jackkuo commited on
Commit
6e9e4c6
·
verified ·
1 Parent(s): 06a4932

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +63 -0
  2. 0dFPT4oBgHgl3EQfTjRk/vector_store/index.faiss +3 -0
  3. 0tAzT4oBgHgl3EQfevwc/content/tmp_files/2301.01440v1.pdf.txt +867 -0
  4. 0tAzT4oBgHgl3EQfevwc/content/tmp_files/load_file.txt +504 -0
  5. 1dE0T4oBgHgl3EQfdgBe/content/2301.02377v1.pdf +3 -0
  6. 1dE0T4oBgHgl3EQfdgBe/vector_store/index.pkl +3 -0
  7. 2NFIT4oBgHgl3EQf4ivI/vector_store/index.faiss +3 -0
  8. 39E0T4oBgHgl3EQfeQA8/content/2301.02387v1.pdf +3 -0
  9. 3tE0T4oBgHgl3EQfvAFe/content/tmp_files/2301.02612v1.pdf.txt +1218 -0
  10. 3tE0T4oBgHgl3EQfvAFe/content/tmp_files/load_file.txt +0 -0
  11. 3tFRT4oBgHgl3EQfojeI/content/tmp_files/2301.13609v1.pdf.txt +4507 -0
  12. 3tFRT4oBgHgl3EQfojeI/content/tmp_files/load_file.txt +0 -0
  13. 4NE1T4oBgHgl3EQfAgLJ/content/tmp_files/2301.02841v1.pdf.txt +1864 -0
  14. 4tFAT4oBgHgl3EQfmB2k/content/2301.08621v1.pdf +3 -0
  15. 4tFAT4oBgHgl3EQfmB2k/vector_store/index.faiss +3 -0
  16. 4tFAT4oBgHgl3EQfmB2k/vector_store/index.pkl +3 -0
  17. 69E1T4oBgHgl3EQfnASE/vector_store/index.pkl +3 -0
  18. 6NFKT4oBgHgl3EQf_C4s/content/2301.11960v1.pdf +3 -0
  19. 6NFKT4oBgHgl3EQf_C4s/vector_store/index.pkl +3 -0
  20. 6dFKT4oBgHgl3EQf_S4j/content/tmp_files/2301.11961v1.pdf.txt +0 -0
  21. 6dFKT4oBgHgl3EQf_S4j/content/tmp_files/load_file.txt +0 -0
  22. 8NFLT4oBgHgl3EQfBC4o/content/2301.11968v1.pdf +3 -0
  23. 8NFLT4oBgHgl3EQfBC4o/vector_store/index.faiss +3 -0
  24. 8NFLT4oBgHgl3EQfBC4o/vector_store/index.pkl +3 -0
  25. 8tAzT4oBgHgl3EQfgvwn/content/tmp_files/2301.01472v1.pdf.txt +687 -0
  26. 8tAzT4oBgHgl3EQfgvwn/content/tmp_files/load_file.txt +410 -0
  27. B9FQT4oBgHgl3EQf-TfR/content/tmp_files/2301.13454v1.pdf.txt +318 -0
  28. B9FQT4oBgHgl3EQf-TfR/content/tmp_files/load_file.txt +270 -0
  29. BtE1T4oBgHgl3EQfVwQu/content/tmp_files/2301.03105v1.pdf.txt +1425 -0
  30. BtE1T4oBgHgl3EQfVwQu/content/tmp_files/load_file.txt +0 -0
  31. CNE2T4oBgHgl3EQf9AkT/vector_store/index.faiss +3 -0
  32. CtAyT4oBgHgl3EQf4fpz/content/2301.00787v1.pdf +3 -0
  33. CtAyT4oBgHgl3EQf4fpz/vector_store/index.faiss +3 -0
  34. CtAyT4oBgHgl3EQf4fpz/vector_store/index.pkl +3 -0
  35. D9FJT4oBgHgl3EQfBywq/vector_store/index.faiss +3 -0
  36. DNA0T4oBgHgl3EQfAv8K/content/2301.01965v1.pdf +3 -0
  37. DNA0T4oBgHgl3EQfAv8K/vector_store/index.faiss +3 -0
  38. DNFQT4oBgHgl3EQfPTY7/vector_store/index.pkl +3 -0
  39. E9AyT4oBgHgl3EQfSfeg/vector_store/index.faiss +3 -0
  40. E9AyT4oBgHgl3EQfSfeg/vector_store/index.pkl +3 -0
  41. EtE0T4oBgHgl3EQfywL5/content/tmp_files/2301.02665v1.pdf.txt +851 -0
  42. EtE0T4oBgHgl3EQfywL5/content/tmp_files/load_file.txt +0 -0
  43. H9AyT4oBgHgl3EQfffh-/content/tmp_files/2301.00341v1.pdf.txt +1398 -0
  44. H9AyT4oBgHgl3EQfffh-/content/tmp_files/load_file.txt +0 -0
  45. HNE0T4oBgHgl3EQfhgGY/vector_store/index.faiss +3 -0
  46. HdE1T4oBgHgl3EQfrgUP/vector_store/index.faiss +3 -0
  47. I9E2T4oBgHgl3EQfAAZV/content/2301.03586v1.pdf +3 -0
  48. I9E2T4oBgHgl3EQfAAZV/vector_store/index.faiss +3 -0
  49. INAzT4oBgHgl3EQfxv6_/content/2301.01744v1.pdf +3 -0
  50. INE1T4oBgHgl3EQfrwUe/content/2301.03357v1.pdf +3 -0
.gitattributes CHANGED
@@ -5193,3 +5193,66 @@ kNFPT4oBgHgl3EQf1zVk/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -tex
5193
  f9FAT4oBgHgl3EQf8R46/content/2301.08749v1.pdf filter=lfs diff=lfs merge=lfs -text
5194
  HdE1T4oBgHgl3EQfrgUP/content/2301.03354v1.pdf filter=lfs diff=lfs merge=lfs -text
5195
  f9FAT4oBgHgl3EQf8R46/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5193
  f9FAT4oBgHgl3EQf8R46/content/2301.08749v1.pdf filter=lfs diff=lfs merge=lfs -text
5194
  HdE1T4oBgHgl3EQfrgUP/content/2301.03354v1.pdf filter=lfs diff=lfs merge=lfs -text
5195
  f9FAT4oBgHgl3EQf8R46/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5196
+ DNA0T4oBgHgl3EQfAv8K/content/2301.01965v1.pdf filter=lfs diff=lfs merge=lfs -text
5197
+ I9E2T4oBgHgl3EQfAAZV/content/2301.03586v1.pdf filter=lfs diff=lfs merge=lfs -text
5198
+ ctE4T4oBgHgl3EQfpA2l/content/2301.05189v1.pdf filter=lfs diff=lfs merge=lfs -text
5199
+ yNAzT4oBgHgl3EQf7_5U/content/2301.01897v1.pdf filter=lfs diff=lfs merge=lfs -text
5200
+ ztE2T4oBgHgl3EQfMwYs/content/2301.03727v1.pdf filter=lfs diff=lfs merge=lfs -text
5201
+ N9E2T4oBgHgl3EQfrAg0/content/2301.04044v1.pdf filter=lfs diff=lfs merge=lfs -text
5202
+ mNE2T4oBgHgl3EQfJAb4/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5203
+ O9E4T4oBgHgl3EQf-A5z/content/2301.05360v1.pdf filter=lfs diff=lfs merge=lfs -text
5204
+ O9E4T4oBgHgl3EQf-A5z/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5205
+ NtFIT4oBgHgl3EQfdSsx/content/2301.11269v1.pdf filter=lfs diff=lfs merge=lfs -text
5206
+ INE1T4oBgHgl3EQfrwUe/content/2301.03357v1.pdf filter=lfs diff=lfs merge=lfs -text
5207
+ qdA0T4oBgHgl3EQfKv8g/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5208
+ HNE0T4oBgHgl3EQfhgGY/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5209
+ VtE5T4oBgHgl3EQfBg7N/content/2301.05388v1.pdf filter=lfs diff=lfs merge=lfs -text
5210
+ YdE1T4oBgHgl3EQfJwNG/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5211
+ lNAyT4oBgHgl3EQfyflP/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5212
+ 39E0T4oBgHgl3EQfeQA8/content/2301.02387v1.pdf filter=lfs diff=lfs merge=lfs -text
5213
+ OtE1T4oBgHgl3EQfuAVi/content/2301.03383v1.pdf filter=lfs diff=lfs merge=lfs -text
5214
+ DNA0T4oBgHgl3EQfAv8K/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5215
+ CNE2T4oBgHgl3EQf9AkT/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5216
+ ctE4T4oBgHgl3EQfpA2l/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5217
+ lNAyT4oBgHgl3EQfyflP/content/2301.00684v1.pdf filter=lfs diff=lfs merge=lfs -text
5218
+ D9FJT4oBgHgl3EQfBywq/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5219
+ NtFIT4oBgHgl3EQfdSsx/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5220
+ I9E2T4oBgHgl3EQfAAZV/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5221
+ N9E2T4oBgHgl3EQfrAg0/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5222
+ atE5T4oBgHgl3EQfDw7y/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5223
+ yNAzT4oBgHgl3EQf7_5U/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5224
+ W9FRT4oBgHgl3EQf9zjY/content/2301.13689v1.pdf filter=lfs diff=lfs merge=lfs -text
5225
+ CtAyT4oBgHgl3EQf4fpz/content/2301.00787v1.pdf filter=lfs diff=lfs merge=lfs -text
5226
+ NdE3T4oBgHgl3EQfZAra/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5227
+ L9AyT4oBgHgl3EQfT_dJ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5228
+ r9A0T4oBgHgl3EQfK__H/content/2301.02113v1.pdf filter=lfs diff=lfs merge=lfs -text
5229
+ 0dFPT4oBgHgl3EQfTjRk/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5230
+ CtAyT4oBgHgl3EQf4fpz/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5231
+ udE_T4oBgHgl3EQf-Bxu/content/2301.08384v1.pdf filter=lfs diff=lfs merge=lfs -text
5232
+ f9E2T4oBgHgl3EQfbweU/content/2301.03889v1.pdf filter=lfs diff=lfs merge=lfs -text
5233
+ HdE1T4oBgHgl3EQfrgUP/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5234
+ 4tFAT4oBgHgl3EQfmB2k/content/2301.08621v1.pdf filter=lfs diff=lfs merge=lfs -text
5235
+ q9FST4oBgHgl3EQfPDjc/content/2301.13754v1.pdf filter=lfs diff=lfs merge=lfs -text
5236
+ qtAzT4oBgHgl3EQf5_4s/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5237
+ ndE2T4oBgHgl3EQfzghR/content/2301.04131v1.pdf filter=lfs diff=lfs merge=lfs -text
5238
+ KtE1T4oBgHgl3EQfsgWq/content/2301.03367v1.pdf filter=lfs diff=lfs merge=lfs -text
5239
+ e9AzT4oBgHgl3EQfoP2a/content/2301.01594v1.pdf filter=lfs diff=lfs merge=lfs -text
5240
+ 2NFIT4oBgHgl3EQf4ivI/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5241
+ edE3T4oBgHgl3EQfHQkd/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5242
+ 1dE0T4oBgHgl3EQfdgBe/content/2301.02377v1.pdf filter=lfs diff=lfs merge=lfs -text
5243
+ E9AyT4oBgHgl3EQfSfeg/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5244
+ L9AyT4oBgHgl3EQfT_dJ/content/2301.00116v1.pdf filter=lfs diff=lfs merge=lfs -text
5245
+ JdFOT4oBgHgl3EQfxzTs/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5246
+ YdE1T4oBgHgl3EQfJwNG/content/2301.02955v1.pdf filter=lfs diff=lfs merge=lfs -text
5247
+ KtE1T4oBgHgl3EQfsgWq/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5248
+ 8NFLT4oBgHgl3EQfBC4o/content/2301.11968v1.pdf filter=lfs diff=lfs merge=lfs -text
5249
+ W9FRT4oBgHgl3EQf9zjY/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5250
+ OtE1T4oBgHgl3EQfuAVi/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5251
+ i9E2T4oBgHgl3EQfIAa1/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5252
+ ndE2T4oBgHgl3EQfzghR/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5253
+ 8NFLT4oBgHgl3EQfBC4o/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5254
+ rdAyT4oBgHgl3EQfZvcN/content/2301.00227v1.pdf filter=lfs diff=lfs merge=lfs -text
5255
+ 4tFAT4oBgHgl3EQfmB2k/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5256
+ XtAzT4oBgHgl3EQfYvw0/content/2301.01339v1.pdf filter=lfs diff=lfs merge=lfs -text
5257
+ INAzT4oBgHgl3EQfxv6_/content/2301.01744v1.pdf filter=lfs diff=lfs merge=lfs -text
5258
+ 6NFKT4oBgHgl3EQf_C4s/content/2301.11960v1.pdf filter=lfs diff=lfs merge=lfs -text
0dFPT4oBgHgl3EQfTjRk/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1e28a1e22c3830f23ea4c16425c1fefd1148b16fd962b089b2b8d0f603f48cd5
3
+ size 3080237
0tAzT4oBgHgl3EQfevwc/content/tmp_files/2301.01440v1.pdf.txt ADDED
@@ -0,0 +1,867 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ Scalable Optimal Design of Incremental Volt/VAR
3
+ Control using Deep Neural Networks
4
+ Sarthak Gupta, Graduate Student Member, IEEE, Ali Mehrizi-Sani, Senior Member, IEEE,
5
+ Spyros Chatzivasileiadis, Senior Member, IEEE, and Vassilis Kekatos, Senior Member, IEEE
6
+ Abstract—Volt/VAR control rules facilitate the autonomous
7
+ operation of distributed energy resources (DER) to regulate
8
+ voltage in power distribution grids. According to non-incremental
9
+ control rules, such as the one mandated by the IEEE Standard
10
+ 1547, the reactive power setpoint of each DER is computed as a
11
+ piecewise-linear curve of the local voltage. However, the slopes
12
+ of such curves are upper-bounded to ensure stability. On the
13
+ other hand, incremental rules add a memory term into the
14
+ setpoint update, rendering them universally stable. They can
15
+ thus attain enhanced steady-state voltage profiles. Optimal rule
16
+ design (ORD) for incremental rules can be formulated as a bilevel
17
+ program. We put forth a scalable solution by reformulating ORD
18
+ as training a deep neural network (DNN). This DNN emulates the
19
+ Volt/VAR dynamics for incremental rules derived as iterations of
20
+ proximal gradient descent (PGD). The rule parameters appear as
21
+ DNN weights. To reduce the DNN depth, we leverage Nesterov’s
22
+ accelerated PGD iterations. Analytical findings and numerical
23
+ tests corroborate that the proposed ORD solution can be neatly
24
+ adapted to single/multi-phase feeders.
25
+ Index Terms—IEEE Standard 1547.8, incremental control
26
+ rules, multiphase feeders, proximal gradients, gradient backprop-
27
+ agation, deep neural networks.
28
+ I. INTRODUCTION
29
+ Local Volt/VAR (Volt-Ampere Reactive) control facilitates
30
+ voltage regulation on distribution grids by providing reactive
31
+ power compensation from DERs equipped with smart invert-
32
+ ers. Different from centralized control schemes which incur
33
+ large computational and communication burden, local rules
34
+ decide DER setpoints based on local measurements. Volt/VAR
35
+ control rules can be categorized into non-incremental and
36
+ incremental ones. The former compute DER reactive power
37
+ setpoints based on local voltage readings. The IEEE Stan-
38
+ dard 1547.8 prescribes such non-incremental control rules
39
+ as piecewise-linear functions of voltage [1]. On the other
40
+ hand, incremental Volt/VAR rules compute the change in VAR
41
+ setpoints as a function of voltage [2]–[6].
42
+ The existing literature on designing Volt/VAR control rules
43
+ can be classified into stability- and optimality-centric works.
44
+ Stability-centric works study the effect of Volt/VAR rules as a
45
+ closed-loop dynamical system, which may be rendered unsta-
46
+ ble under steep slopes of non-incremental rules [7], [8]. In fact,
47
+ to ensure stability, non-incremental rules may have to compro-
48
+ mise on the quality of their steady-state voltage profile [5],
49
+ [8]. Incremental rules however do not experience stability
50
+ limitations and can thus achieve improved voltage profiles
51
+ compared to their non-incremental counterparts. Nonetheless,
52
+ such improvements may come at the expense of longer settling
53
+ times of the associated Volt/VAR dynamics [8].
54
+ Optimality-centric works focus on designing stable control
55
+ rules to minimize a voltage regulation objective. To this end,
56
+ optimization-based strategies have been employed to design
57
+ affine non-incremental rules using heuristics [9]–[11]. Two of
58
+ our recent works in [12] and [13] have addressed the problem
59
+ of optimally designing the slope, deadband, saturation, and
60
+ reference voltage. Reference [12] performs ORD via a bilevel
61
+ optimization applicable to single-phase feeders. Reference [13]
62
+ proposes DNN-based digital twins that emulate Volt/VAR
63
+ dynamics, and reformulates ORD as a DNN training task for
64
+ single-/multi-phase feeders.
65
+ This letter deals with optimally selecting the shape of
66
+ incremental Volt/VAR control rules, with contributions on
67
+ three fronts: c1) Although this optimal rule design (ORD)
68
+ task can be posed as a mixed-integer nonlinear optimization
69
+ program, it does not scale well with the numbers of DERs,
70
+ nodes, and grid loading scenarios. To address this challenge,
71
+ the genuine idea here is to reformulate ORD as a deep-
72
+ learning task and judiciously adapt the fast software modules
73
+ widely available for training deep neural networks (DNNs).
74
+ We have put forth a similar approach for designing non-
75
+ incremental control rules in [13]. However, migrating from
76
+ non-incremental to incremental rules is non-trivial due to the
77
+ different curve shapes, stability, and settling time properties.
78
+ c2) To further expedite ORD for incremental rules, we suggest
79
+ implementing accelerated Nesterov-type variants of the rules
80
+ to yield a shallower DNN emulator. c3) We also establish the
81
+ convergence of incremental rules on multiphase feeders.
82
+ Recently, reference [14] deals with the optimal design of
83
+ incremental rules. It uses DNNs with a single hidden layer
84
+ to model piecewise-linear functions and formulates ORD as
85
+ a reinforcement learning task. While [14] also utilizes DNNs
86
+ to design incremental rules, we delineate from it in several
87
+ ways. Reference [14] focuses on voltage control during tran-
88
+ sient dynamics, whereas this work aims at ORD to drive
89
+ steady-state voltages closer to unity and over different grid
90
+ loading scenarios. Reference [14] utilizes a DNN to model
91
+ the piecewise-linear mapping of the rule. In contrast, this
92
+ work develops a DNN-based digital twin that emulates end-
93
+ to-end Volt/VAR dynamics. Lastly, we provide stability and
94
+ convergence analysis for single- and multiphase feeders alike,
95
+ whereas [14] applies only to single-phase feeders.
96
+ The rest of this letter is organized as follows. Section II
97
+ models the feeder and discusses non-incremental and incre-
98
+ mental Volt/VAR control rules. Section III formulates DNN-
99
+ based digital twins for Volt/VAR dynamics of incremental
100
+ rules, and their accelerated version. It also presents ORD
101
+ arXiv:2301.01440v1 [math.OC] 4 Jan 2023
102
+
103
+ 2
104
+ Fig. 1. Non-incremental Volt/VAR control rule provisioned by the IEEE Std.
105
+ 1547 for the interconnection of DERs [1].
106
+ for single-phase feeders as a deep learning task. Section IV
107
+ extends the ORD process to multiphase feeders. The incre-
108
+ mental rules are then benchmarked against non-incremental
109
+ rules from [13] using tests on real-world data, in Section V.
110
+ The letter is concluded in Section VI.
111
+ II. VOLT/VAR CONTROL RULES
112
+ Consider a radial feeder serving N buses equipped with
113
+ DERs, indexed by n. Let (qℓ, q) collect reactive loads and
114
+ generations at all nodes. Vectors (p, v) collect the net active
115
+ power injections and voltage magnitudes at all nodes. The
116
+ impact of q on v can be approximately captured using the
117
+ linearized grid model [13]
118
+ v ≃ Xq + ˜v
119
+ (1)
120
+ where ˜v := Rp − Xqℓ + v01 models the underlying grid
121
+ conditions, and v0 is the substation voltage. Vector ˜v rep-
122
+ resents the impact of non-controlled quantities (p, qℓ) on
123
+ voltages. Matrices (R, X) depend on the feeder topology. For
124
+ single-phase feeders, they are symmetric positive definite with
125
+ positive entries [15]. For multiphase feeders, they are non-
126
+ symmetric and have positive and negative entries [5], [13].
127
+ Vector q in (1) carries the reactive injections by DERs
128
+ we would like to control. Per the non-incremental rules of
129
+ the IEEE Std. 1547 [1], DER setpoints are decided based
130
+ on the Volt/VAR curve of Fig. 1, which is parameterized by
131
+ (¯v, δ, σ, ¯q). The standard further constrains these parameters
132
+ within a polytopic feasible set [1], [12]. The negative slope of
133
+ the linear segment of the curve in Fig. 1 can be expressed as
134
+ α :=
135
+ ¯q
136
+ σ − δ .
137
+ The interaction of Volt/VAR rules with the feeder gives
138
+ rise to nonlinear dynamics. These dynamics are stable if
139
+ ∥ dg(α)X∥2 < 1, where dg(α) is a diagonal matrix carry-
140
+ ing the rule slopes over all buses on its diagonal [7]. The
141
+ equilibrium setpoints for DERs cannot be expressed in closed
142
+ form. However, they coincide with the minimizer of the convex
143
+ optimization problem [7]
144
+ min
145
+ −¯q≤q≤¯q
146
+ 1
147
+ 2q⊤Xq+q⊤(˜v−¯v)+ 1
148
+ 2q⊤ dg−1(α)q+δ⊤|q| (2)
149
+ where |q| applies the absolute value on q entrywise. Prob-
150
+ lem (2) depends on rule parameters (¯v, δ, α, ¯q) across all buses,
151
+ collected in the 4N-long vector z := (¯v, δ, α, ¯q). We denote
152
+ by qz(˜v) the equilibrium setpoints, and by
153
+ vz(˜v) = Xqz(˜v) + ˜v
154
+ (3)
155
+ the related equilibrium voltages reached by Volt/VAR rules
156
+ parameterized by z under grid conditions ˜v.
157
+ Optimal rule design (ORD) can be stated as the task of
158
+ selecting z to bring equilibrium voltages vz(˜v) close to unity.
159
+ To cater to diverse conditions, the utility may sample loading
160
+ scenarios {˜vs}S
161
+ s=1 for the next hour, and find z as
162
+ z∗ ∈ arg min
163
+ z
164
+ F(z) := 1
165
+ S
166
+ S
167
+
168
+ s=1
169
+ ∥vz(˜vs) − 1∥2
170
+ 2
171
+ (ORD)
172
+ subject to (3) and z ∈ Z.
173
+ Once found, the customized rules z∗ are sent to DERs to
174
+ operate autonomously over the next hour. Note that vz(˜vs)
175
+ depends on z because the equilibrium setpoints qz(vs) in (3)
176
+ are the minimizers of problem (2), which is parameterized by
177
+ z. When solving (ORD) for non-incremental rules, the feasible
178
+ set Z consists of the polytopic constraints imposed on z by
179
+ the IEEE Std. 1547 as well as additional constraints on α
180
+ to ensure ∥ dg(α)X∥2 < 1; see [12]. Therefore, the feasible
181
+ set Z can be quite confined. This can lead to less desirable
182
+ voltage profiles; that is, higher objective values F(z∗).
183
+ The aforesaid issue can be addressed by replacing the non-
184
+ incremental Volt/VAR rules of IEEE Std. 1547 by incremental
185
+ ones as suggested in [2]–[6]. Incremental rules express the
186
+ change rather than the actual value in setpoints as a function
187
+ of voltage. One option for incremental rules is to implement
188
+ a proximal gradient descent (PGD) algorithm solving (2)
189
+ as proposed in [5]. In this case, the control rule coincides
190
+ with the PGD iterations, which are implemented by DERs
191
+ in a decentralized fashion. Using incremental rules, set Z is
192
+ enlarged as now we only need to ensure
193
+ z ≥ 0
194
+ 0.95 · 1 ≤ ¯v ≤ 1.05 · 1
195
+ and that ¯q are within the reactive power ratings of the DERs.
196
+ The PGD algorithm is an extension of gradient descent to
197
+ handle constraints and non-differentiable costs [5]. At iteration
198
+ t, PGD proceeds with two steps: s1) It first computes the gradi-
199
+ ent of the first two terms of F(z), that is Xqt+˜v−¯v = vt−¯v.
200
+ Here qt is the latest estimate of the minimizer of (2); s2) PGD
201
+ then updates qt+1 as the minimizer of
202
+ min
203
+ −¯q≤q≤¯q
204
+ 1
205
+ 2q⊤ dg−1(α)q + δ⊤|q| + 1
206
+ 2µ∥q − (vt − ¯v)∥2
207
+ 2 (4)
208
+ for a step size µ > 0. The last problem involves the last two
209
+ terms in the cost of (2) regularized by the Euclidean distance
210
+ of q to the gradient (vt − ¯v) computed in step s1).
211
+ Converting PGD to control rules, step s1) is performed by
212
+ the physics of the feeder when injecting qt and measuring
213
+ the local voltage deviations. Step s2) is run by each DER
214
+ independently as (4) is separable across buses. Using the
215
+ subdifferential, solving (4) provides the update [5]
216
+ yt
217
+ n = ˜αn ·
218
+
219
+ qt
220
+ n − µ(vt
221
+ n − ¯vn)
222
+
223
+ (5a)
224
+
225
+ fq
226
+ UA3
227
+ qt+1
228
+ n
229
+ = gn
230
+
231
+ yt
232
+ n
233
+
234
+ (5b)
235
+ where gn(yn) is the proximal operator
236
+ gn(yn) :=
237
+
238
+
239
+
240
+
241
+
242
+
243
+
244
+
245
+
246
+
247
+
248
+
249
+
250
+
251
+
252
+ +¯qn
253
+ , yn > qn + µ˜δn
254
+ yn − µ˜δn
255
+ , µ˜δn < yn ≤ qn + µ˜δn
256
+ 0
257
+ , − µ˜δn ≤ yn ≤ µ˜δn
258
+ yn + µ˜δn
259
+ , − qn − µ˜δn ≤ yn < −µ˜δn
260
+ −qn
261
+ , yn < −qn − µ˜δn.
262
+ (6)
263
+ and the new parameters (˜αn, ˜δn) are defined as
264
+ ˜αn :=
265
+ 1
266
+ 1 + µ/αn
267
+ and
268
+ ˜δn :=
269
+ δn
270
+ 1 + µ/αn
271
+ .
272
+ The proximal operator is plotted in the top panel of Figure 2.
273
+ Note that in (5), rule parameters are transformed from repre-
274
+ sentation z = (¯v, δ, α, ¯q) to representation ˜z := (¯v, ˜δ, ˜α, ¯q).
275
+ This is without loss of generality as the transformation is a
276
+ bijection, and so one can work exclusively with ˜z. The feasible
277
+ set ˜Z for ˜z is similar to Z with the addition that ˜α ≤ 1. As
278
+ with non-incremental rules, the rules in (6) are driven by local
279
+ data, but now qt+1
280
+ n
281
+ depends on (vt
282
+ n, qt
283
+ n), and not vt
284
+ n alone. Both
285
+ types of rules solve (2). Hence, they both converge to the same
286
+ equilibrium. The advantage of incremental rules is that they are
287
+ stable for all α as long as µ < 2/λmax(X); see [5]. It is worth
288
+ stressing that z does not have the same physical interpretation
289
+ as in non-incremental rules (slopes, deadband, or saturation),
290
+ though z parameterizes (2) for both rules.
291
+ Accelerated incremental rules. Although PGD rules en-
292
+ large Z, their settling times can be long. They reach an
293
+ ε-optimal cost of (2) within − 2 log ε
294
+ log 2 κ (X) iterations. Here
295
+ κ(X) := λmax(X)/λmin(X) is the condition number of
296
+ X. References [5], [16] put forth accelerated incremental
297
+ rules based on accelerated PGD (APGD). These rules need
298
+ − 2 log ε
299
+ log 2
300
+
301
+ κ (X) iterations to attain an ε-optimal cost, and take
302
+ the form
303
+ ˜yt
304
+ n := (1 + βt) yt
305
+ n − βtyt−1
306
+ n
307
+ (7a)
308
+ qt+1
309
+ n
310
+ := gn
311
+
312
+ ˜yt
313
+ n
314
+
315
+ (7b)
316
+ where βt := t−1
317
+ t+2, while yt
318
+ n and gn(yn) are as defined in (5a)
319
+ and (6). Updates (7) remain local, but introduce additional
320
+ memory as qt+1
321
+ n
322
+ depends on (vt
323
+ n, qt
324
+ n) and (vt−1
325
+ n
326
+ , qt−1
327
+ n
328
+ ).
329
+ III. DEEP LEARNING FOR OPTIMAL RULE DESIGN (ORD)
330
+ IN SINGLE-PHASE FEEDERS
331
+ Solving (ORD) is challenging as it is a nonconvex bilevel
332
+ program. Although it can be modeled as a mixed-integer
333
+ nonlinear program, such an approach does not scale well with
334
+ the number of DERs and/or scenarios for non-incremental
335
+ rules [13]. Seeking a more scalable solution, we reformulate
336
+ (ORD) as a deep learning task. The key idea is to design
337
+ a DNN that emulates Volt/VAR dynamics under the control
338
+ rule of (5). To this end, note that gn(yn) is a piecewise-
339
+ linear function with four breakpoints [5]. Interestingly, this
340
+ operator can be expressed as the superposition of four rectified
341
+ linear units (ReLUs) as illustrated in Fig. 2, where ReLUs are
342
+ denoted by ρ(·). The intercepts of the ReLUs depend linearly
343
+ on (˜δn, ¯qn).
344
+ Fig. 2. Proximal operator g(y) expressed as a sum of four shifted rectified
345
+ linear units (ReLUs).
346
+ Fig. 3.
347
+ A DNN emulating the accelerated incremental rules of (7). Plain
348
+ incremental rules can be modeled by dropping the second layer (setting βt =
349
+ 0) and ignoring output yt
350
+ n.
351
+ Building on this, one APGD iteration for DER n can be
352
+ implemented by the 4-layer DNN in Fig. 3, whose weights
353
+ depend affinely on (¯vn, ˜δn, ˜αn, ¯qn). This DNN takes (qt
354
+ n, vt
355
+ n)
356
+ as its input, and computes (qt+1
357
+ n
358
+ , yt
359
+ n) at its output. It is
360
+ termed ICn and will be used as a building block to emulate
361
+ Volt/VAR dynamics. This is accomplished by the recursive
362
+ neural network (RNN) shown in Fig. 4. Here blocks ICn are
363
+ arranged vertically to model the parallel operation of DERs.
364
+ Their outputs qt+1 are multiplied by X, and the new voltage
365
+ is computed as vt+1 = Xqt+1 + ˜v. This is repeated T times.
366
+ Thanks to the RNN structure, there is weight sharing, so the
367
+ number of DNN weights is 4N rather than 4NT.
368
+ The RNN takes a grid loading vector ˜vs as its input, the rule
369
+ parameters ˜z as weights, and computes the voltages vT
370
+ ˜z (˜vs)
371
+ at time T at its output. For the output vT
372
+ ˜z (˜vs) to approximate
373
+ well equilibrium voltages, the depth T can be chosen by the
374
+ convergence rate of PGD as follows.
375
+ Proposition 1. For the DNN of Fig. 4 to ensure ∥Φ (˜v; z) −
376
+ v∗(z)∥2 ≤ ϵ1 ∀ ˜v, its depth T should satisfy
377
+ T ≥
378
+ �κ − 1
379
+ 2
380
+
381
+ log
382
+ �2∥X∥2∥ˆq∥2
383
+ ϵ1
384
+
385
+ .
386
+ (8)
387
+
388
+ +qH
389
+ b+
390
+ qp
391
+ -uon
392
+
393
+ qn
394
+ t
395
+ p
396
+ t
397
+ p
398
+ -uon
399
+ p4
400
+ Fig. 4.
401
+ Recurrent neural network (RNN) implementation for accelerated
402
+ incremental Volt/VAR control rules.
403
+ Proof: From the control rule of (5b), it follows that
404
+ ∥qt − q∗∥2 = ∥g
405
+
406
+ yt�
407
+ − g (y∗) ∥2
408
+ ≤ ∥yt − y∗∥2
409
+ = ∥ dg(˜α)(I − µX)
410
+
411
+ qt−1 − q∗�
412
+ ∥2
413
+ ≤ ∥ dg(˜α)∥2 · ∥I − µX∥2 · ∥qt−1 − q∗∥2
414
+ ≤ ∥I − µX∥2 · ∥qt−1 − q∗∥2.
415
+ (9)
416
+ The first inequality stems from the non-expansive property of
417
+ the proximal operator g. The next equality follows from (5a).
418
+ The second inequality from the sub-multiplicative property of
419
+ the spectral norm. The last inequality follows by the definition
420
+ of spectral norm and because ˜αn ≤ 1 for all n.
421
+ If ∥I − µX∥2 < 1, inequality (9) implies that the dynamics
422
+ in (5) are a non-expansive mapping, and thus, are stable and
423
+ converge to q∗. Condition ∥I − µX∥2 < 1 holds when µ <
424
+ 2/λmax(X). The norm ∥I − µX∥2 achieves its minimum of
425
+
426
+ 1 −
427
+ 2
428
+ κ+1
429
+
430
+ when
431
+ µ0 :=
432
+ 2
433
+ λmax(X) + λmin(X).
434
+ Plugging µ0 into (9) and unfolding the dynamics over t
435
+ provides
436
+ ∥qt − q∗∥2 ≤
437
+
438
+ 1 −
439
+ 2
440
+ κ+1
441
+ �t
442
+ ∥q0 − q∗∥2
443
+ ≤ 2
444
+
445
+ 1 −
446
+ 2
447
+ κ+1
448
+ �t
449
+ ∥ˆq∥2.
450
+ For
451
+ the
452
+ voltage
453
+ approximation
454
+ error
455
+ ∥vT − v∗∥2
456
+ =
457
+ ∥X
458
+
459
+ qT − q∗�
460
+ ∥2 at time T to be smaller than ϵ1, we need
461
+ ∥vT − v∗∥2 ≤ 2∥X∥2 · ∥ˆq∥2 ·
462
+
463
+ 1 −
464
+ 2
465
+ κ + 1
466
+ �T
467
+ ≤ ϵ1.
468
+ This can be achieved by selecting T such that
469
+ T ≥
470
+ log
471
+
472
+ 2∥X∥2∥ˆq∥2
473
+ ϵ1
474
+
475
+ log
476
+
477
+ 1 +
478
+ 2
479
+ κ−1
480
+
481
+
482
+ �κ − 1
483
+ 2
484
+
485
+ log 2∥X∥2∥ˆq∥2
486
+ ϵ1
487
+ .
488
+ where the last inequality follows from log(1 + x) ≤ x.
489
+ Plugging the values ∥X∥2 = 0.463 and κ = 848 for the
490
+ IEEE 37-bus feeder, ∥ˆq∥2 = 0.1, and ϵ1 = 10−5 in (8), yields
491
+ T ≥ 2, 892 layers, which is relatively large. A key contributor
492
+ to this large T is the κ term in (8). This promulgates the
493
+ adoption of accelerated rules (7), which are known to have
494
+ O(√κ) dependence. Interestingly, during implementation, one
495
+ does not need to fix T to the above worst-case bounds.
496
+ Leveraging dynamic computation graphs offered by Python
497
+ libraries such as Pytorch, one may determine T ‘on the
498
+ fly’ depending on the convergence of vt between pairs of
499
+ successive layers.
500
+ Since the RNN emulates Volt/VAR dynamics, it can surro-
501
+ gate vz(˜vs) in (ORD). Then (ORD) can be posed as training
502
+ a DNN over its weights ˜z ∈
503
+ ˜Z or z ∈ Z. Grid loading
504
+ scenarios {˜vs}S
505
+ s=1 are treated as features and equilibrium
506
+ voltages vz(˜vs) as predictions that should be brought close to
507
+ the target value of 1 for scenarios s. The DNN can be trained
508
+ using stochastic projected gradient descent (SPGD) as [13]
509
+ ˜zi+1 =
510
+
511
+ ˜zi − λ
512
+ 2B ∇˜zi
513
+ � �
514
+ s∈Bi
515
+ ∥Φ(˜vs; ˜z) − 1∥2
516
+ 2
517
+ ��
518
+ ˜
519
+ Z
520
+ (10)
521
+ where λ > 0 is the learning rate; set Bi is a batch of
522
+ B scenarios; and [·] ˜
523
+ Z is the projection onto
524
+ ˜Z. Since
525
+ ˜Z
526
+ consists of simple box constraints, projection essentially means
527
+ clipping the values to the box. Lastly ∇˜zi(·) represents the
528
+ gradient with respect to ˜z evaluated at ˜z = ˜zi, and is
529
+ calculated efficiently thanks to gradient back-propagation.
530
+ Although our DNN-based ORD assumed PGD-based rule, it
531
+ may be applicable to other incremental rules too.
532
+ A discussion about control rules and their DNN-based
533
+ emulators is due. Recall that all three types of Volt/VAR
534
+ control rules (non-incremental, incremental, and accelerated
535
+ incremental) reach the same equilibrium voltages, if stable.
536
+ The emulators aim at computing these equilibrium voltages.
537
+ A natural question is whether the DNN emulator could im-
538
+ plement a rule of a type different from the rule actually
539
+ implemented on the feeder. This may be desirable to leverage
540
+ the advantages of two types. Some caution is needed here. If
541
+ the feeder implements non-incremental rules, but incremental
542
+ rules converge faster to equilibrium voltages, it makes sense
543
+ for the emulator to implement incremental rules. Of course,
544
+ in this case, stability constraints on the non-incremental rules
545
+ have to be enforced during DNN training. The reverse is not
546
+ recommended: If the emulator implements non-incremental
547
+ rules, its parameters z should be constrained to be stable and
548
+ that would be a restriction of the actual ORD problem. Finally,
549
+ given the convergence advantage of accelerated incremental
550
+ rules, they are always preferable over plain incremental rules
551
+ for the DNN implementation. This showcases the utility of
552
+ accelerated control rules even if they are not actually imple-
553
+ mented on the feeder.
554
+ IV. DEEP LEARNING FOR OPTIMAL RULE DESIGN (ORD)
555
+ IN MULTIPHASE FEEDERS
556
+ In multiphase feeders, matrix X is non-symmetric and has
557
+ both positive and negative entries. Therefore, the rule analysis
558
+ and design of Section III has to be revisited. For example,
559
+ equilibrium setpoints cannot be found as the minimizers of
560
+
561
+ IC1
562
+
563
+ q
564
+ t+1
565
+ q
566
+ IC2
567
+ t
568
+ -
569
+ t
570
+ t-1
571
+ IC N5
572
+ an optimization problem as with (2). Moreover, increasing q
573
+ does not mean that all voltages increase.
574
+ In multiphase feeders, the non-incremental rules of IEEE
575
+ Std. 1547 remain stable as long as ∥ dg(α)X∥2 < 1. This is
576
+ the same condition as in the single-phase setup. How about
577
+ the stability and equilibrium of incremental rules in multiphase
578
+ feeders? Recall that for single-phase rules, incremental rules
579
+ were obtained as the PGD iterations solving (2). Lacking an
580
+ equivalent inner optimization for multiphase feeders precludes
581
+ a similar approach here. Despite the incremental rules of (5)
582
+ do not correspond to PGD iterates anymore, they can still be
583
+ shown to be stable for multiphase feeders.
584
+ Proposition 2. Let UΛU⊤ be the eigen-decomposition of
585
+ matrix XX⊤. The incremental rules of (5) are stable for
586
+ multiphase feeders if their step size is selected as µ <
587
+ λmin
588
+
589
+ Λ−1/2U⊤ �
590
+ X + X⊤�
591
+ UΛ−1/2�
592
+ .
593
+ The claim follows readily by adopting the proof of Proposi-
594
+ tion 1: If µ is selected as above, then ∥I − µX∥2 < 1 follows
595
+ from [5, Prop. 6]. Similar to the single-phase case, incremental
596
+ rules in multiphase feeders allow us to enlarge the feasible
597
+ set Z of rule parameters z. It is worth stressing that different
598
+ from the single-phase setting, incremental and non-incremental
599
+ rules do not converge to the same equilibrium on multiphase
600
+ feeders.
601
+ The ORD task for multiphase feeders can also be formulated
602
+ as a deep-learning task, with some modifications. Firstly,
603
+ matrices R and X need to be altered. Secondly, the DNNs
604
+ for multiphase feeders have 12N trainable parameters, since
605
+ each layer consists of 3N building modules corresponding
606
+ to bus/phase (node) combinations. Lastly, the step size has
607
+ to be selected per Proposition 2. Adopting the proof of
608
+ Proposition 1, we next find the minimum DNN depth in
609
+ multiphase feeders.
610
+ Proposition 3. Let the DNN of Fig. 4 implement the incre-
611
+ mental rules of (5) on multiphase feeders with µ selected per
612
+ Proposition 2. The DNN depth T ensuring voltage approxi-
613
+ mation error ∥Φ (˜v; z) − v∗(z)∥2 ≤ ϵ1 is
614
+ T ≥
615
+ log
616
+ ϵ1
617
+ 2∥X∥2∥ˆq∥2
618
+ log ∥I − µX∥2
619
+ .
620
+ We next numerically evaluate the proposed DNN-based
621
+ ORD approach in single- and multiphase feeders, and contrast
622
+ the performance of incremental control rules with that of non-
623
+ incremental rules.
624
+ V. NUMERICAL TESTS
625
+ We benchmark the performance of DNN-based incremental
626
+ rules against non-incremental rules from [13] on single- and
627
+ multiphase feeders. Real-world data were sourced from the
628
+ Smart* project on April 2, 2011 [17], as explained in [13].
629
+ The DNNs were implemented and trained using Pytorch.
630
+ We first compare (non)-incremental rules, both designed
631
+ via DNN training for the single-phase IEEE 37-bus feeder
632
+ of Figure 5. Homes with IDs 20–369 were averaged 10
633
+ at a time and successively added as active loads to buses
634
+ 2–26 as shown in Fig. 6. Active generation from solar
635
+ Fig. 5.
636
+ The IEEE 37-bus feeder converted to single-phase. Node num-
637
+ bering follows the format node number {panel ID}. DERs at buses
638
+ {6, 9, 11, 12, 15, 16, 20, 22, 24, 25} provide reactive power control; the rest
639
+ operate at unit power factor.
640
+ TABLE I
641
+ INCREMENTAL VS. NON-INCREMENTAL VOLT/VAR CONTROL RULES ON
642
+ THE SINGLE-PHASE IEEE 37-BUS FEEDER
643
+ Time
644
+ q = 0
645
+ Non-incremental
646
+ Incremental
647
+ Obj. (p.u.)
648
+ Time (s)
649
+ Obj. (p.u.)
650
+ Time (s)
651
+ Obj. (p.u.)
652
+ 1 pm
653
+ 3.01 · 10−3
654
+ 37.98
655
+ 3.68 · 10−4
656
+ 39.39
657
+ 3.66 · 10−4
658
+ 2 pm
659
+ 3.13 · 10−3
660
+ 42.93
661
+ 4.26 · 10−4
662
+ 37.91
663
+ 4.25 · 10−4
664
+ 3 pm
665
+ 4.24 · 10−3
666
+ 45.02
667
+ 8.59 · 10−4
668
+ 34.97
669
+ 8.50 · 10−4
670
+ 4 pm
671
+ 2.12 · 10−3
672
+ 48.30
673
+ 1.47 · 10−4
674
+ 38.52
675
+ 1.48 · 10−4
676
+ 5 pm
677
+ 8.53 · 10−4
678
+ 47.37
679
+ 9.70 · 10−5
680
+ 374.01
681
+ 6.90 · 10−5
682
+ panels was also added, as per the mapping in Fig. 6.
683
+ Buses {6, 9, 11, 12, 15, 16, 20, 22, 24, 25} were assumed to
684
+ host DERs with Volt/VAR control customized per bus.
685
+ Incremental rules were simulated in their accelerated ren-
686
+ dition. Both sets of rules were trained over S = 80 scenarios
687
+ and 200 epochs with a learning rate of 0.001, using the
688
+ Adam optimizer, and setting µ = 1 for incremental rules. To
689
+ ensure repeatability, the results were repeated across several
690
+ time periods between 1–6 PM, and are compiled in Table V.
691
+ Incremental rules obtained marginally lower objectives than
692
+ non-incremental rules across all periods, with a somewhat
693
+ significant difference for the 5 PM period. This behavior is
694
+ explained because incremental rules allow for a larger set Z.
695
+ DNN-based incremental control rules were also contrasted
696
+ with their non-incremental ones on the multiphase IEEE 13-
697
+ bus feeder, using the testing setup from [13]. Active loads were
698
+ sampled 10 at a time from homes with IDs 20-379 and added
699
+ to all three phases for the buses 1-12. Figure 6 also shows the
700
+ solar panel assignments shown in Fig 6 for solar generation.
701
+ Lastly, nine DERs with inverters were added across phases
702
+ and bus indices as shown in Fig 6.
703
+ The learning rates for non-incremental and incremental
704
+ DNNs were set as 0.1 and 0.001, respectively, with the design
705
+
706
+ Z
707
+ Z
708
+ Z
709
+ Z
710
+ Z
711
+ Z6
712
+ Fig. 6. Multiphase IEEE 13-bus distribution feeder.
713
+ TABLE II
714
+ INCREMENTAL VS. NON-INCREMENTAL VOLT/VAR CONTROL RULES ON
715
+ THE MULTIPHASE IEEE 13-BUS FEEDER
716
+ Time
717
+ q = 0
718
+ Non-incremental
719
+ Incremental
720
+ Obj. (p.u.)
721
+ Time (s)
722
+ Obj. (p.u.)
723
+ Time (s)
724
+ Obj. (p.u.)
725
+ 1 pm
726
+ 2.51 · 10−3
727
+ 64.65
728
+ 1.15 · 10−3
729
+ 199.24
730
+ 4.11 · 10−4
731
+ 2 pm
732
+ 1.48 · 10−3
733
+ 66.60
734
+ 6.89 · 10−4
735
+ 209.92
736
+ 3.03 · 10−4
737
+ 3 pm
738
+ 6.89 · 10−4
739
+ 74.68
740
+ 4.94 · 10−4
741
+ 263.37
742
+ 2.16 · 10−4
743
+ 4 pm
744
+ 8.03 · 10−4
745
+ 68.32
746
+ 5.26 · 10−4
747
+ 126.81
748
+ 2.47 · 10−4
749
+ 5 pm
750
+ 5.51 · 10−4
751
+ 62.58
752
+ 4.11 · 10−4
753
+ 129.71
754
+ 1.95 · 10−4
755
+ parameters z := (¯v, δ, σ, α) initialized to feasible values
756
+ (0.95, 0.01, 0.3, 1.5). Table V compares the performance of
757
+ the two rule categories over multiple periods for S = 80.
758
+ While incremental rules took longer times to train, they were
759
+ successful in lowering the cost F(z) by more than 50%, thus
760
+ yielding improved voltage profiles across all periods.
761
+ VI. CONCLUSIONS
762
+ We have devised a DNN approach to optimally design
763
+ incremental Volt/VAR control rules for single- and multi-phase
764
+ feeders. The key idea is to construct a DNN that emulates
765
+ end-to-end the associated Volt/VAR dynamics. The DNN takes
766
+ grid conditions as the input, the rule parameters as weights,
767
+ and outputs the associated equilibrium voltages. Leveraging
768
+ the convergence rates of the related optimization algorithms,
769
+ we have provided bounds on the minimum depth of the
770
+ DNN emulator to approximate equilibrium voltages within the
771
+ desired accuracy. We have also established the stability of
772
+ incremental control rules for multiphase feeders. Numerical
773
+ tests have demonstrated that the designed control rules attain
774
+ improved voltage profiles compared to their non-incremental
775
+ alternatives. The improvement was found to be starker for
776
+ mutiphase feeders, wherein (non)-incremental rules do not
777
+ reach the same equilibrium. Our findings motivate further
778
+ research to possibly characterize the equilibria of control
779
+ rules for multiphase feeders; the convergence of accelerated
780
+ incremental rules for multiphase feeders; and to deal with
781
+ chance-constrained formulations or ORD problems targeting
782
+ phase imbalances.
783
+ REFERENCES
784
+ [1] IEEE Standard for Interconnection and Interoperability of DERs with
785
+ Associated Electric Power Systems Interfaces, IEEE Std., 2018.
786
+ [2] N. Li, G. Qu, and M. Dahleh, “Real-time decentralized voltage control in
787
+ distribution networks,” in Proc. Allerton Conf., Allerton, IL, Oct. 2014.
788
+ [3] M. Farivar, X. Zhou, and L. Chen, “Local voltage control in distribution
789
+ systems: An incremental control algorithm,” in Proc. IEEE Intl. Conf.
790
+ on Smart Grid Commun., Miami, FL, Nov. 2015.
791
+ [4] H. Zhu and H. J. Liu, “Fast local voltage control under limited reactive
792
+ power: Optimality and stability analysis,” IEEE Trans. Power Syst.,
793
+ vol. 31, no. 5, pp. 3794–3803, 2016.
794
+ [5] V. Kekatos, L. Zhang, G. B. Giannakis, and R. Baldick, “Voltage
795
+ regulation algorithms for multiphase power distribution grids,” IEEE
796
+ Trans. Power Syst., vol. 31, no. 5, pp. 3913–3923, Sep. 2016.
797
+ [6] G. Cavraro, S. Bolognani, R. Carli, and S. Zampieri, “The value of
798
+ communication in the voltage regulation problem,” in Proc. IEEE Conf.
799
+ on Decision and Control, 2016, pp. 5781–5786.
800
+ [7] M. Farivar, L. Chen, and S. Low, “Equilibrium and dynamics of local
801
+ voltage control in distribution systems,” in Proc. IEEE Conf. on Decision
802
+ and Control, Florence, Italy, Dec. 2013, pp. 4329–4334.
803
+ [8] X. Zhou, M. Farivar, Z. Liu, L. Chen, and S. H. Low, “Reverse and
804
+ forward engineering of local voltage control in distribution networks,”
805
+ IEEE Trans. Autom. Contr., vol. 66, no. 3, pp. 1116–1128, 2021.
806
+ [9] V. Calderaro, G. Conio, V. Galdi, G. Massa, and A. Piccolo, “Optimal
807
+ decentralized voltage control for distribution systems with inverter-based
808
+ distributed generators,” IEEE Trans. Power Syst., vol. 29, no. 1, pp. 230–
809
+ 241, Jan. 2014.
810
+ [10] A. Samadi, R. Eriksson, L. S¨oder, B. G. Rawn, and J. C. Boemer,
811
+ “Coordinated active power-dependent voltage regulation in distribution
812
+ grids with PV systems,” IEEE Trans. Power Del., vol. 29, no. 3, pp.
813
+ 1454–1464, Jun 2014.
814
+ [11] A. Singhal, V. Ajjarapu, J. Fuller, and J. Hansen, “Real-time local
815
+ Volt/Var control under external disturbances with high PV penetration,”
816
+ IEEE Trans. Smart Grid, vol. 10, no. 4, pp. 3849–3859, Jul. 2019.
817
+ [12] I. Murzakhanov, S. Gupta, S. Chatzivasileiadis, and V. Kekatos,
818
+ “Optimal design of Volt/VAR control rules for inverter-interfaced
819
+ distributed
820
+ energy
821
+ resources,”
822
+ IEEE
823
+ Trans.
824
+ Smart
825
+ Grid,
826
+ 2023,
827
+ (submitted). [Online]. Available: https://arxiv.org/abs/2210.12805
828
+ [13] S. Gupta, S. Chatzivasileiadis, and V. Kekatos, “Deep learning
829
+ for optimal Volt/VAR control using distributed energy resources,”
830
+ IEEE Trans. Smart Grid, 2023, (submitted). [Online]. Available:
831
+ http://arxiv.org/abs/2211.09557
832
+ [14] W. Cui, J. Li, and B. Zhang, “Decentralized safe reinforcement learning
833
+ for inverter-based voltage control,” Electric Power Systems Research,
834
+ vol. 211, p. 108609, 2022.
835
+ [15] S. Taheri, M. Jalali, V. Kekatos, and L. Tong, “Fast probabilistic hosting
836
+ capacity analysis for active distribution systems,” IEEE Trans. Smart
837
+ Grid, vol. 12, no. 3, pp. 2000–2012, May 2021.
838
+ [16] V. Kekatos, L. Zhang, G. B. Giannakis, and R. Baldick, “Accelerated
839
+ localized voltage regulation in single-phase distribution grids,” in Proc.
840
+ IEEE Intl. Conf. on Smart Grid Commun., Miami, FL, Nov. 2015.
841
+ [17] D. Chen, S. Iyengar, D. Irwin, and P. Shenoy, “Sunspot: Exposing the
842
+ location of anonymous solar-powered homes,” in ACM Intl. Conf. on
843
+ Systems for Energy-Efficient Built Environ., Palo Alto, CA, Nov. 2016.
