +˜ws +� +i∈s +E(Y | Z = 1, ⃗Xβn = ⃗xiβn) − E(Y | Z = 0, ⃗Xβn = ⃗xiβn), +(29) +where ˜ws := ws¯zs(1 − ¯zs). +ii. For all η and n, +���E[ ˜ψSn(η) − ψSn(η) | Gn] +��� ≤ +[exp(4|{θi − θj : i ∼ j}|∞) − 1] · +� +s∈Sn ˜wsns E |V (n,s)| +� +s∈Sn ˜wsns +, +(30) +where θi = logit[P(Z = 1|Xβn = xiβn)] and V (n,s) is as defined in § 5, above. +iii. If v �→ logit[P(Z = 1|Xβ = v)] is Lipschitz and the conditions of Propo- +sition 9 hold, |{(⃗xi − ⃗xj)βn : i ∼ j}|∞ → 0 entails that the difference +of τn with (29) tends in probability to 0, where τn is the unique root of +η �→ E[ψSn(η) | Gn]. +iv. If the averages (29) tends in probability to a finite limit τ0, then ˆτn +P→ τ0. +If the index deconfounds allocation of treatment, (YC, YT ) ⊥ Z|Xβn, then (29) +coincides with the average causal effect +� +s∈Sn ˜ws +� +i∈s E(YTi − YCi | ⃗Xβn = ⃗xiβn) +� +s∈Sn ˜wsns +. +If the index is a propensity score, this deconfounding flows from strong ignora- +bility in the sense of Rosenbaum and Rubin (1983); if Xβ is a prognostic score, +strong ignorability entails index strong ignorability under a secondary “no effect +modification” condition (Hansen, 2008, Prop. 3). +24 + +References +Austin, P. C. (2011), “Optimal caliper widths for propensity-score matching when +estimating differences in means and differences in proportions in observational +studies,” Pharmaceutical Statistics, 10, 150–161. +Boucheron, S., Lugosi, G., and Massart, P. (2013), Concentration inequalities: A +nonasymptotic theory of independence, Oxford university press. +Cantoni, E. and Ronchetti, E. (2001), “Robust inference for generalized linear +models,” Journal of the American Statistical Association, 96, 1022–1030. +Durrett, R. (2019), Probability: theory and examples, vol. 49, Cambridge, 5th ed. +D’Amour, A., Ding, P., Feller, A., Lei, L., and Sekhon, J. (2021), “Overlap in ob- +servational studies with high-dimensional covariates,” Journal of Econometrics, +221, 644–654. +Firth, D. (1993), “Bias reduction of maximum likelihood estimates,” Biometrika, +80, 27–38. +Fogarty, C. B. (2018), “On mitigating the analytical limitations of finely strati- +fied experiments,” Journal of the Royal Statistical Society: Series B (Statistical +Methodology), 80, 1035–1056. +Fredrickson, M. M., Errickson, J., and Hansen, B. B. (2020), “Comment: Match- +ing Methods for Observational Studies Derived from Large Administrative +Databases,” Statist. Sci., 35, 361–366. +Gelman, A., Jakulin, A., Pittau, M. G., and Su, Y.-S. (2008), “A weakly infor- +mative default prior distribution for logistic and other regression models,” The +Annals of Applied Statistics, 1360–1383. +Gentle, J. E. (2007), “Matrix algebra,” Springer texts in statistics, Springer, New +York, NY, doi, 10, 978–0. +Ghosh, D. and Cort´es, E. C. (2019), “A gaussian process framework for overlap and +causal effect estimation with high-dimensional covariates,” Journal of Causal +Inference, 7. +Hansen, B. B. (2008), “The Prognostic Analogue of the Propensity Score,” +Biometrika, 95, 481–488, doi: 10.1093/biomet/asn004. +25 + +He, X. and Shao, Q.-M. (2000), “On parameters of increasing dimensions,” Journal +of Multivariate Analysis, 73, 120–135. +Huber, P. J. (1964), “Robust estimation of a location parameter,” Annals of Math- +ematical Statistics, 35, 73–101. +Kosmidis, I. and Firth, D. (2009), “Bias reduction in exponential family nonlinear +models,” Biometrika, 96, 793–804. +Lehmann, E. L. and Romano, J. P. (2022), Testing statistical hypotheses, Springer +Science & Business Media, 4th ed. +Liang, K.-Y. and Zeger, S. L. (1986), “Longitudinal data analysis using generalized +linear models,” Biometrika, 73, 13–22. +Lunt, M. (2013), “Selecting an appropriate caliper can be essential for achieving +good balance with propensity score matching,” American journal of epidemiol- +ogy, 179, 226–235. +Portnoy, S. (1988), “Asymptotic behavior of likelihood methods for exponential +families when the number of parameters tends to infinity,” Annals of Statistics, +356–366. +Rosenbaum, P. R. (1991), “A Characterization of Optimal Designs for Observa- +tional Studies,” Journal of the Royal Statistical Society, 53, 597– 610. +Rosenbaum, P. R. and Rubin, D. B. (1983), “The Central Role of the Propensity +Score in Observational Studies for Causal Effects,” Biometrika, 70, 41–55. +— (1985), “Constructing a Control Group Using Multivariate Matched Sampling +Methods That Incorporate the Propensity Score,” American Statistician, 39, +33–38. +Rubin, D. B. and Thomas, N. (1996), “Matching Using Estimated Propensity +Scores: Relating Theory to Practice,” Biometrics, 52, 249–64. +— (2000), “Combining Propensity Score Matching with Additional Adjustments +for Prognostic Covariates,” Journal of the American Statistical Association, 95, +573–585. +Serfling, R. J. (1980), Approximation theorems of mathematical statistics, John +Wiley & Sons. +Severini, T. (2000), Likelihood methods in statistics, Oxford University Press, USA. +26 + +Stuart, E. A. and Green, K. M. (2006), “Using Full Matching to Estimate Causal +Effects in Non-Experimental Studies: Examining the Relationship between Ado- +lescent Marijuana Use and Adult Outcomes,” Tech. rep., Johns Hopkins Uni- +versity. +Tropp, J. A. (2015), “An Introduction to Matrix Concentration Inequalities,” +Foundations and Trends in Machine Learning, 8, 1–230. +van der Vaart, A. W. (1998), Asymptotic Statistics, Cambridge University Press. +Vershynin, R. (2018), High-dimensional probability: An introduction with applica- +tions in data science, vol. 47, Cambridge university press. +Wang, L. (2011), “GEE analysis of clustered binary data with diverging number +of covariates,” Annals of Statistics, 39, 389–417. +Wang, Y., Cai, H., Li, C., Jiang, Z., Wang, L., Song, J., and Xia, J. (2013), +“Optimal caliper width for propensity score matching of three treatment groups: +a Monte Carlo study,” PloS one, 8, e81045. +A +Review of mathematical symbols +The symbols | · |2 and | · |∞ indicate Euclidean and supremum norms as usual +(§ 3.2). For scalar or vector random variables V , ∥V ∥ψ2 is the sub-gaussian norm +of V ; for fixed matrices M, |M|2 and |M|F are M’s operator and Frobenius norms +respectively (§ 2.2). For matrices M and N of like dimension, ⟨M, N⟩F is the +Frobenius inner product tr(M′N) (§ 3.2). +Symbols ˆβ, ψ(r, ⃗x, β) and c0(r, ⃗x, β0 + ⃗xβ) are defined in Section 2.1, while +Section 2.3 defines βn, ˜β, An, and Bn. For partitions S of {1, . . . , n}, [i]S denotes +the subset of {1, . . . , n} belonging to S that contains i and i S∼ j means there is +s ∈ S with both i ∈ s and j ∈ s (§ 3). Section 3.2 defines nS (as card(S)) and +z∗ +m, for positive integers m. �A� is the indicator of event A. Section 5 defines +¯vs = n−1 +s +� +j∈s vj for s ⊆ {1, . . . , n}; associates estimating functions ψSn(·) and +˜ψSn(·), and sigma fields Fn and Gn, with partitions Sn of {1, . . . , n}; and also +defines ¯vs(z) for s ⊆ {1, . . . , n} and z ∈ {0, 1}. +27 + +B +Proofs for Section 3 +B.1 +Section 3.1 +Proof of Prop. 2. In light of (8) and IS estimability (A2, A3), the difference be- +tween (˜βn−βn) and A−1 +n +1 +n[�n +j=1 ψ(Rj, ⃗xj; βn)] has Euclidean norm of order smaller +than n−1/2. Because it is nonrandom, the sub-gaussian norm of this difference is +also o(n−1/2). So it suffices to show ∥A−1 +n +1 +n[�n +j=1 ψ(Rj, ⃗xj; βn)]∥ψ2 = O(n−1/2). +Given A3, for this it suffices in turn to show that ∥ �n +j=1 ψ(Rj, ⃗xj; βn)∥ψ2 = +O(n1/2). +By (4), +∥ +n +� +i=1 +ψ(Ri, ⃗xi; βn)∥ψ2 = +sup +γ:|γ|2=1 +∥ +n +� +i=1 +γ′ψ(Ri, ⃗xi; βn)∥ψ2 += +sup +γ:|γ|2=1 +∥ +n +� +1 +c0(Ri, ⃗xi, ⃗xiβn)w(⃗xi)⃗xiγ∥ψ2. +Let k1 be a bound for ∥c0(Ri, ⃗xi, ⃗xiβn)∥ψ2, by A5. According to the general Ho- +effding inequality (Vershynin, 2018, § 2.6), there is a universal k0 such that +∥ +n +� +1 +c0(Ri, ⃗xi, ⃗xiβ)w(⃗xi)⃗xiγ∥2 +ψ2 ≤k0 +n +� +1 +∥c0(Ri, ⃗xi, ⃗xiβ)w(⃗xi)⃗xiγ∥2 +ψ2 +≤k0k1 +n +� +1 +|w(⃗xi)⃗xiγ|2 +2. So +sup +γ:|γ|2=1 +∥ +n +� +1 +c0(Ri, ⃗xi, ⃗xiβ)w(⃗xi)⃗xiγ∥2 +ψ2 ≤k0k1n +� +1 +n +n +� +1 +w(⃗xi)2 +� +· +sup +γ:|γ|2=1 +� +1 +n +n +� +1 +|⃗xiγ|2 +2 +� +. +The left-hand side equals the square of ∥ �n +1 c0(Ri, ⃗xi, ⃗xiβ)⃗xi∥ψ2, whereas A6 says +the product at right is O(n). The proof is complete. +B.2 +Proofs for section 3.2 +The following lemma helps to prove Proposition 3. +Lemma 2. Under the conditions of Proposition 3, for all 1 ≤ i < j < n we have +( ⃗Xi − ⃗Xj) ⊥ ˜β − βn | S, {⃗µ(s) : s ∈ S}. +28 + +Proof. Recall that ˜β − βn = A−1 +n +1 +n +�n +i=1 ψ(Ri, ⃗Xi; βn). Suppressing conditioning +for S, {µs : s ∈ S} in the notation, +Cov +� +A−1 +n +1 +n +n +� +i=1 +ψ(Ri, ⃗Xi; βn), ⃗X1 − ⃗X2 +� += +1 +n Cov +� +A−1 +n ψ(R1, ⃗X1; βn), ⃗X1 +� +− +1 +n Cov +� +A−1 +n ψ(R2, ⃗X2; βn), ⃗X2 +� += 0. +By joint Normality of {[ ⃗Xi; ψ′(Ri, ⃗Xi; βn)] : i}, 1 +nA−1 +n ψ(R1, ⃗X1; βn) and ( ⃗Xi − ⃗Xj) +are jointly Normal, and the fact that they are uncorrelated means they are inde- +pendent. +Proof of Proposition 3. For fixed γ ∈ ℜp we have, after some algebra that I omit, +E[( ⃗X1 − ⃗X2)γ]2 = 2γ′Σγ +and +E +��{( ⃗Xi − ⃗Xj)γ : i S∼ j, i ̸= j} +��2 +2 = 2γ′Σγ. +(Throughout the proof I write ““E[·]” for “ES[·].”) By the conditional indepen- +dence established in Lemma 2, it follows that +E +��{( ⃗Xi − ⃗Xj)(˜β − βn) : i S∼ j, i ̸= j} +��2 +2 = ⟨2Σ, C⟩F . +Also for fixed γ, (5) as applied to Normal variables gives +E +��{( ⃗Xi − ⃗Xj)γ : i S∼ j, i ̸= j} +�� +∞ ≤ [4γ′Σγ log 2nS]1/2. +(31) +Since ˜β is independent of ⃗Xi − ⃗Xj for each 1 ≤ i < j ≤ n (Lemma 2), (31) +entails +E +� +E +���{( ⃗Xi − ⃗Xj)(˜β − βn) : i S∼ j, i ̸= j} +�� +∞ | ˜β +�2� +≤ +E +� +4(˜β − βn)′Σ(˜β − βn) log 2nS +� += 4⟨Σ, Cn⟩F log 2nS. +Combining this fact with Jensen’s inequality for conditional expectation, +� +E +���{( ⃗Xi − ⃗Xj)(˜β − βn) : i S∼ j, i ̸= j} +�� +∞ +��2 +≤ +E +� +E +���{( ⃗Xi − ⃗Xj)(˜β − βn) : i S∼ j, i ̸= j} +�� +∞ | ˜β +�2� +≤ 4⟨Σ, Cn⟩F log 2nS. +29 + +B.3 +Section 3.3 +Proof of Lemma 1. Letting k < ∞ denote the supremum (Condition A5) of sub- +gaussian norms of {c0(Ri, ⃗xi, ⃗xiβn) : i}, E[c0(Ri, ⃗xi, ⃗xiβn)4] ≤ (2k)4 for all i (e.g., +Vershynin, 2018, § 2.5.2). Accordingly � +i E +� +c0(Ri, ⃗xi, ⃗xiβn)4� += O(n) and in turn +� +i{E +� +c0(Ri, ⃗xi, ⃗xiβn)2� +}2 = O(n). Combining this with supγ:|γ|2=1 +� +i w(⃗xi)4(⃗xiγ)4 = +O(n) (Condition A6), Cauchy-Schwartz gives supγ:|γ|2=1 +� +i E +� +c0(Ri, ⃗xi, ⃗xiβn)2� +w(⃗xi)2(⃗xiγ)2 = +O(n). Rearranging terms in light of (4), this says supγ:|γ|2=1 +� +i E +� +[γ′ψ(Ri, ⃗xi, β)]2� += +O(n), or supγ:|γ|2=1 γ′nBnγ = O(n); thus |Bn|2 = O(1). +Condition A3 gives +|A−1 +n |2 = O(1), so also |C−1 +n |2 = O(n−1). +Our demonstration of Proposition 4 relies on three supporting lemmas, as +follows. +Lemma 3. Under A4 and A6, supβ |An(β)|2 = O(1). +Proof. Write c1(⃗x, η) := (∂/∂η) E[c0(R, ⃗x, η) | ⃗X = ⃗x] so that ∇β E[ψ(R, ⃗x, β) | ⃗X = ⃗x] = +c1(⃗x, ⃗xβ)w(⃗x)⃗x′⃗x. By A4, there is K1 < ∞ such that |c1(⃗x, β0 + ⃗xβ)| < K1, for +any β. By Cauchy-Schwartz, A6 gives supγ:|γ|2=1 +�n +i=1 w(⃗xi)(⃗xiγ)2 = O(n). Since +n|An(β)|2 = +sup +γ:|γ|2=1 +γ′ +�� +i +c1(⃗xi, ⃗xiβ)w(⃗xi)⃗x′⃗x +� +γ ≤ K1 +sup +γ:|γ|2=1 +� +i +w(⃗xi)(⃗xγ)2 +for any β, the result follows. +Lemma 4. Under A1–A9, |An(ˆβ) − An(βn)|2 +P→ 0 and | ˆBn(ˆβ) − ˆBn(βn)|2 +P→ 0. +Lemma 5. Under A1–A9 as well as A11 and sub-√n dimension, | ˆBn(βn) − +Bn(βn)|2 +P→ 0. +Proofs of Lemmas 4 and 5 are given following the proof of Proposition 4. +Proof of Proposition 4. Since ˆAn ≡ An(ˆβ), | ˆAn −An|2 +P→ 0 follows from Lemma 4. +Since ˆBn ≡ ˆBn(ˆβ), | ˆBn−Bn|2 +P→ 0 follows from | ˆBn(ˆβ)− ˆBn(βn)|2 +P→ 0 (Lemma 4) +and | ˆBn(βn) − Bn|2 +P→ 0 (Lemma 5). +Since |A−1 +n |2 = O(1) and | ˆA−1 +n |2 = OP (1) (Condition A3 and Prop. 1), it follows +that | ˆA−1 +n +− A−1 +n |2 +P→ 0, by applying sub-multiplicativity of the spectral norm to +the right-hand side of ( ˆA−1 +n −A−1 +n ) = ˆA−1 +n ( ˆAn −An)A−1 +n . Since also |Bn|2 = OP (1) +(Lemma 1), the 2-norms of the second and third summands in ˆA−1 +n +ˆBn ˆA−1 +n += +A−1 +n BnA−1 +n + ( ˆA−1 +n − A−1 +n )BnA−1 +n + ˆA−1 +n Bn( ˆA−1 +n − A−1 +n ) + ˆA−1 +n ( ˆBn − Bn) ˆA−1 +n +30 + +must tend in probability to 0. Thus the stochastic order of |A−1 +n BnA−1 +n − ˆA−1 +n +ˆBn ˆA−1 +n |2 +can be no greater than that of | ˆA−1 +n ( ˆBn −Bn) ˆA−1 +n |2. But as A4 and A6 entail that +| ˆAn|2 = OP (1), by Lemma 3, OP (| ˆA−1 +n ( ˆBn−Bn) ˆA−1 +n |2) = OP (| ˆBn−Bn|2) = oP (1); +this means |Cn − ˆCn|2 = n−1|A−1 +n BnA−1 +n − ˆA−1 +n +ˆBn ˆA−1 +n |2 = oP (n−1). +This proof of Lemma 4 was based in part on Wang’s proof of a similar principle +for generalized estimating equations (2011, Thm. 3.10). +Proof of Lemma 4. To establish |An(ˆβ)−An(βn)|2 = supγ:|γ|2=1 γ′[An(ˆβ)−An(βn)]γ P→ +0, let K1 < ∞ be a Lipschitz constant for η �→ c1(r, ⃗x, η), each r and ⃗x, where c1(·) +is as defined in the proof of Lemma 3, above. (By Condition A4.) Then +|γ′{∇β E[ψ(R, ⃗xi, β) | ⃗X = ⃗xi]β=ˆβ − ∇β E[ψ(R, ⃗xi, β) | ⃗X = ⃗xi]β=βn}γ| +≤ K1[⃗xi(ˆβ − βn)]w(⃗xi)(⃗xiγ)2. +(32) +Summing over i and applying Cauchy-Schwartz, +(γ′[An(ˆβ) − An(βn)]γ)2 ≤K2 +1 +� +1 +n +n +� +i=1 +w(⃗xi)2(⃗xiγ)4 +� � +� 1 +n +n +� +i=1 +� +⃗xi +ˆβ − βn +|ˆβ − βn|2 +�2� +� × |ˆβ − βn|2 +2, +interpreting “⃗x(δ/|δ|2)” as 0 when |δ|2 = 0. It follows that +|An(ˆβ)−An(βn)|2 +2 ≤ K2 +1 +� +sup +γ:|γ|2=1 +1 +n +n +� +i=1 +w(⃗xi)2(⃗xiγ)4 +�� +sup +δ:|δ|2=1 +1 +n +n +� +i=1 +(⃗xiδ)2 +� +|ˆβ−βn|2 +2. +Observe that the conditions of Proposition 1 follow from those of Proposition 4, +so that we may assume |ˆβ−βn|2 = OP [(p/n)1/2]. This combines with Condition A6 +to give |An(ˆβ) − An(βn)|2 = O(1)O(1)OP [(p/n)1/2], which by A9 is oP (1). +As to | ˆBn(ˆβ) − ˆBn(βn)|2, +γ′{Ψ(Ri, ⃗xi, ˆβ)Ψ(Ri, ⃗xi, ˆβ)′ − Ψ(Ri, ⃗xi, βn)Ψ(Ri, ⃗xi, βn)′}γ +(33) +=(c2 +0(Ri, ⃗xi, ˆηi) − c2 +0(Ri, ⃗xi, ηi))w(⃗xi)2(⃗xiγ)2 +=(c0(Ri, ⃗xi, ˆηi) − c0(Ri, ⃗xi, ηi))(c0(Ri, ⃗xi, ˆηi) + c0(Ri, ⃗xi, ηi))w(⃗xi)2(⃗xiγ)2 +=(c0(Ri, ⃗xi, ˆηi) − c0(Ri, ⃗xi, ηi))2w(⃗xi)2(⃗xiγ)2 ++ (c0(Ri, ⃗xi, ˆηi) − c0(Ri, ⃗xi, ηi)) · 2c0(Ri, ⃗xi, ηi)w(⃗xi)2(⃗xiγ)2 +=:Vi(γ) + Wi(γ). +(34) +31 + +By the Lipschitz property (A4) of c0(r, ⃗x, ·), +sup +γ:|γ|2=1 +1 +n +� +i +|Vi(γ)| ≤K2 +1 +sup +γ:|γ|2=1 +1 +n +� +i +(ˆηi − ηi)2w(⃗xi)2(⃗xiγ)2 +≤K2 +1|ˆβ − βn|2 +2 +sup +δ,γ:|δ|2=|γ|2=1 +1 +n +� +i +w(⃗xi)2(⃗xiδ)2(⃗xiγ)2 += O(1)OP (p/n)O(1) = oP (1), +(35) +invoking Assumption A6 and consistency of ˆβ at (35). The Lipschitz property of +c0(r, ⃗x, ·) also gives +sup +γ:|γ|2=1 +1 +n +� +i +|Wi(γ)| ≤2K1 +sup +γ:|γ|2=1 +1 +n +� +i +|c0(Ri, ⃗xi, ηi)(ˆηi − ηi)|w(⃗xi)2(⃗xiγ)2 +≤2K1|ˆβ − βn|2 +sup +γ,δ:|γ|2=|δ|2=1 +1 +n +� +i +c0(Ri, ⃗xi, ηi)(⃗xiδ)w(⃗xi)2(⃗xiγ)2 +≤2K1|ˆβ − βn|2[ 1 +n +� +i +c4 +0(Ri, ⃗xi, ηi)]1/4 +× +sup +δ:|δ|2=1 +[ 1 +n +� +i +w(⃗xi)4(⃗xiδ)4]1/4 +sup +γ:|γ|2=1 +[ 1 +n +� +i +w(⃗xi)4(⃗xiγ)4]1/2 +(36) += OP (p/n)OP (1)O(1)O(1) = oP (1). +Here we apply Cauchy-Schwartz (twice) at (36) and, to pass to the next line, con- +sistency of ˆβ as per Proposition 1, Assumption A5 in combination with Markov’s +inequality and Assumption A6. Since +| ˆBn(ˆβ) − ˆBn(βn)|2 = +sup +γ:|γ|2=1 +γ′( ˆBn(ˆβ) − ˆBn(βn))γ +≤ +sup +γ:|γ|2=1 +1 +n +� +i +|Vi(γ)| + +sup +γ:|γ|2=1 +1 +n +� +i +|Wi(γ)|, +the result follows. +Proof of Lemma 5. To control |γ[ ˆBn(βn) − Bn(βn)]γ′|, fix γ with |γ|2 = 1 and +consider +γ[ ˆBn(βn) − Bn(βn)]γ′ =γ′� +n−1 � +i≤n +{c2 +0(Ri, ⃗xi, ⃗xiβn) − E[c2 +0(R, ⃗xi, ⃗xiβn) | ⃗X = ⃗xi]}w2(⃗xi)⃗x′ +i⃗xi +� +γ +=n−1 � +i≤n +{c2 +0i(Ri) − E[c2 +0i(R) | ⃗X = ⃗xi]}w2(⃗xi)(⃗xiγ)2. +32 + +Observe that A5 entails the random variables c2 +0i(Ri) − E[c2 +0i(R) | ⃗X = ⃗xi] to be +sub-exponential with uniformly bounded sub-exponential norm (Vershynin, 2018, +§ 2.7). Applying Bernstein’s inequality (Vershynin, 2018, § 2.8), +P{|γ[ ˆBn(βn) − Bn(βn)]γ′| ≥ t} ≤ +2 exp +� +−k2 min +� +n2t2 +k2e +�n +i=1 w(⃗xi)4(⃗xiγ)4 , +nt +ke maxi≤n w(⃗xi)2(⃗xiγ)2 +�� +, +(37) +where ke is a finite upper bound for the sub-exponential norms of c2 +0i(Ri) − +E[c2 +0i(Ri)], i ≥ 1, and k2 is a universal constant. +Now let N be a 1/4-net of the p-dimensional sphere, i.e. a finite subset of +{γ : |γ|2 = 1} with the property that {γ : |γ|2 = 1} is covered by balls centered in +N of radius 1/4, so that (Vershynin, 2018, § 4.4.1) +sup +γ:|γ|2=1 +γ[ ˆBn(βn) − Bn(βn)]γ′ ≤ 2 sup +γ∈N +γ[ ˆBn(βn) − Bn(βn)]γ′. +(38) +We may select this N to have cardinality no more than 9p (Vershynin, 2018, +Corr. 4.2.13). +Since (37) holds for arbitrary γ on the unit sphere, it follows that +1 +2 P{ sup +γ:|γ|2=1 +|γ[ ˆBn(βn) − Bn(βn)]γ′| ≥ t} ≤ +exp +� +p log(9) − nk2 min +� +t2 +k2en−1 �n +i=1 w(⃗xi)4(⃗xiγ)4 , +t +ke maxi≤n w(⃗xi)2(⃗xiγ)2 +�� += +exp +� +−k2 min +� +nt2 +k2en−1 �n +i=1 w(⃗xi)4(⃗xiγ)4 − pk3, +nt +ke maxi≤n w(⃗xi)2(⃗xiγ)2 − pk3 +�� +, +(39) +where k3 = log(9)/k2. +Recalling that n−1 �n +i=1 w(⃗xi)4(⃗xiγ)4 = O(1) (by A6), +t2/[k2 +en−1 �n +i=1 w(⃗xi)4(⃗xiγ)4] has positive limit infimum and finite limit supremum +(for any t); thus the first of the two quantities of which the minimum is taken tends +to ∞ because p = o(n) (A9). Since maxi≤n w(⃗xi)2(⃗xiγ)2 = O{max[p log n, (log n)2]} +(A11), p2 log n = o(n) (sub-√n dimension) entails that the second quantity also +must tend to ∞. (If pn ≤ log n infinitely often, then on the subsequence for which +this is true the term in question is bounded below by (log n){(t/ke)n/[(log n) maxi≤n w(⃗xi)2(⃗xiγ)2] − k3}, +which tends to ∞ with (log n)[n/(log n)3 − 1]. +Otherwise pn > log n so that +max[pn log n, (log n)2] = pn log n. The term in question equals p{(t/ke)n/[p maxi≤n w(⃗xi)2(⃗xiγ)2] − k3}, +which tends to ∞ because p ↑ ∞, maxi≤n w(⃗xi)2(⃗xiγ)2 = O(p log n) and p2 log n = +o(n).) So the minimum in (39) increases without bound, and (39) itself tends to +0. +33 + +Proposition 5’s proof uses two supporting lemmas. +Lemma 6. Under A1 and A6, s(xˆβ) − s(xβn) = OP (|ˆβ − βn|2). +Proof. By A1, +s2(xˆβ) − s2(xβn) = ˆβ′S ˆβ − β′ +nSβn += (ˆβ + βn)′S(ˆβ − βn) += (S1/2 ˆβ + S1/2βn)′S1/2(ˆβ − βn), +where S1/2 denotes the matrix square root of S. Noting A6’s implication that +|S1/2|2 = O(1), +|s(xˆβ) − s(xβn)| =[s(xˆβ) + s(xβn)]−1|(S1/2 ˆβ + S1/2βn)′S1/2(ˆβ − βn)| +≤ (|S1/2 ˆβ|2 + |S1/2βn|2)−1|S1/2 ˆβ + S1/2βn|2|S1/2|2|ˆβ − βn|2 +≤ |S1/2|2|ˆβ − βn|2 = O(1)OP (|ˆβ − βn|2). +In the proof of Lemma 7 below, let (I, J) ⊆ {1, . . . , n} be a randomly ordered +simple random sample of size 2, and let ⃗D (or ⃗D⊥w, w an n-vector) be a 1 × p +random vector representing the paired difference ⃗xI − ⃗xJ (or ⃗x⊥w +I +− ⃗x⊥w +J +). Then +s. e.2 +r(I, J) = ⃗D⊥xˆβ ˆC ⃗D⊥xˆβ′ +(40) +Because of the U-statistic representation of covariance, Cov( ⃗D) = 2S(x). By +symmetry of the distribution of (I, J), E +� +⃗D +� += 0, so that E +� +⃗D′ ⃗D +� += Cov(D) = +2S(x). Selection of (I, J) pays no attention to the distinction between treatment +and control, making ⃗D independent of {Zi}n +i=1 and, by extension, of ˆβ and ˆC. +Therefore its conditional and marginal moments coincide: E +� +⃗D|ˆβ, ˆC +� += E +� +⃗D +� += +0; E +� +⃗D′ ⃗D|ˆβ, ˆC +� += Cov( ⃗D|ˆβ, ˆC) = Cov( ⃗D) = 2S(x). +Lemma 7. Let S = S(x) or S⊥v = (n − L)−1x⊥v′x⊥v, some categorical vari- +able v with L categories. Then ⟨S⊥ˆβ, ˆC⟩F = ⟨S, ˆC⟩F − s−2(xˆβ)⟨S ˆβ ˆβ′S, ˆC⟩F and +⟨S⊥βn, C⟩F = ⟨S, ˆC⟩F − s−2(xβn)⟨Sβnβn′S, C⟩F . +Proof. If S = S(x), let ⃗D be as defined above. Otherwise, if S = S⊥v, then let +(I, J) ⊆ {1, . . . , n} be a randomly ordered stratified simple random sample of size +2 from one of the categories of v with at least two elements, after selecting one of +these categories with probability proportional to size, and let ⃗D (or ⃗D⊥w, w an +34 + +n-vector) be a 1 × p random vector representing the paired difference ⃗xI − ⃗xJ (or +⃗x⊥w +I +− ⃗x⊥w +J +). +Evaluate E +� +⃗D⊥xˆβ′ ⃗D⊥xˆβ|ˆβ, ˆC +� += Cov( ⃗D⊥xˆβ|ˆβ, ˆC) using the U-statistic rep- +resentation of sample covariance to get Cov( ⃗D⊥xˆβ|ˆβ, ˆC) = 2(n − 1)−1x⊥xˆβ′x⊥xˆβ. +Now compare to: +1 +2 E +� +⃗D⊥xˆβ′ ⃗D⊥xˆβ|ˆβ, ˆC +� +=(I − ˆβ ˆβ′S(x)/s2(xˆβ))′S(x)(I − ˆβ ˆβ′S(x)/s2(xˆβ)) +=S(x) − 2s−2(xˆβ)S(x) ˆβ ˆβ′S(x)+ +s−4(xˆβ)S(x) ˆβ · ˆβ′S(x) ˆβ · ˆβ′S(x) +=S(x) − s−2(xˆβ)S(x) ˆβ ˆβ′S(x) =: S⊥ˆβ. +Proof of Prop. 5. It follows from A6 that ∥S∥F = tr(S′S)1/2 = O(p1/2), and from +the assumed consistency of ˆCn that ∥ ˆCn − Cn∥F = oP (p1/2/n). So +|⟨S, ˆCn⟩F − ⟨S, Cn⟩F | = |⟨S, ˆCn − Cn⟩F | = oP (p/n). +By Lemma 7, +⟨S⊥ˆβ, ˆCn⟩F − ⟨S⊥βn, Cn⟩F =⟨S, ˆCn − Cn⟩F ++ s−2(xˆβ)⟨S ˆβ ˆβ′S, ˆCn⟩F − s−2(xβn)⟨Sβnβn′S, Cn⟩F +=oP +� p +n +� ++ [s−2(xˆβ) − s−2(xβn)]⟨S ˆβ ˆβ′S, ˆCn⟩F +(41) ++ s−2(xβn) +� +⟨S ˆβ ˆβ′S, ˆCn⟩F − ⟨Sβnβn′S, Cn⟩F +� +. +(42) +To analyze the rightmost summand of (41), first observe that s2(xβn) = +βn′Sβn, so that |s(xβn)| ≤ |S|2|βn|2 = O(p1/2) . Together with Proposition 1, +Lemma 6 entails that s(xˆβ) − s(xβn) = OP (p/n). +So A9 says that s(xˆβ) = +OP (p1/2) just as |s(xβn)| = OP (p1/2), whence s(xˆβ)+s(xβn) = OP (p1/2). Combin- +ing these facts, s2(xˆβ)−s2(xβn) = [s(xˆβ) − s(xβn)][s(xˆβ) + s(xβn)] = OP (p/n1/2). +In light of A8, it follows that |s−2(xˆβ) − s−2(xβn)| = OP {p/[n1/2s4(xβn)]}. +As to the ⟨S ˆβ ˆβ′S, ˆCn⟩F factor of (41), +|⟨S ˆβ ˆβ′S, ˆCn⟩F | = tr(S ˆβ ˆβ′S ˆCn) += | tr(ˆβ′S ˆCnS ˆβ)| += ˆβ′S ˆCnS ˆβ ≤ ∥ˆβ′S1/2∥2∥S1/2∥2∥ ˆCn∥2∥S1/2∥2∥S1/2 ˆβ∥2 += OP (s2(xβn) +n +), +35 + +by A8, A6, consistency of ˆCn and Lemma 1. We now have +|[s−2(xˆβ) − s−2(xβn)]⟨S ˆβ ˆβ′S, ˆCn⟩F | = OP +� +p +n3/2s2(xβn) +� += oP +� p +n +� +. +To bound (42), in light of A8 we focus on the second factor: +|⟨S ˆβ ˆβ′S, ˆCn⟩F − ⟨Sβnβn′S, Cn⟩F | ≤ +|⟨S ˆβ ˆβ′S − Sβnβn′S, ˆCn⟩F | + |⟨Sβnβn′S, ˆCn − Cn⟩F |. +(43) +We address the left term of (43) via Cauchy-Schwartz. +By Lemma 1 and +consistency of ˆCn, ∥ ˆCn∥2 = OP (n−1), so ∥ ˆCn∥F = OP (p1/2/n). +As S ˆβ ˆβ′S − +Sβnβn′S = S(ˆβ ˆβ′ − βnβn′)S, ∥S ˆβ ˆβ′S − Sβnβn′S∥F ≤ ∥S1/2∥2∥S1/2 ˆβ ˆβ′S1/2 − +S1/2βnβn′S1/2∥F ∥S1/2∥2 = OP (1)OP +� +∥S1/2 ˆβ ˆβ′S1/2 − S1/2βnβn′S1/2∥F +� +OP (1). This +decomposes as +∥S1/2 ˆβ ˆβ′S1/2 − S1/2βnβn′S1/2∥F ≤ ∥S1/2(ˆβ − βn)(ˆβ + βn)′S1/2∥F + +∥S1/2 ˆββ′ +nS1/2 − S1/2βn ˆβ′S1/2∥F +where: +∥S1/2(ˆβ − βn)(ˆβ + βn)′S1/2∥F ≤∥S1/2∥2∥(ˆβ − βn)(ˆβ + βn)′S1/2∥F += OP (1) tr[S1/2(ˆβ + βn)(ˆβ − βn)′(ˆβ − βn)(ˆβ + βn)′S1/2]1/2 += OP (1) tr[(ˆβ + βn)′S(ˆβ + βn)(ˆβ − βn)′(ˆβ − βn)]1/2 += OP (1)[(ˆβ + βn)′S(ˆβ + βn)∥ˆβ − βn∥2 +2]1/2 += OP (1)[(ˆβ + βn)′S(ˆβ + βn)]1/2OP [( p +n)1/2] += OP [( p +n)1/2][(ˆβ − βn + 2βn)′S(ˆβ − βn + 2βn)]1/2 += OP [( p +n)1/2][∥S1/2(ˆβ − βn)∥2 +2 + 4(ˆβ − βn)′Sβn + 4∥S1/2βn∥2 +2]1/2 += OP [( p +n)1/2] +� +OP +� p +n +� ++ OP +�� p +n +�1/2 +s(xβn) +� ++ OP [s2(xβn)] +�1/2 += OP +�� p +n +�1/2� +OP +��� p +n +�1/2 ++ s(xβn) +�2·1/2� += OP +� +max +� p +n, +� p +n +�1/2 +s(xβn) +�� +; +36 + +and +∥S1/2 ˆββ′ +nS1/2 − S1/2βn ˆβ′S1/2∥F =∥S1/2(ˆβ − βn)β′ +nS1/2 − S1/2βn(ˆβ − βn)′S1/2∥F +≤∥S1/2(ˆβ − βn)β′ +nS1/2∥F + ∥S1/2βn(ˆβ − βn)′S1/2∥F += 2 tr[S1/2βn(ˆβ − βn)′S(ˆβ − βn)β′ +nS1/2]1/2 += 2[(ˆβ − βn)′S(ˆβ − βn)β′ +nSβn]1/2 += OP +�� p +n +�1/2 +s(xβn) +� +. +Thus the left term at right of (43) is OP {max[p/n, (p/n)1/2s(xβn)]}. +The remaining term in (43) is bounded as follows, using the definition of ⟨·, ·⟩F +and the cyclic property of the trace: +⟨Sβnβn′S, ˆCn − Cn⟩F = tr[Sβnβ′ +nS( ˆCn − Cn)] += tr[β′ +nS( ˆCn − Cn)Sβn] +=β′ +nS( ˆCn − Cn)Sβn +≤|βn|2 +2∥S∥2 +2∥ ˆCn − Cn∥2 += OP (p)OP (1)oP (n−1) = oP (p/n), +using A7, A6 and consistency of ˆCn. This shows that (43) as a whole is OP {max[p/n, (p/n)1/2s(xβn)]}, +from which it follows that (42) is OP {max[(p/n)s−2(xβn), (p/n)1/2s−1(xβn)]} = +oP (p/n), completing the proof of the proposition’s consistency claim. The remain- +der of the proposition follows from A6 and Lemma 1. +C +Proofs for section 4 +C.1 +Proof for Section 4.2 +Proof of Proposition 6. For parts (i) and (iii) it suffices to show that supi |1 − +|⃗xi ˆC1/2|2 +2/|⃗xiC1/2|2 +2| and supi,j |1 − |(⃗xi − ⃗xj) ˆC1/2|2 +2/|(⃗xi − ⃗xj)C1/2|2 +2| tend in prob- +ability to 0 (from the definition of in-probability convergence), and to consider +only (i, j) with ⃗xi ̸= 0 and ⃗xi ̸= ⃗xj. +The latter ensures |⃗xiC1/2|2 > 0 and +|(⃗xi − ⃗xj)C1/2|2 > 0, since Cn is of full rank. Indeed, Lemma 3 in the appendix +gives |An|2 = O(1), covering case (i); for case (iii), A12 gives |B−1 +n |2 = O(1), and +in turn |AnB−1 +n An|2 = O(1). Note that this shows not only that Cn has full rank +but also that |C−1 +n |2 = O(1). +37 + +For arbitrary nonzero p-vectors v we have +1 − v′ ˆCnv +v′Cnv = v′(Cn − ˆCn)v +v′v +v′v +v′Cnv +so that +�����1 − v′ ˆCnv +v′Cnv +����� ≤ +����� +v′(Cn − ˆCn)v +v′v +v′C−1 +n v +v′v +����� ≤ |Cn − ˆCn|2|C−1 +n |2, +using general inequalities for positive definite matrices (e.g., Gentle, 2007, § 8.4). +Proposition 4 gives | ˆCn − Cn|2 = oP (n−1), completing the proof of parts (i) and +(iii). +For part (ii), write a ∨ b := max(a, b) and a ∧ b := min(a, b). For arbitrary +nonzero p-vectors v +����� +v′Cnv ∨ ϵn − v′ ˆCnv ∨ ϵn +v′v +����� ≤ +����� +v′Cnv − v′ ˆCnv +v′v +����� , since +���v′Cnv ∨ ϵn − v′ ˆCnv ∨ ϵn +��� ≤ +���v′Cnv − v′ ˆCnv +��� . +(The latter is true because the expressions on either side of the inequality are equal +if v′Cnv and v′ ˆCnv belong to the same half-interval, (0, ϵn] or [ϵn, ∞), whereas if +they are separated by ϵn then the left side expression is smaller.) So +����� +v′Cnv ∨ ϵn − v′ ˆCnv ∨ ϵn +v′v +����� ≤ |Cn − ˆCn|2 = oP (n−1). +(44) +According to A11, supi ⃗xi⃗x′ +i = O[max(p, log n)]. So +sup +i +⃗xi⃗x′ +i +ϵn +, +sup +{i,j}∈En +(⃗xi − ⃗xj)(⃗xi − ⃗xj)′ +ϵn += OP (n). +Thus +sup +i +⃗xi⃗x′ +i +⃗xiCn⃗x′ +i ∨ ϵn +, +sup +{i,j}∈En +(⃗xi − ⃗xj)(⃗xi − ⃗xj)′ +(⃗xi − ⃗xj)Cn(⃗xi − ⃗xj)′ ∨ ϵn += OP (n). +By (44), +sup +i:|⃗xi|2̸=0 +⃗xiCn⃗x′ +i ∨ ϵn − ⃗xi ˆCn⃗x′ +i ∨ ϵn +⃗xi⃗x′ +i +⃗xi⃗x′ +i +⃗xiCn⃗x′ +i ∨ ϵn += oP (1), +38 + +and likewise +sup +{i,j}∈En: +⃗xi̸=⃗xj +(⃗xi − ⃗xj)Cn(⃗xi − ⃗xj)′ ∨ ϵn − (⃗xi − ⃗xj) ˆCn(⃗xi − ⃗xj)′ ∨ ϵn +(⃗xi − ⃗xj)(⃗xi − ⃗xj)′ +× +(⃗xi − ⃗xj)(⃗xi − ⃗xj)′ +(⃗xi − ⃗xj)Cn(⃗xi − ⃗xj)′ ∨ ϵn += oP (1). +Proof of Proposition 7. The assumption on { ⃗Xi : i ≤ n} entails that ( ⃗Xi − ⃗Xj) +is MVN(0, 2Σ) and ( ⃗Xi − ⃗Xj)C1/2 is MVN(0, 2C1/2ΣC1/2). +Let 2C1/2ΣC1/2 +have eigendecomposition Q′ΛQ, with Λ nonnegative real diagonal and Q an or- +thogonal matrix. Then ( ⃗Xi − ⃗Xj)C1/2Q′ ∼ MVN(0, Λ). Writing Wij1, . . . , Wijp +for the p coordinates of ( ⃗Xi − ⃗Xj)C1/2Q′ =: ⃗Wij, we see that Wij1, . . . , Wijp +are mutually independent mean-0 Gaussians with variances v1, . . . , vp, the diago- +nal entries of Λ and eigenvalues of 2C1/2ΣC1/2, while ( ⃗Xi − ⃗Xj)C( ⃗Xi − ⃗Xj)′ = +( ⃗Xi − ⃗Xj)C1/2Q′QC1/2( ⃗Xi − ⃗Xj)′ = ⃗Wij ⃗W ′ +ij. +Straightforwardly, for any i ̸= j E ⃗Wij ⃗W ′ +ij = � +i vi, or tr(2C1/2ΣC1/2) = +2⟨C, Σ⟩F . +We proceed to characterize the moment generating function (MGF) +of ⃗Wij ⃗W ′ +ij − E ⃗Wij ⃗W ′ +ij, or �p +k=1(W 2 +ijk − E W 2 +ijk). +The centered χ2 +1 distribution +having MGF e−t(1 − 2t)−1/2, valid for t < 1/2, W 2 +ijk − E W 2 +ijk has log MGF +(1/2)[−2vkt − log(1 − 2vkt)], valid for t < 1/(2vk). Applying the relation − log(1− +x)−x ≤ x2/[2(1 − x)], 0 < x < 1 (a transformation of log(1−x)’s degree 2 Taylor +expansion), we now have +log E{exp t[W 2 +ijk − E W 2 +ijk]} ≤ +(vkt)2 +1−2vkt +� +for t < +1 +2vk +� +≤ +(vkt)2 +1−2(maxk vk)t +� +t < +1 +2 maxk vk +� +; so +log E exp{t +p +� +k=1 +[W 2 +ijk − E W 2 +ijk)]} +≤ +t2 � +k v2 +k +1−2(maxk vk)t, +t < +1 +2 maxk vk +due to independence of uncorrelated Gaussians. That is, �p +k=1 W 2 +ijk − E W 2 +ijk is +sub-gamma on its right tail with variance factor � +k v2 +k and scale factor maxk vk; +in symbols, �p +k=1 W 2 +ijk − E W 2 +ijk ∈ Γ+(� +k v2 +k, maxk vk) (Boucheron et al., 2013, +§ 2.4). Since � +k v2 +k = tr(Λ2), the cyclic property of the trace combines with defi- +nitions above to reduce this variance factor to 4|C1/2ΣC1/2|2 +F , as tr(Q′ΛQQ′ΛQ) = +4 tr(C1/2ΣC1/2C1/2ΣC1/2); and the scale factor reduces to 2|C1/2ΣC1/2|2, as maxk vk = +|Λ|2 and |Λ|2 = |Q′ΛQ|2. +39 + +For an MGF characterization in terms of more familiar quantities, note that +|2C1/2ΣC1/2|2 +F = �p +i=1 v2 +i ≤ (maxk vk)(� +k vk) = 2|C1/2ΣC1/2|2(� +k vk), while +� +k vk = tr(D2) = tr(2C1/2ΣC1/2) = 2⟨Σ, C⟩F . So the variance factor can be +taken as 4|C1/2ΣC1/2|2|S1/2C1/2|2 +F , or 4|C1/2ΣC1/2|2⟨Σ, C⟩F . +These MGF characterizations give control of the supremum of { ⃗Wij ⃗W ′ +ij − +E ⃗Wij ⃗W ′ +ij : i ̸= j ≤ n}. This class containing +�n +2 +� +distinct Γ+ +� +4|C1/2ΣC1/2|2⟨Σ, C⟩F , +2|C1/2ΣC1/2|2 +� +random variables, Corollary 2.6 of Boucheron et al. (2013) yields +E max +i̸=j≤n[ ⃗Wij ⃗W ′ +ij − E( ⃗Wij ⃗W ′ +ij)] ≤ +2 +� +2|C1/2ΣC1/2|2⟨Σ, C⟩F log +�n +2 +��1/2 ++ 2|C1/2ΣC1/2|2 log +�n +2 +� +. +Simplifying via E ⃗Wij ⃗W ′ +ij = 2⟨Σ, C⟩F , i ̸= j, and 2a2+2ab+b2 = a2[1 + (1 + b/a)2], +E max +i̸=j≤n +⃗Wij ⃗W ′ +ij ≤⟨Σ, C⟩F +� +� +�1 + +� +�1 + +� +2|C1/2ΣC1/2|2 log +�n +2 +� +⟨Σ, C⟩F +�1/2� +� +2� +� +� += ⟨Σ, C⟩F +� +� +�1 + +� +�1 + +� +2 log +�n +2 +� +p[C1/2ΣC1/2] +�1/2� +� +2� +� +�. +(45) +Observe next that on the positive real line x �→ √2+x dominates x �→ [1 + (1 + x)2]1/2. +(The functions coincide at x = 0; otherwise the latter has derivative equal to the +square root of (1+x)2/[1 + (1 + x)2], which is nowhere greater than 1.) Thus (45) +gives +� +E max +i̸=j≤n +⃗Wij ⃗W ′ +ij +�1/2 +≤⟨Σ, C⟩1/2 +F +� +�√2 + +� +2 log +�n +2 +� +p[C1/2ΣC1/2] +�1/2� +� += √2⟨Σ, C⟩1/2 +F +� +�1 + +� +log +�n +2 +� +p[C1/2ΣC1/2] +�1/2� +�. +D +Section 5 +Proof of Prop. 9. Throughout the proof, expected value is interpreted to be con- +ditional on Fn. +(Because each Fn is the sigma field of finitely many discrete +40 + +random variables, this introduces no measure-theoretic considerations that were +not already present.) +Also assume version (ii) of the moment condition, not- +ing that it is entailed by version (i) and 0 < P(Z = 1) < 1 (which follows +from 0 < P(Z = 1 | ⃗Xβn) < 1): E |YT |p < ∞ means E(|YT |p | Z) < ∞ also, +which entails E |V (n,s)|p < ∞. +If ns is bounded, then there are finitely many +(� +i∈s�Zi = 0�, � +i∈s�Zi = 1�) achievable configurations for fine strata s, each with +a characteristic distribution function x �→ P(V (n,s) ≤ x) such that E +� +|V (n,s)|p� += +p +� ∞ +0 yp−1 P(|V (n,s)| > y)dy < ∞ (e.g., Durrett, 2019, Lemma 2.2.13). The dis- +tribution for |V | on ℜ+ given by setting P(|V | > y) to the maximum over these +distributions of P(V (n,s) > y) stochastically dominates the relevant V (n,s) distri- +butions. It also satisfies p +� ∞ +0 yp−1 P(|V | > y)dy < ∞, because the sum of a finite +collection of functions y �→ P(|V (n,s)| > y) dominates their maximum; so V ∈ Lp. +Part i of proposition. +From (26), +� +i∈s +ψsi(η) = ws[Yi − η(Zi − ¯Zs)](Zi − ¯Zs) += ws{ +� +i∈s: +Zi=1 +[Yi(1 − ¯Zs) − η(1 − ¯Zs)2] + +� +i∈s: +Zi=0 +[−Yi ¯Zs − η ¯Z2 +s ]} += ws[(1 − ¯Zs) +� +i∈s: +Zi=1 +Yi − ηns ¯Zs(1 − ¯Zs)2 − ¯Zs +� +i∈s: +Zi=0 +Yi − ηns(1 − ¯Zs) ¯Z2 +s ] += wsns ¯Zs(1 − ¯Zs) +� ¯Ys(1) − η(1 − ¯Zs) − ¯Ys(0) − η ¯Zs +� += wsns ¯Zs(1 − ¯Zs)( ¯Ys(1) − ¯Ys(0) − η), +(46) +so that E[� +i∈s ψsi(η)] = wsns¯zs(1−¯zs) E( ¯Ys(1) − ¯Ys(0) − η). Recalling that V (n,s) = +¯Ys(1) − ¯Ys(0) − E( ¯Ys(1) − ¯Ys(0)), we have +ψSn(η) − E[ψSn(η)] = +� +s∈Sn ˜wn,snsV (n,s) +� +s∈Sn ˜wn,sns +(47) +where ˜wn,s := ws¯zs(1 − ¯zs) ∈ Fn. (When there is no risk of ambiguity, “ ˜wn,s” is +abbreviated to “ ˜ws.”) Convergence of ψSn(η)−E[ψSn(η)|Gn] will be seen to follow +from suitable convergence of (47), i.e. ψSn(η) − E[ψSn(η)|Fn]. +In-probability convergence of ψSn(η) − E[ψSn(η)]. +We adapt to the +independent non-identically distributed case an argument for the L1-weak law of +large numbers by truncation of increments. +Following Durrett (2019, § 2.2.3), +set ¯V (s) +n +:= V (n,s)�wn,s|V (n,s)| ≤ mn� and ¯Vn := V �|V | ≤ mn�. (Recall mn = +41 + +� +s∈Sn�ws¯zs(1 − ¯zs) > 0�.) Whereas E V (n,s) = 0 by definition, E ¯V (s) +n +may differ +from 0. Our first task is to show that (� +s∈Sn ˜wn,s)−1 E � +s∈Sn ˜wn,s ¯V (s) +n +→ 0. +We have +( +� +s∈Sn +˜wsns)−1 E +� +s∈Sn +˜wsns ¯V (s) +n += ( +� +s∈Sn +˜wsns)−1 +� +E +� +s∈Sn +˜wsns ¯V (s) +n+ + E +� +s∈Sn +˜wsns ¯V (s) +n− +� +where a+ and a− denote positive and negative parts of a, max(a, 0) and min(a, 0). +Now +( +� +s∈Sn +˜wsns)−1 E +� +s∈Sn +˜wsns ¯V (s) +n+ = ( +� +s∈Sn +˜wsns)−1 � +s∈Sn +˜wsns E ¯V (s) +n+ += ( +� +s∈Sn +˜wsns)−1 � +s∈Sn +˜wsns +� ∞ +0 +P( ¯V (s) +n +> x)dx += +� ∞ +0 +� +s∈Sn ˜wsns P( ¯V (s) +n +> x) +� +s∈Sn ˜wsns +dx. +(48) +By the stochastic ordering assumption, P(V (n,s) > x) is dominated by P(V > x); +but P( ¯V (s) +n +> x) ≤ P(V (n,s) > x), so the integrand in (48) is dominated by +P(V > x) as well. As +� ∞ +0 P(V > x)dx = E V+ < ∞, dominated convergence gives +(� +s∈Sn ˜wsns)−1 E � +s∈Sn ˜wsns ¯V (s) +n+ − (� +s∈Sn ˜wsns)−1 E � +s∈Sn ˜wsnsV (n,s) ++ += o(1). +Similarly (� +s∈Sn ˜wsns)−1 E � +s∈Sn ˜wsns ¯V (s) +n− −(� +s∈Sn ˜wsns)−1 E � +s∈Sn ˜wsnsV (n,s) +− += +o(1), and +� � +s∈Sn +˜wsns +�−1� +E +� +s∈Sn +˜wsns ¯V (s) +n +− E +� +s∈Sn +˜wsnsV (n,s) +� += o(1). +Since E V (n,s) = 0, this means (� +s∈Sn ˜wsns)−1 E � +s∈Sn ˜wsns ¯V (s) +n +→ 0. +For in-probability convergence of (47) it now suffices to show +� +s∈Sn ˜wsns(V (n,s) − E ¯V (s) +n ) +� +s∈Sn ˜wsns += oP (1), +(49) +the conclusion of the weak law for triangular arrays. We now verify the premises +of that principle, as it is given in Durrett’s (2019) Theorem 2.2.11. For each n +{V (n,s) : s ∈ Sn} are independent because {(YTi, YCi, Zi) : i} are unconditionally +independent and conditioning on Fn induces dependence within but not across +strata s. Premise (i) of the theorem, � +s∈Sn P( ˜wsnsV (n,s) > � +s∈Sn ˜wsns) → 0, +42 + +will follow, by the assumptions of stochastic dominance and boundedness of ˜wsns, +from convergence to 0 of +� +s∈Sn: ˜wsns>0 +P(u ˜wV > +� +s∈Sn +˜wsns) = mn P(u ˜wV > +� +s∈Sn +˜wsns), +(50) +where u ˜w is an upper bound for { ˜wsns : n; s ∈ Sn}. By hypothesis mn/(� +s∈Sn ˜wsns) = +OP (1), so (50)=oP (1) will follow from (� +s∈Sn ˜wsns) P(u ˜wV > � +s∈Sn ˜wsns) → 0. +As we also hypothesize that mn → ∞ as n ↑ ∞, we also have � +s∈Sn ˜wsns → ∞ as +n increases, and convergence to 0 of (50) follows if x P(u ˜wV > x) → 0 as x ↑ ∞. +This is true by dominated convergence, since x P(u ˜wV > x) ≤ E(u ˜wV �u ˜wV > x�), +u ˜wV �u ˜wV > x� → 0 a.s. as x ↑ ∞, and E (u ˜wV ) < ∞. +Premise (ii) of Durrett’s (2019) Theorem 2.2.11 is that +( +� +s∈Sn +˜wsns)−2 � +n2 +s ˜wsn2 +s E +� +( ¯V (s) +n )2� +→ 0. +(51) +To verify this, observe first that +E +� +(ws ¯V (s) +n )2� +=2 +� ∞ +0 +y P(|ws ¯V (s) +n | > y)dy = 2 +� mn +0 +y P(|ws ¯V (s) +n | > y)dy +≤ 2 +� mn +0 +y P(|wsV (n,s)| > y)dy +(52) +≤ 2 +� mn +0 +y P(|u ˜wV | > y)dy, +(53) +with (53) following from (52) by the stochastic dominance assumption. In conse- +quence, +( +� +s∈Sn +˜wsns)−2 � +n2 +s ˜w2 +s E +� +( ¯V (s) +n )2� +≤ ( +� +s∈Sn +˜wsns)−22mn +� mn +0 +y P(|u ˜wV | > y)dy. +As we assume mn/(� +s∈Sn ˜wsns) = OP (1), for (51) it suffices to show m−1 +n +� mn +0 +y P(|u ˜wV | > +y) → 0 as n ↑ ∞. By the hypothesis that mn → ∞, this flows from x−1 � x +0 y P(|u ˜wV | > +y) → 0, which is a consequence of E |u ˜wV | < ∞, as shown by Durrett (2019) in +the proofs of Theorems 2.1.12 and 2.1.14. This completes the verification that (47) +converges in probability to 0. +L1 convergence of ψSn(η)−E[ψSn(η)]. +By hypothesis there is p > 1 such +that ∥V (n,s)∥Lp ≤ ∥V ∥Lp for all n and s ∈ Sn. Accordingly ∥(� +s∈Sn ˜wn,s)−1� +s∈Sn ˜wn,sV (n,s)∥Lp ≤ +∥V ∥Lp also. By the dominated convergence principle for random variables as in +Theorem 1.6.8 and Exercise 2.3.5 of Durrett (2019), therefore, (47) converges to 0 +in L1 as well as in probability. +43 + +L1- and in-probability convergence of ψSn(η) − E[ψSn(η) | Gn]. +Ob- +serve that +∥ E[ψSn(η)|Gn] − E[ψSn(η)]∥L1 =∥ E{ψSn(η) − E[ψSn(η)] | Gn}∥L1 +≤ ∥ψSn(η) − E[ψSn(η)]∥L1, +Fn being the smaller of the sigma fields {Fn, Gn}, E[ψSn(η)] being the same as +E[ψSn(η) | Fn] and the conditional expectation operator being a contraction in L1 +(Durrett, 2019, Thm. 4.1.11). In tandem with +∥ψSn(η)−E[ψSn(η)|Gn]∥L1 ≤ ∥ψSn(η)−E[ψSn(η)]∥L1+∥ E[ψSn(η)|Gn]−E[ψSn(η)]∥L1 +this means L1 convergence of ψSn(η)−E[ψSn(η)|Fn] entails that ψSn(η)−E[ψSn(η)|Gn] +also converges to zero in L1. Finally, L1 convergence entails convergence in prob- +ability. +Part ii of proposition. +Provided that � +s ˜wsns is positive, both η �→ ψSn(η) +and η �→ E[ψSn(η) | Gn] are everywhere differentiable with slope −1, and can be +seen to tend to ±∞ as η tends to ∓∞. It follows that they have unique roots. +Part iii of proposition. +If the solutions τn of E[ψSn(η) | Gn] = 0 tend to a +limit τ0 ∈ (−∞, ∞), then the following adaptation of the Huber argument for +consistency of scalar solutions of monotone estimating equations (Huber, 1964; +van der Vaart, 1998, Lemma 5.10) shows that ˆτn → τ0 in probability. Fix ϵ > 0. +Then +P[ψSn(τ0 − ϵ) > ϵ/2, ψSn(τ0 + ϵ) < −ϵ/2] ≤ P(τ0 − ϵ < ˆτn < τ0 + ϵ). +The left side tends to 1 because ψSn(τ0 ± ϵ) − E[ψSn(τ0 ± ϵ) | Gn] = oP (1), P(|τn − +τ0| < ϵ/2) → 1, E[ψSn(η) | Gn] > ϵ/2 if η < τn − ϵ/2 and E[ψSn(η) | Gn] < −ϵ/2 if +η > τn + ϵ/2. Therefore the right hand side tends to 1 as well. +Lemma 8. Let θi = logit[P(Z = 1|Xβn = xiβn)]. If |θi − θj| < δ whenever i Sn +∼ j, +then for all s ∈ Sn and z : s → {0, 1} such that � +i∈s ζi = � +i∈s zi ∈ {1, ns − 1}, +���� +πs(ζ) +n−1 +s +− 1 +���� ≤ (1 − n−1 +s )(e2δ − 1) +(54) +and +���� +n−1 +s +πs(ζ) − 1 +���� ≤ (1 − n−1 +s )(e4δ − 1). +(55) +44 + +Proof of Lemma 8. For s an 1 : m matched set, some nonnegative integer m, by +(27) we have +πs(ζ) +n−1 +s +− 1 = 1 +n−1 +s +· +exp θi +� +j∈[i] exp(θj) − 1 += +ns − � +j∈[i] exp(θj − θi) +� +j∈[i] exp(θj − θi) +(56) += +m − � +j∈[i]\{i} exp(θj − θi) +� +j∈[i] exp(θj − θi) +; +so +m − m exp(δ) +(m + 1) exp(−δ) ≤ πs(ζ) +n−1 +s +− 1 ≤ m − m exp(−δ) +(m + 1) exp(−δ), +(57) +− +m +m + 1eδ(eδ − 1) ≤ πs(ζ) +n−1 +s +− 1 ≤ +m +m + 1(eδ − 1) +and +���� +πs(ζ) +n−1 +s +− 1 +���� ≤ ns − 1 +ns +eδ(eδ − 1). +(58) +Now observe that e2δ − eδ < e2δ − 1 for positive δ; (54) follows. +If s is an m : 1 matched set, m ≥ 0, the argument culminating in (58) again +applies after substitution of −θi and −θj for θi and θj. Again (54) follows. +With (54) established in all cases, (55) follows by (54)’s consequence that +���� +πs(ζ) +n−1 +s +���� ≤ e2δ; +the identity |x−1−1| ≤ |x−1|·|x−1|, valid for x ̸= 0; and e2δ(e2δ −1) ≤ e4δ −1. +Proof of Prop. 10. Claim (i) follows from +E[ ˜ψs(η) | Gn] = ˜ws +� +i∈s +[E(Y | Z = 1, ⃗Xβn = ⃗xiβn) − E(Y | Z = 0, ⃗Xβn = ⃗xiβn) − η]. +(59) +To show this, first observe that (46) and (28) combine to give +˜ψs(η) = +˜ws +πs(Zs)( ¯Ys(1) − ¯Ys(0) − η). +(60) +As Sn is assumed to be a fine stratification, one or both of ¯Ys(1) = avg[(Yi : i ∈ s, Zi = 1)] +and ¯Ys(0) = avg[(Yi : i ∈ s, Zi = 0)] is in actuality a single observation. (60) is taken +to be zero, as is ψs(η) = ˜ws +� +i∈s ψsi(η) = ˜ws( ¯Ys(1) − ¯Ys(0) − η), when ˜ws = 0 be- +cause ¯Zs = 0 or 1. +45 + +For s with � +i∈s Zi = 1, by (27) the expectation of (60) evaluates to E[ ˜ψs(η) | Gn] = +� +i∈s +{E(Y | Z = 1, ⃗Xβn = ⃗xiβn) − avg +j∈s\{i} +[E(Y | Z = 0, ⃗Xβn = ⃗xjβn)] − η} +· +˜ws +πs(0(s) ++i) +πs(0(s) ++i) += ˜ws +� +i∈s +{E(Y | Z = 1, ⃗Xβn = ⃗xiβn) − avg +j∈s\{i} +[E(Y | Z = 0, ⃗Xβn = ⃗xjβn)] − η}, +(61) +where we use 0(s) ++i to denote the mapping on s taking i to 1 and remaining elements +to 0; (59) follows. For s with � +i∈s�zi = 0� = 1, this argument gives E[ ˜ψs(η) | Gn] = +˜ws +� +i∈s +{ avg +j∈s\{i} +[E(Y | Z = 1, ⃗Xβn = ⃗xjβn)] − E(Y | Z = 0, ⃗Xβn = ⃗xiβn) − η} (62) +where 1(s) +−i denotes the mapping of s that takes i to 0 and remaining elements to +1. Again (59) follows. +Part (ii). +Given s ∈ Sn, write µ(s) +0 += E( ¯Ys(0) | Fn) and µ(s) +1 += E( ¯Ys(1) | Fn). +By symmetry, µ(s) +z += E(Y | Z1 = z, �ns +i=1 Zi = � +i∈s zi), z = 0, 1. For s ∈ Sn with +� +i∈s�zi = 1� = 1, one has ˜w−1 +s +E[ψs(η) | Gn] = +� +i∈s +{[E(Y | Z = 1, ⃗Xβn = ⃗xiβn) − avg +j∈s\{i} +[E(Y | Z = 0, ⃗Xβn = ⃗xjβn)]] − η}πs(0(s) ++i) += +� +i∈s +{[E(Y − µ(s) +1 +| Z = 1, ⃗Xβn = ⃗xiβn) − avg +j∈s\{i} +[E(Y − µ(s) +0 +| Z = 0, ⃗Xβn = ⃗xjβn)]]}πs(0(s) ++i) ++ µ(s) +1 +− µ(s) +0 +− η, +whereas if � +i∈s�zi = 0� = 1 then ˜w−1 +s +E[ψs(η) | Gn] = +� +i∈s +{[ avg +j∈s\{i} +[E(Y | Z = 1, ⃗Xβn = ⃗xjβn)] − E(Y | Z = 0, ⃗Xβn = ⃗xiβn)] − η}πs(1(s) +−i) += +� +i∈s +{ avg +j∈s\{i} +[E(Y − µ(s) +1 +| Z = 1, ⃗Xβn = ⃗xjβn)] − E(Y − µ(s) +0 +| Z = 0, ⃗Xβn = ⃗xiβn)}πs(1(s) +−i) ++ µ(s) +1 +− µ(s) +0 +− η. +46 + +At the same time, (61) and (62) give +˜w−1 +s +E[ψs(η) | Gn] = µ(s) +1 +− µ(s) +0 +− η+ +� +i∈s +{[E(Y − µ(s) +1 +| Z = 1, ⃗Xβn = ⃗xiβn) − avg +j∈s\{i} +[E(Y − µ(s) +0 +| Z = 0, ⃗Xβn = ⃗xjβn)]]}n−1 +s +or +˜w−1 +s +E[ψs(η) | Gn] = µ(s) +1 +− µ(s) +0 +− η+ +� +i∈s +{ avg +j∈s\{i} +[E(Y − µ(s) +1 +| Z = 1, ⃗Xβn = ⃗xjβn)] − E(Y − µ(s) +0 +| Z = 0, ⃗Xβn = ⃗xiβn)}n−1 +s , +depending as � +i∈s�zi = 1� = 1 or � +i∈s�zi = 0� = 1, respectively. Differencing +these expressions, +˜w−1 +s +E[ ˜ψs(η) − ψs(η) | Gn] = +� +i∈s +� +n−1 +s +πs(0s ++i) − 1 +� +·{[E(Y − µ(s) +1 +| Z = 1, ⃗Xβn = ⃗xiβn) − avg +j∈s\{i} +[E(Y − µ(s) +0 +| Z = 0, ⃗Xβn = ⃗xjβn)]]}πs(0s ++i) +(63) +if � +i∈s�zi = 1� = 1, and if � +i∈s�zi = 0� = 1 then +˜w−1 +s +E[ ˜ψs(η) − ψs(η) | Gn] = +� +i∈s +� +n−1 +s +πs(1s +−i) − 1 +� +·{ avg +j∈s\{i} +[E(Y − µ(s) +1 +| Z = 1, ⃗Xβn = ⃗xjβn)] − E(Y − µ(s) +0 +| Z = 0, ⃗Xβn = ⃗xiβn)}πs(1(s) +−i). +(64) +Observing that ns E(|V (n,s)| | Gn) ≥ | E(nsV (n,s) | Gn)| = +����� +� +i∈s +{[E(Y − µ(s) +1 +| Z = 1, ⃗Xβn = ⃗xiβn) − avg +j∈s\{i} +[E(Y − µ(s) +0 +| Z = 0, ⃗Xβn = ⃗xjβn)]]}πs(0s ++i) +����� +or +����� +� +i∈s +{ avg +j∈s\{i} +[E(Y − µ(s) +1 +| Z = 1, ⃗Xβn = ⃗xjβn)] − E(Y − µ(s) +0 +| Z = 0, ⃗Xβn = ⃗xiβn)}πs(1(s) +−i) +����� +depending as � +i∈s�zi = 1� = 1 or � +i∈s�zi = 0� = 1, and that under the same +respective conditions +���� +n−1 +s +πs(0s ++i) − 1 +���� ≤ exp(2 sup +i,j∈s +|θi − θj|)−1 or +���� +n−1 +s +πs(1s +−i) − 1 +���� ≤ exp(2 sup +i,j∈s +|θi − θj|)−1 +47 + +by Lemma 8, we have: +| E[ ˜ψs(η) − ψs(η) | Gn]| ≤ ˜wsns[exp(2 sup +i,j∈s +|θi − θj|) − 1] E(|V (n,s)| | Gn). +(65) +This establishes (30). +Part (iii). +Because the conditional expectation operator is a contraction in +Lp, +E +�� +s∈Sn ˜wsns E(|V (n,s)| | Gn) +� +s∈Sn ˜wsns +� +≤ +� +s∈Sn ˜wsns E |V (n,s)| +� +s∈Sn ˜wsns +≤ +� +s∈Sn ˜wsns E |V | +� +s∈Sn ˜wsns += E |V |. +Markov’s inequality now gives that � +s∈Sn ˜wsns +−1� +s∈Sn ˜wsns E(|V (n,s)| | Gn) = +OP (1). Accordingly, |{θi − θj : i ∼ j}|∞ = oP (1) combines with (30) to entail +sup +η | E[ ˜ψSn(η) − ψSn(η) | Gn]| = oP (1). +(66) +By Prop. 9, η �→ E(ψSn(η) | Gn) has the unique root τn, and by part (i) of this +proposition, η �→ E( ˜ψSn(η) | Gn) has a unique root given by (29); as either of these +functions’ slopes are bounded away from zero, (66) entails that these roots must +converge together. +Part (iv). +Part (iv) of the proposition now follows from conclusion iii of +Proposition 9. +48 + diff --git a/eNE2T4oBgHgl3EQfxQh6/content/tmp_files/load_file.txt b/eNE2T4oBgHgl3EQfxQh6/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..a0bc2101064fb6691751e6ab5d3bc4692fddf8a8 --- /dev/null +++ b/eNE2T4oBgHgl3EQfxQh6/content/tmp_files/load_file.txt @@ -0,0 +1,1150 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf,len=1149 +page_content='Matching calipers and the precision of index estimation Ben B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Hansen∗ January 11, 2023 Abstract This paper characterizes the precision of index estimation as it car- ries over into precision of matching.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' In a model assuming Gaussian covariates and making best-case assumptions about matching quality, it sharply characterizes average and worst-case discrepancies between paired differences of true versus estimated index values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' In this op- timistic setting, worst-case true and estimated index differences de- cline to zero if p = o[n/(log n)], the same restriction on model size that is needed for consistency of common index models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' This re- mains so as the Gaussian assumption is relaxed to sub-gaussian, if in that case the characterization of paired index errors is less sharp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' The formula derived under Gaussian assumptions is used as the basis for a matching caliper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Matching such that paired differences on the estimated index fall below this caliper brings the benefit that after matching, worst-case differences onan underlying index tend to 0 if p = o{[n/(log n)]2/3}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (With a linear index model, p = o[n/(log n)] suffices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=') A proposed refinement of the caliper condition brings the same benefits without the sub-gaussian condition on covariates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' When strong ignorability holds and the index is a well-specified propensity or prognostic score, ensuring in this way that worst-case matched dis- crepancies on it tend to 0 with increasing n also ensures the consistency of matched estimators of the treatment effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' ∗This work has benefitted from comments of Jake Bowers, Joshua Errickson, Mark Fredrickson, Xuming He, Peter Schochet, Stilian Stoev and Lan Wang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Responsibility rests with the author for any shortcomings that remain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='04109v1 [stat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='ME] 10 Jan 2023 Key words and phrases: Matching, caliper, overlap, positivity, propensity score, prognostic score 1 Introduction In preparing a matched observational study, estimation of a treatment propensity briefly takes center stage, as covariates are chosen and a model specification is selected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' These models quickly recede from view once propensity score estimates have been extracted from them, despite their carrying essential information about those estimates’ likely precision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' The situation is little different in matching on prognostic or principal stratum scores: sampling variability of the model standing behind a matching index is rarely so much as even appraised.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' We seem to take it for granted that errors of estimation of a matching index can’t possibly be so large as to threaten the integrity of matching.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Propensity matching is understood to be a large sample technique, as are logistic and other regression methods typically used for index model estimation, and classical asymptotics may seem to encourage inattention to index estimation error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' As treatment/covariate samples (zi, ⃗xi) accumulate from any reasonable distribution of fixed dimension p+1, one expects errors of estimation of the index, {|⃗xi ˆβ −⃗xiβn| : i}, to be increasingly negligible, decreasing with or near n−1/2, just as |ˆβ − βn|2 = O(n−1/2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' The problem is that the matching canon discourages parsimony in propensity modeling (Rubin and Thomas, 1996), and fixed-p large sample theory may describe non-parsimonious models poorly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Increasing-p asymptotics for logistic regression and similar techniques are avail- able (Portnoy, 1988;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' He and Shao, 2000), if less widely known.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Given that p = o[(log n)/n], they deliver |ˆβ − βn|2 = OP [(p/n)1/2], not OP (n−1/2), as reviewed in § 2 below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' This suggests a still larger order, p/n1/2, for errors of form ⃗X(ˆβ − βn), �p j=1 X2 j = O(p) corresponding to | ⃗X|2 = ��p j=1 X2 j �1/2 = O(p1/2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' While some- what of a simplification, the suggestion is correct in its implication that if p in- creases in proportion with n1/2, for example, then index estimation errors need not diminish even as coefficient estimation errors do.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Outside of fixed-p asymptotics, consistency of the index model does not in itself make index errors asymptotically negligible: that calls for stronger assumptions, specialized matching techniques or a combination of the two.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' For control of index estimation error by way of stronger assumptions, note that if p is assumed to increase slowly enough, increasing dimension regression asymptotics resemble those with fixed p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' It happens that p ∝ n1/2 is slightly too large for such correspondence to obtain, so it is unsurprising that fixed-p intuitions should fail in that regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (Asymptotic normality of ˆβ, for example, calls for 2 p2 log(p) = o(n), not p = o(n1/2) [He and Shao, 2000].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=') But say the index model has sub-√n dimension, in the specific sense that p = o[(n/ log n)1/2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='1 of this paper shows that for consistently estimated index models with sub-gaussian covariates and sub-√n dimension, estimation errors of realized values of the index tend to zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' This convergence is in the strong, l∞, sense of maxi≤n | ⃗Xi(ˆβ − βn)| = oP (1), so it justifies the common practices of matching, subclassifying or simply trimming on the estimated propensity score, as analytic interventions to secure overlap assumptions of the stronger type, cl ≤ P(Z = 1| ⃗X) ≤ cu with [cl, cu] ⊂ (0, 1), as applied to the subset of available observations that remain after pruning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='3 goes on to study ordinary Cov(ˆβ) estimates’ adaptability to char- acterizing likely sizes of index estimation errors, ⃗xi(ˆβ −βn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' A fitted index model’s Fisher information gives an estimate ˆC of Cˆβ = Cov(ˆβ), either directly or as part of an Eicker-Huber-White sandwich.