844
+
845
+ 2280
846
+ 2340 2344
847
+ 106 116 119
848
+ 1574
849
+ 1577 1619
850
+ Z
851
+ 296 372 650
852
+ 734
853
+ 841 933
854
+ 3155
855
+ 3156 3188
856
+ 3877
857
+ 3888 3912
858
+ 1632
859
+ 1856 2150
860
+ 2844
861
+ 2940 2968
862
+ 2408
863
+ 2495 2500
864
+ 3552
865
+ 3741 3752
866
+ 2500
867
+ 2567 2764
0tAzT4oBgHgl3EQfevwc/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,504 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf,len=503
2
+ page_content='1 Scalable Optimal Design of Incremental Volt/VAR Control using Deep Neural Networks Sarthak Gupta, Graduate Student Member, IEEE, Ali Mehrizi-Sani, Senior Member, IEEE, Spyros Chatzivasileiadis, Senior Member, IEEE, and Vassilis Kekatos, Senior Member, IEEE Abstract—Volt/VAR control rules facilitate the autonomous operation of distributed energy resources (DER) to regulate voltage in power distribution grids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
3
+ page_content=' According to non-incremental control rules, such as the one mandated by the IEEE Standard 1547, the reactive power setpoint of each DER is computed as a piecewise-linear curve of the local voltage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
4
+ page_content=' However, the slopes of such curves are upper-bounded to ensure stability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
5
+ page_content=' On the other hand, incremental rules add a memory term into the setpoint update, rendering them universally stable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
6
+ page_content=' They can thus attain enhanced steady-state voltage profiles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
7
+ page_content=' Optimal rule design (ORD) for incremental rules can be formulated as a bilevel program.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
8
+ page_content=' We put forth a scalable solution by reformulating ORD as training a deep neural network (DNN).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
9
+ page_content=' This DNN emulates the Volt/VAR dynamics for incremental rules derived as iterations of proximal gradient descent (PGD).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
10
+ page_content=' The rule parameters appear as DNN weights.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
11
+ page_content=' To reduce the DNN depth, we leverage Nesterov’s accelerated PGD iterations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
12
+ page_content=' Analytical findings and numerical tests corroborate that the proposed ORD solution can be neatly adapted to single/multi-phase feeders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
13
+ page_content=' Index Terms—IEEE Standard 1547.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
14
+ page_content='8, incremental control rules, multiphase feeders, proximal gradients, gradient backprop- agation, deep neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
15
+ page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
16
+ page_content=' INTRODUCTION Local Volt/VAR (Volt-Ampere Reactive) control facilitates voltage regulation on distribution grids by providing reactive power compensation from DERs equipped with smart invert- ers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
17
+ page_content=' Different from centralized control schemes which incur large computational and communication burden, local rules decide DER setpoints based on local measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
18
+ page_content=' Volt/VAR control rules can be categorized into non-incremental and incremental ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
19
+ page_content=' The former compute DER reactive power setpoints based on local voltage readings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
20
+ page_content=' The IEEE Stan- dard 1547.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
21
+ page_content='8 prescribes such non-incremental control rules as piecewise-linear functions of voltage [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
22
+ page_content=' On the other hand, incremental Volt/VAR rules compute the change in VAR setpoints as a function of voltage [2]–[6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
23
+ page_content=' The existing literature on designing Volt/VAR control rules can be classified into stability- and optimality-centric works.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
24
+ page_content=' Stability-centric works study the effect of Volt/VAR rules as a closed-loop dynamical system, which may be rendered unsta- ble under steep slopes of non-incremental rules [7], [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
25
+ page_content=' In fact, to ensure stability, non-incremental rules may have to compro- mise on the quality of their steady-state voltage profile [5], [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
26
+ page_content=' Incremental rules however do not experience stability limitations and can thus achieve improved voltage profiles compared to their non-incremental counterparts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
27
+ page_content=' Nonetheless, such improvements may come at the expense of longer settling times of the associated Volt/VAR dynamics [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
28
+ page_content=' Optimality-centric works focus on designing stable control rules to minimize a voltage regulation objective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
29
+ page_content=' To this end, optimization-based strategies have been employed to design affine non-incremental rules using heuristics [9]–[11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
30
+ page_content=' Two of our recent works in [12] and [13] have addressed the problem of optimally designing the slope, deadband, saturation, and reference voltage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
31
+ page_content=' Reference [12] performs ORD via a bilevel optimization applicable to single-phase feeders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
32
+ page_content=' Reference [13] proposes DNN-based digital twins that emulate Volt/VAR dynamics, and reformulates ORD as a DNN training task for single-/multi-phase feeders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
33
+ page_content=' This letter deals with optimally selecting the shape of incremental Volt/VAR control rules, with contributions on three fronts: c1) Although this optimal rule design (ORD) task can be posed as a mixed-integer nonlinear optimization program, it does not scale well with the numbers of DERs, nodes, and grid loading scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
34
+ page_content=' To address this challenge, the genuine idea here is to reformulate ORD as a deep- learning task and judiciously adapt the fast software modules widely available for training deep neural networks (DNNs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
35
+ page_content=' We have put forth a similar approach for designing non- incremental control rules in [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
36
+ page_content=' However, migrating from non-incremental to incremental rules is non-trivial due to the different curve shapes, stability, and settling time properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
37
+ page_content=' c2) To further expedite ORD for incremental rules, we suggest implementing accelerated Nesterov-type variants of the rules to yield a shallower DNN emulator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
38
+ page_content=' c3) We also establish the convergence of incremental rules on multiphase feeders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
39
+ page_content=' Recently, reference [14] deals with the optimal design of incremental rules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
40
+ page_content=' It uses DNNs with a single hidden layer to model piecewise-linear functions and formulates ORD as a reinforcement learning task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
41
+ page_content=' While [14] also utilizes DNNs to design incremental rules, we delineate from it in several ways.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
42
+ page_content=' Reference [14] focuses on voltage control during tran- sient dynamics, whereas this work aims at ORD to drive steady-state voltages closer to unity and over different grid loading scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
43
+ page_content=' Reference [14] utilizes a DNN to model the piecewise-linear mapping of the rule.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
44
+ page_content=' In contrast, this work develops a DNN-based digital twin that emulates end- to-end Volt/VAR dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
45
+ page_content=' Lastly, we provide stability and convergence analysis for single- and multiphase feeders alike, whereas [14] applies only to single-phase feeders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
46
+ page_content=' The rest of this letter is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
47
+ page_content=' Section II models the feeder and discusses non-incremental and incre- mental Volt/VAR control rules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
48
+ page_content=' Section III formulates DNN- based digital twins for Volt/VAR dynamics of incremental rules, and their accelerated version.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
49
+ page_content=' It also presents ORD arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
50
+ page_content='01440v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
51
+ page_content='OC] 4 Jan 2023 2 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
52
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
53
+ page_content=' Non-incremental Volt/VAR control rule provisioned by the IEEE Std.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
54
+ page_content=' 1547 for the interconnection of DERs [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
55
+ page_content=' for single-phase feeders as a deep learning task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
56
+ page_content=' Section IV extends the ORD process to multiphase feeders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
57
+ page_content=' The incre- mental rules are then benchmarked against non-incremental rules from [13] using tests on real-world data, in Section V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
58
+ page_content=' The letter is concluded in Section VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
59
+ page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
60
+ page_content=' VOLT/VAR CONTROL RULES Consider a radial feeder serving N buses equipped with DERs, indexed by n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
61
+ page_content=' Let (qℓ, q) collect reactive loads and generations at all nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
62
+ page_content=' Vectors (p, v) collect the net active power injections and voltage magnitudes at all nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
63
+ page_content=' The impact of q on v can be approximately captured using the linearized grid model [13] v ≃ Xq + ˜v (1) where ˜v := Rp − Xqℓ + v01 models the underlying grid conditions, and v0 is the substation voltage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
64
+ page_content=' Vector ˜v rep- resents the impact of non-controlled quantities (p, qℓ) on voltages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
65
+ page_content=' Matrices (R, X) depend on the feeder topology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
66
+ page_content=' For single-phase feeders, they are symmetric positive definite with positive entries [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
67
+ page_content=' For multiphase feeders, they are non- symmetric and have positive and negative entries [5], [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
68
+ page_content=' Vector q in (1) carries the reactive injections by DERs we would like to control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
69
+ page_content=' Per the non-incremental rules of the IEEE Std.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
70
+ page_content=' 1547 [1], DER setpoints are decided based on the Volt/VAR curve of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
71
+ page_content=' 1, which is parameterized by (¯v, δ, σ, ¯q).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
72
+ page_content=' The standard further constrains these parameters within a polytopic feasible set [1], [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
73
+ page_content=' The negative slope of the linear segment of the curve in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
74
+ page_content=' 1 can be expressed as α := ¯q σ − δ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
75
+ page_content=' The interaction of Volt/VAR rules with the feeder gives rise to nonlinear dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
76
+ page_content=' These dynamics are stable if ∥ dg(α)X∥2 < 1, where dg(α) is a diagonal matrix carry- ing the rule slopes over all buses on its diagonal [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
77
+ page_content=' The equilibrium setpoints for DERs cannot be expressed in closed form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
78
+ page_content=' However, they coincide with the minimizer of the convex optimization problem [7] min −¯q≤q≤¯q 1 2q⊤Xq+q⊤(˜v−¯v)+ 1 2q⊤ dg−1(α)q+δ⊤|q| (2) where |q| applies the absolute value on q entrywise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
79
+ page_content=' Prob- lem (2) depends on rule parameters (¯v, δ, α, ¯q) across all buses, collected in the 4N-long vector z := (¯v, δ, α, ¯q).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
80
+ page_content=' We denote by qz(˜v) the equilibrium setpoints, and by vz(˜v) = Xqz(˜v) + ˜v (3) the related equilibrium voltages reached by Volt/VAR rules parameterized by z under grid conditions ˜v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
81
+ page_content=' Optimal rule design (ORD) can be stated as the task of selecting z to bring equilibrium voltages vz(˜v) close to unity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
82
+ page_content=' To cater to diverse conditions, the utility may sample loading scenarios {˜vs}S s=1 for the next hour, and find z as z∗ ∈ arg min z F(z) := 1 S S � s=1 ∥vz(˜vs) − 1∥2 2 (ORD) subject to (3) and z ∈ Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
83
+ page_content=' Once found, the customized rules z∗ are sent to DERs to operate autonomously over the next hour.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
84
+ page_content=' Note that vz(˜vs) depends on z because the equilibrium setpoints qz(vs) in (3) are the minimizers of problem (2), which is parameterized by z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
85
+ page_content=' When solving (ORD) for non-incremental rules, the feasible set Z consists of the polytopic constraints imposed on z by the IEEE Std.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
86
+ page_content=' 1547 as well as additional constraints on α to ensure ∥ dg(α)X∥2 < 1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
87
+ page_content=' see [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
88
+ page_content=' Therefore, the feasible set Z can be quite confined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
89
+ page_content=' This can lead to less desirable voltage profiles;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
90
+ page_content=' that is, higher objective values F(z∗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
91
+ page_content=' The aforesaid issue can be addressed by replacing the non- incremental Volt/VAR rules of IEEE Std.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
92
+ page_content=' 1547 by incremental ones as suggested in [2]–[6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
93
+ page_content=' Incremental rules express the change rather than the actual value in setpoints as a function of voltage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
94
+ page_content=' One option for incremental rules is to implement a proximal gradient descent (PGD) algorithm solving (2) as proposed in [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
95
+ page_content=' In this case, the control rule coincides with the PGD iterations, which are implemented by DERs in a decentralized fashion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
96
+ page_content=' Using incremental rules, set Z is enlarged as now we only need to ensure z ≥ 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
97
+ page_content='95 · 1 ≤ ¯v ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
98
+ page_content='05 · 1 and that ¯q are within the reactive power ratings of the DERs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
99
+ page_content=' The PGD algorithm is an extension of gradient descent to handle constraints and non-differentiable costs [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
100
+ page_content=' At iteration t, PGD proceeds with two steps: s1) It first computes the gradi- ent of the first two terms of F(z), that is Xqt+˜v−¯v = vt−¯v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
101
+ page_content=' Here qt is the latest estimate of the minimizer of (2);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
102
+ page_content=' s2) PGD then updates qt+1 as the minimizer of min −¯q≤q≤¯q 1 2q⊤ dg−1(α)q + δ⊤|q| + 1 2µ∥q − (vt − ¯v)∥2 2 (4) for a step size µ > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
103
+ page_content=' The last problem involves the last two terms in the cost of (2) regularized by the Euclidean distance of q to the gradient (vt − ¯v) computed in step s1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
104
+ page_content=' Converting PGD to control rules, step s1) is performed by the physics of the feeder when injecting qt and measuring the local voltage deviations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
105
+ page_content=' Step s2) is run by each DER independently as (4) is separable across buses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
106
+ page_content=' Using the subdifferential, solving (4) provides the update [5] yt n = ˜αn · � qt n − µ(vt n − ¯vn) � (5a) fq UA3 qt+1 n = gn � yt n � (5b) where gn(yn) is the proximal operator gn(yn) := � � � � � � � � � � � � � � � +¯qn , yn > qn + µ˜δn yn − µ˜δn , µ˜δn < yn ≤ qn + µ˜δn 0 , − µ˜δn ≤ yn ≤ µ˜δn yn + µ˜δn , − qn − µ˜δn ≤ yn < −µ˜δn −qn , yn < −qn − µ˜δn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
107
+ page_content=' (6) and the new parameters (˜αn, ˜δn) are defined as ˜αn := 1 1 + µ/αn and ˜δn := δn 1 + µ/αn .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
108
+ page_content=' The proximal operator is plotted in the top panel of Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
109
+ page_content=' Note that in (5), rule parameters are transformed from repre- sentation z = (¯v, δ, α, ¯q) to representation ˜z := (¯v, ˜δ, ˜α, ¯q).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
110
+ page_content=' This is without loss of generality as the transformation is a bijection, and so one can work exclusively with ˜z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
111
+ page_content=' The feasible set ˜Z for ˜z is similar to Z with the addition that ˜α ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
112
+ page_content=' As with non-incremental rules, the rules in (6) are driven by local data, but now qt+1 n depends on (vt n, qt n), and not vt n alone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
113
+ page_content=' Both types of rules solve (2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
114
+ page_content=' Hence, they both converge to the same equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
115
+ page_content=' The advantage of incremental rules is that they are stable for all α as long as µ < 2/λmax(X);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
116
+ page_content=' see [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
117
+ page_content=' It is worth stressing that z does not have the same physical interpretation as in non-incremental rules (slopes, deadband, or saturation), though z parameterizes (2) for both rules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
118
+ page_content=' Accelerated incremental rules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
119
+ page_content=' Although PGD rules en- large Z, their settling times can be long.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
120
+ page_content=' They reach an ε-optimal cost of (2) within − 2 log ε log 2 κ (X) iterations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
121
+ page_content=' Here κ(X) := λmax(X)/λmin(X) is the condition number of X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
122
+ page_content=' References [5], [16] put forth accelerated incremental rules based on accelerated PGD (APGD).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
123
+ page_content=' These rules need − 2 log ε log 2 � κ (X) iterations to attain an ε-optimal cost, and take the form ˜yt n := (1 + βt) yt n − βtyt−1 n (7a) qt+1 n := gn � ˜yt n � (7b) where βt := t−1 t+2, while yt n and gn(yn) are as defined in (5a) and (6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
124
+ page_content=' Updates (7) remain local, but introduce additional memory as qt+1 n depends on (vt n, qt n) and (vt−1 n , qt−1 n ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
125
+ page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
126
+ page_content=' DEEP LEARNING FOR OPTIMAL RULE DESIGN (ORD) IN SINGLE-PHASE FEEDERS Solving (ORD) is challenging as it is a nonconvex bilevel program.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
127
+ page_content=' Although it can be modeled as a mixed-integer nonlinear program, such an approach does not scale well with the number of DERs and/or scenarios for non-incremental rules [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
128
+ page_content=' Seeking a more scalable solution, we reformulate (ORD) as a deep learning task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
129
+ page_content=' The key idea is to design a DNN that emulates Volt/VAR dynamics under the control rule of (5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
130
+ page_content=' To this end, note that gn(yn) is a piecewise- linear function with four breakpoints [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
131
+ page_content=' Interestingly, this operator can be expressed as the superposition of four rectified linear units (ReLUs) as illustrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
132
+ page_content=' 2, where ReLUs are denoted by ρ(·).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
133
+ page_content=' The intercepts of the ReLUs depend linearly on (˜δn, ¯qn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
134
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
135
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
136
+ page_content=' Proximal operator g(y) expressed as a sum of four shifted rectified linear units (ReLUs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
137
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
138
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
139
+ page_content=' A DNN emulating the accelerated incremental rules of (7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
140
+ page_content=' Plain incremental rules can be modeled by dropping the second layer (setting βt = 0) and ignoring output yt n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
141
+ page_content=' Building on this, one APGD iteration for DER n can be implemented by the 4-layer DNN in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
142
+ page_content=' 3, whose weights depend affinely on (¯vn, ˜δn, ˜αn, ¯qn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
143
+ page_content=' This DNN takes (qt n, vt n) as its input, and computes (qt+1 n , yt n) at its output.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
144
+ page_content=' It is termed ICn and will be used as a building block to emulate Volt/VAR dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
145
+ page_content=' This is accomplished by the recursive neural network (RNN) shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
146
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
147
+ page_content=' Here blocks ICn are arranged vertically to model the parallel operation of DERs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
148
+ page_content=' Their outputs qt+1 are multiplied by X, and the new voltage is computed as vt+1 = Xqt+1 + ˜v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
149
+ page_content=' This is repeated T times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
150
+ page_content=' Thanks to the RNN structure, there is weight sharing, so the number of DNN weights is 4N rather than 4NT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
151
+ page_content=' The RNN takes a grid loading vector ˜vs as its input, the rule parameters ˜z as weights, and computes the voltages vT ˜z (˜vs) at time T at its output.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
152
+ page_content=' For the output vT ˜z (˜vs) to approximate well equilibrium voltages, the depth T can be chosen by the convergence rate of PGD as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
153
+ page_content=' Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
154
+ page_content=' For the DNN of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
155
+ page_content=' 4 to ensure ∥Φ (˜v;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
156
+ page_content=' z) − v∗(z)∥2 ≤ ϵ1 ∀ ˜v, its depth T should satisfy T ≥ �κ − 1 2 � log �2∥X∥2∥ˆq∥2 ϵ1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
157
+ page_content=' (8) +qH b+ qp uon 一 qn t p t p uon p4 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
158
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
159
+ page_content=' Recurrent neural network (RNN) implementation for accelerated incremental Volt/VAR control rules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
160
+ page_content=' Proof: From the control rule of (5b), it follows that ∥qt − q∗∥2 = ∥g � yt� − g (y∗) ∥2 ≤ ∥yt − y∗∥2 = ∥ dg(˜α)(I − µX) � qt−1 − q∗� ∥2 ≤ ∥ dg(˜α)∥2 · ∥I − µX∥2 · ∥qt−1 − q∗∥2 ≤ ∥I − µX∥2 · ∥qt−1 − q∗∥2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
161
+ page_content=' (9) The first inequality stems from the non-expansive property of the proximal operator g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
162
+ page_content=' The next equality follows from (5a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
163
+ page_content=' The second inequality from the sub-multiplicative property of the spectral norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
164
+ page_content=' The last inequality follows by the definition of spectral norm and because ˜αn ≤ 1 for all n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
165
+ page_content=' If ∥I − µX∥2 < 1, inequality (9) implies that the dynamics in (5) are a non-expansive mapping, and thus, are stable and converge to q∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
166
+ page_content=' Condition ∥I − µX∥2 < 1 holds when µ < 2/λmax(X).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
167
+ page_content=' The norm ∥I − µX∥2 achieves its minimum of � 1 − 2 κ+1 � when µ0 := 2 λmax(X) + λmin(X).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
168
+ page_content=' Plugging µ0 into (9) and unfolding the dynamics over t provides ∥qt − q∗∥2 ≤ � 1 − 2 κ+1 �t ∥q0 − q∗∥2 ≤ 2 � 1 − 2 κ+1 �t ∥ˆq∥2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
169
+ page_content=' For the voltage approximation error ∥vT − v∗∥2 = ∥X � qT − q∗� ∥2 at time T to be smaller than ϵ1, we need ∥vT − v∗∥2 ≤ 2∥X∥2 · ∥ˆq∥2 · � 1 − 2 κ + 1 �T ≤ ϵ1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
170
+ page_content=' This can be achieved by selecting T such that T ≥ log � 2∥X∥2∥ˆq∥2 ϵ1 � log � 1 + 2 κ−1 � ≥ �κ − 1 2 � log 2∥X∥2∥ˆq∥2 ϵ1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
171
+ page_content=' where the last inequality follows from log(1 + x) ≤ x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
172
+ page_content=' Plugging the values ∥X∥2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
173
+ page_content='463 and κ = 848 for the IEEE 37-bus feeder, ∥ˆq∥2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
174
+ page_content='1, and ϵ1 = 10−5 in (8), yields T ≥ 2, 892 layers, which is relatively large.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
175
+ page_content=' A key contributor to this large T is the κ term in (8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
176
+ page_content=' This promulgates the adoption of accelerated rules (7), which are known to have O(√κ) dependence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
177
+ page_content=' Interestingly, during implementation, one does not need to fix T to the above worst-case bounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
178
+ page_content=' Leveraging dynamic computation graphs offered by Python libraries such as Pytorch, one may determine T ‘on the fly’ depending on the convergence of vt between pairs of successive layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
179
+ page_content=' Since the RNN emulates Volt/VAR dynamics, it can surro- gate vz(˜vs) in (ORD).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
180
+ page_content=' Then (ORD) can be posed as training a DNN over its weights ˜z ∈ ˜Z or z ∈ Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
181
+ page_content=' Grid loading scenarios {˜vs}S s=1 are treated as features and equilibrium voltages vz(˜vs) as predictions that should be brought close to the target value of 1 for scenarios s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
182
+ page_content=' The DNN can be trained using stochastic projected gradient descent (SPGD) as [13] ˜zi+1 = � ˜zi − λ 2B ∇˜zi � � s∈Bi ∥Φ(˜vs;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
183
+ page_content=' ˜z) − 1∥2 2 �� ˜ Z (10) where λ > 0 is the learning rate;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
184
+ page_content=' set Bi is a batch of B scenarios;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
185
+ page_content=' and [·] ˜ Z is the projection onto ˜Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
186
+ page_content=' Since ˜Z consists of simple box constraints, projection essentially means clipping the values to the box.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
187
+ page_content=' Lastly ∇˜zi(·) represents the gradient with respect to ˜z evaluated at ˜z = ˜zi, and is calculated efficiently thanks to gradient back-propagation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
188
+ page_content=' Although our DNN-based ORD assumed PGD-based rule, it may be applicable to other incremental rules too.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
189
+ page_content=' A discussion about control rules and their DNN-based emulators is due.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
190
+ page_content=' Recall that all three types of Volt/VAR control rules (non-incremental, incremental, and accelerated incremental) reach the same equilibrium voltages, if stable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
191
+ page_content=' The emulators aim at computing these equilibrium voltages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
192
+ page_content=' A natural question is whether the DNN emulator could im- plement a rule of a type different from the rule actually implemented on the feeder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
193
+ page_content=' This may be desirable to leverage the advantages of two types.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
194
+ page_content=' Some caution is needed here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
195
+ page_content=' If the feeder implements non-incremental rules, but incremental rules converge faster to equilibrium voltages, it makes sense for the emulator to implement incremental rules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
196
+ page_content=' Of course, in this case, stability constraints on the non-incremental rules have to be enforced during DNN training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
197
+ page_content=' The reverse is not recommended: If the emulator implements non-incremental rules, its parameters z should be constrained to be stable and that would be a restriction of the actual ORD problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
198
+ page_content=' Finally, given the convergence advantage of accelerated incremental rules, they are always preferable over plain incremental rules for the DNN implementation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
199
+ page_content=' This showcases the utility of accelerated control rules even if they are not actually imple- mented on the feeder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
200
+ page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
201
+ page_content=' DEEP LEARNING FOR OPTIMAL RULE DESIGN (ORD) IN MULTIPHASE FEEDERS In multiphase feeders, matrix X is non-symmetric and has both positive and negative entries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
202
+ page_content=' Therefore, the rule analysis and design of Section III has to be revisited.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
203
+ page_content=' For example, equilibrium setpoints cannot be found as the minimizers of IC1 七 q t+1 q IC2 t t t-1 IC N5 an optimization problem as with (2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
204
+ page_content=' Moreover, increasing q does not mean that all voltages increase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
205
+ page_content=' In multiphase feeders, the non-incremental rules of IEEE Std.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
206
+ page_content=' 1547 remain stable as long as ∥ dg(α)X∥2 < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
207
+ page_content=' This is the same condition as in the single-phase setup.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
208
+ page_content=' How about the stability and equilibrium of incremental rules in multiphase feeders?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
209
+ page_content=' Recall that for single-phase rules, incremental rules were obtained as the PGD iterations solving (2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
210
+ page_content=' Lacking an equivalent inner optimization for multiphase feeders precludes a similar approach here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
211
+ page_content=' Despite the incremental rules of (5) do not correspond to PGD iterates anymore, they can still be shown to be stable for multiphase feeders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
212
+ page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
213
+ page_content=' Let UΛU⊤ be the eigen-decomposition of matrix XX⊤.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
214
+ page_content=' The incremental rules of (5) are stable for multiphase feeders if their step size is selected as µ < λmin � Λ−1/2U⊤ � X + X⊤� UΛ−1/2� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
215
+ page_content=' The claim follows readily by adopting the proof of Proposi- tion 1: If µ is selected as above, then ∥I − µX∥2 < 1 follows from [5, Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
216
+ page_content=' 6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
217
+ page_content=' Similar to the single-phase case, incremental rules in multiphase feeders allow us to enlarge the feasible set Z of rule parameters z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
218
+ page_content=' It is worth stressing that different from the single-phase setting, incremental and non-incremental rules do not converge to the same equilibrium on multiphase feeders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
219
+ page_content=' The ORD task for multiphase feeders can also be formulated as a deep-learning task, with some modifications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
220
+ page_content=' Firstly, matrices R and X need to be altered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
221
+ page_content=' Secondly, the DNNs for multiphase feeders have 12N trainable parameters, since each layer consists of 3N building modules corresponding to bus/phase (node) combinations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
222
+ page_content=' Lastly, the step size has to be selected per Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
223
+ page_content=' Adopting the proof of Proposition 1, we next find the minimum DNN depth in multiphase feeders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
224
+ page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
225
+ page_content=' Let the DNN of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
226
+ page_content=' 4 implement the incre- mental rules of (5) on multiphase feeders with µ selected per Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
227
+ page_content=' The DNN depth T ensuring voltage approxi- mation error ∥Φ (˜v;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
228
+ page_content=' z) − v∗(z)∥2 ≤ ϵ1 is T ≥ log ϵ1 2∥X∥2∥ˆq∥2 log ∥I − µX∥2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
229
+ page_content=' We next numerically evaluate the proposed DNN-based ORD approach in single- and multiphase feeders, and contrast the performance of incremental control rules with that of non- incremental rules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
230
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
231
+ page_content=' NUMERICAL TESTS We benchmark the performance of DNN-based incremental rules against non-incremental rules from [13] on single- and multiphase feeders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
232
+ page_content=' Real-world data were sourced from the Smart* project on April 2, 2011 [17], as explained in [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
233
+ page_content=' The DNNs were implemented and trained using Pytorch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
234
+ page_content=' We first compare (non)-incremental rules, both designed via DNN training for the single-phase IEEE 37-bus feeder of Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
235
+ page_content=' Homes with IDs 20–369 were averaged 10 at a time and successively added as active loads to buses 2–26 as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
236
+ page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
237
+ page_content=' Active generation from solar Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
238
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
239
+ page_content=' The IEEE 37-bus feeder converted to single-phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
240
+ page_content=' Node num- bering follows the format node number {panel ID}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
241
+ page_content=' DERs at buses {6, 9, 11, 12, 15, 16, 20, 22, 24, 25} provide reactive power control;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
242
+ page_content=' the rest operate at unit power factor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
243
+ page_content=' TABLE I INCREMENTAL VS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
244
+ page_content=' NON-INCREMENTAL VOLT/VAR CONTROL RULES ON THE SINGLE-PHASE IEEE 37-BUS FEEDER Time q = 0 Non-incremental Incremental Obj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
245
+ page_content=' (p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
246
+ page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
247
+ page_content=') Time (s) Obj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
248
+ page_content=' (p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
249
+ page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
250
+ page_content=') Time (s) Obj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
251
+ page_content=' (p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
252
+ page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
253
+ page_content=') 1 pm 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
254
+ page_content='01 · 10−3 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
255
+ page_content='98 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
256
+ page_content='68 · 10−4 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
257
+ page_content='39 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
258
+ page_content='66 · 10−4 2 pm 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
259
+ page_content='13 · 10−3 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
260
+ page_content='93 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
261
+ page_content='26 · 10−4 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
262
+ page_content='91 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
263
+ page_content='25 · 10−4 3 pm 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
264
+ page_content='24 · 10−3 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
265
+ page_content='02 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
266
+ page_content='59 · 10−4 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
267
+ page_content='97 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
268
+ page_content='50 · 10−4 4 pm 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
269
+ page_content='12 · 10−3 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
270
+ page_content='30 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
271
+ page_content='47 · 10−4 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
272
+ page_content='52 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
273
+ page_content='48 · 10−4 5 pm 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
274
+ page_content='53 · 10−4 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
275
+ page_content='37 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
276
+ page_content='70 · 10−5 374.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
277
+ page_content='01 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
278
+ page_content='90 · 10−5 panels was also added, as per the mapping in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
279
+ page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
280
+ page_content=' Buses {6, 9, 11, 12, 15, 16, 20, 22, 24, 25} were assumed to host DERs with Volt/VAR control customized per bus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
281
+ page_content=' Incremental rules were simulated in their accelerated ren- dition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
282
+ page_content=' Both sets of rules were trained over S = 80 scenarios and 200 epochs with a learning rate of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
283
+ page_content='001, using the Adam optimizer, and setting µ = 1 for incremental rules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
284
+ page_content=' To ensure repeatability, the results were repeated across several time periods between 1–6 PM, and are compiled in Table V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
285
+ page_content=' Incremental rules obtained marginally lower objectives than non-incremental rules across all periods, with a somewhat significant difference for the 5 PM period.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
286
+ page_content=' This behavior is explained because incremental rules allow for a larger set Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
287
+ page_content=' DNN-based incremental control rules were also contrasted with their non-incremental ones on the multiphase IEEE 13- bus feeder, using the testing setup from [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
288
+ page_content=' Active loads were sampled 10 at a time from homes with IDs 20-379 and added to all three phases for the buses 1-12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
289
+ page_content=' Figure 6 also shows the solar panel assignments shown in Fig 6 for solar generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
290
+ page_content=' Lastly, nine DERs with inverters were added across phases and bus indices as shown in Fig 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
291
+ page_content=' The learning rates for non-incremental and incremental DNNs were set as 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
292
+ page_content='1 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
293
+ page_content='001, respectively, with the design Z Z Z Z Z Z6 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
294
+ page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
295
+ page_content=' Multiphase IEEE 13-bus distribution feeder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
296
+ page_content=' TABLE II INCREMENTAL VS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
297
+ page_content=' NON-INCREMENTAL VOLT/VAR CONTROL RULES ON THE MULTIPHASE IEEE 13-BUS FEEDER Time q = 0 Non-incremental Incremental Obj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
298
+ page_content=' (p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
299
+ page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
300
+ page_content=') Time (s) Obj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
301
+ page_content=' (p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
302
+ page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
303
+ page_content=') Time (s) Obj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
304
+ page_content=' (p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
305
+ page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
306
+ page_content=') 1 pm 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
307
+ page_content='51 · 10−3 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
308
+ page_content='65 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
309
+ page_content='15 · 10−3 199.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
310
+ page_content='24 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
311
+ page_content='11 · 10−4 2 pm 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
312
+ page_content='48 · 10−3 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
313
+ page_content='60 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
314
+ page_content='89 · 10−4 209.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
315
+ page_content='92 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
316
+ page_content='03 · 10−4 3 pm 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
317
+ page_content='89 · 10−4 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
318
+ page_content='68 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
319
+ page_content='94 · 10−4 263.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
320
+ page_content='37 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
321
+ page_content='16 · 10−4 4 pm 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
322
+ page_content='03 · 10−4 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
323
+ page_content='32 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
324
+ page_content='26 · 10−4 126.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
325
+ page_content='81 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
326
+ page_content='47 · 10−4 5 pm 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
327
+ page_content='51 · 10−4 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
328
+ page_content='58 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
329
+ page_content='11 · 10−4 129.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
330
+ page_content='71 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
331
+ page_content='95 · 10−4 parameters z := (¯v, δ, σ, α) initialized to feasible values (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
332
+ page_content='95, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
333
+ page_content='01, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
334
+ page_content='3, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
335
+ page_content='5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
336
+ page_content=' Table V compares the performance of the two rule categories over multiple periods for S = 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
337
+ page_content=' While incremental rules took longer times to train, they were successful in lowering the cost F(z) by more than 50%, thus yielding improved voltage profiles across all periods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
338
+ page_content=' VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
339
+ page_content=' CONCLUSIONS We have devised a DNN approach to optimally design incremental Volt/VAR control rules for single- and multi-phase feeders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
340
+ page_content=' The key idea is to construct a DNN that emulates end-to-end the associated Volt/VAR dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
341
+ page_content=' The DNN takes grid conditions as the input, the rule parameters as weights, and outputs the associated equilibrium voltages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
342
+ page_content=' Leveraging the convergence rates of the related optimization algorithms, we have provided bounds on the minimum depth of the DNN emulator to approximate equilibrium voltages within the desired accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
343
+ page_content=' We have also established the stability of incremental control rules for multiphase feeders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
344
+ page_content=' Numerical tests have demonstrated that the designed control rules attain improved voltage profiles compared to their non-incremental alternatives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
345
+ page_content=' The improvement was found to be starker for mutiphase feeders, wherein (non)-incremental rules do not reach the same equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
346
+ page_content=' Our findings motivate further research to possibly characterize the equilibria of control rules for multiphase feeders;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
347
+ page_content=' the convergence of accelerated incremental rules for multiphase feeders;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
348
+ page_content=' and to deal with chance-constrained formulations or ORD problems targeting phase imbalances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
349
+ page_content=' REFERENCES [1] IEEE Standard for Interconnection and Interoperability of DERs with Associated Electric Power Systems Interfaces, IEEE Std.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
350
+ page_content=', 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
351
+ page_content=' [2] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
352
+ page_content=' Li, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
353
+ page_content=' Qu, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
354
+ page_content=' Dahleh, “Real-time decentralized voltage control in distribution networks,” in Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
355
+ page_content=' Allerton Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
356
+ page_content=', Allerton, IL, Oct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
357
+ page_content=' 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
358
+ page_content=' [3] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
359
+ page_content=' Farivar, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
360
+ page_content=' Zhou, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
361
+ page_content=' Chen, “Local voltage control in distribution systems: An incremental control algorithm,” in Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
362
+ page_content=' IEEE Intl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
363
+ page_content=' Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
364
+ page_content=' on Smart Grid Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
365
+ page_content=', Miami, FL, Nov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
366
+ page_content=' 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
367
+ page_content=' [4] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
368
+ page_content=' Zhu and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
369
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
370
+ page_content=' Liu, “Fast local voltage control under limited reactive power: Optimality and stability analysis,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
371
+ page_content=' Power Syst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
372
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
373
+ page_content=' 31, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
374
+ page_content=' 5, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
375
+ page_content=' 3794–3803, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
376
+ page_content=' [5] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
377
+ page_content=' Kekatos, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
378
+ page_content=' Zhang, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
379
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
380
+ page_content=' Giannakis, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
381
+ page_content=' Baldick, “Voltage regulation algorithms for multiphase power distribution grids,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
382
+ page_content=' Power Syst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
383
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
384
+ page_content=' 31, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
385
+ page_content=' 5, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
386
+ page_content=' 3913–3923, Sep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
387
+ page_content=' 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
388
+ page_content=' [6] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
389
+ page_content=' Cavraro, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
390
+ page_content=' Bolognani, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
391
+ page_content=' Carli, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
392
+ page_content=' Zampieri, “The value of communication in the voltage regulation problem,” in Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
393
+ page_content=' IEEE Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
394
+ page_content=' on Decision and Control, 2016, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
395
+ page_content=' 5781–5786.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
396
+ page_content=' [7] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
397
+ page_content=' Farivar, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
398
+ page_content=' Chen, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
399
+ page_content=' Low, “Equilibrium and dynamics of local voltage control in distribution systems,” in Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
400
+ page_content=' IEEE Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
401
+ page_content=' on Decision and Control, Florence, Italy, Dec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
402
+ page_content=' 2013, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
403
+ page_content=' 4329–4334.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
404
+ page_content=' [8] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
405
+ page_content=' Zhou, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
406
+ page_content=' Farivar, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
407
+ page_content=' Liu, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
408
+ page_content=' Chen, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
409
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
410
+ page_content=' Low, “Reverse and forward engineering of local voltage control in distribution networks,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
411
+ page_content=' Autom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
412
+ page_content=' Contr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
413
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
414
+ page_content=' 66, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
415
+ page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
416
+ page_content=' 1116–1128, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
417
+ page_content=' [9] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
418
+ page_content=' Calderaro, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
419
+ page_content=' Conio, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
420
+ page_content=' Galdi, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
421
+ page_content=' Massa, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
422
+ page_content=' Piccolo, “Optimal decentralized voltage control for distribution systems with inverter-based distributed generators,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
423
+ page_content=' Power Syst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
424
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
425
+ page_content=' 29, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
426
+ page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
427
+ page_content=' 230– 241, Jan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
428
+ page_content=' 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
429
+ page_content=' [10] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
430
+ page_content=' Samadi, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
431
+ page_content=' Eriksson, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
432
+ page_content=' S¨oder, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
433
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
434
+ page_content=' Rawn, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
435
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
436
+ page_content=' Boemer, “Coordinated active power-dependent voltage regulation in distribution grids with PV systems,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
437
+ page_content=' Power Del.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
438
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
439
+ page_content=' 29, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
440
+ page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
441
+ page_content=' 1454–1464, Jun 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
442
+ page_content=' [11] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
443
+ page_content=' Singhal, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
444
+ page_content=' Ajjarapu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
445
+ page_content=' Fuller, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
446
+ page_content=' Hansen, “Real-time local Volt/Var control under external disturbances with high PV penetration,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
447
+ page_content=' Smart Grid, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
448
+ page_content=' 10, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
449
+ page_content=' 4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
450
+ page_content=' 3849–3859, Jul.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
451
+ page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
452
+ page_content=' [12] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
453
+ page_content=' Murzakhanov, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
454
+ page_content=' Gupta, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
455
+ page_content=' Chatzivasileiadis, and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
456
+ page_content=' Kekatos, “Optimal design of Volt/VAR control rules for inverter-interfaced distributed energy resources,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
457
+ page_content=' Smart Grid, 2023, (submitted).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
458
+ page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
459
+ page_content=' Available: https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
460
+ page_content='org/abs/2210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
461
+ page_content='12805 [13] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
462
+ page_content=' Gupta, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
463
+ page_content=' Chatzivasileiadis, and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
464
+ page_content=' Kekatos, “Deep learning for optimal Volt/VAR control using distributed energy resources,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
465
+ page_content=' Smart Grid, 2023, (submitted).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
466
+ page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
467
+ page_content=' Available: http://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
468
+ page_content='org/abs/2211.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
469
+ page_content='09557 [14] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
470
+ page_content=' Cui, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
471
+ page_content=' Li, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
472
+ page_content=' Zhang, “Decentralized safe reinforcement learning for inverter-based voltage control,” Electric Power Systems Research, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
473
+ page_content=' 211, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
474
+ page_content=' 108609, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
475
+ page_content=' [15] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
476
+ page_content=' Taheri, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
477
+ page_content=' Jalali, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
478
+ page_content=' Kekatos, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
479
+ page_content=' Tong, “Fast probabilistic hosting capacity analysis for active distribution systems,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
480
+ page_content=' Smart Grid, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
481
+ page_content=' 12, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
482
+ page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
483
+ page_content=' 2000–2012, May 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
484
+ page_content=' [16] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
485
+ page_content=' Kekatos, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
486
+ page_content=' Zhang, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
487
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
488
+ page_content=' Giannakis, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
489
+ page_content=' Baldick, “Accelerated localized voltage regulation in single-phase distribution grids,” in Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
490
+ page_content=' IEEE Intl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
491
+ page_content=' Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
492
+ page_content=' on Smart Grid Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
493
+ page_content=', Miami, FL, Nov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
494
+ page_content=' 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
495
+ page_content=' [17] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
496
+ page_content=' Chen, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
497
+ page_content=' Iyengar, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
498
+ page_content=' Irwin, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
499
+ page_content=' Shenoy, “Sunspot: Exposing the location of anonymous solar-powered homes,” in ACM Intl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
500
+ page_content=' Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
501
+ page_content=' on Systems for Energy-Efficient Built Environ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
502
+ page_content=', Palo Alto, CA, Nov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
503
+ page_content=' 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
504
+ page_content=' 2280 2340 2344 106 116 119 1574 1577 1619 Z 296 372 650 734 841 933 3155 3156 3188 3877 3888 3912 1632 1856 2150 2844 2940 2968 2408 2495 2500 3552 3741 3752 2500 2567 2764' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tAzT4oBgHgl3EQfevwc/content/2301.01440v1.pdf'}
1dE0T4oBgHgl3EQfdgBe/content/2301.02377v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:414e9941f1eda0ade8cdc8b86c18c6add0b554c4b709646f675e6ee4c5ded4cc
3
+ size 329541
1dE0T4oBgHgl3EQfdgBe/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a950e376175c4d40f67003d48f945ea3e160db1c0c8e52e42305f479dafe0b2b
3
+ size 51453
2NFIT4oBgHgl3EQf4ivI/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4ba02ea5cfb44c3a00024248ea4a628c006070014e80120f928b1a9da631fadd
3
+ size 3735597
39E0T4oBgHgl3EQfeQA8/content/2301.02387v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7342bde9169ecc1ca0a3431a874b097a7ec2b6157dd4fb7c8487c23368a1c6d5
3
+ size 4043148
3tE0T4oBgHgl3EQfvAFe/content/tmp_files/2301.02612v1.pdf.txt ADDED
@@ -0,0 +1,1218 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Single-point spin Chern number in a supercell framework
2
+ Roberta Favata1 and Antimo Marrazzo1, ∗
3
+ 1Dipartimento di Fisica, Universit`a di Trieste, Strada Costiera 11, I-34151 Trieste, Italy
4
+ (Dated: January 9, 2023)
5
+ We present an approach for the calculation of the Z2 topological invariant in non-crystalline
6
+ two-dimensional quantum spin Hall insulators. While topological invariants were originally mathe-
7
+ matically introduced for crystalline periodic systems, and crucially hinge on tracking the evolution
8
+ of occupied states through the Brillouin zone, the introduction of disorder or dynamical effects can
9
+ break the translational symmetry and imply the use of larger simulation cells, where the k−point
10
+ sampling is typically reduced to the single Γ-point. Here, we introduce a single-point formula for
11
+ the spin Chern number that enables to adopt the supercell framework, where a single Hamiltonian
12
+ diagonalisation is performed. Inspired by the work of E. Prodan [Phys. Rev. B, 80, 12 (2009)], our
13
+ single-point approach allows to calculate the spin Chern number even when the spin operator ˆsz
14
+ does not commute with the Hamiltonian, as in the presence of Rashba spin-orbit coupling. We val-
15
+ idate our method on the Kane-Mele model, both pristine and in the presence of Anderson disorder.
16
+ Finally, we investigate the disorder-driven transition from the trivial phase to the topological state
17
+ known as topological Anderson insulator. Beyond disordered systems, our approach is particularly
18
+ useful to investigate the role of defects, to study topological alloys and in the context of ab-initio
19
+ molecular dynamics simulations at finite temperature.
20
+ I.
21
+ INTRODUCTION
22
+ Two-dimensional (2D) topological insulators (TI) are
23
+ materials with an insulating bulk and robust edge states
24
+ protected by the non-trivial topology of the bulk elec-
25
+ tronic structure [1, 2].
26
+ These systems are discussed
27
+ through topological invariants, integer quantities which
28
+ characterise the ground-state wavefunction in the bulk.
29
+ As long as the topological invariant is non-trivial and,
30
+ possibly, the symmetries needed to define that topology
31
+ are preserved, the material is said to be in a topolog-
32
+ ical phase. These invariants are geometrical properties
33
+ of the electronic structure, as they are defined in terms
34
+ of quantities such as the Berry phase or the Berry cur-
35
+ vature, which involve derivatives of the occupied states
36
+ in reciprocal space with respect to the quasi-momentum
37
+ k [2]. Standard geometrical formulas are usually discre-
38
+ tised on a regular mesh of k-points for numerical imple-
39
+ mentation. However, most electronic structure calcula-
40
+ tions for non-crystalline systems are normally performed
41
+ by diagonalising the Hamiltonian at a single k-point in a
42
+ large supercell. Usually the Γ point at the center of the
43
+ Brillouin zone (BZ) is considered, although potentially
44
+ more efficient choices based on the Baldereschi point [3]
45
+ can be employed. The derivation of single-point formu-
46
+ las for geometrical and topological properties is not at all
47
+ a trivial task, although successful single-point formalism
48
+ have been developed for the Berry phase [4], the orbital
49
+ magnetisation and the Chern number [5].
50
+ In this work, we target the calculation of the topologi-
51
+ cal invariant for non-crystalline 2D insulators with time-
52
+ reversal (TR) symmetry. For these systems, encompass-
53
+ ing all non-magnetic 2D materials [6], the invariant ν is
54
+ ∗ antimo.marrazzo@units.it
55
+ a Z2 number: if ν = 0 the topology is trivial, otherwise
56
+ if ν = 1 we have a quantum spin Hall insulator (QSHI),
57
+ where topologically-protected gapless helical edge states
58
+ cross the bulk gap [2].
59
+ Over the years, several meth-
60
+ ods have been developed to calculate the Z2 invariant
61
+ in crystalline systems with periodic boundary conditions
62
+ (PBCs).
63
+ In the following, we briefly outline some of the most
64
+ popular and practical methods in the context of elec-
65
+ tronic structure simulations.
66
+ If inversion symmetry is
67
+ present, there is a particularly simple method introduced
68
+ by Fu and Kane [7], which requires the knowledge of the
69
+ parity of the occupied states at the four TR-invariant
70
+ points in the BZ. In the more general case, the Z2 in-
71
+ variant can be obtained by tracking the evolution of
72
+ hermaphrodite [8] (a.k.a. hybrid) Wannier charge cen-
73
+ tres [9–11], or equivalently the eigenvalues of the Wilson
74
+ loop [12–14], over half BZ. More recently, a generalisa-
75
+ tion of the Fu-Kane approach based on elementary band
76
+ representations [15, 16] has allowed to calculate the in-
77
+ variant by using only the knowledge of the irreducible
78
+ representations of the occupied states at selected high-
79
+ symmetry points in the BZ [16]. The Z2 invariant can
80
+ be also computed as an individual Chern number [2] on
81
+ half of the Hilbert space [10, 11], where the split is per-
82
+ formed by two projectors which are smooth and related
83
+ by TR symmetry. Although several formulas to compute
84
+ the Z2 invariant have been introduced, all the ones we
85
+ mentioned, and most other existing approaches, require
86
+ the knowledge of the occupied states at multiple k-points
87
+ and become ill-defined for non-crystalline systems; hence
88
+ in the supercell framework they are of no avail.
89
+ Nonetheless, a number of methods have been proposed
90
+ to deal with non-periodic systems. Some of these [17–
91
+ 19] calculate the Z2 invariant by means of a Pfaffian
92
+ with twisted boundary conditions, as firstly advocated
93
+ by Kane and Mele in their original discussion of the Z2
94
+ arXiv:2301.02612v1 [cond-mat.mes-hall] 6 Jan 2023
95
+
96
+ 2
97
+ invariant in presence of disorder and electron-electron in-
98
+ teractions [20]. A different method is based on construct-
99
+ ing the Z2 invariant from the scattering matrix of the
100
+ system at the Fermi level [21, 22]. Further, there exists
101
+ a formulation based on the non-commutative index the-
102
+ orem [23, 24], where the Z2 index for disordered topolog-
103
+ ical insulators is computed from the discrete spectrum
104
+ of a certain compact operator, which is defined as the
105
+ difference of a proper pair of projection operators [25–
106
+ 27].
107
+ An alternative non-commmutative approach was
108
+ proposed by Loring and Hastings [28, 29] and relates the
109
+ Z2 index to the topological obstruction to approximat-
110
+ ing almost commuting matrices by exactly commuting
111
+ matrices; its robustness with respect to the introduction
112
+ of disorder has been investigated in Ref. [30]. The most
113
+ practical approach from the point of electronic structure
114
+ simulations has been arguably put forward by Huang
115
+ and Liu [31, 32], who addressed the problem of calcu-
116
+ lating the Z2 invariant for non-periodic system in the
117
+ context of quantum spin Hall quasicrystals, and intro-
118
+ duced the spin Bott index, which measures the commu-
119
+ tativity of the projected position operators. The connec-
120
+ tion between the Bott indices and Chern or Z2 invariants
121
+ has been investigated theoretically [28–30, 33], while nu-
122
+ merical simulations [32, 34, 35] provided evidence that
123
+ Bott indices can be used to study non-periodic topolog-
124
+ ical systems. Still, it is conceptually rather unsatisfac-
125
+ tory that the calculation of topological invariants in a
126
+ supercell framework requires introducing radically differ-
127
+ ent formalisms, which call for rather non-trivial equiva-
128
+ lence proofs and extensive testing. As a matter of fact,
129
+ the use of the primitive cell and k-points is an arbitrary—
130
+ although indeed very convenient—choice; there is no con-
131
+ ceptual reason preventing bona fide Z2 invariants to be
132
+ calculated directly in the supercell by deriving a suitable
133
+ single-point limit. In addition, it is important to assess
134
+ the convergence with respect to the system size, as dif-
135
+ ferent approaches might deliver the same correct answer
136
+ at very different computational costs. For instance, re-
137
+ cent works [32, 33] claimed that the difference between
138
+ the Chern number and Bott index is within a correc-
139
+ tion of the order O(1/L), where L is the linear size of
140
+ the system. Such slow convergence can hinder the study
141
+ of the system close to a topological phase transition; in
142
+ fact Huang and Liu empirically added a singular value
143
+ decomposition (SVD) to their algorithm to improve an
144
+ otherwise slow convergence [32].
145
+ Here, we take a different approach, that essentially
146
+ combines the work of Ceresoli and Resta on the single-
147
+ point Chern number [5] and the insights from Prodan
148
+ on a generalised spin Chern number [36]. Notably, our
149
+ single-point invariant is directly derived by its parent for-
150
+ mula for crystalline systems, it shows exponential conver-
151
+ gence with the supercell size, both in the pristine and dis-
152
+ ordered case, it is easy to implement in electronic struc-
153
+ ture codes, and it works well also in presence of strong
154
+ Rashba spin-orbit coupling (SOC).
155
+ II.
156
+ METHODS
157
+ In absence of spin-mixing spin-orbit interactions, the
158
+ spin operator ˆsz commutes with the Hamiltonian and it
159
+ is possible to discuss the Z2 invariant in terms of the spin
160
+ Chern number. In this case, the occupied states diago-
161
+ nalise ˆsz and can be divided in two subsets, either purely
162
+ spin-up or spin-down, and the regular Chern number can
163
+ be calculated for each spin. As soon as the Hamiltonian
164
+ does not commute any more with ˆsz, for instance because
165
+ Rashba SOC is present, such simple-minded spin Chern
166
+ number cannot be defined any more. Notably, Prodan
167
+ has shown [36] that it is possible to generalise this def-
168
+ inition by projecting the spin operator on the occupied
169
+ states:
170
+ Pz = P(k)ˆszP(k),
171
+ (1)
172
+ where P is the ground-state projector
173
+ P(k) =
174
+
175
+ n
176
+ |unk⟩ ⟨unk| ,
177
+ (2)
178
+ unk are the periodic part of the Bloch eigenstates and
179
+ n labels the occupied state at each k-point in the BZ.
180
+ Then, we diagonalise Pz:
181
+ Pz |uλ⟩ = sλ |uλ⟩ .
182
+ (3)
183
+ If only diagonal SOC terms are present, the eigenvalue
184
+ spectrum of Pz consists of two values only sλ = ± 1
185
+ 2 and
186
+ one can select a single spin component by choosing the
187
+ eigenstates which correspond to one of the two eigenval-
188
+ ues sλ.
189
+ The crucial observation made by Prodan [36]
190
+ is that, even if Rashba SOC is present, the spectrum of
191
+ Pz displays two separate bands of eigenvalues symmet-
192
+ ric around the origin and one can still introduce a well-
193
+ defined spin Chern number by selecting the eigenvectors
194
+ with positive (or negative) eigenvalues. Finally, the spin
195
+ Chern number can be computed as:
196
+ Cs = C+ − C−
197
+ 2
198
+ mod 2
199
+ (4)
200
+ where C± are calculated on the uλ eigenstates with posi-
201
+ tive and negative eigenvalues respectively; in general it is
202
+ sufficient to compute either C+ or C− only and consider
203
+ its parity. The results are of paramount practical rele-
204
+ vance, as it is typically much simpler to deal with a for-
205
+ mulation based on generalised Chern numbers, which can
206
+ be written as full BZ integrals and do not require taking
207
+ into account TR symmetry or complex gauge fixing, as
208
+ required instead by more general Z2 formulations [20, 37].
209
+ In principle, if the Rashba interaction is strong enough
210
+ then the gap of the Pz spectrum might close, preventing
211
+ the spin Chern number to be defined. Remarkably, as
212
+ we will discuss in full detail in the Sec. III, this does not
213
+ seem to occur in practice. As long as the system is in-
214
+ sulating, Eq. 4 is well defined even if the Rashba SOC is
215
+ several times larger than the diagonal SOC. Hence, we
216
+
217
+ 3
218
+ adopt the approach of Prodan [36] and target the deriva-
219
+ tion of a single-point formula. In order to obtain the cor-
220
+ rect single-point limit, we follow the approach of Ceresoli
221
+ and Resta [5] for the derivation of the single-point Chern
222
+ number in TR-broken systems (the latter admit a Z topo-
223
+ logical invariant). Let us start with the formula for the
224
+ generalised spin Chern number in 2D periodic systems:
225
+ Cσ = 1
226
+
227
+
228
+ BZ
229
+ TrσΩxy(k)dk
230
+ = − 1
231
+ π
232
+
233
+ sλ=σ
234
+
235
+ BZ
236
+ Im ⟨∂kxuλ(k)|∂kyuλ(k)⟩ dkxdky,
237
+ (5)
238
+ where uλ are the eigenvectors of Pz (see Eq. 3) and σ = ±
239
+ corresponds to one of the sectors of the Pz spectrum.
240
+ Now we consider the parallelogram Brillouin zone and
241
+ change coordinate system to have a rectangular integra-
242
+ tion domain:
243
+ Cσ = − 1
244
+ π Im
245
+
246
+ sλ=σ
247
+ � b1
248
+ 0
249
+ dk1
250
+ � b2
251
+ 0
252
+ dk2 ⟨∂k1uλ(k)|∂k2uλ(k)⟩
253
+ ≃ −|b1||b2|
254
+ π
255
+ Im
256
+
257
+ sλ=σ
258
+ ⟨∂k1uλ(k)|∂k2uλ(k)⟩ |k=Γ,
259
+ (6)
260
+ where b1,2 are the two reciprocal lattice vectors and the
261
+ last step is performed in the limit of a very large supercell.
262
+ In the same limit, we can calculate derivatives through
263
+ finite differences:
264
+ ∂kj |uλ(k)⟩ |k=Γ = lim
265
+ η→0
266
+ |uλ(ηbj)⟩ − |uλ(Γ)⟩
267
+ η|bj|
268
+ ,
269
+ (7)
270
+ where we can drop the limit for a large supercell and
271
+ just consider the difference |uλ(bj)⟩ − |uλ(Γ)⟩. Eq. 7 re-
272
+ quires a differentiable function, which is not guaranteed
273
+ in numerical diagonalisations. Hence, we fix the gauge
274
+ by adopting a discretised version of the covariant deriva-
275
+ tive [38, 39] as successfully performed for the Chern num-
276
+ ber by Ceresoli and Resta [5]. One replaces the states
277
+ with their “duals”:
278
+ |˜un(bj)⟩ =
279
+
280
+ m
281
+ S−1
282
+ mn(bj) |um(bj)⟩
283
+ (8)
284
+ where
285
+ we
286
+ define
287
+ the
288
+ overlap
289
+ matrix
290
+ Snm(bj)
291
+ =
292
+ ⟨un(Γ)|um(bj)⟩
293
+ and
294
+ the
295
+ dual
296
+ states
297
+ satisfy
298
+ ⟨un(Γ)|˜um(bj)⟩
299
+ =
300
+ δnm.
301
+ Next,
302
+ we construct the
303
+ states un(bj) by imposing the periodic gauge, which
304
+ allows us to perform a single diagonalisation at Γ:
305
+ |uλ(bj)⟩ = e−ibj·r |uλ(Γ)⟩ .
306
+ (9)
307
+ The states in Eq. 9 are Hamiltonian eigenstates, but they
308
+ might correspond to a different eigenvalue with respect
309
+ to the one at Γ; the ordering is anyway fixed by the
310
+ covariant derivative. We note in passing, that while a
311
+ non-trivial Chern number would prevent the adoption of
312
+ a periodic gauge for the wavefunction, here the periodic
313
+ gauge is only temporarily imposed to build each |un(bj)⟩
314
+ from the knowledge of the |un(Γ)⟩, but it is effectively
315
+ replaced by the parallel transport gauge enforced by the
316
+ covariant derivative. The final single-point formula for
317
+ the spin Chern number is
318
+ C(asym)
319
+ σ
320
+ = −|b1||b2|
321
+ π
322
+ Im
323
+
324
+ sλ=σ
325
+ ⟨˜uλ(b1)|˜uλ(b2)⟩ .
326
+ (10)
327
+ In Eq. 10, we emphasise with the superscript “asym” the
328
+ implicit choice made in Eq. 7, which corresponds to the
329
+ right-hand derivative. In fact, an alternative choice is the
330
+ symmetric derivative
331
+ ∂kj |uλ(k)⟩ |k=Γ ≃ |uλ(bj)⟩ − |uλ(−bj)⟩
332
+ 2|bj|
333
+ ,
334
+ (11)
335
+ which can also be computed with a single Γ-only diago-
336
+ nalisation and leads to the following formula for the spin
337
+ Chern number:
338
+ C(sym)
339
+ σ
340
+ = −|b1||b2|
341
+
342
+ Im
343
+
344
+ sλ=σ
345
+ (⟨˜uλ(b1)| − ⟨˜uλ(−b1)|) (|˜uλ(b2)⟩ − |˜uλ(−b2)⟩) .
346
+ (12)
347
+ In Sec. III, we will show how the symmetric formula con-
348
+ verges much faster than the asymmetric version, at es-
349
+ sentially the same computational cost.
350
+ We
351
+ have
352
+ implemented
353
+ the
354
+ single-point
355
+ formulas
356
+ in a dedicated Python package, freely available on
357
+ GitHub [40].
358
+ The code provides user-friendly inter-
359
+ faces to two popular tight-binding packages such as
360
+ PythTB [41] and TBmodels [42], and it can be easily
361
+ interfaced to other codes.
362
+ III.
363
+ NUMERICAL RESULTS AND DISCUSSION
364
+ We validate our approach on the paradigmatic Kane-
365
+ Mele (KM) model [20, 43] on the honeycomb lattice, both
366
+ pristine and in presence of Anderson disorder (see Fig. 1).
367
+
368
+ 4
369
+ FIG. 1. The Kane-Mele model in the supercell approach. Left panel: pristine Kane-Mele model, the primitive cell is shown
370
+ in orange while a 3 × 3 supercell is marked in blue. Right panel: random realisation of a disordered Kane-Mele model in a
371
+ 3 × 3 supercell (green) with periodic boundary conditions, where different colours are used to represent the on-site terms. In
372
+ the following, supercells are labelled by their integer size L × L (in units of the pristine primitive cell) and the corresponding
373
+ number of sites N = 2L2.
374
+ The tight-binding Hamiltonian reads
375
+ HKM = t
376
+
377
+ ⟨i,j⟩
378
+ c†
379
+ icj + ∆
380
+
381
+ i
382
+ ξic†
383
+ ici
384
+ + iλSO
385
+
386
+ ⟨⟨i,j⟩⟩
387
+ νijc†
388
+ iσzcj
389
+ (13)
390
+ + iλR
391
+
392
+ ⟨i,j⟩
393
+ c†
394
+ i(σ × ˆdij)zcj,
395
+ where i and j run over all sites in the lattice and the
396
+ creation and annihilation operators are expressed in the
397
+ contracted form c†
398
+ i = (c†
399
+ i↑, c†
400
+ i↓). The first term is a real
401
+ nearest-neighbour hopping (denoted by ⟨ , ⟩), if taken
402
+ alone that would yield four (pair-degenerate) bands with
403
+ gapless Dirac cones centred on the high-symmetry points
404
+ K and K
405
+ ′ in the Brillouin zone.
406
+ The second term
407
+ is a staggered on-site potential (ξi = ±1 is the sub-
408
+ lattice index of the i−th site) while the third term is
409
+ the KM SOC [20, 43] which involves a complex next-
410
+ nearest neighbour hopping (denoted by ⟨⟨ , ⟩⟩) with a
411
+ spin-dependent amplitude proportional to the Pauli ma-
412
+ trix σz.
413
+ The factor νij = sign(d1 × d2)z depends on
414
+ the orientation of the vectors d1 and d2 along the two
415
+ bonds connecting i to the next-nearest neighbour site j.
416
+ The fourth term is the Rashba SOC and is a complex
417
+ nearest-neighbour hopping with off-diagonal spin com-
418
+ ponents, where σ = (σx, σy, σz) is the vector of Pauli
419
+ matrices and ˆdij is the unit vector between sites j and
420
+ i. In the following, we consider a KM Hamiltonian at
421
+ fixed parameters t = 1 and λSO = 0.03 t, which ensure
422
+ that the energy gap is insulating all over the entire phase
423
+ diagram [20, 43].
424
+ A.
425
+ Validation and convergence tests for crystalline
426
+ systems
427
+ In the single-point approach, the topological invari-
428
+ ants become exact integer numbers only in the thermody-
429
+ namic limit of an infinite supercell. First, we test the con-
430
+ vergence properties of the single-point spin Chern num-
431
+ ber (SPSCN) on the pristine KM model, in both asym-
432
+ metric (Eq. 10) and symmetric (Eq. 12) formulation. We
433
+ inspect the SPSCN as a function of the supercell size L,
434
+ here defined as the number of primitive cells along each
435
+ lattice vector that makes the supercell L×L (see Fig. 1);
436
+ the number of sites inside the supercell is N = 2L2. A
437
+ representation of a supercell 3 × 3 is given in the left-
438
+ hand panel of Fig. 1. In our calculations only values of L
439
+ which are multiple of 3 are considered, to always include
440
+ the special points K and K
441
+ ′ folded at Γ.
442
+ We bench-
443
+ mark the accuracy of the formulas inside the Z2-even
444
+ and Z2-odd domains in Fig. 2.
445
+ The symmetric for-
446
+ mula converges faster than the asymmetric one in both
447
+ trivial and topological phases. Remarkably, the quantity
448
+ ∆Cσ = |Cσ(L)−Cσ(∞)|, which is the difference between
449
+ the spin Chern number given by the single-point formulas
450
+ at finite sizes and the exact value obtained in the ther-
451
+ modynamic limit, decreases exponentially in both formu-
452
+ lations. However, the global prefactor in the symmetric
453
+ case is an order of magnitude smaller than the one of the
454
+ asymmetric formula, leading to more accurate results at
455
+ significantly smaller sizes L. Hence, in the following we
456
+ adopt the symmetric formula only and study the topo-
457
+ logical phase transition as a function of the on-site ∆,
458
+ results are reported in Fig. 3.
459
+ Our SPSCN is able to
460
+ reproduce the sharp topological transition already at rel-
461
+ atively small supercell sizes, as shown in the left-hand
462
+ panel of Fig. 3. The band gap vanishes on the boundary
463
+ of the phase transition and in the corresponding neigh-
464
+ bourhood of parameters convergence is slower and larger
465
+
466
+ 5
467
+ 6
468
+ 12
469
+ 18
470
+ 24
471
+ 30
472
+ 36
473
+ 42
474
+ 48
475
+ 54
476
+ 60
477
+ L
478
+ −0.100
479
+ −0.075
480
+ −0.050
481
+ −0.025
482
+ 0.000
483
+ 0.025
484
+ 0.050
485
+ 0.075
486
+ 0.100
487
+ Single-point Cσ
488
+ Asymmetric
489
+ Symmetric
490
+ Exact value
491
+ 0
492
+ 20
493
+ 40
494
+ 60
495
+ L
496
+ 10−4
497
+ 10−3
498
+ 10−2
499
+ 10−1
500
+ ∆Cσ
501
+ −5
502
+ 0
503
+ 5
504
+ ∆/λSO
505
+ −5
506
+ 0
507
+ 5
508
+ λR/λSO
509
+ 6
510
+ 12
511
+ 18
512
+ 24
513
+ 30
514
+ 36
515
+ 42
516
+ 48
517
+ 54
518
+ 60
519
+ L
520
+ 0.75
521
+ 0.80
522
+ 0.85
523
+ 0.90
524
+ 0.95
525
+ 1.00
526
+ 1.05
527
+ 1.10
528
+ 1.15
529
+ Single-point Cσ
530
+ Asymmetric
531
+ Symmetric
532
+ Exact value
533
+ 0
534
+ 20
535
+ 40
536
+ 60
537
+ L
538
+ 10−4
539
+ 10−3
540
+ 10−2
541
+ 10−1
542
+ ∆Cσ
543
+ −5
544
+ 0
545
+ 5
546
+ ∆/λSO
547
+ −5
548
+ 0
549
+ 5
550
+ λR/λSO
551
+ FIG. 2. Convergence of the single-point spin Chern number, in its symmetric and asymmetric implementation, with respect
552
+ to supercell size for the Kane-Mele model, where the Hamiltonian is diagonalised at the Γ-point only. In the uppest insets, a
553
+ sketch of the corresponding point in the pristine phase diagram. The lowest insets show the difference between the single-point
554
+ calculations of the spin Chern number and the thermodynamic limit. Left panel: the spin Chern number converges to zero in
555
+ the trivial phase (∆/λSO = 5.5, λR/λSO = 3). Right panel: in the topological phase (∆/λSO = 0.8 , λR/λSO = 2) the spin
556
+ Chern number converges to one. In all cases, the asymptotic convergence is exponential, but the symmetric formula converges
557
+ visibly faster than its asymmetric counterpart.
558
+ 0
559
+ 1
560
+ 2
561
+ 3
562
+ 4
563
+ 5
564
+ 6
565
+ ∆/λSO
566
+ −0.2
567
+ 0.0
568
+ 0.2
569
+ 0.4
570
+ 0.6
571
+ 0.8
572
+ 1.0
573
+ Single-point Cσ
574
+ L = 9
575
+ L = 24
576
+ L = 51
577
+ Exact value
578
+ −5
579
+ 0
580
+ 5
581
+ ∆/λSO
582
+ −5
583
+ 0
584
+ 5
585
+ λR/λSO
586
+ 0
587
+ 1
588
+ 2
589
+ 3
590
+ 4
591
+ 5
592
+ 6
593
+ ∆/λSO
594
+ 0.0
595
+ 0.2
596
+ 0.4
597
+ 0.6
598
+ 0.8
599
+ 1.0
600
+ ˜Eg
601
+ L = 9
602
+ L = 24
603
+ L = 51
604
+ FIG. 3. Left panel: the single-point spin Chern number (symmetric formula) versus the on-site term ∆ at fixed λR/λSO = 2
605
+ for the Kane-Mele model. Different supercell sizes are considered (L = 9, 21, 51, and corresponding number of sites N =
606
+ 162, 882, 5202). As the supercell size increases, the transition becomes sharper and approaches the analytical solution. Right
607
+ panel: gap ˜Eg of the P ˆszP operator versus the on-site term ∆ for the same supercell sizes as on the left-hand panel.
608
+ A
609
+ non-vanishing ˜Eg guarantees that the spin Chern number is well defined.
610
+ supercell sizes must be employed. In the right-hand panel
611
+ of Fig. 3, we show how the gap ˜Eg of the Pz operator
612
+ varies across the topological phase transition, but always
613
+ remains finite, ensuring that our single-point invariant is
614
+ everywhere well defined. Then, we validate the SPSCN
615
+ by calculating the entire topological phase diagram of the
616
+ KM model, which is reported in the upper panel of Fig. 4.
617
+ Notably, the method can distinguish topological and triv-
618
+ ial phases even for small, but still finite, values of both
619
+ the gap of the Hamiltonian and the gap of Pz (lower left-
620
+ hand panel in Fig. 4). Larger differences between the SP-
621
+ SCN and the exact value (zero), which are visibile in the
622
+ upper-left side of the topological phase diagram (marked
623
+ in blue), are finite size effects and are reduced for large
624
+ supercells, as highlighted in the lower right-hand panel in
625
+ Fig. 4: in that region both to Hamiltonian and Pz oper-
626
+ ators gap are indeed very small. Therefore, our formulas
627
+ works well also in presence of very strong Rashba SOC
628
+ and small band gaps.
629
+
630
+ 6
631
+ 0
632
+ 1
633
+ 2
634
+ 3
635
+ 4
636
+ 5
637
+ 6
638
+ ∆/λSO
639
+ 0
640
+ 1
641
+ 2
642
+ 3
643
+ 4
644
+ λR/λSO
645
+ -0.2
646
+ 0
647
+ 0.2
648
+ 0.4
649
+ 0.6
650
+ 0.8
651
+ 1
652
+ Single-point Cσ
653
+ 0
654
+ 1
655
+ 2
656
+ 3
657
+ 4
658
+ 5
659
+ 6
660
+ ∆/λSO
661
+ 0
662
+ 1
663
+ 2
664
+ 3
665
+ 4
666
+ λR/λSO
667
+ 1e-14
668
+ 0.2
669
+ 0.4
670
+ 0.6
671
+ 0.8
672
+ 1
673
+ ˜Eg
674
+ 2.0
675
+ 2.5
676
+ 3.0
677
+ 3.5
678
+ 4.0
679
+ 4.5
680
+ 5.0
681
+ λR/λSO
682
+ −0.4
683
+ −0.2
684
+ 0.0
685
+ 0.2
686
+ 0.4
687
+ 0.6
688
+ 0.8
689
+ 1.0
690
+ Single-point Cσ
691
+ L = 21
692
+ L = 36
693
+ L = 48
694
+ Exact value
695
+ −5
696
+ 0
697
+ 5
698
+ ∆/λSO
699
+ −5
700
+ 0
701
+ 5
702
+ λR/λSO
703
+ FIG. 4. Upper panel: topological phase diagram of the Kane-Mele model calculated with the single-point spin Chern number
704
+ (symmetric formula), for a supercell size L = 36 containing N = 2592 sites. Black dashed line marks the analytical solution
705
+ for the semi-metallic state separating the topological and trivial phases. Lower-left panel: gap ˜Eg of the P ˆszP operator for
706
+ the same calculations performed in the upper panel. Notably, ˜Eg is non-vanishing over all the phase diagram and guarantees
707
+ that the spin Chern number is well defined everywhere. Lower-right panel: the single-point spin Chern number versus the
708
+ Rashba coupling λR, at fixed ∆/λSO = 0.3, for different supercell size L = 21, 36, 48 and corresponding number of sites
709
+ N = 882, 2592, 4608. In that region of the phase diagram, band gaps are very small and finite size effects intensify; still the
710
+ single-point approach can distinguish the two phases.
711
+ B.
712
+ Disorder-driven topological phase transitions
713
+ The presence of disorder is often modelled by means
714
+ of an ensemble of large supercells, each representing a
715
+ specific random realisation as schematically represented
716
+ in the right-hand panel of Fig. 1. In electronic structure
717
+ simulations, defect calculations are performed by consid-
718
+ ering large supercells, to suppress the spurious interac-
719
+ tions due to the periodic replicas. Alloys are often sim-
720
+ ulated through the so-called special quasi-random struc-
721
+ tures [44]. In addition, a non-perturbative treatment of
722
+ temperature effects always require working with super-
723
+ cells, being a single structure with special atomic dis-
724
+ placements [45] or a collection of snapshots obtained from
725
+ ab initio molecular dynamics.
726
+ The SPSCN particularly suits this framework, and we
727
+ now assess the accuracy and convergence properties of
728
+ our formula on the KM model supplemented by an An-
729
+ derson disorder term [46], where we highlight its capa-
730
+ bility to detect disorder-driven topological transitions.
731
+ We emphasise that the simple KM model in presence
732
+ of rather strong Anderson disorder is used as a proto-
733
+ type and a proxy for testing, although our approach
734
+ targets the more general scenario mentioned above, of
735
+ supercell calculations, either for model Hamiltonians or
736
+ first-principles simulations.
737
+ The Hamiltonian of the disordered KM model reads
738
+ Hdis = HKM +
739
+
740
+ i
741
+ wic†
742
+ ici,
743
+ (14)
744
+ where wi ∈
745
+
746
+ − W
747
+ 2 , W
748
+ 2
749
+
750
+ is a randomly distributed on-site
751
+ potential and W is the disorder strength which, in the fol-
752
+ lowing, is reported in units of the nearest-neighbour hop-
753
+ ping amplitude t. In Fig. 5 we test the convergence of the
754
+ single-point formulas (Eqs. 10 and 12) with increasing su-
755
+ percell size L for the disorder strength W/t = 1, which is
756
+ weak enough not to destroy the topological phases of the
757
+ corresponding pristine KM model. The SPSCN is eval-
758
+
759
+ 7
760
+ 5
761
+ 10
762
+ 15
763
+ 20
764
+ 25
765
+ 30
766
+ 35
767
+ 40
768
+ 45
769
+ L
770
+ −0.15
771
+ −0.10
772
+ −0.05
773
+ 0.00
774
+ 0.05
775
+ 0.10
776
+ 0.15
777
+ Single-point Cσ
778
+ Asymmetric
779
+ Symmetric
780
+ 0
781
+ 20
782
+ 40
783
+ L
784
+ 10−4
785
+ 10−3
786
+ 10−2
787
+ 10−1
788
+ ∆Cσ
789
+ −5
790
+ 0
791
+ 5
792
+ ∆/λSO
793
+ −5
794
+ 0
795
+ 5
796
+ λR/λSO
797
+ 5
798
+ 10
799
+ 15
800
+ 20
801
+ 25
802
+ 30
803
+ 35
804
+ 40
805
+ 45
806
+ L
807
+ 0.75
808
+ 0.80
809
+ 0.85
810
+ 0.90
811
+ 0.95
812
+ 1.00
813
+ 1.05
814
+ 1.10
815
+ 1.15
816
+ Single-point Cσ
817
+ Asymmetric
818
+ Symmetric
819
+ 0
820
+ 20
821
+ 40
822
+ L
823
+ 10−4
824
+ 10−3
825
+ 10−2
826
+ 10−1
827
+ ∆Cσ
828
+ −5
829
+ 0
830
+ 5
831
+ ∆/λSO
832
+ −5
833
+ 0
834
+ 5
835
+ λR/λSO
836
+ FIG. 5. Convergence of the single-point spin Chern number, in its symmetric and asymmetric implementation, with respect to
837
+ supercell size L for the disordered Kane-Mele model. We report the average and standard deviation of the single-point invariant
838
+ calculated on M = 100 realisations with disorder strength W/t = 1. In the upper insets, the point in the corresponding pristine
839
+ phase diagram is shown. In the lowest insets, we report the difference between the mean value and the thermodynamic limit as
840
+ a function of L. Left panel: the spin Chern number converges to zero for ∆/λSO = 5.5 and λR/λSO = 3. Right panel: the spin
841
+ Chern number converges to one for ∆/λSO = 0.8 and λR/λSO = 2. Also in presence of disorder, the asymptotic convergence
842
+ is exponential and the symmetric formula converges visibly faster than its asymmetric counterpart. Statistical fluctuations are
843
+ very small and negligible at almost any supercell size.
844
+ uated as the mean value over M realisations of random
845
+ disorder with supercells of size L × L. Also in presence
846
+ of disorder, the convergence of the formulas is exponen-
847
+ tial and the symmetric version converges faster than the
848
+ asymmetric one. In addition, we consider increasing dis-
849
+ order strengths and study the robustness of the topolog-
850
+ ical phase, results are reported in Fig. 6. For sufficiently
851
+ strong disorder, the topological phase is destroyed and
852
+ the SPSCN becomes trivial. As expected, the width of
853
+ the phase transition becomes smaller with increasing su-
854
+ percell sizes. As investigated in Ref. [47], for a certain
855
+ range of parameters, the disordered KM model given by
856
+ Eq. 14 displays a topological state called topological An-
857
+ derson insulator (TAI). It is a phase of quantized con-
858
+ ductance which is obtained adding Anderson disorder to
859
+ a trivial insulator or metal which are relatively close to
860
+ a topological phase transition [48–50]. The mechanism
861
+ for this disorder-induced transition has been discussed in
862
+ terms of a renormalization of the model parameters such
863
+ as the on-site term [49].
864
+ The weak-disorder boundary
865
+ of a TAI can be studied within an effective-medium the-
866
+ ory and the self-consistent Born approximation [47, 49],
867
+ but these perturbative approach might fail in the strong-
868
+ disorder regime, where the TAI phase is destroyed in
869
+ favour of a trivial insulating phase, as we show next.
870
+ In Fig. 7 we use the SPSCN to inspect these topological
871
+ phase transitions driven by disorder. In order to compare
872
+ with previous work on the disordered KM model [47] and
873
+ for the sake of clarity, we consider a value of λSO = 0.3 t
874
+ which is an order of magnitude greater than the one used
875
+ for the previous examples. First, we fix λR = 0 (left-
876
+ hand panel) and observe that the TAI appears at about
877
+ W/t = 2, in agreement with the conductance calcula-
878
+ tion in [47] and the spin Bott index results in [32] (note
879
+ the factor of two with respect to the W defined therein).
880
+ Then, we consider finite Rashba SOC and show the re-
881
+ sults in the right-hand panel of Fig. 7, where we note
882
+ that the TAI region has become narrower, in agreement
883
+ with Ref. [47]. A check on the gap ˜Eg of operator Pz
884
+ is performed for every SPSCN calculation in presence of
885
+ disorder: Anderson disorder never fully closes the gap
886
+ and the invariant can always be computed.
887
+ IV.
888
+ CONCLUSIONS
889
+ In this work, we have introduced a robust and effi-
890
+ cient single-point formula to calculate the Z2 topological
891
+ invariant in non-crystalline 2D materials. We have val-
892
+ idated our method with supercell numerical simulations
893
+ on the KM model, both pristine and disordered.
894
+ Our
895
+ approach can reproduce the entire phase diagram of the
896
+ KM model, where each calculation requires only a single-
897
+ point diagonalisation in the supercell framework, even in
898
+ presence of strong Rashba SOC. In addition, we have
899
+ extensively tested our method in presence of Anderson
900
+ disorder, and we have shown how the single-point for-
901
+ mula can correctly describe disorder-driven topological
902
+ phase transitions. In particular, we have discussed both
903
+ the process where disorder destroys the topological phase
904
+ and where disorder actually promotes it, as for the TAI
905
+ phase; that is in agreement with calculations of the con-
906
+ ductance [22, 47] and spin Bott index [32] reported in
907
+ the literature. Our single-point approach converges ex-
908
+ ponentially with size, so it is typically sufficient to work
909
+ with relatively small supercells, which is critical for ap-
910
+
911
+ 8
912
+ 0
913
+ 2
914
+ 4
915
+ 6
916
+ 8
917
+ 10
918
+ W/t
919
+ −0.25
920
+ 0.00
921
+ 0.25
922
+ 0.50
923
+ 0.75
924
+ 1.00
925
+ 1.25
926
+ 1.50
927
+ Single-point Cσ
928
+ L = 15
929
+ L = 42
930
+ −5
931
+ 0
932
+ 5
933
+ ∆/λSO
934
+ −5
935
+ 0
936
+ 5
937
+ λR/λSO
938
+ 0
939
+ 2
940
+ 4
941
+ 6
942
+ 8
943
+ 10
944
+ W/t
945
+ 10−1
946
+ 100
947
+ min( ˜Eg)
948
+ FIG. 6.
949
+ Robustness of the topological phase with respect to disorder.
950
+ The symmetric single-point spin Chern number is
951
+ calculated as function of disorder strength W/t, starting from the system in the topological phase (∆/λSO = 3, λR/λSO = 1).
952
+ For each W, we report the mean and standard deviation over M = 50 realisations of Anderson disorder for supercells of sizes
953
+ L = 15, 42 and number of sites N = 450, 3528 respectively. Upper inset: a sketch of the point where the calculations are
954
+ computed reported on the pristine phase diagram (W/t = 0). Lower inset: minimum value, over the disorder realizations, of
955
+ the gap ˜Eg of the P ˆszP operator as a function of W/t. With increasing supercell size L, the transition becomes sharper. ˜Eg
956
+ does not vanish with Anderson disorder and the approach performs well also in the strong-disorder regime.
957
+ 0
958
+ 2
959
+ 4
960
+ 6
961
+ 8
962
+ 10
963
+ 12
964
+ W/t
965
+ −0.25
966
+ 0.00
967
+ 0.25
968
+ 0.50
969
+ 0.75
970
+ 1.00
971
+ 1.25
972
+ 1.50
973
+ Single-point Cσ
974
+ L = 15
975
+ L = 42
976
+ −5
977
+ 0
978
+ 5
979
+ ∆/λSO
980
+ −5
981
+ 0
982
+ 5
983
+ λR/λSO
984
+ 0
985
+ 2
986
+ 4
987
+ 6
988
+ 8
989
+ 10
990
+ 12
991
+ W/t
992
+ −0.25
993
+ 0.00
994
+ 0.25
995
+ 0.50
996
+ 0.75
997
+ 1.00
998
+ 1.25
999
+ 1.50
1000
+ Single-point Cσ
1001
+ L = 15
1002
+ L = 42
1003
+ −5
1004
+ 0
1005
+ 5
1006
+ ∆/λSO
1007
+ −5
1008
+ 0
1009
+ 5
1010
+ λR/λSO
1011
+ 0
1012
+ 2
1013
+ 4
1014
+ 6
1015
+ 8
1016
+ 10
1017
+ 12
1018
+ W/t
1019
+ 10−3
1020
+ 10−2
1021
+ 10−1
1022
+ 100
1023
+ min( ˜Eg)
1024
+ FIG. 7. Topological Anderson insulator (TAI). The symmetric single-point spin Chern number is calculated as function of
1025
+ disorder strength W/t, starting from the system in a trivial state close to the phase transition. We report the mean value and
1026
+ the standard deviation of single-point invariant over M = 50 realisations of Anderson disorder for supercells of sizes L = 15, 42
1027
+ and corresponding numbers of sites N = 450, 3528 respectively. For 5 ≤ W/t ≤ 10 the number of random realisations is
1028
+ purposely increased to M = 100 to reduce the standard deviation.
1029
+ Left panel: TAI state in absence of Rashba coupling
1030
+ (∆/λSO = 5.5, λR = 0). Right panel: TAI at finite Rashba coupling (∆/λSO = 5.3, λR/λSO = 1). Here, the minimum value
1031
+ of the gap ˜Eg (over M disorder realizations) is reported versus W/t in the lower inset (the same plot is not present in the
1032
+ right-hand left panel since ˜Eg is constantly equal to one for λR = 0).
1033
+
1034
+ 9
1035
+ plications in ab initio modelling. One of the side benefits
1036
+ of adopting Prodan’s approach is that the formula can,
1037
+ at least in principle, be meaningful also in presence of
1038
+ weak TR-breaking perturbations [36]. This feature could
1039
+ be useful to study how the bulk topology is affected by
1040
+ the presence of magnetic impurities, or of a magnetic
1041
+ substrate through the proximity effect; even though the
1042
+ absence of TR symmetry would allow backscattering be-
1043
+ tween the two helical edge states. To encourage the use
1044
+ of our approach, we release a dedicated Python package
1045
+ that allows to seamlessly calculate the single-point Chern
1046
+ (Z) and spin-Chern (Z2) invariants of any TB model
1047
+ thanks to dedicated interfaces to PythTB and TBmodels,
1048
+ two very popular TB codes. Notably, these two packages
1049
+ also allow working with Wannier Hamiltonians, which
1050
+ are read in the format produced by Wannier90 [51, 52];
1051
+ that provides a simple way to apply our work in the con-
1052
+ text of first-principles calculations.
1053
+ Then, it would be
1054
+ interesting to explore the effect of the TB approximation
1055
+ where the real-space position operator is taken to be diag-
1056
+ onal, versus considering all off-diagonal elements, essen-
1057
+ tially taking into account the overlap between Wannier
1058
+ functions. Nonetheless, the formalism is rather simple
1059
+ and it could be implemented with limited effort directly
1060
+ into plane-wave first-principles codes, such as Quantum
1061
+ ESPRESSO [53, 54]. In short, our approach allows study-
1062
+ ing 2D topological insulators in a supercell framework,
1063
+ which is crucial to investigate very relevant phenomena
1064
+ such as disorder, defects, alloying, and to study dynam-
1065
+ ical and temperature effects through ab initio molecular
1066
+ dynamics simulations.
1067
+ [1] B. Bernevig and T. Hughes, Topological Insulators and
1068
+ Topological Superconductors (Princeton University Press,
1069
+ 2013).
1070
+ [2] D. Vanderbilt, Berry Phases in Electronic Structure
1071
+ Theory:
1072
+ Electric Polarization, Orbital Magnetization
1073
+ and Topological Insulators (Cambridge University Press,
1074
+ 2018).
1075
+ [3] A. Baldereschi, Phys. Rev. B 7, 5212 (1973).
1076
+ [4] R. Resta, Rev. Mod. Phys. 66, 899 (1994).
1077
+ [5] D. Ceresoli and R. Resta, Phys. Rev. B 76, 012405
1078
+ (2007).
1079
+ [6] N. Mounet, M. Gibertini, P. Schwaller, D. Campi,
1080
+ A. Merkys, A. Marrazzo, T. Sohier, I. E. Castelli, A. Ce-
1081
+ pellotti, G. Pizzi, and N. Marzari, Nat. Nanotechnol. 13,
1082
+ 246 (2018).
1083
+ [7] L. Fu and C. L. Kane, Phys. Rev. B 76, 045302 (2007).
1084
+ [8] C. Sgiarovello, M. Peressi, and R. Resta, Phys. Rev. B
1085
+ 64, 115202 (2001).
1086
+ [9] A. A. Soluyanov and D. Vanderbilt, Phys. Rev. B 83,
1087
+ 235401 (2011).
1088
+ [10] A. A. Soluyanov and D. Vanderbilt, Phys. Rev. B 85,
1089
+ 115415 (2012).
1090
+ [11] D. Gresch, G. Aut`es, O. V. Yazyev, M. Troyer, D. Van-
1091
+ derbilt, B. A. Bernevig, and A. A. Soluyanov, Phys. Rev.
1092
+ B 95, 075146 (2017).
1093
+ [12] R. Yu, X. L. Qi, A. Bernevig, Z. Fang, and X. Dai, Phys.
1094
+ Rev. B 84, 075119 (2011).
1095
+ [13] A. Alexandradinata, X. Dai, and B. A. Bernevig, Phys.
1096
+ Rev. B 89, 155114 (2014).
1097
+ [14] A. Alexandradinata and B. A. Bernevig, Phys. Rev. B
1098
+ 93, 205104 (2016).
1099
+ [15] J. Zak, Phys. Rev. B 26, 3010 (1982).
1100
+ [16] B. Bradlyn,
1101
+ L. Elcoro,
1102
+ J. Cano,
1103
+ M. G. Vergniory,
1104
+ Z. Wang, C. Felser, M. I. Aroyo,
1105
+ and B. A. Bernevig,
1106
+ Nature 547, 298 (2017).
1107
+ [17] A. M. Essin, J. E. Moore, and D. Vanderbilt, Phys. Rev.
1108
+ Lett. 102, 146805 (2009).
1109
+ [18] B. Leung and E. Prodan, Phys. Rev. B 85, 205136 (2012).
1110
+ [19] H.-M. Guo, Phys. Rev. B 82, 115122 (2010).
1111
+ [20] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802
1112
+ (2005).
1113
+ [21] I. C. Fulga, F. Hassler, and A. R. Akhmerov, Phys. Rev.
1114
+ B 85, 165409 (2012).
1115
+ [22] I. C. Fulga, F. Hassler, A. R. Akhmerov, and C. W. J.
1116
+ Beenakker, Physical Review B 83 (2011), 10.1103/phys-
1117
+ revb.83.155429.
1118
+ [23] J. E. Avron, R. Seiler, and B. Simon, Communications
1119
+ in Mathematical Physics 159, 399 (1994).
1120
+ [24] J. Avron, R. Seiler, and B. Simon, Journal of functional
1121
+ analysis 120, 220 (1994).
1122
+ [25] H. Katsura and T. Koma, Journal of Mathematical
1123
+ Physics 57, 021903 (2016).
1124
+ [26] H. Katsura and T. Koma, Journal of Mathematical
1125
+ Physics 59, 031903 (2018).
1126
+ [27] Y. Akagi, H. Katsura,
1127
+ and T. Koma, Journal of the
1128
+ Physical Society of Japan 86, 123710 (2017).
1129
+ [28] M. B. Hastings and T. A. Loring, Journal of Mathemat-
1130
+ ical Physics 51, 015214 (2010).
1131
+ [29] M. B. Hastings and T. A. Loring, Annals of Physics 326,
1132
+ 1699 (2011).
1133
+ [30] T. A. Loring and M. B. Hastings, Europhysics Letters
1134
+ 92, 67004 (2011).
1135
+ [31] H. Huang and F. Liu, Phys. Rev. Lett. 121, 126401
1136
+ (2018).
1137
+ [32] H. Huang and F. Liu, Phys. Rev. B 98, 125130 (2018).
1138
+ [33] D. Toniolo, Letters in Mathematical Physics 112 (2022),
1139
+ 10.1007/s11005-022-01602-6.
1140
+ [34] A. Agarwala and V. B. Shenoy, Phys. Rev. Lett. 118,
1141
+ 236402 (2017).
1142
+ [35] M. A. Bandres, M. C. Rechtsman, and M. Segev, Phys.
1143
+ Rev. X 6, 011016 (2016).
1144
+ [36] E. Prodan, Phys. Rev. B 80, 125327 (2009).
1145
+ [37] L. Fu and C. L. Kane, Phys. Rev. B 74, 195312 (2006).
1146
+ [38] N. Sai, K. M. Rabe,
1147
+ and D. Vanderbilt, Phys. Rev. B
1148
+ 66, 104108 (2002).
1149
+ [39] I. Souza, J. ´I˜niguez,
1150
+ and D. Vanderbilt, Phys. Rev. B
1151
+ 69, 085106 (2004).
1152
+ [40] Https://github.com/roberta-favata/spinv.
1153
+ [41] Https://www.physics.rutgers.edu/pythtb/index.html.
1154
+ [42] D. Gresch, Q. Wu, G. W. Winkler, R. H¨auselmann,
1155
+ M. Troyer, and A. A. Soluyanov, Phys. Rev. Mater. 2,
1156
+ 103805 (2018).
1157
+
1158
+ 10
1159
+ [43] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801
1160
+ (2005).
1161
+ [44] A. Zunger, S.-H. Wei, L. G. Ferreira, and J. E. Bernard,
1162
+ Phys. Rev. Lett. 65, 353 (1990).
1163
+ [45] M. Zacharias and F. Giustino, Phys. Rev. Res. 2, 013357
1164
+ (2020).
1165
+ [46] P. W. Anderson, Phys. Rev. 109, 1492 (1958).
1166
+ [47] C. B. C. P. Orth, T. Sekera and T. L. Schmidt, Sci. Rep.
1167
+ 2 (2016), 10.1038/srep24007.
1168
+ [48] J. Li, R.-L. Chu, J. K. Jain, and S.-Q. Shen, Phys. Rev.
1169
+ Lett. 102, 136806 (2009).
1170
+ [49] C.
1171
+ W.
1172
+ Groth,
1173
+ M.
1174
+ Wimmer,
1175
+ A.
1176
+ R.
1177
+ Akhmerov,
1178
+ J. Tworzyd�lo, and C. W. J. Beenakker, Physical Review
1179
+ Letters 103 (2009), 10.1103/physrevlett.103.196805.
1180
+ [50] Y. Xing, L. Zhang,
1181
+ and J. Wang, Phys. Rev. B 84,
1182
+ 035110 (2011).
1183
+ [51] A. A. Mostofi, J. R. Yates, Y.-S. Lee, I. Souza, D. Van-
1184
+ derbilt,
1185
+ and N. Marzari, Computer Physics Communi-
1186
+ cations 178, 685 (2008).
1187
+ [52] G. Pizzi, V. Vitale, R. Arita, S. Bl¨ugel, F. Freimuth,
1188
+ G. G´eranton, M. Gibertini, D. Gresch, C. Johnson,
1189
+ T. Koretsune, J. Iba˜nez-Azpiroz, H. Lee, J.-M. Lihm,
1190
+ D. Marchand, A. Marrazzo, Y. Mokrousov, J. I. Mustafa,
1191
+ Y. Nohara, Y. Nomura, L. Paulatto, S. Ponc´e, T. Pon-
1192
+ weiser, J. Qiao, F. Th¨ole, S. S. Tsirkin, M. Wierzbowska,
1193
+ N. Marzari, D. Vanderbilt, I. Souza, A. A. Mostofi, and
1194
+ J. R. Yates, J. Phys. Condens. Matter 32, 165902 (2020).
1195
+ [53] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car,
1196
+ C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococ-
1197
+ cioni, I. Dabo, A. D. Corso, S. de Gironcoli, S. Fabris,
1198
+ G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis,
1199
+ A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari,
1200
+ F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello,
1201
+ L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P.
1202
+ Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcov-
1203
+ itch, Journal of Physics: Condensed Matter 21, 395502
1204
+ (2009).
1205
+ [54] P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau,
1206
+ M. B. Nardelli, M. Calandra, R. Car, C. Cavazzoni,
1207
+ D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo,
1208
+ A. D. Corso, S. de Gironcoli, P. Delugas, R. A. DiStasio,
1209
+ A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer,
1210
+ U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawa-
1211
+ mura, H.-Y. Ko, A. Kokalj, E. K¨u¸c¨ukbenli, M. Lazzeri,
1212
+ M. Marsili, N. Marzari, F. Mauri, N. L. Nguyen, H.-
1213
+ V. Nguyen, A. O. de-la Roza, L. Paulatto, S. Ponc´e,
1214
+ D. Rocca, R. Sabatini, B. Santra, M. Schlipf, A. P. Seitso-
1215
+ nen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umari,
1216
+ N. Vast, X. Wu, and S. Baroni, Journal of Physics: Con-
1217
+ densed Matter 29, 465901 (2017).
1218
+
3tE0T4oBgHgl3EQfvAFe/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
3tFRT4oBgHgl3EQfojeI/content/tmp_files/2301.13609v1.pdf.txt ADDED
@@ -0,0 +1,4507 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ Physarum Inspired Bicycle Lane Network Design
3
+ in a Congested Mega City
4
+
5
+
6
+ By
7
+ Md. Ahsan Habib
8
+ Roll: 1507082
9
+
10
+
11
+
12
+
13
+
14
+
15
+
16
+
17
+ Department of Computer Science and Engineering
18
+ Khulna University of Engineering & Technology
19
+ Khulna 9203, Bangladesh
20
+
21
+
22
+ March 2020
23
+
24
+
25
+
26
+ ii
27
+
28
+ Certification
29
+
30
+
31
+ The thesis titled “Physarum Inspired Bicycle Lane Network Design in a Congested
32
+ Mega City” submitted by Md. Ahsan Habib, Roll No: 1507082, Academic Year: 2018-
33
+ 19, for partial fulfillment of the requirements for the degree of “Bachelor of Science in
34
+ Computer Science and Engineering”.
35
+
36
+ Supervisor
37
+
38
+
39
+
40
+ Dr. Muhammad Aminul Haque Akhand
41
+
42
+ Professor
43
+
44
+ Dept. of Computer Science and Engineering
45
+
46
+ Khulna University of Engineering & Technology
47
+
48
+ Khulna, Bangladesh.
49
+
50
+
51
+
52
+
53
+
54
+
55
+
56
+
57
+
58
+
59
+
60
+
61
+
62
+
63
+
64
+ iii
65
+
66
+
67
+ Acknowledgements
68
+
69
+ First and foremost, I must sense grateful to and wish to acknowledge my insightful
70
+ indebtedness to Dr. Muhammad Aminul Haque Akhand, Professor of Department of
71
+ Computer Science and Engineering and the supervisor of the thesis. His unfathomable
72
+ knowledge in this field influenced me to carry out this thesis up to this point. His endless
73
+ endurance, scholarly guidance, continual encouragement,
74
+ constant and lively
75
+ supervision, constructive criticism, priceless suggestion made it possible to come up to
76
+ this phase. Without his inspiring, enthusiasm and encouragement, this work could not
77
+ be completed.
78
+ Last, but by no means least, I thank Allah for the talents and abilities I was given that
79
+ made it possible to undertake this thesis.
80
+
81
+
82
+
83
+
84
+
85
+
86
+
87
+
88
+
89
+
90
+
91
+
92
+
93
+
94
+
95
+
96
+ iv
97
+
98
+
99
+ Abstract
100
+
101
+ Mobility is a key factor in urban life and transport network plays a vital role in mobility.
102
+ Worse transport network having less mobility is one of the key reasons to decline the
103
+ living standard in any unplanned mega city. Transport mobility enhancement in an
104
+ unplanned mega city is always challenging due to various constraints including
105
+ complex design and high cost involvement. The aim of this thesis is to enhance
106
+ transport mobility in a megacity introducing a bicycle lane. To design the bicycle lane
107
+ natural Physarum, brainless single celled multi-nucleated protist, is studied and
108
+ modified for better optimization. Recently Physarum inspired techniques are drawn
109
+ significant attention to the construction of effective networks. Exiting Physarum
110
+ inspired models effectively and efficiently solves different problems including
111
+ transport network design and modification and implication for bicycle lane is the unique
112
+ contribution of this study. Central area of Dhaka, the capital city of Bangladesh, is
113
+ considered to analyze and design the bicycle lane network bypassing primary roads.
114
+
115
+
116
+
117
+
118
+ v
119
+
120
+
121
+ Contents
122
+
123
+ Title Page
124
+
125
+
126
+
127
+
128
+
129
+
130
+ i
131
+ Certification
132
+
133
+
134
+
135
+
136
+
137
+
138
+ ii
139
+ Acknowledgements
140
+
141
+
142
+
143
+
144
+
145
+ iii
146
+ Abstract
147
+
148
+
149
+
150
+
151
+
152
+
153
+
154
+ iv
155
+ Contents
156
+
157
+
158
+
159
+
160
+
161
+
162
+
163
+ v
164
+ List of Tables
165
+
166
+
167
+
168
+
169
+
170
+
171
+ vii
172
+ List of Figures
173
+
174
+
175
+
176
+
177
+
178
+ viii
179
+ CHAPTER 1 Introduction
180
+ 1
181
+
182
+
183
+ 1.1 Overview of Transport Network in a Mega City
184
+
185
+ 1
186
+
187
+
188
+ 1.2 Motivation
189
+
190
+
191
+
192
+
193
+
194
+
195
+ 1
196
+ 1.3 Objectives of the Thesis
197
+ 2
198
+ 1.4 Organization of the Thesis
199
+ 3
200
+ CHAPTER 2 Physarum Inspired Network Design
201
+ 4
202
+ 2.1 Physarum and its Properties
203
+ 4
204
+ 2.2 Network Design Inspired on Physarum
205
+ 5
206
+ 2.3 Review of Existing Physarum Inspired Works
207
+ 6
208
+
209
+
210
+
211
+ 2.3.1 Transpiration Network Design 6
212
+
213
+
214
+
215
+ 2.3.1 Other Optimization Task
216
+
217
+
218
+
219
+ 7
220
+ CHAPTER 3 Physarum Inspired Bicycle Lane Design in an Unplanned
221
+
222
+
223
+ Mega City 10
224
+ 3.1 Mobility Problem in an Unplanned Mega City: Dhaka as a Case
225
+ Study 9
226
+
227
+
228
+
229
+ 3.1.1 History and Overview of Dhaka City
230
+
231
+
232
+ 9
233
+
234
+
235
+
236
+ 3.1.2 Transportation Crisis in Dhaka City
237
+
238
+
239
+ 9
240
+
241
+
242
+
243
+ 3.1.3 Effect of Transportation Crisis to Other Problems
244
+ 13
245
+ 3.2 Importance of Bicycle Lane in an Mega City 14
246
+ 3.3 Challenges to Increase Mobility in Dhaka City
247
+ 15
248
+ 3.4 Bicycle Lane Design in an Unplanned Mega City
249
+ 16
250
+ 3.5 Significance of Study
251
+ 23
252
+ CHAPTER 4 Experimental Studies
253
+ 24
254
+ 4.1 Experimental Settings
255
+ 24
256
+
257
+
258
+
259
+ vi
260
+
261
+ 4.2 Bicycle Lane Network Design in a Prominent Area
262
+ Error!
263
+ Bookmark not defined.
264
+ 4.2.1 Network Design
265
+ 25
266
+ 4.2.2 Effectiveness Analysis 32
267
+ 4.2.2.1 Time Saving
268
+ 33
269
+ 4.2.2.2 Fuel and Cost Saving
270
+ 33
271
+ 4.2.2.3 CO2 Emission Reduction
272
+ 36
273
+ 4.3 Bicycle Lane Network Design for Entire Dhaka City
274
+ 36
275
+ 4.3.1 Network Design 36
276
+ 4.3.2 Effectiveness Analysis 38
277
+ 4.3.2.1 Time Saving
278
+ 39
279
+ 4.3.2.2 Fuel and Cost Saving
280
+ 42
281
+ 4.3.2.3 CO2 emission reduction
282
+ 44
283
+ CHAPTER 5 Conclusions
284
+ 46
285
+
286
+
287
+ 5.1 Achievements
288
+
289
+
290
+
291
+
292
+
293
+ 46
294
+
295
+
296
+ 5.2 Future Study
297
+
298
+
299
+
300
+
301
+
302
+
303
+ 46
304
+ References
305
+ 47
306
+
307
+
308
+
309
+
310
+
311
+
312
+
313
+
314
+ vii
315
+
316
+
317
+ List of Tables
318
+
319
+
320
+
321
+
322
+ Table No
323
+ Description
324
+ Page
325
+ 2.1
326
+ Network construction using Physarum.
327
+ 7
328
+ 4.1
329
+ The locations of prominent area of Dhaka city including
330
+ traffic pressure.
331
+ 27
332
+ 4.2
333
+ Routes from node point 1.
334
+ 32
335
+ 4.3
336
+ Time comparison in car, bus and bicycle considering
337
+ from node point 1.
338
+ 34
339
+ 4.4
340
+ Time saving per day.
341
+ 34
342
+ 4.5
343
+ Cost comparison in car, bus and bicycle considering
344
+ from node point 1.
345
+ 35
346
+ 4.6
347
+ Cost saving per day.
348
+ 35
349
+ 4.7
350
+ CO2 emission reduction per day.
351
+ 36
352
+ 4.8
353
+ The general data on locations in Dhaka city, including
354
+ population, area, and traffic pressure.
355
+ 38
356
+ 4.9
357
+ Routes from node point 7.
358
+ 39
359
+ 4.10
360
+ Time comparison in car, bus and bicycle considering
361
+ from node point 7.
362
+ 41
363
+ 4.11
364
+ Time saving per day.
365
+ 41
366
+ 4.12
367
+ Cost comparison in car, bus and bicycle considering from
368
+ node point 1.
369
+ 43
370
+ 4.13
371
+ Cost saving per day.
372
+ 43
373
+ 4.14
374
+ CO2 emission reduction per day.
375
+ 44
376
+
377
+
378
+
379
+ viii
380
+
381
+
382
+ List of Figures
383
+
384
+
385
+
386
+
387
+
388
+
389
+
390
+
391
+
392
+
393
+
394
+
395
+
396
+
397
+
398
+
399
+
400
+
401
+
402
+
403
+ Figure No
404
+ Description
405
+ Page
406
+ 2.1
407
+ Physarum polycephalum.
408
+ 4
409
+ 3.1
410
+ Farmgate to University of Dhaka routes and time
411
+ needed in driving mode.
412
+ 11
413
+ 3.2
414
+ Physarum inspired network design of 11 nodes.
415
+ 16
416
+ 3.3
417
+ Real traffic network.
418
+ 17
419
+ 4.1.
420
+ Selected Dhaka city Map.
421
+ 19
422
+ 4.2
423
+ Network design using modified Physarum inspired
424
+ technique.
425
+ 21
426
+ 4.3
427
+ Dhaka city Map.
428
+ 28
429
+ 4.4
430
+ Constructed network 29 points of Dhaka city.
431
+
432
+ 29
433
+
434
+
435
+
436
+ 2
437
+
438
+ CHAPTER 1
439
+ Introduction
440
+ A transport network can be described as a collection of linear features that permits
441
+ either vehicular movement or flow of some commodity. The characteristics of
442
+ Physarum can be used to design a transportation network. This chapter discusses the
443
+ background study of network design, objectives, and organization of the thesis.
444
+ 1.1 Overview of Transport Network in a Mega City
445
+ Mobility, a key factor in planning and designing urban transport, is a fundamental part
446
+ of human beings [1]. For mobility purposes, people can use both motorized and non-
447
+ motorized vehicles within a city. Motorized vehicles like buses, cars, motorbikes,
448
+ cycles, etc. are hazardous in many kinds [2]. Non-motorized transports involve walking
449
+ and cycling as well as variants such as small-wheeled transportation like skates,
450
+ skateboards, push scooters and hand carts [3]. Nowadays, non-motorized mobility is
451
+ trendy [4].
452
+
453
+ The idea of mega city emerged to characterize the world's largest metropolitan
454
+ agglomerations at the end of the 20th century. In the 1970s, only two mega cities had
455
+ over ten million residents. Currently, 9.9% of the urban population globally resides in
456
+ 23 megacities. It is projected that in 2025, the number will increase to 37 if 13.6% of
457
+ global urban population are to be accommodated [5].
458
+
459
+ A transportation network is the formation of a spatial network that enables vehicle
460
+ movement or the flow of some commodities. A vast network of rail, subways and bus
461
+ lines passes through well-organized mega cities. There are also exist special footways
462
+ and networks for cycling routes.
463
+ 1.2 Motivation
464
+ In a well-planned and well-organized mega city, both footways and roads are available
465
+ for mobility purpose but in case of an unplanned and unorganized mega city, both
466
+ footpaths and roads are hardly available. In some cases, footpaths are snatched by
467
+
468
+
469
+
470
+ 3
471
+
472
+ hawkers and street vendors. The public transport system is defined by far a lack of
473
+ people's desired travel needs in terms of mobility, reliability, convenience, pace and
474
+ safety. In fact, some transports like buses are considered unreliable and time consuming
475
+ to reach their destinations. The Texas Transportation Institute reported a delay of 3.6
476
+ billion vehicle-hours in the 75 biggest metropolitan regions in 2000, culminating in 5.7
477
+ billion U.S. gallons (21.6 billion liters) of waste fuel and a loss of productivity of $67.5
478
+ billion or around 0.7 percent of GDP.
479
+
480
+ Bicycling or walking activity may help increase blood flow, release endorphins, and
481
+ decrease overall stress. It can even help to improve mental health and energy by
482
+ tracking 30 minutes of bicycling or walking a day[6]–[9]. Efficient and effective
483
+ bicycle lane network design in an unplanned and unorganized mega-city can minimize
484
+ total travel time, fuel usage, costs, carbon dioxide (CO2) emission, etc. Physarum
485
+ polycephalum is multi-headed, brainless, a giant multi-nucleated, single-celled protist
486
+ that can solve different complex problems. Physarum networks are believed to have
487
+ achieved a good balance between cost, efficiency, and resilience.
488
+ 1.3 Objectives of the Thesis
489
+ In the case of an unorganized and unplanned mega city, where the transportation
490
+ network is congested and unplanned and there are hardly any footpaths available and
491
+ no further transport facilities can be expanded. So there are some huge problems in
492
+ those cities like traffic jam, noise pollution, air pollution, CO2 emission, etc. With a
493
+ planned lane network with non-motorized vehicles nearly all of this problem can be
494
+ solved. Since it is not feasible to completely rebuild the transportation network and
495
+ infrastructure of a mega city but possible to transform mega city towards a green city.
496
+ The objective of this study is given below:
497
+  Study of Physarum
498
+  Physarum related paper study
499
+  Network design
500
+  Bicycle lane network in mega city
501
+
502
+
503
+
504
+ 4
505
+
506
+ 1.4 Organization of the Thesis
507
+ The main attraction of this thesis is to present a modified Physarum inspired technique
508
+ to construct bicycle lane network design. The thesis has five chapters. An introduction
509
+ to network design and Physarum has been given in Chapter 1. Chapter-wise overviews
510
+ of the rest of the thesis are as follows:
511
+ Chapter 2: Describes the literature review that includes a brief description of Physarum
512
+ with its properties and previous related work to Physarum inspired network design.
513
+ Chapter 3: Explains the proposed modified Physarum Inspired Bicycle Lane Design
514
+ in an Unplanned Mega City in detail.
515
+ Chapter 4: Reports the experimental result of modified Physarum Inspired Bicycle
516
+ Lane Design. Also, in this chapter, a case study of Dhaka is demonstrated. Finally,
517
+ Chapter 5: This chapter is for the conclusions of this thesis together with the outline
518
+ of future directions of research opened by this work.
519
+
520
+
521
+
522
+
523
+ CHAPTER 2
524
+ Physarum Inspired Network Design
525
+ Physarum polycephalum is a brainless amoeboid organism. Physarum-inspired network
526
+ design model has demonstrated extraordinary skill in designing effective networks. In
527
+ this chapter firstly, we discuss the Physarum polycephalum, secondly the Physarum-
528
+ based network design and lastly, the existing network design inspired by Physarum.
529
+ 2.1 Physarum and its Properties
530
+ Physarum polycephalum, accurately the 'many-headed' slime mold, is a gigantic multi-
531
+ nucleated but single-celled protist [10]. The slime mold Physarum polycephalum
532
+ creates a form of spatial memory by avoiding areas it has previously explored to
533
+ navigate in a complex environment[11]. Recently, Physarum polycephalum (true slime
534
+ mold) has arisen as a fascinating illustration of biological computation through
535
+ morphogenesis[12]. Although it is a single-cell organism, studies have shown that the
536
+ Physarum can overcome different minimum cost flow problems through its growth
537
+ process[12]. In the following Fig. 2.1, an example of the Physarum polycephalum is
538
+ shown.
539
+
540
+ Figure 2.1: Physarum polycephalum. [61].
541
+
542
+
543
+ FS
544
+ FS
545
+ FS
546
+ Source
547
+ FS
548
+ FS
549
+
550
+ 5
551
+
552
+ Here Physarum polycephalum is shown to grow up the network towards the FSs from
553
+ the source. (FS = Food Source)
554
+ 2.2 Network Design Inspired on Physarum
555
+ The intelligent behavior of slime mold was first observed by Nakagaki et al. in
556
+ 2000[13]. In previous biological experiments, Physarum-inspired network model has
557
+ exhibited an extraordinary intelligence to build efficient networks to connect multiple
558
+ food sources. Physarum networks are believed to have achieved a good balance
559
+ between cost, efficiency, and resilience. For instance, Physarum constructed networks
560
+ with comparable qualities to those of the Tokyo rail system in a renowned experiment
561
+ performed by Tero et al. in 2010[14].
562
+ They developed a mathematical model for adaptive network construction to emulate
563
+ the behavior of Physarum which is based on feedback loops between the thickness of
564
+ each tube and internal protoplasmic flow in which high rates of streaming stimulate an
565
+ increase in tube diameter, whereas tubes tend to decline at low flow rates. The edges
566
+ represent plasmodial tubes in which protoplasm flows, and nodes are junctions between
567
+ tubes. They consider the pressure at nodes 𝑖 and 𝑗 are 𝑃𝑖 and 𝑃𝑗, respectively, and the
568
+ two nodes are connected by a cylinder of length 𝐿𝑖𝑗 and radius 𝑟𝑖𝑗. They assume that
569
+ the flow is laminar and follows the Hagen-Poiseuille equation, the flux through the tube
570
+ is,
571
+ 𝑄𝑖𝑗 = 𝜋𝑟𝑖𝑗
572
+ 4(𝑃𝑖 − 𝑃𝑗)
573
+ 8𝜀𝐿𝑖𝑗
574
+ = 𝐷𝑖𝑗(𝑃𝑖 − 𝑃𝑗)
575
+ 𝐿𝑖𝑗
576
+ , (2.1)
577
+ here 𝜀 is the viscosity of the fluid, and 𝐷𝑖𝑗 =
578
+ 𝜋𝑟𝑖𝑗
579
+ 4
580
+ 8𝜀 is a measure of the conductivity of
581
+ the tube. As the length 𝐿𝑖𝑗 is a constant, the behavior of the network is described by the
582
+ conductivities of the edges.
583
+ The constrains must be maintained,
584
+
585
+ ∑ 𝑄1𝑗 = 𝐼0
586
+ 𝑗
587
+ ,
588
+ For source node-1
589
+
590
+ ∑ 𝑄2𝑗 = −𝐼0
591
+ 𝑗
592
+ ,
593
+ For sink node-2
594
+
595
+ ∑ 𝑄𝑖𝑗 = 0
596
+ 𝑗
597
+ ,
598
+ Inflow and outflow must be conserved
599
+
600
+
601
+
602
+ 6
603
+
604
+ To accommodate the adaptive behavior of the plasmodium, the conductivity of each
605
+ tube evolves according to
606
+ 𝑑𝐷𝑖𝑗
607
+ 𝑑𝑡 = 𝑓(|𝑄𝑖𝑗|) − 𝐷𝑖𝑗, where 𝑓(|𝑄𝑖𝑗|) describes the
608
+ expansion of tubes in response to the flux and 𝐷𝑖𝑗 represents the rate of tube
609
+ constriction, so the tubes will gradually disappear.
610
+ The functional 𝑓(|𝑄|) =
611
+ |𝑄|𝛾
612
+ (1+ |𝑄|𝛾) which describes a sigmoidal response where 𝛾 is a
613
+ parameter that controls the nonlinearity of feedback (𝛾 > 0).
614
+ 2.3 Review of Existing Physarum Inspired Works
615
+ Physarum can successfully overcome many problems in real life even more
616
+ complicated problems. In this section initially, we discuss and summarize about the
617
+ Physarum inspired network design techniques, and then discuss about other
618
+ optimization problems solved using Physarum inspired methods.
619
+ 2.3.1 Transpiration Network Design
620
+ To link several food points Physarum can build high-quality networks. A mathematical
621
+ model of the adaptive dynamics of a transport network of the true slime mold that shows
622
+ path-finding behavior in a maze is developed in 2007 by Tero et al. [15]. In 2010,
623
+ Physarum developed networks shows similar qualities to the Tokyo rail system in a
624
+ famous experiment conducted by Tero et al. [14]. Since then, Physarum inspired other
625
+ real-world transport networks, such as Iberian motorways [16] and Mexican Federal
626
+ highways [17] have also been constructed. Adamatzky et al. [18] develops a model to
627
+ construct networks on major urban areas of China. Becker et al. [19] developed in 2011
628
+ a fault tolerant connection networks for the Tokyo rail system using an agent based
629
+ simulation of Physarum polycephalum. Physarum-inspired cellular automaton (CA)-
630
+ based network designing model was developed by Tsompanas et al. [20] inspired by
631
+ Slime Mould. Zhang et al. [21] recently proposed a method to solve the problem of
632
+ network design in supply chain for multiple source nodes and multiple sink nodes.
633
+ Physarum is excellent at doing other network design [22].Here we summarize various
634
+ works of network construction using Physarum inspired technique in the following
635
+ Table 2.1.
636
+
637
+
638
+
639
+
640
+ 7
641
+
642
+
643
+ 2.3.2 Other Optimization Task
644
+ Nakagaki et al. in 2000 [13] observed that Physarum productively found the shortest
645
+ path between two selected points in a maze. In addition, the Physarum can solve many
646
+ other famous problems like the shortest paths [23]–[25], towers of Hanoi problem [26]
647
+ and minimum risk problem [27]. Physarum can effectively solve many other complex
648
+ problems in the real world like traveling salesman problem [28]–[30], population
649
+ migration [31], etc. Logic gates design and boolean operations can be performed by a
650
+ slime mold network [32], [33]. Chaining these logic gates together can enable a slime
651
+ mold computer to perform binary computation operations. Physarum works very well
652
+ in logical computing as well[34]–[38]. Identifying critical components [39], [40] and
653
+ many other problems [41], [42] are effectively and efficiently solved through Physarum
654
+ bio-inspired technique. Most interestingly, many other studies have shown that
655
+ Table 2.1: Network construction using Physarum.
656
+ Authors & Year
657
+ Title of Paper
658
+ Contribution
659
+ Tero et al., 2007
660
+ [15]
661
+ A mathematical model for
662
+ adaptive transport network in
663
+ path finding by true slime mold
664
+ Model for adaptive transport
665
+ network in Path-finding in a maze
666
+ Tero et al., 2010
667
+ [14]
668
+ Rules for Biologically Inspired
669
+ Adaptive Network Design
670
+ Tokyo Rail Network construction
671
+ Adamatzky et al.,
672
+ 2011 [16]
673
+ Rebuilding Iberian motorways
674
+ with slime mould
675
+ Iberian motorway network
676
+ construction
677
+ Adamatzky et al.,
678
+ 2011 [17]
679
+ Approximating Mexican
680
+ highways with slime mould
681
+ Mexican Federal highway
682
+ network construction
683
+ Adamatzky et al.,
684
+ 2013 [18]
685
+ Slime mould imitates transport
686
+ networks in China
687
+ Slime mould protoplasmic
688
+ networks on major urban areas of
689
+ China
690
+ Becker et al., 2011
691
+ [19]
692
+ Design of fault tolerant
693
+ networks with agent-based
694
+ simulation of Physarum
695
+ polycephalum
696
+ Construction of fault tolerant
697
+ connection networks for the
698
+ Tokyo rail system using an agent
699
+ based simulation of Physarum
700
+ polycephalum
701
+ Tsompanas et al.,
702
+ 2015 [20]
703
+ Evolving Transport Networks
704
+ With Cellular Automata Models
705
+ Inspired by Slime Mould
706
+ Physarum-inspired cellular
707
+ automaton (CA)-based network
708
+ designing model
709
+ Zhang et al. 2016
710
+ [21]
711
+ A Physarum-inspired approach
712
+ to supply chain network design
713
+ Supply chain network design
714
+
715
+
716
+
717
+
718
+
719
+ 8
720
+
721
+ Physarum's tubular topologies often mimic those of complex mathematical networks
722
+ [43], [44] like the Steiner tree problems [45]–[49].
723
+
724
+ Studies with Physarum related works showed that the organism can solve many
725
+ complex real-life problems efficiently and effectively, particularly in the sense of
726
+ network design. This can be applied with some changes for designing the bicycle lane
727
+ network. In this work bicycle lane network is planned using local lanes in congested
728
+ mega city.
729
+
730
+
731
+
732
+
733
+
734
+
735
+
736
+
737
+
738
+
739
+
740
+ 10
741
+
742
+ CHAPTER 3
743
+ Physarum Inspired Bicycle Lane Design in an Unplanned
744
+ Mega City
745
+ An unplanned mega city suffers various problems including transporation and mobility.
746
+ Transport mobility enhancement in an unplanned mega city is always challenging due
747
+ to various constraints including complex design and high cost involvement. In this
748
+ thesis, we try to increase the mobility in an unplanned mega city Dhaka. In this chapter,
749
+ problems of an unplanned mega city Dhaka are addressed firstly, then challenges in
750
+ transformation an unplanned megacity to green city, and finally, the importance of
751
+ bicycle lane in an unplanned mega city and bicycle lane network design in an unplanned
752
+ mega city are discussed.
753
+ 3.1 Mobility Problem in an Unplanned Mega City: Dhaka as a Case
754
+ Study
755
+ This thesis aim is to enhance transport mobility in an unplanned mega city introducing
756
+ a bicycle lane. In this section initially, we discuss the history and overview of Dhaka
757
+ city, then the transportation crisis in Dhaka city and finally, the effect of transportation
758
+ crisis on other problems.
759
+ 3.1.1 History and Overview of Dhaka City
760
+ It is mentioned that the concept of a Mega City originated at the end of the 20th century
761
+ to describe the largest city in the world. Although, literature has little disagreement
762
+ about the population threshold used as a megacity concept, the UN (2003) defines most
763
+ precisely: a conurbation of ten million or more inhabitants is a megacity which has now
764
+ been widely accepted [5].