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' In sub-n1/2 dimensional regimes, corresponding standard errors s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='(⃗xˆβ) = [⃗x ˆC⃗x′]1/2 will be seen to estimate closely1 the sampling variabilities Var1/2[(⃗x − ¯⃗x)(ˆβ − βn)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' As the sub-√n condition is relaxed to sub- n (p = o[n/ log(n)]), information- and sandwich-based estimators underestimate Cov(ˆβ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' This limits their utility for inference about βn, and according their behav- ior outside of sub-√n regimes has received less study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' It does not follow, however, that they are are ill-suited to inform the selection of index-based matches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' We explore conditions under which analytic Cov(ˆβ)-estimators continue to character- ize sampling variabilities of a linearization of ˆβ, offering a basis for estimators capturing the better part of Var[⃗x(ˆβ − βn)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' In both regimes, the largest values of {Var1/2[⃗xi(ˆβ − βn)] : i} may be well separated from the rest, in themselves ap- preciably increasing E[maxi≤n | ⃗Xi(ˆβ − βn)|].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Results presented in Section 4 are helpful for identifying the worst offenders, subjects i with large s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='[⃗xi ˆβ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Either or both of the sub-gaussian and sub-√n conditions can be relaxed, but then con- trol of index estimation errors necessitates that such subjects be pruned from the sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' In such circumstances, matching offers alternate practical remedies that can retain more of the sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' It helps first by shifting attention from particular {⃗xi ˆβ : i} or {⃗xiβn : i} to paired differences of indices, (⃗xi − ⃗xj)ˆβ or (⃗xi − ⃗xj)βn, as does § 4 below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' While underestimates of Var1/2[(⃗xi − ⃗xj)ˆβ] may be unhelpful for inference about (⃗xi − ⃗xj)βn, but they can certainly inform matching procedures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='2 uses ˆCˆβ to associate deliberately reduced standard errors with paired contrasts such as (⃗xi − ⃗xj)ˆβ, so constructed that their average, the paired index contrast summary standard error (PIC SE), inexpensively approximates the root 1For |⃗v|2 ̸= 0, |⃗v|−1 2 {s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='[⃗v(ˆβ − βn)] − Var1/2[⃗v(ˆβ − βn)]} is oP [(p/n)1/2], whereas |⃗v|−1 2 s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='[⃗v(ˆβ − βn)] and |⃗v|−1 2 Var1/2[⃗v(ˆβ − βn)] are both OP [(p/n)1/2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' 3 mean square of matched discrepancies on estimated scores, (⃗xi −⃗xj)ˆβ, across pairs {i, j} with little or no discrepancy on the true score, ⃗xiβ ≈ ⃗xjβ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' The PIC SE tends to zero at the same rate as |ˆβ − βn|2, making it useful as a yardstick for matching.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' With sub-gaussian data and sub-√n model dimension, using it to set the width of a caliper on the index — permitting i’s pairing with j only if |(⃗xi − ⃗xj)ˆβ| ≤ cn pic se(ˆβ), with cn = 2, say — forces matched differences on the true index to vanish in the asymptotic limit: max 1≤i∼j≤n |(⃗xi − ⃗xj)βn| P→ 0 (where “i ∼ j” means “i is matched to j”), (1) in virtue of pic se(ˆβ) = OP [(p/n)1/2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Indeed, under the p = o(n−1 log n) growth condition needed for consistency of common index models, (1) holds with non- constant cn, provided that cn = OP [(log n)1/2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Such matching requirements are generally less likely to exclude subjects then comparable trimming rules, as they permit inclusion even of subjects far from the center of the distribution whenever the contrasting study arm has similarly situated subjects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' If i is excluded from the matched sample for lack of counterparts j within caliper distance, it must have been separated from its comparison group by a distance exceeding the resolution of the estimate of the index.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' As will be seen in the data example, this resolution can be strikingly large, much larger than extant caliper width recommendations (Rosenbaum and Rubin, 1985;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Rubin and Thomas, 2000;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Austin, 2011;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=', 2013);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' in many cases it will be much more sparing in its exclusions from the matched sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' This is fortunate, because the paper will recommend a nonstandard strength- ening of the requirement that |(⃗xi−⃗xj)ˆβ| be less than the designated caliper width, excluding potential pairs {i, j} either because |(⃗xi − ⃗xj)ˆβ| is too large or because s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='[(⃗xi − ⃗xj)ˆβ] is.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (Alternately put, because ⃗xi and ⃗xj are too separated on either the index itself or on a certain index estimator-dependent Mahalanobis distance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=') The pairs E ⊆ {{i, j} : 1 ≤ i ̸= j ≤ n} that remain eligible by this criterion satisfy max{i,j}∈E |(⃗xi − ⃗xj)(ˆβ − βn)| = oP (1), even as maxi≤n | ⃗Xi(ˆβ − βn)| may no longer tend to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Thus (1) is maintained, even as the sub-gaussian assumption on ⃗X is relaxed to a fourth moment condition, and p = o{[n/ log(n)]1/2} is relaxed to p = o{[n/ log(n)]2/3}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' In matching on propensity scores, selecting pairs from within such an E ensures that the overlap criterion can be assessed in terms of estimated scores, because maxi∼j |(⃗xi − ⃗xj)ˆβ − (⃗xi − ⃗xj)βn| = oP (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' As the rec- ommended requirement can be viewed as a varying (by value of s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='[(⃗xi − ⃗xj)ˆβ]) limit on |(⃗xi − ⃗xj)ˆβ|, I continue to call it a caliper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' In many cases, these PICSE calipers continue to be more inclusive than would Rosenbaum and Rubin’s (1985) canonical |(⃗xi − ⃗xj)ˆβ| ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='2 s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='(xˆβ) requirement, and in all cases PICSE calipers 4 cause exclusion of a unit i only when our best estimate of the index distances from it to each potential counterpart j exceeds the resolution of the index’s estimation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' 2 Context 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='1 Estimable index scores In an observational study with a treatment and a control condition, the propensity score is a function ⃗x �→ g−1[P(Z = 1 | ⃗X = ⃗x)], where g : ℜ → [0, 1] is continuous and increasing (Rosenbaum and Rubin, 1983).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' The z-on-⃗x regression is often assumed to follow a generalized linear model such as the logistic, P(Z = 1 | ⃗X = ⃗x) = [1 + e−⃗xβ]−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Taking g as that model’s link function identifies the propensity score with the index ⃗xβ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Rosenbaum and Rubin (1985) recommended matching on ⃗xˆβ, not g−1(⃗xˆβ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Similarly prognostic scoring, confounder and risk scoring, and principal stratum scoring fit (parametric) regression models in order to extract indices ⃗xˆβ for use in matching, subclassification or sample trimming, if not also in weighting- or covariance adjustments to be applied once an analysis sample has been selected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Let R denote the dependent variable of the index model, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Z for a propensity score or a response Y for a prognostic score.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Let ˆβ be the solution of � n � i=1 ψ(ri, ⃗xi;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' β) � + α(β) = 0 (2) in β, where ψ(r, ⃗x;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' β) is the ℜp-valued gradient of a scalar-valued function ρ(r, ⃗x;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' β) that is convex in β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (In maximum likelihood estimation α(·) = 0, but Bayesian estimation [e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=', Gelman et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=', 2008] and certain frequentist bias-reduction schemes [Firth, 1993;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Kosmidis and Firth, 2009] minimize a penalized objective, in which cases α(·) is the penalty term’s gradient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=') The index score (IS) is estimable if E � [ n � i=1 ψ(Ri, ⃗xi;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' β)] + α(β) � = 0 (3) has a unique root βn, with supγ:|γ−βn|2≤1 |α(γ)|2 = oP (n1/2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Following He and Shao (2000), near-roots of (2) and/or (3) are acceptable when the equations do not have exact solutions, provided that there is a unique nearest root, but these exact or nearest roots are assumed to satisfy �p j=1 ��n i=1 ψj(ri, ⃗xi;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' ˆβ) �2 = oP (n1/2) and �p j=1[E [�n i=1 ψj(Ri, ⃗xi;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' βn)]]2 = o(n1/2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Assume there are functions c0(·, ·, ·) and w(·) such that ψ(r, ⃗x, β) = c0(r, ⃗x, β0 + ⃗xβ)w(⃗x)(1, ⃗x)′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (4) 5 This structure accommodates robust (Cantoni and Ronchetti, 2001) and general- ized (Liang and Zeger, 1986) estimating equations as well as score functions such as logistic regression’s, ψ(r, ⃗x, β) = {r − [1 + exp(−β0 − ⃗xβ)]−1}(1, ⃗x)′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' If there are pre-existing strata 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' , L, with matches to be made within strata and any subclasses to further divide them, then (4) may be modified by replacement of β0 with stratum-specific intercepts β1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' , βL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Sufficient conditions for consistency of an IS will be reviewed in § 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='2 Sub-gaussian random variables A real-valued random variable V is sub-gaussian if its tails are no heavier than that of a centered Normal distribution: there is a finite constant sV such that for t > 0, P(V < t) ≤ exp[−t2/(2s2 V )], P(V > t) ≤ exp[−t2/(2s2 V )].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' When this holds, sV can be taken to be a constant multiple of ∥V ∥ψ2, the sub- gaussian norm of V .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' This norm is defined as the infimum of {t > 0 : E[exp(V 2/t2)] ≤ 2}, a nonempty set for sub-gaussian V , or as ∞ if V is not sub-gaussian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' For vec- tor ⃗V , ∥⃗V ∥ψ2 = sup{∥⃗V γ∥ψ2 : |γ|2 = 1}, and ⃗V is said to be sub-gaussian if ∥⃗V ∥ψ2 < ∞ (Vershynin, 2018, § 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='5, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' It follows directly from these defini- tions that for fixed vectors γ, ∥V γ∥ψ2 = |γ|2∥V ∥ψ2, ∥⃗V γ∥ψ2 ≤ |γ|2∥⃗V ∥ψ2 and ∥γ∥ψ2 = (log 2)−1/2|γ|2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' and that for fixed matrices M, ∥⃗V M∥ψ2 ≤ |M|2∥⃗V ∥ψ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Sums of sub-gaussian variables are sub-gaussian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Hoeffding’s inequality bounds tails of sums of independent sub-gaussians in terms of the sum of the summands’ squared sub-gaussian norms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Maxima of sequences of sub-gaussian random vari- ables grow slowly: for an absolute constant k0, E max 1≤i≤n Vi ≤ k0 � max 1≤i≤n ∥Vi∥ψ2 � (log n)1/2, (5) with {Vi : i} independent or dependent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' For {Gi : i} Normal with variance 1 or less, (5) holds with √2 in place of k0 maxi≤n ∥Vi∥ψ2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' if {Gi : i} are independent N(0, 1) then this bound is sharp, in the sense of limn↑∞(log n)−1/2 E max1≤i≤n Gi = √2 (Boucheron et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=', 2013, § 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Maxima of sub-gaussian vector sequences grow slowly as well: there are absolute constants k1 and k2 such that for any sub- gaussian {⃗Vi} with mean 0 and covariance I, and any deterministic matrices {Mi} with column dimension matching the extent of ⃗V , E � max 1≤i≤n |Mi⃗V ′ i |2 � ≤ max i≤n ∥⃗Vi∥ψ2 � k1 max i≤n |Mi|F + k2 � max i≤n |Mi|2 � (log n)1/2 � (6) 6 where |M|F = tr(M′M)1/2 (Vershynin, 2018, Ex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' A consequence is that if for each n { ⃗Xni : 1 ≤ i ≤ n} are independent random vectors of length pn such that | Cov( ⃗Xni)|2 and ∥ ⃗Xni∥ψ2 are uniformly bounded, then max1≤i≤n | ⃗Xi|2 = OP [max(pn, log n)1/2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' This property of sub-gaussian covariates, A11 in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='3 below, will be assumed in Section 3 but then relaxed in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' The scalar c0(R, ⃗x, ⃗xβ) in (4) above, on the other hand, will consistently be required to be sub-gaussian, via Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='3’s A5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='3 Consistently estimable index scores Let the data and model parameter be arranged in triangular arrays, with sample and model n having n observations of p independent variables xi, p (strictly, pn) increasing with n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Consistency of ˆβ for (βn : n) will mean that p = o(n) and |ˆβ−βn|2 2 = OP (p/n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Conditions for such consistency are available in the literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' We orderto present them along with accompanying conditions characterizing the ˆβ’s relationship to its closest linear approximation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' For estimable βn, define An = An(βn) and ˆAn = An(ˆβ), where An(γ) = 1 n � n � i=1 ∇β E [ψ(Ri, ⃗xi;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' β)]|β=γ + α(γ) � , (7) with “∇β” interpreted in terms of weak differentiation if ordinary partial deriva- tives do not exist for some β values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' For invertible An, the linearization of estimator ˆβ is given by ˜βn = A−1 n 1 n{[ n � i=1 ψ(ri, ⃗xi;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' βn)] + α(βn)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (8) The random vector n−1 �n i=1 ψ(Ri, ⃗xi;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' βn) has covariance n−1Bn where Bn = Bn(βn) and Bn(γ) = n−1 E n � i=1 ψ(Ri, ⃗xi;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' γ)ψ(Ri, ⃗xi;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' γ)′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (9) Proposition 1 (He and Shao, 2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Under A2, A4, A6 and A9 as stated below: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' |ˆβ − βn|2 P→ 0, with rate OP [(p/n)1/2];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' |ˆβ − ˜βn|2 P→ 0, with rate OP [(p/n)(log n)1/2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Proposition 1 restates He and Shao’s Theorems 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='1 and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='2 as applied to models in which only the coefficient parameter βn grows in dimension with n, with a slight strengthening of rate condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (They assume p log(p) = o(n), while A9 7 says p log(n) = o(n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=') Their Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='2 characterizes decline of the linearization error only for sub-√n dimensional models, but a straightforward adaptation of its proof gives part 2 of the proposition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' See also He and Shao’s Example 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Our regularity assumptions are as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' A1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' The columns of x are centered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' There may be pre-existing strata 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' , L, with L/n → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' In this case the columns of x are also stratum-centered: for stratifying variable v, � i:vi=ℓ ⃗xi = 0, ℓ = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' , L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' A2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' The IS is estimable (as defined in § 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='1) and linear in x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' A3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' An is invertible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Furthermore there is δ > 0 such that An(γ) is invertible whenever |γ − βn|2 < δ, and supγ:|γ−βn|2<δ |An(γ)−1|2 is bounded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' A4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' ψ(r, x, β) is of form (4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' The functions c0(r, ⃗x, ·) (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' η �→ c0(r, ⃗x, η)) are Lip- schitz continuous with a common Lipschitz constant, as are (∂/∂η) E c0(R, ⃗x, η).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' A5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' The random variables c0(Ri, ⃗xi, ⃗xiβn) have bounded sub-gaussian norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' A6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' For ℓ = 0, 2 and 4, max γ,δ:|γ|2= |δ|2=1 n � i=1 w(⃗xi)ℓ(⃗xiγ)2(⃗xiδ)2 = O(n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' A7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' p−1|βn|2 2 = p−1 � k β2 nk is bounded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' A8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' s2(xβn) = β′ nS(x)βn tends to a limit in (0, ∞].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' A9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' p = o[n/(log n)], i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (p log n)/n → 0 (sub-n model dimension).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' While the link function g is assumed the same for each n, the coefficient vector β grows in length, and βn needn’t converge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Indeed, according to A8 s(sβn) is permitted to diverge (but not tend to 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' It is less burdensome here to assume invertibility of An, as A3 does, than in other regression contexts, as for present applications one can freely change the basis of the design matrix, there being no interest in particular elements or contrasts of β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Via the Cauchy-Schwartz inequality, A6 entails that maxγ:|γ|2=1 n−1 �n i=1 w(⃗xi)ℓ(⃗xiγ)2 = O(1) for ℓ ∈ {0, 1, 2}, in turn giving |S(x)|2 = O(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' The appropriateness of these commitments can be evaluated in advance of IS estimation, whereas A3 calls for inspection of model-fitting artifacts after estimation of β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' A simple measure to improve the fit of A3, as well as A12 below, is to trim explanatory variables that contribute relatively little to index model fit, as indicated by common model se- lection criteria.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Certain results take stronger forms with one or more secondary conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' 8 A10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' p2 = o[n/(log n)] (sub-√n model dimension).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' A11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' maxi≤n |⃗xi|2 2 = O[max(p, log n)], and maxi≤n w(⃗xi)2 = O(log n) (sub-gaussian covariates).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' A12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Each S(x) = (n − L)−1x′x and Bn are of full rank, with |(S(x))−1|2 and |B−1 n |2 bounded (full-rank covariance).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' If the ⃗xes (and w(⃗x)) are sub-gaussian in the sense of being realizations of ⃗X with E | ⃗X|ψ2 uniformly bounded, while also A6 holds in the sense of | Cov( ⃗X)|2 (and thus p−1 E | ⃗X|2 2) being uniformly bounded as well, then A11 follows from (6), as discussed in § 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='2 following (6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' According to Proposition 4 below, sandwich estimators of Cov(ˆβ) generally require sub-gaussian covariates, and A10, sub-√n model dimension;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' but the covariance estimator based on ˆAn but not ˆBn generally requires only sub-n model dimension, A9, and for present purposes will be simi- larly beneficial even when it lacks Fisher consistency as compared to the sandwich estimator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' According to Proposition 6, full-rank covariance (A12) makes index sampling variabilities Var(⃗xˆβ) and Var � (⃗xi − ⃗xj)ˆβ � estimable without attention to size of ⃗x or ⃗xi − ⃗xj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' However, our method for asymptotically exact matching does not require this, and is valid with S or Bn of less than full rank.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' 3 Asymptotically exact matching with Gaus- sian or sub-gaussian ⃗X For each n let Sn be a random partition of {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' , n}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' It is not presumed that Sn expands or extends any earlier partition S1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' , Sn−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Denote by [i]Sn the unique Sn element containing i ≤ n, and write i Sn ∼ j when there is s ∈ Sn such that i, j ∈ s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Absent ambiguity as to which n or partition sequence is intended, these symbols are given as “i∼j” or “[i],” respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' The progression {Sn} constitutes an asymptotically exact index post-stratification if Sn-stratum width in the direction of the underlying index, max{|(⃗xi − ⃗xj)βn| : i Sn ∼ j}, tends in probability to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' This section presents a tolerance for Sn-stratum width in the direction of the estimated index, max{|(⃗xi − ⃗xj)ˆβ| : i Sn ∼ j}, that is narrow enough to ensure asymptotic exactness in the special case of a sub-gaussian covariate (A11).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' It is also is sufficiently wide that, in a further special case to be described in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='2, no i meriting placement in a poststratum with representation of the contrasting group can be excluded from such placement in virtue of ⃗xi ˆβ being isolated relative to {⃗xj ˆβ : zj ̸= zi}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' 9 When βn is subject to estimation, the observable counterparts of differences (⃗xi − ⃗xj)βn, 1 ≤ i, j ≤ n, that is contrasts of form (⃗xi − ⃗xj)ˆβ, are termed paired index contrasts (PICs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' The discrepancy between a PIC and the paired contrast it estimates, (⃗xi − ⃗xj)(ˆβ − βn), is a PIC error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Ensuring that a post-stratification is asymptotically exact calls for separate attention to PIC errors versus the PICs themselves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Our width tolerance will involve a novel estimate of PIC error size, the PIC SE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='1 PIC errors in the sub-gaussian case Recall that errors ˆβ − βn of index coefficient estimates decompose as (ˆβ − ˜β) + (˜β − βn), with ˜β the linearization defined in (8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Index and PIC errors decompose similarly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Corollary (of Proposition 1 part 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' If A2, A4, A6, A9, and A11, then maxi |⃗xi(ˆβ− ˜βn)| = OP [p3/2(log n)1/2/n].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (Unless p = o(log n), in which case maxi |⃗xi(ˆβ − ˜βn)| = OP [p(log n)/n]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' If A1, A2, A5, and A6, then ∥˜βn − βn∥ψ2 = O(n−1/2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Corollary (of Proposition 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' If A1, A2, A5, A6, and A11, then E maxi≤n |⃗xi(˜βn − βn)| = O � [(p log n)/n]1/2� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (Unless p = o(log n), in which case E maxi≤n |⃗xi(˜βn − βn)| = O � [(log n)/n1/2] � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=') Proposition 1’s corollary is immediate from its part 2 in combination with A11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' 2 is proved in the appendix;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' its corollary flows from A11 and (5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' They follow D’Amour et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (2021) in assuming sub-gaussian covariates, in the sense of A11, an assumption to be relaxed in Section 4 below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' The corollaries characterize errors of estimation of index values rather than paired contrasts of them, but they have immediate extensions giving the same rates of decline for maxi,j≤n |(⃗xi−⃗xj)(ˆβ− ˜βn)| and E maxi,j≤n |(⃗xi − ⃗xj)(˜βn − βn)|, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Because for any collection of W of of length-p row vectors, sup ⃗w∈W |⃗w(ˆβ − βn)| ≤ sup ⃗w∈W |⃗w(ˆβ − ˜β)| + sup ⃗w∈W |⃗w(˜β − βn)|, (10) it follows that with sub-gaussian covariates the worst-case PIC or index error tends to 0 provided that (p3/2/n) log n does, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' if p = o{[n/(log n)]2/3}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' When the covariate has sub-√n dimension, the corollaries indicate that in large samples the suprema of {|⃗xi(ˆβ− ˜β)| : i ≤ n} and {|(⃗xi−⃗xj)(ˆβ− ˜β)| : i, j ≤ n} will be smaller by an order of magnitude, p/n1/2 = oP (1), than those of {|⃗xi(˜β − βn)| : i} and {|(⃗xi − ⃗xj)(˜β − βn)| : i, j} (both of which are OP � ((p/n)1/2 log n) � ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Of the two errors at right of (10), the sup |⃗w(˜β − βn)| term ordinarily dominates;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' we turn attention to it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' 10 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='2 A thought experiment In a special case making both ⃗X and ˆβ Gaussian, sizes of PIC errors admit specific characterization in terms of readily estimable quantities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Ghosh and Cort´es (2019), among others, consider related issues under an assumption of Gaussian ⃗X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' For vectors v ∈ ℜm let |v|2 and |v|∞ have their usual meanings, (m−1 �m i=1 v2 i )1/2 and � i≤m |vi| respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' For matrices M and N of like dimension, ⟨M, N⟩F denotes the Frobenius inner product tr(M′N).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Let S be a partition of {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' , n} with an associated mapping ⃗µ : S → ℜp, and let ES(·) and CovS(·) denote expectations calculated with S and {µs : s ∈ S} held fixed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Given S and {µs : s ∈ S} let (˜βn − βn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' ⃗Xi − ⃗µ([i]S);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' ⃗Xj − ⃗µ([j]S)) be jointly multivariate Normal, for each i, j ≤ n, with mean zero, CovS(˜β) = C, CovS( ⃗Xi) = CovS( ⃗Xj) = Σ and, if i ̸= j, CovS( ⃗Xi, ⃗Xj) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Then we have ES ���[( ⃗Xi − ⃗Xj)(˜β − βn) : i S∼ j, i < j] ��2 2 � = ⟨2Σ, C⟩F and (11) ES ���[( ⃗Xi − ⃗Xj)(˜β − βn) : i S∼ j] �� ∞ � ≤ z∗ nS⟨2Σ, C⟩1/2 F , (12) where nS := card({{i, j} : i S∼ j, i < j}) and z∗ nS := (2 log 2nS)1/2 bounds E max1≤i≤n |Gi|, (Gi : i) independent N(0, 1), as described in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Given its strong assumptions on the covariate, Proposition 3 has limited prac- tical use for PIC error control;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' we shall arrive at methods for containment of [( ⃗Xi − ⃗Xj)(˜β − βn) : i S∼ j] that relax those assumptions to the moment condition A6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' But these methods call for a limit on sizes of PIC errors that are to be tolerated, and (12) will turn out to be helpfully specific in this regard.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' The statistician who sets out to select a matched sample has it as her oper- ating hypothesis that each member of the focal group has counterparts that are close enough, in terms of ⃗xβn, within the alternate group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Simplifying, so as to remove the question-begging “close enough,” let us suppose provisionally that for each focal group member i, the available sample contains within it at least one contrasting group member j that would be a perfect match on the underlying in- dex, ⃗xiβn = ⃗xjβn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Continue the thought experiment by supposing ˆβ and ⃗X to be as described in Proposition 3, and by taking the focal group to be the smaller of the treatment and control groups, implying no fewer than min(n0, n1) perfect pairs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Let S to be the collection of equivalence classes induced by the relation that i S∼ j if and only if ⃗xiβn = ⃗xjβn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' The proposition then characterizes PICs |(⃗xi − ⃗xj)ˆβ| for which the contrast on the underlying index, |(⃗xi − ⃗xj)βn|, is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Each simplification made thus far in order to apply the proposition should err in the direction of understating the maximum PIC among pairs closely matched on 11 ⃗xβn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' but even if we continue to arrange our thought experiment so as to minimize this quantity we will find it to be almost unworkably large, in a sense to be given presently.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' As specified so far, our perfect pairing thought experiment permits no ⃗Xβn variation within strata of S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' This means the stratified covariance CovS( ⃗X) must satisfy β′ nΣβn = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Bending available covariate data to this constraint, take ⃗X to be distributed as in Proposition 3 with Σ = S⊥βn := (n − L)−1x⊥xβn′x⊥xβn, the observed covariates’ covariance as projected onto the orthocomplement of the index, x⊥xβn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (Here x is the n × p matrix of covariates as observed;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' x⊥v denotes the n×p matrix of residuals arising from the p regressions of x-columns on n-vector v;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' and L is the number of overt, preexisting strata, if such exist, and 1 otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Following A1, x is assumed to be centered or stratum-centered, as appropriate, and x⊥xβn inherits this centering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=') The natural estimate S⊥ˆβ = (n − L)−1x⊥xˆβ′x⊥xˆβ of S⊥βn is appropriately consistent for S⊥βn, as noted in Proposition 5 below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Observe that use of S⊥ˆβ (as opposed to S) again reduces (11) and (12), if in increasing-p regimes it leaves their order unchanged.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' The maximum PIC bound (12) is at its smallest, with nS = min(n0, n1), when each member of the smaller of the focal and comparison groups has just one perfectly matching counterpart.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Among such configurations, the bound is sharpest when the pairs do not overlap, as in matching without replacement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (Conditionally given ˜β as well as S and {⃗µ(s) : s ∈ S}, ( ⃗Xi − ⃗Xj)(˜β − βn) is independent of ( ⃗Xi′− ⃗Xj′)(˜β−βn), for i, j, i′, j′ with {i, j} ̸= {i′, j′};' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' by the discussion following (5) in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='2, this causes inequality (31) in Appendix B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='2 to be sharp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=') Complete the specification of our perfect-pairing thought experiment by supposing its nS = min(n0, n1) pairs to be nonoverlapping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Then (12) more closely estimates the width in ⃗xˆβ of S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Across pairs S constituting the thought experiment, the maximum PIC error is expected to be z∗ min(n0,n1)⟨2S⊥βn, C⟩1/2 F , of order O{[(p log n)/n]1/2}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' The accom- panying estimate is z∗ min(n0,n1)⟨2S⊥ˆβ, ˆC⟩1/2 F .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' These quantities are small enough to tend to zero, but only barely so: [(p log n)/n]1/2 is precisely the rate that A9 re- quires to decline to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Among pairs {i, j} that in actuality are perfectly matched, (⃗xi −⃗xj)βn = 0, even tame, Gaussian variation in other covariate directions engen- ders a maximum PIC |[( ⃗Xi − ⃗Xi)ˆβ : i S∼ j]|∞ of as large an order as can be tolerated of separations on the actual index, |[( ⃗Xi − ⃗Xi)βn : i S∼ j]|∞, if the matching is to be asymptotically exact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' So we will recommend this number as a matching toler- ance, not only when making the restrictive assumptions of Proposition 3 but also when entertaining only the weaker A1–A9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' 12 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='3 A summary standard error for PICs In light of (8) and (9), the covariance of ˜βn is Cn = n−1A−1 n Bn(A−1 n )′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (13) This Cn approximates the covariance of ˆβ, particularly when the index model has sub-√n dimension.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' When p = o{[n/ log(n)]1/2}, Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' 1 says |˜β − ˆβ|2 = oP (n−1/2), small enough to obviate distinctions between Cn = Cov(˜β) and Cov(ˆβ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' For example, Lemma 1 below entails that s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='(⃗x˜β) = [⃗xCn⃗x′]1/2 shares the or- der OP (n−1/2|⃗x|2) with ⃗x(ˆβ − βn), whereas part 2 of Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' 1 says ⃗x(˜β − ˆβ) = oP (n−1/2|⃗x|2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' The proposition following the lemma will show the larger order OP (n−1/2|⃗x|2) also to be shared by s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='(⃗x˜β) = [⃗x ˆCn⃗x′]1/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Under A3, A5 and A6, |Bn|2 = O(1) and |Cn|2 = O(n−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' If ψ is the gradient a (well-specified) log-likelihood, then An = Bn, and n−1 ˆA−1 n estimates Cn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' More broadly, Cn is estimated by n−1 ˆA−1 n ˆBn( ˆA−1 n )′, where ˆBn = ˆBn(ˆβ), ˆBn(β) = n−1 n � i=1 ψ(ri, ⃗xi;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' β)ψ(ri, ⃗xi;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' β)′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' The propositions that follow establish the consistency of natural covariance esti- mators and related quantities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Under A1–A9, | ˆA−1 n − A−1 n |2 P→ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' If also A10 (sub-√n dimen- sion) and A11 (sub-gaussian covariates), then | ˆA−1 n ˆBn( ˆA−1 n )′ − nCn|2 P→ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Let A1–A9 hold, let ˆCn be a consistent estimate of Cn (| ˆCn − Cn|2 = oP (n−1)) and let S, S⊥βn and S⊥ˆβ be as defined in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Then |⟨S, ˆC⟩F − ⟨S, C⟩F | = oP (p/n) and |⟨S⊥ˆβ, ˆC⟩F − ⟨S⊥βn, C⟩F | = oP (p/n), whereas ⟨S, C⟩F = OP (p/n) and ⟨S⊥βn, C⟩F = OP (p/n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' The quantity ⟨2S⊥ˆβ, ˆCˆβ⟩1/2 F will be termed the PIC standard error (PIC SE);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Proposition 5 says that it consistently estimates the analogous parameter appear- ing at right of (11) and (12) in Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Proposition 4 is new as applied to increasing-p regimes;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Proposition 5 is entirely new.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Their proofs are given in Ap- pendix B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='3, along with demonstrations of intermediate results including Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' 13 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='4 PIC SE calipers We recommend matching within limits of z∗ min(n0,n1) times the PIC SE ⟨S⊥ˆβ, ˆC⟩1/2 F , whether or not the Gaussian model of Proposition 3 applies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' If it does apply, this ensures that the same multiple of the PIC SE characterizes matched discrepancies on the underlying index (Sections 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='2 and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' If it does not apply but the covari- ate is sub-gaussian, (12) may no longer limit sizes of PIC errors, but they continue to tend to 0 as long as p = o{[n/(log n)]2/3} (Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' If neither the Gaussian nor sub-gaussian modeling assumptions apply, additional matching requirements to be described below will be necessary to force the PIC errors towards 0, but z∗ min(n0,n1) times the PIC SE remains an appropriate tolerance for PICs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' It tends to zero, so its use as a caliper width forces PICs toward zero;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' it tends to zero at the same [(p log n)/n]1/2 rate that Proposition 1 requires to tend to zero for index model consistency, making it no more restrictive than is necessary to force the PIC maximum to tend to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' In the context of the idealized setting studied in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='2 it was seen also to be minimal in a more quantitatively specific sense, in virtue of its sharp characterization of the notional experiment’s maximum PIC error: if such a paired experiment were to be lurking within the actual data, set- ting a tolerance for matching on xˆβ any smaller than z∗ min(n0,n1) times the PIC SE would exclude pairs that are in fact perfectly matched on xβn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' 4 Deconstructing Gaussian and sub-gaussian assumptions 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='1 PIC SEs with unrestricted X The PIC SE averages expected PIC errors in either of two ways.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' First, if the sample available for matching contains a subsample of perfectly matched subjects (as envisioned in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='2) for which the within-pair covariance of covariates is S⊥βn, then the squared PIC SE estimates the expected mean of squared PIC errors, [(⃗xi − ⃗xj)(ˆβ − βn)]2, across perfectly matched pairs (i, j).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Second, taking the entirety of the sample as-is but residualizing each subject’s covariate for xβn (as also discussed in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='2), the squared PIC SE is approximately the expected mean square of reduced PIC errors, [(⃗x⊥xβn i − ⃗x⊥xβn j )(ˆβ − βn)]2, now across all pairs {i, j}, 1 ≤ i < j ≤ n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' To see this, for 1 ≤ i, j ≤ n write ⃗d⊥βn ij := ⃗x⊥xβn i − ⃗x⊥xβn j , noting that ⃗d⊥βn ij = 14 ⃗xi − ⃗xj for pairs {i, j} that are perfectly matched for the index.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Observe that [⃗d⊥βn ij (˜β − βn)]2 = [⃗d⊥βn ij (˜β − βn)]′[⃗d⊥βn ij (˜β − βn)] = (˜β − βn)′(⃗d⊥βn′ ij ⃗d⊥βn ij )(˜β − βn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Summing over perfectly matched pairs,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' for the first scenario,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' or all �n 2 � possible pairs,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' for the second,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' and in either case letting np denote the number of pairs contributing to the sum,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' we have 1 np � [⃗d⊥βn ij (˜β − βn)]2 = (˜β − βn)′� n−1 m � ⃗d⊥βn′ ij ⃗d⊥βn ij � (˜β − βn) = (˜β − βn)′(2S⊥βn)(˜β − βn) (14) = ⟨2S⊥βn,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (˜β − βn)(˜β − βn)′⟩F ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (15) where (14) invokes the U-statistic representation of covariance,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (n−1)−1 � i=1(wi− ¯w)(vi − ¯v) = �n 2 �−1 �n−1 i=1 �n j=i+1 1 2(wi − wj)(vi − vj),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' and (15) uses the sum of ele- mentwise products ⟨M,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' N⟩F of matrices M and N to re-express (14).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Accordingly E � 1 np � [⃗d⊥βn ij (˜β − βn)]2 � = ⟨2S⊥βn, Cn⟩F .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' A similar argument reveals the PIC SE’s alternate interpretation as root mean square of pairwise distances |⃗d⊥ˆβ ij ˆC1/2|2 = (⃗d⊥ˆβ ij ˆC ⃗d⊥ˆβ′ ij )1/2 over pairs {i, j}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Invok- ing in turn the cyclic property of the matrix trace, the definition of the Frobenius matrix product ⟨·, ·⟩F , the Frobenius product’s bilinearity, and the U-statistic rep- resentation of sample covariance: � ⃗d⊥ˆβ ij ˆCd⊥ˆβ′ ij = � tr(⃗d⊥ˆβ ij ˆC ⃗d⊥ˆβ′ ij ) = � tr(⃗d⊥ˆβ′ ij ⃗d⊥ˆβ ij ˆC) = � ⟨⃗d⊥ˆβ′ ij ⃗d⊥ˆβ ij , ˆC⟩F = ⟨ � ⃗d⊥ˆβ′ ij ⃗d⊥ˆβ ij , ˆC⟩F = np⟨2S⊥ˆβ, ˆC⟩F .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' When the average is only over {i, j} that are perfectly matched for the index, (⃗d⊥ˆβ ij ˆCd⊥ˆβ′ ij )1/2 approximates s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='[(⃗xi − ⃗xj)ˆβ], because ⃗xiβn = ⃗xjβn means that ⃗d⊥ˆβ ij approximates ⃗xi − ⃗xj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' The interpretation as a pairwise covariate distance, within the orthocomplement in x of xˆβ and after rescaling by ˆC1/2, is available both for the perfect pairing thought experiment and also when the mean is over all {i, j}, 1 ≤ i < j ≤ n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' These arguments rely implicitly on A1–A9, via Proposition 5, but do not call for Gaussian covariates, nor for boundedness of covariates’ sub-gaussian norms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' By the same token, none admit extensions offering maximum, rather than average, PIC error control, as is necessary for asymptotically exact matching.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' 15 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='2 Caliper refinement with attention to index error distances It is intuitive that with covariates drawn from heavy tailed distributions there may be PICs exceeding the PIC SE by factors well above z∗ np = √(2 log 2np), in contrast to the Gaussian situation described in Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Writing δ[x] for the distribution placing point mass at x, heavier tails on the covariate mean heavier tails on the empirical distributions �n 2 �−1 �n−1 i=1 �n j=i+1 δ[s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='[(⃗xi − ⃗xj)˜β]], �n 2 �−1 �n−1 i=1 �n j=i+1 δ[(⃗xi − ⃗xj)(˜β − βn)], and in turn �n 2 �−1 �n−1 i=1 �n j=i+1 δ[(⃗xi − ⃗xj)(ˆβ − βn)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Fortunately, estimates |(⃗xi−⃗xj) ˆC1/2|2 of standard deviations s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='(i, j) = |(⃗xi− ⃗xj) ˆC1/2|2 are available at the time of matching: one can simply avoid pairings {i, j} for which |(⃗xi−⃗xj) ˆC1/2|2 is too large.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Call |(⃗xi−⃗xj) ˆC1/2|2 the index error distance separating i from j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Proposition 6 says index error distances can estimate pairwise index sampling variabilities uniformly well, even for models of sub-√n dimension if the estimator ˆC is appropriately chosen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Proposition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Let ψ(r, ⃗x, β) be the gradient of a likelihood function governing the conditional distribution of R given ⃗X, with ˆCn = n−1 ˆA−1 n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Under A1–A9, ����� � 1 − |⃗xi ˆC1/2|2 |⃗xiC1/2|2 : i ≤ n ������ ∞ , ����� � 1 − |(⃗xi − ⃗xj) ˆC1/2|2 |(⃗xi − ⃗xj)C1/2|2 : i, j ≤ n ������ ∞ P→ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (16) (Here 0/0 is taken to be 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=') ii.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Let {ϵn : n} satisfy ϵ−1 n = O[n/ max(p, log n)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Under A1–A11 with ˆCn = n−1 ˆA−1 n ˆBn ˆA−1 n , ����� � 1 − max(ϵ1/2 n , |⃗xi ˆC1/2|2) max(ϵ1/2 n , |⃗xiC1/2|2) : i ������ ∞ P→ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' If x and En ⊆ {{i, j} : 1 ≤ i, j ≤ n} satisfy |(|⃗xi − ⃗xj|2 2 : {i, j} ∈ En)|∞ = OP (max(p, log n)), then under A1–A10 ����� � 1 − max[ϵ1/2 n , |(⃗xi − ⃗xj) ˆC1/2|2] max[ϵ1/2 n , |(⃗xi − ⃗xj)C1/2|2] : {i, j} ∈ En ������ ∞ P→ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' iii.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Under A1–A12, (16) holds with ˆCn = n−1 ˆA−1 n ˆBn ˆA−1 n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' We focus on situations conforming to the hypotheses of (i) or of (iii), warranting uniform convergence (16) of index error distances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Let us calibrate sizes of index error distances with reference to Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='2’s perfect pairing thought experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Proposition 7 adapts extant results about Gaussian chaos to characterize that setting’s maximum of |( ⃗Xi − ⃗Xj)C1/2|2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' 16 Proposition 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Let ⃗Xi, i ≤ n, be independent MVN(µ, Σ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Let C be a second positive semidefinite matrix of the same dimension as Σ, let E ⊆ {{i, j} : 1 ≤ i ̸= j ≤ n} and let nE := card(E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Then � E ���{|( ⃗Xi − ⃗Xj)C1/2|2 : {i, j} ∈ E} ��2 ∞ ��1/2 ≤ ⟨2Σ, C⟩1/2 F � �1 + � log nE p[Σ1/2CΣ1/2] �1/2� �, (17) where p[M] denotes intrinsic dimension, tr(M)/|M|2, for positive semidefinite M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Proposition 7 is proved in Appendix B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' With Σ = S⊥βn and C = Cn, it explicitly bounds the worst-case pairwise distance |( ⃗Xi − ⃗Xj)C1/2|2 within the perfect-pairing thought experiment of Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' To contain PIC errors of actual experiments to a similar level, I recommend the match-eligibility requirement that |(⃗xi − ⃗xj) ˆC1/2|2 ≤ ⟨2S⊥ˆβ, ˆC⟩1/2 F � 2 + �log min(n0, n1) p − 1 �1/2� , (18) as a complement to the z∗ min(n0,n1)⟨2S⊥ˆβ, ˆC⟩1/2 F limit on PICs |(⃗xi − ⃗xj)ˆβ| that was recommended in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' The heuristic by which Proposition 7 supports constraint (18), to be explained presently, more simply suggests the stricter cap on |(⃗xi − ⃗xj) ˆC1/2|2 of ⟨2S⊥ˆβ, ˆC⟩1/2 F � 1 + �log min(n0, n1) p − 1 �1/2� ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (19) but it will subsequently be shown that (18) together with a softer penalty on index error distances respecting (18) while exceeding (19) is sufficient for present purposes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' To relate (17) to (19), first recall that min(n0, n1) is the size of the perfect- pairing thought experiment (Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='2) and ⟨2S⊥ˆβ, ˆC⟩F is consistent for ⟨2S⊥βn, Cn⟩F (Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' 5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' In general 0 ≤ p[Σ1/2CΣ1/2] ≤ p, by definition (see also Tropp, 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Vershynin, 2018, §7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' In the special cases that (R, ⃗X) has linear discriminant structure with Cor( ⃗X) known, or that R is linear in ⃗X, with ⃗X Gaussian and βn estimated accordingly in either case, intrinsic and extrinsic dimensions coincide: p[Σ1/2CnΣ1/2] = p or p − 1, depending as Σ = S(x) or S⊥βn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' If supposed to contain min(n0, n1) distinct pairs {i, j} for which i ̸= j but ⃗xiβn = ⃗xjβn, then either of these Gaussian- ⃗X special cases closely models Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='2’s notional perfect pair- ing, with Σ = S⊥βn, and (19) estimates the expected maximum covariate distance 17 |(⃗xi − ⃗xj)C1/2|2 among perfect pairs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' At the same time, an |(⃗xi − ⃗xj) ˆC1/2|2 limit of form (19) should rarely exclude perfect pairs because of separation in direc- tions orthogonal to the index, since (17) approximates such separations’ expected maximum from above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Regardless of what distribution the covariate may have been drawn from, limits (19) or (18) on covariate distances |(⃗xi − ⃗xj) ˆC1/2|2 also engender limits on PIC errors |(⃗xi −⃗xj)(ˆβ −βn)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' In part this is because (⃗xi −⃗xj)(˜β −βn) is sub-gaussian if ˜β is, and is N[0, |(⃗xi − ⃗xj)C1/2 n |2 2] if ˜β ∼ MVN(βn, Cn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Proposition 8, stated here without proof, collects the relevant facts reviewed in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Proposition 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Let E ⊆ {{i, j} : 1 ≤ i, j ≤ n} satisfy |(⃗xi − ⃗xj)C1/2 n |2 > 0 for all {i, j} ∈ E, and let nE = card(E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' If ˜β ∼ MVN(βn, Cn), E ������ � (⃗xi − ⃗xj)(˜β − βn) |(⃗xi − ⃗xj)C1/2 n |2 : {i, j} ∈ E ������ ∞ � ≤ z∗ nE = [2 log(2nE)]1/2 and E � � ����� � (⃗x⊥xβn i − ⃗x⊥xβn j )(˜β − βn) |(⃗x⊥xβn i − ⃗x⊥xβn j )C1/2 n |2 : {i, j} ∈ E ������ ∞ � � ≤ z∗ nE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (20) If ˜β − βn is non-Normal but sub-gaussian with ∥˜β − βn∥ψ2 bounded, these expected maximums continue to be of order (log nE)1/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Together with Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' 6, Proposition 8 says requiring each of min(n0, n1) pairs {i, j} to have |(⃗xi −⃗xj) ˆC1/2 n |2 below (19) puts the corresponding PIC errors below z∗ min(n0,n1) times (19).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' If p increases faster than log n, then the ratio in (19) tends to 0, and (19) is asymptotically equivalent to the PIC SE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' That is, confining matching to pairs {i, j} for which |(⃗xi − ⃗xj) ˆC1/2 n |2 falls left of (19) makes the supremum of matched errors |(⃗xi − ⃗xj)(˜β − βn)| asymptotically as it would be in the perfect- pairing thought experiment, given log n = o(p) but not special conditions on the distribution of the covariate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (If p increases no faster than log n, p = O(log n), these errors somewhat exceed those of the corresponding thought experiment, but they tend quickly to zero anyway, due to the p’s slow increase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=') These considerations suggest (19) as a hard limit for pair distances |(⃗xi − ⃗xj) ˆC1/2|2, but similar control of PIC errors can be had with a simple policy that encourages matches with |(⃗xi − ⃗xj) ˆC1/2|2 beneath (19) while only requiring (18).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Make i is eligible for pairing to j if |(⃗xi − ⃗xj)ˆβ| ≤ z∗ min(n0,n1)[⟨2S⊥ˆβ, ˆC⟩1/2 F − ˆe(i, j)] (21) 18 where ˆe(i, j) := � |(⃗xi − ⃗xj) ˆC1/2|2 − ⟨2S⊥ˆβ, ˆC⟩1/2 F � 1 + �log min(n0, n1) p − 1 �1/2�� + , (22) v+ := max(0, v), represents excess in index error distance as compared to its nomi- nal supremum (19).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' If |(⃗xi −⃗xj) ˆC1/2|2 never exceeds this nominal supremum, (21) reduces to the requirement that |(⃗xi −⃗xj)ˆβ| ≤ z∗ min(n0,n1)⟨2S⊥ˆβ, ˆC⟩1/2 F , as proposed in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' For potential pairings {i, j} with |(⃗xi − ⃗xj) ˆC1/2|2 exceeding (19), Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='4’s PIC allowance of z∗ min(n0,n1)⟨2S⊥ˆβ, ˆC⟩1/2 F is reduced in recognition of the pairing’s large standard error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' When the index error distance |(⃗xi − ⃗xj) ˆC1/2|2 is so large that its excess ˆe(i, j) exceeds the PIC SE — or equivalently, so large that (18) fails — (21) forbids i’s pairing with j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' This selectively narrowed PIC SE caliper has important advantages over non- varying PIC SE calipers, alone or in combination with calipers of width (19) on the pairwise index error distance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Non-varying PIC SE calipers secure asymptotic exactness of a match only for sub-gaussian covariates, an assumption that selective narrowing of the caliper enables us to do without.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Coupling a non-varying PIC SE caliper with a limit on the pairwise index error distance of (19) contains the sum |[(⃗xi − ⃗xj)ˆβ : i S∼ j]|∞ + |[(⃗xi − ⃗xj)(˜β − βn) : i S∼ j]|∞ (23) at the product of z∗ min(n0,n1) with the right hand side of (18), just as the selectively narrowed PIC SE caliper does, but at the cost of categorically disallowing pairwise index error distances in excess of (19).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' In contrast, the selectively narrowed caliper permits those pairings if their PICs are sufficient small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' This additional tolerance is important because (19) systematically underestimates suprema of pairwise index error distances for some index models, even with Gaussian ⃗X, because of its use of p − 1 in lieu of Proposition 7’s p[(S⊥βn)1/2C(S⊥βn)1/2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' That minor embarrassment could be remedied by replacing p − 1 in (19) by p[(S⊥ ˆβ)1/2 ˆC((S⊥ ˆβ))1/2], but then as- sumption A12 would become necessary for asymptotic equivalence of (19) and the PIC SE — an equivalence needed even under A9, the weakest of the model dimen- sionality restrictions considered in this paper, to force (23) toward an asymptote of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Assumption A12 is discussed in the next section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='3 The contribution of linearization error Display (23) omits linearization error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Unless the estimator of the index regression is linear in its dependent variable R, to estimate |[(⃗xi − ⃗xj)βn : i ∼ j]| we must attend to |[(⃗xi − ⃗xj)(ˆβ − ˜β) : i ∼ j]| as well as |[(⃗xi − ⃗xj)ˆβ : i ∼ j]| and |[(⃗xi − 19 ⃗xj)(˜β − βn) : i ∼ j]|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Index estimators are linear in R in the special cases of linear regression and linear discriminant modeling with fixed correlation, but not for indices estimated with probit or logistic regression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Recall from Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='1 that with sub-gaussian covariates (A11), |[(⃗xi−⃗xj)(ˆβ− ˜β) : i, j ≤ n]|∞ tends to 0 provided that p = o{[n/(log n)]2/3}, and is smaller by an order of magnitude than |[(⃗xi − ⃗xj)(˜β − βn) : ⃗xiβn ≈ ⃗xjβn]|2 measured in the PIC SE, provided that p = o{[n/(log n)]1/2}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Matching within selectively narrowed PIC SE calipers secures these conclusions under conditions not including A11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' However, depending on the specific side conditions and estimation routines that are employed, the matching procedure may need to observe additional caliper restrictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' First consider the case that A1–A9 hold, with Cn estimated by n−1 ˆA−1 n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' The matching requirement (18), a consequence of (21), ensures that |[|(⃗xi −⃗xj) ˆC1/2|2 : i ∼ j]|∞ = OP {[max(p, log n)/n]1/2}, since (by Proposition 5) the PIC SE is OP [(p/n)1/2] and since (p − 1)−1 log min(n0, n1) = O[max(1, p−1 log n)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Proposi- tion 6 and ˆC = n−1 ˆA−1 n in turn give |[|(⃗xi−⃗xj)A−1/2|2 : i ∼ j]|∞ = OP [max(p, log n)1/2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' As A3 and Lemma 3 in Appendix B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='3 entail |An|2 = O(1), |[|(⃗xi−⃗xj)|2 : i ∼ j]|∞ = OP [max(p, log n)1/2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Whether or not ⃗X was drawn from a sub-gaussian distribu- tion, pairs {i, j} selected within selectively narrowed PIC SE calipers can be no more separated on ⃗x than they would have been under sub-gaussian sampling, and Proposition 1 entails |[(⃗xi − ⃗xj)(ˆβ − ˜β) : i ∼ j]|∞ = OP [pn−1(log n)1/2max(p, log n)1/2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (24) Within matched pairs, linearization error is as described in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='1, even with- out A11 or additional matching restrictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' When Cn is instead estimated by n−1 ˆA−1 n Bn ˆA−1 n , A10 is needed in addition to A1–A9, for consistency of ˆCn (by Proposition 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Then |[|(⃗xi − ⃗xj) ˆC1/2|2 : i ∼ j]|∞ = OP {[max(p, log n)/n]1/2}, by a similar argument as above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Case (ii) of Proposition 6 then gives that |[|(⃗xi − ⃗xj)C1/2|2 : i ∼ j]|∞ = OP {[max(p, log n)/n]1/2}, provided that ⟨2S⊥ˆβ, ˆC⟩F � 1 + � log min(n0,n1) p−1 �1/2� is of the same order as max(p, log n)/n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (Proposition 5 gives that it is OP [max(p, log n)/n], but here we also require its reciprocal to be OP {[max(p, log n)/n]−1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=') At this point A12 also becomes nec- essary, to ensure |B−1/2 n |2 = OP (1) and thus that |C−1/2 n |2 = OP (n1/2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' If so, Proposition 1 again gives (24).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' The full-rank covariance condition A12 merits careful consideration in prac- tice, however.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' It will poorly describe some otherwise unassailable index mod- els, as partitioners have long been encouraged to add covariates in such models without regard to their mutual correlations (Rubin and Thomas, 1996).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Fortu- 20 nately A12 is straightforward to diagnose, by checking that neither S nor ˆBn is ill-conditioned.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' If sustainable, it delivers (in combination with Lemma 1 and A6) the needed assurance that the PIC SE declines no faster than (p/n)1/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' If A12 cannot be sustained while an assumption that ⟨S⊥βn, Cn⟩F = O(p/n) can be, we can instead combine that weaker assumption with additional matching restrictions ensuring that maxi∼j |⃗xi −⃗xj| = OP [max(p, log n)1/2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Matches can be required to fall within Euclidean distance calipers of width tr(S)1/2{1 + [(log n)/(p − 1)]1/2}, or with calipers of width s(xj){1 + [(log n)/(p − 1)]1/2} on each dimension j = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' p of ⃗x separately.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Either way, the combination of additional assumptions and matching restrictions secures (24), and that the dominant part of the PIC error |[(⃗xi − ⃗xj)(ˆβ − βn)]|∞ is |[(⃗xi − ⃗xj)(˜β − βn)]|∞, not |[(⃗xi − ⃗xj)(ˆβ − ˜β)]|∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' 5 Asymptotically exact matching and consis- tency of impact estimation Matching within PIC SE calipers arranges that paired differences of the index tend uniformly to zero, given mild conditions on the index model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' For propensity and certain other index models, this convergence is precisely what is needed to ensure that in the absence of unmeasured confounding, the matched structure enjoys the same consistency properties as would be enjoyed were paired differences on the index uniformly and identically zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' In this section we assume Z ∈ {0, 1};' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' the very weak overlap condition P[0 < P(Z = 1 | Xβn) < 1] = 1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (25) that E |YC|1+δ, E |YT |1+δ < ∞ for some δ > 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' and that the mapping v �→ logit[P(Z = 1|Xβ = v)] is Lipschitz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' If Xβ is a propensity score modeled on the logit scale, this mapping is the identity and (25) follows from Rosenbaum and Ru- bin’s (1983) overlap condition, 0 < P(Z = 1 | X) < 1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' if Xβ is a risk or prognostic score, (25) is less restrictive than their already weak overlap requirement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' A partition Sn is a finely stratified design (Fogarty, 2018) if it divides {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' , n} into partition elements s ∈ Sn that satisfy � i∈s�zi = z� ≤ 1 for either or both of z = 0, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' These can be 1 : m0 or m1 : 1 matched sets, for natural numbers m0, m1, if not m1 : m0 blocks with both m0, m1 ≥ 2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' singleton elements, s of size ns = 1, represent unmatched units.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Such Sn may emerge from pair matching, where each s ∈ Sn is either a 1:1 pair, � i∈s�zi = 1� = � i∈s�zi = 0� = 1, or an unmatched 0:1 or 1 : 0 singleton;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' from matching with multiple controls, permitting 1 : m, m ≥ 1, matches as well as singletons;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' from 1-nearest neighbor matching, in which m:1 but not 1:m sets may arise;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' or from full matching (Rosenbaum, 1991), permitting both 21 m : 1 and 1 : m configurations for any m;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' or from full matching with symmetric restrictions (Stuart and Green, 2006;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Fredrickson et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=', 2020), permitting both m : 1 and 1 : m matched sets, but only for m falling below a designated m0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' The notation [i]Sn for the partition element s ∈ Sn containing i is abbreviated to [i] when no partition other than Sn is under consideration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Consider estimates defined as roots of ψSn(·) = 0, where ψSn(η) := � s∈Sn � i∈s ψsi(η) � s∈Sn wsns ¯Zs(1 − ¯Zs), ψsi(η) := ws[Yi − η(Zi − ¯Zs)](Zi − ¯Zs), (26) ¯zs := ns−1� j∈s zj and ws is a nonnegative weight determined by zs and/or ns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' For example, the z-coefficient in an ordinary regression of outcomes y on z and matched-set indicator variables is expressible as the solution ˆτ of ψSn(τ) = 0 for ws ≡ 1, since (zi − ¯z[i] : i) is the residual of z’s ordinary regression on matched- set indicator variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' As a second example, the effect of treatment-on-treated estimator n−1 {i:Zi=1,n[i]>1} � {i:Zi=1,n[i]>1} Yi − avg(Yj : Zj = 0, j ∼ i) uniquely solves ψSn(·) = 0 with w[i]Sn = 0 for unmatched i and ws = (1 − ¯Zs)−1 for s with ns > 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Inferences will reflect Sn by conditioning on stratum-wise treatment alloca- tions, that is on a sigma field containing Fn := σ �� i∈s Zi : s ∈ Sn � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Desite this notation, {Fn : n} is not a nested filtration: as a rule Sm ̸⊆ Sm, as strict contain- ment does not permit the maximum index discrepancy, |{⃗xiβn − ⃗xjβn : i Sn ∼ j}|∞, to decline with increasing n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' The statistic [� i∈s Zi : s ∈ Sn] that defines Fn is in itself uninformative, S-ancillary (Severini, 2000;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Lehmann and Romano, 2022) to parameters defined as roots of η �→ E[ψSn(η)], ψSn as defined in (26).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Proposition 9 says that under mild assumptions about the regularity of {Sn : n} and (YT , YC, Z), the solution of (26) tends to a probability limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' To state the regularity assumptions, write ¯Ys(z) = 0 if � i∈s�Zi = z� = 0, for z = 0 or 1, and (� i∈s�Zi = z�)−1� i∈s Yi�Zi = z� otherwise;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' and let V (n,s) := ¯Ys(1) − ¯Ys(0) − E( ¯Ys(1) − ¯Ys(0) | Fn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Proposition 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Let {( ⃗Xi, YCi, YTi, Zi) : i} be i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=', let {Sn : n} be finely stratified designs and let Fn = σ((� i∈s Zi : s ∈ Sn)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Assume the moment condition that for some δ > 0 either: (i) E |YC|1+δ, E |YT |1+δ < ∞ and ns is bounded;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' or (ii) there is a V and δ > 0 with E |V |1+δ < ∞ such that for each n and s ∈ Sn, |V | 22 stochastically dominates |V (n,s)| given Fn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' 2 Let {ws : s ∈ Sn} be nonnegative, Fn- measurable weights, and let ψSn(·) be as in (26).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Assume that with probability one: mn → ∞, where mn := � s∈Sn�ws ¯Zs(1− ¯Zs) > 0� is the cardinality of Sn exclusive of unmatched singletons and strata receiving zero weight;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' wsns ¯Zs(1− ¯Zs) is bounded above;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' and m−1 n � s∈Sn wsns ¯Zs(1− ¯Zs) is bounded away from 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Conditionally given Fn we then have, for any sigma fields {Gn : n} with Fn ⊆ Gn: i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' for each η, ψSn(η) − E[ψSn(η)|Gn] → 0 in probability and in L1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' and ii.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' η �→ ψSn(η) and η �→ E[ψSn(η) | Gn] have unique roots ˆτn and τn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' iii.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' In addition, if there is τ0 ∈ (−∞, ∞) such that τn P→ τ0, then ˆτn P→ τ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' As compared to the classical consistency principle for i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' observations (Hu- ber, 1964;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Serfling, 1980, Lemma A of § 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='1), Proposition 9 upgrades moment requirements from estimating equation contributions ψ(W;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' θ) being L1 to V (n,s) being L1+δ, some δ > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' This enables conclusions in terms of L1 as well as in- probability convergence, which in turn accommodates refinement of Fn-conditioning to conditioning on finer sigma fields reflecting matched variation in index scores.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Specifically, consider Gn := σ � ( ⃗Xiβn : i ≤ n) ∪ Fn � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' The generating statistic ( ⃗Xiβn, 1 ≤ i ≤ n;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' � j∈s Zj, s ∈ Sn) is again S-ancillary to matched treatment-control contrasts such as τn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Because remaining information about ( ⃗Xi, Zi), 1 ≤ i ≤ n, is barred, the trans- formed index scores θi := logit[P(Z = 1|Xβn = xiβn)] determine Gn-conditional assignment probabilities as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' If s ∈ Sn and ζ : s → {0, 1} satisfies � i∈s ζi = � i∈s zi, then πs(ζ) := P(Zi = ζi all i ∈ s | Gn) = � � � exp(θi) � j∈s exp(θj), any i ∈ s s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' ζi = 1, and ζj = 0 for all j ∈ s \\ {i} exp(−θi) � j∈s exp(−θj), any i ∈ s s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' ζi = 0, and ζj = 1 for all j ∈ s \\ {i}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (27) (Because we assume (25), θi ∈ (−∞, ∞) for all i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' When s = {i} is an unmatched singleton, πs(ζ) = 1 for the sole permissible ζ, {i �→ zi}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' When s is a 1 : 1 matched pair {i1, i2}, one condition in (27) obtains with i = i1 while the other obtains 2That is, the Fn-conditional distribution of |V (n,s)| falls at or below the unconditional distribution of |V | in the usual stochastic ordering where W ⪯ V iff P(W > a) ≤ P(V > a) for all a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' 23 with i = i2, so that (27) presents two distinct expressions for πs(ζ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' But these expressions then assign the same value to πs(ζ), for each ζ : {i1, i2} → {0, 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=') Now define ˜ψs(η) := � i∈s ψsi(η) nsπs(Zs) ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' ˜ψSn(η) := � s∈Sn ˜ψs(η) � s∈Sn wsns ¯Zs(1 − ¯Zs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (28) In contrast to ψs(η) := � i∈s ψsi(η), ˜ψs(η) cannot be calculated in practice, as its random denominator involves the unknown βn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Accordingly ˜ψSn(·) lacks direct application to effect estimation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' However, it is useful for analysis of estimates based on ψSn(·).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Proposition 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' The unique root of η �→ E[ ˜ψSn(η)|Gn] is � � s∈Sn ˜wsns �−1 � s∈Sn ˜ws � i∈s E(Y | Z = 1, ⃗Xβn = ⃗xiβn) − E(Y | Z = 0, ⃗Xβn = ⃗xiβn), (29) where ˜ws := ws¯zs(1 − ¯zs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' ii.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' For all η and n, ���E[ ˜ψSn(η) − ψSn(η) | Gn] ��� ≤ [exp(4|{θi − θj : i ∼ j}|∞) − 1] · � s∈Sn ˜wsns E |V (n,s)| � s∈Sn ˜wsns , (30) where θi = logit[P(Z = 1|Xβn = xiβn)] and V (n,s) is as defined in § 5, above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' iii.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' If v �→ logit[P(Z = 1|Xβ = v)] is Lipschitz and the conditions of Propo- sition 9 hold, |{(⃗xi − ⃗xj)βn : i ∼ j}|∞ → 0 entails that the difference of τn with (29) tends in probability to 0, where τn is the unique root of η �→ E[ψSn(η) | Gn].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' iv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' If the averages (29) tends in probability to a finite limit τ0, then ˆτn P→ τ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' If the index deconfounds allocation of treatment, (YC, YT ) ⊥ Z|Xβn, then (29) coincides with the average causal effect � s∈Sn ˜ws � i∈s E(YTi − YCi | ⃗Xβn = ⃗xiβn) � s∈Sn ˜wsns .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' If the index is a propensity score, this deconfounding flows from strong ignora- bility in the sense of Rosenbaum and Rubin (1983);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' if Xβ is a prognostic score, strong ignorability entails index strong ignorability under a secondary “no effect modification” condition (Hansen, 2008, Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' 24 References Austin, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (2011), “Optimal caliper widths for propensity-score matching when estimating differences in means and differences in proportions in observational studies,” Pharmaceutical Statistics, 10, 150–161.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Boucheron, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=', Lugosi, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=', and Massart, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (2013), Concentration inequalities: A nonasymptotic theory of independence, Oxford university press.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Cantoni, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' and Ronchetti, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (2001), “Robust inference for generalized linear models,” Journal of the American Statistical Association, 96, 1022–1030.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Durrett, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (2019), Probability: theory and examples, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' 49, Cambridge, 5th ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' D’Amour, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=', Ding, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=', Feller, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=', Lei, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=', and Sekhon, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (2021), “Overlap in ob- servational studies with high-dimensional covariates,” Journal of Econometrics, 221, 644–654.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Firth, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (1993), “Bias reduction of maximum likelihood estimates,” Biometrika, 80, 27–38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Fogarty, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (2018), “On mitigating the analytical limitations of finely strati- fied experiments,” Journal of the Royal Statistical Society: Series B (Statistical Methodology), 80, 1035–1056.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Fredrickson, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=', Errickson, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=', and Hansen, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (2020), “Comment: Match- ing Methods for Observational Studies Derived from Large Administrative Databases,” Statist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=', 35, 361–366.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Gelman, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=', Jakulin, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=', Pittau, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=', and Su, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (2008), “A weakly infor- mative default prior distribution for logistic and other regression models,” The Annals of Applied Statistics, 1360–1383.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Gentle, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (2007), “Matrix algebra,” Springer texts in statistics, Springer, New York, NY, doi, 10, 978–0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Ghosh, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' and Cort´es, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (2019), “A gaussian process framework for overlap and causal effect estimation with high-dimensional covariates,” Journal of Causal Inference, 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Hansen, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (2008), “The Prognostic Analogue of the Propensity Score,” Biometrika, 95, 481–488, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='1093/biomet/asn004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' 25 He, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' and Shao, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='-M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (2000), “On parameters of increasing dimensions,” Journal of Multivariate Analysis, 73, 120–135.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Huber, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (1964), “Robust estimation of a location parameter,” Annals of Math- ematical Statistics, 35, 73–101.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Kosmidis, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' and Firth, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (2009), “Bias reduction in exponential family nonlinear models,” Biometrika, 96, 793–804.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Lehmann, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' and Romano, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (2022), Testing statistical hypotheses, Springer Science & Business Media, 4th ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Liang, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' and Zeger, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (1986), “Longitudinal data analysis using generalized linear models,” Biometrika, 73, 13–22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Lunt, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (2013), “Selecting an appropriate caliper can be essential for achieving good balance with propensity score matching,” American journal of epidemiol- ogy, 179, 226–235.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Portnoy, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (1988), “Asymptotic behavior of likelihood methods for exponential families when the number of parameters tends to infinity,” Annals of Statistics, 356–366.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Rosenbaum, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (1991), “A Characterization of Optimal Designs for Observa- tional Studies,” Journal of the Royal Statistical Society, 53, 597– 610.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Rosenbaum, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' and Rubin, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (1983), “The Central Role of the Propensity Score in Observational Studies for Causal Effects,” Biometrika, 70, 41–55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' — (1985), “Constructing a Control Group Using Multivariate Matched Sampling Methods That Incorporate the Propensity Score,” American Statistician, 39, 33–38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Rubin, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' and Thomas, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (1996), “Matching Using Estimated Propensity Scores: Relating Theory to Practice,” Biometrics, 52, 249–64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' — (2000), “Combining Propensity Score Matching with Additional Adjustments for Prognostic Covariates,” Journal of the American Statistical Association, 95, 573–585.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Serfling, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (1980), Approximation theorems of mathematical statistics, John Wiley & Sons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Severini, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (2000), Likelihood methods in statistics, Oxford University Press, USA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' 26 Stuart, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' and Green, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (2006), “Using Full Matching to Estimate Causal Effects in Non-Experimental Studies: Examining the Relationship between Ado- lescent Marijuana Use and Adult Outcomes,” Tech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' rep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=', Johns Hopkins Uni- versity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Tropp, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (2015), “An Introduction to Matrix Concentration Inequalities,” Foundations and Trends in Machine Learning, 8, 1–230.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' van der Vaart, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (1998), Asymptotic Statistics, Cambridge University Press.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Vershynin, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (2018), High-dimensional probability: An introduction with applica- tions in data science, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' 47, Cambridge university press.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Wang, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (2011), “GEE analysis of clustered binary data with diverging number of covariates,” Annals of Statistics, 39, 389–417.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Wang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=', Cai, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=', Li, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=', Jiang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=', Wang, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=', Song, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=', and Xia, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (2013), “Optimal caliper width for propensity score matching of three treatment groups: a Monte Carlo study,” PloS one, 8, e81045.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' A Review of mathematical symbols The symbols | · |2 and | · |∞ indicate Euclidean and supremum norms as usual (§ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' For scalar or vector random variables V , ∥V ∥ψ2 is the sub-gaussian norm of V ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' for fixed matrices M, |M|2 and |M|F are M’s operator and Frobenius norms respectively (§ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' For matrices M and N of like dimension, ⟨M, N⟩F is the Frobenius inner product tr(M′N) (§ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Symbols ˆβ, ψ(r, ⃗x, β) and c0(r, ⃗x, β0 + ⃗xβ) are defined in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='1, while Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='3 defines βn, ˜β, An, and Bn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' For partitions S of {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' , n}, [i]S denotes the subset of {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' , n} belonging to S that contains i and i S∼ j means there is s ∈ S with both i ∈ s and j ∈ s (§ 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='2 defines nS (as card(S)) and z∗ m, for positive integers m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' �A� is the indicator of event A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Section 5 defines ¯vs = n−1 s � j∈s vj for s ⊆ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' , n};' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' associates estimating functions ψSn(·) and ˜ψSn(·), and sigma fields Fn and Gn, with partitions Sn of {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' , n};' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' and also defines ¯vs(z) for s ⊆ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' , n} and z ∈ {0, 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' 27 B Proofs for Section 3 B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='1 Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='1 Proof of Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' In light of (8) and IS estimability (A2, A3), the difference be- tween (˜βn−βn) and A−1 n 1 n[�n j=1 ψ(Rj, ⃗xj;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' βn)] has Euclidean norm of order smaller than n−1/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Because it is nonrandom, the sub-gaussian norm of this difference is also o(n−1/2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' So it suffices to show ∥A−1 n 1 n[�n j=1 ψ(Rj, ⃗xj;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' βn)]∥ψ2 = O(n−1/2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Given A3, for this it suffices in turn to show that ∥ �n j=1 ψ(Rj, ⃗xj;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' βn)∥ψ2 = O(n1/2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' By (4), ∥ n � i=1 ψ(Ri, ⃗xi;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' βn)∥ψ2 = sup γ:|γ|2=1 ∥ n � i=1 γ′ψ(Ri, ⃗xi;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' βn)∥ψ2 = sup γ:|γ|2=1 ∥ n � 1 c0(Ri, ⃗xi, ⃗xiβn)w(⃗xi)⃗xiγ∥ψ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Let k1 be a bound for ∥c0(Ri, ⃗xi, ⃗xiβn)∥ψ2, by A5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' According to the general Ho- effding inequality (Vershynin, 2018, § 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='6), there is a universal k0 such that ∥ n � 1 c0(Ri, ⃗xi, ⃗xiβ)w(⃗xi)⃗xiγ∥2 ψ2 ≤k0 n � 1 ∥c0(Ri, ⃗xi, ⃗xiβ)w(⃗xi)⃗xiγ∥2 ψ2 ≤k0k1 n � 1 |w(⃗xi)⃗xiγ|2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' So sup γ:|γ|2=1 ∥ n � 1 c0(Ri, ⃗xi, ⃗xiβ)w(⃗xi)⃗xiγ∥2 ψ2 ≤k0k1n � 1 n n � 1 w(⃗xi)2 � sup γ:|γ|2=1 � 1 n n � 1 |⃗xiγ|2 2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' The left-hand side equals the square of ∥ �n 1 c0(Ri, ⃗xi, ⃗xiβ)⃗xi∥ψ2, whereas A6 says the product at right is O(n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' The proof is complete.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='2 Proofs for section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='2 The following lemma helps to prove Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Under the conditions of Proposition 3, for all 1 ≤ i < j < n we have ( ⃗Xi − ⃗Xj) ⊥ ˜β − βn | S, {⃗µ(s) : s ∈ S}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' 28 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Recall that ˜β − βn = A−1 n 1 n �n i=1 ψ(Ri, ⃗Xi;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' βn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Suppressing conditioning for S, {µs : s ∈ S} in the notation, Cov � A−1 n 1 n n � i=1 ψ(Ri, ⃗Xi;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' βn), ⃗X1 − ⃗X2 � = 1 n Cov � A−1 n ψ(R1, ⃗X1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' βn), ⃗X1 � − 1 n Cov � A−1 n ψ(R2, ⃗X2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' βn), ⃗X2 � = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' By joint Normality of {[ ⃗Xi;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' ψ′(Ri, ⃗Xi;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' βn)] : i}, 1 nA−1 n ψ(R1, ⃗X1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' βn) and ( ⃗Xi − ⃗Xj) are jointly Normal, and the fact that they are uncorrelated means they are inde- pendent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Proof of Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' For fixed γ ∈ ℜp we have, after some algebra that I omit, E[( ⃗X1 − ⃗X2)γ]2 = 2γ′Σγ and E ��{( ⃗Xi − ⃗Xj)γ : i S∼ j, i ̸= j} ��2 2 = 2γ′Σγ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (Throughout the proof I write ““E[·]” for “ES[·].”) By the conditional indepen- dence established in Lemma 2, it follows that E ��{( ⃗Xi − ⃗Xj)(˜β − βn) : i S∼ j, i ̸= j} ��2 2 = ⟨2Σ, C⟩F .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Also for fixed γ, (5) as applied to Normal variables gives E ��{( ⃗Xi − ⃗Xj)γ : i S∼ j, i ̸= j} �� ∞ ≤ [4γ′Σγ log 2nS]1/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (31) Since ˜β is independent of ⃗Xi − ⃗Xj for each 1 ≤ i < j ≤ n (Lemma 2), (31) entails E � E ���{( ⃗Xi − ⃗Xj)(˜β − βn) : i S∼ j, i ̸= j} �� ∞ | ˜β �2� ≤ E � 4(˜β − βn)′Σ(˜β − βn) log 2nS � = 4⟨Σ, Cn⟩F log 2nS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Combining this fact with Jensen’s inequality for conditional expectation, � E ���{( ⃗Xi − ⃗Xj)(˜β − βn) : i S∼ j, i ̸= j} �� ∞ ��2 ≤ E � E ���{( ⃗Xi − ⃗Xj)(˜β − βn) : i S∼ j, i ̸= j} �� ∞ | ˜β �2� ≤ 4⟨Σ, Cn⟩F log 2nS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' 29 B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='3 Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='3 Proof of Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Letting k < ∞ denote the supremum (Condition A5) of sub- gaussian norms of {c0(Ri, ⃗xi, ⃗xiβn) : i}, E[c0(Ri, ⃗xi, ⃗xiβn)4] ≤ (2k)4 for all i (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=', Vershynin, 2018, § 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Accordingly � i E � c0(Ri, ⃗xi, ⃗xiβn)4� = O(n) and in turn � i{E � c0(Ri, ⃗xi, ⃗xiβn)2� }2 = O(n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Combining this with supγ:|γ|2=1 � i w(⃗xi)4(⃗xiγ)4 = O(n) (Condition A6), Cauchy-Schwartz gives supγ:|γ|2=1 � i E � c0(Ri, ⃗xi, ⃗xiβn)2� w(⃗xi)2(⃗xiγ)2 = O(n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Rearranging terms in light of (4), this says supγ:|γ|2=1 � i E � [γ′ψ(Ri, ⃗xi, β)]2� = O(n), or supγ:|γ|2=1 γ′nBnγ = O(n);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' thus |Bn|2 = O(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Condition A3 gives |A−1 n |2 = O(1), so also |C−1 n |2 = O(n−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Our demonstration of Proposition 4 relies on three supporting lemmas, as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Under A4 and A6, supβ |An(β)|2 = O(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Write c1(⃗x, η) := (∂/∂η) E[c0(R, ⃗x, η) | ⃗X = ⃗x] so that ∇β E[ψ(R, ⃗x, β) | ⃗X = ⃗x] = c1(⃗x, ⃗xβ)w(⃗x)⃗x′⃗x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' By A4, there is K1 < ∞ such that |c1(⃗x, β0 + ⃗xβ)| < K1, for any β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' By Cauchy-Schwartz, A6 gives supγ:|γ|2=1 �n i=1 w(⃗xi)(⃗xiγ)2 = O(n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Since n|An(β)|2 = sup γ:|γ|2=1 γ′ �� i c1(⃗xi, ⃗xiβ)w(⃗xi)⃗x′⃗x � γ ≤ K1 sup γ:|γ|2=1 � i w(⃗xi)(⃗xγ)2 for any β, the result follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Under A1–A9, |An(ˆβ) − An(βn)|2 P→ 0 and | ˆBn(ˆβ) − ˆBn(βn)|2 P→ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Under A1–A9 as well as A11 and sub-√n dimension, | ˆBn(βn) − Bn(βn)|2 P→ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Proofs of Lemmas 4 and 5 are given following the proof of Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Proof of Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Since ˆAn ≡ An(ˆβ), | ˆAn −An|2 P→ 0 follows from Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Since ˆBn ≡ ˆBn(ˆβ), | ˆBn−Bn|2 P→ 0 follows from | ˆBn(ˆβ)− ˆBn(βn)|2 P→ 0 (Lemma 4) and | ˆBn(βn) − Bn|2 P→ 0 (Lemma 5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Since |A−1 n |2 = O(1) and | ˆA−1 n |2 = OP (1) (Condition A3 and Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' 1), it follows that | ˆA−1 n − A−1 n |2 P→ 0, by applying sub-multiplicativity of the spectral norm to the right-hand side of ( ˆA−1 n −A−1 n ) = ˆA−1 n ( ˆAn −An)A−1 n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Since also |Bn|2 = OP (1) (Lemma 1), the 2-norms of the second and third summands in ˆA−1 n ˆBn ˆA−1 n = A−1 n BnA−1 n + ( ˆA−1 n − A−1 n )BnA−1 n + ˆA−1 n Bn( ˆA−1 n − A−1 n ) + ˆA−1 n ( ˆBn − Bn) ˆA−1 n 30 must tend in probability to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Thus the stochastic order of |A−1 n BnA−1 n − ˆA−1 n ˆBn ˆA−1 n |2 can be no greater than that of | ˆA−1 n ( ˆBn −Bn) ˆA−1 n |2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' But as A4 and A6 entail that | ˆAn|2 = OP (1), by Lemma 3, OP (| ˆA−1 n ( ˆBn−Bn) ˆA−1 n |2) = OP (| ˆBn−Bn|2) = oP (1);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' this means |Cn − ˆCn|2 = n−1|A−1 n BnA−1 n − ˆA−1 n ˆBn ˆA−1 n |2 = oP (n−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' This proof of Lemma 4 was based in part on Wang’s proof of a similar principle for generalized estimating equations (2011, Thm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Proof of Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' To establish |An(ˆβ)−An(βn)|2 = supγ:|γ|2=1 γ′[An(ˆβ)−An(βn)]γ P→ 0, let K1 < ∞ be a Lipschitz constant for η �→ c1(r, ⃗x, η), each r and ⃗x, where c1(·) is as defined in the proof of Lemma 3, above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (By Condition A4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=') Then |γ′{∇β E[ψ(R, ⃗xi, β) | ⃗X = ⃗xi]β=ˆβ − ∇β E[ψ(R, ⃗xi, β) | ⃗X = ⃗xi]β=βn}γ| ≤ K1[⃗xi(ˆβ − βn)]w(⃗xi)(⃗xiγ)2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (32) Summing over i and applying Cauchy-Schwartz, (γ′[An(ˆβ) − An(βn)]γ)2 ≤K2 1 � 1 n n � i=1 w(⃗xi)2(⃗xiγ)4 � � � 1 n n � i=1 � ⃗xi ˆβ − βn |ˆβ − βn|2 �2� � × |ˆβ − βn|2 2, interpreting “⃗x(δ/|δ|2)” as 0 when |δ|2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' It follows that |An(ˆβ)−An(βn)|2 2 ≤ K2 1 � sup γ:|γ|2=1 1 n n � i=1 w(⃗xi)2(⃗xiγ)4 �� sup δ:|δ|2=1 1 n n � i=1 (⃗xiδ)2 � |ˆβ−βn|2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Observe that the conditions of Proposition 1 follow from those of Proposition 4, so that we may assume |ˆβ−βn|2 = OP [(p/n)1/2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' This combines with Condition A6 to give |An(ˆβ) − An(βn)|2 = O(1)O(1)OP [(p/n)1/2], which by A9 is oP (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' As to | ˆBn(ˆβ) − ˆBn(βn)|2, γ′{Ψ(Ri, ⃗xi, ˆβ)Ψ(Ri, ⃗xi, ˆβ)′ − Ψ(Ri, ⃗xi, βn)Ψ(Ri, ⃗xi, βn)′}γ (33) =(c2 0(Ri, ⃗xi, ˆηi) − c2 0(Ri, ⃗xi, ηi))w(⃗xi)2(⃗xiγ)2 =(c0(Ri, ⃗xi, ˆηi) − c0(Ri, ⃗xi, ηi))(c0(Ri, ⃗xi, ˆηi) + c0(Ri, ⃗xi, ηi))w(⃗xi)2(⃗xiγ)2 =(c0(Ri, ⃗xi, ˆηi) − c0(Ri, ⃗xi, ηi))2w(⃗xi)2(⃗xiγ)2 + (c0(Ri, ⃗xi, ˆηi) − c0(Ri, ⃗xi, ηi)) · 2c0(Ri, ⃗xi, ηi)w(⃗xi)2(⃗xiγ)2 =:Vi(γ) + Wi(γ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (34) 31 By the Lipschitz property (A4) of c0(r, ⃗x, ·), sup γ:|γ|2=1 1 n � i |Vi(γ)| ≤K2 1 sup γ:|γ|2=1 1 n � i (ˆηi − ηi)2w(⃗xi)2(⃗xiγ)2 ≤K2 1|ˆβ − βn|2 2 sup δ,γ:|δ|2=|γ|2=1 1 n � i w(⃗xi)2(⃗xiδ)2(⃗xiγ)2 = O(1)OP (p/n)O(1) = oP (1), (35) invoking Assumption A6 and consistency of ˆβ at (35).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' The Lipschitz property of c0(r, ⃗x, ·) also gives sup γ:|γ|2=1 1 n � i |Wi(γ)| ≤2K1 sup γ:|γ|2=1 1 n � i |c0(Ri, ⃗xi, ηi)(ˆηi − ηi)|w(⃗xi)2(⃗xiγ)2 ≤2K1|ˆβ − βn|2 sup γ,δ:|γ|2=|δ|2=1 1 n � i c0(Ri, ⃗xi, ηi)(⃗xiδ)w(⃗xi)2(⃗xiγ)2 ≤2K1|ˆβ − βn|2[ 1 n � i c4 0(Ri, ⃗xi, ηi)]1/4 × sup δ:|δ|2=1 [ 1 n � i w(⃗xi)4(⃗xiδ)4]1/4 sup γ:|γ|2=1 [ 1 n � i w(⃗xi)4(⃗xiγ)4]1/2 (36) = OP (p/n)OP (1)O(1)O(1) = oP (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Here we apply Cauchy-Schwartz (twice) at (36) and, to pass to the next line, con- sistency of ˆβ as per Proposition 1, Assumption A5 in combination with Markov’s inequality and Assumption A6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Since | ˆBn(ˆβ) − ˆBn(βn)|2 = sup γ:|γ|2=1 γ′( ˆBn(ˆβ) − ˆBn(βn))γ ≤ sup γ:|γ|2=1 1 n � i |Vi(γ)| + sup γ:|γ|2=1 1 n � i |Wi(γ)|, the result follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Proof of Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' To control |γ[ ˆBn(βn) − Bn(βn)]γ′|, fix γ with |γ|2 = 1 and consider γ[ ˆBn(βn) − Bn(βn)]γ′ =γ′� n−1 � i≤n {c2 0(Ri, ⃗xi, ⃗xiβn) − E[c2 0(R, ⃗xi, ⃗xiβn) | ⃗X = ⃗xi]}w2(⃗xi)⃗x′ i⃗xi � γ =n−1 � i≤n {c2 0i(Ri) − E[c2 0i(R) | ⃗X = ⃗xi]}w2(⃗xi)(⃗xiγ)2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' 32 Observe that A5 entails the random variables c2 0i(Ri) − E[c2 0i(R) | ⃗X = ⃗xi] to be sub-exponential with uniformly bounded sub-exponential norm (Vershynin, 2018, § 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Applying Bernstein’s inequality (Vershynin, 2018, § 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='8), P{|γ[ ˆBn(βn) − Bn(βn)]γ′| ≥ t} ≤ 2 exp � −k2 min � n2t2 k2e �n i=1 w(⃗xi)4(⃗xiγ)4 , nt ke maxi≤n w(⃗xi)2(⃗xiγ)2 �� , (37) where ke is a finite upper bound for the sub-exponential norms of c2 0i(Ri) − E[c2 0i(Ri)], i ≥ 1, and k2 is a universal constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Now let N be a 1/4-net of the p-dimensional sphere, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' a finite subset of {γ : |γ|2 = 1} with the property that {γ : |γ|2 = 1} is covered by balls centered in N of radius 1/4, so that (Vershynin, 2018, § 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='1) sup γ:|γ|2=1 γ[ ˆBn(βn) − Bn(βn)]γ′ ≤ 2 sup γ∈N γ[ ˆBn(βn) − Bn(βn)]γ′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (38) We may select this N to have cardinality no more than 9p (Vershynin, 2018, Corr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='13).