765
+
766
+ Since 1971, Dhaka has experienced incredible growth and rapid growth. It is one of the
767
+ world's only seven cities with a population of over 2.4 percent between 1975 and 2005
768
+ (UN 2006). In 2011, it was one of the world's top ten mega cities. The developments
769
+ have unfortunately happened unplanned, especially since the 1990s [5]. The word
770
+
771
+
772
+
773
+ 11
774
+
775
+ Dhaka is nowadays mentioned regularly in the most unlivable cities. Dhaka was the
776
+ world's fastest-growing town between 1950 and 2000 [50]. While population growth
777
+ has declined recently, it is still the second-largest growth mega city in the world [50].
778
+ 3.1.2 Transportation Crisis in Dhaka City
779
+ The mega city has neither efficient public transport nor mass transit [50]. It is probably
780
+ the world's only mega-city without efficient public transit and public transit [50]. Dhaka
781
+ has a poorly developed transport system with 200 km of main roads and about 260 km
782
+ (too few) secondary and collector roads, in addition to 250 km of narrow roads
783
+ (approximately) [50]. There are many incomplete critical connections in the road
784
+ network and several regions have insufficient connectivity to the network [50]. Separate
785
+ bicycling lanes and footpaths are barely available in the city, which enhance the
786
+ mobility crisis.
787
+
788
+ There was a time when traffic congestion was only suffered by commuters on the main
789
+ streets of the city, but now it starts right from the door. Traffic jam has turned into
790
+ nightmares for daily trips. According to a World Bank report, the average traffic speed
791
+ in Dhaka has dropped from 21 kilometers per hour (kmph) to 7 kilometers per hour in
792
+ the last 10 years, and by 2035 the speed could drop to 4 kilometers per hour, which is
793
+ slower than the walking speed [55]. Another study commissioned by the BRAC
794
+ Institute of Government and Development indicates that traffic congestion in Dhaka
795
+ consumes about 5 million working hours a day and costs the country $11.4 billion a
796
+ year [55]. The financial loss is a measure of the time lost in traffic congestion and the
797
+ extra hours expended on cars.
798
+
799
+ It should be noted that there is no adequate and proper routing of our public transport
800
+ system. In 2016, According to the BRTA, 20,304 new cars were introduced to Dhaka's
801
+ traffic, which means more than 55 new cars hit the streets every day [55]. As the number
802
+ of cars increases, there is also an increasing demand for parking space. Unfortunately,
803
+ however, the parking space in our city is quite inadequate. Many vehicles on the streets
804
+ are stored. Many buses and trucks are parked on the streets on a regular basis [55].
805
+
806
+
807
+
808
+
809
+
810
+ 12
811
+
812
+ According to the Dhaka Metropolitan Police (DMP) Traffic Department, traffic jams
813
+ have become intolerable in some urban areas over the past few days, including Mirpur-
814
+ 12 to Mirpur-10 crossing, Rokeya Sarani, Gulshan, Banani, Badda, Moghbazar,
815
+ Eskaton, Tejgaon, Airport Road, and Uttara, for a number of reasons, including the
816
+ ongoing Dhaka International Trade Fair, the building of underground trains and the
817
+ increase in private transport[56]. Urban analyst and former chairman of UGC Prof
818
+ Nazrul Islam said traffic jams are gradually deteriorating due to an increase in urban
819
+ population and the number of small vehicles and lack of effective control measures
820
+ [56]. “We have built over half dozens of flyovers, but it is not a solution to solve the
821
+ problem. We will not be able to reduce traffic jams without increasing public transport
822
+ and ensuring better traffic management", he observed [56]. Transport and urban experts
823
+ believe that the government should take practical steps to ensure effective mass
824
+ transportation, restore transportation efficiency, decrease the use of private and small
825
+ cars, replace micro-buses and mini-busses with single-decker, double-decker, and
826
+ articulated buses, and extend the city to dramatically alleviate traffic jams without
827
+ spending huge money [56]. The experts also said that railways and waterways can also
828
+ be used effectively to relieve road traffic pressure and facilitate trouble-free transport
829
+ services for the commuters [56].
830
+
831
+ Figure 3.1 illustrates the traffic jam in the city. Here, three routes are available from
832
+ Farmgate to the University of Dhaka. During driving mode, it takes around 15 minutes
833
+ at 06:00 a.m., 18-35 minutes at 10:00 a.m., and 18-40 minutes at 5:00 p.m. on average.
834
+ On the other side, it takes an average of 45-50 minutes in walking mode. We note that
835
+ the speed of driving is slightly higher than that of walking. Not only in some areas, but
836
+ throughout the city, it's the case.
837
+
838
+ The number of automobiles has been increasing in Dhaka city at the rate of at least 10
839
+ percent annually, which has been contributing to environmental pollution on the one
840
+ hand and traffic congestion on the other. This transportation problem enhances other
841
+ problems like air pollution, noise pollution, fuel consumption, CO2 emission, worst in
842
+ road conditions, etc.
843
+
844
+
845
+
846
+
847
+
848
+
849
+ 13
850
+
851
+
852
+
853
+
854
+
855
+ (A) At 06.00AM
856
+ (B) At 10.00AM
857
+
858
+
859
+ (C) At 5.00PM
860
+ (D) Walking mode
861
+ Figure 3.1: Farmgate to University of Dhaka routes and time needed in driving mode. (A) At 06.00am. (B) At
862
+ 10.00am. (C) At 5.00pm. (D) Time needed in walking mode.
863
+
864
+
865
+ of1
866
+ ManikMiaAve
867
+ IndiraRd
868
+ CG
869
+ OCK
870
+ W.Raza
871
+
872
+
873
+
874
+ OFarmgate
875
+ LKISAREA
876
+ Insaf Bal
877
+ Bashundhara City
878
+ &Gen
879
+ spital
880
+ ShoppingComplex
881
+ nthapath
882
+
883
+ aHatirheel
884
+ hani Playground
885
+ KALABAGAN
886
+ NEWESK
887
+ 12A
888
+ FreeSchool St,
889
+ Kalabegan.1st Ln
890
+ 16min
891
+ IANMONDI
892
+ 3.9 km
893
+ 15min
894
+ OLDE
895
+ 5.5 km
896
+ RdNo.8
897
+
898
+ 17 min
899
+ 3.7 km
900
+ Rd8/A
901
+ TA
902
+ RdNo.6
903
+ Off
904
+
905
+ H
906
+ HATIRPOOL
907
+ Rd No.5
908
+ ATOLA
909
+ MintoRd
910
+ DhakaCityCollege
911
+ SHAHBAGH
912
+
913
+ Kazi Food Industries Ltd.
914
+ KATABON
915
+ Bangladesh
916
+ Dhaka CollegeDhaka
917
+ National Museum
918
+ Shreshtha
919
+ Noor
920
+ hammad
921
+ Dhaka New Market
922
+ UniversityofDhaka
923
+ icCollege
924
+ RAMNA
925
+ et-pilkhana Rd
926
+
927
+ Bangla Acad0
928
+ OFarmgate
929
+ IKISAREA
930
+ GA
931
+ KawranBazar
932
+ InsafBarakah
933
+ Bashundhara City
934
+ ShoppingComplex
935
+ &GeneralHos
936
+ Ranthapath@
937
+ Hatirjheel
938
+
939
+ ind
940
+ KALABAGAN
941
+ NEWESKATON
942
+ F
943
+ Free SohoolSt
944
+ Kalabagan 1etLn
945
+ DI
946
+ KATHALBAGAN
947
+ OLD ESKATON
948
+
949
+ 3
950
+ 18-35mins
951
+ 3.9km
952
+ PARIBAG
953
+ RdNo.6
954
+ HATIRPOOL
955
+ H
956
+ =18-40mins
957
+ Rd No.5
958
+ 3.7km
959
+ Dhaka CityCollege
960
+ Baily Rd
961
+ SHAHBAGH
962
+ 18-35mins
963
+ Rd
964
+ 4.1km
965
+ Bangladesh
966
+ ziFoodIndustriesLtd
967
+ DhakaCollege
968
+ KATABON
969
+ Ant
970
+ HANA
971
+ Dhaka NewMarket
972
+ UniversityofDhakaO
973
+ SaniRd
974
+ RAMNA
975
+ t-Pilkhana Rd
976
+ Google
977
+ BanglaAcademy
978
+ Eden Mohila日
979
+ OFarmgate
980
+ TallabapRd
981
+ IKISAREA
982
+ KawranBazar
983
+ InsafBaral
984
+ Bashundhara City
985
+ ShoppingComplex
986
+ &General
987
+ thap
988
+ atn
989
+ Hatirjheel
990
+ KALABAGAN
991
+ sffofaa
992
+ NEWESKATON
993
+ FroeSchoolSt
994
+ 6610-日
995
+ Katabagan1stLn
996
+ H
997
+ KATHALBAGAN
998
+ OLD ESKATON
999
+ 3
1000
+ 20-40mins
1001
+ 3.9km
1002
+ PARIBAGH
1003
+ Rd No-6
1004
+ HATIRPOOL
1005
+ 18-40mins
1006
+ RdNo.5
1007
+ H
1008
+ 3.7km
1009
+ Dhaka City College
1010
+ Baily Rd
1011
+ SHAHBAGH
1012
+ 22-40mins
1013
+ 113419
1014
+ 4.1km
1015
+
1016
+ Bangladesh
1017
+ FoodIndustries Ltd
1018
+ DhakaCollege
1019
+ KATABON
1020
+ 11
1021
+ ANA
1022
+ T
1023
+ DhakaNewMarket
1024
+ UniversityofDhaka
1025
+ SaniRd
1026
+ RAMNA
1027
+ BanglaAcademy日
1028
+ OFarmgate
1029
+ TallabieRd
1030
+ IKISAREA
1031
+ H
1032
+ KawranBazar
1033
+ Insaf
1034
+ Bashundhara City
1035
+ ShoppingComplex
1036
+ &Ger
1037
+ st
1038
+ 白aHatirjheel
1039
+ H
1040
+ KALABAGAN
1041
+ NEW ESKATON
1042
+ Ftee Schodl St
1043
+ 8010-回
1044
+ Kalsbigan1st La
1045
+ KATHALBAGAN
1046
+ OLDESKATO
1047
+ 3
1048
+ 50min
1049
+ PARIBAGR
1050
+ 专T
1051
+ 3.9km
1052
+ RdNo.6
1053
+ HATIRPOOL
1054
+ Officers'Clut
1055
+ H
1056
+ RdNo.5
1057
+ 48min
1058
+ 3.7km
1059
+ Shaka CityCollege
1060
+ O
1061
+ Baily
1062
+ 49min
1063
+ 3.8km
1064
+ Bangladesh
1065
+ IndustriesLtd
1066
+ NationalMuseum
1067
+ RamnaParl
1068
+ DhakaCollege
1069
+ KATABON
1070
+ DhakaNewMarket
1071
+ University of Dhaka0o
1072
+ ani
1073
+ RAMNA
1074
+ PilkhanaRd
1075
+
1076
+ BanglaAcademy
1077
+
1078
+ 14
1079
+
1080
+ 3.1.3 Effect of Transportation Crisis on Other Problems
1081
+ Transportation crisis affects the environment badly. It may affect the air pollution, noise
1082
+ pollution, fuel consumption, etc. According to the Department of Environment (DoE),
1083
+ the standard value of the Air Quality Index (AQI) is 50 represents good air quality with
1084
+ little potential to affect public health [51]. But, according to AirVisual information,
1085
+ Dhaka the capital city of Bangladesh has been ranked the worst in the Air Quality Index
1086
+
1087
+ (AQI) valued 309, which is hazardous and would trigger health warnings of emergency
1088
+ conditions [51]. The entire population is more likely to be affected by the enormous
1089
+ number of diseases like nausea, asthma, high blood pressure, heart disease, and cancer.
1090
+ It also impacts the respiratory tract severely and causing irritation. Children's cognitive
1091
+ faculty will be adversely affected by lead exposure, which can also distress the central
1092
+ nervous system, causing hypertension and renal injury. In the last two months, the
1093
+ capitalist has been enjoying just nineteen hours of good air [51]. Diesel-run vehicles
1094
+ account for more than 80 percent of the air pollution in Dhaka as most of them fail to
1095
+ comply with the approved emission standard, said a recently published survey report
1096
+ [52].
1097
+
1098
+ In Dhaka, the average sound level is between 80dB and 110dB in prime areas such as
1099
+ Farmgate, Karwan Bazar, Shahbagh, Gabtoli, and Mohakhali Bus Terminal, says the
1100
+ study report [53]. According to the World Health Organization (WHO), this is almost
1101
+ twice the maximum noise level that can be tolerated by humans – 60dB – without
1102
+ suffering a gradual loss of hearing [53]. According to a recent study conducted by WHO
1103
+ at 45 locations of Dhaka city, most of the traffic points and many of the industrial,
1104
+ residential, commercial, silent and mixed areas are suffering noises exceeding the
1105
+ standard limits of Bangladesh [54]. WHO has also identified several areas as severe
1106
+ red, moderate red, mild red and green zones in terms of noise pollution in Dhaka city
1107
+ [54]. Around 11.7% of the population in Bangladesh have lost their hearing due to noise
1108
+ pollution, says the Development of Environment (DoE) study, which was conducted in
1109
+ 2017 [53]. The major sources of noise pollution in urban areas are traffic and loud
1110
+ horns. The DoE found that in Dhaka, 500-1,000 vehicles honk at the same time when
1111
+ stuck in traffic[53]. Around 5% of the world population is facing several kinds of health
1112
+ hazards due to complexities related to noise pollution, According to the WHO [53].
1113
+
1114
+
1115
+
1116
+ 15
1117
+
1118
+
1119
+
1120
+ There is a scarcity of natural gas and petroleum in Bangladesh also. Gas supplies meet
1121
+ 56% of domestic energy demand [57]. Bangladesh has a very limited energy reserve;
1122
+ small amounts of oil, coal and countable natural gas reserves [58]. The country is a net
1123
+ importer of crude oil and petroleum products [57].
1124
+ 3.2 Importance of Bicycle Lane in Mega City
1125
+ In more ways than one, driving a bicycle has a positive impact on the environment.
1126
+ They are also less expensive than other forms of transportation and environment-
1127
+ friendly. Bicycles are considered zero-emission vehicles i.e. they do not release any
1128
+ carbon emissions. Bicycles, as vehicles with zero emissions, do not contribute to air
1129
+ pollution. People can have moderate fresh air. They do not contribute to sound
1130
+ pollution. When bicycles are used as a consistent form of travel by a large percentage
1131
+ of the population in a particular area especially in an urban area, there is a great relief
1132
+ on road traffic conditions. Bicycles also have the effect of alleviating parking
1133
+ difficulties in urban areas, because they simply take up so much less space than cars.
1134
+ Low physical activity or Physical inactivity is recognized as one of the country's leading
1135
+ risk factors and the fourth leading cause of deaths due to non-communicable disease
1136
+ (NCDs) worldwide - cardiovascular diseases, chronic lung diseases, heart disease,
1137
+ stroke, diabetes and cancers - and each year contributes to over three million
1138
+ preventable deaths [59]. There may be some physical exercise every day by using bi-
1139
+ cycle. Bicycles also offer more freedom of movement without time constraints,
1140
+ crowded and unpleasant conditions and, if desired, the ability to travel alone. So, people
1141
+ can have eco-friendly Travel. Bicycles are lighter and usually cause less damage to the
1142
+ roads than others. This will reduce the number of injuries. So the area would be
1143
+ environment-friendly. Most of the well-organized mega city criteria are met by using
1144
+ bicycles.
1145
+ 3.3 Challenges to Increase Mobility in Dhaka City
1146
+ In the case of an unplanned or unorganized city, one of the big issues is that road
1147
+ conditions are not good enough and the cycling lanes & footways are hardly available
1148
+
1149
+
1150
+
1151
+ 16
1152
+
1153
+ which is the major cause of worst traffic. On the other hand, noise pollution and traffic
1154
+ congestion are troubling and there is a huge CO2 gas emission occurs.
1155
+
1156
+ Between the well-organized city and unplanned city, there is a huge gap in road
1157
+ conditions, footways & cycling lanes, air quality, noise pollution, and traffic
1158
+ congestion. There may have some parameters to increase transport mobility in the city
1159
+ like the construction of separate roads, underground roads, railways, etc. But the
1160
+ construction of those parameters is not a feasible solution because of huge budgets and
1161
+ spaces. There are two alternative low-cost solutions exist, the first one is to make ready
1162
+ the footpaths for routing purpose and the next one is to introduce local lanes with
1163
+ bicycles as vehicles for moving around the city. But the first one is not possible because
1164
+ most of the time, street vendors and hawkers snatch up footways and in some case
1165
+ footways not exist. The next solution is feasible and effective as bicycles have several
1166
+ environmental benefits.
1167
+
1168
+ For this purpose, we have to plan a network and always try to use local lanes for routing
1169
+ through one place to another place, if it is not feasible to use local roads for some cases,
1170
+ we will use main roads and will always try to minimize the use of main roads. There
1171
+ exist some constraints to be handled to plan network that we cannot access all possible
1172
+ roads like VIP roads, heavy traffic roads, etc. On the other hand, it is almost impossible
1173
+ to plant more trees to improve air quality and reduce CO2. And most of the noise
1174
+ pollution and traffic congestion is caused by motor vehicle use.
1175
+ 3.4 Bicycle Lane Design in an Unplanned Mega City
1176
+ Different approaches have been presented over the past decades to design networks. It
1177
+ is possible to split the solutions into two categories: exact solutions and heuristic
1178
+ solutions. Exact approaches can treat Network Design Problem in a rigorous way which
1179
+ is inefficient when dealing with real-world large-scale networks. And, an approximate
1180
+ yet efficient approach is provided by heuristic approaches, more popular than exact
1181
+ approaches, that have emerged in recent decades which can tackle large-scale real-
1182
+ world problems. Without using an exact and heuristic approach, here we present the
1183
+ Physarum-inspired technique which takes into account the constraints to construct the
1184
+ bicycle lane network. Basically, we always try to use local lanes for routing through
1185
+
1186
+
1187
+
1188
+ 17
1189
+
1190
+ one place to another place, if it is not feasible to use local roads for some cases, we will
1191
+ use main roads and will always try to minimize the use of main roads.
1192
+
1193
+ Compared to previous studies it is noted that the network has only one direction
1194
+ between two nodes, so the stream is only flowing from one node to another, but is never
1195
+ flowing in the opposite direction. However, most roads have the features of double-way
1196
+ traffic in real traffic networks as demonstrated in Fig. 3.2. There is a clear distinction
1197
+ between opposite directions, where flows do not interfere in two directions opposite.
1198
+ Apparently, in the traffic network shown in Fig. 3.2, the initial approach influenced by
1199
+ the Physarum cannot be applied.
1200
+ Here in the following, we discuss the modified Physarum inspired lane design
1201
+ technique.
1202
+ Given a graph 𝐺 = (𝑁, 𝐸), where
1203
+ 𝑁 denotes a set of 𝑛 cities,
1204
+ 𝐸 represents a set of 𝑚 connections or linkages.
1205
+
1206
+ There is a protoplasmic flow in each link of this model. The two terminals of the link
1207
+ represent two locations of the specified area. One terminal is called the source node,
1208
+ and the other terminal is called the sink node. Protoplasmic flows from the source node
1209
+ into the network and from the sink node out of the network. At each city there is
1210
+ pressure and the amount of flux in each edge is proportional to the difference in pressure
1211
+ between the two terminals of this edge. Specifically, the flux 𝑄𝑖𝑗 in edge (i,j) is given
1212
+ by the modified Hagen-Poiseuille equation below.
1213
+
1214
+ Figure 3.2: Real traffic network.
1215
+
1216
+
1217
+
1218
+
1219
+ 18
1220
+
1221
+ 𝑄𝑖𝑗 =
1222
+ 𝐷𝑖𝑗
1223
+ 𝑐𝑖𝑗
1224
+ (𝑃𝑖 + 𝑃𝑗) (3.1)
1225
+ 𝐷𝑖𝑗 =
1226
+ 𝜋𝑟𝑖𝑗
1227
+ 4
1228
+ 8𝜀 (3.2)
1229
+ In the above equation, 𝐷𝑖𝑗 is the conductivity of the linkage, 𝑐𝑖𝑗/𝐿𝑖𝑗 is the length of the
1230
+ edge, 𝑃𝑖 and 𝑃𝑗 are the pressure of the vertices 𝑖 and 𝑗, 𝑟𝑖𝑗 is the radius of the edge,
1231
+ 𝜀 (𝑒𝑝𝑠𝑖𝑙𝑜𝑛) is the coefficient of viscosity. In the case of conductivity(𝐷𝑖𝑗), which is
1232
+ linkage specific, we are using a fixed conductivity value for all the linkages for
1233
+ simplicity. The length(𝑐𝑖𝑗/𝐿𝑖𝑗) is not the direct length from 𝑖 city to 𝑗 city rather we
1234
+ consider all possible path length with no use or hardly use of main roads and we
1235
+ calculate pressure of each city based on the amount of population in that city. As we
1236
+ use initial fixed conductivity value, 𝑟𝑖𝑗 is considered to be the same for all connections.
1237
+ Eq. (3.2) indicates that the tubular thickness( 𝑟𝑖𝑗) of Physarum increases with the
1238
+ conductivity of the tube. Therefore, the conductivity update formula can explain the
1239
+ change in tubular thickness of Physarum as follows,
1240
+ 𝑑
1241
+ 𝑑𝑡 𝐷𝑖𝑗 = 𝑓(|𝑄𝑖����|) − 𝜇𝐷𝑖𝑗 , (3.3)
1242
+ here 𝑓(|𝑄𝑖𝑗|) is an increasing function, 𝜇 is a positive constant. In our case, we
1243
+ considered 𝑓(|𝑄𝑖𝑗|) = |𝑄𝑖𝑗| for simplicity. The equation of conductivity update
1244
+ suggests that conductivity tends to increase with large flux edges. Consequently, the
1245
+ equation of conductivity update reflects the above physiological mechanism. We must
1246
+ first calculate the pressures to calculate the flux and update the edge conductivities. The
1247
+ pressures can be determined using the Poisson equation network below by considering
1248
+ the flux conservation law at each vertex,
1249
+ ∑ 𝐷𝑖𝑗
1250
+ 𝑐𝑖𝑗
1251
+ (𝑃𝑖 + 𝑃𝑗) = {
1252
+ −𝐼0,
1253
+ 𝑗 = 𝑠𝑜𝑢𝑟𝑐𝑒
1254
+ +𝐼0, 𝑗 = 𝑠𝑖𝑛𝑘
1255
+ 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
1256
+ 𝑖 ∈𝑉(𝑗)
1257
+ , (3.4)
1258
+ here 𝑉(𝑗) is the set of vertices linked to vertex j, I0 is the amount of flux flowing into
1259
+ and out of the node of the source.
1260
+ Let the pressure at the sink node be 0, and give an initial value to each edge
1261
+ conductivity, then use Eq. (3.4) to measure the other pressures. After that, we can
1262
+ calculate the amount of flux in each edge using Eq. (3.1), and we can change the
1263
+ conductivity of each edge using Eq. (3.2). According to an edge conductivity threshold
1264
+ value, edges with conductivity lower than this value are cut off from the network.
1265
+
1266
+
1267
+
1268
+ 19
1269
+
1270
+ Let’s consider a simple small network consist of only eleven points picked from Dhaka
1271
+ City. Physarum always finds the optimal route network among the eleven nodes and is
1272
+ believed to have achieved a good balance between cost, efficiency, and resilience. Here
1273
+ are the illustrations in the following which are the generalized design using modified
1274
+ Physarum inspired technique. This technique can be applied any real-life traffic
1275
+ network design. In this work, the technique is applied both prominent area centered
1276
+ with Motijheel and entire Dhaka city.
1277
+ In Fig. 3.2, (A) there are 11 node points between Farmgate (node point 2) and the
1278
+ University of Dhaka (node point 10) existing network with both main and local roads.
1279
+ Here, (B) – (E) shows that the network growing process with time (t = iteration) i.e. (B)
1280
+ Network at 10th iteration; (C) Network at 20th iteration; (D) Network at 50th iteration;
1281
+ (E) Final network for 11 nodes. For those cases, we always try to avoid main roads to
1282
+ grow up the networks. And the Fig. 3.3 depicts the possible road network design if all
1283
+ main roads are available.
1284
+
1285
+
1286
+ Figure 3.3: Sample Region with 11 points.
1287
+
1288
+ 日.
1289
+
1290
+ Government
1291
+ FAR
1292
+ 2
1293
+ GATE
1294
+ Science
1295
+ College
1296
+ CRd
1297
+ IKI'SAREA
1298
+ mited
1299
+ H
1300
+ BashundharaCity
1301
+ Insaf BarakahKi
1302
+ Rd
1303
+ ShoppingComnlex
1304
+ &GeneralHos
1305
+ apath
1306
+
1307
+ Panthapath
1308
+ Hatiriheel
1309
+ fosfa
1310
+ KAL
1311
+ 4
1312
+ AGAN
1313
+ NEW ESKATON
1314
+ F
1315
+ 专T
1316
+ KATHAI
1317
+ AGAN
1318
+ OLD
1319
+ ESKAT
1320
+ RdNo.8
1321
+ LinkRdD
1322
+ 35
1323
+ P
1324
+ JAGH
1325
+ R
1326
+ Rd No.S.
1327
+ H
1328
+ HAT
1329
+ 6
1330
+ OOL
1331
+ MintoRd
1332
+ y.College
1333
+ Ba
1334
+ SHAH
1335
+ GH
1336
+ oSquare
1337
+ NewElephantRd
1338
+
1339
+ Ramna
1340
+ KA
1341
+ 7
1342
+ BON
1343
+ Bangladesh
1344
+ 914
1345
+ NationalMuseum
1346
+ eDhaka
1347
+ University
1348
+ NewMarket
1349
+ ofDhaka
1350
+
1351
+ 3
1352
+ RA
1353
+ 10
1354
+ NA
1355
+ EdenMohila
1356
+ College
1357
+ Udayan Higher
1358
+ Suprem
1359
+ SecondarySchool
1360
+ ofBang
1361
+
1362
+ 20
1363
+
1364
+
1365
+
1366
+
1367
+ (A) 11 node points (t = 0)
1368
+
1369
+ (B) At t = 10
1370
+ Figure 3.4: Physarum inspired network design of 11 nodes. (A) 11 node points. The network is
1371
+ expanding with t. (B) At t = 10.
1372
+
1373
+ 11
1374
+ -
1375
+ 6
1376
+ 7
1377
+ 1011
1378
+ 4
1379
+ 6
1380
+ 7
1381
+ 10
1382
+
1383
+ 21
1384
+
1385
+
1386
+
1387
+ (C) At t = 20
1388
+
1389
+ (D) At t = 50
1390
+ Figure 3.4: Physarum inspired network design of 11 nodes. (A) 11 node points. The network is
1391
+ expanding with t. (C) At t = 20. (D) At t = 50.
1392
+
1393
+ 6
1394
+ 7
1395
+ 104
1396
+ L
1397
+ 7
1398
+
1399
+ 22
1400
+
1401
+
1402
+
1403
+
1404
+ (E) Final network
1405
+ Figure 3.4: Physarum inspired network design of 11 nodes. (E) Final network.
1406
+
1407
+ 4
1408
+ 10
1409
+
1410
+ 23
1411
+
1412
+
1413
+
1414
+ Figure 3.5: Physarum inspired network design of 11 nodes using main roads (if available).
1415
+
1416
+ 4
1417
+ 6
1418
+
1419
+ 24
1420
+
1421
+ 3.5 Significance of Study
1422
+ Modified Physarum Polycephalum Inspired Network Design Technique is used to
1423
+ design any real-life traffic network. In this research, the bicycle lane network is planned
1424
+ using this strategy in a congested mega city Dhaka. This addresses many complicated
1425
+ problems, including the problem of mobility.
1426
+
1427
+ Modified Physarum Polycephalum Inspired Network Design Technique holds a
1428
+ significantly different form from the existing Physarum Polycephalum Inspired
1429
+ Network Design Technique. Compared to previous studies it is noted that the network
1430
+ has only one direction between two nodes, so the stream is only flowing from one node
1431
+ to another, but is never flowing in the opposite direction. However, most roads have
1432
+ the features of double-way traffic in real traffic. There is a clear distinction between
1433
+ opposite directions, where flows do not interfere in two directions opposite. Apparently,
1434
+ in real life traffic network, the initial approach influenced by the Physarum cannot be
1435
+ applied. Modified Physarum Polycephalum Inspired Network Design Technique
1436
+ calculates flux and pressure using Eq. (3.1) and Eq. (3.4) respectively as we know that
1437
+ the flow of traffic is not uni-directional rather bi-directional.
1438
+
1439
+
1440
+
1441
+
1442
+
1443
+
1444
+
1445
+
1446
+
1447
+
1448
+
1449
+ CHAPTER 4
1450
+ Experimental Studies
1451
+ This chapter experimentally investigates the efficacy of the proposed modified
1452
+ Physarum inspired bicycle lane network design technique. For both a certain portion of
1453
+ Dhaka City and the entire Dhaka City, we are assuming a reduction in the number of
1454
+ buses, cars, taxicabs, and motorcycles. Time saving, fuel saving, user cost saving, and
1455
+ CO2 emission reduction are calculated with some standard average measurement. In
1456
+ this chapter at first, we discuss the prominent points and description of this experiment,
1457
+ then the experimental setting which includes both parameter setting and machine
1458
+ description. In the third section of this chapter, we describe the experimental outcomes
1459
+ and explanation of achievements for both 10km ranged portion and entire Dhaka city
1460
+ are described.
1461
+ 4.1 Experimental Settings
1462
+ In the experiment, the number of node points was 29 for both case but 77 linkages/edges
1463
+ are considered for prominent area of Dhaka city and 89 linkages/edges for entire Dhaka
1464
+ city; the length of edges(𝑐𝑖𝑗/𝐿𝑖𝑗) which is not linear and tubular thickness( 𝑟𝑖𝑗) are
1465
+ estimated using the google map; the value of meu(𝜇) was varied from .8 to 1; for certain
1466
+ cases we simply ignore the tubular thickness( 𝑟𝑖𝑗) variations and considered a fixed
1467
+ conductivity value(𝐷𝑖𝑗); it is assumed that, the value of pressure(𝑃𝑖) at each node point
1468
+ is proportional to its population in that area, and a random initial threshold is applied
1469
+ which is increased with the iteration.
1470
+
1471
+ The modified Physarum Inspired Bicycle Lane Design was implemented on Visual C++
1472
+ of Visual Studio 2013. The experiments have been done on a PC (Intel Core i3-5005U
1473
+ CPU @ 2.00 GHz CPU, 2GB NVIDIA GeForce 940M, 4GB RAM) with Windows 10
1474
+ OS.
1475
+
1476
+ According to Bangladesh Road Transport Authority (BRTA), on February 04, 2020,
1477
+ there are 127398 registered buses (including microbus, minibus), 293268 registered
1478
+ cars, are 724800 registered motorcycles, and 36600 registered taxicabs currently
1479
+
1480
+
1481
+
1482
+ 25
1483
+
1484
+ available in Dhaka city [60]. There may have some unregistered cars & buses and a lot
1485
+ of unregistered motorcycles & taxicabs in the city, we are not considering them. It is
1486
+ assumed that 40 passengers per bus, 1 person per car, taxicab and motorcycle on
1487
+ average. And let’s assume that buses take 20km ride, cars use 10km ride, taxicabs use
1488
+ 100km per day and motorcycles ply 15km ride. All those rides are supposed to take
1489
+ place per day.
1490
+
1491
+ In this work, both prominent area centered with Motijheel and entire Dhaka city are
1492
+ considered to apply the modified Physarum inspired technique. In this section, the
1493
+ achievements or environmental effects of the prominent area and the entire city of
1494
+ Dhaka with bicycles as vehicle are respectively addressed with the proposed network.
1495
+ 4.2 Bicycle Lane Network Design in a Prominent Area
1496
+ At first, a 10km selected prominent area of Dhaka city centered with Motijheel is
1497
+ considered to construct the network using Physarum inspired technique. In this area,
1498
+ we have chosen 29 vital points and numbering those from 1 to 29 arbitrarily. Here, we
1499
+ are considering a 10 km range because the average speed of cycling is 20kmph, so 10
1500
+ km a day can be traveled easily in 30 minutes. And it can also lead to better mental
1501
+ health and energy by bicycling 30 minutes a day [6], [8]. Fig. 4.1 illustrates the selected
1502
+ portion of Dhaka city. Here, (A) depicts the portion of Dhaka city marked within the
1503
+ entire Dhaka city. (B) Shows the 10km range centered with Motijheel.
1504
+
1505
+ For 10km ranged area, it is assumed that overall 2% of users switch from car to bicycle
1506
+ and 10% of users switch from motorcycle to bicycle. And a 5% bus and 10% taxicab
1507
+ are being reduced because of using bicycle. Then the atmosphere would change
1508
+ significantly. This section first explains the designed networks and then calculate the
1509
+ time saving and then fuel and cost saving is estimated and finally CO2 emission
1510
+ reduction is calculated.
1511
+
1512
+ The locations of prominent area of Dhaka city including traffic pressure is presented in
1513
+ Table 4.1. In this case, we assign some random values as node point's traffic pressure
1514
+ which is proportional to its population. For examples, Taltola, Donia, etc are less and
1515
+ on the other hand Motijheel, Tejgaon, etc are high traffic traffic-pressured area.
1516
+
1517
+
1518
+
1519
+ 26
1520
+
1521
+
1522
+
1523
+
1524
+ (A) Bangladesh
1525
+ (B) Dhaka
1526
+
1527
+
1528
+ (C) Prominent area
1529
+ (D) Node points in Prominent area.
1530
+ 1 Motijheel
1531
+ 2 Mohakhali
1532
+ 3 Gulshan
1533
+ 4 Shahinbag
1534
+ 5 Tejgaon
1535
+ 6 Badda
1536
+ 7 EWU
1537
+ 8 Bashundhara
1538
+ 9 Mogbazar
1539
+ 10 Mirbag
1540
+ 11 Dhanmondi
1541
+ 12 Shahbag
1542
+ 13 DU
1543
+ 14 Kamlapur
1544
+ 15 Ramna
1545
+ 16 Kotwali
1546
+ 17 Lalbagh
1547
+ 18 Khilgaon
1548
+ 19 Taltola
1549
+ 20 Aftabnagar
1550
+ 21 Sadarghat
1551
+ 22 Matuail
1552
+ 23 Wari
1553
+ 24 Golapbag
1554
+ 25 Donia
1555
+ 26 Rajarbagh
1556
+ 27 Sobujbagh
1557
+ 28 Green Model Town
1558
+ 29 Nandipara
1559
+ Figure 4.1: Selected Dhaka city map. (A) Bangladesh. (B) Dhaka. (C) Prominent area. (D) Node points in Prominent area.
1560
+
1561
+
1562
+
1563
+ Uzbekistan
1564
+ Kyrgyzstan
1565
+ Beijing
1566
+ 北京
1567
+ Turkmenistan
1568
+ Tajikistan
1569
+ China
1570
+ Yello
1571
+ Afghanistan
1572
+ Iran
1573
+ Shanghai
1574
+ 上海
1575
+ New.Delhi
1576
+ Pakistan
1577
+ Ea
1578
+ Nepal
1579
+ ianGulf
1580
+ Bhutan
1581
+ Taipei
1582
+ 台北
1583
+ UnitedArab
1584
+ Bangladesh
1585
+ Emirates
1586
+ Taiwan
1587
+ India
1588
+ My
1589
+ imar
1590
+ HongKong
1591
+ Oman
1592
+ Mumbai
1593
+ rma)
1594
+ 香港
1595
+ Laos
1596
+ Thailand
1597
+ South
1598
+ Luzon
1599
+ Bengaluru
1600
+ Vietnam
1601
+ China Sea
1602
+ 23orfedodo
1603
+ Bayof Bengal
1604
+ Bangkok
1605
+ CUMLHIMUICEU
1606
+ Arabian Sea
1607
+ Cambodia
1608
+ Philipp
1609
+ AndamanSea
1610
+ .HoChi
1611
+ Panay
1612
+ Gulf of
1613
+ MinhCity
1614
+ Thailand
1615
+ Palawan
1616
+ Negro
1617
+ SriLanka
1618
+ Minda
1619
+ Laccadive Sea
1620
+ BasilanIsla
1621
+ Malaysia
1622
+ Kuala Lumpur
1623
+ Celebes SHO1
1624
+ H07
1625
+ N5
1626
+ Batshar
1627
+ ASSAM
1628
+ Kishanganj
1629
+ Guwahati
1630
+ Nagaon
1631
+ Purnia
1632
+ AHIDim
1633
+ MEGHALAYA
1634
+ oShillong
1635
+ Sahibganj
1636
+ N5
1637
+ N2
1638
+ Pakur
1639
+ Silchar
1640
+ Sylhet
1641
+ nka
1642
+ Raishahi
1643
+ N502
1644
+ ICGTG
1645
+ Hailakandi
1646
+ MAI
1647
+ T
1648
+ N2
1649
+ Bangladesh
1650
+ N6
1651
+ gapur
1652
+ N704
1653
+ TRIPURAV
1654
+ Aizawl
1655
+ Dhaka
1656
+ N7
1657
+ PT
1658
+ MIZORAM
1659
+ AH
1660
+ Jessore
1661
+ BENGAL
1662
+ Madaripur:
1663
+ Satkhira
1664
+ Kolkata
1665
+ Gk
1666
+ N1
1667
+ gpur
1668
+ Sundarban
1669
+ Chittagong
1670
+ Forest,
1671
+ Bangladesh
1672
+ Chandanaish
1673
+ eqey
1674
+ yangarh
1675
+ T5(*
1676
+ H
1677
+ 135153
1678
+ N1
1679
+ Digha
1680
+ Cox'sBazar
1681
+ Whaikhyang
1682
+ Mrauk-UN302
1683
+ UTTARA
1684
+ 9114
1685
+ Hazrat
1686
+ N511
1687
+ Shahjalal
1688
+ N105
1689
+ N3
1690
+ International
1691
+ N501
1692
+ Airport
1693
+ N301
1694
+ MIRPUR
1695
+ BASUNDHARA
1696
+ Dhaka Zoo
1697
+ RESIDENTIAL
1698
+
1699
+ N3
1700
+ AREA
1701
+ Dhaka
1702
+ Jalshiri.Abason
1703
+ raid
1704
+ GULSHAN
1705
+ N5
1706
+ Gabtoli
1707
+ Z5069
1708
+ 5114
1709
+ MOHAKHALI
1710
+ BADDA
1711
+ R202
1712
+ MOHAMMADPUR
1713
+ TEJGAON
1714
+ KHILGAON
1715
+ ROTST
1716
+ Boshila
1717
+ DHANMONDI
1718
+ R
1719
+ ty
1720
+ RAMNA
1721
+ MOTIJHEEL
1722
+ Chanpara
1723
+
1724
+ b
1725
+ N2
1726
+ LalbaghFort
1727
+ Hizla
1728
+ R110
1729
+ KOTWALI
1730
+ N2
1731
+ Matuail
1732
+ Keraniganji
1733
+ 8N
1734
+ R820
1735
+ R820
1736
+ N1
1737
+ Shiddhirganj
1738
+ Z5069
1739
+ R810
1740
+ R111
1741
+ Ruhitpur
1742
+ Bashundhara
1743
+ Kadamtoli
1744
+ Riverview
1745
+ Baghair
1746
+ Ekuria
1747
+ R810BARIDHARA
1748
+ MadaniAve
1749
+ Banani
1750
+ Suvastu Nazar Valley
1751
+ ShoppingComplex
1752
+ SHER-E-BANGLA
1753
+ NAGAR
1754
+ National
1755
+ Parliament House
1756
+ LALMATIA
1757
+ H
1758
+ DhakaNewMarket
1759
+ 2
1760
+ Madina Filling Station
1761
+ R820
1762
+ R110
1763
+ Buriganga River
1764
+ R820
1765
+ N1
1766
+ Z1102
1767
+ Keraniganj
1768
+ 21
1769
+ NB
1770
+ R820
1771
+ RanaCNG&
1772
+ GASStation
1773
+
1774
+ 27
1775
+
1776
+ 4.2.1 Network Design
1777
+ Here in the planned network, the distance is not the linear distance between two node
1778
+ points rather distance is calculated using google map. And the time is calculated
1779
+ considering standard speed 20kmph for bicycle in minutes.
1780
+
1781
+ In Fig. 4.2, (A) there are 29 node points around 10km range centered with Motijheel
1782
+ (node point 1) existing network with both main and local roads. Figure (B) – (E) shows
1783
+ that the network growing process with time (t = iteration) i.e. (B) Network in 10th
1784
+ iteration; (C) Network 20th iteration; (D) Network 50th iteration; (E) Finale network.
1785
+ For those cases, we always try to avoid main roads to grow up the networks. In Fig. 4.3
1786
+ Network is planned with main roads (if available).
1787
+
1788
+ Table 4.1: The locations of prominent area of Dhaka city including traffic pressure.
1789
+ Sl
1790
+ Location
1791
+ Traffic Pressure
1792
+ 01
1793
+ Motijheel
1794
+ 9
1795
+ 02
1796
+ Mohakhali
1797
+ 8
1798
+ 03
1799
+ Gulshan
1800
+ 5
1801
+ 04
1802
+ Shahinbag
1803
+ 8
1804
+ 05
1805
+ Tejgaon
1806
+ 9
1807
+ 06
1808
+ Badda
1809
+ 4
1810
+ 07
1811
+ EWU
1812
+ 5
1813
+ 08
1814
+ Bashundhara
1815
+ 5
1816
+ 09
1817
+ Mogbazar
1818
+ 5
1819
+ 10
1820
+ Mirbag
1821
+ 5
1822
+ 11
1823
+ Dhanmondi
1824
+ 7
1825
+ 12
1826
+ Shahbag
1827
+ 9
1828
+ 13
1829
+ DU
1830
+ 9
1831
+ 14
1832
+ Kamlapur
1833
+ 8
1834
+ 15
1835
+ Ramna
1836
+ 5
1837
+ 16
1838
+ Kotwali
1839
+ 3
1840
+ 17
1841
+ Lalbagh
1842
+ 4
1843
+ 18
1844
+ Khilgaon
1845
+ 6
1846
+ 19
1847
+ Taltola
1848
+ 3
1849
+ 20
1850
+ Aftabnagar
1851
+ 4
1852
+ 21
1853
+ Sadarghat
1854
+ 5
1855
+ 22
1856
+ Matuail
1857
+ 8
1858
+ 23
1859
+ Wari
1860
+ 7
1861
+ 24
1862
+ Golapbag
1863
+ 5
1864
+ 25
1865
+ Donia
1866
+ 3
1867
+ 26
1868
+ Rajarbagh
1869
+ 5
1870
+ 27
1871
+ Sobujbagh
1872
+ 5
1873
+ 28
1874
+ Green Model Town
1875
+ 4
1876
+ 29
1877
+ Nandipara
1878
+ 6
1879
+
1880
+
1881
+
1882
+
1883
+
1884
+
1885
+ 28
1886
+
1887
+
1888
+
1889
+ (A) 10km range existing road network
1890
+
1891
+ (B) When t=10
1892
+
1893
+ Figure 4.2: Network design using modified Physarum inspired technique. (A) 10km range existing road
1894
+ network. (B) When t=10.
1895
+
1896
+ 12
1897
+ 26
1898
+ 16
1899
+ 2127
1900
+ 16
1901
+
1902
+ 29
1903
+
1904
+
1905
+
1906
+
1907
+ (C) When t=20
1908
+
1909
+ (D) When t=50
1910
+
1911
+ Figure 4.2: Network design using modified Physarum inspired technique. (C) When t=20. (D) When t=50.
1912
+
1913
+ 27
1914
+ 16
1915
+ 219
1916
+ 12
1917
+ 16
1918
+
1919
+ 30
1920
+
1921
+
1922
+
1923
+
1924
+ (E) Final Network
1925
+ Figure 4.2: Final network design using modified Physarum inspired technique.
1926
+
1927
+ 27
1928
+ 26
1929
+
1930
+ 31
1931
+
1932
+
1933
+
1934
+ Figure 4.3: Network design using modified Physarum inspired technique using main roads (if available).
1935
+
1936
+ 27
1937
+ 2
1938
+ 16
1939
+
1940
+ 32
1941
+
1942
+ Here the Table 4.2 shows routes of all node points from starting node point 1. For
1943
+ example, the path 1-9-10-2-3 means that we have to cross node points 9, 10 and 2 in
1944
+ order to go into destination node point 3 from starting node point 1. The minimum
1945
+ distance is considered for accessing any node here. For example, the destination node
1946
+ point 3 can be accessed using the routes 1-9-10-2-3, 1-20-7-6-2-3, 1-12-5-4-3 and so
1947
+ on but the minimum distanced one is considered for calculation.
1948
+ 4.2.2 Effectiveness Analysis
1949
+ Driving a paddled-bicycle has a more than one beneficial environmental effect. For
1950
+ many cases bicycles take less time to ride, no fuel usage, saving user money, CO 2
1951
+ emission reduction in unplanned mega city and do not contribute to air pollution, sound
1952
+ pollution, great relief on road traffic conditions, alleviating parking difficulties in urban
1953
+ areas, cause less damage to the roads, get relief of some non-communicable disease
1954
+ Table 4.2: Routes from node point 1.
1955
+ Des. Node
1956
+ Point
1957
+ Routes
1958
+ Distance
1959
+ (km)
1960
+ Estimated Travel
1961
+ Time (min)
1962
+ 2
1963
+ 1-9-10-2
1964
+ 8.55
1965
+ 25.65
1966
+ 3
1967
+ 1-9-10-2-3
1968
+ 11.25
1969
+ 33.75
1970
+ 4
1971
+ 1-9-4
1972
+ 7.3
1973
+ 21.9
1974
+ 5
1975
+ 1-5
1976
+ 7.5
1977
+ 22.5
1978
+ 6
1979
+ 1-9-10-7-6
1980
+ 8.2
1981
+ 24.6
1982
+ 7
1983
+ 1-9-10-7
1984
+ 6.9
1985
+ 20.7
1986
+ 8
1987
+ 1-8
1988
+ 6.85
1989
+ 20.55
1990
+ 9
1991
+ 1-9
1992
+ 2.9
1993
+ 8.7
1994
+ 10
1995
+ 1-9-10
1996
+ 4.4
1997
+ 13.2
1998
+ 11
1999
+ 1-12-13-11
2000
+ 9.6
2001
+ 28.8
2002
+ 12
2003
+ 1-12
2004
+ 5.3
2005
+ 15.9
2006
+ 13
2007
+ 1-12-13
2008
+ 6.4
2009
+ 19.2
2010
+ 14
2011
+ 1-14
2012
+ 5.7
2013
+ 17.1
2014
+ 15
2015
+ 1-15
2016
+ 2.4
2017
+ 7.2
2018
+ 16
2019
+ 1-23-16
2020
+ 4.5
2021
+ 13.5
2022
+ 17
2023
+ 1-23-16-17
2024
+ 8.1
2025
+ 24.3
2026
+ 18
2027
+ 1-20-18
2028
+ 9
2029
+ 27
2030
+ 19
2031
+ 1-19
2032
+ 3.7
2033
+ 11.1
2034
+ 20
2035
+ 1-20
2036
+ 6.2
2037
+ 18.6
2038
+ 21
2039
+ 1-23-21
2040
+ 4.5
2041
+ 13.5
2042
+ 22
2043
+ 1-23-21-25-22
2044
+ 10.3
2045
+ 30.9
2046
+ 23
2047
+ 1-23
2048
+ 2.8
2049
+ 8.4
2050
+ 24
2051
+ 1-14-24
2052
+ 7.15
2053
+ 21.45
2054
+ 25
2055
+ 1-23-21-25
2056
+ 7.1
2057
+ 21.3
2058
+ 26
2059
+ 1-14-26
2060
+ 6.7
2061
+ 20.1
2062
+ 27
2063
+ 1-14-26-27
2064
+ 9.9
2065
+ 29.7
2066
+ 28
2067
+ 1-14-28
2068
+ 7.9
2069
+ 23.7
2070
+ 29
2071
+ 1-14-26-29
2072
+ 8.1
2073
+ 24.3
2074
+
2075
+
2076
+
2077
+
2078
+
2079
+
2080
+ 33
2081
+
2082
+ (NCDs) for have some physical exercise every day. The considering factors of this
2083
+ paper are only time saving, fuel and user money saving and CO2 emission reduction.
2084
+ 4.2.2.1 Time Saving
2085
+ As we mentioned that, according to a World Bank report, the average traffic speed in
2086
+ Dhaka has dropped from 21 kilometers per hour (kmph) to 7 kilometers per hour in the
2087
+ last 10 years, and by 2035 the speed could drop to 4 kilometers per hour, which is
2088
+ slower than the walking speed. In our constructed network, we mainly try to avoid main
2089
+ roads or minimum usage of main roads if requires. So, here traffic jam is hardly
2090
+ available. For convenience, we assume no traffic jam exists in the following calculation
2091
+ of time.
2092
+
2093
+ In Table 4.3, the time needed for both cars and buses are listed in three different times
2094
+ (at 6:00 AM, 10:00 AM, and 4:00 PM) calculated from google map and the time needed
2095
+ for a bicycle is always constant. Here, we measure the distance and time of all the node
2096
+ point from center node point 1.
2097
+
2098
+ The time required for a car, taxicab and motorcycle are almost the same that’s why we
2099
+ don’t mention it differently in the Table 4.3. Here we notice that at the morning 6:00
2100
+ AM the travel time is less because of minimal traffic in the roads, at 10:00 AM (peak
2101
+ hour) when traffic jam occurs severe the need time to travel is huge and at 4:00 PM
2102
+ there exist traffic jam also but sometimes a bit less than peak hour. This condition is
2103
+ true for all types of cars, buses, taxicabs, etc. For the prominent area, the gross working
2104
+ hours saving are described in the following Table 4.4. So, around 152216 working
2105
+ hours per day can be saved using bicycle in the prominent area.
2106
+ 4.2.2.2 Fuel and Cost Saving
2107
+ The cost of installation or repair is not listed here rather we considering only running
2108
+ cost. Because whenever we switch from car to bicycle there would be a significant
2109
+ reduction in costs.
2110
+
2111
+ Here the mileage of car and taxicab is assumed at 20kmpl and 25kmpl respectively with
2112
+ diesel and 65tk per liter diesel. On the other hand, cycling has no cost. The bus mileage
2113
+ considers 5kmpl with diesel and motorcycle has 50kmpl with petrol.
2114
+
2115
+
2116
+
2117
+ 34
2118
+
2119
+
2120
+ In Table 4.4, the needed fuel for cars, taxicabs, motorcycles, and buses is calculated
2121
+ and there is no running cost & fuel cost for the bicycle. In case of bus, the per km fare
2122
+ is fixed by BRTA of 1.7tk and we assumed that taxicab fare is 50tk per km. Here, the
2123
+ distance of all the node points are measured from center node point 1.
2124
+
2125
+ Table 4.3: Time comparison in car, bus and bicycle considering from node point 1.
2126
+ Node
2127
+ Point
2128
+ Dista
2129
+ nce
2130
+ (km)
2131
+ Car & Taxicab & Motor cycle
2132
+ Bus
2133
+ Bicycle
2134
+ 6:00am
2135
+ (min)
2136
+ 10:00am
2137
+ (min)
2138
+ 4:00pm
2139
+ (min)
2140
+ 6:00am
2141
+ (min)
2142
+ 10:00am
2143
+ (min)
2144
+ 4:00pm
2145
+ (min)
2146
+ Dista
2147
+ nce
2148
+ (km)
2149
+ Time
2150
+ (min)
2151
+ 2
2152
+ 8.6
2153
+ 18
2154
+ 39
2155
+ 36
2156
+ 20
2157
+ 43
2158
+ 40
2159
+ 8.55
2160
+ 25.65
2161
+ 3
2162
+ 8.9
2163
+ 19
2164
+ 42
2165
+ 39
2166
+ 21
2167
+ 46
2168
+ 43
2169
+ 11.25
2170
+ 33.75
2171
+ 4
2172
+ 7.1
2173
+ 14
2174
+ 33
2175
+ 30
2176
+ 16
2177
+ 36
2178
+ 33
2179
+ 7.3
2180
+ 21.9
2181
+ 5
2182
+ 5.1
2183
+ 12
2184
+ 27
2185
+ 26
2186
+ 14
2187
+ 30
2188
+ 29
2189
+ 7.5
2190
+ 22.5
2191
+ 6
2192
+ 7.6
2193
+ 15
2194
+ 36
2195
+ 36
2196
+ 17
2197
+ 39
2198
+ 39
2199
+ 8.2
2200
+ 24.6
2201
+ 7
2202
+ 7.6
2203
+ 15
2204
+ 36
2205
+ 36
2206
+ 17
2207
+ 39
2208
+ 39
2209
+ 6.9
2210
+ 20.7
2211
+ 8
2212
+ 4.8
2213
+ 11
2214
+ 24
2215
+ 24
2216
+ 13
2217
+ 27
2218
+ 27
2219
+ 6.85
2220
+ 20.55
2221
+ 9
2222
+ 3.6
2223
+ 9
2224
+ 18
2225
+ 15
2226
+ 11
2227
+ 20
2228
+ 17
2229
+ 2.9
2230
+ 8.7
2231
+ 10
2232
+ 4
2233
+ 10
2234
+ 20
2235
+ 18
2236
+ 12
2237
+ 22
2238
+ 20
2239
+ 4.4
2240
+ 13.2
2241
+ 11
2242
+ 6.1
2243
+ 12
2244
+ 30
2245
+ 30
2246
+ 14
2247
+ 33
2248
+ 33
2249
+ 9.6
2250
+ 28.8
2251
+ 12
2252
+ 3.4
2253
+ 9
2254
+ 23
2255
+ 23
2256
+ 11
2257
+ 26
2258
+ 26
2259
+ 5.3
2260
+ 15.9
2261
+ 13
2262
+ 3.8
2263
+ 10
2264
+ 24
2265
+ 21
2266
+ 12
2267
+ 27
2268
+ 24
2269
+ 6.4
2270
+ 19.2
2271
+ 14
2272
+ 1.2
2273
+ 3
2274
+ 11
2275
+ 11
2276
+ 5
2277
+ 12
2278
+ 12
2279
+ 5.7
2280
+ 17.1
2281
+ 15
2282
+ 3.1
2283
+ 8
2284
+ 18
2285
+ 18
2286
+ 10
2287
+ 20
2288
+ 20
2289
+ 2.4
2290
+ 7.2
2291
+ 16
2292
+ 3.2
2293
+ 8
2294
+ 27
2295
+ 33
2296
+ 10
2297
+ 29
2298
+ 35
2299
+ 4.5
2300
+ 13.5
2301
+ 17
2302
+ 6.1
2303
+ 13
2304
+ 33
2305
+ 30
2306
+ 15
2307
+ 36
2308
+ 33
2309
+ 8.1
2310
+ 24.3
2311
+ 18
2312
+ 7.2
2313
+ 14
2314
+ 53
2315
+ 48
2316
+ 16
2317
+ 56
2318
+ 51
2319
+ 9
2320
+ 27
2321
+ 19
2322
+ 3
2323
+ 8
2324
+ 21
2325
+ 18
2326
+ 10
2327
+ 23
2328
+ 20
2329
+ 3.7
2330
+ 11.1
2331
+ 20
2332
+ 10
2333
+ 24
2334
+ 42
2335
+ 38
2336
+ 26
2337
+ 47
2338
+ 43
2339
+ 6.2
2340
+ 18.6
2341
+ 21
2342
+ 3.5
2343
+ 9
2344
+ 36
2345
+ 36
2346
+ 11
2347
+ 38
2348
+ 38
2349
+ 4.5
2350
+ 13.5
2351
+ 22
2352
+ 8.3
2353
+ 18
2354
+ 33
2355
+ 30
2356
+ 20
2357
+ 37
2358
+ 34
2359
+ 10.3
2360
+ 30.9
2361
+ 23
2362
+ 2.5
2363
+ 6
2364
+ 21
2365
+ 21
2366
+ 8
2367
+ 23
2368
+ 23
2369
+ 2.8
2370
+ 8.4
2371
+ 24
2372
+ 4.2
2373
+ 10
2374
+ 27
2375
+ 27
2376
+ 12
2377
+ 30
2378
+ 30
2379
+ 7.15
2380
+ 21.45
2381
+ 25
2382
+ 5.7
2383
+ 13
2384
+ 29
2385
+ 27
2386
+ 15
2387
+ 32
2388
+ 30
2389
+ 7.1
2390
+ 21.3
2391
+ 26
2392
+ 4.7
2393
+ 11
2394
+ 29
2395
+ 29
2396
+ 13
2397
+ 32
2398
+ 32
2399
+ 6.7
2400
+ 20.1
2401
+ 27
2402
+ 3.1
2403
+ 8
2404
+ 15
2405
+ 12
2406
+ 10
2407
+ 17
2408
+ 14
2409
+ 9.9
2410
+ 29.7
2411
+ 28
2412
+ 5.8
2413
+ 12
2414
+ 42
2415
+ 39
2416
+ 14
2417
+ 45
2418
+ 42
2419
+ 7.9
2420
+ 23.7
2421
+ 29
2422
+ 5.4
2423
+ 12
2424
+ 33
2425
+ 33
2426
+ 14
2427
+ 36
2428
+ 36
2429
+ 8.1
2430
+ 24.3
2431
+
2432
+
2433
+
2434
+ Table 4.4: Time saving per day.
2435
+ Transit
2436
+ % of Transit
2437
+ Reduction
2438
+ Transit
2439
+ Reduces
2440
+ Riding Distance
2441
+ (km)
2442
+ Time saves
2443
+ (min)
2444
+ Bus
2445
+ 5%
2446
+ 6370
2447
+ 127400
2448
+ 709800
2449
+ Car
2450
+ 2%
2451
+ 5865
2452
+ 58650
2453
+ 326764
2454
+ Taxicab
2455
+ 10%
2456
+ 3660
2457
+ 366000
2458
+ 2039143
2459
+ Motor cycle
2460
+ 10%
2461
+ 72480
2462
+ 1087200
2463
+ 6057257
2464
+ Total time saving
2465
+ 9132964
2466
+
2467
+
2468
+
2469
+
2470
+
2471
+ 35
2472
+
2473
+ The gross fuel saving and user cost saving for motijheel area are calculated for buses,
2474
+ cars, taxicabs, and motorcycles and described in the Table 4.6. So, around 64797 liters
2475
+ fuel and 20.6 million user money costs can be saved per day using bicycle in the
2476
+ motijheel area.
2477
+
2478
+
2479
+ Table 4.5: Cost comparison in car, bus and bicycle considering from node point 1.
2480
+ Node
2481
+ Point
2482
+ Dista
2483
+ nce
2484
+ (km)
2485
+ Car
2486
+ Taxicabs
2487
+ Motor cycle
2488
+ Bus
2489
+ Bicycle
2490
+ Fuel
2491
+ (litre)
2492
+ User
2493
+ Cost
2494
+ (tk)
2495
+ Fuel
2496
+ (litre)
2497
+ User
2498
+ Cost
2499
+ (tk)
2500
+ Fuel
2501
+ (litre)
2502
+ User
2503
+ Cost
2504
+ (tk)
2505
+ Fuel
2506
+ (litre)
2507
+ User
2508
+ Cost
2509
+ (tk)
2510
+ Dista
2511
+ nce
2512
+ (km)
2513
+ Cost
2514
+ (tk)
2515
+ 2
2516
+ 8.6
2517
+ 0.43
2518
+ 27.95
2519
+ 0.34
2520
+ 430
2521
+ 0.17
2522
+ 15.31
2523
+
2524
+
2525
+
2526
+
2527
+ As we
2528
+ assume
2529
+ bicycles
2530
+ reduces
2531
+ 5% of
2532
+ the total
2533
+ bus in
2534
+ Dhaka
2535
+ city.
2536
+
2537
+ The fuel
2538
+ consump
2539
+ tion is
2540
+ reduced
2541
+ =
2542
+ 6370×20
2543
+ ×1/5
2544
+ litres
2545
+
2546
+ = 25480
2547
+ litres
2548
+ 14.62
2549
+ 8.55
2550
+
2551
+
2552
+
2553
+
2554
+
2555
+
2556
+
2557
+
2558
+
2559
+
2560
+
2561
+
2562
+
2563
+ N/A
2564
+ 3
2565
+ 8.9
2566
+ 0.45
2567
+ 28.93
2568
+ 0.36
2569
+ 445
2570
+ 0.18
2571
+ 15.84
2572
+ 15.13
2573
+ 11.25
2574
+ 4
2575
+ 7.1
2576
+ 0.36
2577
+ 23.08
2578
+ 0.28
2579
+ 355
2580
+ 0.14
2581
+ 12.64
2582
+ 12.07
2583
+ 7.3
2584
+ 5
2585
+ 5.1
2586
+ 0.26
2587
+ 16.58
2588
+ 0.2
2589
+ 255
2590
+ 0.1
2591
+ 9.08
2592
+ 8.67
2593
+ 7.5
2594
+ 6
2595
+ 6.8
2596
+ 0.34
2597
+ 22.1
2598
+ 0.27
2599
+ 340
2600
+ 0.14
2601
+ 12.1
2602
+ 11.56
2603
+ 8.2
2604
+ 7
2605
+ 7.6
2606
+ 0.38
2607
+ 24.7
2608
+ 0.3
2609
+ 380
2610
+ 0.15
2611
+ 13.53
2612
+ 12.92
2613
+ 6.9
2614
+ 8
2615
+ 4.8
2616
+ 0.24
2617
+ 15.6
2618
+ 0.19
2619
+ 240
2620
+ 0.1
2621
+ 8.54
2622
+ 8.16
2623
+ 6.85
2624
+ 9
2625
+ 3.6
2626
+ 0.18
2627
+ 11.7
2628
+ 0.14
2629
+ 180
2630
+ 0.07
2631
+ 6.41
2632
+ 6.12
2633
+ 2.9
2634
+ 10
2635
+ 4
2636
+ 0.2
2637
+ 13
2638
+ 0.16
2639
+ 200
2640
+ 0.08
2641
+ 7.12
2642
+ 6.8
2643
+ 4.4
2644
+ 11
2645
+ 6.1
2646
+ 0.31
2647
+ 19.83
2648
+ 0.24
2649
+ 305
2650
+ 0.12
2651
+ 10.86
2652
+ 10.37
2653
+ 9.6
2654
+ 12
2655
+ 3.4
2656
+ 0.17
2657
+ 11.05
2658
+ 0.14
2659
+ 170
2660
+ 0.07
2661
+ 6.05
2662
+ 5.78
2663
+ 5.3
2664
+ 13
2665
+ 3.8
2666
+ 0.19
2667
+ 12.35
2668
+ 0.15
2669
+ 190
2670
+ 0.08
2671
+ 6.76
2672
+ 6.46
2673
+ 6.4
2674
+ 14
2675
+ 1.2
2676
+ 0.06
2677
+ 3.9
2678
+ 0.05
2679
+ 60
2680
+ 0.02
2681
+ 2.14
2682
+ 2.04
2683
+ 5.7
2684
+ 15
2685
+ 3.1
2686
+ 0.16
2687
+ 10.08
2688
+ 0.12
2689
+ 155
2690
+ 0.06
2691
+ 5.52
2692
+ 5.27
2693
+ 2.4
2694
+ 16
2695
+ 3.2
2696
+ 0.16
2697
+ 10.4
2698
+ 0.13
2699
+ 160
2700
+ 0.06
2701
+ 5.7
2702
+ 5.44
2703
+ 4.5
2704
+ 17
2705
+ 6.1
2706
+ 0.31
2707
+ 19.83
2708
+ 0.24
2709
+ 305
2710
+ 0.12
2711
+ 10.86
2712
+ 10.37
2713
+ 8.1
2714
+ 18
2715
+ 7.2
2716
+ 0.36
2717
+ 23.4
2718
+ 0.29
2719
+ 360
2720
+ 0.14
2721
+ 12.82
2722
+ 12.24
2723
+ 9
2724
+ 19
2725
+ 3
2726
+ 0.15
2727
+ 9.75
2728
+ 0.12
2729
+ 150
2730
+ 0.06
2731
+ 5.34
2732
+ 5.1
2733
+ 3.7
2734
+ 20
2735
+ 10
2736
+ 0.5
2737
+ 32.5
2738
+ 0.4
2739
+ 500
2740
+ 0.2
2741
+ 17.8
2742
+ 17
2743
+ 6.2
2744
+ 21
2745
+ 3.5
2746
+ 0.18
2747
+ 11.38
2748
+ 0.14
2749
+ 175
2750
+ 0.07
2751
+ 6.23
2752
+ 5.95
2753
+ 4.5
2754
+ 22
2755
+ 8.3
2756
+ 0.42
2757
+ 26.98
2758
+ 0.33
2759
+ 415
2760
+ 0.17
2761
+ 14.77
2762
+ 14.11
2763
+ 10.3
2764
+ 23
2765
+ 2.5
2766
+ 0.13
2767
+ 8.13
2768
+ 0.1
2769
+ 125
2770
+ 0.05
2771
+ 4.45
2772
+ 4.25
2773
+ 2.8
2774
+ 24
2775
+ 4.2
2776
+ 0.21
2777
+ 13.65
2778
+ 0.17
2779
+ 210
2780
+ 0.08
2781
+ 7.48
2782
+ 7.14
2783
+ 7.15
2784
+ 25
2785
+ 5.7
2786
+ 0.29
2787
+ 18.53
2788
+ 0.23
2789
+ 285
2790
+ 0.11
2791
+ 10.15
2792
+ 9.69
2793
+ 7.1
2794
+ 26
2795
+ 4.7
2796
+ 0.24
2797
+ 15.28
2798
+ 0.19
2799
+ 235
2800
+ 0.09
2801
+ 8.37
2802
+ 7.99
2803
+ 6.7
2804
+ 27
2805
+ 3.1
2806
+ 0.16
2807
+ 10.08
2808
+ 0.12
2809
+ 155
2810
+ 0.06
2811
+ 5.52
2812
+ 5.27
2813
+ 9.9
2814
+ 28
2815
+ 5.8
2816
+ 0.29
2817
+ 18.85
2818
+ 0.23
2819
+ 290
2820
+ 0.12
2821
+ 10.32
2822
+ 9.86
2823
+ 7.9
2824
+ 29
2825
+ 5.4
2826
+ 0.27
2827
+ 17.55
2828
+ 0.22
2829
+ 270
2830
+ 0.11
2831
+ 9.61
2832
+ 9.18
2833
+ 8.1
2834
+
2835
+
2836
+
2837
+ Table 4.6: Cost saving per day.
2838
+ Transit
2839
+ % of Transit
2840
+ Reduction
2841
+ Transit
2842
+ Reduces
2843
+ Riding
2844
+ Distance (km)
2845
+ Fuel
2846
+ (litres)
2847
+ User Cost
2848
+ (tk)
2849
+ Bus
2850
+ 5%
2851
+ 6370
2852
+ 127400
2853
+ 25480
2854
+ 216580
2855
+ Car
2856
+ 2%
2857
+ 5865
2858
+ 58650
2859
+ 2933
2860
+ 190613
2861
+ Taxicab
2862
+ 10%
2863
+ 3660
2864
+ 366000
2865
+ 14640
2866
+ 18300000
2867
+ Motor cycle
2868
+ 10%
2869
+ 72480
2870
+ 1087200
2871
+ 21744
2872
+ 1935216
2873
+ Total cost saving
2874
+ 64797
2875
+ 20642409
2876
+
2877
+
2878
+
2879
+
2880
+
2881
+ 36
2882
+
2883
+ 4.2.2.3 CO2 Emission Reduction
2884
+ In the calculation, 887 g/km, 258 g/km, 237 g/km and 40 g/km are the considered
2885
+ amount of CO2 emission in 1km ride of bus, car, taxicab and motorcycle respectively.
2886
+ For motijheel, the gross CO2 emission reduction is described in the following Table 4.7.
2887
+ In total, around 6.5 × 105 kg CO2 emission is reduced in the motijheel area per day.
2888
+ 4.3 Bicycle Lane Network Design for Entire Dhaka City
2889
+ Here, 29 important locations of entire Dhaka city are selected and numbering those
2890
+ from 1 to 29 randomly, which are depicted in following Fig. 4.4. As it is considered
2891
+ that the paddled-bicycle for routing 10km ranged area, it is not feasible to move through
2892
+ all over the Dhaka city using paddled-bicycle. But in case of electric bicycle, it is
2893
+ possible. That’s why electric bicycles are considered as vehicles for entire Dhaka city.
2894
+
2895
+ The general data of Dhaka city including location, population and traffic pressure are
2896
+ described in the Table 4.8. In this case, the consideration is that the node point's traffic
2897
+ pressure is proportional to its population.
2898
+
2899
+ For entire Dhaka city, it is assumed that 5% of users switch from car to electrical
2900
+ motorcycle or bicycle and 50% of users switch from motorcycle to electrical
2901
+ motorcycle or bicycle. And a 10% bus and 20% taxicab are being reduced because of
2902
+ using electric motorcycles or bicycles. Then there will be some noteworthy change in
2903
+ the environment.
2904
+ 4.3.1 Network Design
2905
+ The constructed network of selected 29 points of Dhaka city is illustrated in Fig. 4.5.
2906
+ In the Table 4.9, routes are shown to all node points from starting node point 7. For
2907
+ Table 4.7: CO2 emission reduction per day.
2908
+ Transit
2909
+ % of Transit
2910
+ Reduction
2911
+ Transit
2912
+ Reduces
2913
+ Riding
2914
+ Distance (km)
2915
+ CO2 Emission
2916
+ (g)
2917
+ Bus
2918
+ 5%
2919
+ 6370
2920
+ 127400
2921
+ 1.13 × 108
2922
+ Car
2923
+ 2%
2924
+ 5865
2925
+ 58650
2926
+ 1.51 × 107
2927
+ Taxicab
2928
+ 10%
2929
+ 3660
2930
+ 366000
2931
+ 8.67 × 107
2932
+ Motor cycle
2933
+ 10%
2934
+ 72480
2935
+ 1087200
2936
+ 4.35 × 107
2937
+ Total CO2 saving
2938
+ 2.58 × 108
2939
+
2940
+
2941
+
2942
+
2943
+
2944
+ 37
2945
+
2946
+
2947
+
2948
+
2949
+ 01 Uttara
2950
+ 02 Mirpur
2951
+ 03 Uttara ABM City
2952
+ 04 Basundhara R/A
2953
+ 05 Khilkhet
2954
+ 06 Cantonment
2955
+ 07 Gulshan
2956
+ 08 Badda
2957
+ 09 Mohakhali
2958
+ 10 Tejgaon
2959
+ 11 Motijheel
2960
+ 12 Khilgoan
2961
+ 13 Gabtoli
2962
+ 14 Mohammadpur
2963
+ 15 Dhanmondi
2964
+ 16 Shahbagh
2965
+ 17 Matuail
2966
+ 18 Kotwali
2967
+ 19 New Market
2968
+ 20 Baridhara
2969
+ 21 Banani
2970
+ 22 Monipur
2971
+ 23 Sher-E-Bangla Nagar
2972
+ 24 Airport
2973
+ 25 Poradia
2974
+ 26 Madarbari
2975
+ 27 Beraid
2976
+ 28 NutanPara
2977
+ 29 Pagla Rail station
2978
+
2979
+ Figure 4.3: Entire Dhaka city.
2980
+
2981
+
2982
+
2983
+ Asnua
2984
+ N302
2985
+ N501
2986
+ R303
2987
+ N511
2988
+ N302
2989
+ N501
2990
+ Dhaka Zoo
2991
+ JalshiriAb
2992
+ 23
2993
+ R20
2994
+ OL
2995
+ Boshila
2996
+ 1.5
2997
+ 28
2998
+ Chanpa
2999
+ LalbaghFort
3000
+ b
3001
+ Hizla
3002
+ R110
3003
+ Keraniganj
3004
+ R820
3005
+ N8
3006
+ 820
3007
+ N1
3008
+ Shiddhirganj
3009
+ 5069
3010
+ RB10
3011
+ Bashundhara
3012
+ R111
3013
+ pur
3014
+ Kada
3015
+ Riverview
3016
+ Baghair
3017
+ Ekuria
3018
+ N8
3019
+ folafe
3020
+ 29
3021
+ eshviariRN
3022
+ Kalakandi
3023
+ Gode
3024
+ Zazira
3025
+
3026
+ 38
3027
+
3028
+
3029
+ example, the route 7-6-24-5-1 means that we have to pass node points 6, 26 and 5 in
3030
+ order to arrive destination node point 1 from starting node point 7. We are considering
3031
+ the minimum distance for accessing any node here. For example, the destination node
3032
+ point 1 can be accessed using the routes 7-6-24-5-1, 7-6-4-26-5-1, 7-21-22-2-24-5-1
3033
+ and so on. But the minimum distanced route is considered for calculation.
3034
+ 4.3.2 Effectiveness Analysis
3035
+ Using an electric-bicycle has a more than one beneficial environmental effect. For most
3036
+ of the cases bicycles take less time to ride, no fuel usage, saving user money, CO2
3037
+ emission reduction in unplanned mega city and very less contribution to air pollution,
3038
+ sound pollution, great relief on road traffic conditions, alleviating parking difficulties
3039
+ in urban areas, cause less damage to the roads, get relief of some non-communicable
3040
+ disease (NCDs) for have some physical exercise every day. The considering factors of
3041
+ Table 4.8: The general data on locations in Dhaka city, including population, area, and traffic pressure.
3042
+ Sl
3043
+ Location
3044
+ Population
3045
+ Area (km²)
3046
+ Traffic Pressure
3047
+ 01
3048
+ Uttara
3049
+ 345,097
3050
+ 36.91
3051
+ 10
3052
+ 02
3053
+ Mirpur
3054
+ 274,530
3055
+ 4.71
3056
+ 8
3057
+ 03
3058
+ Uttara ABM City
3059
+ 145,097
3060
+ 27.91
3061
+ 5
3062
+ 04
3063
+ Bashundhara R/A
3064
+ 274,200
3065
+ 13.54
3066
+ 8
3067
+ 05
3068
+ Khilkhet
3069
+ 130,053
3070
+ 15.88
3071
+ 5
3072
+ 06
3073
+ Cantonment
3074
+ 117,464
3075
+ 14.47
3076
+ 4
3077
+ 07
3078
+ Gulshan
3079
+ 145,969
3080
+ 8.85
3081
+ 5
3082
+ 08
3083
+ Badda
3084
+ 157,924
3085
+ 16.78
3086
+ 5
3087
+ 09
3088
+ Mohakhali
3089
+ 145,969
3090
+ 8.85
3091
+ 5
3092
+ 10
3093
+ Tejgaon
3094
+ 148,255
3095
+ 2.46
3096
+ 5
3097
+ 11
3098
+ Motijheel
3099
+ 225,999
3100
+ 3.69
3101
+ 7
3102
+ 12
3103
+ Khilgaon
3104
+ 327,717
3105
+ 13.8
3106
+ 9
3107
+ 13
3108
+ Gabtoli
3109
+ 198,723
3110
+ 4.98
3111
+ 6
3112
+ 14
3113
+ Mohammadpur
3114
+ 355,843
3115
+ 11.65
3116
+ 10
3117
+ 15
3118
+ Dhanmondi
3119
+ 147,643
3120
+ 2.86
3121
+ 5
3122
+ 16
3123
+ Shahbag
3124
+ 74,113
3125
+ 3.49
3126
+ 3
3127
+ 17
3128
+ Matuail
3129
+ 125,312
3130
+ 19.36
3131
+ 4
3132
+ 18
3133
+ Kotwali
3134
+ 210,504
3135
+ 0.67
3136
+ 6
3137
+ 19
3138
+ New Market
3139
+ 66,439
3140
+ 1.67
3141
+ 2
3142
+ 20
3143
+ Baridhara
3144
+ 105,969
3145
+ 5.45
3146
+ 4
3147
+ 21
3148
+ Banani
3149
+ 145,969
3150
+ 8.85
3151
+ 5
3152
+ 22
3153
+ Monipur
3154
+ 274,530
3155
+ 4.71
3156
+ 8
3157
+ 23
3158
+ Sher-E-Bangla Nagar
3159
+ 248,871
3160
+ 5.25
3161
+ 7
3162
+ 24
3163
+ Airport
3164
+ 130,053
3165
+ 15.88
3166
+ 5
3167
+ 25
3168
+ Poradia
3169
+ 52,014
3170
+ 20.09
3171
+ 2
3172
+ 26
3173
+ Madarbari
3174
+ 93,153
3175
+ 12.65
3176
+ 3
3177
+ 27
3178
+ Beraid
3179
+ 157,924
3180
+ 16.78
3181
+ 5
3182
+ 28
3183
+ NutanPara
3184
+ 125,312
3185
+ 19.36
3186
+ 4
3187
+ 29
3188
+ Pagla Rail station
3189
+ 194,019
3190
+ 246.21
3191
+ 6
3192
+
3193
+
3194
+
3195
+
3196
+
3197
+
3198
+ 39
3199
+
3200
+ this paper is only time saving, fuel and user money saving and CO2 emission reduction.
3201
+ 4.3.2.1 Time Saving
3202
+ In the following measurements, 7 kilometers per hour (kmph) for the buses, cars,
3203
+ taxicabs & motorcycles which is the average speed of traffic in Dhaka city and 40 km/h
3204
+ for electric bicycles using our constructed network. We are taken into consideration our
3205
+ constructed network as jam-free. In the Table 4.10, the time necessary for cars and
3206
+ buses are listed in three different times (at 6:00 AM, 10:00 AM, and 4:00 PM)
3207
+ calculated from google map and the time needed for a bicycle is always constant. The
3208
+ required time for taxicabs and motorcycles is considered to be the same as the time
3209
+ needed for a car. Here, we measure the distance and time of all the node point from
3210
+ center node point 7.
3211
+
3212
+ Table 4.9: Routes from node point 7.
3213
+ Des. Node
3214
+ Point
3215
+ Routes
3216
+ Distance
3217
+ (km)
3218
+ Estimated Travel
3219
+ Time(min)
3220
+ 1
3221
+ 7-6-24-5-1
3222
+ 15.65
3223
+ 23.48
3224
+ 2
3225
+ 7-21-22-2
3226
+ 9.89
3227
+ 14.84
3228
+ 3
3229
+ 7-6-24-5-26-3
3230
+ 19.51
3231
+ 29.27
3232
+ 4
3233
+ 7-6-4
3234
+ 9.02
3235
+ 13.53
3236
+ 5
3237
+ 7-6-24-5
3238
+ 11.9
3239
+ 17.85
3240
+ 6
3241
+ 7-6
3242
+ 3.95
3243
+ 5.93
3244
+ 8
3245
+ 7-20-8
3246
+ 3.17
3247
+ 4.76
3248
+ 9
3249
+ 7-9
3250
+ 2.17
3251
+ 3.26
3252
+ 10
3253
+ 7-9-10
3254
+ 5.98
3255
+ 8.97
3256
+ 11
3257
+ 7-9-10-16-11
3258
+ 10.61
3259
+ 15.92
3260
+ 12
3261
+ 7-20-12
3262
+ 9.04
3263
+ 13.56
3264
+ 13
3265
+ 7-21-13
3266
+ 9.44
3267
+ 14.16
3268
+ 14
3269
+ 7-23-14
3270
+ 7.31
3271
+ 10.97
3272
+ 15
3273
+ 7-23-14-15
3274
+ 11.55
3275
+ 17.33
3276
+ 16
3277
+ 7-9-10-16
3278
+ 8.7
3279
+ 13.05
3280
+ 17
3281
+ 7-9-28-17
3282
+ 15.61
3283
+ 23.42
3284
+ 18
3285
+ 1-20-18
3286
+ 14.78
3287
+ 22.17
3288
+ 19
3289
+ 7-9-10-19
3290
+ 9.87
3291
+ 14.81
3292
+ 20
3293
+ 7-20
3294
+ 2.12
3295
+ 3.18
3296
+ 21
3297
+ 7-21
3298
+ 1.76
3299
+ 2.64
3300
+ 22
3301
+ 7-21-22
3302
+ 7.34
3303
+ 11.01
3304
+ 23
3305
+ 7-23
3306
+ 4.07
3307
+ 6.11
3308
+ 24
3309
+ 7-6-24
3310
+ 8.55
3311
+ 12.83
3312
+ 25
3313
+ 7-6-4-25
3314
+ 18.72
3315
+ 28.08
3316
+ 26
3317
+ 7-6-24-5-26
3318
+ 15.5
3319
+ 23.25
3320
+ 27
3321
+ 7-20-27
3322
+ 11.2
3323
+ 16.8
3324
+ 28
3325
+ 7-9-28
3326
+ 9.41
3327
+ 14.12
3328
+ 29
3329
+ 7-9-28-17-29
3330
+ 22.02
3331
+ 33.03
3332
+
3333
+
3334
+
3335
+
3336
+
3337
+
3338
+ 40
3339
+
3340
+
3341
+
3342
+ Figure 4.4: Constructed network 29 points of Dhaka city.
3343
+
3344
+
3345
+
3346
+ 25
3347
+
3348
+ 41
3349
+
3350
+ In the Table 4.10, we have noticed that at the morning 6:00 AM the travel time is less
3351
+ because of minimal traffic in the roads, at 10:00 AM (peak hour) when traffic jam
3352
+ occurs severe amount the need time to travel is huge and at 4:00 PM there exist traffic
3353
+ jam also but sometimes a bit less than peak hour or sometimes a bit high. This condition
3354
+ is true for all types of cars, buses, taxicabs, etc. For the entire Dhaka city, the gross
3355
+ working hours saving are described in the following Table 4.11. So, around .2 million
3356
+ working hours per day using bicycle in the motijheel area.
3357
+ Table 4.10: Time comparison in car, bus and bicycle considering from node point 7.
3358
+ Node
3359
+ Point
3360
+ Dista
3361
+ nce
3362
+ (km)
3363
+ Car & Taxicab & Motor cycle
3364
+ Bus
3365
+ Bicycle
3366
+ 6:00am
3367
+ (min)
3368
+ 10:00am
3369
+ (min)
3370
+ 4:00pm
3371
+ (min)
3372
+ 6:00am
3373
+ (min)
3374
+ 10:00am
3375
+ (min)
3376
+ 4:00pm
3377
+ (min)
3378
+ Dista
3379
+ nce
3380
+ (km)
3381
+ Time
3382
+ (min)
3383
+ 1
3384
+ 14
3385
+ 24
3386
+ 42
3387
+ 45
3388
+ 26
3389
+ 50
3390
+ 51
3391
+ 15.65
3392
+ 23.48
3393
+ 2
3394
+ 7.5
3395
+ 16
3396
+ 33
3397
+ 36
3398
+ 18
3399
+ 43
3400
+ 42
3401
+ 9.89
3402
+ 14.84
3403
+ 3
3404
+ 18.2
3405
+ 40
3406
+ 75
3407
+ 75
3408
+ 42
3409
+ 82
3410
+ 81
3411
+ 19.51
3412
+ 29.27
3413
+ 4
3414
+ 10.2
3415
+ 22
3416
+ 42
3417
+ 36
3418
+ 22
3419
+ 42
3420
+ 42
3421
+ 9.02
3422
+ 13.53
3423
+ 5
3424
+ 8.7
3425
+ 12
3426
+ 24
3427
+ 24
3428
+ 14
3429
+ 31
3430
+ 30
3431
+ 11.9
3432
+ 17.85
3433
+ 6
3434
+ 6
3435
+ 10
3436
+ 26
3437
+ 24
3438
+ 12
3439
+ 32
3440
+ 30
3441
+ 3.95
3442
+ 5.93
3443
+ 8
3444
+ 4.7
3445
+ 8
3446
+ 30
3447
+ 27
3448
+ 9
3449
+ 35
3450
+ 32
3451
+ 3.17
3452
+ 4.76
3453
+ 9
3454
+ 3.5
3455
+ 7
3456
+ 24
3457
+ 22
3458
+ 9
3459
+ 28
3460
+ 24
3461
+ 2.17
3462
+ 3.26
3463
+ 10
3464
+ 5.5
3465
+ 10
3466
+ 25
3467
+ 24
3468
+ 12
3469
+ 31
3470
+ 28
3471
+ 5.98
3472
+ 8.97
3473
+ 11
3474
+ 9.1
3475
+ 18
3476
+ 45
3477
+ 42
3478
+ 20
3479
+ 52
3480
+ 48
3481
+ 10.61
3482
+ 15.92
3483
+ 12
3484
+ 12
3485
+ 40
3486
+ 60
3487
+ 57
3488
+ 42
3489
+ 68
3490
+ 65
3491
+ 9.04
3492
+ 13.56
3493
+ 13
3494
+ 9.7
3495
+ 22
3496
+ 44
3497
+ 45
3498
+ 24
3499
+ 51
3500
+ 51
3501
+ 9.44
3502
+ 14.16
3503
+ 14
3504
+ 8.3
3505
+ 14
3506
+ 36
3507
+ 33
3508
+ 16
3509
+ 44
3510
+ 39
3511
+ 7.31
3512
+ 10.97
3513
+ 15
3514
+ 8.7
3515
+ 16
3516
+ 33
3517
+ 36
3518
+ 17
3519
+ 41
3520
+ 42
3521
+ 11.55
3522
+ 17.33
3523
+ 16
3524
+ 8
3525
+ 16
3526
+ 39
3527
+ 39
3528
+ 18
3529
+ 47
3530
+ 45
3531
+ 8.7
3532
+ 13.05
3533
+ 17
3534
+ 16.6
3535
+ 30
3536
+ 63
3537
+ 60
3538
+ 32
3539
+ 71
3540
+ 66
3541
+ 15.61
3542
+ 23.42
3543
+ 18
3544
+ 11.4
3545
+ 24
3546
+ 62
3547
+ 60
3548
+ 26
3549
+ 60
3550
+ 66
3551
+ 14.78
3552
+ 22.17
3553
+ 19
3554
+ 8.7
3555
+ 18
3556
+ 42
3557
+ 42
3558
+ 20
3559
+ 50
3560
+ 48
3561
+ 9.87
3562
+ 14.81
3563
+ 20
3564
+ 2.2
3565
+ 5
3566
+ 12
3567
+ 11
3568
+ 6
3569
+ 15
3570
+ 14
3571
+ 2.12
3572
+ 3.18
3573
+ 21
3574
+ 2.3
3575
+ 5
3576
+ 17
3577
+ 15
3578
+ 7
3579
+ 17
3580
+ 15
3581
+ 1.76
3582
+ 2.64
3583
+ 22
3584
+ 6.8
3585
+ 20
3586
+ 36
3587
+ 33
3588
+ 22
3589
+ 44
3590
+ 39
3591
+ 7.34
3592
+ 11.01
3593
+ 23
3594
+ 6.6
3595
+ 12
3596
+ 24
3597
+ 23
3598
+ 14
3599
+ 32
3600
+ 29
3601
+ 4.07
3602
+ 6.11
3603
+ 24
3604
+ 8.7
3605
+ 12
3606
+ 24
3607
+ 24
3608
+ 14
3609
+ 32
3610
+ 30
3611
+ 8.55
3612
+ 12.83
3613
+ 25
3614
+ 15.9
3615
+ 30
3616
+ 68
3617
+ 71
3618
+ 32
3619
+ 75
3620
+ 77
3621
+ 18.72
3622
+ 28.08
3623
+ 26
3624
+ 14.7
3625
+ 30
3626
+ 63
3627
+ 60
3628
+ 32
3629
+ 71
3630
+ 66
3631
+ 15.5
3632
+ 23.25
3633
+ 27
3634
+ 8.5
3635
+ 14
3636
+ 36
3637
+ 33
3638
+ 16
3639
+ 45
3640
+ 39
3641
+ 11.2
3642
+ 16.8
3643
+ 28
3644
+ 10.2
3645
+ 24
3646
+ 63
3647
+ 60
3648
+ 26
3649
+ 71
3650
+ 66
3651
+ 9.41
3652
+ 14.12
3653
+ 29
3654
+ 19.1
3655
+ 35
3656
+ 79.5
3657
+ 75
3658
+ 37
3659
+ 87
3660
+ 81
3661
+ 22.02
3662
+ 33.03
3663
+
3664
+
3665
+
3666
+ Table 4.11: Time saving per day.
3667
+ Transit
3668
+ % of Transit
3669
+ Reduction
3670
+ Transit
3671
+ Reduces
3672
+ Riding
3673
+ Distance (km)
3674
+ Time Saves
3675
+ (min)
3676
+ Bus
3677
+ 10%
3678
+ 12740
3679
+ 254796
3680
+ 7.2 × 107
3681
+
3682
+
3683
+
3684
+
3685
+
3686
+ Car
3687
+ 5%
3688
+ 14663
3689
+ 146630
3690
+ 1.04 × 106
3691
+ Taxicab
3692
+ 20%
3693
+ 7320
3694
+ 732000
3695
+ 5.2 × 106
3696
+ Motor cycle
3697
+ 50%
3698
+ 362400
3699
+ 5436000
3700
+ 3.8 × 107
3701
+ Total time saving
3702
+ 1.16 × 108
3703
+
3704
+
3705
+
3706
+
3707
+
3708
+ 42
3709
+
3710
+ Time Saving Explanation:
3711
+ Total Bus ride reduce: 0. 1 × 127398 × 20 km = 254796 km
3712
+ Time saving for Bus: 254796 × 40 × ( 8.57 – 1.5) mins = 7.2 × 107 mins
3713
+ = 1.2 × 106 hours = 50000 day
3714
+ Total Car ride reduce: 0.05 × 293268 × 10 km = 146634 km
3715
+ Time saving for Car: 146634 × (8.57 – 1.5) mins = 1.04 × 106 mins
3716
+
3717
+
3718
+
3719
+ = 1.73 × 104 hours = 720 days
3720
+ Total Taxicab ride reduce: 0.2 × 36600 × 100 km = 732000 km
3721
+ Time saving for Taxicab: 732000 × (8.57 – 1.5) mins = 5.2 × 106 mins
3722
+
3723
+
3724
+
3725
+ = 8.66 × 104 hours = 3611 days
3726
+ Total Motorcycle ride reduce: 0.5 × 724800 × 15 km = 5.4 × 106 km
3727
+ Time saving for Motorcycle: 5.4 × 106 × (8.57 – 1.5) mins = 3.8 × 107 mins
3728
+
3729
+
3730
+
3731
+ = 6.3 × 105 hours = 26289 days
3732
+ Total working time saving: 50000 + 720 + 3611 + 26289 days = 80620 days
3733
+ 4.3.2.2 Fuel and Cost Saving
3734
+ The cost of installation or repair is not listed here rather we considering only running
3735
+ cost. Because whenever users switch from car to bicycle there would be a significant
3736
+ reduction in costs.
3737
+
3738
+ Here it is assumed that the mileage is 5km per liter diesel for bus and 20km per liter
3739
+ diesel for both car and taxicab of 65tk per liter and the mileage is estimated to be 50km
3740
+ per liter for motorcycle of 89tk per liter. On the other hand, the electric cycle charges
3741
+ of 10tk with 50km of travel per charge charges. The fuel consumption is calculated per
3742
+ day basis and user saving is grand saving of considering all users of the Dhaka city.
3743
+
3744
+ In the following Table 4.12, the needed fuel for cars, taxicabs, motorcycles, and buses
3745
+ is calculated and there is no running cost & fuel cost for the bicycle. In case of bus, the
3746
+ per km fare is fixed by BRTA of 1.7tk and we assumed that taxicab fare is 50tk per km.
3747
+ Here the distance of all the node point is measured from center node point 7.
3748
+
3749
+
3750
+
3751
+
3752
+ 43
3753
+
3754
+ The gross fuel saving and user cost saving of the entire Dhaka city is described in the
3755
+ following Table 4.13. So, it is saved around 195570 liters fuel and 46.72 million user
3756
+ costs per day for using bicycle in the entire Dhaka area.
3757
+
3758
+ Fuel and Cost Saving Explanation:
3759
+ Fuel saving for Bus: 254796 km × 1/5 litres = 50959 litres
3760
+
3761
+ Table 4.13: Cost saving per day.
3762
+ Transit
3763
+ % of Transit
3764
+ Reduction
3765
+ Transit
3766
+ Reduces
3767
+ Riding
3768
+ Distance (km)
3769
+ Fuel
3770
+ (litres)
3771
+ User Cost (tk)
3772
+ Bus
3773
+ 10%
3774
+ 12740
3775
+ 254796
3776
+ 50959
3777
+ 1.27 million
3778
+ Car
3779
+ 5%
3780
+ 14663
3781
+ 146630
3782
+ 7331
3783
+ 4.5 lakh
3784
+ Taxicab
3785
+ 20%
3786
+ 7320
3787
+ 732000
3788
+ 29280
3789
+ 36.5 million
3790
+ Motor cycle
3791
+ 50%
3792
+ 362400
3793
+ 5436000
3794
+ 1.08 × 105
3795
+ 8.5 million
3796
+ Total cost saving
3797
+ 195570
3798
+ 46.72 million
3799
+
3800
+
3801
+ Table 4.12: Cost comparison in car, bus and bicycle considering from node point 7.
3802
+ Node
3803
+ Point
3804
+ Dist
3805
+ ance
3806
+ (km)
3807
+ Car
3808
+ Taxicabs
3809
+ Motor Cycle
3810
+ Bus
3811
+ Electric
3812
+ Bicycle
3813
+ Fuel
3814
+ (litre)
3815
+ User
3816
+ Cost
3817
+ (tk)
3818
+ Fuel
3819
+ (litre)
3820
+ User
3821
+ Cost
3822
+ (tk)
3823
+ Fuel
3824
+ (litre)
3825
+ User
3826
+ Cost
3827
+ (tk)
3828
+ Fuel
3829
+ (litre)
3830
+ User
3831
+ Cost
3832
+ (tk)
3833
+ Dista
3834
+ nce
3835
+ (km)
3836
+ User
3837
+ Cost
3838
+ (tk)
3839
+ 1
3840
+ 14
3841
+ 0.7
3842
+ 45.5
3843
+ 0.56
3844
+ 700
3845
+ 0.28
3846
+ 15.49
3847
+
3848
+
3849
+
3850
+
3851
+
3852
+
3853
+ As we
3854
+ assume
3855
+ bicycles
3856
+ reduces
3857
+ 10% of the
3858
+ total bus in
3859
+ Dhaka
3860
+ city.
3861
+
3862
+ The fuel
3863
+ consumpti
3864
+ on is
3865
+ reduced
3866
+ =
3867
+ 12740×20
3868
+ ×1/5 litres
3869
+
3870
+ = 50959
3871
+ litres
3872
+ 23.8
3873
+ 15.65
3874
+ 3.13
3875
+ 2
3876
+ 7.5
3877
+ 0.38
3878
+ 24.38
3879
+ 0.3
3880
+ 375
3881
+ 0.15
3882
+ 10.68
3883
+ 12.75
3884
+ 9.89
3885
+ 1.98
3886
+ 3
3887
+ 18.2
3888
+ 0.91
3889
+ 59.15
3890
+ 0.73
3891
+ 910
3892
+ 0.36
3893
+ 8.37
3894
+ 30.94
3895
+ 19.51
3896
+ 3.9
3897
+ 4
3898
+ 10.2
3899
+ 0.51
3900
+ 33.15
3901
+ 0.41
3902
+ 510
3903
+ 0.2
3904
+ 6.23
3905
+ 17.34
3906
+ 9.02
3907
+ 1.8
3908
+ 5
3909
+ 8.7
3910
+ 0.44
3911
+ 28.28
3912
+ 0.35
3913
+ 435
3914
+ 0.17
3915
+ 9.79
3916
+ 14.79
3917
+ 11.9
3918
+ 2.38
3919
+ 6
3920
+ 6
3921
+ 0.3
3922
+ 19.5
3923
+ 0.24
3924
+ 300
3925
+ 0.12
3926
+ 16.2
3927
+ 10.2
3928
+ 3.95
3929
+ 0.79
3930
+ 8
3931
+ 4.7
3932
+ 0.24
3933
+ 15.28
3934
+ 0.19
3935
+ 235
3936
+ 0.09
3937
+ 21.36
3938
+ 7.99
3939
+ 3.17
3940
+ 0.63
3941
+ 9
3942
+ 3.5
3943
+ 0.18
3944
+ 11.38
3945
+ 0.14
3946
+ 175
3947
+ 0.07
3948
+ 17.27
3949
+ 5.95
3950
+ 2.17
3951
+ 0.43
3952
+ 10
3953
+ 5.5
3954
+ 0.28
3955
+ 17.88
3956
+ 0.22
3957
+ 275
3958
+ 0.11
3959
+ 14.77
3960
+ 9.35
3961
+ 5.98
3962
+ 1.2
3963
+ 11
3964
+ 9.1
3965
+ 0.46
3966
+ 29.58
3967
+ 0.36
3968
+ 455
3969
+ 0.18
3970
+ 15.49
3971
+ 15.47
3972
+ 10.61
3973
+ 2.12
3974
+ 12
3975
+ 12
3976
+ 0.6
3977
+ 39
3978
+ 0.48
3979
+ 600
3980
+ 0.24
3981
+ 14.24
3982
+ 20.4
3983
+ 9.04
3984
+ 1.81
3985
+ 13
3986
+ 9.7
3987
+ 0.49
3988
+ 31.53
3989
+ 0.39
3990
+ 485
3991
+ 0.19
3992
+ 29.55
3993
+ 16.49
3994
+ 9.44
3995
+ 1.89
3996
+ 14
3997
+ 8.3
3998
+ 0.42
3999
+ 26.98
4000
+ 0.33
4001
+ 415
4002
+ 0.17
4003
+ 20.29
4004
+ 14.11
4005
+ 7.31
4006
+ 1.46
4007
+ 15
4008
+ 8.7
4009
+ 0.44
4010
+ 28.28
4011
+ 0.35
4012
+ 435
4013
+ 0.17
4014
+ 15.49
4015
+ 14.79
4016
+ 11.55
4017
+ 2.31
4018
+ 16
4019
+ 8
4020
+ 0.4
4021
+ 26
4022
+ 0.32
4023
+ 400
4024
+ 0.16
4025
+ 3.92
4026
+ 13.6
4027
+ 8.7
4028
+ 1.74
4029
+ 17
4030
+ 16.6
4031
+ 0.83
4032
+ 53.95
4033
+ 0.66
4034
+ 830
4035
+ 0.33
4036
+ 4.09
4037
+ 28.22
4038
+ 15.61
4039
+ 3.12
4040
+ 18
4041
+ 11.4
4042
+ 0.57
4043
+ 37.05
4044
+ 0.46
4045
+ 570
4046
+ 0.23
4047
+ 12.1
4048
+ 19.38
4049
+ 14.78
4050
+ 2.96
4051
+ 19
4052
+ 8.7
4053
+ 0.44
4054
+ 28.28
4055
+ 0.35
4056
+ 435
4057
+ 0.17
4058
+ 11.75
4059
+ 14.79
4060
+ 9.87
4061
+ 1.97
4062
+ 20
4063
+ 2.2
4064
+ 0.11
4065
+ 7.15
4066
+ 0.09
4067
+ 110
4068
+ 0.04
4069
+ 15.49
4070
+ 3.74
4071
+ 2.12
4072
+ 0.42
4073
+ 21
4074
+ 2.3
4075
+ 0.12
4076
+ 7.48
4077
+ 0.09
4078
+ 115
4079
+ 0.05
4080
+ 28.3
4081
+ 3.91
4082
+ 1.76
4083
+ 0.35
4084
+ 22
4085
+ 6.8
4086
+ 0.34
4087
+ 22.1
4088
+ 0.27
4089
+ 340
4090
+ 0.14
4091
+ 26.17
4092
+ 11.56
4093
+ 7.34
4094
+ 1.47
4095
+ 23
4096
+ 6.6
4097
+ 0.33
4098
+ 21.45
4099
+ 0.26
4100
+ 330
4101
+ 0.13
4102
+ 15.13
4103
+ 11.22
4104
+ 4.07
4105
+ 0.81
4106
+ 24
4107
+ 8.7
4108
+ 0.44
4109
+ 28.28
4110
+ 0.35
4111
+ 435
4112
+ 0.17
4113
+ 18.16
4114
+ 14.79
4115
+ 8.55
4116
+ 1.71
4117
+ 25
4118
+ 15.9
4119
+ 0.8
4120
+ 51.68
4121
+ 0.64
4122
+ 795
4123
+ 0.32
4124
+ 34
4125
+ 27.03
4126
+ 18.72
4127
+ 3.74
4128
+ 26
4129
+ 14.7
4130
+ 0.74
4131
+ 47.78
4132
+ 0.59
4133
+ 735
4134
+ 0.29
4135
+ 15.49
4136
+ 24.99
4137
+ 15.5
4138
+ 3.1
4139
+ 27
4140
+ 8.5
4141
+ 0.43
4142
+ 27.63
4143
+ 0.34
4144
+ 425
4145
+ 0.17
4146
+ 10.68
4147
+ 14.45
4148
+ 11.2
4149
+ 2.24
4150
+ 28
4151
+ 10.2
4152
+ 0.51
4153
+ 33.15
4154
+ 0.41
4155
+ 510
4156
+ 0.2
4157
+ 8.37
4158
+ 17.34
4159
+ 9.41
4160
+ 1.88
4161
+ 29
4162
+ 19.1
4163
+ 0.96
4164
+ 62.08
4165
+ 0.76
4166
+ 955
4167
+ 0.38
4168
+ 6.23
4169
+ 32.47
4170
+ 22.02
4171
+ 4.4
4172
+
4173
+
4174
+
4175
+
4176
+
4177
+
4178
+ 44
4179
+
4180
+ User money saving: 254796 km × (
4181
+ 65
4182
+ 5 − 40 ×
4183
+ 10
4184
+ 50) tk = 1.27 million tk
4185
+ Fuel saving for Car: 146634 km ×
4186
+ 1
4187
+ 20 litres = 7331 litres
4188
+ User money saving: 146634 km × (
4189
+ 65
4190
+ 20 −
4191
+ 10
4192
+ 50) tk = 4.5 × 105 tk = 4.5 lakh tk
4193
+ Fuel saving for Taxicab: 732000 km ×
4194
+ 1
4195
+ 25 litres = 29280 litres
4196
+ User money saving: 732000 km × (50 −
4197
+ 10
4198
+ 50) tk = 3.65 × 107 tk = 36.5 million tk
4199
+ Fuel saving for Motor cycle: 5.4 × 106 km ×
4200
+ 1
4201
+ 50 litres = 1.1 × 105 litres
4202
+ User money saving 5.4 × 106 × (
4203
+ 89
4204
+ 50 −
4205
+ 10
4206
+ 50) tk = 8.5 × 106 tk = 8.5 million tk
4207
+ Total fuel saving: 50959 + 7331 + 29280 + 1.1 × 105 litres = 197570 litres
4208
+ Total User money saving: 1.27 + .45 + 36.5 + 8.5 million tk = 46.72 million tk
4209
+ 4.3.2.3 CO2 Emission Reduction
4210
+ In the following calculation, 887 g/km, 258 g/km, 237 g/km and 40 g/km are the
4211
+ considered amount of CO2 emission in 1km ride of bus, car, taxicab, and motorcycle
4212
+ respectively. Then CO2 emission is reduced in a significant amount. For the entire
4213
+ Dhaka city, the gross CO2 emission reduction is described in the Table 4.14. In total,
4214
+ around 6.58 × 105 kg CO2 emission is reduced in the entire Dhaka city per day.
4215
+
4216
+ CO2 Emission Reduction Explanation:
4217
+ CO2 emission reduction for Bus: 0.1 × 127398 × 20 km × 887 gm = 2.3 × 105 kg
4218
+ CO2 emission reduction for Car: 0.05 × 293268 × 10 km × 258 gm = 3.8 × 104 kg
4219
+ CO2 emission reduction for Taxicab: 0.2 × 36600 × 100 km × 237 gm = 1.7 × 105 kg
4220
+ CO2 emission reduction for Motorcycle: 0.5 ×724800 ×15 km × 40 gm = 2.2 × 105 kg
4221
+ Total CO2 emission reduction: 6.58 × 105 kg
4222
+
4223
+ Table 4.14: CO2 emission reduction per day.
4224
+ Transit
4225
+ % of Transit
4226
+ Reduction
4227
+ Transit
4228
+ Reduces
4229
+ Riding
4230
+ Distance (km)
4231
+ CO2
4232
+ Emission (g)
4233
+ Bus
4234
+ 10%
4235
+ 12740
4236
+ 254796
4237
+ 2.3 × 108
4238
+ Car
4239
+ 5%
4240
+ 14663
4241
+ 146630
4242
+ 3.8 × 107
4243
+ Taxicab
4244
+ 20%
4245
+ 7320
4246
+ 732000
4247
+ 1.7 × 108
4248
+ Motor cycle
4249
+ 50%
4250
+ 362400
4251
+ 5436000
4252
+ 2.2 × 108
4253
+ Total CO2 emission reduction
4254
+ 6.58 × 108
4255
+
4256
+
4257
+
4258
+
4259
+
4260
+ 45
4261
+
4262
+ When CNG is being used as fuel in buses, cars, and taxicabs the CO2 emission is more
4263
+ significant. Buying a car and motorcycle also increases traffic jams, air carbon dioxide,
4264
+ pollution of the environment and costly in the current situation in Dhaka. Alternatively,
4265
+ electric bicycle does not make an enormous traffic jam, CO2 in air, and less expensive.
4266
+ In order to do this, governments should build parking lots in various places where
4267
+ necessary.
4268
+
4269
+
4270
+
4271
+
4272
+
4273
+
4274
+
4275
+
4276
+
4277
+ CHAPTER 5
4278
+ Conclusions
4279
+ A modified Physarum-inspired model is presented in this paper to address the design
4280
+ of the bicycle lane network. Different approaches, like exact approaches and heuristic
4281
+ approaches, have been presented over the past decades to design transportation
4282
+ networks. Recently bio-inspired method had drawn great attraction to network design.
4283
+ In real two-way traffic networks, the modified technique is more effective and efficient.
4284
+ This chapter will now give a short summary of the main points described in this thesis.
4285
+ Also, it discusses possible future works based on the outcome of the present work
4286
+ 5.1 Achievements
4287
+ The network design technology inspired by Physarum is believed to have balanced
4288
+ costs, effectiveness, and resilience. Inside Dhaka city, an unorganized and unplanned
4289
+ city, we have developed an electric bicycle network system where there's little footway.
4290
+ To meet this challenge, we primarily use local roads and try to avoid major roads
4291
+ towards the construction of the electric bicycle network. Since bicycles are non-
4292
+ motorized vehicles do not produce greenhouse gases so they do not cause air pollution.
4293
+ They also don't contribute to noise pollution. If a large number of people use bicycle in
4294
+ the city, traffic jams will be eliminated. The costs will be reduced and people can have
4295
+ some physical activity also, which is beneficial to health. Since bicycles do not need to
4296
+ use gasoline, the importation of gasoline will be reduced. That also enriches the
4297
+ economy and the environment.
4298
+ 5.2 Future Study
4299
+ In the future, parallel computing and the optimal model for the design of the transport
4300
+ network are part of our work. Furthermore, our research includes the implementation
4301
+ of the Physarum polycephalum inspired model for the dynamic traffic network and the
4302
+ elastic demand traffic network.
4303
+
4304
+
4305
+
4306
+
4307
+ 47
4308
+
4309
+ References
4310
+ [1]
4311
+ P. Merriman, “Mobility,” in International Encyclopedia of Human Geography,
4312
+ Elsevier, 2009, pp. 134–143.
4313
+ [2]
4314
+ H. Hao, Y. Geng, H. Wang, and M. Ouyang, “Regional disparity of urban
4315
+ passenger transport associated GHG (greenhouse gas) emissions in China: A
4316
+ review,” Energy, vol. 68, pp. 783–793, Apr. 2014.
4317
+ [3]
4318
+ M. R. M. Yazid, R. Ismail, and R. Atiq, “The Use of Non-Motorized For
4319
+ Sustainable Transportation in Malaysia,” Procedia Eng., vol. 20, pp. 125–134,
4320
+ 2011.
4321
+ [4]
4322
+ D. Mohan, “Road safety in less-motorized environments: future concerns,” Int.
4323
+ J. Epidemiol., vol. 31, no. 3, pp. 527–532, Jun. 2002.
4324
+ [5]
4325
+ D. Alam, “The dark side of Dhaka’s urbanisation,” The Daily Star, 19-Feb-2019.
4326
+ [6]
4327
+ C. Rissel, “Health benefits of cycling,” in Cycling Futures, University of
4328
+ Adelaide Press, 2015, pp. 43–62.
4329
+ [7]
4330
+ J. N. Morris and A. E. Hardman, “Walking to health,” Sports Medicine. 1997.
4331
+ [8]
4332
+ P. Oja et al., “Health benefits of cycling: a systematic review,” Scand. J. Med.
4333
+ Sci. Sports, vol. 21, no. 4, pp. 496–509, Aug. 2011.
4334
+ [9]
4335
+ M. Tschentscher, D. Niederseer, and J. Niebauer, “Health benefits of nordic
4336
+ walking: A systematic review,” American Journal of Preventive Medicine. 2013.
4337
+ [10] C. Oettmeier, K. Brix, and H.-G. Döbereiner, “Physarum polycephalum —a new
4338
+ take on a classic model system,” J. Phys. D. Appl. Phys., vol. 50, no. 41, p.
4339
+ 413001, Oct. 2017.
4340
+ [11] C. R. Reid, T. Latty, A. Dussutour, and M. Beekman, “Slime mold uses an
4341
+ externalized spatial ‘memory’ to navigate in complex environments,” Proc. Natl.
4342
+ Acad. Sci. U. S. A., 2012.
4343
+ [12] A. Johannson and J. Zou, “A Slime Mold Solver for Linear Programming
4344
+ Problems,” in Lecture Notes in Computer Science (including subseries Lecture
4345
+ Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2012, pp.
4346
+ 344–354.
4347
+ [13] T. Nakagaki, H. Yamada, and Á. Tóth, “Maze-solving by an amoeboid
4348
+ organism,” Nature, vol. 407, no. 6803, pp. 470–470, Sep. 2000.
4349
+ [14] A. Tero et al., “Rules for Biologically Inspired Adaptive Network Design,”
4350
+
4351
+
4352
+
4353
+ 48
4354
+
4355
+ Science (80-. )., vol. 327, no. 5964, pp. 439–442, Jan. 2010.
4356
+ [15] A. Tero, R. Kobayashi, and T. Nakagaki, “A mathematical model for adaptive
4357
+ transport network in path finding by true slime mold,” J. Theor. Biol., vol. 244,
4358
+ no. 4, pp. 553–564, Feb. 2007.
4359
+ [16] A. Adamatzky and R. Alonso-Sanz, “Rebuilding Iberian motorways with slime
4360
+ mould,” Biosystems, vol. 105, no. 1, pp. 89–100, Jul. 2011.
4361
+ [17] A. Adamatzky, G. J. Martínez, S. V. Chapa-Vergara, R. Asomoza-Palacio, and
4362
+ C. R. Stephens, “Approximating Mexican highways with slime mould,” Nat.
4363
+ Comput., 2011.
4364
+ [18] A. Adamatzky, X.-S. Yang, and Y.-X. Zhao, “Slime mould imitates transport
4365
+ networks in China,” Int. J. Intell. Comput. Cybern., vol. 6, no. 3, pp. 232–251,
4366
+ Aug. 2013.
4367
+ [19] M. Becker, “Design of fault tolerant networks with agent-based simulation of
4368
+ Physarum polycephalum,” in 2011 IEEE Congress of Evolutionary Computation
4369
+ (CEC), 2011, pp. 285–291.
4370
+ [20] M.-A. I. Tsompanas, G. C. Sirakoulis, and A. I. Adamatzky, “Evolving
4371
+ Transport Networks With Cellular Automata Models Inspired by Slime Mould,”
4372
+ IEEE Trans. Cybern., vol. 45, no. 9, pp. 1887–1899, Sep. 2015.
4373
+ [21] X. Zhang, A. Adamatzky, X.-S. Yang, H. Yang, S. Mahadevan, and Y. Deng,
4374
+ “A Physarum-inspired approach to supply chain network design,” Sci. China Inf.
4375
+ Sci., vol. 59, no. 5, p. 052203, May 2016.
4376
+ [22] X. Zhang et al., “A biologically inspired network design model,” Sci. Rep., vol.
4377
+ 5, pp. 1–14, 2015.
4378
+ [23] T. Nakagaki, H. Yamada, and Á. Tóth, “Path finding by tube morphogenesis in
4379
+ an amoeboid organism,” Biophys. Chem., vol. 92, no. 1–2, pp. 47–52, Sep. 2001.
4380
+ [24] X. Zhang, Y. Zhang, Z. Zhang, S. Mahadevan, A. Adamatzky, and Y. Deng,
4381
+ “Rapid Physarum Algorithm for shortest path problem,” Appl. Soft Comput., vol.
4382
+ 23, pp. 19–26, Oct. 2014.
4383
+ [25] X. Zhang, F. T. S. Chan, H. Yang, and Y. Deng, “An adaptive amoeba algorithm
4384
+ for shortest path tree computation in dynamic graphs,” Inf. Sci. (Ny)., vol. 405,
4385
+ pp. 123–140, Sep. 2017.
4386
+ [26] M. Beekman and T. Latty, “Brainless but Multi-Headed: Decision Making by
4387
+ the Acellular Slime Mould Physarum polycephalum,” J. Mol. Biol., vol. 427, no.
4388
+ 23, pp. 3734–3743, Nov. 2015.
4389
+
4390
+
4391
+
4392
+ 49
4393
+
4394
+ [27] T. Nakagaki et al., “Minimum-Risk Path Finding by an Adaptive Amoebal
4395
+ Network,” Phys. Rev. Lett., vol. 99, no. 6, p. 068104, Aug. 2007.
4396
+ [28] J. Jones and A. Adamatzky, “Computation of the travelling salesman problem
4397
+ by a shrinking blob,” Nat. Comput., vol. 13, no. 1, pp. 1–16, Mar. 2014.
4398
+ [29] M. Aono, L. Zhu, and M. Hara, “Amoeba-based neurocomputing for 8-city
4399
+ traveling salesman problem,” Int. J. Unconv. Comput., 2011.
4400
+ [30] Z. Zhang, C. Gao, Y. Liu, and T. Qian, “A universal optimization strategy for
4401
+ ant colony optimization algorithms based on the Physarum
4402
+ -inspired
4403
+ mathematical model,” Bioinspir. Biomim., vol. 9, no. 3, p. 036006, Mar. 2014.
4404
+ [31] A. ADAMATZKY, “THE WORLD’S COLONIZATION AND TRADE
4405
+ ROUTES FORMATION AS IMITATED BY SLIME MOULD,” Int. J. Bifurc.
4406
+ Chaos, vol. 22, no. 08, p. 1230028, Aug. 2012.
4407
+ [32] J. G. H. Whiting, B. P. J. de Lacy Costello, and A. Adamatzky, “Slime mould
4408
+ logic gates based on frequency changes of electrical potential oscillation,”
4409
+ Biosystems, vol. 124, pp. 21–25, Oct. 2014.
4410
+ [33] A. Adamatzky and T. Schubert, “Slime mold microfluidic logical gates,” Mater.
4411
+ Today, vol. 17, no. 2, pp. 86–91, Mar. 2014.
4412
+ [34] A. Adamatzky, “Physarum Machines: Computers from Slime Mould,” Ser. A,
4413
+ 2010.
4414
+ [35] M. Aono, M. Hara, and K. Aihara, “Amoeba-based neurocomputing with chaotic
4415
+ dynamics,” Commun. ACM, vol. 50, no. 9, p. 69, Sep. 2007.
4416
+ [36] S. Kasai, M. Aono, and M. Naruse, “Amoeba-inspired computing architecture
4417
+ implemented using charge dynamics in parallel capacitance network,” Appl.
4418
+ Phys. Lett., vol. 103, no. 16, p. 163703, Oct. 2013.
4419
+ [37] S. Tsuda, M. Aono, and Y.-P. Gunji, “Robust and emergent Physarum logical-
4420
+ computing,” Biosystems, vol. 73, no. 1, pp. 45–55, Jan. 2004.