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Since (37) holds for arbitrary γ on the unit sphere, it follows that 1 2 P{ sup γ:|γ|2=1 |γ[ ˆBn(βn) − Bn(βn)]γ′| ≥ t} ≤ exp � p log(9) − nk2 min � t2 k2en−1 �n i=1 w(⃗xi)4(⃗xiγ)4 , t ke maxi≤n w(⃗xi)2(⃗xiγ)2 �� = exp � −k2 min � nt2 k2en−1 �n i=1 w(⃗xi)4(⃗xiγ)4 − pk3, nt ke maxi≤n w(⃗xi)2(⃗xiγ)2 − pk3 �� , (39) where k3 = log(9)/k2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Recalling that n−1 �n i=1 w(⃗xi)4(⃗xiγ)4 = O(1) (by A6), t2/[k2 en−1 �n i=1 w(⃗xi)4(⃗xiγ)4] has positive limit infimum and finite limit supremum (for any t);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' thus the first of the two quantities of which the minimum is taken tends to ∞ because p = o(n) (A9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Since maxi≤n w(⃗xi)2(⃗xiγ)2 = O{max[p log n, (log n)2]} (A11), p2 log n = o(n) (sub-√n dimension) entails that the second quantity also must tend to ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (If pn ≤ log n infinitely often, then on the subsequence for which this is true the term in question is bounded below by (log n){(t/ke)n/[(log n) maxi≤n w(⃗xi)2(⃗xiγ)2] − k3}, which tends to ∞ with (log n)[n/(log n)3 − 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Otherwise pn > log n so that max[pn log n, (log n)2] = pn log n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' The term in question equals p{(t/ke)n/[p maxi≤n w(⃗xi)2(⃗xiγ)2] − k3}, which tends to ∞ because p ↑ ∞, maxi≤n w(⃗xi)2(⃗xiγ)2 = O(p log n) and p2 log n = o(n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=') So the minimum in (39) increases without bound, and (39) itself tends to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' 33 Proposition 5’s proof uses two supporting lemmas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Lemma 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Under A1 and A6, s(xˆβ) − s(xβn) = OP (|ˆβ − βn|2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' By A1, s2(xˆβ) − s2(xβn) = ˆβ′S ˆβ − β′ nSβn = (ˆβ + βn)′S(ˆβ − βn) = (S1/2 ˆβ + S1/2βn)′S1/2(ˆβ − βn), where S1/2 denotes the matrix square root of S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Noting A6’s implication that |S1/2|2 = O(1), |s(xˆβ) − s(xβn)| =[s(xˆβ) + s(xβn)]−1|(S1/2 ˆβ + S1/2βn)′S1/2(ˆβ − βn)| ≤ (|S1/2 ˆβ|2 + |S1/2βn|2)−1|S1/2 ˆβ + S1/2βn|2|S1/2|2|ˆβ − βn|2 ≤ |S1/2|2|ˆβ − βn|2 = O(1)OP (|ˆβ − βn|2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' In the proof of Lemma 7 below, let (I, J) ⊆ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' , n} be a randomly ordered simple random sample of size 2, and let ⃗D (or ⃗D⊥w, w an n-vector) be a 1 × p random vector representing the paired difference ⃗xI − ⃗xJ (or ⃗x⊥w I − ⃗x⊥w J ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Then s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='2 r(I, J) = ⃗D⊥xˆβ ˆC ⃗D⊥xˆβ′ (40) Because of the U-statistic representation of covariance, Cov( ⃗D) = 2S(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' By symmetry of the distribution of (I, J), E � ⃗D � = 0, so that E � ⃗D′ ⃗D � = Cov(D) = 2S(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Selection of (I, J) pays no attention to the distinction between treatment and control, making ⃗D independent of {Zi}n i=1 and, by extension, of ˆβ and ˆC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Therefore its conditional and marginal moments coincide: E � ⃗D|ˆβ, ˆC � = E � ⃗D � = 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' E � ⃗D′ ⃗D|ˆβ, ˆC � = Cov( ⃗D|ˆβ, ˆC) = Cov( ⃗D) = 2S(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Lemma 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Let S = S(x) or S⊥v = (n − L)−1x⊥v′x⊥v, some categorical vari- able v with L categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Then ⟨S⊥ˆβ, ˆC⟩F = ⟨S, ˆC⟩F − s−2(xˆβ)⟨S ˆβ ˆβ′S, ˆC⟩F and ⟨S⊥βn, C⟩F = ⟨S, ˆC⟩F − s−2(xβn)⟨Sβnβn′S, C⟩F .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' If S = S(x), let ⃗D be as defined above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Otherwise, if S = S⊥v, then let (I, J) ⊆ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' , n} be a randomly ordered stratified simple random sample of size 2 from one of the categories of v with at least two elements, after selecting one of these categories with probability proportional to size, and let ⃗D (or ⃗D⊥w, w an 34 n-vector) be a 1 × p random vector representing the paired difference ⃗xI − ⃗xJ (or ⃗x⊥w I − ⃗x⊥w J ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Evaluate E � ⃗D⊥xˆβ′ ⃗D⊥xˆβ|ˆβ, ˆC � = Cov( ⃗D⊥xˆβ|ˆβ, ˆC) using the U-statistic rep- resentation of sample covariance to get Cov( ⃗D⊥xˆβ|ˆβ, ˆC) = 2(n − 1)−1x⊥xˆβ′x⊥xˆβ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Now compare to: 1 2 E � ⃗D⊥xˆβ′ ⃗D⊥xˆβ|ˆβ, ˆC � =(I − ˆβ ˆβ′S(x)/s2(xˆβ))′S(x)(I − ˆβ ˆβ′S(x)/s2(xˆβ)) =S(x) − 2s−2(xˆβ)S(x) ˆβ ˆβ′S(x)+ s−4(xˆβ)S(x) ˆβ · ˆβ′S(x) ˆβ · ˆβ′S(x) =S(x) − s−2(xˆβ)S(x) ˆβ ˆβ′S(x) =: S⊥ˆβ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Proof of Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' It follows from A6 that ∥S∥F = tr(S′S)1/2 = O(p1/2), and from the assumed consistency of ˆCn that ∥ ˆCn − Cn∥F = oP (p1/2/n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' So |⟨S, ˆCn⟩F − ⟨S, Cn⟩F | = |⟨S, ˆCn − Cn⟩F | = oP (p/n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' By Lemma 7, ⟨S⊥ˆβ, ˆCn⟩F − ⟨S⊥βn, Cn⟩F =⟨S, ˆCn − Cn⟩F + s−2(xˆβ)⟨S ˆβ ˆβ′S, ˆCn⟩F − s−2(xβn)⟨Sβnβn′S, Cn⟩F =oP � p n � + [s−2(xˆβ) − s−2(xβn)]⟨S ˆβ ˆβ′S, ˆCn⟩F (41) + s−2(xβn) � ⟨S ˆβ ˆβ′S, ˆCn⟩F − ⟨Sβnβn′S, Cn⟩F � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (42) To analyze the rightmost summand of (41), first observe that s2(xβn) = βn′Sβn, so that |s(xβn)| ≤ |S|2|βn|2 = O(p1/2) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Together with Proposition 1, Lemma 6 entails that s(xˆβ) − s(xβn) = OP (p/n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' So A9 says that s(xˆβ) = OP (p1/2) just as |s(xβn)| = OP (p1/2), whence s(xˆβ)+s(xβn) = OP (p1/2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Combin- ing these facts, s2(xˆβ)−s2(xβn) = [s(xˆβ) − s(xβn)][s(xˆβ) + s(xβn)] = OP (p/n1/2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' In light of A8, it follows that |s−2(xˆβ) − s−2(xβn)| = OP {p/[n1/2s4(xβn)]}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' As to the ⟨S ˆβ ˆβ′S, ˆCn⟩F factor of (41), |⟨S ˆβ ˆβ′S, ˆCn⟩F | = tr(S ˆβ ˆβ′S ˆCn) = | tr(ˆβ′S ˆCnS ˆβ)| = ˆβ′S ˆCnS ˆβ ≤ ∥ˆβ′S1/2∥2∥S1/2∥2∥ ˆCn∥2∥S1/2∥2∥S1/2 ˆβ∥2 = OP (s2(xβn) n ), 35 by A8, A6, consistency of ˆCn and Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' We now have |[s−2(xˆβ) − s−2(xβn)]⟨S ˆβ ˆβ′S, ˆCn⟩F | = OP � p n3/2s2(xβn) � = oP � p n � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' To bound (42), in light of A8 we focus on the second factor: |⟨S ˆβ ˆβ′S, ˆCn⟩F − ⟨Sβnβn′S, Cn⟩F | ≤ |⟨S ˆβ ˆβ′S − Sβnβn′S, ˆCn⟩F | + |⟨Sβnβn′S, ˆCn − Cn⟩F |.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (43) We address the left term of (43) via Cauchy-Schwartz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' By Lemma 1 and consistency of ˆCn, ∥ ˆCn∥2 = OP (n−1), so ∥ ˆCn∥F = OP (p1/2/n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' As S ˆβ ˆβ′S − Sβnβn′S = S(ˆβ ˆβ′ − βnβn′)S, ∥S ˆβ ˆβ′S − Sβnβn′S∥F ≤ ∥S1/2∥2∥S1/2 ˆβ ˆβ′S1/2 − S1/2βnβn′S1/2∥F ∥S1/2∥2 = OP (1)OP � ∥S1/2 ˆβ ˆβ′S1/2 − S1/2βnβn′S1/2∥F � OP (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' This ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='decomposes as ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='∥S1/2 ˆβ ˆβ′S1/2 − S1/2βnβn′S1/2∥F ≤ ∥S1/2(ˆβ − βn)(ˆβ + βn)′S1/2∥F + ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='∥S1/2 ˆββ′ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='nS1/2 − S1/2βn ˆβ′S1/2∥F ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='where: ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='∥S1/2(ˆβ − βn)(ˆβ + βn)′S1/2∥F ≤∥S1/2∥2∥(ˆβ − βn)(ˆβ + βn)′S1/2∥F ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='= OP (1) tr[S1/2(ˆβ + βn)(ˆβ − βn)′(ˆβ − βn)(ˆβ + βn)′S1/2]1/2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='= OP (1) tr[(ˆβ + βn)′S(ˆβ + βn)(ˆβ − βn)′(ˆβ − βn)]1/2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='= OP (1)[(ˆβ + βn)′S(ˆβ + βn)∥ˆβ − βn∥2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='2]1/2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='= OP (1)[(ˆβ + βn)′S(ˆβ + βn)]1/2OP [( p ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='n)1/2] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='= OP [( p ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='n)1/2][(ˆβ − βn + 2βn)′S(ˆβ − βn + 2βn)]1/2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='= OP [( p ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='n)1/2][∥S1/2(ˆβ − βn)∥2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='2 + 4(ˆβ − βn)′Sβn + 4∥S1/2βn∥2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='2]1/2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='= OP [( p ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='n)1/2] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='OP ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='� p ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='n ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='+ OP ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='�� p ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='n ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='�1/2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='s(xβn) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='+ OP [s2(xβn)] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='�1/2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='= OP ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='�� p ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='n ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='�1/2� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='OP ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='��� p ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='n ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='�1/2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='+ s(xβn) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='�2·1/2� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='= OP ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='max ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='� p ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='n,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' � p n �1/2 s(xβn) �� ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' 36 and ∥S1/2 ˆββ′ nS1/2 − S1/2βn ˆβ′S1/2∥F =∥S1/2(ˆβ − βn)β′ nS1/2 − S1/2βn(ˆβ − βn)′S1/2∥F ≤∥S1/2(ˆβ − βn)β′ nS1/2∥F + ∥S1/2βn(ˆβ − βn)′S1/2∥F = 2 tr[S1/2βn(ˆβ − βn)′S(ˆβ − βn)β′ nS1/2]1/2 = 2[(ˆβ − βn)′S(ˆβ − βn)β′ nSβn]1/2 = OP �� p n �1/2 s(xβn) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Thus the left term at right of (43) is OP {max[p/n, (p/n)1/2s(xβn)]}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' The remaining term in (43) is bounded as follows, using the definition of ⟨·, ·⟩F and the cyclic property of the trace: ⟨Sβnβn′S, ˆCn − Cn⟩F = tr[Sβnβ′ nS( ˆCn − Cn)] = tr[β′ nS( ˆCn − Cn)Sβn] =β′ nS( ˆCn − Cn)Sβn ≤|βn|2 2∥S∥2 2∥ ˆCn − Cn∥2 = OP (p)OP (1)oP (n−1) = oP (p/n), using A7, A6 and consistency of ˆCn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' This shows that (43) as a whole is OP {max[p/n, (p/n)1/2s(xβn)]}, from which it follows that (42) is OP {max[(p/n)s−2(xβn), (p/n)1/2s−1(xβn)]} = oP (p/n), completing the proof of the proposition’s consistency claim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' The remain- der of the proposition follows from A6 and Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' C Proofs for section 4 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='1 Proof for Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='2 Proof of Proposition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' For parts (i) and (iii) it suffices to show that supi |1 − |⃗xi ˆC1/2|2 2/|⃗xiC1/2|2 2| and supi,j |1 − |(⃗xi − ⃗xj) ˆC1/2|2 2/|(⃗xi − ⃗xj)C1/2|2 2| tend in prob- ability to 0 (from the definition of in-probability convergence), and to consider only (i, j) with ⃗xi ̸= 0 and ⃗xi ̸= ⃗xj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' The latter ensures |⃗xiC1/2|2 > 0 and |(⃗xi − ⃗xj)C1/2|2 > 0, since Cn is of full rank.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Indeed, Lemma 3 in the appendix gives |An|2 = O(1), covering case (i);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' for case (iii), A12 gives |B−1 n |2 = O(1), and in turn |AnB−1 n An|2 = O(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Note that this shows not only that Cn has full rank but also that |C−1 n |2 = O(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' 37 For arbitrary nonzero p-vectors v we have 1 − v′ ˆCnv v′Cnv = v′(Cn − ˆCn)v v′v v′v v′Cnv so that �����1 − v′ ˆCnv v′Cnv ����� ≤ ����� v′(Cn − ˆCn)v v′v v′C−1 n v v′v ����� ≤ |Cn − ˆCn|2|C−1 n |2, using general inequalities for positive definite matrices (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=', Gentle, 2007, § 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Proposition 4 gives | ˆCn − Cn|2 = oP (n−1), completing the proof of parts (i) and (iii).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' For part (ii), write a ∨ b := max(a, b) and a ∧ b := min(a, b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' For arbitrary nonzero p-vectors v ����� v′Cnv ∨ ϵn − v′ ˆCnv ∨ ϵn v′v ����� ≤ ����� v′Cnv − v′ ˆCnv v′v ����� , since ���v′Cnv ∨ ϵn − v′ ˆCnv ∨ ϵn ��� ≤ ���v′Cnv − v′ ˆCnv ��� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (The latter is true because the expressions on either side of the inequality are equal if v′Cnv and v′ ˆCnv belong to the same half-interval, (0, ϵn] or [ϵn, ∞), whereas if they are separated by ϵn then the left side expression is smaller.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=') So ����� v′Cnv ∨ ϵn − v′ ˆCnv ∨ ϵn v′v ����� ≤ |Cn − ˆCn|2 = oP (n−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (44) According to A11, supi ⃗xi⃗x′ i = O[max(p, log n)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' So sup i ⃗xi⃗x′ i ϵn , sup {i,j}∈En (⃗xi − ⃗xj)(⃗xi − ⃗xj)′ ϵn = OP (n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Thus sup i ⃗xi⃗x′ i ⃗xiCn⃗x′ i ∨ ϵn , sup {i,j}∈En (⃗xi − ⃗xj)(⃗xi − ⃗xj)′ (⃗xi − ⃗xj)Cn(⃗xi − ⃗xj)′ ∨ ϵn = OP (n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' By (44), sup i:|⃗xi|2̸=0 ⃗xiCn⃗x′ i ∨ ϵn − ⃗xi ˆCn⃗x′ i ∨ ϵn ⃗xi⃗x′ i ⃗xi⃗x′ i ⃗xiCn⃗x′ i ∨ ϵn = oP (1), 38 and likewise sup {i,j}∈En: ⃗xi̸=⃗xj (⃗xi − ⃗xj)Cn(⃗xi − ⃗xj)′ ∨ ϵn − (⃗xi − ⃗xj) ˆCn(⃗xi − ⃗xj)′ ∨ ϵn (⃗xi − ⃗xj)(⃗xi − ⃗xj)′ × (⃗xi − ⃗xj)(⃗xi − ⃗xj)′ (⃗xi − ⃗xj)Cn(⃗xi − ⃗xj)′ ∨ ϵn = oP (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Proof of Proposition 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' The assumption on { ⃗Xi : i ≤ n} entails that ( ⃗Xi − ⃗Xj) is MVN(0, 2Σ) and ( ⃗Xi − ⃗Xj)C1/2 is MVN(0, 2C1/2ΣC1/2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Let 2C1/2ΣC1/2 have eigendecomposition Q′ΛQ, with Λ nonnegative real diagonal and Q an or- thogonal matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Then ( ⃗Xi − ⃗Xj)C1/2Q′ ∼ MVN(0, Λ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Writing Wij1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' , Wijp for the p coordinates of ( ⃗Xi − ⃗Xj)C1/2Q′ =: ⃗Wij, we see that Wij1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' , Wijp are mutually independent mean-0 Gaussians with variances v1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' , vp, the diago- nal entries of Λ and eigenvalues of 2C1/2ΣC1/2, while ( ⃗Xi − ⃗Xj)C( ⃗Xi − ⃗Xj)′ = ( ⃗Xi − ⃗Xj)C1/2Q′QC1/2( ⃗Xi − ⃗Xj)′ = ⃗Wij ⃗W ′ ij.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Straightforwardly, for any i ̸= j E ⃗Wij ⃗W ′ ij = � i vi, or tr(2C1/2ΣC1/2) = 2⟨C, Σ⟩F .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' We proceed to characterize the moment generating function (MGF) of ⃗Wij ⃗W ′ ij − E ⃗Wij ⃗W ′ ij, or �p k=1(W 2 ijk − E W 2 ijk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' The centered χ2 1 distribution having MGF e−t(1 − 2t)−1/2, valid for t < 1/2, W 2 ijk − E W 2 ijk has log MGF (1/2)[−2vkt − log(1 − 2vkt)], valid for t < 1/(2vk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Applying the relation − log(1− x)−x ≤ x2/[2(1 − x)], 0 < x < 1 (a transformation of log(1−x)’s degree 2 Taylor expansion), we now have log E{exp t[W 2 ijk − E W 2 ijk]} ≤ (vkt)2 1−2vkt � for t < 1 2vk � ≤ (vkt)2 1−2(maxk vk)t � t < 1 2 maxk vk � ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' so log E exp{t p � k=1 [W 2 ijk − E W 2 ijk)]} ≤ t2 � k v2 k 1−2(maxk vk)t, t < 1 2 maxk vk due to independence of uncorrelated Gaussians.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' That is, �p k=1 W 2 ijk − E W 2 ijk is sub-gamma on its right tail with variance factor � k v2 k and scale factor maxk vk;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' in symbols, �p k=1 W 2 ijk − E W 2 ijk ∈ Γ+(� k v2 k, maxk vk) (Boucheron et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=', 2013, § 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Since � k v2 k = tr(Λ2), the cyclic property of the trace combines with defi- nitions above to reduce this variance factor to 4|C1/2ΣC1/2|2 F , as tr(Q′ΛQQ′ΛQ) = 4 tr(C1/2ΣC1/2C1/2ΣC1/2);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' and the scale factor reduces to 2|C1/2ΣC1/2|2, as maxk vk = |Λ|2 and |Λ|2 = |Q′ΛQ|2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' 39 For an MGF characterization in terms of more familiar quantities, note that |2C1/2ΣC1/2|2 F = �p i=1 v2 i ≤ (maxk vk)(� k vk) = 2|C1/2ΣC1/2|2(� k vk), while � k vk = tr(D2) = tr(2C1/2ΣC1/2) = 2⟨Σ, C⟩F .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' So the variance factor can be taken as 4|C1/2ΣC1/2|2|S1/2C1/2|2 F , or 4|C1/2ΣC1/2|2⟨Σ, C⟩F .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' These MGF characterizations give control of the supremum of { ⃗Wij ⃗W ′ ij − E ⃗Wij ⃗W ′ ij : i ̸= j ≤ n}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' This class containing �n 2 � distinct Γ+ � 4|C1/2ΣC1/2|2⟨Σ, C⟩F , 2|C1/2ΣC1/2|2 � random variables, Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='6 of Boucheron et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (2013) yields E max i̸=j≤n[ ⃗Wij ⃗W ′ ij − E( ⃗Wij ⃗W ′ ij)] ≤ 2 � 2|C1/2ΣC1/2|2⟨Σ, C⟩F log �n 2 ��1/2 + 2|C1/2ΣC1/2|2 log �n 2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Simplifying via E ⃗Wij ⃗W ′ ij = 2⟨Σ, C⟩F , i ̸= j, and 2a2+2ab+b2 = a2[1 + (1 + b/a)2], E max i̸=j≤n ⃗Wij ⃗W ′ ij ≤⟨Σ, C⟩F � � �1 + � �1 + � 2|C1/2ΣC1/2|2 log �n 2 � ⟨Σ, C⟩F �1/2� � 2� � � = ⟨Σ, C⟩F � � �1 + � �1 + � 2 log �n 2 � p[C1/2ΣC1/2] �1/2� � 2� � �.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (45) Observe next that on the positive real line x �→ √2+x dominates x �→ [1 + (1 + x)2]1/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (The functions coincide at x = 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' otherwise the latter has derivative equal to the square root of (1+x)2/[1 + (1 + x)2], which is nowhere greater than 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=') Thus (45) gives � E max i̸=j≤n ⃗Wij ⃗W ′ ij �1/2 ≤⟨Σ, C⟩1/2 F � �√2 + � 2 log �n 2 � p[C1/2ΣC1/2] �1/2� � = √2⟨Σ, C⟩1/2 F � �1 + � log �n 2 � p[C1/2ΣC1/2] �1/2� �.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' D Section 5 Proof of Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Throughout the proof, expected value is interpreted to be con- ditional on Fn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (Because each Fn is the sigma field of finitely many discrete 40 random variables, this introduces no measure-theoretic considerations that were not already present.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=') Also assume version (ii) of the moment condition, not- ing that it is entailed by version (i) and 0 < P(Z = 1) < 1 (which follows from 0 < P(Z = 1 | ⃗Xβn) < 1): E |YT |p < ∞ means E(|YT |p | Z) < ∞ also, which entails E |V (n,s)|p < ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' If ns is bounded, then there are finitely many (� i∈s�Zi = 0�, � i∈s�Zi = 1�) achievable configurations for fine strata s, each with a characteristic distribution function x �→ P(V (n,s) ≤ x) such that E � |V (n,s)|p� = p � ∞ 0 yp−1 P(|V (n,s)| > y)dy < ∞ (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=', Durrett, 2019, Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='13).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' The dis- tribution for |V | on ℜ+ given by setting P(|V | > y) to the maximum over these distributions of P(V (n,s) > y) stochastically dominates the relevant V (n,s) distri- butions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' It also satisfies p � ∞ 0 yp−1 P(|V | > y)dy < ∞, because the sum of a finite collection of functions y �→ P(|V (n,s)| > y) dominates their maximum;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' so V ∈ Lp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Part i of proposition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' From (26), � i∈s ψsi(η) = ws[Yi − η(Zi − ¯Zs)](Zi − ¯Zs) = ws{ � i∈s: Zi=1 [Yi(1 − ¯Zs) − η(1 − ¯Zs)2] + � i∈s: Zi=0 [−Yi ¯Zs − η ¯Z2 s ]} = ws[(1 − ¯Zs) � i∈s: Zi=1 Yi − ηns ¯Zs(1 − ¯Zs)2 − ¯Zs � i∈s: Zi=0 Yi − ηns(1 − ¯Zs) ¯Z2 s ] = wsns ¯Zs(1 − ¯Zs) � ¯Ys(1) − η(1 − ¯Zs) − ¯Ys(0) − η ¯Zs � = wsns ¯Zs(1 − ¯Zs)( ¯Ys(1) − ¯Ys(0) − η), (46) so that E[� i∈s ψsi(η)] = wsns¯zs(1−¯zs) E( ¯Ys(1) − ¯Ys(0) − η).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Recalling that V (n,s) = ¯Ys(1) − ¯Ys(0) − E( ¯Ys(1) − ¯Ys(0)), we have ψSn(η) − E[ψSn(η)] = � s∈Sn ˜wn,snsV (n,s) � s∈Sn ˜wn,sns (47) where ˜wn,s := ws¯zs(1 − ¯zs) ∈ Fn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (When there is no risk of ambiguity, “ ˜wn,s” is abbreviated to “ ˜ws.”) Convergence of ψSn(η)−E[ψSn(η)|Gn] will be seen to follow from suitable convergence of (47), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' ψSn(η) − E[ψSn(η)|Fn].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' In-probability convergence of ψSn(η) − E[ψSn(η)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' We adapt to the independent non-identically distributed case an argument for the L1-weak law of large numbers by truncation of increments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Following Durrett (2019, § 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='3), set ¯V (s) n := V (n,s)�wn,s|V (n,s)| ≤ mn� and ¯Vn := V �|V | ≤ mn�.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (Recall mn = 41 � s∈Sn�ws¯zs(1 − ¯zs) > 0�.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=') Whereas E V (n,s) = 0 by definition, E ¯V (s) n may differ from 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Our first task is to show that (� s∈Sn ˜wn,s)−1 E � s∈Sn ˜wn,s ¯V (s) n → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' We have ( � s∈Sn ˜wsns)−1 E � s∈Sn ˜wsns ¯V (s) n = ( � s∈Sn ˜wsns)−1 � E � s∈Sn ˜wsns ¯V (s) n+ + E � s∈Sn ˜wsns ¯V (s) n− � where a+ and a− denote positive and negative parts of a, max(a, 0) and min(a, 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Now ( � s∈Sn ˜wsns)−1 E � s∈Sn ˜wsns ¯V (s) n+ = ( � s∈Sn ˜wsns)−1 � s∈Sn ˜wsns E ¯V (s) n+ = ( � s∈Sn ˜wsns)−1 � s∈Sn ˜wsns � ∞ 0 P( ¯V (s) n > x)dx = � ∞ 0 � s∈Sn ˜wsns P( ¯V (s) n > x) � s∈Sn ˜wsns dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (48) By the stochastic ordering assumption, P(V (n,s) > x) is dominated by P(V > x);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' but P( ¯V (s) n > x) ≤ P(V (n,s) > x), so the integrand in (48) is dominated by P(V > x) as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' As � ∞ 0 P(V > x)dx = E V+ < ∞, dominated convergence gives (� s∈Sn ˜wsns)−1 E � s∈Sn ˜wsns ¯V (s) n+ − (� s∈Sn ˜wsns)−1 E � s∈Sn ˜wsnsV (n,s) + = o(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Similarly (� s∈Sn ˜wsns)−1 E � s∈Sn ˜wsns ¯V (s) n− −(� s∈Sn ˜wsns)−1 E � s∈Sn ˜wsnsV (n,s) − = o(1), and � � s∈Sn ˜wsns �−1� E � s∈Sn ˜wsns ¯V (s) n − E � s∈Sn ˜wsnsV (n,s) � = o(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Since E V (n,s) = 0, this means (� s∈Sn ˜wsns)−1 E � s∈Sn ˜wsns ¯V (s) n → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' For in-probability convergence of (47) it now suffices to show � s∈Sn ˜wsns(V (n,s) − E ¯V (s) n ) � s∈Sn ˜wsns = oP (1), (49) the conclusion of the weak law for triangular arrays.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' We now verify the premises of that principle, as it is given in Durrett’s (2019) Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' For each n {V (n,s) : s ∈ Sn} are independent because {(YTi, YCi, Zi) : i} are unconditionally independent and conditioning on Fn induces dependence within but not across strata s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Premise (i) of the theorem, � s∈Sn P( ˜wsnsV (n,s) > � s∈Sn ˜wsns) → 0, 42 will follow, by the assumptions of stochastic dominance and boundedness of ˜wsns, from convergence to 0 of � s∈Sn: ˜wsns>0 P(u ˜wV > � s∈Sn ˜wsns) = mn P(u ˜wV > � s∈Sn ˜wsns), (50) where u ˜w is an upper bound for { ˜wsns : n;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' s ∈ Sn}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' By hypothesis mn/(� s∈Sn ˜wsns) = OP (1), so (50)=oP (1) will follow from (� s∈Sn ˜wsns) P(u ˜wV > � s∈Sn ˜wsns) → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' As we also hypothesize that mn → ∞ as n ↑ ∞, we also have � s∈Sn ˜wsns → ∞ as n increases, and convergence to 0 of (50) follows if x P(u ˜wV > x) → 0 as x ↑ ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' This is true by dominated convergence, since x P(u ˜wV > x) ≤ E(u ˜wV �u ˜wV > x�), u ˜wV �u ˜wV > x� → 0 a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' as x ↑ ∞, and E (u ˜wV ) < ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Premise (ii) of Durrett’s (2019) Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='11 is that ( � s∈Sn ˜wsns)−2 � n2 s ˜wsn2 s E � ( ¯V (s) n )2� → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (51) To verify this, observe first that E � (ws ¯V (s) n )2� =2 � ∞ 0 y P(|ws ¯V (s) n | > y)dy = 2 � mn 0 y P(|ws ¯V (s) n | > y)dy ≤ 2 � mn 0 y P(|wsV (n,s)| > y)dy (52) ≤ 2 � mn 0 y P(|u ˜wV | > y)dy, (53) with (53) following from (52) by the stochastic dominance assumption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' In conse- quence, ( � s∈Sn ˜wsns)−2 � n2 s ˜w2 s E � ( ¯V (s) n )2� ≤ ( � s∈Sn ˜wsns)−22mn � mn 0 y P(|u ˜wV | > y)dy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' As we assume mn/(� s∈Sn ˜wsns) = OP (1), for (51) it suffices to show m−1 n � mn 0 y P(|u ˜wV | > y) → 0 as n ↑ ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' By the hypothesis that mn → ∞, this flows from x−1 � x 0 y P(|u ˜wV | > y) → 0, which is a consequence of E |u ˜wV | < ∞, as shown by Durrett (2019) in the proofs of Theorems 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='12 and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' This completes the verification that (47) converges in probability to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' L1 convergence of ψSn(η)−E[ψSn(η)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' By hypothesis there is p > 1 such that ∥V (n,s)∥Lp ≤ ∥V ∥Lp for all n and s ∈ Sn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Accordingly ∥(� s∈Sn ˜wn,s)−1� s∈Sn ˜wn,sV (n,s)∥Lp ≤ ∥V ∥Lp also.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' By the dominated convergence principle for random variables as in Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='8 and Exercise 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='5 of Durrett (2019), therefore, (47) converges to 0 in L1 as well as in probability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' 43 L1- and in-probability convergence of ψSn(η) − E[ψSn(η) | Gn].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Ob- serve that ∥ E[ψSn(η)|Gn] − E[ψSn(η)]∥L1 =∥ E{ψSn(η) − E[ψSn(η)] | Gn}∥L1 ≤ ∥ψSn(η) − E[ψSn(η)]∥L1, Fn being the smaller of the sigma fields {Fn, Gn}, E[ψSn(η)] being the same as E[ψSn(η) | Fn] and the conditional expectation operator being a contraction in L1 (Durrett, 2019, Thm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='11).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' In tandem with ∥ψSn(η)−E[ψSn(η)|Gn]∥L1 ≤ ∥ψSn(η)−E[ψSn(η)]∥L1+∥ E[ψSn(η)|Gn]−E[ψSn(η)]∥L1 this means L1 convergence of ψSn(η)−E[ψSn(η)|Fn] entails that ψSn(η)−E[ψSn(η)|Gn] also converges to zero in L1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Finally, L1 convergence entails convergence in prob- ability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Part ii of proposition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Provided that � s ˜wsns is positive, both η �→ ψSn(η) and η �→ E[ψSn(η) | Gn] are everywhere differentiable with slope −1, and can be seen to tend to ±∞ as η tends to ∓∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' It follows that they have unique roots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Part iii of proposition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' If the solutions τn of E[ψSn(η) | Gn] = 0 tend to a limit τ0 ∈ (−∞, ∞), then the following adaptation of the Huber argument for consistency of scalar solutions of monotone estimating equations (Huber, 1964;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' van der Vaart, 1998, Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='10) shows that ˆτn → τ0 in probability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Fix ϵ > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Then P[ψSn(τ0 − ϵ) > ϵ/2, ψSn(τ0 + ϵ) < −ϵ/2] ≤ P(τ0 − ϵ < ˆτn < τ0 + ϵ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' The left side tends to 1 because ψSn(τ0 ± ϵ) − E[ψSn(τ0 ± ϵ) | Gn] = oP (1), P(|τn − τ0| < ϵ/2) → 1, E[ψSn(η) | Gn] > ϵ/2 if η < τn − ϵ/2 and E[ψSn(η) | Gn] < −ϵ/2 if η > τn + ϵ/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Therefore the right hand side tends to 1 as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Lemma 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Let θi = logit[P(Z = 1|Xβn = xiβn)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' If |θi − θj| < δ whenever i Sn ∼ j, then for all s ∈ Sn and z : s → {0, 1} such that � i∈s ζi = � i∈s zi ∈ {1, ns − 1}, ���� πs(ζ) n−1 s − 1 ���� ≤ (1 − n−1 s )(e2δ − 1) (54) and ���� n−1 s πs(ζ) − 1 ���� ≤ (1 − n−1 s )(e4δ − 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (55) 44 Proof of Lemma 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' For s an 1 : m matched set, some nonnegative integer m, by (27) we have πs(ζ) n−1 s − 1 = 1 n−1 s exp θi � j∈[i] exp(θj) − 1 = ns − � j∈[i] exp(θj − θi) � j∈[i] exp(θj − θi) (56) = m − � j∈[i]\\{i} exp(θj − θi) � j∈[i] exp(θj − θi) ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' so m − m exp(δ) (m + 1) exp(−δ) ≤ πs(ζ) n−1 s − 1 ≤ m − m exp(−δ) (m + 1) exp(−δ), (57) − m m + 1eδ(eδ − 1) ≤ πs(ζ) n−1 s − 1 ≤ m m + 1(eδ − 1) and ���� πs(ζ) n−1 s − 1 ���� ≤ ns − 1 ns eδ(eδ − 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (58) Now observe that e2δ − eδ < e2δ − 1 for positive δ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (54) follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' If s is an m : 1 matched set, m ≥ 0, the argument culminating in (58) again applies after substitution of −θi and −θj for θi and θj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Again (54) follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' With (54) established in all cases, (55) follows by (54)’s consequence that ���� πs(ζ) n−1 s ���� ≤ e2δ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' the identity |x−1−1| ≤ |x−1|·|x−1|, valid for x ̸= 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' and e2δ(e2δ −1) ≤ e4δ −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Proof of Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Claim (i) follows from E[ ˜ψs(η) | Gn] = ˜ws � i∈s [E(Y | Z = 1, ⃗Xβn = ⃗xiβn) − E(Y | Z = 0, ⃗Xβn = ⃗xiβn) − η].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (59) To show this, first observe that (46) and (28) combine to give ˜ψs(η) = ˜ws πs(Zs)( ¯Ys(1) − ¯Ys(0) − η).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (60) As Sn is assumed to be a fine stratification, one or both of ¯Ys(1) = avg[(Yi : i ∈ s, Zi = 1)] and ¯Ys(0) = avg[(Yi : i ∈ s, Zi = 0)] is in actuality a single observation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (60) is taken to be zero, as is ψs(η) = ˜ws � i∈s ψsi(η) = ˜ws( ¯Ys(1) − ¯Ys(0) − η), when ˜ws = 0 be- cause ¯Zs = 0 or 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' 45 For s with � i∈s Zi = 1, by (27) the expectation of (60) evaluates to E[ ˜ψs(η) | Gn] = � i∈s {E(Y | Z = 1, ⃗Xβn = ⃗xiβn) − avg j∈s\\{i} [E(Y | Z = 0, ⃗Xβn = ⃗xjβn)] − η} ˜ws πs(0(s) +i) πs(0(s) +i) = ˜ws � i∈s {E(Y | Z = 1, ⃗Xβn = ⃗xiβn) − avg j∈s\\{i} [E(Y | Z = 0, ⃗Xβn = ⃗xjβn)] − η}, (61) where we use 0(s) +i to denote the mapping on s taking i to 1 and remaining elements to 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (59) follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' For s with � i∈s�zi = 0� = 1, this argument gives E[ ˜ψs(η) | Gn] = ˜ws � i∈s { avg j∈s\\{i} [E(Y | Z = 1, ⃗Xβn = ⃗xjβn)] − E(Y | Z = 0, ⃗Xβn = ⃗xiβn) − η} (62) where 1(s) −i denotes the mapping of s that takes i to 0 and remaining elements to 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Again (59) follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Part (ii).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Given s ∈ Sn, write µ(s) 0 = E( ¯Ys(0) | Fn) and µ(s) 1 = E( ¯Ys(1) | Fn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' By symmetry, µ(s) z = E(Y | Z1 = z, �ns i=1 Zi = � i∈s zi), z = 0, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' For s ∈ Sn with � i∈s�zi = 1� = 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' one has ˜w−1 s E[ψs(η) | Gn] = � i∈s {[E(Y | Z = 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' ⃗Xβn = ⃗xiβn) − avg j∈s\\{i} [E(Y | Z = 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' ⃗Xβn = ⃗xjβn)]] − η}πs(0(s) +i) = � i∈s {[E(Y − µ(s) 1 | Z = 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' ⃗Xβn = ⃗xiβn) − avg j∈s\\{i} [E(Y − µ(s) 0 | Z = 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' ⃗Xβn = ⃗xjβn)]]}πs(0(s) +i) + µ(s) 1 − µ(s) 0 − η,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' whereas if � i∈s�zi = 0� = 1 then ˜w−1 s E[ψs(η) | Gn] = � i∈s {[ avg j∈s\\{i} [E(Y | Z = 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' ⃗Xβn = ⃗xjβn)] − E(Y | Z = 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' ⃗Xβn = ⃗xiβn)] − η}πs(1(s) −i) = � i∈s { avg j∈s\\{i} [E(Y − µ(s) 1 | Z = 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' ⃗Xβn = ⃗xjβn)] − E(Y − µ(s) 0 | Z = 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' ⃗Xβn = ⃗xiβn)}πs(1(s) −i) + µ(s) 1 − µ(s) 0 − η.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' 46 At the same time, (61) and (62) give ˜w−1 s E[ψs(η) | Gn] = µ(s) 1 − µ(s) 0 − η+ � i∈s {[E(Y − µ(s) 1 | Z = 1, ⃗Xβn = ⃗xiβn) − avg j∈s\\{i} [E(Y − µ(s) 0 | Z = 0, ⃗Xβn = ⃗xjβn)]]}n−1 s or ˜w−1 s E[ψs(η) | Gn] = µ(s) 1 − µ(s) 0 − η+ � i∈s { avg j∈s\\{i} [E(Y − µ(s) 1 | Z = 1, ⃗Xβn = ⃗xjβn)] − E(Y − µ(s) 0 | Z = 0, ⃗Xβn = ⃗xiβn)}n−1 s , depending as � i∈s�zi = 1� = 1 or � i∈s�zi = 0� = 1, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Differencing these expressions, ˜w−1 s E[ ˜ψs(η) − ψs(η) | Gn] = � i∈s � n−1 s πs(0s +i) − 1 � {[E(Y − µ(s) 1 | Z = 1, ⃗Xβn = ⃗xiβn) − avg j∈s\\{i} [E(Y − µ(s) 0 | Z = 0, ⃗Xβn = ⃗xjβn)]]}πs(0s +i) (63) if � i∈s�zi = 1� = 1, and if � i∈s�zi = 0� = 1 then ˜w−1 s E[ ˜ψs(η) − ψs(η) | Gn] = � i∈s � n−1 s πs(1s −i) − 1 � { avg j∈s\\{i} [E(Y − µ(s) 1 | Z = 1, ⃗Xβn = ⃗xjβn)] − E(Y − µ(s) 0 | Z = 0, ⃗Xβn = ⃗xiβn)}πs(1(s) −i).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (64) Observing that ns E(|V (n,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='s)| | Gn) ≥ | E(nsV (n,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='s) | Gn)| = ����� � i∈s {[E(Y − µ(s) 1 | Z = 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' ⃗Xβn = ⃗xiβn) − avg j∈s\\{i} [E(Y − µ(s) 0 | Z = 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' ⃗Xβn = ⃗xjβn)]]}πs(0s +i) ����� or ����� � i∈s { avg j∈s\\{i} [E(Y − µ(s) 1 | Z = 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' ⃗Xβn = ⃗xjβn)] − E(Y − µ(s) 0 | Z = 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' ⃗Xβn = ⃗xiβn)}πs(1(s) −i) ����� depending as � i∈s�zi = 1� = 1 or � i∈s�zi = 0� = 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' and that under the same respective conditions ���� n−1 s πs(0s +i) − 1 ���� ≤ exp(2 sup i,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='j∈s |θi − θj|)−1 or ���� n−1 s πs(1s −i) − 1 ���� ≤ exp(2 sup i,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='j∈s |θi − θj|)−1 47 by Lemma 8,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' we have: | E[ ˜ψs(η) − ψs(η) | Gn]| ≤ ˜wsns[exp(2 sup i,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='j∈s |θi − θj|) − 1] E(|V (n,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content='s)| | Gn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (65) This establishes (30).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Part (iii).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Because the conditional expectation operator is a contraction in Lp, E �� s∈Sn ˜wsns E(|V (n,s)| | Gn) � s∈Sn ˜wsns � ≤ � s∈Sn ˜wsns E |V (n,s)| � s∈Sn ˜wsns ≤ � s∈Sn ˜wsns E |V | � s∈Sn ˜wsns = E |V |.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Markov’s inequality now gives that � s∈Sn ˜wsns −1� s∈Sn ˜wsns E(|V (n,s)| | Gn) = OP (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Accordingly, |{θi − θj : i ∼ j}|∞ = oP (1) combines with (30) to entail sup η | E[ ˜ψSn(η) − ψSn(η) | Gn]| = oP (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' (66) By Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' 9, η �→ E(ψSn(η) | Gn) has the unique root τn, and by part (i) of this proposition, η �→ E( ˜ψSn(η) | Gn) has a unique root given by (29);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' as either of these functions’ slopes are bounded away from zero, (66) entails that these roots must converge together.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Part (iv).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' Part (iv) of the proposition now follows from conclusion iii of Proposition 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} +page_content=' 48' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNE2T4oBgHgl3EQfxQh6/content/2301.04109v1.pdf'} diff --git a/fNE_T4oBgHgl3EQf2BxV/vector_store/index.pkl b/fNE_T4oBgHgl3EQf2BxV/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..df2b9439158e52b15ce8d6568111592ab6a99c06 --- /dev/null +++ b/fNE_T4oBgHgl3EQf2BxV/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:bbc202aa76ea0b5b02eed7dd2e9d0057a696826b47644da2d13c3b7d8ce48450 +size 158877 diff --git a/idE3T4oBgHgl3EQfIwmA/content/tmp_files/2301.04337v1.pdf.txt b/idE3T4oBgHgl3EQfIwmA/content/tmp_files/2301.04337v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..71c7019a2e5a5c52f8708023233af63dbe57fdf7 --- /dev/null +++ b/idE3T4oBgHgl3EQfIwmA/content/tmp_files/2301.04337v1.pdf.txt @@ -0,0 +1,947 @@ +Sensitivity of CP Violation of Λ decay in J/ψ → Λ¯Λ at STCF +Yue Xu∗1, Xiaorong Zhou∗2,3, Xiaodong Shi2,3, Yongxin Guo1, Kuiyong Liu1, Li Gong1, +and Xiaoshen Kang†1 +1Department of Physics, Liaoning University, Shenyang 110036, People’s Republic of China +2Department of Modern Physics, University of Science and Technology of China, Hefei +230026, People’s Republic of China +3State Key Laboratory of Particle Detection and Electronics, Hefei 230026, People’s +Republic of China +Abstract +The process of J/ψ → Λ¯Λ is studied using 1.0 × 1012 +J/ψ Monte Carlo (MC) events at √s=3.097 GeV +with a fast simulation software at future Super Tau +Charm Facility (STCF). The statistical sensitivity +for CP violation is determined to be the order of +O (10−4) by measuring the asymmetric parameters +of the Λ decay. Furthermore, the decay of J/ψ → Λ¯Λ +also serves as a benchmark process to optimize the de- +tector responses using the interface provided by the +fast simulation software. +1 +Introduction +The electromagnetic force, weak nuclear force, and +strong nuclear force are addressed with the Standard +Model (SM), which is established as a well-tested +physics theory. Although SM is so successful, there +are still some unresolved issues including the source +of CP violation [1]. In SM, CP violation can be in- +cluded by introducing a complex phase in the quark +mixing matrix, which is named Cabibbo-Kobayashi- +Maskawa (CKM) matrix. Experimentally, starting in +1964, people subsequently observed CP violation in +the weak decay process of the K, B, and D meson +∗These authors contributed equally to the work. +†Corresponding author. +systems [2, 3, 4, 5, 6, 7]. The CKM quark mixing +matrix can give a wonderful explanation of the ob- +served CP violation in the meson systems. However, +the magnitude of CP violation predicted by the SM +cannot explain the matter-antimatter asymmetry in +the universe [8, 9, 10]. Moreover, many extensions +of the SM imply that the CKM matrix may not be +the only source of CP violation [11, 12]. +So more +experimental studies are required to further test the +CP violation mechanism in SM and search for other +sources of CP violation. +In 1956, Lee and Yang first proposed the vio- +lation of parity (P) conservation in the weak de- +cays of baryons [13]. +The degree of violation can +be expressed in terms of the asymmetry parameters, +α = 2Re (s∗p)/ (|s|2 +|p|2), where s and p stand for +the parity-violating s-wave and parity-conserving p- +wave amplitudes in the weak decay. In 1986, theoret- +ical physicist Pakvasa proposed that the observable +quantity of CP violation could be constructed us- +ing asymmetric parameters in the decay of baryons, +and predicted that the CP violation of baryons in +the SM is O (10−5) [14, 15]. The processes of pionic +decays of hyperons provide a good place to explore +CP violation as they have a large branch ratio close +to 1 [16, 17]. The CP asymmetry can be described +as ACP = α+¯α +α−¯α, and the asymmetric parameters are +CP-odd for the charge conjugate decay of B/ ¯B (B +is a spin-1/2 baryon). Therefore, if CP is conserved, +1 +arXiv:2301.04337v1 [hep-ph] 11 Jan 2023 + +α = −¯α, ACP is equal to 0 [16, 17]. +The +Fermilab +has +specially +designed +Hy- +perCP (E871) experiment to study CP violation of +baryons in charged-Ξ and Λ hyperon decays. They +have analyzed 11.7×107 Ξ− → Λπ− → pπ−π− +and 4.1×107 Ξ+ +→ +Λπ+ +→ +pπ+π+ events to +determine +the +products +αΞαΛ +and +¯αΞ ¯αΛ +[18]. +The +sum +AΛ +CP +AΞ +CP +was +estimated +to +be (0.0 ± 5.1 ± 4.4) × 10−4 [18]. In 2019, by studying +the quantum entanglement of baryon pairs in the +J/ψ → Λ¯Λ process and using a multi-dimensional +fitting method, the BESIII experiment obtained an +independent measurement of AΛ +CP with matching +precision: +AΛ +CP = −0.006 ± 0.012 ± 0.007, under +the statistics of 0.4×106 J/ψ → Λ¯Λ → pπ−¯pπ+ +events [19]. +Recently, the asymmetries from the +direct and subsequent J/ψ → Ξ−¯Ξ+ decays were +measured for the first time at BESIII and found +to be AΞ +CP += +−0.0029 ± 0.0133 ± 0.0057 and +∆φΞ = −0.0075 ± 0.0137 ± 0.0037 rad [20]. Despite +these, the CP violation measurement accuracy of the +current experiment still does not meet the prediction +of the SM and is mainly dominated by statistics +uncertainty [14, 15]. +To test for the existence of new sources of CP +violation other than SM, a hyperon sample with +larger statistics is required. The STCF is a futural +high-luminosity collider and also one of major op- +tions for the accelerator-based high-energy project +in China in the post-BEPCII era. +The center-of- +mass energy (√s) of the STCF collision will cover +2 ∼ 7 GeV, which has been doubled compared to +BEPCII. The peaking luminosity is expected to be +over 0.5 × 1035 cm−2 s−1 or higher at √s = 4 GeV. +It is expected to provide more than 1.0 × 1012 J/ψ +events per year and has great potential for improv- +ing luminosity and realizing beam polarization. So +STCF will be an ideal place to study CP violation of +Λ decay. +In this analysis, we performed the sensitivity study +of decay asymmetries of Λ decay and the decay chan- +nel is e+e− → J/ψ → Λ (→ pπ−)¯Λ (→ ¯nπ0) with +the statistics of 1.0×1012J/ψ MC events. The ampli- +tude of the signal process follows the helicity ampli- +tude method which is described explicitly, as shown +in Eq. 6. Furthermore, the final states of Λ → pπ− +decay have one low-momentum π− particle, which +plays a key role in limiting the overall reconstruction +efficiency. Therefore, it is essential to improve the re- +construction efficiency of the low-momentum π− to +get better sensitivity, so the decay of J/ψ → Λ¯Λ is +also used as a benchmark process in this analysis to +perform optimization of detector performance design. +2 +Formalism +The production process e+e− → J/ψ → Λ¯Λ is de- +scribed in the c.m. system of J/ψ. The scattering +angle θ of Λ is defined by +cos θ = ˆp · ˆk, +(1) +where p and k are the three momenta of outgoing +Λ and initial positron, respectively. The scattering +plane with the vector p and k is used to form the xz- +plane, and the corresponding y-axis is perpendicular +to the scattering plane. The right-handed coordinate +system is defined as follows: +ex = +1 +sin θ (ˆk × ˆp) × ˆp, +ey = +1 +sin θ (ˆk × ˆp), +ez = ˆp. +(2) +The spin density matrix for a two spin 1/2 particle +state can be expressed in terms of a set of 4 × 4 +matrices obtained from the outer product, ⊗, of σµ +and σ¯ν [21]: +ρ = 1 +4 +� +µ¯ν +Cµ¯νσΛ +µ ⊗ σ +¯Λ +¯ν , +(3) +where σµ,¯ν with µ, ¯ν= 0, 1, 2, 3, represent spin-1/2 +base matrices for baryon Λ/¯Λ in the rest frame. The +2 × 2 matrices are σ0 = 12, σ1 = σx, σ2 = σy, and +σ3 = σz. In particular, the spin matrices σµ and σ¯ν +are given in the helicity frames of the baryons Λ and +¯Λ, respectively. We define the coordinate system for +Λ¯Λ decay, as shown in Fig. 1. The real coefficients +Cµ¯ν for e+e− → J/ψ → Λ¯Λ with non-polarized inject +2 + +beams are given by Eq. 4, +Cµ¯ν = +� +� +� +� +1 + α cos2 θ +0 +β sin θ cos θ +0 +0 +sin2 θ +0 +γ sin θ cos θ +−β sin θ cos θ +0 +α sin2 θ +0 +0 +−γ sin θ cos θ +0 +−α − cos2 θ +� +� +� +� +(4) +, +where β += +� +(1 − α2) sin +(∆Φ) and γ += +� +(1 − α2) cos (∆Φ), are functions of the scatter- +ing angle θ of Λ. In the real coefficients Cµ¯ν of Eq. 4, +there are two parameters related to the production +process of e+e− → J/ψ → Λ¯Λ, the ratio of two he- +licity amplitudes α, and the relative phase of the two +helicity amplitudes ∆Φ. +After considering the subsequent two-body weak +decays into pπ−/¯nπ0, the joint angular distribution +of the p/¯n pair is given within the present formalism +as [21]: +Trρp¯n ∝ +3 +� +µ,¯ν=0 +Cµ¯ν (θ)aΛ +µ0a +¯Λ +¯ν0, +(5) +where the aΛ +µ0 (θ1, φ1; α1) and a¯Λ +¯ν0 (θ2, φ2; α2) repre- +sent the correlation of the spin density matrices in +the sequential decays and the full expressions can be +found in Ref. [21]. α1/α2 are the decay asymmetries +for Λ → pπ−/¯Λ → ¯nπ0. +The variables θ1 and φ1 +are the proton spherical coordinates in the Λ helicity +frame with the axes x1, y1, z1 defined in Fig. 1. The +variables θ2 and φ2 are the anti-neutron spherical an- +gles in the ¯Λ helicity frame with the axes x2, y2, z2. +! +" +#" +$% +$& +'() +*+) +*,) +'(- +*+- +*,- +'( +Figure 1: The reaction system with the defined he- +licity angles in Λ¯Λ decay. +An event of the reaction e+e− → J/ψ → Λ (→ +pπ−)¯Λ (→ ¯nπ0) is specified by the five-dimensional +vector ξ = (θ, Ω1 (θ1, φ1), Ω2 (θ2, φ2)), and the joint +angular distribution W (ξ) can be expressed as: +W (ξ) = F0 (ξ) + αF5 (ξ) ++ α1α2 (F1 (ξ) + +� +1 − α2 cos (∆Φ)F2 (ξ) + αF6 (ξ)) ++ +� +1 − α2 sin (∆Φ) (−α1F3 (ξ) + α2F4 (ξ)) +(6) +with a set of angular functions Fi (ξ) defined as: +F0 (ξ) = 1 +F1 (ξ) = sin2 θ sin θ1 sin θ2 cos φ1 cos φ2 − cos2 θ cos θ1 cos θ2 +F2 (ξ) = sin θ cos θ (sin θ1 cos θ2 cos φ1 − cos θ1 sin θ2 cos φ2) +F3 (ξ) = sin θ cos θ sin θ1 sin φ1 +F4 (ξ) = sin θ cos θ sin θ2 sin φ2 +F5 (ξ) = cos2 θ +F6 (ξ) = sin2 θ sin θ1 sin θ2 sin φ1 sin φ2 − cos θ1 cos θ2. +(7) +There are four terms in Eq. 6: the first two (F0 + +αF5) describe the production angular distribution, +and the third and fourth terms give the spin correla- +tion and polarization, respectively. The polarization +is in the ey direction and is related to the phase ∆Φ +via [22] +Py = − +√ +1 − α2 sin θ cos θ +1 + α cos2 θ +sin (∆Φ). +(8) +The polarization can only occur when ∆Φ is not equal +to 0. As a consequence, the decay asymmetries can be +determined with nonzero ∆Φ. Using this conclusion, +the BESIII experiment used the angular distribution +analysis method to observe the nonzero relative phase +∆Φ of Λ in the baryon system for the first time, and +then measured the decay asymmetry of Λ decay [19]. +3 +Detector and MC simulations +The design structure of the STCF detector from the +interaction point to the outside mainly includes a +tracking system, a particle identification (PID) sys- +tem, an electromagnetic calorimeter (EMC), a super- +conducting solenoid and a muon detector (MUD). +3 + +The detailed conceptual design of each sub-detector +can be found in [23, 24]. +The STCF detector and offline software system are +under research and development at present. In order +to study the physical potential of STCF and further +optimize the detector design, a fast simulation soft- +ware package dedicated to STCF detectors has been +developed [23, 24] and it has proven to be a useful +tool for analysis in STCF. The fast simulation is sim- +ple to use and can simulate the response of objects +in each sub-detector without Geant4, including vari- +ables such as efficiency, and resolution (space, mo- +mentum, energy, time, etc.). By default, all the pa- +rameterized parameters for each sub-detector perfor- +mance are based on the BESIII performance [25], but +can be adjusted flexibly by scaling a factor according +to the expected performance of the STCF detector, +or by implementing a special interface to model any +performance described with an external histogram, +an input curve, or a series of discrete data [23]. In +this analysis, the default scale factor is set to 1.0, +which can be used to optimize the detector design +according to physical requirements. +4 +Analysis of J/ψ → Λ¯Λ with +fast simulation +The J/ψ → Λ¯Λ reaction is identified with the Λ sub- +sequently decaying into pπ− and ¯Λ decay into ¯nπ0 re- +sulting in a final state of pπ−¯nγγ. So, the candidate +events are required to have at least two oppositely +charged tracks and at least three showers. +The combination of positive and negative charged +tracks closest to the PDG mass of Λ was chosen as +the Λ candidate [26]. In addition, the two daughter +tracks are constrained to originate from a common +decay vertex. +The most energetic shower with en- +ergy deposition greater than 350 MeV is selected as +¯n. The two showers except the ¯n candidate are con- +sistent with photons and are used to reconstruct the +π0 candidates. At least, one good π0 is required. In +order to select the J/ψ → Λ (pπ−)¯Λ (¯nπ0) candidate +events, a two-constrained (2C) kinematic fit was per- +formed, where ¯n is treated as a missed particle with +mass fixed to 0.938 GeV [26], and the constraints in- +cluding the four-momentum conservation of J/ψ and +an additional constraint of photon pair to have an in- +variant mass equal to π0. Furthermore, θ¯n is required +to be less than 5◦, where θ¯n is defined as the angle +between the ¯n direction obtained from kinematic fit +and the most energetic shower. To further suppress +the background, Λ and ¯Λ candidates are required to +be within 1.110 GeV/c2 < Mpπ− < 1.120 GeV/c2 +and 1.098 GeV/c2 < M¯nπ0 < 1.127 GeV/c2. +The 1.0 × 106 events of the J/ψ → Λ¯Λ → pπ−¯nπ0 +process were generated to optimize the selection cri- +teria and evaluate the selection efficiencies for the +baryon pair production. Based on the above selection +conditions, with the help of fast simulation software, +129575 candidate events of J/ψ → Λ¯Λ → pπ−¯nπ0 +were selected. The step-by-step selection efficiency is +shown in Table 1. +Furthermore, these MC samples also are used to +optimize the detector response and 1.0 × 1012 events +of signal process were generated to test the sensi- +tivity of CP violation. +To analyze the potential +background process, 1.0 × 106 events of J/ψ → +anything were generated as the inclusive MC. Af- +ter the above event selection criteria were applied +on the inclusive MC and by topology analysis, the +J/ψ → Λ¯Σ0 → pπ−¯nπ0γ process has be shown to be +the dominant background. So, 1.0 × 1012 events of +the J/ψ → Λ¯Σ0 → pπ−¯nπ0γ process were generated +to do the background test in the next chapter. Fur- +thermore, 0.7×109 events of the signal process were +generated using the phase space (PHSP) generator to +estimate the normalization coefficient in Maximum +Likelihood (MLL) fit. +5 +Optimization of detector per- +formance +After the above event selection, the final selection +efficiency is about 12.96%. The performance of the +detector can be optimized from the following aspects: +the selection efficiency of the charged tracks, the mo- +mentum resolution of the charged tracks, and the po- +sition resolution of the photons. Utilizing the signal +4 + +MC sample and with the help of fast simulation soft- +ware tools, the optimized results of the detector re- +sponse are as follows: +a.Tracking efficiency +The charged particles in the final state that can be +identified by the detector include electrons, muons, +pions, kaons, and protons. +These charged parti- +cles have a wide range of momentum, some can be +as high as 3.5 GeV/c, and some can be less than +1 GeV/c. This situation requires the detector to have +the ability to cover a large momentum range and +high-reconstruction efficiency. +In the part of track +system design of STCF, different materials or ad- +vanced tracking algorithms can be used to further +improve the ability of low-momentum track recon- +struction. The J/ψ → Λ¯Λ → pπ−¯nπ0 decay has low- +momentum final state particle π−, which is a good +choice for optimizing the detector response, improv- +ing the resolution of low-momentum particles. +In this analysis, we gradually adjusted the scale +factor of tracking efficiency from 1.0 to 2.0. It can be +seen from Fig. 2 that the final selection efficiency has +increased significantly in the range from 1.0 to 1.1 +of the scale factor, and the selection efficiency will +increase from 12.96% to 13.67%. +Charged track efficiency scale +1 +1.2 +1.4 +1.6 +1.8 +2 + Efficiency(%) +13 +13.2 +13.4 +13.6 +13.8 +14 +14.2 +Figure 2: Charged track efficiency scale versus the +selection efficiency. +b.Momentum resolution of the charged tracks +The momentum resolution of the charged tracks +can also be optimized by the fast simulation. +σxy +and σz are the spatial resolutions of tracks in the +xy-plane and z-direction. By default, σxy = 130 µm +and σz=2480 µm. +Optimizing σxy from 52 µm to +130 µm, and the corresponding σz is optimized from +992 µm to 2480 µm. There is no significant change +in efficiency, as shown in Fig. 3. +m) +µ + Momentum resolution of charged tracks( +50 +60 +70 +80 +90 +100 +110 +120 +130 + Efficiency(%) +12.7 +12.8 +12.9 +13 +13.1 +13.2 +13.3 +Figure 3: Momentum resolution of charged tracks +versus the selection efficiency. +In addition, the transverse momentum PT and po- +lar angle cos θ are two characteristic quantities of +track reconstruction in MDC. They are related to the +level of track bending and hit positions of tracks in +the MDC. The optimization curve of the transverse +momentum of low-momentum π− is shown in Fig. 4, +where the black and red points represent the ratio of +signal efficiency to MC truth before and after all the +above optimization, respectively. +c.Position resolution of photon +The decay of J/ψ → Λ¯Λ → pπ−¯nπ0 has a final +state particle π0, π0 is reconstructed by two photons, +so this process is also very sensitive to the EMC per- +formance. With the increase in the resolution of the +π0, there will be a better signal-to-background ra- +tio and higher detection efficiency. Optimizing the +signal-to-background ratio can provide a reference for +the EMC design. In this analysis, the signal process +5 + +) GeV +-π +( +T +P +0 +0.05 +0.1 +0.15 +0.2 +0.25 +0.3 +Trk. efficiency (%) +0.3 +0.4 +0.5 +0.6 +0.7 +0.8 +0.9 +1 +Before optimization +After optimization +Figure 4: The Optimization curve of the transverse +momentum of π. +J/ψ → Λ¯Λ → pπ−¯nπ0 and the main background +process J/ψ → Λ¯Σ0 → pπ−¯nπ0γ were studied. By +fitting the distribution of the invariant mass of M¯nπ0, +a 3σ mass interval of M¯nπ0 is obtained to further re- +duce the impact of the background process. Figure 5 +shows the signal selection efficiency and background +rejection under the change of photon position reso- +lution. +The scale factor of the position resolution +of photon varies from 0.4 to 1.0. The red and blue +points represent the case of using the nominal ¯Λ mass +window and the optimized ¯Λ mass window, respec- +tively. +Although this will lose some signal events, +it can reduce more background and make the signal +cleaner. It is appropriate to set the scale factor to +0.7, which corresponds to the position resolution of +4 mm. The signal selection efficiency will get increase +from 12.96% to 15.11%, while the main background +will be reduced from 3.27% to 3.17%. +After all the optimization of detector responds, the +events of signal MC will increase from 12.96% to +15.97%, while the events of main background (J/ψ → +Λ¯Σ0 → pπ−¯nπ0γ) will reduce from 3.27% to 3.09%. +The selection efficiency is as shown in Table 1. +Signal efficiency(%) +13 +14 +15 +16 +17 +18 + Background rejection +0.95 +0.955 +0.96 +0.965 +0.97 +0.975 +0.98 + mass window +Λ +Nominal + mass window +Λ +Optimized +Figure 5: The change of signal selection efficiency and +background rejection with position resolution of the +photon. +6 +Extraction of the parameters +In this analysis, the parameters can be extracted by +applying an unbinned MLL fit. The probability den- +sity function of the ith event can be expressed by +P (ξi; pars) = W (ξi; pars)ϵ (ξi)/N (pars) +(9) +, where ϵ (ξi) is the efficiency of each event, ξi and +pars are a set of angular vectors and parameters: +ξi = (θ, Ω1, Ω2), pars= (α, α1, α2, ∆Φ), as described +in Sec. 2. +The joint probability density for observing N +events in the data sample is [27]: +P (ξ1, ξ2, ..., ξN; pars) = +N +� +i=1 +P (ξi; pars) += +N +� +i=1 +W (ξi; pars)ϵ (ξi) +N (pars) +. +(10) +By taking the natural logarithm of the joint probabil- +ity density, the efficiency function can be separated +lnP (ξ1..., ξN; pars) = +N +� +i +lnW (ξi; pars) +N (pars) + +N +� +i +lnϵ (ξi). +(11) +6 + +Table 1: Events selection efficiency. +No optimized eff. (%) +Optimized eff. (%) +Increased efficiency after +optimization in step (%) +Charged tracks +74.21 +79.38 +5.17 +Λ reconstruction +66.27 +70.88 +4.61 +Good showers +31.73 +33.57 +1.84 +π0 1C fit (Nγ ≥2) +28.76 +29.93 +1.17 +Kinematic 2-C fit +25.33 +27.31 +1.98 +Energy deposition of ¯n >0.35 GeV +21.18 +22.88 +1.70 +θ¯n < 5◦ +14.54 +18.34 +3.80 +Λ and ¯Λ mass window +12.96 +15.97 +3.01 +Usually, the minimization of -lnL is performed by +using MINUIT [28] +− lnL = − +N +� +i +lnW (ξi; pars)ϵ (ξi) +N (pars) +(12) +, where N is the normalization factor, given by +N = +� +W (ξ)ϵ (ξi)d cos θdΩ1dΩ2. +(13) +For a certain set of pars, N (pars) can be rewritten as +the integration on each Fi term according to Eq. 6. +To test the statistical sensitivity, the fitting was ap- +plied on J/ψ samples with different statistics. The +precision for the decay parameters is shown in Fig. 6. +It is found that the precision of the parameters is pro- +portional to the square root of the J/ψ sample. The +correlation matrix among the parameters is shown in +Table 2. +Table 2: Correlation Matrix for the parameters, ob- +tained with MINUIT. +pars +α +α1 +α2 +∆Φ +α +1.000 +-0.089 +0.104 +0.339 +α1 +-0.089 +1.000 +0.853 +-0.120 +α2 +0.104 +0.853 +1.000 +0.058 +∆Φ +0.339 +-0.120 +0.058 +1.000 +According to Eq. 6, the moment of sin θ1 sin φ1 is + samples(T) +ψ +J/ +0.1 0.2 +0.3 +0.4 +0.5 +0.6 +0.7 +0.8 +0.9 +1 +Error of MLL fitting +0.0005 +0.001 +0.0015 +0.002 +0.0025 +0.003 +α +1 +α +2 +α +Φ +∆ +Figure 6: The statistical sensitivity of J/ψ samples +with different statistics. +7 + +given by +⟨sin θ1 sin φ1⟩ = +1 +Nnorm +� +W (ξ) sin θ1 sin φ1dΩ1dΩ2 +≈ − +√ +1 − α2α1 sin (∆Φ) +3 + α +sin θ cos θ. +(14) +In the analysis of experimental data, ⟨sin θ1 sin φ1⟩ +can be calculated by the average of sin θ1 sin φ1 in +each cos θ bin. The moment of sin θ1 sin φ1 can be +connected with the polarization according to Eq. 8, +⟨sin θ1 sin φ1⟩ ≈ (1 + α cos2 θ)α1 +3 + α +Py. +(15) +c_signal +θ +cos +-1 +-0.8 +-0.6 +-0.4 +-0.2 +0 +0.2 +0.4 +0.6 +0.8 +1 +Polarization +-0.6 +-0.4 +-0.2 +0 +0.2 +0.4 +c_signal +Signal MC +PHSP MC +c_signal +Figure 7: +Polarization as a function of cos θ for +J/ψ → Λ¯Λ → pπ−¯nπ0. The points with error bars +are the signal MC, and the blue dashed histogram is +the no-polarization scenario of PHSP MC. +The distribution of polarization versus cos θ as +shown in Fig. 7 and the events are not corrected with +detection efficiency. +7 +Prospect of CP sensitivity at +STCF +The asymmetry parameters used to observe CP vi- +olation are affected by statistics and proportional to +the �NJ/ψ, where NJ/ψ is the number of J/ψ events. +By generating a 1.0 × 1012 MC sample, after event +selection and detector optimization, the statistical ac- +curacy of CP violation is 10−4. The STCF has great +potential in improving luminosity and realizing beam +polarization. It is expected that more than 1 ab−1 +experimental data and 3.4×1013 J/ψ events will be +obtained per year, with the substantial increase in +statistics, larger data samples will be generated on +STCF, and in the future, it will hopefully reach a +level of accuracy and theoretical prediction compati- +bility. +8 +Summary and prospect +With the fast simulation software package, the MC +samples of J/ψ → Λ¯Λ → pπ−¯nπ0 process were gen- +erated. +After the optimization of detector perfor- +mance, the events selection efficiency of the signal +process is increased by 23.22% compared to the unop- +timized and the main background process is reduced +by 5.5%. Furthermore, the 1.0 × 1012 J/ψ MC was +used to pre-studied the sensitivity of CP violation +of the J/ψ → Λ¯Λ process at the future STCF. The +statistical accuracy of CP violation of Λ hyperon is +10−4, which is close to the prediction of SM of CP +violation in Λ hyperon decay [29]. +Acknowledgments +The authors would like to thank the USTC Super- +computing Center and the Hefei Comprehensive Na- +tional Science Center for their strong support. This +work is supported in part by National Natural Science +Foundation of China (NSFC) under Contracts Nos. +11872030, 11905092, 11972177, 12122509, 11625523, +12105132, 11705078. The international partnership +program of the Chinese Academy of Sciences un- +der Grant No. 211134KYSB20200057 and by USTC +Research Funds of the Double First-Class Initiative +and the Fundamental Research Funds for the Cen- +tral Universities. +The Doctoral Scientific Research +Foundation of Liaoning Province No. 2019-BS-113, +the Foundation of Liaoning Educational Committee +8 + +No. +LQN201902, the Natural Science Foundation +of Liaoning Provincial Department of Education No. +LCJ202003. China Postdoctoral Science Foundation +under Contracts Nos. 2021M693181. The PhD Start- +up Fund of Natural Science Foundation of Liaon- +ing Province of China under Contracts No. +2019- +BS-113. +Scientific research Foundation of Liaon- +ing Provincial Department of Education under Con- +tracts No. +LQN201902. +Foundation of Innovation +team 2020, Liaoning Province. +Opening Founda- +tion of Songshan Lake Materials Laboratory, Grants +No.2021SLABFK04. +References +[1] J. D. Lykken, CERN Yellow Report CERN- +2010-002, pp. 101-109. +[2] J. H. Christenson, J. W. Cronin, V. L. Fitch and +R. Turlay, Phys. Rev. Lett. 13, 138 (1964). +[3] KTeV +Collab. +(A. +Alavi-Harati +et +al.), Phys. Rev. Lett. 83, 917 (1999). +[4] NA48 Collab. (V. Fanti et al.), Phys. Lett. B +465, 335(1999). +[5] BaBar Collab. (B. Aubert et al.), Phys. Rev. +Lett. 87, 091801 (2001). +[6] Belle Collab. (K. Abe et al.), Phys. Rev. Lett. +87, 091802 (2001). +[7] LHCb Collab. (R. Aaij et al.), Phys. Rev. Lett. +122, 211803 (2019). +[8] A. D. Sakharov, Pisma Zh. Eksp. Teor. Fiz. 5, +32 (1967). +[9] W. +Bernreuther, +Lect. +Notes +Phys. +591, +237 (2002). +[10] L. Canetti, M. Drewes and M. Shaposhnikov, +New J. Phys. 14, 095012 (2012). +[11] H. P. Nilles, Phys. Rept. 110, 1(1984). +[12] H. E. Haber and G. L. Kane, Phys. Rept. 117, +75 (1985). +[13] T. D. Lee and C. N. Yang, Phys. Rev. 104, +254 (1956). +[14] S. Pakvasa, arXiv:hep-ph/9808472 [hep-ph]. +[15] J. F. Donoghue, X. G. He and S. Pakvasa, +Phys. Rev. D 34, 833 (1986). +[16] S. Okubo, Phys. Rev. 109, 984 (1958). +[17] A. Pais, Phys. Rev. Lett. 3, 242 (1959). +[18] HyperCP +Collab. +(T. +Holmstrom +et +al.), +Phys. Rev. Lett. 93, 262001 (2004). +[19] BESIII Collab. (M. Ablikim et al.), Nat. Phys. +15, 631 (2019). +[20] BESIII +Collab. +(M. +Ablikim +et +al.), +arXiv:2105.11155 [hep-ex]. +[21] E. Perotti, G. F¨aldt, A. Kupsc, S. Leupold and +J. J. Song, Phys. Rev. D 99, 056008 (2019). +[22] G. F¨aldt and A. Kupsc, Phys. Lett. B 772, +16 (2017). +[23] X. D. Shi, X. R. Zhou, X. S. Qin and H. P. Peng, +J. Instrum. 16, P03029 (2021). +[24] H. P. Peng, Y. H. Zheng and X. R. Zhou, Physics +49, 513 (2020). +[25] BESIII Collab. (M. Ablikim et al.), Nucl. In- +strum. Methods A 614, 345 (2010). +[26] Particle Data Group (R.L. Workman et al.), +Prog. Theor. Exp. Phys. 2020, 083C01 (2020). +[27] B. Zhong, R. G. Ping, Z. J. Xiao, Chin. Phys. C +32, 692 (2008). +[28] I. +Silin, +CERN +Program +Library +D, +Vol. 510, (1971). +[29] J. Tandean and G. Valencia, Phys. Rev. D 67, +056001 (2003). +9 + diff --git a/idE3T4oBgHgl3EQfIwmA/content/tmp_files/load_file.txt b/idE3T4oBgHgl3EQfIwmA/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..94bb19c70e105756d2f043d0add3d6f11d408d4a --- /dev/null +++ b/idE3T4oBgHgl3EQfIwmA/content/tmp_files/load_file.txt @@ -0,0 +1,584 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf,len=583 +page_content='Sensitivity of CP Violation of Λ decay in J/ψ → Λ¯Λ at STCF Yue Xu∗1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Xiaorong Zhou∗2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Xiaodong Shi2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Yongxin Guo1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Kuiyong Liu1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Li Gong1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' and Xiaoshen Kang†1 1Department of Physics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Liaoning University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Shenyang 110036,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' People’s Republic of China 2Department of Modern Physics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' University of Science and Technology of China,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Hefei 230026,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' People’s Republic of China 3State Key Laboratory of Particle Detection and Electronics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Hefei 230026,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' People’s Republic of China Abstract The process of J/ψ → Λ¯Λ is studied using 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='0 × 1012 J/ψ Monte Carlo (MC) events at √s=3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='097 GeV with a fast simulation software at future Super Tau Charm Facility (STCF).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' The statistical sensitivity for CP violation is determined to be the order of O (10−4) by measuring the asymmetric parameters of the Λ decay.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Furthermore, the decay of J/ψ → Λ¯Λ also serves as a benchmark process to optimize the de- tector responses using the interface provided by the fast simulation software.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' 1 Introduction The electromagnetic force, weak nuclear force, and strong nuclear force are addressed with the Standard Model (SM), which is established as a well-tested physics theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Although SM is so successful, there are still some unresolved issues including the source of CP violation [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' In SM, CP violation can be in- cluded by introducing a complex phase in the quark mixing matrix, which is named Cabibbo-Kobayashi- Maskawa (CKM) matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Experimentally, starting in 1964, people subsequently observed CP violation in the weak decay process of the K, B, and D meson ∗These authors contributed equally to the work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' †Corresponding author.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' systems [2, 3, 4, 5, 6, 7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' The CKM quark mixing matrix can give a wonderful explanation of the ob- served CP violation in the meson systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' However, the magnitude of CP violation predicted by the SM cannot explain the matter-antimatter asymmetry in the universe [8, 9, 10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Moreover, many extensions of the SM imply that the CKM matrix may not be the only source of CP violation [11, 12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' So more experimental studies are required to further test the CP violation mechanism in SM and search for other sources of CP violation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' In 1956, Lee and Yang first proposed the vio- lation of parity (P) conservation in the weak de- cays of baryons [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' The degree of violation can be expressed in terms of the asymmetry parameters, α = 2Re (s∗p)/ (|s|2 +|p|2), where s and p stand for the parity-violating s-wave and parity-conserving p- wave amplitudes in the weak decay.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' In 1986, theoret- ical physicist Pakvasa proposed that the observable quantity of CP violation could be constructed us- ing asymmetric parameters in the decay of baryons, and predicted that the CP violation of baryons in the SM is O (10−5) [14, 15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' The processes of pionic decays of hyperons provide a good place to explore CP violation as they have a large branch ratio close to 1 [16, 17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' The CP asymmetry can be described as ACP = α+¯α α−¯α, and the asymmetric parameters are CP-odd for the charge conjugate decay of B/ ¯B (B is a spin-1/2 baryon).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Therefore, if CP is conserved, 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='04337v1 [hep-ph] 11 Jan 2023 α = −¯α, ACP is equal to 0 [16, 17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' The Fermilab has specially designed Hy- perCP (E871) experiment to study CP violation of baryons in charged-Ξ and Λ hyperon decays.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' They have analyzed 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='7×107 Ξ− → Λπ− → pπ−π− and 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='1×107 Ξ+ → Λπ+ → pπ+π+ events to determine the products αΞαΛ and ¯αΞ ¯αΛ [18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' The sum AΛ CP +AΞ CP was estimated to be (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='0 ± 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='1 ± 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='4) × 10−4 [18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' In 2019, by studying the quantum entanglement of baryon pairs in the J/ψ → Λ¯Λ process and using a multi-dimensional fitting method, the BESIII experiment obtained an independent measurement of AΛ CP with matching precision: AΛ CP = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='006 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='012 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='007, under the statistics of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='4×106 J/ψ → Λ¯Λ → pπ−¯pπ+ events [19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Recently, the asymmetries from the direct and subsequent J/ψ → Ξ−¯Ξ+ decays were measured for the first time at BESIII and found to be AΞ CP = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='0029 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='0133 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='0057 and ∆φΞ = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='0075 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='0137 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='0037 rad [20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Despite these, the CP violation measurement accuracy of the current experiment still does not meet the prediction of the SM and is mainly dominated by statistics uncertainty [14, 15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' To test for the existence of new sources of CP violation other than SM, a hyperon sample with larger statistics is required.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' The STCF is a futural high-luminosity collider and also one of major op- tions for the accelerator-based high-energy project in China in the post-BEPCII era.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' The center-of- mass energy (√s) of the STCF collision will cover 2 ∼ 7 GeV, which has been doubled compared to BEPCII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' The peaking luminosity is expected to be over 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='5 × 1035 cm−2 s−1 or higher at √s = 4 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' It is expected to provide more than 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='0 × 1012 J/ψ events per year and has great potential for improv- ing luminosity and realizing beam polarization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' So STCF will be an ideal place to study CP violation of Λ decay.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' In this analysis, we performed the sensitivity study of decay asymmetries of Λ decay and the decay chan- nel is e+e− → J/ψ → Λ (→ pπ−)¯Λ (→ ¯nπ0) with the statistics of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='0×1012J/ψ MC events.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' The ampli- tude of the signal process follows the helicity ampli- tude method which is described explicitly, as shown in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Furthermore, the final states of Λ → pπ− decay have one low-momentum π− particle, which plays a key role in limiting the overall reconstruction efficiency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Therefore, it is essential to improve the re- construction efficiency of the low-momentum π− to get better sensitivity, so the decay of J/ψ → Λ¯Λ is also used as a benchmark process in this analysis to perform optimization of detector performance design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' 2 Formalism The production process e+e− → J/ψ → Λ¯Λ is de- scribed in the c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' system of J/ψ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' The scattering angle θ of Λ is defined by cos θ = ˆp · ˆk, (1) where p and k are the three momenta of outgoing Λ and initial positron, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' The scattering plane with the vector p and k is used to form the xz- plane, and the corresponding y-axis is perpendicular to the scattering plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' The right-handed coordinate system is defined as follows: ex = 1 sin θ (ˆk × ˆp) × ˆp, ey = 1 sin θ (ˆk × ˆp), ez = ˆp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' (2) The spin density matrix for a two spin 1/2 particle state can be expressed in terms of a set of 4 × 4 matrices obtained from the outer product, ⊗, of σµ and σ¯ν [21]: ρ = 1 4 � µ¯ν Cµ¯νσΛ µ ⊗ σ ¯Λ ¯ν , (3) where σµ,¯ν with µ, ¯ν= 0, 1, 2, 3, represent spin-1/2 base matrices for baryon Λ/¯Λ in the rest frame.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' The 2 × 2 matrices are σ0 = 12, σ1 = σx, σ2 = σy, and σ3 = σz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' In particular, the spin matrices σµ and σ¯ν are given in the helicity frames of the baryons Λ and ¯Λ, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' We define the coordinate system for Λ¯Λ decay, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' The real coefficients Cµ¯ν for e+e− → J/ψ → Λ¯Λ with non-polarized inject 2 beams are given by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' 4, Cµ¯ν = � � � � 1 + α cos2 θ 0 β sin θ cos θ 0 0 sin2 θ 0 γ sin θ cos θ −β sin θ cos θ 0 α sin2 θ 0 0 −γ sin θ cos θ 0 −α − cos2 θ � � � � (4) , where β = � (1 − α2) sin (∆Φ) and γ = � (1 − α2) cos (∆Φ), are functions of the scatter- ing angle θ of Λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' In the real coefficients Cµ¯ν of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' 4, there are two parameters related to the production process of e+e− → J/ψ → Λ¯Λ, the ratio of two he- licity amplitudes α, and the relative phase of the two helicity amplitudes ∆Φ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' After considering the subsequent two-body weak decays into pπ−/¯nπ0, the joint angular distribution of the p/¯n pair is given within the present formalism as [21]: Trρp¯n ∝ 3 � µ,¯ν=0 Cµ¯ν (θ)aΛ µ0a ¯Λ ¯ν0, (5) where the aΛ µ0 (θ1, φ1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' α1) and a¯Λ ¯ν0 (θ2, φ2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' α2) repre- sent the correlation of the spin density matrices in the sequential decays and the full expressions can be found in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' [21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' α1/α2 are the decay asymmetries for Λ → pπ−/¯Λ → ¯nπ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' The variables θ1 and φ1 are the proton spherical coordinates in the Λ helicity frame with the axes x1, y1, z1 defined in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' The variables θ2 and φ2 are the anti-neutron spherical an- gles in the ¯Λ helicity frame with the axes x2, y2, z2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' " #" $% $& \'() +) ,) \'(- +- ,- \'( Figure 1: The reaction system with the defined he- licity angles in Λ¯Λ decay.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' An event of the reaction e+e− → J/ψ → Λ (→ pπ−)¯Λ (→ ¯nπ0) is specified by the five-dimensional vector ξ = (θ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Ω1 (θ1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' φ1),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Ω2 (θ2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' φ2)),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' and the joint ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='angular distribution W (ξ) can be expressed as: ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='W (ξ) = F0 (ξ) + αF5 (ξ) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='+ α1α2 (F1 (ξ) + ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='1 − α2 cos (∆Φ)F2 (ξ) + αF6 (ξ)) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='+ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='1 − α2 sin (∆Φ) (−α1F3 (ξ) + α2F4 (ξ)) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='(6) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='with a set of angular functions Fi (ξ) defined as: ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='F0 (ξ) = 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='F1 (ξ) = sin2 θ sin θ1 sin θ2 cos φ1 cos φ2 − cos2 θ cos θ1 cos θ2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='F2 (ξ) = sin θ cos θ (sin θ1 cos θ2 cos φ1 − cos θ1 sin θ2 cos φ2) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='F3 (ξ) = sin θ cos θ sin θ1 sin φ1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='F4 (ξ) = sin θ cos θ sin θ2 sin φ2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='F5 (ξ) = cos2 θ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='F6 (ξ) = sin2 θ sin θ1 sin θ2 sin φ1 sin φ2 − cos θ1 cos θ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' (7) There are four terms in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' 6: the first two (F0 + αF5) describe the production angular distribution, and the third and fourth terms give the spin correla- tion and polarization, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' The polarization is in the ey direction and is related to the phase ∆Φ via [22] Py = − √ 1 − α2 sin θ cos θ 1 + α cos2 θ sin (∆Φ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' (8) The polarization can only occur when ∆Φ is not equal to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' As a consequence, the decay asymmetries can be determined with nonzero ∆Φ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Using this conclusion, the BESIII experiment used the angular distribution analysis method to observe the nonzero relative phase ∆Φ of Λ in the baryon system for the first time, and then measured the decay asymmetry of Λ decay [19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' 3 Detector and MC simulations The design structure of the STCF detector from the interaction point to the outside mainly includes a tracking system, a particle identification (PID) sys- tem, an electromagnetic calorimeter (EMC), a super- conducting solenoid and a muon detector (MUD).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' 3 The detailed conceptual design of each sub-detector can be found in [23, 24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' The STCF detector and offline software system are under research and development at present.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' In order to study the physical potential of STCF and further optimize the detector design, a fast simulation soft- ware package dedicated to STCF detectors has been developed [23, 24] and it has proven to be a useful tool for analysis in STCF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' The fast simulation is sim- ple to use and can simulate the response of objects in each sub-detector without Geant4, including vari- ables such as efficiency, and resolution (space, mo- mentum, energy, time, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=').' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' By default, all the pa- rameterized parameters for each sub-detector perfor- mance are based on the BESIII performance [25], but can be adjusted flexibly by scaling a factor according to the expected performance of the STCF detector, or by implementing a special interface to model any performance described with an external histogram, an input curve, or a series of discrete data [23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' In this analysis, the default scale factor is set to 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='0, which can be used to optimize the detector design according to physical requirements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' 4 Analysis of J/ψ → Λ¯Λ with fast simulation The J/ψ → Λ¯Λ reaction is identified with the Λ sub- sequently decaying into pπ− and ¯Λ decay into ¯nπ0 re- sulting in a final state of pπ−¯nγγ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' So, the candidate events are required to have at least two oppositely charged tracks and at least three showers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' The combination of positive and negative charged tracks closest to the PDG mass of Λ was chosen as the Λ candidate [26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' In addition, the two daughter tracks are constrained to originate from a common decay vertex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' The most energetic shower with en- ergy deposition greater than 350 MeV is selected as ¯n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' The two showers except the ¯n candidate are con- sistent with photons and are used to reconstruct the π0 candidates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' At least, one good π0 is required.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' In order to select the J/ψ → Λ (pπ−)¯Λ (¯nπ0) candidate events, a two-constrained (2C) kinematic fit was per- formed, where ¯n is treated as a missed particle with mass fixed to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='938 GeV [26], and the constraints in- cluding the four-momentum conservation of J/ψ and an additional constraint of photon pair to have an in- variant mass equal to π0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Furthermore, θ¯n is required to be less than 5◦, where θ¯n is defined as the angle between the ¯n direction obtained from kinematic fit and the most energetic shower.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' To further suppress the background, Λ and ¯Λ candidates are required to be within 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='110 GeV/c2 < Mpπ− < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='120 GeV/c2 and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='098 GeV/c2 < M¯nπ0 < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='127 GeV/c2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' The 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='0 × 106 events of the J/ψ → Λ¯Λ → pπ−¯nπ0 process were generated to optimize the selection cri- teria and evaluate the selection efficiencies for the baryon pair production.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Based on the above selection conditions, with the help of fast simulation software, 129575 candidate events of J/ψ → Λ¯Λ → pπ−¯nπ0 were selected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' The step-by-step selection efficiency is shown in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Furthermore, these MC samples also are used to optimize the detector response and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='0 × 1012 events of signal process were generated to test the sensi- tivity of CP violation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' To analyze the potential background process, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='0 × 106 events of J/ψ → anything were generated as the inclusive MC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Af- ter the above event selection criteria were applied on the inclusive MC and by topology analysis, the J/ψ → Λ¯Σ0 → pπ−¯nπ0γ process has be shown to be the dominant background.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' So, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='0 × 1012 events of the J/ψ → Λ¯Σ0 → pπ−¯nπ0γ process were generated to do the background test in the next chapter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Fur- thermore, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='7×109 events of the signal process were generated using the phase space (PHSP) generator to estimate the normalization coefficient in Maximum Likelihood (MLL) fit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' 5 Optimization of detector per- formance After the above event selection, the final selection efficiency is about 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='96%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' The performance of the detector can be optimized from the following aspects: the selection efficiency of the charged tracks, the mo- mentum resolution of the charged tracks, and the po- sition resolution of the photons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Utilizing the signal 4 MC sample and with the help of fast simulation soft- ware tools, the optimized results of the detector re- sponse are as follows: a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='Tracking efficiency The charged particles in the final state that can be identified by the detector include electrons, muons, pions, kaons, and protons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' These charged parti- cles have a wide range of momentum, some can be as high as 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='5 GeV/c, and some can be less than 1 GeV/c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' This situation requires the detector to have the ability to cover a large momentum range and high-reconstruction efficiency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' In the part of track system design of STCF, different materials or ad- vanced tracking algorithms can be used to further improve the ability of low-momentum track recon- struction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' The J/ψ → Λ¯Λ → pπ−¯nπ0 decay has low- momentum final state particle π−, which is a good choice for optimizing the detector response, improv- ing the resolution of low-momentum particles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' In this analysis, we gradually adjusted the scale factor of tracking efficiency from 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='0 to 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' It can be seen from Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' 2 that the final selection efficiency has increased significantly in the range from 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='0 to 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='1 of the scale factor, and the selection efficiency will increase from 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='96% to 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='67%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Charged track efficiency scale 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='8 2 Efficiency(%) 13 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='2 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='4 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='6 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='8 14 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='2 Figure 2: Charged track efficiency scale versus the selection efficiency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='Momentum resolution of the charged tracks The momentum resolution of the charged tracks can also be optimized by the fast simulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' σxy and σz are the spatial resolutions of tracks in the xy-plane and z-direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' By default, σxy = 130 µm and σz=2480 µm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Optimizing σxy from 52 µm to 130 µm, and the corresponding σz is optimized from 992 µm to 2480 µm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' There is no significant change in efficiency, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' m) µ Momentum resolution of charged tracks( 50 60 70 80 90 100 110 120 130 Efficiency(%) 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='7 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='8 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='9 13 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='1 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='2 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='3 Figure 3: Momentum resolution of charged tracks versus the selection efficiency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' In addition, the transverse momentum PT and po- lar angle cos θ are two characteristic quantities of track reconstruction in MDC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' They are related to the level of track bending and hit positions of tracks in the MDC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' The optimization curve of the transverse momentum of low-momentum π− is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' 4, where the black and red points represent the ratio of signal efficiency to MC truth before and after all the above optimization, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='Position resolution of photon The decay of J/ψ → Λ¯Λ → pπ−¯nπ0 has a final state particle π0, π0 is reconstructed by two photons, so this process is also very sensitive to the EMC per- formance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' With the increase in the resolution of the π0, there will be a better signal-to-background ra- tio and higher detection efficiency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Optimizing the signal-to-background ratio can provide a reference for the EMC design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' In this analysis, the signal process 5 ) GeV π ( T P 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='3 Trk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' efficiency (%) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='9 1 Before optimization After optimization Figure 4: The Optimization curve of the transverse momentum of π.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' J/ψ → Λ¯Λ → pπ−¯nπ0 and the main background process J/ψ → Λ¯Σ0 → pπ−¯nπ0γ were studied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' By fitting the distribution of the invariant mass of M¯nπ0, a 3σ mass interval of M¯nπ0 is obtained to further re- duce the impact of the background process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Figure 5 shows the signal selection efficiency and background rejection under the change of photon position reso- lution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' The scale factor of the position resolution of photon varies from 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='4 to 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' The red and blue points represent the case of using the nominal ¯Λ mass window and the optimized ¯Λ mass window, respec- tively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Although this will lose some signal events, it can reduce more background and make the signal cleaner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' It is appropriate to set the scale factor to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='7, which corresponds to the position resolution of 4 mm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' The signal selection efficiency will get increase from 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='96% to 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='11%, while the main background will be reduced from 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='27% to 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='17%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' After all the optimization of detector responds, the events of signal MC will increase from 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='96% to 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='97%, while the events of main background (J/ψ → Λ¯Σ0 → pπ−¯nπ0γ) will reduce from 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='27% to 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='09%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' The selection efficiency is as shown in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Signal efficiency(%) 13 14 15 16 17 18 Background rejection 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='95 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='955 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='96 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='965 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='97 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='975 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='98 mass window Λ Nominal mass window Λ Optimized Figure 5: The change of signal selection efficiency and background rejection with position resolution of the photon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' 6 Extraction of the parameters In this analysis, the parameters can be extracted by applying an unbinned MLL fit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' The probability den- sity function of the ith event can be expressed by P (ξi;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' pars) = W (ξi;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' pars)ϵ (ξi)/N (pars) (9) , where ϵ (ξi) is the efficiency of each event, ξi and pars are a set of angular vectors and parameters: ξi = (θ, Ω1, Ω2), pars= (α, α1, α2, ∆Φ), as described in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' The joint probability density for observing N events in the data sample is [27]: P (ξ1, ξ2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=', ξN;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' pars) = N � i=1 P (ξi;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' pars) = N � i=1 W (ξi;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' pars)ϵ (ξi) N (pars) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' (10) By taking the natural logarithm of the joint probabil- ity density, the efficiency function can be separated lnP (ξ1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=', ξN;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' pars) = N � i lnW (ξi;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' pars) N (pars) + N � i lnϵ (ξi).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' (11) 6 Table 1: Events selection efficiency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' No optimized eff.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' (%) Optimized eff.