4421
+ [38] A. Adamatzky, “Slime mould computes planar shapes,” Int. J. Bio-Inspired
4422
+ Comput., vol. 4, no. 3, p. 149, 2012.
4423
+ [39] C. Gao, X. Lan, X. Zhang, and Y. Deng, “A Bio-Inspired Methodology of
4424
+ Identifying Influential Nodes in Complex Networks,” PLoS One, vol. 8, no. 6,
4425
+ p. e66732, Jun. 2013.
4426
+ [40] X. Zhang et al., “A bio-inspired algorithm for identification of critical
4427
+ components in the transportation networks,” Appl. Math. Comput., 2014.
4428
+ [41] A. Adamatzky, “Growing spanning trees in plasmodium machines,” Kybernetes,
4429
+
4430
+
4431
+
4432
+ 50
4433
+
4434
+ vol. 37, no. 2, pp. 258–264, Feb. 2008.
4435
+ [42] X. Zhang, S. Huang, Y. Hu, Y. Zhang, S. Mahadevan, and Y. Deng, “Solving 0-
4436
+ 1 knapsack problems based on amoeboid organism algorithm,” Appl. Math.
4437
+ Comput., vol. 219, no. 19, pp. 9959–9970, Jun. 2013.
4438
+ [43] A. Tero, “Models and Applications of Organism Transportation,” 2014, pp. 141–
4439
+ 150.
4440
+ [44] J. Jones, R. Mayne, and A. Adamatzky, “Representation of shape mediated by
4441
+ environmental stimuli in Physarum polycephalum and a multi-agent model,” Int.
4442
+ J. Parallel, Emergent Distrib. Syst., vol. 32, no. 2, pp. 166–184, Mar. 2017.
4443
+ [45] A. Tero, T. Nakagaki, K. Toyabe, K. Yumiki, and R. Kobayashi, “A method
4444
+ inspired by Physarum for solving the Steiner problem,” Int. J. Unconv. Comput.,
4445
+ 2010.
4446
+ [46] J. Jones, “Characteristics of Pattern Formation and Evolution in Approximations
4447
+ of Physarum Transport Networks,” Artif. Life, vol. 16, no. 2, pp. 127–153, Apr.
4448
+ 2010.
4449
+ [47] T. Nakagaki, R. Kobayashi, Y. Nishiura, and T. Ueda, “Obtaining multiple
4450
+ separate food sources: behavioural intelligence in the Physarum plasmodium,”
4451
+ Proc. R. Soc. London. Ser. B Biol. Sci., vol. 271, no. 1554, pp. 2305–2310, Nov.
4452
+ 2004.
4453
+ [48] Y. Sun and S. Halgamuge, “Fast algorithms inspired by Physarum polycephalum
4454
+ for node weighted steiner tree problem with multiple terminals,” in 2016 IEEE
4455
+ Congress on Evolutionary Computation, CEC 2016, 2016.
4456
+ [49] Y. Sun, P. N. Hameed, K. Verspoor, and S. Halgamuge, “A physarum-inspired
4457
+ prize-collecting steiner tree approach to identify subnetworks for drug
4458
+ repositioning,” BMC Syst. Biol., vol. 10, no. S5, p. 128, Dec. 2016.
4459
+ [50] S. Ahmed, K. M. Nahiduzzaman, and M. M. U. Hasan, “Dhaka, Bangladesh:
4460
+ unpacking challenges and reflecting on unjust transitions,” Cities, vol. 77, pp.
4461
+ 142–157, Jul. 2018.
4462
+ [51] “বিশ্বে
4463
+ দূবিত
4464
+ িায়ুর
4465
+ শহশ্বরর
4466
+ তাবিকায়
4467
+ ঢাকা
4468
+ প্রথম,”
4469
+ https://www.somoynews.tv/pages/details/184378?fbclid=IwAR3jgZBPAH97pjn
4470
+ Ezw88Cdoge81F1m5WMhHVXe9jbd19tBgN7ZesQTs9vVk,
4471
+ Dhaka,
4472
+ 19-Nov-
4473
+ 2010.
4474
+ [52] M. Mahadi, “Air Pollution In Dhaka City,” Bangladesh Environment. [Online].
4475
+
4476
+
4477
+
4478
+ 51
4479
+
4480
+ Available: https://www.bangladeshenvironment.com/index.php/polution-s/air-
4481
+ polution/291-air-pollution-in-dhaka-city.
4482
+ [53] S. Mamun, “Noise pollution: A bane of Bangladeshi urban life,” Dhaka Tribune,
4483
+ 25-Apr-2018.
4484
+ [54] M. Mahadi, “Noise Pollution In Dhaka City,” Bangladesh Environment.
4485
+ [Online].
4486
+ Available:
4487
+ https://www.bangladeshenvironment.com/index.php/polution-s/noise-
4488
+ polution/302-noise-pollution-in-dhaka-city.
4489
+ [55] A. A. Haider, “Traffic jam: The ugly side of Dhaka’s development,” The Daily
4490
+ Star, 13-May-2018.
4491
+ [56] “Traffic jam in Dhaka suddenly ‘turned horrific,’” Dhaka Tribune, Dhaka, 29-
4492
+ Jan-2018.
4493
+ [57] “Natural Gas,” U.S. Energy Information Administration. [Online]. Available:
4494
+ https://www.eia.gov/beta/international/rankings/#?prodact=53-1&cy=2018.
4495
+ [58] “Current Energy Situation And Comparative Solar Power Possibility Analysis
4496
+ For Obtaining Sustainable Energy Security In South Asia,” Int. J. Sci. Technol.
4497
+ Res., 2013.
4498
+ [59] Global Advocacy for Physical Activity (GAPA) the Advocacy Council of the
4499
+ International Society for Physical Activity and Health (ISPAH), “Investments
4500
+ that Work for Physical Activity,” Br. J. Sports Med., vol. 46, no. 10, pp. 709–
4501
+ 712, Aug. 2012.
4502
+ [60] “Number of registered Vehicles in Dhaka Metro,” Dhaka, 2020.
4503
+ [61] Moskvitch Katia, “Slime Molds Remember — but Do They Learn?,”
4504
+ https://www.quantamagazine.org/slime-molds-remember-but-do-they-learn-
4505
+ 20180709/, Jul-2018.
4506
+
4507
+
3tFRT4oBgHgl3EQfojeI/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
4NE1T4oBgHgl3EQfAgLJ/content/tmp_files/2301.02841v1.pdf.txt ADDED
@@ -0,0 +1,1864 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.02841v1 [math.DS] 7 Jan 2023
2
+ LEVEL-2 LARGE DEVIATION PRINCIPLE FOR
3
+ COUNTABLE MARKOV SHIFTS WITHOUT GIBBS STATES
4
+ HIROKI TAKAHASI
5
+ Abstract. We consider level-2 large deviations for the one-sided countable full
6
+ shift without assuming the existence of Bowen’s Gibbs state. To deal with non-
7
+ compact closed sets, we provide a sufficient condition in terms of inducing which
8
+ ensures the exponential tightness of a sequence of Borel probability measures
9
+ constructed from periodic configurations. Under this condition we establish the
10
+ level-2 Large Deviation Principle. We apply our results to the continued fraction
11
+ expansion of real numbers in [0, 1) generated by the R´enyi map, and obtain the
12
+ level-2 Large Deviation Principle, as well as a weighted equidistribution of a set
13
+ of quadratic irrationals to equilibrium states of the R´enyi map.
14
+ 1. Introduction
15
+ Dynamical systems (iterated maps) equipped with finite Markov partitions are
16
+ represented as finite Markov shifts, and the construction of relevant invariant mea-
17
+ sures and the investigation of their statistical properties are done on the symbolic
18
+ level, with adaptations of ideas in statistical mechanics (see e.g., [4, 5, 29, 32, 39]).
19
+ This thermodynamic formalism initiated in the 60s has been successfully extended
20
+ to maps with infinite Markov partitions and shift spaces with countably infinite
21
+ number of states (see e.g., [1, 6, 10, 11, 18, 30, 31, 41]). This paper is concerned
22
+ with level-2 large deviations for such countable Markov shifts, and its application
23
+ to a dynamical system related to number theory.
24
+ The theory of large deviations aims to characterize limit behaviors of probability
25
+ measures in terms of rate functions. Let X be a topological space, and let M(X )
26
+ denote the space of Borel probability measures on X endowed with the weak*
27
+ topology. We say a sequence {˜µn}∞
28
+ n=1 in M(X ) satisfies the Large Deviation Prin-
29
+ ciple (LDP) if there exists a lower semicontinuous function I : X → [0, ∞] such
30
+ that
31
+ (1.1)
32
+ lim inf
33
+ n→∞
34
+ 1
35
+ n log ˜µn(G) ≥ − inf
36
+ G I for any open set G ⊂ X ,
37
+ and
38
+ (1.2)
39
+ lim sup
40
+ n→∞
41
+ 1
42
+ n log ˜µn(C) ≤ − inf
43
+ C I for any closed set C ⊂ X .
44
+ We call x ∈ X a minimizer if I(x) = 0 holds. The set of minimizers is a closed
45
+ set. The LDP means that in the limit n → ∞ the measure ˜µn assigns all but
46
+ Date: January 10, 2023.
47
+ 2020 Mathematics Subject Classification. 37A44, 37A50, 37A60, 60F10.
48
+ Keywords: thermodynamic formalism; Gibbs state; Large Deviation Principle; periodic points;
49
+ equidistribution.
50
+ 1
51
+
52
+ 2
53
+ HIROKI TAKAHASI
54
+ exponentially small mass to the set of minimizers.
55
+ The function I is called a
56
+ rate function, and called a good rate function if its level set {x ∈ X : I(x) ≤
57
+ α} is compact for any α > 0. If X is a metric space and {˜µn}∞
58
+ n=1 satisfies the
59
+ LDP, the rate function is unique. The setup in our mind is that X is the space
60
+ of Borel probability measures on a topological space X on which a Borel map
61
+ σ: X → X acts, and each ˜µn ∈ M(X ) is given in terms of empirical measures
62
+ δn
63
+ x = (1/n) �n−1
64
+ k=0 δσkx, where δσkx ∈ X denotes the unit point mass at σkx ∈ X.
65
+ We refer to the LDP in this setup as level-2 [8, Chapter 1].
66
+ For topologically mixing finite Markov shifts together with H¨older continuous
67
+ potentials, the level-2 LDP for empirical distributions and that for sequences con-
68
+ structed from empirical measures on periodic orbits were established in [15, 22, 33]
69
+ and [16] respectively. A key ingredient in these classical cases is the existence of
70
+ Bowen’s Gibbs states [4]. With the aid of Bowen’s Gibbs states, one can deduce
71
+ the lower bound (1.1) by combining Birkhoff’s and Shannon-McMillan-Breiman’s
72
+ theorems, and the upper bound (1.2) by modifying the standard proof of the
73
+ variational principle [40] (see [33]). For countable Markov shifts, Bowen’s Gibbs
74
+ states were constructed under the assumption of a good regularity of potentials
75
+ and a strong connectivity of transition matrices defining the shift spaces (see e.g.,
76
+ [1, 6, 11, 18, 30]). Several level-2 LDPs were established in [34] under the existence
77
+ of Bowen’s Gibbs states.
78
+ It has been realized that not all dynamically relevant invariant probability mea-
79
+ sures correspond to Bowen’s Gibbs states. One of the best known examples is
80
+ the absolutely continuous invariant probability measure of an interval map of
81
+ Manneville-Pomeau type, with finitely many branches and a neutral fixed point.
82
+ Such a measure still retains a weak form of Bowen’s Gibbs state [41], and has
83
+ the weak Gibbsian property in statistical mechanics sense [9, 17, 42]. For a ther-
84
+ modynamic formalism and level-2 large deviations for a class of this map, see
85
+ [12, 28, 41] and [25, 26] respectively. With these historical developments and the
86
+ abundance of interesting dynamical systems modeled by countable Markov shifts
87
+ without Bowen’s Gibbs states (see e.g., [13, 43]), it is important to establish the
88
+ level-2 LDP for countable Markov shifts without assuming the existence of Bowen’s
89
+ Gibbs states.
90
+ A main new difficulty for countable Markov shifts is a treatment of non-compact
91
+ closed sets. We say a sequence {˜µn}∞
92
+ n=1 of Borel probability measures on a non-
93
+ compact space X is exponentially tight if for any L > 0 there exists a compact set
94
+ K ⊂ X such that
95
+ lim sup
96
+ n→∞
97
+ 1
98
+ n log ˜µn(X \ K) ≤ −L.
99
+ If {˜µn}∞
100
+ n=1 is exponentially tight, then the upper bound (1.2) for any compact
101
+ closed set implies (1.2) for any closed set which is not necessarily compact, see
102
+ e.g., [7] for details. The proof of the level-2 LDPs in [34] relies on the existence of
103
+ Bowen’s Gibbs states in order to verify the exponential tightness.
104
+ Our strategy for countable Markov shifts without Bowen’s Gibbs states is to use
105
+ inducing to verify the exponential tightness. Inducing is a familiar procedure in
106
+ ergodic theory originally considered in works by Kakutani, Rohlin and others, and
107
+
108
+ LEVEL-2 LDP FOR COUNTABLE MARKOV SHIFTS WITHOUT GIBBS STATES
109
+ 3
110
+ was used in the construction of absolutely continuous invariant measures or Gibbs-
111
+ equilibrium states (see e.g., [2, 3, 23, 24]). An inducing scheme we use here is given
112
+ by the first return map to an a priori fixed domain. In terms of this inducing, we
113
+ will formulate a sufficient condition which ensures the exponential tightness for
114
+ the original system.
115
+ A key concept is that of local Gibbs states introduced in
116
+ Section 2.2.
117
+ 1.1. Statements of results. Throughout the rest of this paper, let N denote the
118
+ discrete set of positive integers.
119
+ Let X denote the one-sided infinite Cartesian
120
+ product topological space of N, called a countable full shift. The topology of X
121
+ has a base that consists of cylinders
122
+ [p1 · · · pn] = {x = (xn)∞
123
+ n=1 ∈ X : xk = pk for every k ∈ {1, 2, . . . , n}},
124
+ where n ≥ 1 and p1 · · ·pn ∈ Nn.
125
+ This topology is metrizable with the metric
126
+ d(x, y) = exp (− inf{n ≥ 1: xn ̸= yn}) where exp(−∞) = 0 by convention. Let σ
127
+ denote the left shift acting on X: (σx)n = xn+1 for n ≥ 1.
128
+ Let φ: X → R be a function, called a potential. We say φ is acceptable if it is
129
+ uniformly continuous and satisfies
130
+ sup
131
+ p∈N
132
+
133
+ sup
134
+ [p]
135
+ φ − inf
136
+ [p] φ
137
+
138
+ < ∞.
139
+ We say φ is locally H¨older continuous if there exist C > 0 and α ∈ (0, 1] such that
140
+ for any p ∈ N and all x, y ∈ [p],
141
+ |φ(x) − φ(y)| ≤ Cd(x, y)α.
142
+ Clearly, if φ is locally H¨older continuous then it is acceptable. For each n ≥ 1 we
143
+ write Snφ for the Birkhoff sum �n−1
144
+ k=0 φ ◦ σk, and introduce a pressure
145
+ (1.3)
146
+ P(φ) = lim
147
+ n→∞
148
+ 1
149
+ n log
150
+
151
+ p1···pn∈Nn
152
+ sup
153
+ [p1···pn]
154
+ exp Snφ.
155
+ This limit exists by the sub-additivity [4, Lemma 1.18], which is never −∞.
156
+ Let φ: X → R be acceptable and satisfy P(φ) < ∞. We consider a sequence
157
+ {˜µn}∞
158
+ n=1 of Borel probability measures on M(X) given by
159
+ (1.4)
160
+ ˜µn =
161
+ 1
162
+ Zn(φ)
163
+
164
+ x∈En
165
+ exp Snφ(x)δδn
166
+ x,
167
+ where
168
+ En = {x ∈ X : σnx = x},
169
+ and δδn
170
+ x denotes the unit point mass at δn
171
+ x, and Zn(φ) the normalizing constant.
172
+ In dynamical systems terms, En is the set of periodic points of period n.
173
+ In
174
+ statistical mechanics terms, the measure ˜µn is closely related to the canonical
175
+ ensemble subject to a periodic boundary condition.
176
+ An inducing scheme consists of a subset X∗ of X of the form
177
+ (1.5)
178
+ X∗ = X \
179
+
180
+ p∈N∩[1,p∗−1]
181
+ [p],
182
+
183
+ 4
184
+ HIROKI TAKAHASI
185
+ where p∗ ≥ 2, and a function R: X∗ → N ∪ {∞} given by
186
+ (1.6)
187
+ R(x) = inf{n ≥ 1: σnx ∈ X∗}.
188
+ Given an inducing scheme (X∗, R) we define an induced map
189
+ (1.7)
190
+ τ : X∗ ∩
191
+
192
+
193
+ k=1
194
+ σ−kX∗ �→ σR(x)x ∈ X∗,
195
+ and an inducing domain
196
+ (1.8)
197
+ Σ =
198
+
199
+
200
+ n=0
201
+ τ −n
202
+
203
+ X∗ ∩
204
+
205
+
206
+ k=1
207
+ σ−kX∗
208
+
209
+ .
210
+ In other words, τ is the first return map to X∗ and Σ is the domain on which τ
211
+ can be iterated infinitely many times. We call (Σ, τ|Σ) an induced system. Given
212
+ a potential φ: X → R, we introduce a parametrized family of induced potentials
213
+ Φγ : Σ → R (γ ∈ R) by
214
+ (1.9)
215
+ Φγ(x) = SR(x)φ(x) − γR(x).
216
+ As shown in Section 2.1, the induced system has a countably infinite partition that
217
+ conjugates the system to the countable full shift. The local H¨older continuity of
218
+ the induced potential Φγ and its pressure P(Φγ) are well-defined in terms of this
219
+ conjugacy. Our main result is stated as follows.
220
+ Theorem A (the level-2 Large Deviation Principle). Let φ: X → R be acceptable
221
+ and satisfy P(φ) < ∞.
222
+ Assume there exists an induced system for which the
223
+ induced potentials Φγ, γ ∈ R are locally H¨older continuous, and there exists γ0 ∈ R
224
+ such that P(Φγ0) = 0. Then {˜µn}∞
225
+ n=1 is exponentially tight and satisfies the LDP
226
+ with the good rate function.
227
+ Let us define the rate function in Theorem A. Let M(X, σ) denote the set of σ-
228
+ invariant elements of M(X) and let Mφ(X, σ) = {µ ∈ M(X, σ):
229
+
230
+ φdµ > −∞}.
231
+ Define Fφ : M(X) → [−∞, 0] by
232
+ Fφ(µ) =
233
+
234
+ h(µ) +
235
+
236
+ φdµ − P(φ)
237
+ if µ ∈ Mφ(X, σ);
238
+ −∞
239
+ otherwise,
240
+ where h(µ) ∈ [0, ∞] denotes the measure-theoretic entropy of µ with respect to σ.
241
+ Since φ is acceptable and P(φ) < ∞, sup φ < ∞ is finite. For each µ ∈ Mφ(X, σ),
242
+
243
+ φdµ is finite [18, Theorem 2.1.9] and we have h(µ) +
244
+
245
+ φdµ ≤ P(φ) < ∞, and so
246
+ h(µ) < ∞. If φ is acceptable, then we have
247
+ P(φ) = sup
248
+
249
+ h(µ) +
250
+
251
+ φdµ: µ ∈ Mφ(X, σ)
252
+
253
+ ,
254
+ known as the variational principle [18, Theorem 2.1.8]. A measure µ ∈ Mφ(X, σ)
255
+ which attains this supremum is called an equilibrium state for the potential φ. The
256
+ rate function Iφ : M(X) → [0, ∞] in Theorem A is given by
257
+ (1.10)
258
+ Iφ(µ) = − inf
259
+ G∋µ sup
260
+ G
261
+ Fφ,
262
+
263
+ LEVEL-2 LDP FOR COUNTABLE MARKOV SHIFTS WITHOUT GIBBS STATES
264
+ 5
265
+ where the infimum is taken over all open subsets G of M(X) containing µ. Since
266
+ the entropy is not upper semicontinuous on M(X, σ), Iφ may not be equal to −Fφ.
267
+ Since the sequence {˜µn}∞
268
+ n=1 in Theorem A is exponentially tight, it is tight. By
269
+ Prohorov’s theorem, it has a limit point. Since the rate function Iφ in Theorem A
270
+ is the good rate function, there exists at least one minimizer. If the minimizer
271
+ is unique, we obtain a “level-2 weighted equidistribution of elements of �∞
272
+ n=1 En
273
+ toward minimizers”.
274
+ Theorem B (level-2 weighted equidistribution). Let φ: X → R be acceptable and
275
+ satisfy P(φ) < ∞. Assume there exists an induced system for which the induced
276
+ potentials Φγ, γ ∈ R are locally H¨older continuous, and there exists γ0 ∈ R such
277
+ that P(Φγ0) = 0. Assume that the minimizer of the rate function Iφ is unique,
278
+ denoted by µmin. For any bounded continuous function ˜ϕ: M(X) → R,
279
+ lim
280
+ n→∞
281
+ 1
282
+ Zn(φ)
283
+
284
+ x∈En
285
+ exp Snφ(x) ˜ϕ(δn
286
+ x) = ˜ϕ(µmin).
287
+ Under the assumption of Theorem A, minimizers are not always unique, and not
288
+ always an equilibrium state. A sufficient condition was given in [35] which ensures
289
+ that minimizers are equilibrium states.
290
+ Taking various continuous functions ˜ϕ in Theorem B, we obtain convergences
291
+ of various time averages over the elements of En. Let C(X) denote the set of
292
+ real-valued bounded continuous functions on X.
293
+ Corollary (Inspired by Olsen [21, Section 1.1]). Under the assumption of Theo-
294
+ rem B, assume moreover the minimizer is unique, denoted by µmin.
295
+ (a) For all ϕ, ψ ∈ C(X),
296
+ lim
297
+ n→∞
298
+ 1
299
+ Zn(φ)
300
+
301
+ x∈En
302
+ exp Snφ(x) 1
303
+ n2Snϕ(x)Snψ(x) =
304
+
305
+ ϕdµmin
306
+
307
+ ψdµmin.
308
+ (b) For ϕ, ψ ∈ C(X) with inf ψ > 0,
309
+ lim
310
+ n→∞
311
+ 1
312
+ Zn(φ)
313
+
314
+ x∈En
315
+ exp Snφ(x)Snϕ(x)
316
+ Snψ(x) =
317
+
318
+ ϕdµmin
319
+
320
+ ψdµmin
321
+ .
322
+ (c) For π1, π2 ∈ C(X) and a bounded continuous function f : R → R,
323
+ lim
324
+ n→∞
325
+ 1
326
+ Zn(φ)
327
+
328
+ x∈En
329
+ exp Snφ(x) 1
330
+ n2
331
+ n−1
332
+
333
+ k1,k2=0
334
+ f(π1(σk1x) + π2(σk2x))
335
+ =
336
+
337
+ fd(µmin ◦ π−1
338
+ 1
339
+ ⊗ µmin ◦ π−1
340
+ 2 ),
341
+ where ⊗ denotes the convolution.
342
+ Proof. Apply Theorem B to the bounded continuous functions µ ∈ M(X) �→
343
+
344
+ ϕdµ
345
+
346
+ ψdµ, µ ∈ M(X) �→
347
+
348
+ ϕdµ/
349
+
350
+ ψdµ, µ ∈ M(X) �→
351
+
352
+ fd(µ ◦ π−1
353
+ 1
354
+ ⊗ µ ◦ π−1
355
+ 2 )
356
+ respectively.
357
+
358
+
359
+ 6
360
+ HIROKI TAKAHASI
361
+ 1
362
+ 0
363
+ 1/2 2/3
364
+ 1
365
+ Figure 1. The graph of the R´enyi map T.
366
+ 1.2. Applications. Our results can be applied to dynamical systems modeled by
367
+ the countable full shift without Bowen’s Gibbs state. The assumption in Theo-
368
+ rem A can be verified, for example, for the infinite Manneville-Pomeau map [13,
369
+ Section 2.2], and the two-dimensional conformal maps in [43, Section 5] related to
370
+ number theory. Minimizers of the associated rate functions are not unique, and so
371
+ Theorem B does not apply. Further applications of different taste will be given in
372
+ our forthcoming paper.
373
+ A prime example to which our results apply is the R´enyi map T : [0, 1) → [0, 1)
374
+ given by
375
+ (1.11)
376
+ T(ξ) =
377
+ 1
378
+ 1 − ξ −
379
+
380
+ 1
381
+ 1 − ξ
382
+
383
+ ,
384
+ where ⌊·⌋ denotes the floor function. The graph of T is obtained by reversing the
385
+ graph of the well-known Gauss map ξ ∈ (0, 1] → 1/ξ − ⌊1/ξ⌋ ∈ [0, 1) around the
386
+ axis {ξ = 1/2}, as shown in FIGURE 1. The map T leaves invariant the absolutely
387
+ continuous infinite measure dx/x, and x = 0 is its neutral fixed point:T(0) = 0,
388
+ T ′(0) = 1. The asymptotic distribution of typical orbits, in the Lebesgue measure
389
+ sense, are concentrated on this neutral fixed point.
390
+ The iteration of T generates an infinite continued fraction expansion of each
391
+ number ξ ∈ [0, 1) of the form
392
+ (1.12)
393
+ ξ = 1 −
394
+ 1
395
+ d1(ξ) −
396
+ 1
397
+ d2(ξ) − ...
398
+ ,
399
+ where dn(ξ) = ⌊1/(1 − T n−1(ξ))⌋ + 1 ≥ 2 for n ≥ 1. Using the infinite Markov
400
+ partition {Jp}p∈N, Jp = [1 − 1/p, 1 − 1/(p + 1)) of [0, 1), one can represent T as
401
+ the left shift acting on X [13, 37]. The map
402
+ (1.13)
403
+ π: (xn)∞
404
+ n=1 ∈ X �→ π((xn)∞
405
+ n=1) ∈
406
+
407
+
408
+ n=1
409
+ T −n+1(J(xn)) ⊂ [0, 1)
410
+ is a well-defined homeomorphism onto its image satisfying T ◦ π = π ◦ σ. We
411
+ consider the potential φ = − log |T ′ ◦ π|, where T ′ denotes the derivative of T
412
+ which is one-sided at boundary points of the Markov partition. From the mean
413
+
414
+ LEVEL-2 LDP FOR COUNTABLE MARKOV SHIFTS WITHOUT GIBBS STATES
415
+ 7
416
+ value theorem applied to the inverse branches of T, for any p ≥ 1 and all ξ, η ∈ Jp
417
+ we have
418
+ log |T ′(ξ)|
419
+ |T ′(η)| ≤ 2|T(ξ) − T(η)| < 2.
420
+ In particular, φ is acceptable. Since sup[p] eφ is comparable to p−2, P(βφ) < ∞
421
+ holds if and only if �
422
+ p∈N p−2β is finite, which is equivalent to β > 1/2. It is easy
423
+ to see that for n ≥ 1, T n maps [0, 1/(n + 1)) diffeomorphically onto [0, 1). The
424
+ mean value theorem implies limn→∞ sup[0,1/(n+1)) |(T n)′| = ∞, while |(T n)′(0)| = 1
425
+ for n ≥ 1. It follows that for any β > 1/2 there is no Bowen’s Gibbs state for
426
+ the potential βφ. Meanwhile, it is known [13] that for β > 1/2, the equilibrium
427
+ state for βφ is unique, which we denote by µβφ. For 1/2 < β < 1, µβφ has positive
428
+ entropy and fully supported. For β ≥ 1, µβφ is the unit point mass at π−1(0).
429
+ Let I denote the set of irrational numbers in (0, 1). The set En corresponds to
430
+ the set of numbers in I ∪ {0} for which the continued fraction (1.12) is periodic
431
+ of period n. As in the proof of [14, Theorem 28], one can show that any number
432
+ in �∞
433
+ n=1{ξ ∈ I: T n(ξ) = ξ} is a quadratic irrational, i.e., an irrational root of a
434
+ quadratic polynomial with integer coefficients. Conversely, any quadratic irrational
435
+ in I has an eventually periodic continued fraction of the form (1.12), see [20,
436
+ Theorem 3].
437
+ An induced system as in Theorem A is obtained from the first return map to
438
+ the interval (1/2, 1) not containing the neutral fixed point. From Theorems A and
439
+ B we obtain the following. For ξ ∈ [0, 1) and n ≥ 1, let δn
440
+ ξ denote the empirical
441
+ measure (1/n) �n−1
442
+ k=0 δT k(ξ) on [0, 1).
443
+ Theorem C. For any 1/2 < β ≤ 1, the sequence of Borel probability measures on
444
+ M(π(X)) given by
445
+ 1
446
+ Zn(βφ)
447
+
448
+ ξ∈I∪{0}
449
+ T n(ξ)=ξ
450
+ |(T n)′(ξ)|−βδδn
451
+ ξ
452
+ for n = 1, 2, . . .
453
+ satisfies the LDP. The minimizer is unique and it is the unit point mass at µβφ◦π−1.
454
+ Moreover, for any bounded continuous function ˜ϕ: M(π(X)) → R we have
455
+ lim
456
+ n→∞
457
+ 1
458
+ Zn(βφ)
459
+
460
+ ξ∈I∪{0}
461
+ T n(ξ)=ξ
462
+ |(T n)′(ξ)|−β ˜ϕ(δn
463
+ ξ ) = ˜ϕ(µβφ ◦ π−1).
464
+ 1.3. Structure of the paper. The rest of this paper consists of two sections. In
465
+ Section 2 we verify the exponential tightness of the sequence in (1.4) under the
466
+ assumption of Theorem A. In Section 3 we complete proofs of all the theorems.
467
+ We close with a remark on possible generalizations of the main results.
468
+ 2. Exponential tightness
469
+ The aim of this section is to verify the exponential tightness of the sequence in
470
+ (1.4). In Section 2.1 we start with a symbolic representation of the induced system.
471
+ In Section 2.2 we introduce the notion of local Gibbs states. In Section 2.3 we prove
472
+ a main technical estimate assuming the existence of a local Gibbs state. Using this
473
+
474
+ 8
475
+ HIROKI TAKAHASI
476
+ estimate, we verify the exponential tightness in Section 2.4. In Section 2.5 we show
477
+ that the assumption of Theorem A implies the existence of a local Gibbs state.
478
+ 2.1. Symbolic representation of the induced system. For a set S and an
479
+ integer j ≥ 1, let Sj denote the set of words of elements of S of word length j. We
480
+ introduce an empty word ∅ and set S0 = {∅}, a∅ = a = ∅a, a∅b = ab for a, b ∈ S.
481
+ We set W(S) = �
482
+ j≥1 Sj, N0 = N ∪ {0} and W0(S) = W(S) ∪ S0.
483
+ Let (X∗, R) be an inducing scheme. Let
484
+ N∗ = N ∩ [p∗, ∞) and N∗ = N ∩ [1, p∗ − 1).
485
+ For each p ∈ N∗ and ω ∈ W0(N∗), the set �
486
+ q∈N∗[pωq] is mapped by the induced
487
+ map τ in (1.7) bijectively onto X∗. Since the domain X∗∩�∞
488
+ k=1 σ−kX∗ of definition
489
+ of τ is partitioned into countably infinite sets of this form, the induced system τ|Σ
490
+ is represented as the countable full shift over the infinite alphabet
491
+ (2.1)
492
+ A =
493
+ � �
494
+ q∈N∗
495
+ [pωq]: p ∈ N∗ and ω ∈ W0(N∗)
496
+
497
+ .
498
+ To make this statement into a rigorous one, we endow A with the discrete
499
+ topology, and consider the countable full shift
500
+ AN = {z = (zn)∞
501
+ n=1: zn ∈ A for every n ≥ 1}.
502
+ We use bold letters to denote elements of W(A), and a double square bracket [[·]]
503
+ to denote cylinders in AN: the n-cylinder (n ≥ 1) spanned by a = a1 · · · an ∈ An is
504
+ [[a]] = {z = (zk)∞
505
+ k=1 ∈ AN : zk = ak for every k ∈ {1, . . . , n}}.
506
+ By definition, for each k ∈ {1, . . . , n} we have ak = �
507
+ q∈N∗[pkωjkq] where pk ∈ N∗,
508
+ jk ∈ N0, ωjk ∈ Njk
509
+ ∗ . Let ∥a∥ denote the word length of p1ωj1p2ωj2 · · · pnωjn in
510
+ W(N), namely
511
+ ∥a∥ = n + j1 + · · · + jn.
512
+ Let [a] denote the corresponding ∥a∥-cylinder in X, namely
513
+ [a] = [p1ωj1p2ωj2 · · · pnωjn] ⊂ X.
514
+ It is easy to check that a coding map Π: AN → Σ given by
515
+ (2.2)
516
+ Π: (zn)∞
517
+ n=1 ∈ AN �→ Π((zn)∞
518
+ n=1) ∈
519
+
520
+
521
+ n=1
522
+ [z1 · · · zn] ⊂ Σ
523
+ is well-defined, and is a homeomorphism. Let θ denote the left shift acting on AN.
524
+ Clearly we have Π ◦ θ = τ|Σ ◦ Π.
525
+ The following notation will be frequently used later. For a = a1 · · · an ∈ An as
526
+ above with [a] = [p1ωj1p2ωj2 · · · pnωjn] and q ∈ N∗, let
527
+ aq = p1ωj1p2ωj2 · · · pnωjnq ∈ W(N).
528
+ Lemma 2.1. Let (Σ, τ|Σ) be an induced system and let Π be the coding map in
529
+ (2.2).
530
+
531
+ LEVEL-2 LDP FOR COUNTABLE MARKOV SHIFTS WITHOUT GIBBS STATES
532
+ 9
533
+ (a) For every a ∈ W(A),
534
+ Π[[a]] = Σ ∩
535
+
536
+ q∈N∗
537
+ [aq].
538
+ (b) If a, b ∈ W(A) satisfy ∥a∥ = ∥b∥, then a = b or [[a]] ∩ [[b]] = ∅.
539
+ Proof. If n ≥ 1, a ∈ An then �n−1
540
+ k=0 R ◦ τ k equals ∥a∥ on Π[[a]], which implies (a).
541
+ If ∥a∥ = ∥b∥ and a ̸= b then (a) implies Π[[a]] ∩ Π[[b]] = ∅, and so [[a]] ∩ [[b]] = ∅,
542
+ which verifies (b).
543
+
544
+ 2.2. Local Gibbs states. Let φ: X → R satisfy P(φ) < ∞ and let (Σ, τ|Σ) be
545
+ an induced system. A Borel probability measure λφ on AN is called a local Gibbs
546
+ state for the potential φ associated with (Σ, τ|Σ), if there exist constants C ≥ 1,
547
+ γ0 ∈ R such that for any a ∈ W(A) and any x ∈ Π[[a]] we have
548
+ (2.3)
549
+ C−1 ≤
550
+ λφ[[a]]
551
+ exp
552
+
553
+ S∥a∥φ(x) − γ0∥a∥
554
+ � ≤ C.
555
+ We do not require the θ-invariance. If the context is clear, we simply call λφ a
556
+ local Gibbs state (associated with (Σ, τ|Σ)).
557
+ If λφ is a local Gibbs state, then for any a ∈ W(A), the λφ-measure of the
558
+ cylinder [[a]] in AN is given (up to multiplicative constants) by the Birkhoff sum of
559
+ φ along the orbit of x of length ∥a∥ and the word length ∥a∥. Since the word length
560
+ of a as a word in W(A) does not appear in the formula (2.3), λφ well captures part
561
+ of the original dynamics (X, σ).
562
+ If λφ is a local Gibbs state, the Borel probability measure λφ ◦ Π−1 on Σ is
563
+ τ|Σ-invariant. These two measures are related as follows.
564
+ Lemma 2.2. Let φ: X → R satisfy P(φ) < ∞, let (Σ, τ|Σ) be an induced system
565
+ and let λφ be a local Gibbs state associated with (Σ, τ|Σ). For any a ∈ W(A) we
566
+ have
567
+ λφ[[a]] = λφ ◦ Π−1(Σ ∩ [a]).
568
+ Proof. We write νφ for λφ ◦ Π−1, and {R = n} for {z ∈ Σ: R(z) = n} for each
569
+ n ≥ 1. We have νφ{R = n} > 0 for every n ≥ 1. Let νφ|{R=n} denote the restriction
570
+ of νφ to {R = n}. The measure
571
+ µφ =
572
+
573
+
574
+ n=1
575
+ n−1
576
+
577
+ k=0
578
+ νφ|{R=n} ◦ σ−k
579
+ is a finite measure if and only if
580
+
581
+ Rdνφ < ∞. Since {R = n} is disjoint from
582
+ �n−1
583
+ k=1 σ−k(Σ) for n ≥ 2, we have
584
+ (2.4)
585
+ µφ|Σ =
586
+
587
+
588
+ n=1
589
+ νφ|{R=n} = νφ = λφ ◦ Π−1.
590
+ For any a ∈ W(A) we have Π[[a]] ⊂ Σ, and so
591
+ (2.5)
592
+ λφ[[a]] = µφΠ[[a]].
593
+
594
+ 10
595
+ HIROKI TAKAHASI
596
+ By µφ|Σ = νφ in (2.4) and Lemma 2.1(a), for any a ∈ W(A) we have
597
+ (2.6)
598
+ µφΠ[[a]] = νφΠ[[a]] =
599
+
600
+ q∈N∗
601
+ νφ(Σ ∩ [aq]).
602
+ Let j ≥ 1 be such that a ∈ Aj. Then σ∥a∥ and τ j coincide on Σ ∩ [a]. Since
603
+
604
+ q∈N∗(Σ∩[aq]) ⊂ (τ|Σ)−j(�
605
+ q∈N∗[q]) = ∅ by τ(Σ) ⊂ Σ, we have νφ(�
606
+ q∈N∗ Σ∩[aq]) =
607
+ 0. Combining this with (2.5), (2.6) we obtain
608
+ λφ[[a]] =
609
+
610
+ q∈N∗
611
+ νφ(Σ ∩ [aq]) +
612
+
613
+ q∈N∗
614
+ νφ(Σ ∩ [aq]) = νφ(Σ ∩ [a]),
615
+ as required.
616
+
617
+ 2.3. Exponential decay on partition functions. The next proposition pro-
618
+ vides a main technical estimate under the existence of a local Gibbs state.
619
+ Proposition 2.3. Let φ: X → R be acceptable and satisfy P(φ) < ∞. Assume
620
+ there exist an induced system (Σ, τ|Σ) and an associated local Gibbs state λφ. There
621
+ exist δ′ ∈ (0, 1/5] and n0 ≥ 1 such that if δ ∈ (0, δ′] and {Ni}∞
622
+ i=1 is a non-decreasing
623
+ integer sequence such that
624
+ (2.7)
625
+ max N∗ ≤ N1 and
626
+ (2.8)
627
+
628
+
629
+ k=Ni+1
630
+
631
+ a∈A
632
+ Π[[a]]⊂[k]
633
+ λφ[[a]] ≤ δ2i for every i ≥ 1,
634
+ then for every n ≥ n0 and every m ∈ {1, . . . , n} we have
635
+ (2.9)
636
+
637
+ x∈En
638
+ δn
639
+ x (X\Γ)=m/n
640
+ exp Snφ(x) ≤ eγ0n2nn(4δ)m
641
+ 1 − 4δ ,
642
+ where
643
+ (2.10)
644
+ Γ = {x = (xi)∞
645
+ i=1 ∈ X : xi ≤ Ni for every i ≥ 1}.
646
+ Proposition 2.3 asserts that contributions of elements of En to Zn(φ) whose orbit
647
+ escape from the compact set Γ exactly m times within period n is exponentially
648
+ small in m. Similar estimates were obtained in [34] under the existence of Bowen’s
649
+ Gibbs states.
650
+ Proof of Proposition 2.3. Since λφ is a local Gibbs state, there exist constants C ≥
651
+ 1 and γ0 ∈ R such that for any a ∈ W(A) and any x ∈ Π[[a]] we have
652
+ (2.11)
653
+ C−1 ≤
654
+ λφ[[a]]
655
+ exp
656
+
657
+ S∥a∥φ(x) − γ0∥a∥
658
+ � ≤ C.
659
+ For the rest of the proof of Proposition 2.3, we shall use the notation a ≪ b for
660
+ two positive reals a, b to indicate that a/b is bounded from infinity by a constant
661
+ which depends only on C. If a ≪ b and b ≪ a, we shall write a ≍ b.
662
+
663
+ LEVEL-2 LDP FOR COUNTABLE MARKOV SHIFTS WITHOUT GIBBS STATES
664
+ 11
665
+ The first inequality in (2.11) will be used to bound a partial sum of Zn(φ) from
666
+ above by a sum of λφ-measures of cylinders in AN. Further, we will bound this
667
+ sum using the product property which is a consequence of (2.11):
668
+ (2.12)
669
+ λφ[[ab]] ≍ λφ[[a]]λφ[[b]] for a, b ∈ W(A).
670
+ Let δ ∈ (0, 1/5] and let {Ni}∞
671
+ i=1 be a non-decreasing integer sequence satisfying
672
+ (2.7) and (2.8). Let Γ = Γ({Ni}∞
673
+ i=1) be the compact subset of X given by (2.10).
674
+ If x ∈ En \ �n−1
675
+ i=0 σ−i(Σ) then xi ≤ max N∗ = N1 ≤ Ni for 1 ≤ i ≤ n, and so
676
+ δn
677
+ x(Γ) = 1. By this and the periodicity of elements of En, for 1 ≤ m ≤ n we have
678
+
679
+ x∈En
680
+ δn
681
+ x (X\Γ)=m/n
682
+ exp Snφ(x) =
683
+
684
+ x∈En∩�n−1
685
+ i=0 σ−i(Σ)
686
+ δn
687
+ x (X\Γ)=m/n
688
+ exp Snφ(x)
689
+ ≤ n
690
+
691
+ x∈En∩Σ
692
+ δn
693
+ x (X\Γ)=m/n
694
+ exp Snφ(x).
695
+ (2.13)
696
+ To bound the last sum in (2.13), we decompose the set {x ∈ En ∩ Σ: δn
697
+ x(X \
698
+ Γ) = m/n} into subsets sharing the same itinerary up to time n, and estimate
699
+ a contribution from each subset separately, and finally unify all these estimates
700
+ counting the total number of possible itineraries.
701
+ Define a function r: X \ Γ → N by
702
+ r(x) = min{i ≥ 1: xi > Ni}.
703
+ From (2.7) we have Σ ⊂ X \ Γ. Hence, for each x ∈ Σ there are infinitely many
704
+ i ≥ 0 with σix /∈ Γ. By an itinerary of x ∈ Σ we mean two sequences {nj(x)}∞
705
+ j=1,
706
+ {rj(x)}∞
707
+ j=1 in N0 given by the recursion formulas
708
+ n1(x) = min{i ≥ 0: σix /∈ Γ}, and
709
+ rj(x) = r(σnj(x)x), nj+1(x) = min{i ≥ nj(x) + rj(x): σix /∈ Γ} for j ≥ 1.
710
+ Lemma 2.4. Let x ∈ Σ.
711
+ (a) {i ≥ 0: σix /∈ Γ} = �∞
712
+ j=1[nj(x), nj(x) + rj(x) − 1] ∩ N0.
713
+ (b) xnj(x)+rj(x) ∈ N∗ for every j ≥ 1.
714
+ Proof. Since {Ni}∞
715
+ i=1 is non-decreasing, if x /∈ Γ then σix /∈ Γ for 0 ≤ i ≤ r(x) −
716
+ 1.
717
+ This implies (a).
718
+ Since σnj(x)x = xnj(x)+1xnj(x)+2 · · · and σnj(x)x /∈ Γ with
719
+ r(σnj(x)x) = rj(x), we obtain xnj(x)+rj(x) > Nrj(x) ≥ N1, which together with (2.7)
720
+ yields xnj(x)+rj(x) ∈ N∗ as in (b).
721
+
722
+ For each j ∈ {1, . . . , m} and n1 · · · nj ∈ Nj
723
+ 0, r1 · · · rj ∈ Nj with n1 < · · · < nj ≤
724
+ n, we put
725
+ (2.14)
726
+
727
+ r1···rj
728
+ n1···nj = {x ∈ En ∩ Σ: (ni(x), ri(x)) = (ni, ri) for every i ∈ {1, . . . , j}}.
729
+ Lemma 2.5. If δ > 0 is sufficiently small, then for j ∈ {1, . . . , m}, n1 · · · nj ∈ Nj
730
+ 0
731
+ and r1 · · · rj ∈ Nj such that ∆
732
+ r1···rj
733
+ n1···nj ̸= ∅ we have
734
+
735
+ x∈∆
736
+ r1···rj
737
+ n1···nj
738
+ exp Snφ(x) ≤ eγ0nδr1+···+rj.
739
+
740
+ 12
741
+ HIROKI TAKAHASI
742
+ Proof. We start with the case j = 1. We introduce two sets of induced words
743
+ B0 = {b ∈ W(A): ∥b∥ = n − n1 − r1 + 1, Π[[b]] ⊂ ∪∞
744
+ k=Nr1+1[k]} and
745
+ D0 = {d ∈ W(A): ∥d∥ = n1 + r1 − 1}.
746
+ For each x ∈ ∆r1
747
+ n1 we have xn+1 = x1 ∈ N∗ by the definition (2.14), and xn1+r1 ∈
748
+ N∗ by Lemma 2.4(b). Hence there exist d ∈ D0 and b ∈ B0 such that [d] =
749
+ [x1 · · ·xn1+r1−1] and [b] = [xn1+r1 · · · xn], and so x ∈ Π[[db]]. By (2.11) and (2.12),
750
+ exp Snφ(x) ≪ eγ0nλφ[[db]] ≪ eγ0nλφ[[d]]λφ[[b]].
751
+ Summing this inequality over all x ∈ ∆r1
752
+ n1 and then using �
753
+ b∈B0 λφ[[b]] ≤ δ2r1 from
754
+ (2.8) and �
755
+ b∈D0 λφ[[d]] ≤ 1 which follows from Lemma 2.1(b), we obtain
756
+
757
+ x∈∆r1
758
+ n1
759
+ exp Snφ(x) ≪eγ0n �
760
+ d∈D0
761
+ λφ[[d]]
762
+
763
+ b∈B0
764
+ λφ[[b]] ≤ eγ0nδ2r1 ≤ eγ0nδr1,
765
+ (2.15)
766
+ provided δ is small enough. In case m = 1 we are done.
767
+ To proceed, suppose m ≥ 2. let j, j+1 ∈ {1, . . . , m} and let n1 · · · njnj+1 ∈ Nj+1
768
+ 0
769
+ ,
770
+ r1 · · · rjrj+1 ∈ Nj+1 be such that ∆
771
+ r1···rjrj+1
772
+ n1···njnj+1 ̸= ∅. Define
773
+ Aj = {a ∈ W(A): ∥a∥ = nj + rj, Π[[a]] ∩ ∆
774
+ r1···rj+1
775
+ n1···nj+1 ̸= ∅},
776
+ Bj = {b ∈ W(A): ∥b∥ = n − nj+1 − rj+1 + 1, Π[[b]] ⊂ ∪∞
777
+ k=Nrj+1+1[k]},
778
+ Cj = {c ∈ W(A): ∥c∥ = n − nj − rj} ,
779
+ Dj = {d ∈ W(A): ∥d∥ = nj+1 + rj+1 − 1} .
780
+ Let a ∈ Aj.
781
+ For each c ∈ Cj we have ∥ac∥ = n.
782
+ Since X is the full shift,
783
+ Π[[ac]] contains a unique element of En ∩ Σ which we denote by ac. Then we have
784
+ ac ∈ Π[[a]] ∩ ∆
785
+ r1···rj
786
+ n1···nj. By (2.11) and (2.12),
787
+ exp Snφ(ac) ≫ eγ0nλφ[[a]]λφ[[c]].
788
+ This implies
789
+
790
+ x∈Π[[a]]∩∆
791
+ r1···rj
792
+ n1···nj
793
+ exp Snφ(x) ≫ eγ0nλφ[[a]]
794
+
795
+ c∈Cj
796
+ λφ[[c]].
797
+ (2.16)
798
+ By Lemma 2.2, for each c ∈ Cj we have
799
+ λφ[[c]] = λφ ◦ Π−1(Σ ∩ [c]).
800
+ Since the sets Σ ∩ [c], c ∈ Cj are pairwise disjoint and their union equals Σ,
801
+ (2.17)
802
+
803
+ c∈Cj
804
+ λφ[[c]] = 1.
805
+ Combining (2.16) and (2.17) yields
806
+
807
+ x∈Π[[a]]∩∆
808
+ r1···rj
809
+ n1···nj
810
+ exp Snφ(x) ≫ eγ0nλφ[[a]].
811
+ (2.18)
812
+ Similarly to the case j = 1, for each x ∈ Π[[a]]∩∆
813
+ r1···rj+1
814
+ n1···nj+1 we have xn+1 = x1 ∈ N∗
815
+ by the definition (2.14) and xnj+1+rj+1 ∈ N∗ by Lemma 2.4(b). Hence there exist
816
+
817
+ LEVEL-2 LDP FOR COUNTABLE MARKOV SHIFTS WITHOUT GIBBS STATES
818
+ 13
819
+ d ∈ Dj, b ∈ Bj such that [d] = [x1 · · · xnj+1+rj+1−1] and [b] = [xnj+1+rj+1 · · ·xn].
820
+ We have [[d]] ⊂ [[a]] and x ∈ Π[[db]], and by (2.11) and (2.12),
821
+ exp Snφ(x) ≪ eγ0nλφ[[d]]λφ[[b]].
822
+ Summing this inequality over all x ∈ Π[[a]]∩∆
823
+ r1···rj+1
824
+ n1···nj+1, and then using �
825
+ b∈Bj λφ[[b]] ≤
826
+ δ2rj+1 from (2.8) and �
827
+ d∈Dj
828
+ [[d]]⊂[[a]]
829
+ λφ[[d]] ≤ λφ[[a]] from Lemma 2.1(b), we obtain
830
+
831
+ x∈Π[[a]]∩∆
832
+ r1···rj+1
833
+ n1···nj+1
834
+ exp Snφ(x) �� eγ0n �
835
+ d∈Dj
836
+ [[d]]⊂[[a]]
837
+ λφ[[d]]
838
+
839
+ b∈Bj
840
+ λφ[[b]]
841
+ ≤ eγ0nλφ[[a]]δ2rj+1.
842
+ (2.19)
843
+ The two estimates in (2.18) and (2.19) yield
844
+
845
+ x∈Π[[a]]∩∆
846
+ r1···rj+1
847
+ n1···nj+1 exp Snφ(x)
848
+
849
+ x∈Π[[a]]∩∆
850
+ r1···rj
851
+ n1···nj exp Snφ(x) ≤ δrj+1,
852
+ provided δ is small enough. Rearranging this inequality and summing the result
853
+ over all a ∈ Aj yields
854
+
855
+ x∈∆
856
+ r1···rj+1
857
+ n1···nj+1
858
+ exp Snφ(x) ≤ δrj+1
859
+
860
+ x∈∆
861
+ r1···rj
862
+ n1···nj
863
+ exp Snφ(x).
864
+ Applying this inequality recursively and combining the final result with (2.15)
865
+ yields the desired inequality in Lemma 2.5.
866
+
867
+ For integers L ≥ m and s ∈ {1, . . . , m}, we denote by KL,s the set of elements
868
+ (n1 · · · ns, r1 · · · rs) of Ns
869
+ 0×Ns such that 0 ≤ n1 < · · · < ns ≤ n and r1+· · ·+rs = L.
870
+ The number of ways of locating n1, . . . , ns in [0, n] does not exceed ( n
871
+ s ), and for
872
+ each location (n1, . . . , ns) the number of all feasible combinations of (r1, . . . , rs)
873
+ with r1 +· · ·+rs = L is bounded by the number of ways of dividing L objects into
874
+ s groups, not exceeding
875
+ � L+s−1
876
+ s−1
877
+
878
+ ≤ 2L+s−1. This yields #KL,s ≤ ( n
879
+ s )
880
+ � L+s−1
881
+ s−1
882
+
883
+
884
+ 2n2L+s−1. Clearly, for each x ∈ En ∩ Σ satisfying δn
885
+ x(X \ Γ) = m/n there exist
886
+ L ≥ m, s ∈ {1, . . . , m} and (n1 · · · ns, r1 · · · rs) ∈ KL,s such that x ∈ ∆r1···rs
887
+ n1···ns. If
888
+ δ ∈ (0, 1/5] is sufficiently small, then together with Lemma 2.5 we obtain
889
+
890
+ x∈En∩Σ
891
+ δn
892
+ x (X\Γ)=m/n
893
+ exp Snφ(x) ≤
894
+ m
895
+
896
+ s=1
897
+
898
+
899
+ L=m
900
+
901
+ (n1···ns,r1···rs)∈KL,s
902
+
903
+ x∈∆r1···rs
904
+ n1···ns
905
+ exp Snφ(x)
906
+ ≤ 2n
907
+ m
908
+
909
+ s=1
910
+
911
+
912
+ L=m
913
+ 2L+s−1δL ≤ 2n
914
+
915
+
916
+ L=m
917
+ (4δ)L = 2n(4δ)m
918
+ 1 − 4δ .
919
+ From this and (2.13), (2.9) follows and the proof of Proposition 2.3 is complete.
920
+
921
+
922
+ 14
923
+ HIROKI TAKAHASI
924
+ 2.4. Verifying exponential tightness. We now use Proposition 2.3 to show the
925
+ desired exponential tightness.
926
+ Proposition 2.6. Let φ: X → R be acceptable such that P(φ) < ∞ and let
927
+ (Σ, τ|Σ) be an induced system. If there exists a local Gibbs state for the potential
928
+ φ associated with (Σ, τ|Σ), then {˜µn}∞
929
+ n=1 is exponentially tight.
930
+ Proof. The argument below is an adaptation of the proof of Sanov’s theorem (see
931
+ e.g., [7]) to our setup. For each integer ℓ ≥ 1, we fix δℓ ∈ (0, 1/5] such that
932
+ (2.20)
933
+ 1
934
+ 1 − 4δℓ
935
+
936
+
937
+ m=0
938
+ e2ℓ2m(4δℓ)m ≤ 2.
939
+ We apply Proposition 2.3 and fix a non-decreasing integer sequence {Ni}∞
940
+ i=1 such
941
+ that (2.7) and (2.8) with δ = δℓ hold. We define a compact subset Γℓ = Γ({Ni}∞
942
+ i=1)
943
+ of X by (2.10), and set
944
+ Kℓ =
945
+
946
+ ν ∈ M(X): ν(Γℓ) ≥ 1 − 1
947
+
948
+
949
+ .
950
+ Since M(X) is a Polish space and Γℓ is a closed set, the weak* convergence µk → µ
951
+ for a sequence {µk}∞
952
+ k=1 in Kℓ implies lim supk→∞ µk(Γℓ) ≤ µ(Γℓ). Hence, Kℓ is a
953
+ closed set. For an integer L ≥ 1 we define
954
+ KL =
955
+
956
+
957
+ ℓ=L
958
+ Kℓ.
959
+ This set is tight, and by Prohorov’s theorem any sequence in KL has a limit point.
960
+ Hence it is sequentially compact. Since the weak* topology is metrizable with the
961
+ bounded Lipschitz metric, KL is compact. By Chebyshev’s inequality, for n ≥ 1
962
+ we have
963
+
964
+ x∈En
965
+ exp(ℓ2nδn
966
+ x (X\Γℓ))≥eℓn
967
+ exp Snφ(x) ≤ e−2ℓn
968
+
969
+ x∈En
970
+ δn
971
+ x (X\Γℓ)≥1/n
972
+ exp
973
+
974
+ 2ℓ2nδn
975
+ x(X \ Γℓ)
976
+
977
+ exp Snφ(x)
978
+ = e−2ℓn
979
+ n
980
+
981
+ m=1
982
+ e2ℓ2m
983
+
984
+ x∈En
985
+ δn
986
+ x (X\Γ)=m/n
987
+ exp Snφ(x).
988
+ Combining this inequality with Proposition 2.3 and (2.20), we have
989
+
990
+ x∈En
991
+ δn
992
+ x /∈Kℓ
993
+ exp Snφ(x) =
994
+
995
+ x∈En
996
+ δn
997
+ x (X\Γℓ)≥ 1
998
+
999
+ exp Snφ(x) =
1000
+
1001
+ x∈En
1002
+ exp(ℓ2nδn
1003
+ x (X\Γℓ))≥eℓn
1004
+ exp Snφ(x)
1005
+
1006
+ 2nn
1007
+ 1 − 4δℓ
1008
+ eγ0ne−2ℓn
1009
+ n
1010
+
1011
+ m=0
1012
+ e2ℓ2m(4δℓ)m
1013
+ ≤ 10 · 2nneγ0ne−2ℓn.
1014
+
1015
+ LEVEL-2 LDP FOR COUNTABLE MARKOV SHIFTS WITHOUT GIBBS STATES
1016
+ 15
1017
+ If L ≥ 1 is large enough, then
1018
+ ˜µn(M(X) \ KL) ≤
1019
+
1020
+
1021
+ ℓ=L
1022
+ ˜µn(M(X) \ Kℓ) =
1023
+
1024
+
1025
+ ℓ=L
1026
+ 1
1027
+ Zn(φ)
1028
+
1029
+ x∈En
1030
+ δn
1031
+ x /∈Kℓ
1032
+ exp Snφ(x)
1033
+ ≤ 10 · 2nneγ0n
1034
+ Zn(φ)
1035
+
1036
+
1037
+ ℓ=L
1038
+ e−2ℓn ≤ 2neγ0n
1039
+ Zn(φ) e−Ln.
1040
+ Combining this with the equality limn→∞(1/n) log Zn(φ) = P(φ) < ∞ which fol-
1041
+ lows from the uniform continuity of φ, we obtain
1042
+ lim sup
1043
+ n→∞
1044
+ 1
1045
+ n log ˜µn(M(X) \ KL) ≤ −L + log 2.
1046
+ Since L ≥ 1 is an arbitrary large integer, {˜µn}∞
1047
+ n=1 is exponentially tight.
1048
+
1049
+ 2.5. Existence of a local Gibbs state. The next proposition ensures the exis-
1050
+ tence of a local Gibbs state under the assumption of Theorem A.