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' (%) Increased efficiency after optimization in step (%) Charged tracks 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='21 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='38 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='17 Λ reconstruction 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='27 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='88 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='61 Good showers 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='73 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='57 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='84 π0 1C fit (Nγ ≥2) 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='76 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='93 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='17 Kinematic 2-C fit 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='33 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='31 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='98 Energy deposition of ¯n >0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='35 GeV 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='18 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='88 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='70 θ¯n < 5◦ 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='54 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='34 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='80 Λ and ¯Λ mass window 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='96 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='97 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='01 Usually, the minimization of -lnL is performed by using MINUIT [28] − lnL = − N � i lnW (ξi;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' pars)ϵ (ξi) N (pars) (12) , where N is the normalization factor, given by N = � W (ξ)ϵ (ξi)d cos θdΩ1dΩ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' (13) For a certain set of pars, N (pars) can be rewritten as the integration on each Fi term according to Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' To test the statistical sensitivity, the fitting was ap- plied on J/ψ samples with different statistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' The precision for the decay parameters is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' It is found that the precision of the parameters is pro- portional to the square root of the J/ψ sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' The correlation matrix among the parameters is shown in Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Table 2: Correlation Matrix for the parameters, ob- tained with MINUIT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' pars α α1 α2 ∆Φ α 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='089 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='104 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='339 α1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='089 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='853 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='120 α2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='104 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='853 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='058 ∆Φ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='339 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='120 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='058 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='000 According to Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' 6, the moment of sin θ1 sin φ1 is samples(T) ψ J/ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='9 1 Error of MLL fitting 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='0005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='001 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='0015 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='0025 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='003 α 1 α 2 α Φ ∆ Figure 6: The statistical sensitivity of J/ψ samples with different statistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' 7 given by ⟨sin θ1 sin φ1⟩ = 1 Nnorm � W (ξ) sin θ1 sin φ1dΩ1dΩ2 ≈ − √ 1 − α2α1 sin (∆Φ) 3 + α sin θ cos θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' (14) In the analysis of experimental data, ⟨sin θ1 sin φ1⟩ can be calculated by the average of sin θ1 sin φ1 in each cos θ bin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' The moment of sin θ1 sin φ1 can be connected with the polarization according to Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' 8, ⟨sin θ1 sin φ1⟩ ≈ (1 + α cos2 θ)α1 3 + α Py.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' (15) c_signal θ cos 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='2 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='8 1 Polarization 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='2 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='4 c_signal Signal MC PHSP MC c_signal Figure 7: Polarization as a function of cos θ for J/ψ → Λ¯Λ → pπ−¯nπ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' The points with error bars are the signal MC, and the blue dashed histogram is the no-polarization scenario of PHSP MC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' The distribution of polarization versus cos θ as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' 7 and the events are not corrected with detection efficiency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' 7 Prospect of CP sensitivity at STCF The asymmetry parameters used to observe CP vi- olation are affected by statistics and proportional to the �NJ/ψ, where NJ/ψ is the number of J/ψ events.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' By generating a 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='0 × 1012 MC sample, after event selection and detector optimization, the statistical ac- curacy of CP violation is 10−4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' The STCF has great potential in improving luminosity and realizing beam polarization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' It is expected that more than 1 ab−1 experimental data and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='4×1013 J/ψ events will be obtained per year, with the substantial increase in statistics, larger data samples will be generated on STCF, and in the future, it will hopefully reach a level of accuracy and theoretical prediction compati- bility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' 8 Summary and prospect With the fast simulation software package, the MC samples of J/ψ → Λ¯Λ → pπ−¯nπ0 process were gen- erated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' After the optimization of detector perfor- mance, the events selection efficiency of the signal process is increased by 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='22% compared to the unop- timized and the main background process is reduced by 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='5%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Furthermore, the 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='0 × 1012 J/ψ MC was used to pre-studied the sensitivity of CP violation of the J/ψ → Λ¯Λ process at the future STCF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' The statistical accuracy of CP violation of Λ hyperon is 10−4, which is close to the prediction of SM of CP violation in Λ hyperon decay [29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Acknowledgments The authors would like to thank the USTC Super- computing Center and the Hefei Comprehensive Na- tional Science Center for their strong support.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' This work is supported in part by National Natural Science Foundation of China (NSFC) under Contracts Nos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' 11872030, 11905092, 11972177, 12122509, 11625523, 12105132, 11705078.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' The international partnership program of the Chinese Academy of Sciences un- der Grant No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' 211134KYSB20200057 and by USTC Research Funds of the Double First-Class Initiative and the Fundamental Research Funds for the Cen- tral Universities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' The Doctoral Scientific Research Foundation of Liaoning Province No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' 2019-BS-113, the Foundation of Liaoning Educational Committee 8 No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' LQN201902, the Natural Science Foundation of Liaoning Provincial Department of Education No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' LCJ202003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' China Postdoctoral Science Foundation under Contracts Nos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' 2021M693181.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' The PhD Start- up Fund of Natural Science Foundation of Liaon- ing Province of China under Contracts No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' 2019- BS-113.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Scientific research Foundation of Liaon- ing Provincial Department of Education under Con- tracts No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' LQN201902.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Foundation of Innovation team 2020, Liaoning Province.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Opening Founda- tion of Songshan Lake Materials Laboratory, Grants No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='2021SLABFK04.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' References [1] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Lykken, CERN Yellow Report CERN- 2010-002, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' 101-109.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' [2] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Christenson, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Cronin, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Fitch and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Turlay, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' 13, 138 (1964).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' [3] KTeV Collab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Alavi-Harati et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' ), Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' 83, 917 (1999).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' [4] NA48 Collab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' (V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Fanti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' ), Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' B 465, 335(1999).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' [5] BaBar Collab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Aubert et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' ), Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' 87, 091801 (2001).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' [6] Belle Collab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Abe et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' ), Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' 87, 091802 (2001).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' [7] LHCb Collab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' (R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Aaij et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' ), Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' 122, 211803 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' [8] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Sakharov, Pisma Zh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Eksp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Teor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Fiz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' 5, 32 (1967).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' [9] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Bernreuther, Lect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Notes Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' 591, 237 (2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' [10] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Canetti, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Drewes and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Shaposhnikov, New J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' 14, 095012 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' [11] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Nilles, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Rept.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' 110, 1(1984).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' [12] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Haber and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Kane, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Rept.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' 117, 75 (1985).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' [13] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Lee and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Yang, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' 104, 254 (1956).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' [14] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Pakvasa, arXiv:hep-ph/9808472 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' [15] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Donoghue, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' He and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Pakvasa, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' D 34, 833 (1986).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' [16] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Okubo, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' 109, 984 (1958).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' [17] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Pais, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' 3, 242 (1959).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' [18] HyperCP Collab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' (T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Holmstrom et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' ), Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' 93, 262001 (2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' [19] BESIII Collab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' (M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Ablikim et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' ), Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' 15, 631 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' [20] BESIII Collab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' (M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Ablikim et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' ), arXiv:2105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='11155 [hep-ex].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' [21] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Perotti, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' F¨aldt, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Kupsc, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Leupold and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Song, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' D 99, 056008 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' [22] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' F¨aldt and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Kupsc, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' B 772, 16 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' [23] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Shi, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Zhou, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Qin and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Peng, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Instrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' 16, P03029 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' [24] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Peng, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Zheng and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Zhou, Physics 49, 513 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' [25] BESIII Collab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' (M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Ablikim et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' ), Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' In- strum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Methods A 614, 345 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' [26] Particle Data Group (R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Workman et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' ), Prog.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Theor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Exp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' 2020, 083C01 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' [27] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Zhong, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Ping, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Xiao, Chin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' C 32, 692 (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' [28] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Silin, CERN Program Library D, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' 510, (1971).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' [29] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Tandean and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Valencia, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' D 67, 056001 (2003).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} +page_content=' 9' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idE3T4oBgHgl3EQfIwmA/content/2301.04337v1.pdf'} diff --git a/kNE1T4oBgHgl3EQfgQS0/content/tmp_files/2301.03228v1.pdf.txt b/kNE1T4oBgHgl3EQfgQS0/content/tmp_files/2301.03228v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..729a4e7ed4f2dc428c0dd693f1d98a27863b9061 --- /dev/null +++ b/kNE1T4oBgHgl3EQfgQS0/content/tmp_files/2301.03228v1.pdf.txt @@ -0,0 +1,947 @@ +GRAPH NEURAL NETWORKS +FOR AERODYNAMIC +FLOW RECONSTRUCTION FROM SPARSE SENSING +Gregory Duth´e +ETH Z¨urich +duthe@ibk.baug.ethz.ch +Imad Abdallah +ETH Z¨urich +abdallah@ibk.baug.ethz.ch +Sarah Barber +Eastern Switzerland University of Applied Sciences +sarah.barber@ost.ch +Eleni Chatzi +ETH Z¨urich +chatzi@ibk.baug.ethz.ch +ABSTRACT +Sensing the fluid flow around an arbitrary geometry entails extrapolating from the +physical quantities perceived at its surface in order to reconstruct the features of +the surrounding fluid. This is a challenging inverse problem, yet one that if solved +could have a significant impact on many engineering applications. The exploitation +of such an inverse logic has gained interest in recent years with the advent of +widely available cheap but capable MEMS-based sensors. When combined with +novel data-driven methods, these sensors may allow for flow reconstruction around +immersed structures, benefiting applications such as unmanned airborne/underwater +vehicle path planning or control and structural health monitoring of wind turbine +blades. In this work, we train deep reversible Graph Neural Networks (GNNs) to +perform flow sensing (flow reconstruction) around two-dimensional aerodynamic +shapes: airfoils. Motivated by recent work, which has shown that GNNs can be +powerful alternatives to mesh-based forward physics simulators, we implement a +Message-Passing Neural Network to simultaneously reconstruct both the pressure +and velocity fields surrounding simulated airfoils based on their surface pressure +distributions, whilst additionally gathering useful farfield properties in the form of +context vectors. We generate a unique dataset of Computational Fluid Dynamics +simulations by simulating random, yet meaningful combinations of input boundary +conditions and airfoil shapes. We show that despite the challenges associated +with reconstructing the flow around arbitrary airfoil geometries in high Reynolds +turbulent inflow conditions, our framework is able to generalize well to unseen +cases. +1 +INTRODUCTION +Many engineering applications stand to benefit from the ability to sense and reconstruct fluid flow +features from sparse measurements originating at a structure’s surface. Flow sensing could be crucial +for improvements in the accuracy and resilience of wind turbine and unmanned aircraft controllers. +Another possible application is monitoring of wind loaded structures (Barber et al., 2022), where the +use of cheap micro-electromechanical systems (MEMS) in combination with novel methods for flow +sensing could lead to robust structural health monitoring solutions. In this work, we focus on common +aerodynamic structures: we aim to reconstruct the flow around 2-D airfoils. Traditionally, computing +the flow around an airfoil requires approaches from Computational Fluid Dynamics (CFD), which +are forward-physics simulators. In CFD, the inflow, outflow and wall boundary conditions are set, +and over many iterations a solution for the discretized Navier-Stokes PDEs is reached, which then +yields a pressure distribution at the airfoil surface. We aim to solve the inverse problem: given only +the pressure distribution at the airfoil surface, a solution for the flow field and farfield boundary +conditions is to be found. Moreover, our aim is to do so for any airfoil geometry subject to a wide +variety of turbulent inflows. +1 +arXiv:2301.03228v1 [cs.CE] 9 Jan 2023 + +Adopting the notation of Erichson et al. (2020), the problem can be described in the following manner. +An airfoil equipped with p distributed barometric sensors is placed in a steady flow of air, providing +surface pressure measurements s ∈ Rp at multiple locations around its perimeter. The sensors sample +from the surrounding flow field x ∈ Rm through a measurement operator H: +s = H(x) +(1) +The goal is to construct an estimate of the flow field ˆx surrounding the airfoil, by learning from +training data a function F that approximates the highly nonlinear inverse measurement operator G +such that: +F(s) = ˆx ≈ x = G(s) +(2) +Meshes are an extremely useful tool, indispensable in many engineering domains and especially +in CFD. Contrary to Cartesian grid representations, mesh representations offer high flexibility for +irregular geometries and allow for variable spatial density. This makes them ideal for discretizing +complex physical problems, where one can balance the trade-off between numerical accuracy and +computational efficiency in certain regions of interest. Furthermore, meshes can also be described +in terms of nodes and edges, i.e. as a graph. In this context, the flow reconstruction problem can +be described as follows. A graph G = (V, E, U) is constructed from an airfoil CFD mesh, with m +fluid nodes Vf and p airfoil boundary nodes Va. The flow features of all Vf are unknown, whilst the +features of Va are known. Our aim is then to learn a graph operator F that estimates the information +at the fluid nodes using the information contained at the airfoil boundary nodes, the input graph-level +attributes Uin and the edges E: +ˆ +Vf = F(Va, E, Uin) +(3) +An ancillary goal is to estimate the global context U of the graph, as this contains relevant information +for applications. Figure 1 provides an description of the flow reconstruction problem in terms of +graph learning. +Figure 1: Problem setup. We aim to learn the reconstruction operator F which estimates properties +of the fluid nodes as well as the graph context. This amounts to reconstructing a solution to the +Navier-Stokes equations which satisfies the boundary conditions perceived at the airfoil surface. +From a geometric learning perspective, flow reconstruction is a challenging problem for several +reasons. The first significant hurdle to overcome is the size of our graphs. We use meshes with high +densities close to the airfoil in order to achieve good spatial resolution in these critical regions. Thus, +our dataset contains graphs with a mean of around 55’000 nodes, which is an order of magnitude +higher than previous mesh-graph learned simulation methods (Pfaff et al., 2020). Moreover, the input +information is concentrated in a very localized domain of the graph: the airfoil nodes. It is difficult to +propagate the necessary information to reconstruct nodes far from the airfoil with a shallow Graph +Neural Network (GNN), meaning that deep GNN architectures with a large number of message- +passing steps are required to push this ’information barrier’ away from the airfoil nodes. However, +deep GNNs go hand in hand with other issues such as large memory requirements, over-smoothing, +and over-squashing. +In this work, we combine a number of existing graph-learning methods to tackle the aforementioned +challenges. Our contributions may be summarized as follows: +• We combine unknown Feature Propagation (Rossi et al., 2021) with very deep Grouped Reversible +GNNs (Li et al., 2021) to reconstruct flow features at the fluid nodes, whilst additionally gathering +contextual farfield information. +2 + +G = (a,V,&, Uin) +Uin Estimated +U Predicted +input context +context +Learned operator +Known airfoil nodes + Unknown fluid nodes +Known airfoil nodes +Reconstructed fluid nodes• Generalization of 2D aerodynamic flow field learning with GNNs, including (1) arbitrary airfoil +geometries, (2) arbitrary turbulent inflow conditions (flow velocity, turbulence intensity, and angle +of attack), and (3) simultaneous flow field reconstruction and inference of contextual farfield flow +information based only on sparse pressure data on the surface of the airfoil. +• Generation of a unique training dataset of OpenFOAM airfoil CFD simulations with many different +geometries and inflow conditions which are parsed to graph structure and made publicly available. +• We gather qualitative and quantitative results on unseen airfoil and flow configurations, and perform +a number of experiments to understand the limitations of this framework. In particular, we test and +compare three different GNN layer architectures. +2 +RELATED WORK +Machine learning methods have recently garnered interest in the fluid mechanics community (Brunton +et al., 2020). Fluid-related problems are typically nonlinear, complex and generate large amounts +of data, all of which are conditions under which deep learning approaches thrive. Specifically in +the context of flow reconstruction from sparse measurements, several neural network approaches +can be found in the literature. In an article by Erichson et al. (2020), a ”Shallow Neural Network”, +i.e. a fully-connected network with only two hidden layers, was applied to estimate transient flows +from sparse measurements. The authors trained the networks on a single specific geometrical flow +configuration, for example the flow behind a cylinder, and then tested on the same configuration +at different time steps. We aim to avoid this limitation as our goal is to estimate the flow around +any airfoil geometry. The authors compare their findings against typically used proper orthogonal +decomposition (POD) methods and note significant improvements in terms of the reconstruction error. +This work was then extended to turbulent flow reconstruction around airfoils based on experimental +data in Carter et al. (2021), where the results were compared to Particle Image Velocimetry (PIV) +measurements. The viability of neural networks over other approaches was further confirmed in the +work of Fukami et al. (2020), where multiple methods were pitted against each other to estimate the +flow behind a cylinder and an airfoil. Again, here the models were trained and tested on a single +flow configuration, while also being dependent on Cartesian geometrical inputs. In ¨Ozbay & Laizet +(2022), researchers attempt to avoid this limitation by utilizing Schwarz–Christoffel mappings to +sample the points at which the flow is reconstructed, thus rendering the method geometry invariant. +The authors train multiple neural network architectures on a collection of transient flow simulations +around randomly generated 2-D Bezier shapes at a predefined inflow Reynolds number. As inputs for +the flow reconstruction, they use multiple pressure sensors on the shapes’ surface as well as velocity +probes in the wake. Their results indicate that, when compared to a Cartesian sampling strategy, a +significant performance boost is achieved for all neural network types, especially in the vicinity of +the immersed shape. While this work demonstrates robustness to various geometric configurations, it +requires additional velocity sensors and is trained on a singular farfield boundary condition, both of +which we aim to avoid and improve upon. Another method which avoids geometrical dependency +is reported in Chen et al. (2021). In this work, to which our approach most closely relates to, the +authors utilize a Graph Convolutional Network (GCN) (Kipf & Welling, 2016) on graphs constructed +from CFD meshes of randomly generated Bezier shapes. The GCN is used to predict the flow +around the shapes at a fixed laminar (Reynolds number of 10) inflow condition without using surface +measurements. In our approach, we aim to reconstruct a wide variety of turbulent flows given only +surface readings, a significantly less constrained problem. We also aim to characterize the global +properties of the flow, similarly to Zhou et al. (2021). To our best knowledge, we are the first to +attempt to simultaneously reconstruct the flow while estimating turbulent inflow parameters at large +Reynolds numbers for arbitrary airfoil geometries. +The dataset that we generate to train our GNN model is similar in terms of the geometries, meshing +and CFD pipeline to the work of Thuerey et al. (2020), the main differences being the chosen RANS +model and the post-processing (graph parsing). Other datasets found in the literature focus only on +the NACA family of airfoils (Schillaci et al., 2021). +Graph networks are based on the message-passing framework (Gilmer et al., 2017), where a nodes +features are updated by aggregating messages emanating from its neighbors. Many different types of +message-passing schemes can be constructed, with some using attention mechanisms (Veliˇckovi´c +et al., 2017) and others relying on strong theoretical backgrounds (Xu et al., 2018). Graph learning +3 + +Figure 2: Illustration of the dataset generation pipeline. Airfoil shapes are selected at random from a +database, then meshed and simulated in OpenFOAM with random feasible boundary conditions. In +the last step, the finite-volume scheme is used to parse the simulation mesh into a graph. +methods are increasingly being applied to a wide variety of physics problems (Sanchez-Gonzalez +et al., 2018; 2020). In Pfaff et al. (2020), the authors successfully demonstrate how GNNs can learn +to replicate forward mesh-based physics simulators and are able to predict the evolution of a transient +solution. Motivated by these results, our approach is constructed upon the the same basic Encode- +Process-Decode network structure. However, a key difference to note is that, contrary to the next-step +prediction problem, flow reconstruction has to overcome high amounts of missing information, with +known features being extremely localized. To address this hurdle, we turn to graph-based feature +propagation methods (Rossi et al., 2021), which is closely related to matrix completion approaches +(Monti et al., 2017). Feature propagation is an effective yet computationally inexpensive method for +initializing graphs with missing features. We use this method as pre-processing step, through which +graphs are passed before being fed into the rest of the GNN model. +Training GNNs for very large graphs is challenging, with typical approaches tending toward minimiz- +ing the number of learnable parameters so that the problem becomes tractable (Chen et al., 2020). +This often results in relatively shallow GNNs, which could adversely influence the propagation of +the information contained at the airfoil nodes through sufficient extents of the graph. Making use of +subgraph sampling strategies (Hamilton et al., 2017) is another possible approach, one which also +allows for larger/deeper GNNs. However, these methods are not applicable in our case, as we need +to feed entire graphs in one pass due to the heterogeneity in information localization. Moreover, +subgraph sampling would yield additional difficulties for our ancillary goal of predicting global graph +properties for farfield estimation. Recent work by Li et al. (2021) has shown that it is possible to train +very deep GNNs on large graphs by making use of Grouped Reversible layers, which reduces memory +requirements at the cost of extra computation. This method forms the core of the processing block of +the proposed flow reconstruction GNN. Another issue which traditionally characterizes training deep +GNNs on large graphs is over-squashing (Alon & Yahav, 2020). Over-squashing is a by-product of +a graph’s structure, where bottlenecks and tree-like structures (Topping et al., 2021) can cause the +latent representation of certain nodes to be overwhelmed by the amount of information needed to be +stored. We make use of this information while parsing the simulation meshes into graphs. +3 +DATASET GENERATION +In this section we introduce the different elements of our data generation pipeline. In total we generate +1120 converged simulations, which are separated into train, validation and test datasets in a 80/10/10 +split. Figure 2 depicts an illustration of this pipeline. +Geometry selection and meshing +In our dataset generation pipeline, airfoil shapes are drawn at +random from the UUIC database of airfoils (Selig, 1996). Before passing the shape to the meshing +algorithm, we carry out some additional interpolation and processing to make sure that the selected +airfoil has a sufficient amount of points at the leading-edge as well as a properly defined trailing-edge. +Then, we use Gmsh (Geuzaine & Remacle, 2020) to construct an unstructured O-grid type mesh +around the selected airfoil. A sizing field is set close to the airfoil in order to make sure that meshes +with appropriate y+ values for the CFD wall-functions are generated. An overall sizing parameter is +4 + +also set for sufficient farfield density, but is adjusted to ensure that an acceptable amount of cells are +created (< 150′000). +CFD simulations +Each mesh is associated with a different inflow configuration. Three parameters +control the farfield conditions: angle of attack, inflow velocity and turbulence intensity. These +parameters are drawn from probability distributions reflecting realistic atmospheric flows at Reynolds +numbers ranging from 2·105 to 6.5·106, with a mean Reynolds number of around 3·106. This mean +value is well beyond the typical laminar-to-turbulent transition threshold of around 5 · 105 (Incropera +et al., 1996), which greatly increases the difficulty of the flow reconstruction problem. The farfield +conditions form the global context vectors of our graphs and are estimated at inference time. We +simulate the flow around the airfoils using a steady 2-D Reynolds-Averaged Navier–Stokes (RANS) +CFD solver with the OpenFOAM software package (Jasak et al., 2007). For turbulence modelling, +we select the K-Omega SST model (Menter & Esch, 2001) along with the standard OpenFOAM +wall-functions for boundary layer treatment. Only sufficiently converged CFD simulations with +pressure, velocity and turbulence residuals below 5 · 10−5 are kept. +Graph parsing +Contrary to many other mesh-based physics simulators, CFD solvers such as +OpenFOAM are based on finite volume methods. It is a significant difference that should be reflected +in the manner in which a mesh is converted into a graph. To do so, we use the cells themselves as +the nodes, with bidirectional edges being formed between adjacent cells. This allows us to gather +an additional edge feature which is relevant to the underlying physics. Specifically, the length (or +surface for 3-D meshes) of the boundary between two cells is used as an edge feature. The benefit +of this is twofold: a form of sizing is fed to the network and a quantity relevant to flux computation +is set on the edges. For the nodes, we gather 4 types of features: pressure, x-velocity component, +y-velocity component and node category (fluid, farfield, wall), the latter of which is inputted as a +one-hot vector. The global context features are the farfield conditions (turbulence intensity, inflow +velocity and angle of attack). To avoid unnecessary computational overhead, we do not parse the +entire CFD domain, which has a radius of 100 airfoil chord lengths, into a graph. Instead we opt to +only keep cells within a 1 chord circle centered on the airfoil. Furthermore, we set the airfoil nodes to +be located at the meshed airfoil boundary and add bidirectional edges between adjacent airfoil nodes. +These additional edges are created with the aim of avoiding tree-like structures in our graphs, as these +could potentially cause bottlenecks for the learning process (Topping et al., 2021). The graphs of our +dataset have on average around 55k nodes and around 85k individual edges. +4 +GRAPH NEURAL NETWORK FRAMEWORK +4.1 +ARCHITECTURE +For our GNN architecture, we adopt the Encode-Process-Decode logic that is now popular for +learning on graph-based physics problems (Sanchez-Gonzalez et al., 2020; Pfaff et al., 2020; Godwin +et al., 2022), albeit with some notable modifications. Figure 3 shows an overview of the Flow +Reconstruction GNN. +Input features +In the flow reconstruction problem, we assume that the global context of the graph +is unknown, however some useful physical parameters describing the flow can be estimated. Using +Bernoulli’s principle, and given that all airfoils are simulated with a zero farfield static pressure, the +farfield inflow velocity magnitude can be initially approximated as: +ˆU∞ = +�2 · p0 +ρ +(4) +where ρ is the density of air (constant throughout simulations) and p0 is the total pressure measured +at the stagnation point, which can be estimated by taking the maximum pressure at the airfoil nodes +p0 = max(pVa ). While Bernoulli’s principle is not valid for turbulent flows such as the ones we +try to reconstruct, it serves as a good starting point for farfield velocity estimation. Another useful +graph property that can be extracted is the normal force coefficient acting on the airfoil. While the +lift coefficient is usually used to characterize airfoils, it cannot be calculated as the angle of attack is +unknown (a quantity to be inferred from the learned model). Nevertheless, the normal coefficient is +5 + +Figure 3: Overview of the Flow Reconstruction GNN achitecture. Feature Propagation is used to +initialize the unknown fluid nodes. The graph is then passed through the Encode-Process-Decode +pipeline, to obtain the reconstructed flow. During the Process step, node features are updated via +message-passing within a deep Grouped Reversible GNN. +directly related to the lift coefficient and brings additional physical information which may aid the +network to reconstruct the flow. It can be estimated via the following equation: +ˆCn = +� +vi∈Va +pvi · lvi · ny,vi +p0 +(5) +where l is the boundary length and ny is the y component of the normal boundary vector, both of +which are known properties for each mesh cell boundary. We therefore use Uin = ( ˆU∞, ˆCn) as the +two-dimensional input context vector. +For the nodes, we only have access to the pressure distribution at the surface of the airfoil, while it is +set to ’NaN’ values at the fluid nodes. The type of each node is known and is encoded as a one-hot +vector, bringing the total number of input node features to four. To account for mesh geometry, the +following four edge features are used as inputs: the x and y components of the relative edge direction +vector, the edge length, and the cell boundary length value l (see Section 3). +Pre-processing +Both the input and target node features are normalized. To avoid biasing the +normalization, all pressure features are normalized by the mean and standard deviation of the +known airfoil surface pressure distribution, while both components of the velocity target features +are normalized by the initial estimated farfield velocity ˆU∞. We use Feature Propagation (Rossi +et al., 2021) as a preliminary step before feeding a graph to our GNN. This step is an important +part of our framework as it conditions the input graph into a plausible initial state. Essentially, the +feature propagator radiates surface pressure information outwards. In most cases, we found 20 feature +propagation iterations to be sufficient. +Encoding +In the encoding layer, ReLU activated MLPs with two hidden layers and LayerNorm are +used to project the input features of the graph into latent vectors of size N. This encoding layer differs +to the standard GraphNet encoder (Sanchez-Gonzalez et al., 2020) in that the node encoder MLP +takes as input the input node features as well as the latent global vector. We make this modification +so that graph-level attributes are taken into account in the construction of the node latent variables, as +this is not the case in the processing steps. +Processing +For the processing step, we opt to use a deep Grouped Reversible GNN (Li et al., +2021) with L message-passing layers. This architecture makes modifications to the typical GNN +architecture by first splitting the input node feature matrix V across the feature dimension into +C groups ⟨V1, V2, ..., VC⟩, which are then processed into grouped outputs ⟨V ′ +1, V ′ +2, ..., V ′ +C⟩ with a +6 + +OUTPUT +airfoil +airfoil +INPUT +Latent vectors size: N +L Message-Passing steps +Globals encoder +Globals decoder +MLP +Imi,1 +MLP +U +mi3 +Node encoder +MLP +Node decoder +mi,j = Φo (vii +-1, V'i-1, e'i. +MLP +Edge encoder ...: +MLP +Encoding +Processing +Decoding +Feature propagationGrouped Reversible GNN layer. These outputs are computed as follows: +V ′ +0 = +C +� +k=2 +Vk +V ′ +k = fwk(V ′ +k−1, A, E) + Vk, +k ∈ {1, . . . , C} +(6) +with A the adjacency matrix and E the edge feature matrix. +The Grouped Reversible framework allows for any type of message-passing architecture to be chosen +for the GNN layer fwk. We choose to test three popular types of GNN layers: the Graph Attention +Network (GAT) (Veliˇckovi´c et al., 2017), the modified Graph Isomorphic Network (GIN) (Xu et al., +2018) which accounts for edge features (Hu et al., 2019), and the Generalized Aggregation Networks +(GEN) Li et al. (2020) which modifies the standard GCN with different aggregation schemes while +also utilizing edge features. +Decoding +Only the nodes and global context are decoded back into feature space, as the edges are +not updated. Both decoding neural networks are MLPs with two hidden layers and ReLU activations +without any output normalization. At the output of the decoder, we gather for each node the estimated +pressure and velocity fields. The output context vector is composed of an updated version of the +farfield velocity, as well as an estimation of the inflow angle (angle of attack) and of the turbulence +intensity. +4.2 +TRAINING +General aspects +Our models are trained on a dataset composed of 896 graphs. Models are trained +with the Adam optimizer on a single Nvidia GPU with 10GB of VRAM. Due to the size and nature of +the graphs, we can only use a batch size of one, albeit with random order shuffling occurring at each +epoch. The learning rate is initially set at 5 · 10−4 and is exponentially decayed by a factor of 0.97. +Loss function +We use a multi-component loss function, in order to minimize both the node feature +reconstruction error and the context vector prediction error, with L2 losses for both components. An +additional loss component based on the velocity divergence was also tested but yielded too many +artefacts and was therefore discarded. The overall loss is: +L = L2(V, ˆV) + λ · L2(U, ˆU) +(7) +where λ is a hyperparameter used to balance the different components. In practice, we usually set λ +to 1. +5 +RESULTS +Our trained models are tested on a dataset comprising of 112 unseen airfoil simulations, each with +a different combination of turbulent inflow parameters. We show here qualitative and quantitative +results for our models and perform experiments aiming to investigate limitations and improvements +of the proposed framework. +Comparison of GNN layers +In Table 1, we gather and compare results for the three different types +of GNN layers used in the Processor: GAT, GIN and GEN. The architecture of the Encoder and +Decoder networks were kept constant, with a latent size for the node, edge and global features of +N = 128. In the Grouped Reversible Processor, the number of Layers was set to L = 30, while +the number of groups was chosen as C = 4. To obtain a consistent number of learnable parameters, +the hyperparameters for each GNN layer type were carefully selected, more information about the +different configurations can be found in the appendix. We also study the impact of the depth and +width on the performance of each model in Appendix D. +Velocity reconstruction +One of the more challenging prediction tasks is the estimation of the +velocity field away from the airfoil. Accurately capturing velocity shear and recirculation regions is +non-trivial even for CFD simulators and is highly dependant on the airfoil shape and the inflow angle. +7 + +Table 1: Root mean squared prediction errors averaged over the test dataset for both the flow +reconstruction task and the global parameter estimation task. Results are averaged over 3 runs with +different initializations. All models have latent size of N = 128 and L = 30 layers. While the +revGAT model performs the best in terms of pressure and y-velocity reconstruction, it is outperformed +by the revGIN model when it comes to x-velocity reconstruction, and graph-level attribute prediction. +Node reconstruction RMSE +Global parameter prediction RMSE +pressure +[Pa] +x-velocity +[m/s] +y-velocity +[m/s] +farfield velocity +[m/s] +angle of attack +[◦] +turbulence intensity +[-] +revGAT +77.98 ± 17.99 +7.96 ± 1.19 +2.69 ± 0.53 +0.92 ± 0.17 +4.16 ± 0.10 +0.04 ± 0.003 +revGIN +158.37 ± 5.16 +6.23 ± 0.32 +4.43 ± 0.22 +0.45 ± 0.06 +4.12 ± 0.09 +0.03 ± 0.003 +revGEN +137.51 ± 17.31 +10.81 ± 0.25 +5.47 ± 0.05 +0.46 ± 0.05 +4.12 ± 0.01 +0.04 ± 0.002 +To complete this task sucessfully, the GNN needs to be expressive enough to propagate relevant +information throughout the graph. Table 2 summarizes the prediction errors of the velocity field in +multiple concentric regions around the airfoil for the three models. We observe that for all three +models, the error on the x-velocity decreases further away from the airfoil, but this is not the case for +the y-velocity. +Table 2: Root mean squared prediction errors of the velocity components for different concentric +regions of the flow, averaged over the test dataset. Each region is defined as the interior of an ellipse +with a the length of semi-major axis and b the length of semi-minor (in chord lengths). Results are +averaged over 3 runs with different initializations. +x-velocity +[m/s] +y-velocity +[m/s] +revGAT +revGIN +revGEN +revGAT +revGIN +revGEN +region 1 (a=0.6, b=0.1) +8.26 ± 1.34 +6.46 ± 0.39 +11.44 ± 0.25 +2.48 ± 0.60 +4.15 ± 0.18 +5.40 ± 0.03 +region 2 (a=0.7, b=0.15) +7.98 ± 1.25 +6.30 ± 0.35 +11.00 ± 0.26 +2.49 ± 0.43 +4.40 ± 0.23 +5.52 ± 0.05 +region 3 (a=0.8, b=0.2) +7.95 ± 1.24 +6.27 ± 0.33 +10.92 ± 0.26 +2.61 ± 0.55 +4.44 ± 0.23 +5.53 ± 0.05 +Qualitative results +Figure 4 displays some qualitative results for our two best performing models +(revGAT and revGIN), compared to the CFD simulation ground truth. These results highlight the fact +that the learned model is able to reconstruct flow features well, albeit with some artefacts. As the +distance to the airfoil increases, these defects become more apparent. Moreover, some parts of the +flow are not well captured. This is the case for flows exhibiting long wakes. On the other hand, we +notice that flow features near the leading edge of the airfoil are in general well captured. We provide +additional examples of reconstructed flows in Appendix E. +Farfield estimation +Figure 5 displays the graph-level context prediction results evaluated on the +test set for the revGIN model. The GNN is able to accurately predict farfield inflow velocity, owing +to the good initial farfield estimation provided as an input. For the angle of attack estimation, we +observe good results at small angles but less so for larger positive and negative angles. Prediction of +the turbulence intensity is however relatively poor, which can be attributed to this variable having a +lesser impact on the airfoil pressure distribution. Moreover, this variable is not directly set in the CFD +simulations as it is used to calculate turbulent boundary conditions (kinetic energy k and specific +rate of dissipation ω of the k − ω turbulence model), which makes it more difficult to retrieve in this +inverse context. +6 +DISCUSSION +Our results indicate that the type of GNN architecture chosen in the Grouped Reversible Processor +has a clear impact on the flow reconstruction quality. From our comparison, we find that, overall, +using Graph Attention Network layers usually yields the best reconstructed solutions. However, we +also observe that the Graph Isomorphic Network layer is better able to capture detached flows (see +Appendix E). Perhaps a combination of the two could lead to better reconstructed flows, which could +8 + +Figure 4: Reconstructed flow around two unseen arbitrary airfoils geometries at different inflow +configurations for the revGAT and revGIN models. Figure (a) plots the reconstructed pressure field +while the reconstructed velocity field is shown in Figure (b). For each case the ground truth is shown +for comparison. Qualitatively, the revGAT model displays fewer artefacts in the solution. +(a) +(b) +(c) +Figure 5: Comparison of the global properties predicted by our revGIN model against the ground +truth values, evaluated on the test dataset. The model is able to accurately predict farfield flow velocity +thanks to a decent initial estimation (a) and to a lesser extent the angle of attack (b), but it falls short +for farfield turbulence intensity prediction (c). +be for instance implemented by alternating GIN and GAT layers. Lastly, we find that the performance +of the GEN layer to be somewhat underwhelming. +Something to note is that the first few layers of nodes surrounding the airfoil carry a disproportionate +amount of relevant information which needs to be propagated outwards to an increasing number +of nodes, thus creating artificial tree-like paths within the graph. While the Grouped Reversible +framework provides a good way to train deep networks in order to circumvent this, other methods +may also feasible. One possible solution might be to use hierarchies such as those implemented in +Martinkus et al. (2021). Another option could be to apply a message-passing GNN in an iterative +manner, with each step reconstructing increasingly large concentric bands around the airfoil. Physics- +driven learning methods could also lead to potential improvements. For instance, the message-passing +framework may well be suited to incorporate elements from the Lattice-Bolzmann method (Chen & +Doolen, 1998) as it also functions in a similar two step algorithm (collision and streaming). Another +possible option would be to minimize the gradient of the pressure, as described in Taha & Gonzalez +(2021). +9 + +100 +GNN Prediction +Bernouli Estimation +80 +[m/s] +60 +Pred. U.[ +40 +20 +0 +0 +20 +40 +60 +80 +100 +True U[m/s]20 +10 +Pred. AoA +0 +-10 +-20 +-20 +-10 +0 +10 +20 +True AoA [o0.300 +0.275 +Pred. Ti [-] +0.250 +0.225 +0.200 +0.175 +0.150 +0.15 +0.20 +0.25 +0.30 +True Ti [-]7 +CONCLUSION +In this work we applied deep graph-based learning techniques to reconstruct pressure and velocity +fields around arbitrary airfoil geometries subject to high-Reynolds turbulent flows. We show that, +despite the challenges posed by this problem, such as the large graphs and the very localized +input information, our Flow Reconstruction GNN framework is able to provide good reconstructed +solutions, and infer contextual farfield flow information. We compared several message-passing +architectures within the Grouped Reversible Processor GNN, and found that Graph Attention Network +layers yielded the best reconstructed solutions. This work provides a flexible framework which may +easily be applied to other mesh-based inverse physics problems, and which may be of significant +interest to a number of engineering applications. +10 + +REFERENCES +Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications. +arXiv preprint arXiv:2006.05205, 2020. +Sarah Barber, Julien Deparday, Yuriy Marykovskiy, Eleni Chatzi, Imad Abdallah, Gregory Duth´e, +Michele Magno, Tommaso Polonelli, Raphael Fischer, and Hanna M¨uller. Development of a +wireless, non-intrusive, mems-based pressure and acoustic measurement system for large-scale +operating wind turbine blades. Wind Energy Science, 7(4):1383–1398, 2022. +Steven L Brunton, Bernd R Noack, and Petros Koumoutsakos. Machine learning for fluid mechanics. +Annual Review of Fluid Mechanics, 52:477–508, 2020. +Douglas W Carter, Francis De Voogt, Renan Soares, and Bharathram Ganapathisubramani. Data- +driven sparse reconstruction of flow over a stalled aerofoil using experimental data. Data-Centric +Engineering, 2, 2021. +Junfeng Chen, Elie Hachem, and Jonathan Viquerat. Graph neural networks for laminar flow +prediction around random 2d shapes. arXiv preprint arXiv:2107.11529, 2021. +Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph +convolutional networks. In International Conference on Machine Learning, pp. 1725–1735. PMLR, +2020. +Shiyi Chen and Gary D Doolen. Lattice boltzmann method for fluid flows. Annual review of fluid +mechanics, 30(1):329–364, 1998. +N Benjamin Erichson, Lionel Mathelin, Zhewei Yao, Steven L Brunton, Michael W Mahoney, +and J Nathan Kutz. Shallow neural networks for fluid flow reconstruction with limited sensors. +Proceedings of the Royal Society A, 476(2238):20200097, 2020. +Kai Fukami, Koji Fukagata, and Kunihiko Taira. Assessment of supervised machine learning methods +for fluid flows. Theoretical and Computational Fluid Dynamics, 34(4):497–519, 2020. +Christophe Geuzaine and Jean-Franc¸ois Remacle. A three-dimensional finite element mesh generator +with built-in pre-and post-processing facilities. International Journal for Numerical Methods in +Engineering, (11):79, 2020. +Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural +message passing for quantum chemistry. In International conference on machine learning, pp. +1263–1272. PMLR, 2017. +Jonathan Godwin, Michael Schaarschmidt, Alexander Gaunt, Alvaro Sanchez-Gonzalez, Yulia +Rubanova, Petar Veliˇckovi´c, James Kirkpatrick, and Peter Battaglia. Simple GNN Regularisation +for 3D Molecular Property Prediction & Beyond. arXiv preprint arXiv:2106.07971, 2022. +Nigel Gregory and CL O’reilly. Low-speed aerodynamic characteristics of naca 0012 aerofoil section, +including the effects of upper-surface roughness simulating hoar frost. 1970. +Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. +Advances in neural information processing systems, 30, 2017. +Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure Leskovec. +Strategies for pre-training graph neural networks. arXiv preprint arXiv:1905.12265, 2019. +Frank P Incropera, David P DeWitt, Theodore L Bergman, Adrienne S Lavine, et al. Fundamentals +of heat and mass transfer, volume 6. Wiley New York, 1996. +Hrvoje Jasak, Aleksandar Jemcov, Zeljko Tukovic, et al. Openfoam: A c++ library for complex +physics simulations. In International workshop on coupled methods in numerical dynamics, +volume 1000, pp. 1–20. IUC Dubrovnik Croatia, 2007. +Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. +arXiv preprint arXiv:1609.02907, 2016. +11 + +Sherrie L Krist. CFL3D user’s manual (version 5.0). National Aeronautics and Space Administration, +Langley Research Center, 1998. +Guohao Li, Chenxin Xiong, Ali Thabet, and Bernard Ghanem. Deepergcn: All you need to train +deeper gcns. arXiv preprint arXiv:2006.07739, 2020. +Guohao Li, Matthias M¨uller, Bernard Ghanem, and Vladlen Koltun. Training graph neural networks +with 1000 layers. In International conference on machine learning, pp. 6437–6449. PMLR, 2021. +Karolis Martinkus, Aurelien Lucchi, and Nathana¨el Perraudin. Scalable graph networks for particle +simulations. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. +8912–8920. AAAI Press, 2021. +Florian Menter and Thomas Esch. Elements of industrial heat transfer predictions. In 16th Brazilian +Congress of Mechanical Engineering (COBEM), volume 109, pp. 650, 2001. +Federico Monti, Michael Bronstein, and Xavier Bresson. Geometric matrix completion with recurrent +multi-graph neural networks. Advances in neural information processing systems, 30, 2017. +Ali Girayhan ¨Ozbay and Sylvain Laizet. Deep learning fluid flow reconstruction around arbitrary +two-dimensional objects from sparse sensors using conformal mappings. AIP Advances, 12(4): +045126, 2022. +Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter W Battaglia. Learning mesh- +based simulation with graph networks. arXiv preprint arXiv:2010.03409, 2020. +Emanuele Rossi, Henry Kenlay, Maria I Gorinova, Benjamin Paul Chamberlain, Xiaowen Dong, and +Michael Bronstein. On the unreasonable effectiveness of feature propagation in learning on graphs +with missing node features. arXiv preprint arXiv:2111.12128, 2021. +Alvaro Sanchez-Gonzalez, Nicolas Heess, Jost Tobias Springenberg, Josh Merel, Martin Riedmiller, +Raia Hadsell, and Peter Battaglia. Graph networks as learnable physics engines for inference and +control. In International Conference on Machine Learning, pp. 4470–4479. PMLR, 2018. +Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter +Battaglia. Learning to simulate complex physics with graph networks. In International Conference +on Machine Learning, pp. 8459–8468. PMLR, 2020. +Andrea Schillaci, Maurizio Quadrio, Carlotta Pipolo, Marcello Restelli, and Giacomo Boracchi. +Inferring functional properties from fluid dynamics features. In 2020 25th International Conference +on Pattern Recognition (ICPR), pp. 4091–4098. IEEE, 2021. +Michael S Selig. Uiuc airfoil data site. 1996. URL https://m-selig.ae.illinois.edu/ +ads.html. +Haithem Taha and Cody Gonzalez. A variational theory of lift. In APS Division of Fluid Dynamics +Meeting Abstracts, pp. P17–006, 2021. +Nils Thuerey, Konstantin Weißenow, Lukas Prantl, and Xiangyu Hu. Deep learning methods for +reynolds-averaged navier–stokes simulations of airfoil flows. AIAA Journal, 58(1):25–36, 2020. +Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M +Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. arXiv preprint +arXiv:2111.14522, 2021. +Petar Veliˇckovi´c, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua +Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017. +Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural +networks? arXiv preprint arXiv:1810.00826, 2018. +Kaiwen Zhou, Luanliang Zhou, Simeng Zhao, Xingyu Qiang, Yingzheng Liu, and Xin Wen. Data- +driven method for flow sensing of aerodynamic parameters using distributed pressure measurements. +AIAA Journal, 59(9):3504–3516, 2021. +12 + +APPENDIX +A +BENCHMARKING OF THE CFD MODEL +To ensure that the simulations which constitute our dataset are of sufficient quality, we benchmark +our CFD pipeline against results reported in the literature for the NACA 0012 airfoil (Krist, 1998; +Gregory & O’reilly, 1970). In Figure 6 we plot the pressure coefficient for this airfoil at two angles of +attack. We see that our CFD pipeline matches well with both the previous experimental and numerical +results. +(a) +(b) +Figure 6: Comparison of our CFD data pipeline against experimental (Gregory & O’reilly, 1970) +and other CFD results (Krist, 1998). We plot the pressure coefficient distribution on the surface of a +NACA 0012 airfoil at Re = 6 · 106 at an angle of attack of (a) 10◦ and (b) 15◦. +B +ADDITIONAL HYPERPARAMETER DETAILS +For all models, 30 layers were used in conjunction with a latent space size of 128. The GAT +model is implemented with 2 attention heads. Moreover a LayerNorm layer is applied to the output +of each GAT layer, as it was found that this greatly aided training stability. Both the GIN and +GEN implementation makes use of ReLu activated MLPs with two hidden layers and LayerNorm. +These choice of parameters ensure that each individual layer has approximately 4.5k to 5k learnable +parameters. In total for the baseline models with 30 layers and a latent space size of N = 128, we +obtain models with around 700k trainable parameters. +13 + +A0A = 15° +Ours +Gregory-O'Reilly +-10 +CFL3D (NASA) +-8 +-6 +G +-4 +-2 +0 +1 +1 +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +x/c [-]A0A = 10° +Ours +Gregory-O'Reilly +CFL3D (NASA) +-3 +G-2 +-1 +0 +1 +1 +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +x/c [-]C +ABLATION OF ESTIMATED GLOBALS +We plot in Figure 7 the result of removing the estimated farfield conditions ( ˆU∞ and ˆCn) from the +input of the model. We note a drastic penalty in the quality of the prediction of farfield quantities. +Figure 7: Relative performance of the model when no estimated farfield parameters are used in the +input compared to the baseline model. +D +DEPTH AND WIDTH STUDY +We display in Figure 8 the effect of model depth on the reconstruction performance of each reversible +model. In Figure 9, we plot the relative performance of different latent space sizes (the width) for the +different models. +E +ADDITIONAL RESULTS +We plot in Figure 10 and Figure 11 some additional results, showcasing the reconstructive abilities of +our models, as well as some configurations which are not well captured. Notably, detached flows +are not always properly reconstructed, an issue which may stem from either the dataset not holding +enough detached flows, or from challenges arising from the GNN architecture. +14 + +revGAT (L = 30 N= 128) +20.0 +With Global Est. Input +baseline +17.5 +Without Global Est. Input +15.0 + RMSE relative to +12.5 +10.0 +7.5 +5.0 +Avg +2.5 +0.0 +pressure x-velocity y-velocity +Uinf +AoA +Ti(a) +(b) +(c) +Figure 8: Comparison of the impact of the depth on reconstruction performance for the different +layers, relative to the baseline architectures with 30 layers (in green). We also show the relative +training time for each depth. +15 + +revGAT N= 128 +Relative Training Time +L=10 + L=20 +L=30 + L= 40 +1.4 +baseline +1.3 +1.2 +to +relative +1.1 +RMSE +1.0 +0.8 +x-velocity +0.0x +1.0x +y-velocity +2.0x +pressurerevGIN N= 128 +Relative Training Time +1.20 +L=10 +L=20 +L=30 + L=40 +1.15 +line +1.10 +basel +1.05 +to +ve +1.00 +lativ +@ 0.95 +ISE +0.90 +0.80 +0.5x +1.0x +pressure +x-velocity +y-velocity +0.0x +1.5xrevGEN N = 128 +Relative Training Time +1.10 +L=10 + L=20 +L=30 +L= 40 + 1.05 +selin +ba +1.00 +to +relative +0.95 +0.90 +E +RMSE +0.80 +x-velocity +0.5x +pressure +y-velocity +0.0x +1.0x(a) +(b) +(c) +Figure 9: Comparison of the impact of the size of the latent space on reconstruction performance for +the different layers, relative to the baseline architectures with a latent space size of N = 128 layers +(in orange). We also show the relative training time for each width. +16 + +revGAT L = 30 +Relative Training Time +1.3 +I N= 64 +N= 128 + N=256 +baseline +1.2 +1.1 +lative + 1.0 +e +RMSE +0.9 +Avg +0.8 +x-velocity +0.5x +1.0x +pressure +y-velocity +0.0xrevGIN L = 30 +Relative Training Time +1.15 +N=64 +N=128 + N=256 +baseline +1.05 +lative +0.95 +rel +E +0.90 +RM +0.80 +x-velocity +y-velocity +0.0x +0.5x +pressure +1.0xrevGEN L = 30 +Relative Training Time +1.10 +N=64 +N= 128 +N=256 + 1.05 +selin +ba +1.00 +to +0.95 +relativ +0.90 +E +RMSE +g 0.85 +Av +0.80 +x-velocity +y-velocity +0.0x +0.5x +pressure +1.0xFigure 10: Reconstructed velocity field magnitude around two unseen arbitrary airfoils geometries at +different large wake inflow configurations for the revGAT, revGIN and revGEN models. For each +case the ground truth is shown for comparison. Qualitatively, the revGIN model is able to better +capture the detached flows in the solution. +Figure 11: Reconstructed pressure field around two unseen arbitrary airfoils geometries at different +inflow configurations for the revGAT, revGIN and revGEN models. For each case the ground truth is +shown for comparison. Qualitatively, the revGAT model displays fewer artefacts. +17 + diff --git a/kNE1T4oBgHgl3EQfgQS0/content/tmp_files/load_file.txt b/kNE1T4oBgHgl3EQfgQS0/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..c6f6195cbab561da171275be84e119c0ca0572c3 --- /dev/null +++ b/kNE1T4oBgHgl3EQfgQS0/content/tmp_files/load_file.txt @@ -0,0 +1,644 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf,len=643 +page_content='GRAPH NEURAL NETWORKS FOR AERODYNAMIC FLOW RECONSTRUCTION FROM SPARSE SENSING Gregory Duth´e ETH Z¨urich duthe@ibk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='baug.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='ethz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='ch Imad Abdallah ETH Z¨urich abdallah@ibk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='baug.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='ethz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='ch Sarah Barber Eastern Switzerland University of Applied Sciences sarah.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='barber@ost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='ch Eleni Chatzi ETH Z¨urich chatzi@ibk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='baug.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='ethz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='ch ABSTRACT Sensing the fluid flow around an arbitrary geometry entails extrapolating from the physical quantities perceived at its surface in order to reconstruct the features of the surrounding fluid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' This is a challenging inverse problem, yet one that if solved could have a significant impact on many engineering applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' The exploitation of such an inverse logic has gained interest in recent years with the advent of widely available cheap but capable MEMS-based sensors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' When combined with novel data-driven methods, these sensors may allow for flow reconstruction around immersed structures, benefiting applications such as unmanned airborne/underwater vehicle path planning or control and structural health monitoring of wind turbine blades.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' In this work, we train deep reversible Graph Neural Networks (GNNs) to perform flow sensing (flow reconstruction) around two-dimensional aerodynamic shapes: airfoils.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Motivated by recent work, which has shown that GNNs can be powerful alternatives to mesh-based forward physics simulators, we implement a Message-Passing Neural Network to simultaneously reconstruct both the pressure and velocity fields surrounding simulated airfoils based on their surface pressure distributions, whilst additionally gathering useful farfield properties in the form of context vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' We generate a unique dataset of Computational Fluid Dynamics simulations by simulating random, yet meaningful combinations of input boundary conditions and airfoil shapes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' We show that despite the challenges associated with reconstructing the flow around arbitrary airfoil geometries in high Reynolds turbulent inflow conditions, our framework is able to generalize well to unseen cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' 1 INTRODUCTION Many engineering applications stand to benefit from the ability to sense and reconstruct fluid flow features from sparse measurements originating at a structure’s surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Flow sensing could be crucial for improvements in the accuracy and resilience of wind turbine and unmanned aircraft controllers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Another possible application is monitoring of wind loaded structures (Barber et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=', 2022), where the use of cheap micro-electromechanical systems (MEMS) in combination with novel methods for flow sensing could lead to robust structural health monitoring solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' In this work, we focus on common aerodynamic structures: we aim to reconstruct the flow around 2-D airfoils.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Traditionally, computing the flow around an airfoil requires approaches from Computational Fluid Dynamics (CFD), which are forward-physics simulators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' In CFD, the inflow, outflow and wall boundary conditions are set, and over many iterations a solution for the discretized Navier-Stokes PDEs is reached, which then yields a pressure distribution at the airfoil surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' We aim to solve the inverse problem: given only the pressure distribution at the airfoil surface, a solution for the flow field and farfield boundary conditions is to be found.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Moreover, our aim is to do so for any airfoil geometry subject to a wide variety of turbulent inflows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='03228v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='CE] 9 Jan 2023 Adopting the notation of Erichson et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' (2020), the problem can be described in the following manner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' An airfoil equipped with p distributed barometric sensors is placed in a steady flow of air, providing surface pressure measurements s ∈ Rp at multiple locations around its perimeter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' The sensors sample from the surrounding flow field x ∈ Rm through a measurement operator H: s = H(x) (1) The goal is to construct an estimate of the flow field ˆx surrounding the airfoil, by learning from training data a function F that approximates the highly nonlinear inverse measurement operator G such that: F(s) = ˆx ≈ x = G(s) (2) Meshes are an extremely useful tool, indispensable in many engineering domains and especially in CFD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Contrary to Cartesian grid representations, mesh representations offer high flexibility for irregular geometries and allow for variable spatial density.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' This makes them ideal for discretizing complex physical problems, where one can balance the trade-off between numerical accuracy and computational efficiency in certain regions of interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Furthermore, meshes can also be described in terms of nodes and edges, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' as a graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' In this context, the flow reconstruction problem can be described as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' A graph G = (V, E, U) is constructed from an airfoil CFD mesh, with m fluid nodes Vf and p airfoil boundary nodes Va.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' The flow features of all Vf are unknown, whilst the features of Va are known.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Our aim is then to learn a graph operator F that estimates the information at the fluid nodes using the information contained at the airfoil boundary nodes, the input graph-level attributes Uin and the edges E: ˆ Vf = F(Va, E, Uin) (3) An ancillary goal is to estimate the global context U of the graph, as this contains relevant information for applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Figure 1 provides an description of the flow reconstruction problem in terms of graph learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Figure 1: Problem setup.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' We aim to learn the reconstruction operator F which estimates properties of the fluid nodes as well as the graph context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' This amounts to reconstructing a solution to the Navier-Stokes equations which satisfies the boundary conditions perceived at the airfoil surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' From a geometric learning perspective, flow reconstruction is a challenging problem for several reasons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' The first significant hurdle to overcome is the size of our graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' We use meshes with high densities close to the airfoil in order to achieve good spatial resolution in these critical regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Thus, our dataset contains graphs with a mean of around 55’000 nodes, which is an order of magnitude higher than previous mesh-graph learned simulation methods (Pfaff et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=', 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Moreover, the input information is concentrated in a very localized domain of the graph: the airfoil nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' It is difficult to propagate the necessary information to reconstruct nodes far from the airfoil with a shallow Graph Neural Network (GNN), meaning that deep GNN architectures with a large number of message- passing steps are required to push this ’information barrier’ away from the airfoil nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' However, deep GNNs go hand in hand with other issues such as large memory requirements, over-smoothing, and over-squashing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' In this work, we combine a number of existing graph-learning methods to tackle the aforementioned challenges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Our contributions may be summarized as follows: We combine unknown Feature Propagation (Rossi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=', 2021) with very deep Grouped Reversible GNNs (Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=', 2021) to reconstruct flow features at the fluid nodes, whilst additionally gathering contextual farfield information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' 2 G = (a,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='V,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='&,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Uin) Uin Estimated U Predicted input context context Learned operator Known airfoil nodes Unknown fluid nodes Known airfoil nodes Reconstructed fluid nodes• Generalization of 2D aerodynamic flow field learning with GNNs,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' including (1) arbitrary airfoil geometries,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' (2) arbitrary turbulent inflow conditions (flow velocity,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' turbulence intensity,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' and angle of attack),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' and (3) simultaneous flow field reconstruction and inference of contextual farfield flow information based only on sparse pressure data on the surface of the airfoil.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Generation of a unique training dataset of OpenFOAM airfoil CFD simulations with many different geometries and inflow conditions which are parsed to graph structure and made publicly available.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' We gather qualitative and quantitative results on unseen airfoil and flow configurations, and perform a number of experiments to understand the limitations of this framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' In particular, we test and compare three different GNN layer architectures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' 2 RELATED WORK Machine learning methods have recently garnered interest in the fluid mechanics community (Brunton et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=', 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Fluid-related problems are typically nonlinear, complex and generate large amounts of data, all of which are conditions under which deep learning approaches thrive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Specifically in the context of flow reconstruction from sparse measurements, several neural network approaches can be found in the literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' In an article by Erichson et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' (2020), a ”Shallow Neural Network”, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' a fully-connected network with only two hidden layers, was applied to estimate transient flows from sparse measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' The authors trained the networks on a single specific geometrical flow configuration, for example the flow behind a cylinder, and then tested on the same configuration at different time steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' We aim to avoid this limitation as our goal is to estimate the flow around any airfoil geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' The authors compare their findings against typically used proper orthogonal decomposition (POD) methods and note significant improvements in terms of the reconstruction error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' This work was then extended to turbulent flow reconstruction around airfoils based on experimental data in Carter et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' (2021), where the results were compared to Particle Image Velocimetry (PIV) measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' The viability of neural networks over other approaches was further confirmed in the work of Fukami et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' (2020), where multiple methods were pitted against each other to estimate the flow behind a cylinder and an airfoil.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Again, here the models were trained and tested on a single flow configuration, while also being dependent on Cartesian geometrical inputs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' In ¨Ozbay & Laizet (2022), researchers attempt to avoid this limitation by utilizing Schwarz–Christoffel mappings to sample the points at which the flow is reconstructed, thus rendering the method geometry invariant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' The authors train multiple neural network architectures on a collection of transient flow simulations around randomly generated 2-D Bezier shapes at a predefined inflow Reynolds number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' As inputs for the flow reconstruction, they use multiple pressure sensors on the shapes’ surface as well as velocity probes in the wake.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Their results indicate that, when compared to a Cartesian sampling strategy, a significant performance boost is achieved for all neural network types, especially in the vicinity of the immersed shape.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' While this work demonstrates robustness to various geometric configurations, it requires additional velocity sensors and is trained on a singular farfield boundary condition, both of which we aim to avoid and improve upon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Another method which avoids geometrical dependency is reported in Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' In this work, to which our approach most closely relates to, the authors utilize a Graph Convolutional Network (GCN) (Kipf & Welling, 2016) on graphs constructed from CFD meshes of randomly generated Bezier shapes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' The GCN is used to predict the flow around the shapes at a fixed laminar (Reynolds number of 10) inflow condition without using surface measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' In our approach, we aim to reconstruct a wide variety of turbulent flows given only surface readings, a significantly less constrained problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' We also aim to characterize the global properties of the flow, similarly to Zhou et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' To our best knowledge, we are the first to attempt to simultaneously reconstruct the flow while estimating turbulent inflow parameters at large Reynolds numbers for arbitrary airfoil geometries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' The dataset that we generate to train our GNN model is similar in terms of the geometries, meshing and CFD pipeline to the work of Thuerey et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' (2020), the main differences being the chosen RANS model and the post-processing (graph parsing).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Other datasets found in the literature focus only on the NACA family of airfoils (Schillaci et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=', 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Graph networks are based on the message-passing framework (Gilmer et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=', 2017), where a nodes features are updated by aggregating messages emanating from its neighbors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Many different types of message-passing schemes can be constructed, with some using attention mechanisms (Veliˇckovi´c et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=', 2017) and others relying on strong theoretical backgrounds (Xu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=', 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Graph learning 3 Figure 2: Illustration of the dataset generation pipeline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Airfoil shapes are selected at random from a database, then meshed and simulated in OpenFOAM with random feasible boundary conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' In the last step, the finite-volume scheme is used to parse the simulation mesh into a graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' methods are increasingly being applied to a wide variety of physics problems (Sanchez-Gonzalez et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=', 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' In Pfaff et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' (2020), the authors successfully demonstrate how GNNs can learn to replicate forward mesh-based physics simulators and are able to predict the evolution of a transient solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Motivated by these results, our approach is constructed upon the the same basic Encode- Process-Decode network structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' However, a key difference to note is that, contrary to the next-step prediction problem, flow reconstruction has to overcome high amounts of missing information, with known features being extremely localized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' To address this hurdle, we turn to graph-based feature propagation methods (Rossi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=', 2021), which is closely related to matrix completion approaches (Monti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=', 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Feature propagation is an effective yet computationally inexpensive method for initializing graphs with missing features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' We use this method as pre-processing step, through which graphs are passed before being fed into the rest of the GNN model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Training GNNs for very large graphs is challenging, with typical approaches tending toward minimiz- ing the number of learnable parameters so that the problem becomes tractable (Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=', 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' This often results in relatively shallow GNNs, which could adversely influence the propagation of the information contained at the airfoil nodes through sufficient extents of the graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Making use of subgraph sampling strategies (Hamilton et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=', 2017) is another possible approach, one which also allows for larger/deeper GNNs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' However, these methods are not applicable in our case, as we need to feed entire graphs in one pass due to the heterogeneity in information localization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Moreover, subgraph sampling would yield additional difficulties for our ancillary goal of predicting global graph properties for farfield estimation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Recent work by Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' (2021) has shown that it is possible to train very deep GNNs on large graphs by making use of Grouped Reversible layers, which reduces memory requirements at the cost of extra computation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' This method forms the core of the processing block of the proposed flow reconstruction GNN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Another issue which traditionally characterizes training deep GNNs on large graphs is over-squashing (Alon & Yahav, 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Over-squashing is a by-product of a graph’s structure, where bottlenecks and tree-like structures (Topping et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=', 2021) can cause the latent representation of certain nodes to be overwhelmed by the amount of information needed to be stored.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' We make use of this information while parsing the simulation meshes into graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' 3 DATASET GENERATION In this section we introduce the different elements of our data generation pipeline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' In total we generate 1120 converged simulations, which are separated into train, validation and test datasets in a 80/10/10 split.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Figure 2 depicts an illustration of this pipeline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Geometry selection and meshing In our dataset generation pipeline, airfoil shapes are drawn at random from the UUIC database of airfoils (Selig, 1996).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Before passing the shape to the meshing algorithm, we carry out some additional interpolation and processing to make sure that the selected airfoil has a sufficient amount of points at the leading-edge as well as a properly defined trailing-edge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Then, we use Gmsh (Geuzaine & Remacle, 2020) to construct an unstructured O-grid type mesh around the selected airfoil.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' A sizing field is set close to the airfoil in order to make sure that meshes with appropriate y+ values for the CFD wall-functions are generated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' An overall sizing parameter is 4 also set for sufficient farfield density, but is adjusted to ensure that an acceptable amount of cells are created (< 150′000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' CFD simulations Each mesh is associated with a different inflow configuration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Three parameters control the farfield conditions: angle of attack, inflow velocity and turbulence intensity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' These parameters are drawn from probability distributions reflecting realistic atmospheric flows at Reynolds numbers ranging from 2·105 to 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='5·106, with a mean Reynolds number of around 3·106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' This mean value is well beyond the typical laminar-to-turbulent transition threshold of around 5 · 105 (Incropera et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=', 1996), which greatly increases the difficulty of the flow reconstruction problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' The farfield conditions form the global context vectors of our graphs and are estimated at inference time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' We simulate the flow around the airfoils using a steady 2-D Reynolds-Averaged Navier–Stokes (RANS) CFD solver with the OpenFOAM software package (Jasak et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=', 2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' For turbulence modelling, we select the K-Omega SST model (Menter & Esch, 2001) along with the standard OpenFOAM wall-functions for boundary layer treatment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Only sufficiently converged CFD simulations with pressure, velocity and turbulence residuals below 5 · 10−5 are kept.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Graph parsing Contrary to many other mesh-based physics simulators, CFD solvers such as OpenFOAM are based on finite volume methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' It is a significant difference that should be reflected in the manner in which a mesh is converted into a graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' To do so, we use the cells themselves as the nodes, with bidirectional edges being formed between adjacent cells.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' This allows us to gather an additional edge feature which is relevant to the underlying physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Specifically, the length (or surface for 3-D meshes) of the boundary between two cells is used as an edge feature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' The benefit of this is twofold: a form of sizing is fed to the network and a quantity relevant to flux computation is set on the edges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' For the nodes, we gather 4 types of features: pressure, x-velocity component, y-velocity component and node category (fluid, farfield, wall), the latter of which is inputted as a one-hot vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' The global context features are the farfield conditions (turbulence intensity, inflow velocity and angle of attack).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' To avoid unnecessary computational overhead, we do not parse the entire CFD domain, which has a radius of 100 airfoil chord lengths, into a graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Instead we opt to only keep cells within a 1 chord circle centered on the airfoil.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Furthermore, we set the airfoil nodes to be located at the meshed airfoil boundary and add bidirectional edges between adjacent airfoil nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' These additional edges are created with the aim of avoiding tree-like structures in our graphs, as these could potentially cause bottlenecks for the learning process (Topping et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=', 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' The graphs of our dataset have on average around 55k nodes and around 85k individual edges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' 4 GRAPH NEURAL NETWORK FRAMEWORK 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='1 ARCHITECTURE For our GNN architecture, we adopt the Encode-Process-Decode logic that is now popular for learning on graph-based physics problems (Sanchez-Gonzalez et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=', 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Pfaff et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=', 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Godwin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=', 2022), albeit with some notable modifications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Figure 3 shows an overview of the Flow Reconstruction GNN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Input features In the flow reconstruction problem, we assume that the global context of the graph is unknown, however some useful physical parameters describing the flow can be estimated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Using Bernoulli’s principle, and given that all airfoils are simulated with a zero farfield static pressure, the farfield inflow velocity magnitude can be initially approximated as: ˆU∞ = �2 · p0 ρ (4) where ρ is the density of air (constant throughout simulations) and p0 is the total pressure measured at the stagnation point, which can be estimated by taking the maximum pressure at the airfoil nodes p0 = max(pVa ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' While Bernoulli’s principle is not valid for turbulent flows such as the ones we try to reconstruct, it serves as a good starting point for farfield velocity estimation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Another useful graph property that can be extracted is the normal force coefficient acting on the airfoil.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' While the lift coefficient is usually used to characterize airfoils, it cannot be calculated as the angle of attack is unknown (a quantity to be inferred from the learned model).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Nevertheless, the normal coefficient is 5 Figure 3: Overview of the Flow Reconstruction GNN achitecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Feature Propagation is used to initialize the unknown fluid nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' The graph is then passed through the Encode-Process-Decode pipeline, to obtain the reconstructed flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' During the Process step, node features are updated via message-passing within a deep Grouped Reversible GNN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' directly related to the lift coefficient and brings additional physical information which may aid the network to reconstruct the flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' It can be estimated via the following equation: ˆCn = � vi∈Va pvi · lvi · ny,vi p0 (5) where l is the boundary length and ny is the y component of the normal boundary vector, both of which are known properties for each mesh cell boundary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' We therefore use Uin = ( ˆU∞, ˆCn) as the two-dimensional input context vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' For the nodes, we only have access to the pressure distribution at the surface of the airfoil, while it is set to ’NaN’ values at the fluid nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' The type of each node is known and is encoded as a one-hot vector, bringing the total number of input node features to four.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' To account for mesh geometry, the following four edge features are used as inputs: the x and y components of the relative edge direction vector, the edge length, and the cell boundary length value l (see Section 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Pre-processing Both the input and target node features are normalized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' To avoid biasing the normalization, all pressure features are normalized by the mean and standard deviation of the known airfoil surface pressure distribution, while both components of the velocity target features are normalized by the initial estimated farfield velocity ˆU∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' We use Feature Propagation (Rossi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=', 2021) as a preliminary step before feeding a graph to our GNN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' This step is an important part of our framework as it conditions the input graph into a plausible initial state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Essentially, the feature propagator radiates surface pressure information outwards.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' In most cases, we found 20 feature propagation iterations to be sufficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Encoding In the encoding layer, ReLU activated MLPs with two hidden layers and LayerNorm are used to project the input features of the graph into latent vectors of size N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' This encoding layer differs to the standard GraphNet encoder (Sanchez-Gonzalez et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=', 2020) in that the node encoder MLP takes as input the input node features as well as the latent global vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' We make this modification so that graph-level attributes are taken into account in the construction of the node latent variables, as this is not the case in the processing steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Processing For the processing step, we opt to use a deep Grouped Reversible GNN (Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=', 2021) with L message-passing layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' This architecture makes modifications to the typical GNN architecture by first splitting the input node feature matrix V across the feature dimension into C groups ⟨V1, V2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=', VC⟩, which are then processed into grouped outputs ⟨V ′ 1, V ′ 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=", V ′ C⟩ with a 6 OUTPUT airfoil airfoil INPUT Latent vectors size: N L Message-Passing steps Globals encoder Globals decoder MLP Imi,1 MLP U mi3 Node encoder MLP Node decoder mi,j = Φo (vii 1, V'i-1, e'i." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' MLP Edge encoder .