1051
+ Proposition 2.7. Let φ: X → R satisfy P(φ) < ∞. Assume there exists an
1052
+ induced system (Σ, τ|Σ) for which the induced potentials Φγ, γ ∈ R associated with
1053
+ φ are locally H¨older continuous, and there exists γ0 ∈ R such that P(Φγ0) = 0.
1054
+ Then there exists a local Gibbs state for the potential φ associated with (Σ, τ|Σ).
1055
+ Proof. Note that P(Φγ0 ◦ Π) = P(Φγ0) = 0. Since AN is the countable full shift,
1056
+ the finiteness of P(Φγ0 ◦ Π) implies the summability of the potential Φγ0 ◦ Π. By
1057
+ [18, Corollary 2.7.5] together with the summability and the local H¨older continuity
1058
+ of Φγ0 ◦ Π, there exists a unique θ-invariant Bowen’s Gibbs state for the potential
1059
+ Φγ0 ◦ Π, which we denote by λφ. There exists C ≥ 1 such that for every m ≥ 1,
1060
+ any a ∈ Am and any z ∈ [[a]] we have
1061
+ C−1 ≤
1062
+ λφ[[a]]
1063
+ exp
1064
+
1065
+ −P(Φγ0 ◦ Π)m + �m−1
1066
+ k=0 Φγ0 ◦ Π(θkz)
1067
+ � ≤ C.
1068
+ For the series in the denominator of the fraction, for x ∈ Π[[a]] we have
1069
+ m−1
1070
+
1071
+ k=0
1072
+ Φγ0 ◦ Π(θkΠ−1(x)) = S�m−1
1073
+ k=0 R(τ kx)φ(x) − γ0
1074
+ m−1
1075
+
1076
+ k=0
1077
+ R(τ kx)
1078
+ = S∥a∥φ(x) − γ0∥a∥.
1079
+ Substituting this and P(Φγ0 ◦ Π) = 0 into the denominator of the fraction implies
1080
+ that λφ is a local Gibbs state for the potential φ.
1081
+
1082
+ Remark 2.8. Under the assumption and notation of Proposition 2.7 and its proof,
1083
+ if γ0 = P(φ), λφ is θ-invariant and
1084
+
1085
+ Rd(λφ ◦ Π−1) < ∞, then the measure
1086
+ 1
1087
+
1088
+ Rd(λφ ◦ Π−1)
1089
+
1090
+
1091
+ n=0
1092
+ (λφ ◦ Π−1)|{R>n} ◦ σ−n
1093
+ is in Mφ(X, σ), and it is an equilibrium state for the potential φ. The normalized
1094
+ restriction of this measure to Σ is λφ ◦ Π−1.
1095
+
1096
+ 16
1097
+ HIROKI TAKAHASI
1098
+ 3. Proofs of the main results
1099
+ In this section we complete the proofs of all the theorems. In Sections 3.1 and
1100
+ 3.2, we prove lower and upper bounds for certain fundamental open and closed
1101
+ subsets of M(X) respectively. In Section 3.3, we combine these bounds and the
1102
+ exponential tightness verified in Section 2 to complete the proof of Theorem A.
1103
+ In Sections 3.4 we complete the proof of Theorem B. In view of applications, in
1104
+ Section 3.5 we give a sufficient condition for the vanishing of the pressure of the
1105
+ induced potential that is assumed in Theorem A. Using this, we complete the proof
1106
+ of Theorem C in Section 3.6.
1107
+ 3.1. Lower bound for fundamental open sets. We introduce notations in this
1108
+ and the next two subsections. Let Cu(X) denote the set of real-valued bounded
1109
+ uniformly continuous functions on X. For an integer ℓ ≥ 1 we define
1110
+ Cu(X)ℓ = {⃗ϕ = (ϕ1, . . . , ϕℓ): ϕj ∈ Cu(X) for every j ∈ {1, . . . , ℓ}}.
1111
+ For ⃗ϕ = (ϕ1, . . . , ϕℓ) ∈ Cu(X)ℓ, ⃗α = (α1, . . . , αℓ) ∈ Rℓ and µ ∈ M(X), the
1112
+ expression
1113
+
1114
+ ⃗ϕdµ > ⃗α indicates that
1115
+
1116
+ ϕjdµ > αj holds for all j ∈ {1, . . . , ℓ}. The
1117
+ meaning of
1118
+
1119
+ ⃗ϕdµ ≥ ⃗α is analogous. Put ∥⃗α∥ = max1≤j≤ℓ |αj|. For ε ∈ R we write
1120
+ ⃗ε = (ε, . . . , ε) ∈ Rℓ. For n ≥ 1 and p1 · · · pn ∈ Nn, let p1 · · · pn denote the element
1121
+ of En that is contained in [p1 · · · pn].
1122
+ Proposition 3.1. Let φ: X → R be acceptable and satisfy P(φ) < ∞. Let ℓ ≥ 1,
1123
+ ⃗ϕ ∈ Cu(X)ℓ and ⃗α ∈ Rℓ. Let G ⊂ M(X) be an open set of the form
1124
+ G =
1125
+
1126
+ µ ∈ M(X):
1127
+
1128
+ ⃗ϕdµ > ⃗α
1129
+
1130
+ .
1131
+ For any measure µ ∈ Mφ(X, σ) ∩ G, we have
1132
+ lim inf
1133
+ n→∞
1134
+ 1
1135
+ n log ˜µn(G) ≥ Fφ(µ).
1136
+ Proof. By virtue of the definition of the pressure P(φ), it suffices to show that
1137
+ (3.1)
1138
+ lim inf
1139
+ n→∞
1140
+ 1
1141
+ n log
1142
+
1143
+ x∈En
1144
+ δn
1145
+ x ∈G
1146
+ exp Snφ(x) ≥ h(µ) +
1147
+
1148
+ φdµ.
1149
+ The proof of [36, Main Theorem] works verbatim to show the next lemma that
1150
+ approximates non-ergodic measures with ergodic ones in a particular sense.
1151
+ Lemma 3.2. For any µ ∈ Mφ(X, σ) and any ε > 0 there exists an ergodic measure
1152
+ µ′ ∈ Mφ(X, σ) which is supported on a compact set and satisfies
1153
+ |h(µ) − h(µ′)| < ε,
1154
+ ����
1155
+
1156
+ ⃗ϕdµ −
1157
+
1158
+ ⃗ϕdµ′
1159
+ ���� < ε and
1160
+ ����
1161
+
1162
+ φdµ −
1163
+
1164
+ φdµ′
1165
+ ���� < ε.
1166
+ By Lemma 3.2, it suffices to show (3.1) for all µ ∈ Mφ(X, σ) which is ergodic. Let
1167
+ ε > 0 be such that
1168
+ (3.2)
1169
+
1170
+ ⃗ϕdµ > ⃗α + ⃗ε.
1171
+
1172
+ LEVEL-2 LDP FOR COUNTABLE MARKOV SHIFTS WITHOUT GIBBS STATES
1173
+ 17
1174
+ From the uniform continuity of each component of ⃗ϕ and that of φ, from Birkhoff’s
1175
+ ergodic theorem and Shannon-McMillan-Breiman’s theorem, for any sufficiently
1176
+ large n ≥ 1 there is a finite subset Gn of Nn such that
1177
+ (3.3)
1178
+ ����
1179
+ 1
1180
+ n log #Gn − h(µ)
1181
+ ���� < ε
1182
+ 2,
1183
+ and for every p1 · · · pn ∈ Gn,
1184
+ (3.4)
1185
+ sup
1186
+ x∈[p1···pn]
1187
+ ����
1188
+
1189
+ ⃗ϕdδn
1190
+ x −
1191
+
1192
+ ⃗ϕdµ
1193
+ ���� < ε
1194
+ 2 and
1195
+ sup
1196
+ x∈[p1···pn]
1197
+ ����
1198
+ 1
1199
+ nSnφ(x) −
1200
+
1201
+ φdµ
1202
+ ���� < ε
1203
+ 2.
1204
+ Then (3.2) and the first inequality in (3.4) yield
1205
+
1206
+ ⃗ϕdδn
1207
+ p1···pn > ⃗α, and the second
1208
+ inequality in (3.4) yields (1/n)Snφ(p1 · · · pn) >
1209
+
1210
+ φdµ − ε/2. Therefore
1211
+
1212
+ x∈En
1213
+ δn
1214
+ x ∈G
1215
+ exp Snφ(x) ≥
1216
+
1217
+ p1···pn∈Gn
1218
+ exp Snφ(p1 · · · pn) ≥ #Gn exp
1219
+
1220
+ n
1221
+
1222
+ φdµ − εn
1223
+ 2
1224
+
1225
+ .
1226
+ Taking logarithms and dividing by a sufficiently large n we have
1227
+ 1
1228
+ n log
1229
+
1230
+ x∈En
1231
+ δn
1232
+ x ∈G
1233
+ exp Snφ(x) ≥ 1
1234
+ n log #Gn +
1235
+
1236
+ φdµ − ε
1237
+ 2 > h(µ) +
1238
+
1239
+ φdµ − ε.
1240
+ Letting n → ∞ and then ε → 0 yields (3.1).
1241
+
1242
+ 3.2. Upper bound for fundamental closed sets. We proceed to upper bounds
1243
+ on fundamental closed sets, which are not necessarily compact.
1244
+ Proposition 3.3. Let φ: X → R be acceptable and satisfy P(φ) < ∞. Let ℓ ≥ 1,
1245
+ ⃗ϕ ∈ Cu(X)ℓ, ⃗α ∈ Rℓ and let C ⊂ M(X) be a non-empty closed set of the form
1246
+ C =
1247
+
1248
+ µ ∈ M(X):
1249
+
1250
+ ⃗ϕdµ ≥ ⃗α
1251
+
1252
+ .
1253
+ For any ε > 0 there exists µ ∈ Mφ(X, σ) such that
1254
+
1255
+ ⃗ϕdµ > ⃗α − ⃗ε and
1256
+ lim sup
1257
+ n→∞
1258
+ 1
1259
+ n log ˜µn(C) ≤ Fφ(µ).
1260
+ Proof. A main ingredient is the next lemma, the proof of which is analogous to the
1261
+ standard proof of the variational principle [40]. For n ≥ 1 we put
1262
+ Dn(φ) =
1263
+ sup
1264
+ p1···pn∈Nn
1265
+ sup
1266
+ x,y∈[p1···pn]
1267
+ Snφ(x) − Snφ(y).
1268
+ Lemma 3.4. For any ε > 0 there exists n0 ≥ 1 such that if n ≥ n0 then for any
1269
+ non-empty finite subset Cn of Nn satisfying δn
1270
+ p1···pn ∈ C for every p1 · · · pn ∈ Cn,
1271
+ there exists a measure µ0 ∈ Mφ(X, σ) such that
1272
+ log
1273
+
1274
+ p1···pn∈Cn
1275
+ sup
1276
+ [p1···pn]
1277
+ exp Snφ ≤
1278
+
1279
+ h(µ0) +
1280
+
1281
+ φdµ0
1282
+
1283
+ n+Dn(φ)
1284
+ and
1285
+
1286
+ ⃗ϕdµ0 > ⃗α−⃗ε.
1287
+
1288
+ 18
1289
+ HIROKI TAKAHASI
1290
+ Proof. Since all components of ⃗ϕ are bounded uniformly continuous, for any ε > 0
1291
+ there exists n0 ≥ 1 such that if n ≥ n0 then for any p1 · · · pn ∈ Nn satisfying
1292
+ δn
1293
+ p1···pn ∈ C,
1294
+
1295
+ ⃗ϕdδn
1296
+ x ≥ ⃗α − (1/2)⃗ε holds for any x ∈ [p1 · · · pn]. In what follows we
1297
+ assume n ≥ n0.
1298
+ Set Λ = �∞
1299
+ k=0 σ−nk(�
1300
+ p1···pn∈Cn[p1 · · · pn]). Then σn|Λ : Λ → Λ is topologically
1301
+ conjugate to the left shift acting on the finite full shift space
1302
+ CN
1303
+ n = {(ˆpm)∞
1304
+ m=1 : ˆpm ∈ Cn for every m ≥ 1}.
1305
+ Since the function ˆφ = Snφ induces a continuous potential on CN
1306
+ n , the variational
1307
+ principle [4] yields
1308
+ sup
1309
+ ˆµ∈M(Λ,σn|Λ)
1310
+
1311
+ h(ˆµ) +
1312
+
1313
+ ˆφdˆµ
1314
+
1315
+ = lim
1316
+ m→∞
1317
+ 1
1318
+ m log
1319
+
1320
+ ˆp1···ˆpm∈Cm
1321
+ n
1322
+ sup
1323
+ [ˆp1···ˆpm]
1324
+
1325
+ exp
1326
+ m−1
1327
+
1328
+ k=0
1329
+ ˆφ ◦ σnk
1330
+
1331
+ ,
1332
+ where M(Λ, σn|Λ) denotes the space of σn|Λ-invariant Borel probability measures
1333
+ endowed with the weak* topology, and h(ˆµ) denotes the measure-theoretic entropy
1334
+ of ˆµ ∈ M(Λ, σn|Λ) with respect to σn|Λ. For the series in the right-hand side, we
1335
+ have
1336
+
1337
+ ˆp1···ˆpm∈Cm
1338
+ n
1339
+ sup
1340
+ [ˆp1···ˆpm]
1341
+ exp
1342
+ �m−1
1343
+
1344
+ k=0
1345
+ ˆφ ◦ σnk
1346
+
1347
+
1348
+
1349
+
1350
+ p1···pn∈Cn
1351
+ inf
1352
+ [p1···pn] exp Snφ
1353
+ �m
1354
+
1355
+
1356
+ exp(−Dn(φ))
1357
+
1358
+ p1···pn∈Cn
1359
+ sup
1360
+ [p1···pn]
1361
+ exp Snφ
1362
+ �m
1363
+ .
1364
+ Taking logarithms of both sides, dividing by m and then letting m → ∞ gives
1365
+ lim
1366
+ m→∞
1367
+ 1
1368
+ m log
1369
+
1370
+ ˆp1···ˆpm∈Cm
1371
+ n
1372
+ sup
1373
+ [ˆp1···ˆpm]
1374
+ exp
1375
+ �m−1
1376
+
1377
+ k=0
1378
+ ˆφ ◦ σnk
1379
+
1380
+ ≥ log
1381
+
1382
+ p1···pn∈Cn
1383
+ sup
1384
+ [p1···pn]
1385
+ exp Snφ−Dn(φ).
1386
+ Plugging this into the previous inequality yields
1387
+ sup
1388
+ ˆµ∈M(Λ,σn|Λ)
1389
+
1390
+ h(ˆµ) +
1391
+
1392
+ ˆφdˆµ
1393
+
1394
+ ≥ log
1395
+
1396
+ p1···pn∈Cn
1397
+ sup
1398
+ [p1···pn]
1399
+ exp Snφ − Dn(φ).
1400
+ By the compactness of the space M(Λ, σn|Λ) and the upper semicontinuity of the
1401
+ map ˆµ �→ h(ˆµ) +
1402
+ � ˆφdˆµ on this space, the supremum is attained, say by ˆµ0. The
1403
+ measure µ0 = (1/n) �n−1
1404
+ j=0 ˆµ0 ◦ σ−j is in Mφ(X, σ) and satisfies
1405
+
1406
+ h(µ0) +
1407
+
1408
+ φdµ0
1409
+
1410
+ n =
1411
+ sup
1412
+ ˆµ∈M(Λ,σn|Λ)
1413
+
1414
+ h(ˆµ) +
1415
+
1416
+ ˆφdˆµ
1417
+
1418
+ .
1419
+ Since the support of µ0 is contained in set {x ∈ X :
1420
+
1421
+ ⃗ϕdδn
1422
+ x > ⃗α − ⃗ε/2} by the
1423
+ choice of n0 and the assumption n ≥ n0, we obtain
1424
+
1425
+ ⃗ϕdµ0 > ⃗α−⃗ε as required.
1426
+
1427
+ Continuing the proof of Proposition 3.3, we note that P(φ) < ∞ implies Zn(φ) <
1428
+ ∞ for every n ≥ 1. Hence it is possible to choose a finite subset Cn of the countable
1429
+
1430
+ LEVEL-2 LDP FOR COUNTABLE MARKOV SHIFTS WITHOUT GIBBS STATES
1431
+ 19
1432
+ set
1433
+
1434
+ p1 · · · pn ∈ Nn : δn
1435
+ p1···pn ∈ C
1436
+
1437
+ such that
1438
+
1439
+ p1···pn∈Nn
1440
+ δn
1441
+ p1···pn∈C
1442
+ exp Snφ(p1 · · · pn) ≤ 2
1443
+
1444
+ p1···pn∈Cn
1445
+ exp Snφ(p1 · · · pn).
1446
+ By this inequality and Lemma 3.4, there exists µ0 ∈ Mφ(X, σ) such that
1447
+
1448
+ ⃗ϕdµ0 >
1449
+ ⃗α − ⃗ε and
1450
+ log
1451
+
1452
+ x∈En
1453
+ δn
1454
+ x ∈C
1455
+ exp Snφ(x) = log
1456
+
1457
+ p1···pn∈Nn
1458
+ δn
1459
+ p1···pn∈C
1460
+ exp Snφ(p1 · · · pn)
1461
+ ≤ log
1462
+
1463
+ p1···pn∈Cn
1464
+ exp Snφ(p1 · · · pn) + log 2
1465
+ ≤ log
1466
+
1467
+ p1···pn∈Cn
1468
+ sup
1469
+ [p1···pn]
1470
+ exp Snφ + log 2
1471
+
1472
+
1473
+ h(µ0) +
1474
+
1475
+ φdµ0
1476
+
1477
+ n + Dn(φ) + log 2.
1478
+ Since φ is acceptable, it is uniformly continuous and so Dn(φ) = o(n) (n → ∞).
1479
+ Dividing both sides of the above last displayed inequality by n, letting n → ∞
1480
+ and combining the result with P(φ) = limn→∞(1/n) log Zn(φ) yields the desired
1481
+ inequality.
1482
+
1483
+ 3.3. Proof of Theorem A. Let φ: X → R be acceptable and satisfy P(φ) < ∞.
1484
+ Assume there exists an induced system for which the induced potentials Φγ, γ ∈ R
1485
+ associated with φ are locally H¨older continuous, and there exists γ0 ∈ R such that
1486
+ P(Φγ0) = 0.
1487
+ Let G be a non-empty open subset of M(X). Since subsets of M(X) of the
1488
+ form
1489
+
1490
+ µ ∈ M(X):
1491
+
1492
+ ⃗ϕdµ > ⃗α
1493
+
1494
+ with ℓ ≥ 1, ⃗ϕ ∈ Cu(X)ℓ, ⃗α ∈ Rℓ constitute a base
1495
+ of the weak* topology of M(X), G is written as the union G = �
1496
+ λ Gλ of sets Gλ of
1497
+ this form. For each Gλ, Proposition 3.1 gives
1498
+ lim inf
1499
+ n→∞
1500
+ 1
1501
+ n log ˜µn(Gλ) ≥ sup
1502
+
1503
+ Fφ,
1504
+ and hence
1505
+ lim inf
1506
+ n→∞
1507
+ 1
1508
+ n log ˜µn(G) ≥ sup
1509
+ λ
1510
+ sup
1511
+
1512
+ Fφ = sup
1513
+ G
1514
+ Fφ = − inf
1515
+ G Iφ,
1516
+ as required in (1.1).
1517
+ Let C be a compact closed subset of M(X). Let G be an arbitrary open set
1518
+ containing C. Since M(X) is metrizable by the bounded Lipschitz metric and C is
1519
+ compact, we can choose ε > 0 and finitely many closed sets C1, . . . , Cs of the form
1520
+ Ck =
1521
+
1522
+ µ ∈ M(X):
1523
+
1524
+ ⃗ϕkdµ ≥ ⃗αk
1525
+
1526
+ with ℓk ≥ 1, ⃗ϕk ∈ Cu(X)ℓk, ⃗αk ∈ Rℓk, so that
1527
+ C ⊂ �s
1528
+ k=1 Ck ⊂ �s
1529
+ k=1 Ck(ε) ⊂ G where Ck(ε) = {µ ∈ M(X):
1530
+
1531
+ ⃗ϕkdµ > ⃗αk − ⃗ε}.
1532
+ By Lemma 3.4 and Fφ ≤ −Iφ, for 1 ≤ k ≤ s we have
1533
+ lim sup
1534
+ n→∞
1535
+ 1
1536
+ n log ˜µn(Ck) ≤ − inf
1537
+ Ck(ε) Iφ + ε.
1538
+
1539
+ 20
1540
+ HIROKI TAKAHASI
1541
+ Then we have
1542
+ lim sup
1543
+ n→∞
1544
+ 1
1545
+ n log ˜µn(C) ≤ max
1546
+ 1≤k≤s
1547
+
1548
+ − inf
1549
+ Ck(ε) Iφ
1550
+
1551
+ + ε ≤ − inf
1552
+ G Iφ + ε.
1553
+ Since ε > 0 is arbitrary and G is an arbitrary open set containing C, it follows that
1554
+ lim sup
1555
+ n→∞
1556
+ 1
1557
+ n log ˜µn(C) ≤ inf
1558
+ G⊃C
1559
+
1560
+ − inf
1561
+ G Iφ
1562
+
1563
+ = − inf
1564
+ C Iφ,
1565
+ as required in (1.2). The last equality is due to the lower semicontinuity of Iφ.
1566
+ Since {˜µn}∞
1567
+ n=1 is exponentially tight by Proposition 2.6, the standard arguments
1568
+ as in [7] show the upper bound (1.2) for any non-compact closed subset of M(X),
1569
+ and that Iφ is a good rate function. This completes the proof of Theorem A.
1570
+
1571
+ 3.4. Proof of Theorem B. Let φ: X → R be acceptable and satisfy P(φ) < ∞.
1572
+ Assume there exists an induced system for which the associated induced potentials
1573
+ Φγ, γ ∈ R are locally H¨older continuous, and there exists γ0 ∈ R such that
1574
+ P(Φγ0) = 0. Assume that the minimizer of the rate function Iφ in (1.10) is unique,
1575
+ denoted by µmin. Let {˜µnj}∞
1576
+ j=1 be an arbitrary convergent subsequence of {˜µn}∞
1577
+ n=1
1578
+ with the limit measure ˜µ. It suffices to show that ˜µ is the unit point mass at µmin.
1579
+ We fix a metric which generates the weak* topology on M(X). Since the rate
1580
+ function Iφ in (1.10) is the good rate function by Theorem A, for any α > 0 the
1581
+ level set
1582
+ L(α) = {µ ∈ M(X): Iφ(µ) ≤ α}
1583
+ is a compact set. Let µ ∈ M(X) \ {µmin}. By the lower semicontinuity of the
1584
+ rate function and Iφ(µ) > 0, it is possible to take r > 0 such that the closure of
1585
+ the open ball Br(µ) of radius r about µ does not intersect L(Iφ(µ)/2). The weak*
1586
+ convergence ˜µnj → ˜µ gives
1587
+ ˜µ(Br(µ)) ≤ lim inf
1588
+ j→∞ ˜µnj(Br(µ)).
1589
+ By this and the large deviations upper bound for closed sets (1.2), we have
1590
+ ˜µ(Br(µ)) ≤ lim sup
1591
+ j→∞
1592
+ ˜µnj(Br(µ)) ≤ lim sup
1593
+ j→∞
1594
+ exp
1595
+
1596
+ −Iφ(µ)nj
1597
+ 2
1598
+
1599
+ = 0.
1600
+ Hence, the support of ˜µ does not contain µ. Since µ is an arbitrary element of
1601
+ M(X) \ {µmin}, it follows that ˜µ is the unit point mass at µmin. This completes
1602
+ the proof of Theorem B.
1603
+
1604
+ 3.5. Sufficient condition for vanishing of pressure. A direct check of the
1605
+ condition P(Φγ0) = 0 in Theorem A may be cumbersome, while checking the
1606
+ finiteness of induced pressures is considered to be easier. In view of applications,
1607
+ we give a sufficient condition for the second assumption in Theorem A on the
1608
+ induced potential.
1609
+ Lemma 3.5. Let φ: X → R be acceptable and satisfy P(φ) < ∞. Let (Σ, τ|Σ) be
1610
+ an induced system and let Φγ : Σ → R (γ ∈ R) be the associated family of induced
1611
+ potentials. If there exists δ ∈ R such that 0 < P(Φδ) < ∞, then there exists γ0 ∈ R
1612
+ such that P(Φγ0) = 0.
1613
+
1614
+ LEVEL-2 LDP FOR COUNTABLE MARKOV SHIFTS WITHOUT GIBBS STATES
1615
+ 21
1616
+ Proof. Let γ ∈ R and suppose P(Φγ) < ∞. Let n ≥ 1. Since ∥a∥ ≥ n for any
1617
+ a ∈ An and P(Φγ) is finite, for any γ′ > γ we have
1618
+
1619
+ a∈An
1620
+ sup
1621
+ [a]
1622
+ exp(S∥a∥φ − γ′∥a∥) ≤ exp(−(γ′ − γ)n)
1623
+
1624
+ a∈An
1625
+ sup
1626
+ [a]
1627
+ exp(S∥a∥φ − γ∥a∥).
1628
+ Taking logarithms, dividing by n and letting n → ∞ yields P(Φγ′) ≤ −γ′ +
1629
+ γ + P(Φγ).
1630
+ This and the assumption in the lemma together imply that both
1631
+ γ∞ = inf{γ ∈ R: P(Φγ) < ∞} and γ0 = inf{γ > γ∞: P(Φγ) ≥ 0} are finite. By
1632
+ the variational principle [18, Theorem 2.1.8], γ ∈ (γ∞, ∞) �→ P(Φγ) is convex and
1633
+ so continuous. Hence P(Φγ0) = 0 holds.
1634
+
1635
+ 3.6. Proof of Theorem C. Recall that T : [0, 1) → [0, 1) denotes the R´enyi map
1636
+ (1.11).
1637
+ For a bounded interval J ⊂ R let |J| denote its Euclidean length.
1638
+ In
1639
+ consideration of the neutral fixed point 0 of T, we set N∗ = N \ {1}, N∗ = {1} and
1640
+ define an inducing scheme (X∗, R) by (1.5), (1.6), the induced system (Σ, τ|Σ) by
1641
+ (1.7), (1.8), and define an infinite alphabet A and a coding map Π by (2.1), (2.2)
1642
+ respectively, keeping the notation in Section 2.1. We have Σ = (1/2, 1)∩I and A =
1643
+ ��∞
1644
+ q=2[p1n−1q]: p ≥ 2 and n ≥ 1
1645
+
1646
+ .
1647
+ For simplicity we will denote by C various
1648
+ positive constants which depend only on T.
1649
+ For each a = �∞
1650
+ q=2[p1n−1q] ∈ A, we put
1651
+ J(a) = T −1([1/(∥a∥ + 1), 1/∥a∥)) ∩ Jp.
1652
+ Then R equals ∥a∥ on the set Π[[a]] = π−1(J(a)). There exists C ≥ 1 such that for
1653
+ any a ∈ W(A) we have
1654
+ (3.5)
1655
+ C−1 ≤ |J(a)| · ∥a∥2 ≤ C.
1656
+ Define an induced map U : �
1657
+ a∈A J(a) → [0, 1) by U|J(a) = T ∥a∥|J(a). Recall that
1658
+ φ = − log |T ′ ◦ π|. For β, γ ∈ R define Φβ,γ : Σ → R by
1659
+ Φβ,γ(x) = βSR(x)φ(x) − γR(x),
1660
+ which is the induced potential associated with βφ.
1661
+ Lemma 3.6. For all β, γ ∈ R, Φβ,γ is locally H¨older continuous.
1662
+ Proof. From the bounded distortion near the neutral fixed point [19, Lemma 2.2],
1663
+ there exists C > 0 such that for any a ∈ A and all x, y ∈ [a] we have
1664
+ (3.6)
1665
+ Φβ,γ(x) − Φβ,γ(y) ≤ Cβ|U(ξ) − U(η)| ≤ Cβ,
1666
+ where ξ = π(x) and η = π(y). If x ̸= y then d(x, y) = e−n holds for some n ≥ 2,
1667
+ and there exists a1 · · ·an ∈ An such that x, y ∈ [[a1 · · · an]]. Since there is ρ > 1
1668
+ such that inf[0,1)\J1 |T ′| ≥ ρ, if n ≥ 3 then we have
1669
+ (3.7)
1670
+ |U(ξ) − U(η)| ≤
1671
+ |Un−1(ξ) − Un−1(η)|
1672
+ inf�n−1
1673
+ k=2 U−k(J(ak)) |(Un−2)′| ≤ ρ2−n.
1674
+ The local H¨older continuity of Φβ,γ follows from (3.6) and (3.7).
1675
+
1676
+ Lemma 3.7. For any β ∈ (1/2, 1] there exists γ ∈ R such that 0 ≤ P(Φβ,γ) < ∞.
1677
+
1678
+ 22
1679
+ HIROKI TAKAHASI
1680
+ Proof. From Lemma 3.6, |T(Jp)| = 1 for p ≥ 2 and (3.5), there exists C ≥ 1 such
1681
+ that for a = �∞
1682
+ q=2[p1n−1q] ∈ A and all β, γ ∈ R we have
1683
+ 1
1684
+ |Jp|β sup
1685
+ [a]
1686
+ exp Φβ,γ = e−γn sup
1687
+ Π[a]
1688
+ exp(βSnφ)
1689
+ |Jp|β
1690
+ ≤ Ce−γnn−2β.
1691
+ Summing the result over all a ∈ A, we have
1692
+
1693
+
1694
+ n=1
1695
+
1696
+ a∈A
1697
+ ∥a∥=n
1698
+ sup
1699
+ [a]
1700
+ exp Φβ,γ ≤ C
1701
+
1702
+
1703
+ n=1
1704
+ e−γnn−2β
1705
+
1706
+
1707
+ p=2
1708
+ |Jp|β ≤ C
1709
+
1710
+
1711
+ n=1
1712
+ e−γnn−2β
1713
+
1714
+
1715
+ p=2
1716
+ p−2β.
1717
+ Let β ∈ (1/2, 1). Then we have P(βφ) > 0 [13], and the above series is finite
1718
+ for all γ ∈ (0, P(βφ)]. In particular, P(Φβ,P (βφ)) is finite. Since any measure in
1719
+ M(X, σ) other than the unit point mass at 1∞ = 111 · · · charges Σ, the equilibrium
1720
+ state µβφ for the potential βφ satisfies µβφ(Σ) > 0. Let ˆµβφ denote the normalized
1721
+ restriction of µβφ to Σ. Since τ is the first return map to Σ, ˆµβφ is τ|Σ-invariant
1722
+ and satisfies
1723
+
1724
+ Rdˆµβφ < ∞. By the variational principle for Φβ,P (βφ) and Abramov-
1725
+ Kac’s formula [44, Theorem 5.1], we obtain
1726
+ ∞ > P(Φβ,P (βφ)) ≥ h(ˆµβφ) +
1727
+
1728
+ (Φβ − P(βφ)R)dˆµβφ
1729
+ = (Fβφ(µβφ) + P(βφ) − P(βφ))
1730
+
1731
+ Rdˆµβφ = 0.
1732
+ We have verified1 that 0 ≤ P(Φβ,P (βφ)) < ∞ as reqiured in the lemma.
1733
+ For the remaining case β = 1, we have P(φ) = 0 [13]. From Lemma 3.6 there is
1734
+ C ≥ 1 such that for n ≥ 1 and a = a1 · · · an ∈ An,
1735
+ C−1 ≤
1736
+ ���n
1737
+ k=1 U−k(J(ak))
1738
+ ��
1739
+ sup[a] exp
1740
+ ��n−1
1741
+ k=0 Φ1,0 ◦ τ k� ≤ C.
1742
+ Summing this double inequalities over all a ∈ An, taking logarithms, dividing by
1743
+ n and then letting n → ∞ yields P(Φ1,0) = 0 as required in the lemma.
1744
+
1745
+ Lemma 3.6 and Lemmas 3.5, 3.7 together verify the assumption in Theorem A
1746
+ for the potential βφ, β ∈ (1/2, 1]. It follows from [35] that for any β ∈ (1/2, 1],
1747
+ any minimizer of the rate function Iβφ is an equilibrium state for βφ. Since the
1748
+ equilibrium state for βφ is unique [13], the minimizer of the rate function Iβφ is
1749
+ unique. Since the map π in (1.13) is continuous, the assertions in Theorem C
1750
+ follow from Theorems A and B.
1751
+
1752
+ 3.7. Some generalizations. We have worked on two full shift spaces X and Σ
1753
+ (or AN), the latter obtained from the former via inducing (recall Section 2.1). The
1754
+ assumption that X is the full shift has been used to construct sets of periodic
1755
+ points of the same period, in the proofs of exponential tightness (Lemma 2.5) and
1756
+ the lower large deviation bound (Proposition 3.1). For the induced system (Σ, τ|Σ),
1757
+ we have effected the thermodynamic formalism for countable Markov shifts [18].
1758
+ 1In fact, one can show P(Φβ,P (βφ)) = 0. See [23] for example.
1759
+
1760
+ LEVEL-2 LDP FOR COUNTABLE MARKOV SHIFTS WITHOUT GIBBS STATES
1761
+ 23
1762
+ The setup in this paper can be slightly generalized. The above-mentioned con-
1763
+ structions of sets of periodic points can be done even if X is replaced by a finitely
1764
+ primitive shift (see [18] for the definition). Then the induced shift space becomes
1765
+ finitely irreducible, for which the thermodynamic formalism works too [27].
1766
+ Acknowledgments. This research was partially supported by the JSPS KAK-
1767
+ ENHI 19K21835 and 20H01811.
1768
+ References
1769
+ [1] Aaronson, J., Denker, M., Urba´nski, M.: Ergodic Theory for Markov fibred systems and
1770
+ parabolic rational maps. Trans. Amer. Math. Soc. 337, 495–548 (1993)
1771
+ [2] Adler, R.L.: F-expansions revisited. Recent advances in topological dynamics, pp.1–5. Lec-
1772
+ ture Notes in Mathematics, 318, Springer-Verlag, Berlin 1973
1773
+ [3] Bowen, R.: Invariant measures for Markov maps of the interval. Commun. Math. Phys. 69,
1774
+ 1–17 (1979)
1775
+ [4] Bowen, R.: Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Second
1776
+ revised edition. Lecture Notes in Mathematics, 470, Springer-Verlag, Berlin 2008
1777
+ [5] Bowen, R., Ruelle, D.: The ergodic theory of Axiom A flows. Invent. Math. 29, 181–202
1778
+ (1975)
1779
+ [6] Buzzi, J., Sarig, O.: Uniqueness of equilibrium measures for countable Markov shifts and
1780
+ multidimensional piecewise expanding maps. Ergodic Theory and Dynamical Systems 23,
1781
+ 1383–1400 (2003)
1782
+ [7] Dembo, A., Zeitouni, O.: Large deviations techniques and applications, Applications of
1783
+ Mathematics 38, Springer, second edition (1998)
1784
+ [8] Ellis, R.S.: Entropy, large deviations, and statistical mechanics, Grundlehren der Mathema-
1785
+ tischen Wissenschaften 271, Springer (1985)
1786
+ [9] van Enter, A.C.D., Fern´andez, R., Sokal, A.D.: Regularity properties and pathologies of
1787
+ position-space renormalization-group transformations: scope and limitations of Gibbsian
1788
+ theory. J. Stat. Phys. 72, 879–1167 (1993)
1789
+ [10] Fiebig, D., Fiebig, U.-R., Yuri, M.: Pressure and equilibrium states for countable state
1790
+ Markov shifts. Isr. J. Math. 131, 221–257 (2002)
1791
+ [11] Gureviˇc, B. M., Savchenko, S.V.: Thermodynamic formalism for countable symbolic Markov
1792
+ chains. Russ. Math. Surv. 53, 245–344 (1998)
1793
+ [12] Hofbauer, F.: Examples for the non uniqueness of the equilibrium state. Trans. Amer. Math.
1794
+ Soc. 228, 223–241 (1977)
1795
+ [13] Iommi, G.: Multifractal analysis of the Lyapunov exponent for the backward continued
1796
+ fraction map. Ergodic Theory and Dynamical Systems 30, 211-232 (2010)
1797
+ [14] Khinchin, A.Y.: Continued fractions. University of Chicago Press, III.-London, 1964
1798
+ [15] Kifer, Y.: Large deviations in dynamical systems and stochastic processes. Trans. Amer.
1799
+ Math. Soc. 321, 505–524 (1990)
1800
+ [16] Kifer, Y.: Large deviations, averaging and periodic orbits of dynamical systems, Commun.
1801
+ Math. Phys. 162, 33–46 (1994)
1802
+ [17] Maes, C., Redig, F., Takens, F., van Moffaert, A., Verbitski, E.: Intermittency and weak
1803
+ Gibbs states. Nonlinearity 13, 1681–1698 (2000)
1804
+ [18] Mauldin, R.D., Urba´nski, M.: Graph directed Markov systems: Geometry and Dynamics of
1805
+ Limit Sets. Cambridge Tracts in Mathematics 148, Cambridge University Press (2003)
1806
+ [19] Nakaishi, K.: Multifractal formalism for some parabolic maps. Ergodic Theory and Dynam-
1807
+ ical Systems 20, 843–857 (2000)
1808
+ [20] Northshield, S.: A short proof and generalization of Lagrange’s theorem on continued frac-
1809
+ tions. The American Mathematical Monthly 118, 171–175 (2011)
1810
+ [21] Olsen, L.: Multifractal analysis of divergence points of deformed measure theoretical Birkhoff
1811
+ averages. J. Math. Pures Appl. 82, 1591–1649 (2003)
1812
+
1813
+ 24
1814
+ HIROKI TAKAHASI
1815
+ [22] Orey, S., Pelikan, S.: Deviations of trajectory averages and the defect in Pesin’s formula for
1816
+ Anosov diffeomorphisms. Trans. Amer. Math. Soc. 315, 741–753 (1989)
1817
+ [23] Pesin, Y., Senti, S.: Equilibrium measures for maps with inducing schemes. J. Mod. Dyn.
1818
+ 2, 397–430 (2008)
1819
+ [24] Pianigiani, G.: First return map and invariant measures. Isr. J. Math. 35, 32–48 (1980)
1820
+ [25] Pollicott, M., Sharp, R.: Large deviations for intermittent maps. Nonlinearity 22, 2079–2092
1821
+ (2009)
1822
+ [26] Pollicott, M., Sharp, R., Yuri, M.: Large deviations for maps with indifferent fixed points.
1823
+ Nonlinearity 11, 1173–1184 (1998)
1824
+ [27] Pollicott, M., Urba´nski, M.: Asymptotic counting in conformal dynamical systems. Mem.
1825
+ Amer. Math. Soc., 271 (2021), v+139.
1826
+ [28] Prellberg, T., Slawny, J.: Maps of intervals with indifferent fixed points: thermodynamic
1827
+ formalism and phase transitions. J. Stat. Phys. 66, 503–514 (1992)
1828
+ [29] Ruelle, D.: Thermodynamic formalism. The mathematical structures of classical equilibrium
1829
+ statistical mechanics. Second edition. Cambridge University Press (2004)
1830
+ [30] Sarig, O.: Thermodynamic formalism for countable Markov shifts, Ergodic Theory and
1831
+ Dynamical Systems 19, 1565–1593 (1999)
1832
+ [31] Sarig, O.: Existence of Gibbs measures for countable Markov shifts. Proc. Amer. Math. Soc.
1833
+ 131, 1751–1758 (2003)
1834
+ [32] Sina˘ı, Y. G.: Gibbs measures in ergodic theory. Uspehi Mat. Nauk. 27, 21–64 (1972)
1835
+ [33] Takahashi, Y.: Entropy functional (free energy) for dynamical systems and their random
1836
+ perturbations. Stochastic analysis (Katata/Kyoto, 1982), 437–467, North-Holland Math.
1837
+ Library, 32, North-Holland, Amsterdam, 1984
1838
+ [34] Takahasi, H.: Large deviation principles for countable Markov shifts. Trans. Amer. Math.
1839
+ Soc. 372, 7831–7855 (2019)
1840
+ [35] Takahasi, H.: Uniqueness of minimizer for countable Markov shifts and equidistribution of
1841
+ periodic points, J. Stat. Phys. 181, 2415–2431 (2020)
1842
+ [36] Takahasi, H.: Entropy-approchability for transitive Markov shifts over infinite alphabet.
1843
+ Proc. Amer. Math. Soc. 148, 3847–3857 (2020)
1844
+ [37] Takahasi, H.: Large deviation principle for the backward continued fraction expansion,
1845
+ Stochastic Processes and Their Applications 144, 153–172 (2022)
1846
+ [38] Thaler, M.: Transformations on [0, 1] with infinite invariant measures. Isr. J. Math. 46,
1847
+ 67–96 (1983)
1848
+ [39] Walters, P.: Invariant measures and equilibrium states for some mappings which expand
1849
+ distances. Trans. Amer. Math. Soc. 236, 121–153 (1978)
1850
+ [40] Walters, P.:
1851
+ An Introduction to Ergodic Theory. Graduate Texts in Mathematics 79,
1852
+ Springer-Verlag, New York 1982
1853
+ [41] Yuri, M.: Thermodynamic formalism for certain nonhyperbolic maps. Ergodic Theory and
1854
+ Dynamical Systems 19, 1365–1378 (1999)
1855
+ [42] Yuri, M.: Weak Gibbs measures for intermittent systems and weakly Gibbsian states in
1856
+ statistical mechanics. Commun. Math. Phys. 241, 453–466 (2003)
1857
+ [43] Yuri, M.: Large deviations for countable to one Markov systems. Commun. Math. Phys.
1858
+ 258, 455–474 (2005)
1859
+ [44] Zweim¨uller, R.: Invariant measures for general(ized) induced transformations. Proc. Amer.
1860
+ Math. Soc. 133 (2005) 2283–2295.
1861
+ Keio Institute of Pure and Applied Sciences (KiPAS), Department of Mathe-
1862
+ matics, Keio University, Yokohama, 223-8522, JAPAN
1863
+ Email address: hiroki@math.keio.ac.jp
1864
+
4tFAT4oBgHgl3EQfmB2k/content/2301.08621v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b419642c988ce06ee7d59e7088e6df402afaac6ca0bab327ad65a7c81311b81
3
+ size 256100
4tFAT4oBgHgl3EQfmB2k/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d96994319a72fd2f6d02a77a7ff6d6b4d6b8c8a3ceaf3cbb743ccda0fa55b977
3
+ size 2228269
4tFAT4oBgHgl3EQfmB2k/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f85fb201d6d181a9a98a153c85aacb63b7a32cf98e9669f01327fe460a4e4f2c
3
+ size 91167
69E1T4oBgHgl3EQfnASE/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4c6857cc44ef704dd40f9428a5bec896acaf9bf1b1bca4819e6f517536c1b870
3
+ size 128015
6NFKT4oBgHgl3EQf_C4s/content/2301.11960v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a5ed0d42a34b344b6123d917be2a957b00d11cbfb2defaf47927284802285603
3
+ size 454363
6NFKT4oBgHgl3EQf_C4s/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eaa8152e3c2485eb88962a3a0b4d3d71c845a47314feed0e407e8082d9dba58d
3
+ size 78815
6dFKT4oBgHgl3EQf_S4j/content/tmp_files/2301.11961v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
6dFKT4oBgHgl3EQf_S4j/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
8NFLT4oBgHgl3EQfBC4o/content/2301.11968v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dd9b2927f041d843b26946ba08900585d072651e73e06a6632a0b9a3c30460d3
3
+ size 170731
8NFLT4oBgHgl3EQfBC4o/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:064be80b3135674adc739d194c727bef3742e11b0af8dad6d67f042dea7c30c8
3
+ size 2359341
8NFLT4oBgHgl3EQfBC4o/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0a032fb1be730ad5891097683917b3509213aef97d1057e874ebef9eb1feee47
3
+ size 88817
8tAzT4oBgHgl3EQfgvwn/content/tmp_files/2301.01472v1.pdf.txt ADDED
@@ -0,0 +1,687 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MNRAS 000, 1–5 (2023)
2
+ Preprint 5 January 2023
3
+ Compiled using MNRAS LATEX style file v3.0
4
+ Dust processing in protoplanetary envelopes as the origin of hot
5
+ minerals in comets
6
+ Mohamad Ali-Dib1⋆
7
+ 1Center for Astro, Particle and Planetary Physics (CAP3), New York University Abu Dhabi, UAE
8
+ Accepted 2022-12-30
9
+ ABSTRACT
10
+ Crystalline silicates are found in a large number of comets. These pose a long-standing
11
+ conundrum for solar system formation models as they can only be created in the in-
12
+ ner hot disk at temperatures higher than 800 K, and there is no obvious mechanism
13
+ to transport them out into the comets formation region. Here we propose that these
14
+ particles could have formed inside the hydrostatic envelopes surrounding young pro-
15
+ toplanets still embedded in the protoplanetary disk. Using a simplified 1D model we
16
+ investigate the thermal structure of these envelopes, and find that for core masses
17
+ ranging from 0.08 to 1.5 M⊕, located anywhere between 1 and 30 AU, the temper-
18
+ ature and pressure at the base of the envelopes are high enough to quickly vaporize
19
+ silicate particles of various sizes. Moreover, if the grain abundance is atleast solar, these
20
+ envelopes become fully convective, allowing for dust ejection across the Bondi radius
21
+ back into the disk. Amorphous silicates are hence thermally processed into crystalline
22
+ particles in these envelopes, and then transported back to disk through convective
23
+ diffusion to be finally incorporated into the cometary building blocks.
24
+ Key words: planets and satellites: formation – comets: general – planets and satellites:
25
+ composition
26
+ 1
27
+ INTRODUCTION
28
+ High temperature minerals are ubiquitous in the cold outer
29
+ solar system small bodies. One of the earliest remote sensing
30
+ detections was for crystalline silicates (CSs) such as olivines
31
+ and pyroxenes in the grains of comets 1P/Halley, D/1993
32
+ F2 (Shoemaker-Levy), C/1987 P1 (Bradfield) (Hanner et al.
33
+ 1994), and C/1993 A1 (Mueller) (Hanner, Lynch, & Russell
34
+ 1994). Subsequent detections were made in comets C/1995
35
+ O1 (Hale-Bopp) (Hayward, Hanner, & Sekanina 2000; Cro-
36
+ visier et al. 1997; Wooden et al. 1999), 103P/Hartley (Cro-
37
+ visier et al. 2000), and more recently 17P/Holmes (Shinnaka
38
+ et al. 2018). On the other hand Calcium-Aluminum inclu-
39
+ sions (CAIs) that form at even higher temperatures were
40
+ found in the dust collected by Stardust in comet 81P/Wild
41
+ (Brownlee et al. 2006). We refer the reader to the observa-
42
+ tional review of Mumma & Charnley (2011) for more infor-
43
+ mations.
44
+ The presence of CSs have been a primary challenge to
45
+ solar system formation models for decades, as the thermal
46
+ conditions in the outer protoplanetary disk are not con-
47
+ ducive to their formation locally. CSs can form starting
48
+ from amorphous silicates through either direct vaporization
49
+ followed by re-condensation at temperatures higher than
50
+ ⋆ E-mail: malidib@nyu.edu
51
+ ∼1800 K, or thermal annealing for T> 800 K. Annealing is
52
+ a physical process where sufficiently energetic molecules of a
53
+ solid slowly regroup into a crystal lattice. This mechanism is
54
+ not instantaneous and necessitates high temperature expo-
55
+ sure for a period of few weeks followed by slow cooling (Gail
56
+ 1998, 2001). In typical protoplanetary disks, direct conden-
57
+ sation can be active only inside ∼ 0.1 AU, and annealing is
58
+ inefficient outside ∼ 1.5 AU.
59
+ Moreover, there is no acceptable mechanism to trans-
60
+ port these particles from the inner disk to the comets for-
61
+ mation region. Earlier transport models relied on turbulent
62
+ diffusion (Bockel´ee-Morvan et al. 2002), but recent ALMA
63
+ observations suggest that protoplanetary disks are laminar
64
+ (Flaherty et al. 2015, 2018), and thus this mechanism is un-
65
+ likely to be efficient. Large scale outward advection in the
66
+ disk’s midplane has also been proposed (Hughes & Armitage
67
+ 2010), but 3D MHD simulations ruled out the presence of
68
+ such advection (Fromang, Lyra, & Masset 2011). Another
69
+ possible transport mechanism is photophoresis (Mousis et
70
+ al. 2007), but this necessitates a relatively large (1-2 AU)
71
+ central hole in the disk. Finally, Ali-Dib et al. (2015) pro-
72
+ posed that FU-Ori outbursts might form these particles in
73
+ situ, but this depends on the outburst trigger radius being
74
+ large enough, which is uncertain.
75
+ Here we show how high temperature minerals form nat-
76
+ urally, and in-situ, in the envelopes surrounding low mass
77
+ © 2023 The Authors
78
+ arXiv:2301.01472v1 [astro-ph.EP] 4 Jan 2023
79
+
80
+ 2
81
+ M. Ali-Dib
82
+ proto-planets embedded in the disk. We present models
83
+ showing that the temperatures and pressures at the base
84
+ of these envelopes easily reach conditions that allow for
85
+ the formation of crystalline silicates through direct vapor-
86
+ ization and re-condensation. Primordial amorphous silicates
87
+ are thus accreted and then thermally processed in these en-
88
+ velopes, before finally getting ejected back to the disk as
89
+ crystalline particles via convective diffusion. We emphasize
90
+ that this work concerns the formation of generic CSs such as
91
+ olivines and pyroxenes, and not necessarily chondrules and
92
+ CAIs due to their additional formation-time constrains that
93
+ are outside the scope of this work. We present our model in
94
+ section 2, results in section 3, and conclude in section 4.
95
+ 2
96
+ MODEL
97
+ We model the atmosphere using the standard atmospheric
98
+ structure equations. The equation of hydrostatic equilibrium
99
+ is given by:
100
+ dP
101
+ dr = −GM
102
+ r2 ρ(r)
103
+ (1)
104
+ and we define the temperature gradient equation starting
105
+ from the standard assumption that heat can be transported
106
+ using either radiation (if the local envelope is convectively
107
+ stable) or adiabatic convection (if unstable). It is hence writ-
108
+ ten as:
109
+ dT
110
+ dr = ∇ T
111
+ P
112
+ dP
113
+ dr
114
+ (2)
115
+ where ∇ is defined, starting from the Schwarzschild con-
116
+ vective stability criterion (∇rad
117
+ <
118
+ ∇ad), to be ∇
119
+ =
120
+ min(∇ad, ∇rad). Here ∇ad is the adiabatic gradient:
121
+ ∇ad ≡
122
+ � d ln T
123
+ d ln P
124
+
125
+ ad
126
+ = γ − 1
127
+ γ
128
+ (3)
129
+ where the adiabatic constant γ = 1.5. ∇rad is the radiative
130
+ gradient:
131
+ ∇rad ≡
132
+ 3κP
133
+ 64πGMσT 4 L
134
+ (4)
135
+ where L is the envelope’s luminosity generated by accretion
136
+ at a rate
137
+ ˙Macc :
138
+ L = GM ˙Macc
139
+ Rc
140
+ (5)
141
+ Rc is the core radius, and κ is the opacity that we define
142
+ following Ormel (2014) as:
143
+ κ = κgas + κgr
144
+ (6)
145
+ with:
146
+ κgr = κgeomQe = 3Zgr
147
+ 4ρsa × min(0.6πa
148
+ λmax , 2)
149
+ (7)
150
+ where Zgr is the grains abundance, as their size, and ρs their
151
+ internal density. we use ρs = 3 g/cm3 for both the core and
152
+ the dust particles.
153
+ The equilibrium dust size in the envelope as is set by
154
+ two competing processes: grain growth through coagulation
155
+ (Ormel 2014) and grain collisional destruction (Ali-Dib &
156
+ Thompson 2020). The relative relevance of these two pro-
157
+ cesses is decided mainly by whether the collisional speeds
158
+ reach the silicate fragmentation threshold (Vf ∼ 100 cm/s,
159
+ Blum & Wurm (2008)). The collisional speed is approxi-
160
+ mated here as the largest among the dust’s convective ve-
161
+ locity Vcon,d (eq. 19) and the dust’s radial drift velocity:
162
+ Vdrift,d = τstop GM
163
+ r2
164
+ (8)
165
+ where τstop is the stopping time.
166
+ As discussed in (Ali-Dib & Thompson 2020), collisions
167
+ in these envelopes are likely to be destructive. This leads
168
+ to a small characteristic dust size, increasing the opac-
169
+ ity (thus growing the convective zone), and decreasing the
170
+ vaporization timescale. Here we only select models where
171
+ max(Vcon,d,Vdrift,d) is higher than 100 cm/s everywhere in
172
+ the disk.
173
+ The convective fragmentation dust size is hence calcu-
174
+ lated following (Ali-Dib & Thompson 2020) as:
175
+ as,conv = 4πV 2
176
+ f r3ρ2
177
+ gcg
178
+ Lρs
179
+ (9)
180
+ where ρg and cg are the gas’ density and sound speed. The
181
+ drift fragmentation dust size is given by:
182
+ as,drift = Vfr2ρgcg
183
+ GMρs
184
+ (10)
185
+ with finally as=min(as,conv,as,drift).
186
+ Note that as,conv is defined everywhere in the envelope,
187
+ since, as discussed below, we also only select fully convec-
188
+ tive envelopes. For this approach to be applicable, the par-
189
+ ticles need to reach the local fragmentation threshold at ev-
190
+ ery point in the envelope. Therefore, for self-consistency, we
191
+ only keep models where the mean free time for collisions
192
+ is shorter than the convective timescale. In the convective
193
+ fragmentation regime this can be written as:
194
+ as
195
+ as + 4ℓg/9 < 9Z2
196
+ gr
197
+ ρg
198
+ ρs Mcon r
199
+ ℓg
200
+ (11)
201
+ where Mcon is the convective Mach number, and ℓg the mean
202
+ free path of the gas. In the drift regime this is replaced by :
203
+ 3
204
+ 4Zgr
205
+ c2
206
+ gr
207
+ GM
208
+ Mcon
209
+ 1 + 9as/4ℓg < 1
210
+ (12)
211
+ The gas opacity is given by:
212
+ κgas = 10−8ρ2/3
213
+ g
214
+ T 3
215
+ (13)
216
+ Finally we close the system with the ideal gas equation of
217
+ state P = ρgkBT/µ. We solve these equations by integrating
218
+ inwards from the outer boundary at Rout, the minimum of
219
+ the Bondi and Hill radii, to the core. We assumed the disk is
220
+ radiative and calculate its temperature and density following
221
+ Ali-Dib, Cumming, & Lin (2020):
222
+ Td = 373 r−9/10
223
+ au
224
+ K and ρd = 1.7×10−10 r−33/20
225
+ au
226
+ g/cm3 (14)
227
+ Once we have the envelope’s thermal structure, we can
228
+ calculate additional quantities needed for the subsequent
229
+ analysis. We calculate the silicate particles vaporization rate
230
+ as :
231
+ 1
232
+ as
233
+ das
234
+ dt = −
235
+ � µSil
236
+ 2πkT
237
+ �1/2 P sat
238
+ Sil
239
+ ρsas
240
+ (15)
241
+ MNRAS 000, 1–5 (2023)
242
+
243
+ Origins of hot minerals
244
+ 3
245
+ with (Krieger 1967):
246
+ P sat
247
+ sil (T) = 3.2 × 1014e−(6×104 K)/T
248
+ (16)
249
+ and hence the silicate grains vaporization timescale is given
250
+ by :
251
+ τvap,sil =
252
+ � 1
253
+ as
254
+ das
255
+ dt
256
+ �−1
257
+ (17)
258
+ We define the gas and dust convective velocities respec-
259
+ tively as:
260
+ Vcon,g =
261
+
262
+ L
263
+ 4πr2ρg
264
+ �1/3
265
+ (18)
266
+ where we assumed that in the convective zone the energy is
267
+ entirely transported through adiabatic convection, and
268
+ Vcon,d ∼ Vcon (Vconτstop/r)1/2
269
+ (19)
270
+ We
271
+ finally
272
+ calculate
273
+ the
274
+ dust’s
275
+ convective
276
+ mixing
277
+ timescale as:
278
+ τmix,d = H/Vcon,d
279
+ (20)
280
+ 3
281
+ RESULTS
282
+ We start by exploring parameter space in order to find the
283
+ values that allow for the creation of CSs in proto-envelopes.
284
+ We explore core masses ranging from Pluto’s mass (0.002
285
+ M⊕) to a hypothetical giant planet’s core (10 M⊕), placed
286
+ between 1 and 30 AU where ambient temperatures are too
287
+ low to create CSs in the disk. The grains abundance Zgr
288
+ ranges from subsolar (10−3) to supersolar (1.0).
289
+ Our results are summarized in Fig. 1. In this plot we
290
+ show only the areas of parameter space leading to envelopes
291
+ conducive to the creation of CSs and that are self-consistent
292
+ to our model assumptions. This is defined by these condi-
293
+ tions:
294
+ (i) τvap,sil is less than τmix,d at the base of the envelope.
295
+ This simply constrain the envelopes to those where solid
296
+ silicates at their base can get vaporized faster than they are
297
+ transported back into the upper cooler zones.
298
+ (ii) The envelope is fully convective. This ensures that the
299
+ newly created CSs can be convectively diffused all the way
300
+ back into the disk. This condition is inspired by the results of
301
+ Ali-Dib & Thompson (2020) who considered a similar setup
302
+ with a 0.3 M⊕ core embedded in the disk, and showed that,
303
+ for typical accretion rates, pebble fragmentation and dust
304
+ loading increases the opacity and push the convective zone
305
+ out till it reaches the Bondi radius. Dust particles in these
306
+ steady-state envelopes are then diffusively ejected back to
307
+ the disk. Our results rely on this mechanism to transport
308
+ the newly created CSs from the hot inner envelope back to
309
+ the disk to be incorporated in proto-comets.
310
+ (iii) The collisional velocity is higher than 100 cm/s
311
+ throughout the envelope, and conditions 11 and 12 are sat-
312
+ isfied. This ensures that our dust size prescription is self-
313
+ consistent.