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=': MLP Encoding Processing Decoding Feature propagationGrouped Reversible GNN layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' These outputs are computed as follows: V ′ 0 = C � k=2 Vk V ′ k = fwk(V ′ k−1, A, E) + Vk, k ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' , C} (6) with A the adjacency matrix and E the edge feature matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' The Grouped Reversible framework allows for any type of message-passing architecture to be chosen for the GNN layer fwk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' We choose to test three popular types of GNN layers: the Graph Attention Network (GAT) (Veliˇckovi´c et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=', 2017), the modified Graph Isomorphic Network (GIN) (Xu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=', 2018) which accounts for edge features (Hu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=', 2019), and the Generalized Aggregation Networks (GEN) Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' (2020) which modifies the standard GCN with different aggregation schemes while also utilizing edge features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Decoding Only the nodes and global context are decoded back into feature space, as the edges are not updated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Both decoding neural networks are MLPs with two hidden layers and ReLU activations without any output normalization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' At the output of the decoder, we gather for each node the estimated pressure and velocity fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' The output context vector is composed of an updated version of the farfield velocity, as well as an estimation of the inflow angle (angle of attack) and of the turbulence intensity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='2 TRAINING General aspects Our models are trained on a dataset composed of 896 graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Models are trained with the Adam optimizer on a single Nvidia GPU with 10GB of VRAM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Due to the size and nature of the graphs, we can only use a batch size of one, albeit with random order shuffling occurring at each epoch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' The learning rate is initially set at 5 · 10−4 and is exponentially decayed by a factor of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Loss function We use a multi-component loss function, in order to minimize both the node feature reconstruction error and the context vector prediction error, with L2 losses for both components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' An additional loss component based on the velocity divergence was also tested but yielded too many artefacts and was therefore discarded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' The overall loss is: L = L2(V, ˆV) + λ · L2(U, ˆU) (7) where λ is a hyperparameter used to balance the different components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' In practice, we usually set λ to 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' 5 RESULTS Our trained models are tested on a dataset comprising of 112 unseen airfoil simulations, each with a different combination of turbulent inflow parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' We show here qualitative and quantitative results for our models and perform experiments aiming to investigate limitations and improvements of the proposed framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Comparison of GNN layers In Table 1, we gather and compare results for the three different types of GNN layers used in the Processor: GAT, GIN and GEN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' The architecture of the Encoder and Decoder networks were kept constant, with a latent size for the node, edge and global features of N = 128.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' In the Grouped Reversible Processor, the number of Layers was set to L = 30, while the number of groups was chosen as C = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' To obtain a consistent number of learnable parameters, the hyperparameters for each GNN layer type were carefully selected, more information about the different configurations can be found in the appendix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' We also study the impact of the depth and width on the performance of each model in Appendix D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Velocity reconstruction One of the more challenging prediction tasks is the estimation of the velocity field away from the airfoil.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Accurately capturing velocity shear and recirculation regions is non-trivial even for CFD simulators and is highly dependant on the airfoil shape and the inflow angle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' 7 Table 1: Root mean squared prediction errors averaged over the test dataset for both the flow reconstruction task and the global parameter estimation task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Results are averaged over 3 runs with different initializations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' All models have latent size of N = 128 and L = 30 layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' While the revGAT model performs the best in terms of pressure and y-velocity reconstruction, it is outperformed by the revGIN model when it comes to x-velocity reconstruction, and graph-level attribute prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Node reconstruction RMSE Global parameter prediction RMSE pressure [Pa] x-velocity [m/s] y-velocity [m/s] farfield velocity [m/s] angle of attack [◦] turbulence intensity [-] revGAT 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='98 ± 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='99 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='96 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='19 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='69 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='53 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='92 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='17 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='16 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='04 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='003 revGIN 158.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='37 ± 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='16 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='23 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='32 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='43 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='22 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='45 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='06 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='12 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='09 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='03 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='003 revGEN 137.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='51 ± 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='31 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='81 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='25 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='47 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='46 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='05 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='12 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='04 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='002 To complete this task sucessfully, the GNN needs to be expressive enough to propagate relevant information throughout the graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Table 2 summarizes the prediction errors of the velocity field in multiple concentric regions around the airfoil for the three models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' We observe that for all three models, the error on the x-velocity decreases further away from the airfoil, but this is not the case for the y-velocity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Table 2: Root mean squared prediction errors of the velocity components for different concentric regions of the flow, averaged over the test dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Each region is defined as the interior of an ellipse with a the length of semi-major axis and b the length of semi-minor (in chord lengths).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Results are averaged over 3 runs with different initializations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' x-velocity [m/s] y-velocity [m/s] revGAT revGIN revGEN revGAT revGIN revGEN region 1 (a=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='6, b=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='1) 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='26 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='34 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='46 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='39 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='44 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='25 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='48 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='60 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='15 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='18 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='40 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='03 region 2 (a=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='7, b=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='15) 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='98 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='25 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='30 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='35 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='00 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='26 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='49 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='43 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='40 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='23 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='52 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='05 region 3 (a=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='8, b=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='2) 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='95 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='24 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='27 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='33 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='92 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='26 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='61 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='55 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='44 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='23 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='53 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='05 Qualitative results Figure 4 displays some qualitative results for our two best performing models (revGAT and revGIN), compared to the CFD simulation ground truth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' These results highlight the fact that the learned model is able to reconstruct flow features well, albeit with some artefacts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' As the distance to the airfoil increases, these defects become more apparent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Moreover, some parts of the flow are not well captured.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' This is the case for flows exhibiting long wakes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' On the other hand, we notice that flow features near the leading edge of the airfoil are in general well captured.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' We provide additional examples of reconstructed flows in Appendix E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Farfield estimation Figure 5 displays the graph-level context prediction results evaluated on the test set for the revGIN model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' The GNN is able to accurately predict farfield inflow velocity, owing to the good initial farfield estimation provided as an input.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' For the angle of attack estimation, we observe good results at small angles but less so for larger positive and negative angles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Prediction of the turbulence intensity is however relatively poor, which can be attributed to this variable having a lesser impact on the airfoil pressure distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Moreover, this variable is not directly set in the CFD simulations as it is used to calculate turbulent boundary conditions (kinetic energy k and specific rate of dissipation ω of the k − ω turbulence model), which makes it more difficult to retrieve in this inverse context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' 6 DISCUSSION Our results indicate that the type of GNN architecture chosen in the Grouped Reversible Processor has a clear impact on the flow reconstruction quality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' From our comparison, we find that, overall, using Graph Attention Network layers usually yields the best reconstructed solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' However, we also observe that the Graph Isomorphic Network layer is better able to capture detached flows (see Appendix E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Perhaps a combination of the two could lead to better reconstructed flows, which could 8 Figure 4: Reconstructed flow around two unseen arbitrary airfoils geometries at different inflow configurations for the revGAT and revGIN models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Figure (a) plots the reconstructed pressure field while the reconstructed velocity field is shown in Figure (b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' For each case the ground truth is shown for comparison.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Qualitatively, the revGAT model displays fewer artefacts in the solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' (a) (b) (c) Figure 5: Comparison of the global properties predicted by our revGIN model against the ground truth values, evaluated on the test dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' The model is able to accurately predict farfield flow velocity thanks to a decent initial estimation (a) and to a lesser extent the angle of attack (b), but it falls short for farfield turbulence intensity prediction (c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' be for instance implemented by alternating GIN and GAT layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Lastly, we find that the performance of the GEN layer to be somewhat underwhelming.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Something to note is that the first few layers of nodes surrounding the airfoil carry a disproportionate amount of relevant information which needs to be propagated outwards to an increasing number of nodes, thus creating artificial tree-like paths within the graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' While the Grouped Reversible framework provides a good way to train deep networks in order to circumvent this, other methods may also feasible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' One possible solution might be to use hierarchies such as those implemented in Martinkus et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Another option could be to apply a message-passing GNN in an iterative manner, with each step reconstructing increasingly large concentric bands around the airfoil.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Physics- driven learning methods could also lead to potential improvements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' For instance, the message-passing framework may well be suited to incorporate elements from the Lattice-Bolzmann method (Chen & Doolen, 1998) as it also functions in a similar two step algorithm (collision and streaming).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Another possible option would be to minimize the gradient of the pressure, as described in Taha & Gonzalez (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' 9 100 GNN Prediction Bernouli Estimation 80 [m/s] 60 Pred.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' [ 40 20 0 0 20 40 60 80 100 True U[m/s]20 10 Pred.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' AoA 0 10 20 20 10 0 10 20 True AoA [o0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='300 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='275 Pred.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Ti [-] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='250 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='225 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='200 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='175 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='150 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='30 True Ti [-]7 CONCLUSION In this work we applied deep graph-based learning techniques to reconstruct pressure and velocity fields around arbitrary airfoil geometries subject to high-Reynolds turbulent flows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' We show that, despite the challenges posed by this problem, such as the large graphs and the very localized input information, our Flow Reconstruction GNN framework is able to provide good reconstructed solutions, and infer contextual farfield flow information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' We compared several message-passing architectures within the Grouped Reversible Processor GNN, and found that Graph Attention Network layers yielded the best reconstructed solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' This work provides a flexible framework which may easily be applied to other mesh-based inverse physics problems, and which may be of significant interest to a number of engineering applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' 10 REFERENCES Uri Alon and Eran Yahav.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' On the bottleneck of graph neural networks and its practical implications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' arXiv preprint arXiv:2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='05205, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Sarah Barber, Julien Deparday, Yuriy Marykovskiy, Eleni Chatzi, Imad Abdallah, Gregory Duth´e, Michele Magno, Tommaso Polonelli, Raphael Fischer, and Hanna M¨uller.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Development of a wireless, non-intrusive, mems-based pressure and acoustic measurement system for large-scale operating wind turbine blades.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Wind Energy Science, 7(4):1383–1398, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Steven L Brunton, Bernd R Noack, and Petros Koumoutsakos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Machine learning for fluid mechanics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Annual Review of Fluid Mechanics, 52:477–508, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Douglas W Carter, Francis De Voogt, Renan Soares, and Bharathram Ganapathisubramani.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Data- driven sparse reconstruction of flow over a stalled aerofoil using experimental data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Data-Centric Engineering, 2, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Junfeng Chen, Elie Hachem, and Jonathan Viquerat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Graph neural networks for laminar flow prediction around random 2d shapes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' arXiv preprint arXiv:2107.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='11529, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Simple and deep graph convolutional networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' In International Conference on Machine Learning, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' 1725–1735.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' PMLR, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Shiyi Chen and Gary D Doolen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Lattice boltzmann method for fluid flows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Annual review of fluid mechanics, 30(1):329–364, 1998.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' N Benjamin Erichson, Lionel Mathelin, Zhewei Yao, Steven L Brunton, Michael W Mahoney, and J Nathan Kutz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Shallow neural networks for fluid flow reconstruction with limited sensors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Proceedings of the Royal Society A, 476(2238):20200097, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Kai Fukami, Koji Fukagata, and Kunihiko Taira.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Assessment of supervised machine learning methods for fluid flows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Theoretical and Computational Fluid Dynamics, 34(4):497–519, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Christophe Geuzaine and Jean-Franc¸ois Remacle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' A three-dimensional finite element mesh generator with built-in pre-and post-processing facilities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' International Journal for Numerical Methods in Engineering, (11):79, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Neural message passing for quantum chemistry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' In International conference on machine learning, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' 1263–1272.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' PMLR, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Jonathan Godwin, Michael Schaarschmidt, Alexander Gaunt, Alvaro Sanchez-Gonzalez, Yulia Rubanova, Petar Veliˇckovi´c, James Kirkpatrick, and Peter Battaglia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Simple GNN Regularisation for 3D Molecular Property Prediction & Beyond.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' arXiv preprint arXiv:2106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='07971, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Nigel Gregory and CL O’reilly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Low-speed aerodynamic characteristics of naca 0012 aerofoil section, including the effects of upper-surface roughness simulating hoar frost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' 1970.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Will Hamilton, Zhitao Ying, and Jure Leskovec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Inductive representation learning on large graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Advances in neural information processing systems, 30, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure Leskovec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Strategies for pre-training graph neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' arXiv preprint arXiv:1905.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='12265, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Frank P Incropera, David P DeWitt, Theodore L Bergman, Adrienne S Lavine, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Fundamentals of heat and mass transfer, volume 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Wiley New York, 1996.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Hrvoje Jasak, Aleksandar Jemcov, Zeljko Tukovic, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Openfoam: A c++ library for complex physics simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' In International workshop on coupled methods in numerical dynamics, volume 1000, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' 1–20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' IUC Dubrovnik Croatia, 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Thomas N Kipf and Max Welling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Semi-supervised classification with graph convolutional networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' arXiv preprint arXiv:1609.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='02907, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' 11 Sherrie L Krist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' CFL3D user’s manual (version 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' National Aeronautics and Space Administration, Langley Research Center, 1998.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Guohao Li, Chenxin Xiong, Ali Thabet, and Bernard Ghanem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Deepergcn: All you need to train deeper gcns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' arXiv preprint arXiv:2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='07739, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Guohao Li, Matthias M¨uller, Bernard Ghanem, and Vladlen Koltun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Training graph neural networks with 1000 layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' In International conference on machine learning, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' 6437–6449.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' PMLR, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Karolis Martinkus, Aurelien Lucchi, and Nathana¨el Perraudin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Scalable graph networks for particle simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' 8912–8920.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' AAAI Press, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Florian Menter and Thomas Esch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Elements of industrial heat transfer predictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' In 16th Brazilian Congress of Mechanical Engineering (COBEM), volume 109, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' 650, 2001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Federico Monti, Michael Bronstein, and Xavier Bresson.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Geometric matrix completion with recurrent multi-graph neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Advances in neural information processing systems, 30, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Ali Girayhan ¨Ozbay and Sylvain Laizet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Deep learning fluid flow reconstruction around arbitrary two-dimensional objects from sparse sensors using conformal mappings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' AIP Advances, 12(4): 045126, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter W Battaglia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Learning mesh- based simulation with graph networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' arXiv preprint arXiv:2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='03409, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Emanuele Rossi, Henry Kenlay, Maria I Gorinova, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael Bronstein.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' On the unreasonable effectiveness of feature propagation in learning on graphs with missing node features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' arXiv preprint arXiv:2111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='12128, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Alvaro Sanchez-Gonzalez, Nicolas Heess, Jost Tobias Springenberg, Josh Merel, Martin Riedmiller, Raia Hadsell, and Peter Battaglia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Graph networks as learnable physics engines for inference and control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' In International Conference on Machine Learning, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' 4470–4479.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' PMLR, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter Battaglia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Learning to simulate complex physics with graph networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' In International Conference on Machine Learning, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' 8459–8468.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' PMLR, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Andrea Schillaci, Maurizio Quadrio, Carlotta Pipolo, Marcello Restelli, and Giacomo Boracchi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Inferring functional properties from fluid dynamics features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' In 2020 25th International Conference on Pattern Recognition (ICPR), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' 4091–4098.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' IEEE, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Michael S Selig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Uiuc airfoil data site.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' 1996.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' URL https://m-selig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='ae.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='illinois.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='edu/ ads.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='html.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Haithem Taha and Cody Gonzalez.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' A variational theory of lift.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' In APS Division of Fluid Dynamics Meeting Abstracts, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' P17–006, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Nils Thuerey, Konstantin Weißenow, Lukas Prantl, and Xiangyu Hu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Deep learning methods for reynolds-averaged navier–stokes simulations of airfoil flows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' AIAA Journal, 58(1):25–36, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M Bronstein.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Understanding over-squashing and bottlenecks on graphs via curvature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' arXiv preprint arXiv:2111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='14522, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Petar Veliˇckovi´c, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Graph attention networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' arXiv preprint arXiv:1710.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='10903, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' How powerful are graph neural networks?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' arXiv preprint arXiv:1810.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='00826, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Kaiwen Zhou, Luanliang Zhou, Simeng Zhao, Xingyu Qiang, Yingzheng Liu, and Xin Wen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Data- driven method for flow sensing of aerodynamic parameters using distributed pressure measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' AIAA Journal, 59(9):3504–3516, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' 12 APPENDIX A BENCHMARKING OF THE CFD MODEL To ensure that the simulations which constitute our dataset are of sufficient quality, we benchmark our CFD pipeline against results reported in the literature for the NACA 0012 airfoil (Krist, 1998;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Gregory & O’reilly, 1970).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' In Figure 6 we plot the pressure coefficient for this airfoil at two angles of attack.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' We see that our CFD pipeline matches well with both the previous experimental and numerical results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' (a) (b) Figure 6: Comparison of our CFD data pipeline against experimental (Gregory & O’reilly, 1970) and other CFD results (Krist, 1998).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' We plot the pressure coefficient distribution on the surface of a NACA 0012 airfoil at Re = 6 · 106 at an angle of attack of (a) 10◦ and (b) 15◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' B ADDITIONAL HYPERPARAMETER DETAILS For all models, 30 layers were used in conjunction with a latent space size of 128.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' The GAT model is implemented with 2 attention heads.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Moreover a LayerNorm layer is applied to the output of each GAT layer, as it was found that this greatly aided training stability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Both the GIN and GEN implementation makes use of ReLu activated MLPs with two hidden layers and LayerNorm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' These choice of parameters ensure that each individual layer has approximately 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='5k to 5k learnable parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' In total for the baseline models with 30 layers and a latent space size of N = 128, we obtain models with around 700k trainable parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=" 13 A0A = 15° Ours Gregory-O'Reilly 10 CFL3D (NASA) 8 6 G 4 2 0 1 1 0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content="0 x/c [-]A0A = 10° Ours Gregory-O'Reilly CFL3D (NASA) 3 G-2 1 0 1 1 0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='0 x/c [-]C ABLATION OF ESTIMATED GLOBALS We plot in Figure 7 the result of removing the estimated farfield conditions ( ˆU∞ and ˆCn) from the input of the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' We note a drastic penalty in the quality of the prediction of farfield quantities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Figure 7: Relative performance of the model when no estimated farfield parameters are used in the input compared to the baseline model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' D DEPTH AND WIDTH STUDY We display in Figure 8 the effect of model depth on the reconstruction performance of each reversible model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' In Figure 9, we plot the relative performance of different latent space sizes (the width) for the different models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' E ADDITIONAL RESULTS We plot in Figure 10 and Figure 11 some additional results, showcasing the reconstructive abilities of our models, as well as some configurations which are not well captured.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Notably, detached flows are not always properly reconstructed, an issue which may stem from either the dataset not holding enough detached flows, or from challenges arising from the GNN architecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' 14 revGAT (L = 30 N= 128) 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='0 With Global Est.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Input baseline 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='5 Without Global Est.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Input 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='0 RMSE relative to 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='5 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='0 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='0 Avg 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='0 pressure x-velocity y-velocity Uinf AoA Ti(a) (b) (c) Figure 8: Comparison of the impact of the depth on reconstruction performance for the different layers, relative to the baseline architectures with 30 layers (in green).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' We also show the relative training time for each depth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' 15 revGAT N= 128 Relative Training Time L=10 L=20 L=30 L= 40 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='4 baseline 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='2 to relative 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='1 RMSE 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='8 x-velocity 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='0x 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='0x y-velocity 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='0x pressurerevGIN N= 128 Relative Training Time 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='20 L=10 L=20 L=30 L=40 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='15 line 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='10 basel 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='05 to ve 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='00 lativ @ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='95 ISE 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='90 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='80 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='5x 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='0x pressure x-velocity y-velocity 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='0x 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='5xrevGEN N = 128 Relative Training Time 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='10 L=10 L=20 L=30 L= 40 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='05 selin ba 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='00 to relative 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='95 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='90 E RMSE 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='80 x-velocity 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='5x pressure y-velocity 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='0x 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='0x(a) (b) (c) Figure 9: Comparison of the impact of the size of the latent space on reconstruction performance for the different layers, relative to the baseline architectures with a latent space size of N = 128 layers (in orange).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' We also show the relative training time for each width.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' 16 revGAT L = 30 Relative Training Time 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='3 I N= 64 N= 128 N=256 baseline 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='1 lative 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='0 e RMSE 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='9 Avg 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='8 x-velocity 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='5x 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='0x pressure y-velocity 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='0xrevGIN L = 30 Relative Training Time 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='15 N=64 N=128 N=256 baseline 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='05 lative 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='95 rel E 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='90 RM 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='80 x-velocity y-velocity 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='0x 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='5x pressure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='0xrevGEN L = 30 Relative Training Time 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='10 N=64 N= 128 N=256 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='05 selin ba 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='00 to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='95 relativ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='90 E RMSE g 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='85 Av 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='80 x-velocity y-velocity 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='0x 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='5x pressure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content='0xFigure 10: Reconstructed velocity field magnitude around two unseen arbitrary airfoils geometries at different large wake inflow configurations for the revGAT, revGIN and revGEN models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' For each case the ground truth is shown for comparison.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Qualitatively, the revGIN model is able to better capture the detached flows in the solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Figure 11: Reconstructed pressure field around two unseen arbitrary airfoils geometries at different inflow configurations for the revGAT, revGIN and revGEN models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' For each case the ground truth is shown for comparison.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' Qualitatively, the revGAT model displays fewer artefacts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} +page_content=' 17' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf'} diff --git a/mtE1T4oBgHgl3EQfOQNK/content/tmp_files/2301.03012v1.pdf.txt b/mtE1T4oBgHgl3EQfOQNK/content/tmp_files/2301.03012v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..d891700cd81106bbe9bfd38aabfd81d668a241ba --- /dev/null +++ b/mtE1T4oBgHgl3EQfOQNK/content/tmp_files/2301.03012v1.pdf.txt @@ -0,0 +1,2146 @@ +Analyzing the Representational Geometry of Acoustic Word Embeddings +Badr M. Abdullah and Dietrich Klakow +Language Science and Technology (LST), Saarland University, Germany +Saarland Informatics Campus +{ babdullah | dietrich }@lsv.uni-saarland.de +Abstract +Acoustic word embeddings (AWEs) are vector +representations such that different acoustic ex- +emplars of the same word are projected nearby +in the embedding space. In addition to their +use in speech technology applications such as +spoken term discovery and keyword spotting, +AWE models have been adopted as models of +spoken-word processing in several cognitively +motivated studies and have been shown to ex- +hibit human-like performance in some audi- +tory processing tasks. Nevertheless, the rep- +resentational geometry of AWEs remains an +under-explored topic that has not been studied +in the literature. In this paper, we take a closer +analytical look at AWEs learned from English +speech and study how the choice of the learn- +ing objective and the architecture shapes their +representational profile. To this end, we em- +ploy a set of analytic techniques from machine +learning and neuroscience in three different +analyses: embedding space uniformity, word +discriminability, and representational consis- +tency. Our main findings highlight the promi- +nent role of the learning objective on shap- +ing the representation profile compared to the +model architecture. +1 +Introduction +Due to their ubiquity, word embeddings are nowa- +days a central component in natural language pro- +cessing (NLP). Inducing word embeddings from +text yields representations such that words occur- +ring in similar contexts are nearby in the vector +space (Mikolov et al., 2013; Pennington et al., +2014). Therefore, the representational geometry of +text-based word embeddings captures lexical simi- +larity and semantic relatedness at multiple levels of +granularity. Word embeddings, and their underly- +ing distributional semantic models, have also been +adopted as models of human semantic memory in +cognitive science research (Pereira et al., 2016; Ne- +matzadeh et al., 2017; Grand et al., 2022). +Figure 1: UMAP projection (McInnes et al., 2018) of +a sample of acoustic word embeddings (AWEs) pro- +duced by a correspondence autoencoder (CAE) model +trained on English read speech. AWE models project +different exemplars of the same word type closer in the +embedding space while abstracting away from speaker +and context variability. +In the speech processing domain, researchers +have independently developed representations of +acoustic segments that correspond to linguistic +units (Levin et al., 2013; Bengio and Heigold, 2014; +Kamper et al., 2016b; Settle and Livescu, 2016a, +inter alia). A notable example of such represen- +tations are acoustic word embeddings (AWEs)— +vector representations that encode the sound struc- +ture of words, not their semantic and syntactic +structure—see Fig. 1. AWEs support voice-based +speech technology applications such as query-by- +example spoken term discovery (Zhang and Glass, +2009; Jansen and Durme, 2012; Metze et al., 2013) +and keyword spotting (Myers et al., 1980; Rohlicek, +1995). In addition, AWEs can be leveraged to fa- +cilitate access to speech recordings of endangered +spoken languages that might lack standardized writ- +ing systems (Bird, 2021; San et al., 2021) +However, there are fundamental differences be- +arXiv:2301.03012v1 [cs.CL] 8 Jan 2023 + +iste +a +a +bel +Datween text-based and speech-based word embed- +dings that have to do with the degree of variability +between the two modalities. Contrary to written +words which have context-invariant orthographic +realizations,1 spoken words are notoriously vari- +able. +The underlying sources of variability in +speech include speaker-related factors such as vo- +cal tract shape, gender, age, and dialect. In addition, +two acoustic instances, or exemplars, of the same +word will vary in different phonological and se- +mantic contexts even if they are produced by the +same speaker (Jurafsky, 2003). Therefore, acous- +tic word embeddings are not static, but have to be +computed “on the fly” given a speech segment as +input. Models of AWEs need to abstract away from +speaker and context variability to project different +acoustic exemplars of the same word onto (ideally) +the same point of the embedding space. +Nevertheless, AWEs have not yet been exten- +sively studied in the literature from a neural net- +work interpretability point of view. We are only +aware of a few prior efforts in this direction that +have either analyzed the representational geometry +of AWEs from a cognitively motivated angle (Ma- +tusevych et al., 2020a; Abdullah et al., 2021a) or +from a cross-linguistic perspective (Abdullah et al., +2021b). In this paper, we make a contribution in +this direction and use analytic techniques from ma- +chine learning and neuroscience in three different +analytic studies: embedding space uniformity (§4), +word discriminability (§5), and representational +consistency (§6). +2 +Acoustic Word Embedding Models +Given an acoustic signal that corresponds to a spo- +ken word represented as a temporal sequence of T +acoustic feature vectors, i.e., a = (a1, a2, ..., aT ), +the goal of an AWE model is to transform a into a +fixed-dimensionality vector representation e. Due +to the variability in speech production (i.e., speech +rate, emotional state, etc), the length of the acoustic +segment T varies between different exemplars, or +instances, of the same word type. Therefore, this +task is modeled as a mapping F : A −→ RD, where +A is the (continuous) space of acoustic sequences +and D is the dimensionality of the embedding. For- +mally, transforming a variable-length acoustic in- +put into a D-dimensional AWE is described as +e = F(a; θF) ∈ RD +(1) +1although some orthographic variation exists in informal, +user-generated text such as tweets. +where θF are the parameters of the encoder +function F. +In a supervised setting of train- +ing AWE models, one assumes a dataset D = +{(a1, w1), (a2, w2), . . . , (aN, wN)} of N spoken +word instances where wi is the word type, or lexi- +cal category, of the ith acoustic sample. In this pa- +per, we experiment with two architectural choices— +recurrent and convolutional—and employ four dif- +ferent learning objectives for training AWE models +from the literature. Next, we formally describe +each of the objectives. +2.1 +Correspondence Autoencoder +In the correspondence autoencoder (CAE) (Kam- +per, 2019), each training acoustic word sample a +is paired with another sample that corresponds to +the same word type a+ = (a1 ++, a2 ++, ..., aS ++). The +acoustic encoder F takes a as input and produces +an embedding e, which is then fed to an acous- +tic decoder H that aims to sequentially recon- +struct the corresponding acoustic sequence a+— +see Fig. 6(a). The objective is to minimize the L2 +distance at each timestep in the decoder, which is +equivalent to +J = +S +� +i=1 +∥ai ++ − Hi(e)∥2 +(2) +where a+ +i is the ground-truth acoustic feature vec- +tor at timestep i and Hi(e) is the reconstructed +acoustic vector at timestep i as a function of the +embedding e. Learning the correspondence be- +tween different acoustic realizations of the same +word type seems to encourage the encoder to build +up speaker-invariant word representations while +preserving linguistically-relevant phonetic informa- +tion (Matusevych et al., 2020b). When the target +acoustic sequence to generate is the same as the +input signal a, this corresponds to a conventional +autoencoder (AE) which we consider as one of our +learning objectives in this paper. +2.2 +Phonologically Guided Encoder +The phonologically guided encoder (PGE) is +trained as component in a sequence-to-sequence +model to map acoustics into phonology (Abdullah +et al., 2021a). Given the output of the encoder as +an embedding e, a phonological decoder G(.; θG) +is trained to decode the corresponding phonologi- +cal sequence ϕ = (ϕ1, . . . , ϕτ) of the word-form +—see Fig. 6(b). The objective is to minimize a cate- +gorical cross-entropy loss at each decoder timestep, + +which is equivalent to minimizing the term +J = − +� +(ai,wi)∈D +log P +� +ϕ|ei; θG +� += − +� +(ai,wi)∈D +τ +� +t=1 +log P +� +ϕt|t, ei; θG +� +(3) +where P +� +ϕt|t, ei; θG +� +is the probability of the +phoneme ϕt at the tth timestep, conditioned on +the previous phoneme sequence ϕ