314
+ 3.1
315
+ Core mass
316
+ Figure 1 shows that, while CSs can be created under a va-
317
+ riety of parameter ranges, trends do exist. We start with
318
+ our nominal model, for
319
+ ˙Macc = 10−6M⊕/yr. First, there
320
+ is a relatively narrow range of masses that extends from
321
+ around 0.08 M⊕ (40 times Pluto’s mass) to 1.5 M⊕, beyond
322
+ which the chances of creating CSs drops drastically. This
323
+ implies that CSs might have formed in the proto-envelopes
324
+ of Mars to Earth mass protoplanets that have since disap-
325
+ peared via giant collisions or dynamical ejection, or possibly
326
+ grown into giant planetary cores. The lower limit on core
327
+ masses is mainly due to their envelopes’ relatively cooler
328
+ temperatures, increasing τvap,sil considerably. On the other
329
+ hand, cores with masses higher than 1.5 M⊕ have dust par-
330
+ ticles large enough in their middle and inner envelopes to
331
+ switch from the Rosseland mean opacity regime to the ge-
332
+ ometric opacity regime, as can be seen in Fig. 2 (left hand
333
+ panel). This decreases the radiative gradient, creating an in-
334
+ ner radiative zone that prevents these envelopes from being
335
+ fully convective. It is worth noting that, while our model
336
+ considers the smallest of the Hill and Bondi radii to be the
337
+ envelope’s outer boundary, all of our acceptable cases that
338
+ form CSs are in the Bondi regime. This is expected as the
339
+ Hill regime dominates for higher mass cores (5-10 M⊕) that
340
+ were excluded above. The Bondi radius RB = 2GM/c2
341
+ s is
342
+ obtained by equating the local sound speed to the gravi-
343
+ tational escape velocity, and thus describes a usually light
344
+ but bound envelope where gas particles do not have enough
345
+ thermal energy to escape. For higher mass cores, the Bondi
346
+ radius is large enough for the Hill stability criteria to become
347
+ the more stringent constrain.
348
+ 3.2
349
+ Semimajor axis
350
+ A complementary piece of information is the semimajor axis,
351
+ where we find that CSs can form almost anywhere in the disk
352
+ if the envelope’s grain abundance is high enough as discussed
353
+ further below. Semimajor axis controls the temperature and
354
+ density at the outer boundary, which seems to be important
355
+ only in the marginal cases, for example for low core masses
356
+ where the envelopes would be too cold if placed further out
357
+ in the disk. The wide range of possible semimajor axis allows
358
+ for the possibility of creating CSs in the comets formation
359
+ region. Classically, Oort cloud comets were thought to form
360
+ among the giant planets all the way down to 5 AU, while
361
+ Jupiter family comets were thought to form in the scattered
362
+ disk (Duncan, Quinn, & Tremaine 1987; Duncan & Levison
363
+ 1997; Dones et al. 2015). Alternatively, Brasser & Morbidelli
364
+ (2013) proposed that both could have formed in the same
365
+ region beyond Neptune.
366
+ 3.3
367
+ Grains abundance
368
+ We moreover find that creating CSs necessitate solar to su-
369
+ persolar grain abundance in the envelope (Zgr >= 0.01).
370
+ This result is not consistent with the subsolar grain abun-
371
+ dances found in models that incorporate dust growth & set-
372
+ tling to the core but omit dust fragmentation with convec-
373
+ tive mixing. Ormel (2014) for example added a simple grain
374
+ growth equation to the atmospheric structure equations, and
375
+ found that Zgr can be as low as 10−4 in parts of the envelope.
376
+ Mordasini (2014) also created an atmospheric model incor-
377
+ porating dust settling and coagulation, and found that this
378
+ mostly results in subsolar opacities. The main role of Zgr is
379
+ MNRAS 000, 1–5 (2023)
380
+
381
+ 4
382
+ M. Ali-Dib
383
+ to increase the opacity and extend the convective zone all the
384
+ way to the outer boundary (Bondi or Hill radius). Ali-Dib
385
+ & Thompson (2020) discussed the gradual buildup of Zgr in
386
+ the envelope through accretion and fragmentation, and de-
387
+ rived a lower limit on Zgr in order to get a fully convective
388
+ envelope:
389
+ Zgr > 0.12 T 2
390
+ d,2
391
+ ρd,−11
392
+ �tacc,c
393
+ Myr
394
+ � �
395
+ Mc
396
+ 0.3M⊕
397
+ �−2/3
398
+ (21)
399
+ which is generally consistent with our Zgr values. In order to
400
+ get supersolar Zgr, multiple conditions need to be satisfied:
401
+ • The dust size need to be fragmentation-limited, which
402
+ is a pre-requisite for our dust-size prescription. This depends
403
+ on many factors, including the accretion rate (setting the lu-
404
+ minosity and thus convective speeds) and particles’ porosity
405
+ and chemical composition (Blum & Wurm 2008; Okuzumi
406
+ et al. 2012; Wada et al. 2008, 2009).
407
+ • A significant fraction of the dust should not get accreted
408
+ by the core, but remain mixed in the envelope. This is an
409
+ open question with many complications. In our cases, sili-
410
+ cates are in vapor form at the base of the envelope which
411
+ should stop accretion from taking place unless the tempera-
412
+ ture is low enough for the inner envelope to reach saturation
413
+ pressure. This also depends on the nature of convection in
414
+ these envelopes, whether it is diffusive as we are assuming,
415
+ or whether it is dominated by large scale eddies that can
416
+ enhance accretion by the core (Johansen & Nordlund 2020).
417
+ 3.4
418
+ Accretion rate
419
+ Finally we investigate the effects of using a lower accretion
420
+ rate. Our results for
421
+ ˙Macc = 10−7M⊕/yr are shown in Fig.
422
+ 1. In this case we find that while the semimajor axis range
423
+ remains the same and the lower mass limit does not change
424
+ (∼ 0.08M⊕), the upper limit decreases by over a factor 2 to
425
+ ∼ 0.6M⊕. This is expected since, lower accretion rate leads
426
+ to lower luminosities. As seen in Fig. 2 (right hand side),
427
+ this decreases the radiative gradient and allows for a radia-
428
+ tive zone in the inner envelope even though the dust size in
429
+ the 2 cases converge to the same inner value. In some cases
430
+ Zgr can compensate for the lower luminosity and increases
431
+ the opacity enough to create fully convective envelopes, ex-
432
+ plaining the overall larger Zgr we find for the lower accretion
433
+ rate cases.
434
+ 4
435
+ SUMMARY & CONCLUSIONS
436
+ Crystalline silicates are ubiquitous in comets, but can only
437
+ form at very high temperatures. Here we investigated the
438
+ possibility of transforming amorphous silicates into crys-
439
+ talline particles inside the envelopes of protoplanets through
440
+ vaporization followed by re-condensation, and then ejecting
441
+ them back to the disk through diffusion in the fully con-
442
+ vective envelopes. Using a simplified 1D envelope structure
443
+ model that incorporates a dust size prescription accounting
444
+ for fragmentation and growth, we showed that crystalline
445
+ silicates can be created from a diverse set of parameters.
446
+ Cores need to be between 0.08 to 1.5 M⊕ in mass, as lighter
447
+ cores do not allow for temperatures high enough to vaporize
448
+ silicates, and the envelopes of more massive cores are often
449
+ not fully convective. We finally found that the location in
450
+ the disk (1 to 30 AU) has little influence on the results, ex-
451
+ cept in marginal cases, and that a solar to supersolar grain
452
+ abundance is needed, but this can be achieved through dust
453
+ fragmentation and accumulation. Our mechanism is simple
454
+ and does not rely on assumptions about the disk, although
455
+ it depends on the assumed diffusive nature of 1D convection.
456
+ Whether this is realistic needs to be investigated further us-
457
+ ing 3D hydrodynamic simulations.
458
+ ACKNOWLEDGEMENTS
459
+ We thank the anonymous referee for their constructive com-
460
+ ments that greatly improved this manuscript. This work is
461
+ supported by Tamkeen under the NYU Abu Dhabi Research
462
+ Institute grant CAP3.
463
+ DATA AVAILABILITY
464
+ The data underlying this article (numerical simulations out-
465
+ put files) will be shared on reasonable request to the corre-
466
+ sponding author.
467
+ REFERENCES
468
+ Ali-Dib M., Martin R. G., Petit J.-M., Mousis O., Vernazza
469
+ P., Lunine J. I., 2015, A&A, 583, A58. doi:10.1051/0004-
470
+ 6361/201526453
471
+ Ali-Dib M., Cumming A., Lin D. N. C., 2020, MNRAS, 494, 2440.
472
+ doi:10.1093/mnras/staa914
473
+ Ali-Dib M., Thompson C., 2020, ApJ, 900, 96. doi:10.3847/1538-
474
+ 4357/aba521
475
+ Brasser
476
+ R.,
477
+ Morbidelli
478
+ A.,
479
+ 2013,
480
+ Icar,
481
+ 225,
482
+ 40.
483
+ doi:10.1016/j.icarus.2013.03.012
484
+ Brownlee D., et al., 2006, Sci, 314, 1711
485
+ Blum
486
+ J.,
487
+ Wurm
488
+ G.,
489
+ 2008,
490
+ ARA&A,
491
+ 46,
492
+ 21.
493
+ doi:10.1146/annurev.astro.46.060407.145152
494
+ Bockel´ee-Morvan D., Gautier D., Hersant F., Hur´e J.-M., Robert
495
+ F., 2002, A&A, 384, 1107
496
+ Crovisier J., Leech K., Bockelee-Morvan D., Brooke T. Y., Hanner
497
+ M. S., Altieri B., Keller H. U., Lellouch E., 1997, Sci, 275, 1904
498
+ Crovisier J., et al., 2000, ASPC, 196, 109
499
+ Duncan
500
+ M.,
501
+ Quinn
502
+ T.,
503
+ Tremaine
504
+ S.,
505
+ 1987,
506
+ AJ,
507
+ 94,
508
+ 1330.
509
+ doi:10.1086/114571
510
+ Duncan
511
+ M.
512
+ J.,
513
+ Levison
514
+ H.
515
+ F.,
516
+ 1997,
517
+ Sci,
518
+ 276,
519
+ 1670.
520
+ doi:10.1126/science.276.5319.1670
521
+ Dones L., Brasser R., Kaib N., Rickman H., 2015, SSRv, 197, 191.
522
+ doi:10.1007/s11214-015-0223-2
523
+ Flaherty K. M., Hughes A. M., Rosenfeld K. A., Andrews S. M.,
524
+ Chiang E., Simon J. B., Kerzner S., et al., 2015, ApJ, 813, 99.
525
+ doi:10.1088/0004-637X/813/2/99
526
+ Flaherty K. M., Hughes A. M., Teague R., Simon J. B., Andrews
527
+ S. M., Wilner D. J., 2018, ApJ, 856, 117. doi:10.3847/1538-
528
+ 4357/aab615
529
+ Fromang S., Lyra W., Masset F., 2011, A&A, 534, A107.
530
+ doi:10.1051/0004-6361/201016068
531
+ Gail H.-P., 1998, A&A, 332, 1099–1122.
532
+ Gail H.-P., 2001, A&A, 378, 192. doi:10.1051/0004-6361:20011130
533
+ Hughes A. L. H., Armitage P. J., 2010, ApJ, 719, 1633.
534
+ doi:10.1088/0004-637X/719/2/1633
535
+ Hanner M. S., Hackwell J. A., Russell R. W., Lynch D. K., 1994,
536
+ Icar, 112, 490
537
+ MNRAS 000, 1–5 (2023)
538
+
539
+ Origins of hot minerals
540
+ 5
541
+ Figure 1. The semimajor axis, core mass, and envelope grain abundance for all the cases that satisfy our conditions to form and eject
542
+ crystal silicates as enumerated in section 3. Left:
543
+ ˙Macc = 10−6M⊕/yr . Right:
544
+ ˙Macc = 10−7M⊕/yr. Note the different color scales for
545
+ the two panels.
546
+ 109
547
+ 1010
548
+ 1011
549
+ r [cm]
550
+ 10-4
551
+ 10-3
552
+ 10-2
553
+ 10-1
554
+ 100
555
+ 101
556
+ 102
557
+ 103
558
+ 104
559
+ 105
560
+ 2π ad / λmax
561
+ 2π ad / λmax, 5M⊕
562
+ 2π ad / λmax, 1M⊕
563
+ Geometric opacity limit
564
+ 10-1
565
+ 100
566
+ 101
567
+ 102
568
+ Temperature gradient
569
+ ∇rad, 1M⊕
570
+ ∇rad, 5M⊕
571
+ ∇ad
572
+ 109
573
+ 1010
574
+ 1011
575
+ r [cm]
576
+ 10-6
577
+ 10-5
578
+ 10-4
579
+ 10-3
580
+ 10-2
581
+ 10-1
582
+ Dust size [cm]
583
+ ad, ˙M=10−6
584
+ ad, ˙M=10−7
585
+ 10-1
586
+ 100
587
+ 101
588
+ 102
589
+ Temperature gradient
590
+ ∇rad, ˙M=10−6
591
+ ∇rad, ˙M=10−7
592
+ ∇ad
593
+ Figure 2. Left: solid lines are the opacity efficiency factors Qe (eq. 7) for 2 different core masses with all other parameters being equal
594
+ (15 AU,
595
+ ˙Macc = 10−6M⊕/yr). These reach the regime switch value of 2 (solid blue line) at different radii, creating a radiative zone in
596
+ the inner envelope for the 5 M⊕ case but not for 1 M⊕ due to its smaller dust size. The dashed lines are the radiative and adiabatic
597
+ gradients, indicating the radiative and convective zones. Right: solid lines are the dust size ad for cases with 2 different accretion rates
598
+ but all other parameters being equal (15 AU, 1 M⊕). Dashed lines are the radiative and adiabatic gradients for the same cases. In all
599
+ plots, the x-axis is the radius from the core, extending from the core to the envelope’s outer boundary.
600
+ Hanner M. S., Lynch D. K., Russell R. W., 1994, ApJ, 425, 274
601
+ Hayward T. L., Hanner M. S., Sekanina Z., 2000, ApJ, 538, 428
602
+ Johansen A., Nordlund ˚A., 2020, ApJ, 903, 102. doi:10.3847/1538-
603
+ 4357/abb9b3
604
+ Krieger, F. J. 1967, Rand Corp., Memo. RM-5337-PR
605
+ Mousis O., Petit J.-M., Wurm G., Krauss O., Alibert Y., Horner
606
+ J., 2007, A&A, 466, L9. doi:10.1051/0004-6361:20077170
607
+ Mumma M. J., Charnley S. B., 2011, ARA&A, 49, 471
608
+ Mordasini
609
+ C.,
610
+ 2014,
611
+ A&A,
612
+ 572,
613
+ A118.
614
+ doi:10.1051/0004-
615
+ 6361/201423702
616
+ Ormel
617
+ C.
618
+ W.,
619
+ 2014,
620
+ ApJL,
621
+ 789,
622
+ L18.
623
+ doi:10.1088/2041-
624
+ 8205/789/1/L18
625
+ Okuzumi S., Tanaka H., Kobayashi H., Wada K., 2012, ApJ, 752,
626
+ 106. doi:10.1088/0004-637X/752/2/106
627
+ Shinnaka, Y., Ootsubo, T., Kawakita, H., et al. 2018, AJ, 156,
628
+ 242
629
+ Wada K., Tanaka H., Suyama T., Kimura H., Yamamoto T., 2008,
630
+ ApJ, 677, 1296. doi:10.1086/529511
631
+ Wada K., Tanaka H., Suyama T., Kimura H., Yamamoto T., 2009,
632
+ ApJ, 702, 1490. doi:10.1088/0004-637X/702/2/1490
633
+ Wooden D. H., Harker D. E., Woodward C. E., Butner H. M.,
634
+ Koike C., Witteborn F. C., McMurtry C. W., 1999, ApJ, 517,
635
+ 1034
636
+ This paper has been typeset from a TEX/LATEX file prepared by
637
+ the author.
638
+ MNRAS 000, 1–5 (2023)
639
+
640
+ Macc = 10-6 Ma /yr
641
+ 0.0
642
+ -0.2
643
+ 100
644
+ Core Mass [M
645
+ -0.6
646
+ -0.8
647
+ -1.0
648
+ grai
649
+ -1.2
650
+ 6
651
+ 10-1
652
+ Lo
653
+ -1.4
654
+ -1.6
655
+ 0
656
+ 5
657
+ 10
658
+ 15
659
+ 20
660
+ 25
661
+ 30
662
+ Semimajor axis [AU]Macc = 10-7 Mg / yr
663
+ 100
664
+ 0.00
665
+ -0.08
666
+ -0.16
667
+ b-
668
+ N
669
+ Core Mass [M]
670
+ -0.24
671
+ abundance
672
+ -0.32
673
+ -0.40
674
+ og grain
675
+ 10-1
676
+ -0.48
677
+ -0.56
678
+ -0.64
679
+ -0.72
680
+ 0
681
+ 5
682
+ 10
683
+ 15
684
+ 20
685
+ 25
686
+ 30
687
+ Semimajor axis [AU]
8tAzT4oBgHgl3EQfgvwn/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,410 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf,len=409
2
+ page_content='MNRAS 000, 1–5 (2023) Preprint 5 January 2023 Compiled using MNRAS LATEX style file v3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
3
+ page_content='0 Dust processing in protoplanetary envelopes as the origin of hot minerals in comets Mohamad Ali-Dib1⋆ 1Center for Astro, Particle and Planetary Physics (CAP3), New York University Abu Dhabi, UAE Accepted 2022-12-30 ABSTRACT Crystalline silicates are found in a large number of comets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
4
+ page_content=' These pose a long-standing conundrum for solar system formation models as they can only be created in the in- ner hot disk at temperatures higher than 800 K, and there is no obvious mechanism to transport them out into the comets formation region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
5
+ page_content=' Here we propose that these particles could have formed inside the hydrostatic envelopes surrounding young pro- toplanets still embedded in the protoplanetary disk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
6
+ page_content=' Using a simplified 1D model we investigate the thermal structure of these envelopes, and find that for core masses ranging from 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
7
+ page_content='08 to 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
8
+ page_content='5 M⊕, located anywhere between 1 and 30 AU, the temper- ature and pressure at the base of the envelopes are high enough to quickly vaporize silicate particles of various sizes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
9
+ page_content=' Moreover, if the grain abundance is atleast solar, these envelopes become fully convective, allowing for dust ejection across the Bondi radius back into the disk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
10
+ page_content=' Amorphous silicates are hence thermally processed into crystalline particles in these envelopes, and then transported back to disk through convective diffusion to be finally incorporated into the cometary building blocks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
11
+ page_content=' Key words: planets and satellites: formation – comets: general – planets and satellites: composition 1 INTRODUCTION High temperature minerals are ubiquitous in the cold outer solar system small bodies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
12
+ page_content=' One of the earliest remote sensing detections was for crystalline silicates (CSs) such as olivines and pyroxenes in the grains of comets 1P/Halley, D/1993 F2 (Shoemaker-Levy), C/1987 P1 (Bradfield) (Hanner et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
13
+ page_content=' 1994), and C/1993 A1 (Mueller) (Hanner, Lynch, & Russell 1994).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
14
+ page_content=' Subsequent detections were made in comets C/1995 O1 (Hale-Bopp) (Hayward, Hanner, & Sekanina 2000;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
15
+ page_content=' Cro- visier et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
16
+ page_content=' 1997;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
17
+ page_content=' Wooden et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
18
+ page_content=' 1999), 103P/Hartley (Cro- visier et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
19
+ page_content=' 2000), and more recently 17P/Holmes (Shinnaka et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
20
+ page_content=' 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
21
+ page_content=' On the other hand Calcium-Aluminum inclu- sions (CAIs) that form at even higher temperatures were found in the dust collected by Stardust in comet 81P/Wild (Brownlee et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
22
+ page_content=' 2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
23
+ page_content=' We refer the reader to the observa- tional review of Mumma & Charnley (2011) for more infor- mations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
24
+ page_content=' The presence of CSs have been a primary challenge to solar system formation models for decades, as the thermal conditions in the outer protoplanetary disk are not con- ducive to their formation locally.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
25
+ page_content=' CSs can form starting from amorphous silicates through either direct vaporization followed by re-condensation at temperatures higher than ⋆ E-mail: malidib@nyu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
26
+ page_content='edu ∼1800 K, or thermal annealing for T> 800 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
27
+ page_content=' Annealing is a physical process where sufficiently energetic molecules of a solid slowly regroup into a crystal lattice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
28
+ page_content=' This mechanism is not instantaneous and necessitates high temperature expo- sure for a period of few weeks followed by slow cooling (Gail 1998, 2001).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
29
+ page_content=' In typical protoplanetary disks, direct conden- sation can be active only inside ∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
30
+ page_content='1 AU, and annealing is inefficient outside ∼ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
31
+ page_content='5 AU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
32
+ page_content=' Moreover, there is no acceptable mechanism to trans- port these particles from the inner disk to the comets for- mation region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
33
+ page_content=' Earlier transport models relied on turbulent diffusion (Bockel´ee-Morvan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
34
+ page_content=' 2002), but recent ALMA observations suggest that protoplanetary disks are laminar (Flaherty et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
35
+ page_content=' 2015, 2018), and thus this mechanism is un- likely to be efficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
36
+ page_content=' Large scale outward advection in the disk’s midplane has also been proposed (Hughes & Armitage 2010), but 3D MHD simulations ruled out the presence of such advection (Fromang, Lyra, & Masset 2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
37
+ page_content=' Another possible transport mechanism is photophoresis (Mousis et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
38
+ page_content=' 2007), but this necessitates a relatively large (1-2 AU) central hole in the disk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
39
+ page_content=' Finally, Ali-Dib et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
40
+ page_content=' (2015) pro- posed that FU-Ori outbursts might form these particles in situ, but this depends on the outburst trigger radius being large enough, which is uncertain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
41
+ page_content=' Here we show how high temperature minerals form nat- urally, and in-situ, in the envelopes surrounding low mass © 2023 The Authors arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
42
+ page_content='01472v1 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
43
+ page_content='EP] 4 Jan 2023 2 M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
44
+ page_content=' Ali-Dib proto-planets embedded in the disk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
45
+ page_content=' We present models showing that the temperatures and pressures at the base of these envelopes easily reach conditions that allow for the formation of crystalline silicates through direct vapor- ization and re-condensation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
46
+ page_content=' Primordial amorphous silicates are thus accreted and then thermally processed in these en- velopes, before finally getting ejected back to the disk as crystalline particles via convective diffusion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
47
+ page_content=' We emphasize that this work concerns the formation of generic CSs such as olivines and pyroxenes, and not necessarily chondrules and CAIs due to their additional formation-time constrains that are outside the scope of this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
48
+ page_content=' We present our model in section 2, results in section 3, and conclude in section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
49
+ page_content=' 2 MODEL We model the atmosphere using the standard atmospheric structure equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
50
+ page_content=' The equation of hydrostatic equilibrium is given by: dP dr = −GM r2 ρ(r) (1) and we define the temperature gradient equation starting from the standard assumption that heat can be transported using either radiation (if the local envelope is convectively stable) or adiabatic convection (if unstable).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
51
+ page_content=' It is hence writ- ten as: dT dr = ∇ T P dP dr (2) where ∇ is defined, starting from the Schwarzschild con- vective stability criterion (∇rad < ∇ad), to be ∇ = min(∇ad, ∇rad).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
52
+ page_content=' Here ∇ad is the adiabatic gradient: ∇ad ≡ � d ln T d ln P � ad = γ − 1 γ (3) where the adiabatic constant γ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
53
+ page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
54
+ page_content=' ∇rad is the radiative gradient: ∇rad ≡ 3κP 64πGMσT 4 L (4) where L is the envelope’s luminosity generated by accretion at a rate ˙Macc : L = GM ˙Macc Rc (5) Rc is the core radius, and κ is the opacity that we define following Ormel (2014) as: κ = κgas + κgr (6) with: κgr = κgeomQe = 3Zgr 4ρsa × min(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
55
+ page_content='6πa λmax , 2) (7) where Zgr is the grains abundance, as their size, and ρs their internal density.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
56
+ page_content=' we use ρs = 3 g/cm3 for both the core and the dust particles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
57
+ page_content=' The equilibrium dust size in the envelope as is set by two competing processes: grain growth through coagulation (Ormel 2014) and grain collisional destruction (Ali-Dib & Thompson 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
58
+ page_content=' The relative relevance of these two pro- cesses is decided mainly by whether the collisional speeds reach the silicate fragmentation threshold (Vf ∼ 100 cm/s, Blum & Wurm (2008)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
59
+ page_content=' The collisional speed is approxi- mated here as the largest among the dust’s convective ve- locity Vcon,d (eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
60
+ page_content=' 19) and the dust’s radial drift velocity: Vdrift,d = τstop GM r2 (8) where τstop is the stopping time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
61
+ page_content=' As discussed in (Ali-Dib & Thompson 2020), collisions in these envelopes are likely to be destructive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
62
+ page_content=' This leads to a small characteristic dust size, increasing the opac- ity (thus growing the convective zone), and decreasing the vaporization timescale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
63
+ page_content=' Here we only select models where max(Vcon,d,Vdrift,d) is higher than 100 cm/s everywhere in the disk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
64
+ page_content=' The convective fragmentation dust size is hence calcu- lated following (Ali-Dib & Thompson 2020) as: as,conv = 4πV 2 f r3ρ2 gcg Lρs (9) where ρg and cg are the gas’ density and sound speed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
65
+ page_content=' The drift fragmentation dust size is given by: as,drift = Vfr2ρgcg GMρs (10) with finally as=min(as,conv,as,drift).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
66
+ page_content=' Note that as,conv is defined everywhere in the envelope, since, as discussed below, we also only select fully convec- tive envelopes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
67
+ page_content=' For this approach to be applicable, the par- ticles need to reach the local fragmentation threshold at ev- ery point in the envelope.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
68
+ page_content=' Therefore, for self-consistency, we only keep models where the mean free time for collisions is shorter than the convective timescale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
69
+ page_content=' In the convective fragmentation regime this can be written as: as as + 4ℓg/9 < 9Z2 gr ρg ρs Mcon r ℓg (11) where Mcon is the convective Mach number, and ℓg the mean free path of the gas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
70
+ page_content=' In the drift regime this is replaced by : 3 4Zgr c2 gr GM Mcon 1 + 9as/4ℓg < 1 (12) The gas opacity is given by: κgas = 10−8ρ2/3 g T 3 (13) Finally we close the system with the ideal gas equation of state P = ρgkBT/µ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
71
+ page_content=' We solve these equations by integrating inwards from the outer boundary at Rout, the minimum of the Bondi and Hill radii, to the core.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
72
+ page_content=' We assumed the disk is radiative and calculate its temperature and density following Ali-Dib, Cumming, & Lin (2020): Td = 373 r−9/10 au K and ρd = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
73
+ page_content='7×10−10 r−33/20 au g/cm3 (14) Once we have the envelope’s thermal structure, we can calculate additional quantities needed for the subsequent analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
74
+ page_content=' We calculate the silicate particles vaporization rate as : 1 as das dt = − � µSil 2πkT �1/2 P sat Sil ρsas (15) MNRAS 000, 1–5 (2023) Origins of hot minerals 3 with (Krieger 1967): P sat sil (T) = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
75
+ page_content='2 × 1014e−(6×104 K)/T (16) and hence the silicate grains vaporization timescale is given by : τvap,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
76
+ page_content='sil = � 1 as das dt �−1 (17) We define the gas and dust convective velocities respec- tively as: Vcon,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
77
+ page_content='g = � L 4πr2ρg �1/3 (18) where we assumed that in the convective zone the energy is entirely transported through adiabatic convection,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
78
+ page_content=' and Vcon,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
79
+ page_content='d ∼ Vcon (Vconτstop/r)1/2 (19) We finally calculate the dust’s convective mixing timescale as: τmix,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
80
+ page_content='d = H/Vcon,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
81
+ page_content='d (20) 3 RESULTS We start by exploring parameter space in order to find the values that allow for the creation of CSs in proto-envelopes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
82
+ page_content=' We explore core masses ranging from Pluto’s mass (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
83
+ page_content='002 M⊕) to a hypothetical giant planet’s core (10 M⊕), placed between 1 and 30 AU where ambient temperatures are too low to create CSs in the disk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
84
+ page_content=' The grains abundance Zgr ranges from subsolar (10−3) to supersolar (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
85
+ page_content='0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
86
+ page_content=' Our results are summarized in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
87
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
88
+ page_content=' In this plot we show only the areas of parameter space leading to envelopes conducive to the creation of CSs and that are self-consistent to our model assumptions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
89
+ page_content=' This is defined by these condi- tions: (i) τvap,sil is less than τmix,d at the base of the envelope.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
90
+ page_content=' This simply constrain the envelopes to those where solid silicates at their base can get vaporized faster than they are transported back into the upper cooler zones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
91
+ page_content=' (ii) The envelope is fully convective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
92
+ page_content=' This ensures that the newly created CSs can be convectively diffused all the way back into the disk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
93
+ page_content=' This condition is inspired by the results of Ali-Dib & Thompson (2020) who considered a similar setup with a 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
94
+ page_content='3 M⊕ core embedded in the disk, and showed that, for typical accretion rates, pebble fragmentation and dust loading increases the opacity and push the convective zone out till it reaches the Bondi radius.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
95
+ page_content=' Dust particles in these steady-state envelopes are then diffusively ejected back to the disk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
96
+ page_content=' Our results rely on this mechanism to transport the newly created CSs from the hot inner envelope back to the disk to be incorporated in proto-comets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
97
+ page_content=' (iii) The collisional velocity is higher than 100 cm/s throughout the envelope, and conditions 11 and 12 are sat- isfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
98
+ page_content=' This ensures that our dust size prescription is self- consistent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
99
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
100
+ page_content='1 Core mass Figure 1 shows that, while CSs can be created under a va- riety of parameter ranges, trends do exist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
101
+ page_content=' We start with our nominal model, for ˙Macc = 10−6M⊕/yr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
102
+ page_content=' First, there is a relatively narrow range of masses that extends from around 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
103
+ page_content='08 M⊕ (40 times Pluto’s mass) to 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
104
+ page_content='5 M⊕, beyond which the chances of creating CSs drops drastically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
105
+ page_content=' This implies that CSs might have formed in the proto-envelopes of Mars to Earth mass protoplanets that have since disap- peared via giant collisions or dynamical ejection, or possibly grown into giant planetary cores.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
106
+ page_content=' The lower limit on core masses is mainly due to their envelopes’ relatively cooler temperatures, increasing τvap,sil considerably.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
107
+ page_content=' On the other hand, cores with masses higher than 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
108
+ page_content='5 M⊕ have dust par- ticles large enough in their middle and inner envelopes to switch from the Rosseland mean opacity regime to the ge- ometric opacity regime, as can be seen in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
109
+ page_content=' 2 (left hand panel).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
110
+ page_content=' This decreases the radiative gradient, creating an in- ner radiative zone that prevents these envelopes from being fully convective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
111
+ page_content=' It is worth noting that, while our model considers the smallest of the Hill and Bondi radii to be the envelope’s outer boundary, all of our acceptable cases that form CSs are in the Bondi regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
112
+ page_content=' This is expected as the Hill regime dominates for higher mass cores (5-10 M⊕) that were excluded above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
113
+ page_content=' The Bondi radius RB = 2GM/c2 s is obtained by equating the local sound speed to the gravi- tational escape velocity, and thus describes a usually light but bound envelope where gas particles do not have enough thermal energy to escape.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
114
+ page_content=' For higher mass cores, the Bondi radius is large enough for the Hill stability criteria to become the more stringent constrain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
115
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
116
+ page_content='2 Semimajor axis A complementary piece of information is the semimajor axis, where we find that CSs can form almost anywhere in the disk if the envelope’s grain abundance is high enough as discussed further below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
117
+ page_content=' Semimajor axis controls the temperature and density at the outer boundary, which seems to be important only in the marginal cases, for example for low core masses where the envelopes would be too cold if placed further out in the disk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
118
+ page_content=' The wide range of possible semimajor axis allows for the possibility of creating CSs in the comets formation region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
119
+ page_content=' Classically, Oort cloud comets were thought to form among the giant planets all the way down to 5 AU, while Jupiter family comets were thought to form in the scattered disk (Duncan, Quinn, & Tremaine 1987;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
120
+ page_content=' Duncan & Levison 1997;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
121
+ page_content=' Dones et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
122
+ page_content=' 2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
123
+ page_content=' Alternatively, Brasser & Morbidelli (2013) proposed that both could have formed in the same region beyond Neptune.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
124
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
125
+ page_content='3 Grains abundance We moreover find that creating CSs necessitate solar to su- persolar grain abundance in the envelope (Zgr >= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
126
+ page_content='01).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
127
+ page_content=' This result is not consistent with the subsolar grain abun- dances found in models that incorporate dust growth & set- tling to the core but omit dust fragmentation with convec- tive mixing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
128
+ page_content=' Ormel (2014) for example added a simple grain growth equation to the atmospheric structure equations, and found that Zgr can be as low as 10−4 in parts of the envelope.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
129
+ page_content=' Mordasini (2014) also created an atmospheric model incor- porating dust settling and coagulation, and found that this mostly results in subsolar opacities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
130
+ page_content=' The main role of Zgr is MNRAS 000, 1–5 (2023) 4 M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
131
+ page_content=' Ali-Dib to increase the opacity and extend the convective zone all the way to the outer boundary (Bondi or Hill radius).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
132
+ page_content=' Ali-Dib & Thompson (2020) discussed the gradual buildup of Zgr in the envelope through accretion and fragmentation, and de- rived a lower limit on Zgr in order to get a fully convective envelope: Zgr > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
133
+ page_content='12 T 2 d,2 ρd,−11 �tacc,c Myr � � Mc 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
134
+ page_content='3M⊕ �−2/3 (21) which is generally consistent with our Zgr values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
135
+ page_content=' In order to get supersolar Zgr, multiple conditions need to be satisfied: The dust size need to be fragmentation-limited, which is a pre-requisite for our dust-size prescription.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
136
+ page_content=' This depends on many factors, including the accretion rate (setting the lu- minosity and thus convective speeds) and particles’ porosity and chemical composition (Blum & Wurm 2008;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
137
+ page_content=' Okuzumi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
138
+ page_content=' 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
139
+ page_content=' Wada et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
140
+ page_content=' 2008, 2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
141
+ page_content=' A significant fraction of the dust should not get accreted by the core, but remain mixed in the envelope.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
142
+ page_content=' This is an open question with many complications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
143
+ page_content=' In our cases, sili- cates are in vapor form at the base of the envelope which should stop accretion from taking place unless the tempera- ture is low enough for the inner envelope to reach saturation pressure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
144
+ page_content=' This also depends on the nature of convection in these envelopes, whether it is diffusive as we are assuming, or whether it is dominated by large scale eddies that can enhance accretion by the core (Johansen & Nordlund 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
145
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
146
+ page_content='4 Accretion rate Finally we investigate the effects of using a lower accretion rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
147
+ page_content=' Our results for ˙Macc = 10−7M⊕/yr are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
148
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
149
+ page_content=' In this case we find that while the semimajor axis range remains the same and the lower mass limit does not change (∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
150
+ page_content='08M⊕), the upper limit decreases by over a factor 2 to ∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
151
+ page_content='6M⊕.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
152
+ page_content=' This is expected since, lower accretion rate leads to lower luminosities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
153
+ page_content=' As seen in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
154
+ page_content=' 2 (right hand side), this decreases the radiative gradient and allows for a radia- tive zone in the inner envelope even though the dust size in the 2 cases converge to the same inner value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
155
+ page_content=' In some cases Zgr can compensate for the lower luminosity and increases the opacity enough to create fully convective envelopes, ex- plaining the overall larger Zgr we find for the lower accretion rate cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
156
+ page_content=' 4 SUMMARY & CONCLUSIONS Crystalline silicates are ubiquitous in comets, but can only form at very high temperatures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
157
+ page_content=' Here we investigated the possibility of transforming amorphous silicates into crys- talline particles inside the envelopes of protoplanets through vaporization followed by re-condensation, and then ejecting them back to the disk through diffusion in the fully con- vective envelopes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
158
+ page_content=' Using a simplified 1D envelope structure model that incorporates a dust size prescription accounting for fragmentation and growth, we showed that crystalline silicates can be created from a diverse set of parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
159
+ page_content=' Cores need to be between 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
160
+ page_content='08 to 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
161
+ page_content='5 M⊕ in mass, as lighter cores do not allow for temperatures high enough to vaporize silicates, and the envelopes of more massive cores are often not fully convective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
162
+ page_content=' We finally found that the location in the disk (1 to 30 AU) has little influence on the results, ex- cept in marginal cases, and that a solar to supersolar grain abundance is needed, but this can be achieved through dust fragmentation and accumulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
163
+ page_content=' Our mechanism is simple and does not rely on assumptions about the disk, although it depends on the assumed diffusive nature of 1D convection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
164
+ page_content=' Whether this is realistic needs to be investigated further us- ing 3D hydrodynamic simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
165
+ page_content=' ACKNOWLEDGEMENTS We thank the anonymous referee for their constructive com- ments that greatly improved this manuscript.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
166
+ page_content=' This work is supported by Tamkeen under the NYU Abu Dhabi Research Institute grant CAP3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
167
+ page_content=' DATA AVAILABILITY The data underlying this article (numerical simulations out- put files) will be shared on reasonable request to the corre- sponding author.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
168
+ page_content=' REFERENCES Ali-Dib M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
169
+ page_content=', Martin R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
170
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
171
+ page_content=', Petit J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
172
+ page_content='-M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
173
+ page_content=', Mousis O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
174
+ page_content=', Vernazza P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
175
+ page_content=', Lunine J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
176
+ page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
177
+ page_content=', 2015, A&A, 583, A58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
178
+ page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
179
+ page_content='1051/0004- 6361/201526453 Ali-Dib M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
180
+ page_content=', Cumming A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
181
+ page_content=', Lin D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
182
+ page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
183
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
184
+ page_content=', 2020, MNRAS, 494, 2440.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
185
+ page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
186
+ page_content='1093/mnras/staa914 Ali-Dib M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
187
+ page_content=', Thompson C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
188
+ page_content=', 2020, ApJ, 900, 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
189
+ page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
190
+ page_content='3847/1538- 4357/aba521 Brasser R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
191
+ page_content=', Morbidelli A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
192
+ page_content=', 2013, Icar, 225, 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
193
+ page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
194
+ page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
195
+ page_content='icarus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
196
+ page_content='2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
197
+ page_content='03.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
198
+ page_content='012 Brownlee D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
199
+ page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
200
+ page_content=', 2006, Sci, 314, 1711 Blum J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
201
+ page_content=', Wurm G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
202
+ page_content=', 2008, ARA&A, 46, 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
203
+ page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
204
+ page_content='1146/annurev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
205
+ page_content='astro.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
206
+ page_content='46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
207
+ page_content='060407.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
208
+ page_content='145152 Bockel´ee-Morvan D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
209
+ page_content=', Gautier D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
210
+ page_content=', Hersant F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
211
+ page_content=', Hur´e J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
212
+ page_content='-M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
213
+ page_content=', Robert F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
214
+ page_content=', 2002, A&A, 384, 1107 Crovisier J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
215
+ page_content=', Leech K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
216
+ page_content=', Bockelee-Morvan D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
217
+ page_content=', Brooke T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
218
+ page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
219
+ page_content=', Hanner M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
220
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
221
+ page_content=', Altieri B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
222
+ page_content=', Keller H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
223
+ page_content=' U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
224
+ page_content=', Lellouch E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
225
+ page_content=', 1997, Sci, 275, 1904 Crovisier J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
226
+ page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
227
+ page_content=', 2000, ASPC, 196, 109 Duncan M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
228
+ page_content=', Quinn T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
229
+ page_content=', Tremaine S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
230
+ page_content=', 1987, AJ, 94, 1330.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
231
+ page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
232
+ page_content='1086/114571 Duncan M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
233
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
234
+ page_content=', Levison H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
235
+ page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
236
+ page_content=', 1997, Sci, 276, 1670.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
237
+ page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
238
+ page_content='1126/science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
239
+ page_content='276.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
240
+ page_content='5319.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
241
+ page_content='1670 Dones L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
242
+ page_content=', Brasser R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
243
+ page_content=', Kaib N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
244
+ page_content=', Rickman H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
245
+ page_content=', 2015, SSRv, 197, 191.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
246
+ page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
247
+ page_content='1007/s11214-015-0223-2 Flaherty K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
248
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
249
+ page_content=', Hughes A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
250
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
251
+ page_content=', Rosenfeld K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
252
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
253
+ page_content=', Andrews S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
254
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
255
+ page_content=', Chiang E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
256
+ page_content=', Simon J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
257
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
258
+ page_content=', Kerzner S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
259
+ page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
260
+ page_content=', 2015, ApJ, 813, 99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
261
+ page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
262
+ page_content='1088/0004-637X/813/2/99 Flaherty K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
263
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
264
+ page_content=', Hughes A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
265
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
266
+ page_content=', Teague R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
267
+ page_content=', Simon J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
268
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
269
+ page_content=', Andrews S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
270
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
271
+ page_content=', Wilner D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
272
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
273
+ page_content=', 2018, ApJ, 856, 117.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
274
+ page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
275
+ page_content='3847/1538- 4357/aab615 Fromang S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
276
+ page_content=', Lyra W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
277
+ page_content=', Masset F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
278
+ page_content=', 2011, A&A, 534, A107.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
279
+ page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
280
+ page_content='1051/0004-6361/201016068 Gail H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
281
+ page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
282
+ page_content=', 1998, A&A, 332, 1099–1122.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
283
+ page_content=' Gail H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
284
+ page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
285
+ page_content=', 2001, A&A, 378, 192.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
286
+ page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
287
+ page_content='1051/0004-6361:20011130 Hughes A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
288
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
289
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
290
+ page_content=', Armitage P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
291
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
292
+ page_content=', 2010, ApJ, 719, 1633.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
293
+ page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
294
+ page_content='1088/0004-637X/719/2/1633 Hanner M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
295
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
296
+ page_content=', Hackwell J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
297
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
298
+ page_content=', Russell R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
299
+ page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
300
+ page_content=', Lynch D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
301
+ page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
302
+ page_content=', 1994, Icar, 112, 490 MNRAS 000, 1–5 (2023) Origins of hot minerals 5 Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
303
+ page_content=' The semimajor axis, core mass, and envelope grain abundance for all the cases that satisfy our conditions to form and eject crystal silicates as enumerated in section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
304
+ page_content=' Left: ˙Macc = 10−6M⊕/yr .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
305
+ page_content=' Right: ˙Macc = 10−7M⊕/yr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
306
+ page_content=' Note the different color scales for the two panels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
307
+ page_content=' 109 1010 1011 r [cm] 10-4 10-3 10-2 10-1 100 101 102 103 104 105 2π ad / λmax 2π ad / λmax, 5M⊕ 2π ad / λmax, 1M⊕ Geometric opacity limit 10-1 100 101 102 Temperature gradient ∇rad, 1M⊕ ∇rad, 5M⊕ ∇ad 109 1010 1011 r [cm] 10-6 10-5 10-4 10-3 10-2 10-1 Dust size [cm] ad, ˙M=10−6 ad, ˙M=10−7 10-1 100 101 102 Temperature gradient ∇rad, ˙M=10−6 ∇rad, ˙M=10−7 ∇ad Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
308
+ page_content=' Left: solid lines are the opacity efficiency factors Qe (eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
309
+ page_content=' 7) for 2 different core masses with all other parameters being equal (15 AU, ˙Macc = 10−6M⊕/yr).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
310
+ page_content=' These reach the regime switch value of 2 (solid blue line) at different radii, creating a radiative zone in the inner envelope for the 5 M⊕ case but not for 1 M⊕ due to its smaller dust size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
311
+ page_content=' The dashed lines are the radiative and adiabatic gradients, indicating the radiative and convective zones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
312
+ page_content=' Right: solid lines are the dust size ad for cases with 2 different accretion rates but all other parameters being equal (15 AU, 1 M⊕).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
313
+ page_content=' Dashed lines are the radiative and adiabatic gradients for the same cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
314
+ page_content=' In all plots, the x-axis is the radius from the core, extending from the core to the envelope’s outer boundary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
315
+ page_content=' Hanner M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
316
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
317
+ page_content=', Lynch D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
318
+ page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
319
+ page_content=', Russell R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
320
+ page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
321
+ page_content=', 1994, ApJ, 425, 274 Hayward T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
322
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
323
+ page_content=', Hanner M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
324
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
325
+ page_content=', Sekanina Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
326
+ page_content=', 2000, ApJ, 538, 428 Johansen A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
327
+ page_content=', Nordlund ˚A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
328
+ page_content=', 2020, ApJ, 903, 102.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
329
+ page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
330
+ page_content='3847/1538- 4357/abb9b3 Krieger, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
331
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
332
+ page_content=' 1967, Rand Corp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
333
+ page_content=', Memo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
334
+ page_content=' RM-5337-PR Mousis O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
335
+ page_content=', Petit J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
336
+ page_content='-M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
337
+ page_content=', Wurm G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
338
+ page_content=', Krauss O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
339
+ page_content=', Alibert Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
340
+ page_content=', Horner J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
341
+ page_content=', 2007, A&A, 466, L9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
342
+ page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
343
+ page_content='1051/0004-6361:20077170 Mumma M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
344
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
345
+ page_content=', Charnley S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
346
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
347
+ page_content=', 2011, ARA&A, 49, 471 Mordasini C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
348
+ page_content=', 2014, A&A, 572, A118.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
349
+ page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
350
+ page_content='1051/0004- 6361/201423702 Ormel C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
351
+ page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
352
+ page_content=', 2014, ApJL, 789, L18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
353
+ page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
354
+ page_content='1088/2041- 8205/789/1/L18 Okuzumi S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
355
+ page_content=', Tanaka H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
356
+ page_content=', Kobayashi H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
357
+ page_content=', Wada K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
358
+ page_content=', 2012, ApJ, 752, 106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
359
+ page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
360
+ page_content='1088/0004-637X/752/2/106 Shinnaka, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
361
+ page_content=', Ootsubo, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
362
+ page_content=', Kawakita, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
363
+ page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
364
+ page_content=' 2018, AJ, 156, 242 Wada K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
365
+ page_content=', Tanaka H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
366
+ page_content=', Suyama T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
367
+ page_content=', Kimura H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
368
+ page_content=', Yamamoto T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
369
+ page_content=', 2008, ApJ, 677, 1296.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
370
+ page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
371
+ page_content='1086/529511 Wada K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
372
+ page_content=', Tanaka H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
373
+ page_content=', Suyama T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
374
+ page_content=', Kimura H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
375
+ page_content=', Yamamoto T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
376
+ page_content=', 2009, ApJ, 702, 1490.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
377
+ page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
378
+ page_content='1088/0004-637X/702/2/1490 Wooden D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
379
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
380
+ page_content=', Harker D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
381
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
382
+ page_content=', Woodward C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
383
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
384
+ page_content=', Butner H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
385
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
386
+ page_content=', Koike C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
387
+ page_content=', Witteborn F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
388
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
389
+ page_content=', McMurtry C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
390
+ page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
391
+ page_content=', 1999, ApJ, 517, 1034 This paper has been typeset from a TEX/LATEX file prepared by the author.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
392
+ page_content=' MNRAS 000, 1–5 (2023) Macc = 10-6 Ma /yr 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
393
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
394
+ page_content='2 100 Core Mass [M 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
395
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
396
+ page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
397
+ page_content='0 grai 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
398
+ page_content='2 6 10-1 Lo 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
399
+ page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
400
+ page_content='6 0 5 10 15 20 25 30 Semimajor axis [AU]Macc = 10-7 Mg / yr 100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
401
+ page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
402
+ page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
403
+ page_content='16 b- N Core Mass [M] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
404
+ page_content='24 abundance 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
405
+ page_content='32 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
406
+ page_content='40 og grain 10-1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
407
+ page_content='48 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
408
+ page_content='56 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
409
+ page_content='64 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
410
+ page_content='72 0 5 10 15 20 25 30 Semimajor axis [AU]' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAzT4oBgHgl3EQfgvwn/content/2301.01472v1.pdf'}
B9FQT4oBgHgl3EQf-TfR/content/tmp_files/2301.13454v1.pdf.txt ADDED
@@ -0,0 +1,318 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ Compliance Costs of AI Technology
3
+ Commercialization: A Field Deployment
4
+ Perspective
5
+
6
+ Weiyue Wu and Shaoshan Liu
7
+
8
+ 1. Introduction
9
+
10
+ While Artificial Intelligence (AI) technologies are progressing fast, compliance costs have
11
+ become a huge financial burden for AI startups, which are already constrained on research &
12
+ development budgets. This situation creates a compliance trap, as many AI startups are not
13
+ financially prepared to cope with a broad spectrum of regulatory requirements. Particularly,
14
+ the complex and varying regulatory processes across the globe subtly give advantages to well-
15
+ established and resourceful technology firms over resource-constrained AI startups [1]. The
16
+ continuation of this trend may phase out the majority of AI startups and lead to giant
17
+ technology firms' monopolies of AI technologies. To demonstrate the reality of the
18
+ compliance trap, from a field deployment perspective, we delve into the details of compliance
19
+ costs of AI commercial operations.
20
+ 2. Financial Vulnerability: Tech Giants vs. AI Startups
21
+
22
+ Compared to established tech giants, AI startups are much more financially vulnerable.
23
+ Based on the OECD Regulatory Compliance Cost Assessment Guidance [2], we quantitatively
24
+ compare the financial vulnerability of tech giants versus AI startups. Conducting a financial
25
+ statement simulation provides a glimpse at the impact of changes in compliance costs. The
26
+ simulation in Table 1 assumes that gross profit and expense are a fixed percentage of revenue.
27
+ The compliance cost is split into a fixed cost regardless of revenue and a variable cost that
28
+ takes 5% of revenue. When the fixed compliance cost increases by 200%, the operating
29
+ margin of the startup changes from 13% to -7%, turning the company from a profitable
30
+ business into a money-losing one. By contrast, such a change only brings a slight drop in
31
+ operating margin in tech giants.
32
+
33
+ Table 1: Sensitivity Analysis: Impact of Change in Compliance Cost on Operating Income
34
+
35
+ Start-ups
36
+ Tech Giants
37
+ 200% increase in
38
+ 200% increase in
39
+ Base case
40
+ fixed compliance cost
41
+ Base case
42
+ fixed compliance cost
43
+ Revenue
44
+ $2,000,000
45
+ $2,000,000
46
+ $20,000,000
47
+ $20,000,000
48
+ Gross Margin
49
+ 40%
50
+ 40%
51
+ 40%
52
+ 40%
53
+ Gross Profit
54
+ 800,000
55
+ 800,000
56
+ 8,000,000
57
+ 8,000,000
58
+ Total Compliance Cost
59
+ 300,000
60
+ 700,000
61
+ 1,200,000
62
+ 1,600,000
63
+ Fixed compliance cost
64
+ 200,000
65
+ 600,000
66
+ 200,000
67
+ 600,000
68
+ Variable compliance cost
69
+ 100,000
70
+ 100,000
71
+ 1,000,000
72
+ 1,000,000
73
+ Expenses
74
+ 240,000
75
+ 240,000
76
+ 2,400,000
77
+ 2,400,000
78
+ Operating Income
79
+ 260,000
80
+ (140,000)
81
+ 4,400,000
82
+ 4,000,000
83
+ Operating Margin
84
+ 13%
85
+ -7%
86
+ 22%
87
+ 20%
88
+ The actual situation of AI startups is more complex than this estimation, as it is nearly
89
+ impossible for external analysts to estimate the compliance costs. According to Accounting
90
+ Standards, companies are not required to disclose compliance cost explicitly in financial
91
+ reports when the cost is not material [3]. Thus, compliance costs may become hidden by
92
+ nature and classified into other categories, such as Research and Development expenses and
93
+ other administrative expenses. Lacking first-hand information, analysts on the macro-
94
+ economic level tend to underestimate the costs of AI regulations. For instance, in an impact
95
+ assessment report of the Europe AI Act, the estimated annual compliance cost of one AI
96
+ product that averagely costs EUR 170,000 to develop is EUR 29,277, we believe this study has
97
+ underestimated the actual costs of AI compliance [4].
98
+
99
+ 3. The Compliance Trap
100
+
101
+ AI is a highly regulated industry, but unfortunately, there is no standardized AI regulation
102
+ framework, and hence compliance costs often become a financial trap for AI startups [1].
103
+ Most AI entrepreneurs may not even be aware of the existence of compliance costs, let alone
104
+ the severe impact compliance costs may have on the company's overall financial health. As
105
+ illustrated in Figure 1, we summarize the following challenges.
106
+
107
+
108
+ Figure 1: the compliance trap for AI startups
109
+
110
+ First, unlike R&D budgeting, due to varying AI regulatory frameworks across the globe or
111
+ even across multiple regions within a country, there is no standard method to budget for AI
112
+ compliance costs. Even estimating the range of AI compliance costs is infeasible.
113
+
114
+ Second, even with an AI compliance budget, the actual costs may significantly deviate from
115
+ the budget. AI startups often encounter new compliance issues as they progress through
116
+ commercialization. In addition, opportunity costs arise as regulators inspect AI products on
117
+ safety and privacy issues, causing delays in commercial deployments.
118
+
119
+ Third, varying AI regulations often introduce indirect costs. For instance, a strict compliance
120
+ environment demands engineers deal with regulatory issues such as responding to various
121
+ compliance technical inquiries instead of spending time developing products. Such a shift of
122
+ focus does not reflect in financial reports, as engineers' costs are categorized as R&D costs.
123
+
124
+
125
+ No Standard Method to Budget
126
+ Deviation from Compliance Budget
127
+ Indirect Costs
128
+ Al start-upsfacevarying Al regulatory
129
+ Al start-ups encounter new compliance issues and
130
+ Al start-ups might work around compliance
131
+ frameworks across theglobe
132
+ delay of commercial deployments
133
+ by other activities such as R&D and marketing
134
+ Compliancebudgetplanningoftechcompanies
135
+ Rough budget-overrun disaggregation,%
136
+ Classification ofCompliance Costs
137
+ - Standard waterfall method
138
+ Pro-forma
139
+ Certification cost
140
+ Situation
141
+ Revise
142
+ Finalize
143
+ budget
144
+ budget
145
+ budget
146
+ Regulatory complexity
147
+ orecast
148
+ Actual
149
+ CompliancebudgetplanningofAl companies
150
+ Shifting requirements
151
+ cost
152
+ Marketing cost
153
+ Total Cost
154
+ R&Dcost
155
+ - On an Ad-Hoc basis
156
+ of
157
+ 50
158
+ Lack of standards
159
+ Compliance
160
+ Logistics cost
161
+ Training cost
162
+ Testing and
163
+ Qualityassurance
164
+ 100
165
+ Insurancecost
166
+ Budget
167
+ 30
168
+ validation cost
169
+ cost
170
+ Documentation
171
+ Marketing cost
172
+ cost
173
+ 15
174
+ Labor cost
175
+ Direct cost
176
+ Indirect cost4. A Field Deployment Perspective
177
+
178
+ In this section, with more than six years of first-hand experience in deploying commercial
179
+ autonomous driving services, we delve into the details of compliance costs from a field
180
+ deployment perspective, in the hope that the insights we provide can raise awareness of the
181
+ adverse impact of the lack of standardized AI regulations.
182
+
183
+ 4.1. Background
184
+
185
+ PerceptIn is an autonomous driving startup founded in 2016. It offers autonomous micro-
186
+ mobility solutions to customers from the United States, European Union, and Asia. The
187
+ company only budgeted for ordinary compliance expenses, such as the direct labor cost of a
188
+ safety driver on board and the equipment cost of a waterproof surveillance camera. While
189
+ facing a broad spectrum of regulatory obstacles across different countries, PerceptIn had
190
+ fallen into the compliance trap. Many financial and human resources have been spent out of
191
+ budget to comply with various regulatory frameworks in different regions.
192
+
193
+ 4.2. Scenario 1 – No Standard Method to Budget
194
+
195
+ The AI regulation framework in China was blurry, and when the company first launched the
196
+ autonomous micro-mobility project in China, it was impossible to budget for compliance costs.
197
+ For instance, since relevant regulations were absent back then, the company needed to
198
+ develop its own testing plan to obtain deployment approval. Without detailed testing
199
+ standards, the company had to spend $25,000 per month to simulate real-world scenarios at
200
+ the initial stage for a testing site for testing and demonstration purposes. The testing process
201
+ is to obtain detailed validation results, whereas the demonstration process is to convince the
202
+ regulatory body regarding the safety and reliability of the service. The $300,000 annual cost
203
+ was not included in the company’s original budget and imposed a heavy burden on the
204
+ company's financial health.
205
+
206
+ 4.3. Scenario 2 – Deviation from Compliance Budget
207
+
208
+ The company was invited to launch an autonomous driving pilot program in a European
209
+ city. Before rolling out the project, the company was asked to prepare a risk mitigation plan
210
+ for 40 different scenarios. To cope with the regulatory process, the R&D team shifted its focus
211
+ to responding to scenarios-based functional specifications and supplemented the mitigation
212
+ plan with real-time data. During the project budgeting phase, the company had prepared 20
213
+ man-days to cope with the AI regulatory process. Nevertheless, the process turned out to
214
+ consume 400 man-days to complete the process. While the original budget was $10,000, in
215
+ the end, the process consumed $200,000. Such a severe mismatch was caused by the lack of
216
+ a standardized regulatory process, as any response from our technical team would bring on
217
+ the next round of regulatory questions.
218
+
219
+ 4.4. Scenario 3 – Indirect Costs
220
+
221
+
222
+ Japan is famous for its rigid structure in organizations. Thus without an established
223
+ compliance process in place, gaining the confidence of the Japanese government is essential
224
+ to commercial deployment. To gain the confidence of the Japanese government, the company
225
+ first debuted a marketing campaign to promote safe autonomous micro-mobility services in
226
+ a smart city project [5]. With a successful local case and globally established brand, the
227
+ company then discussed operation permits with the Ministry of Land, Infrastructure,
228
+ Transport, and Tourism (MLIT) [6]. The preparation and initiation of the project took over 24
229
+ months, costing $500,000 in promotion, material preparation, and marketing campaigns.
230
+ Traditionally marketing activities were not meant to cope with compliance requirements.
231
+ However, in this case, marketing was a tool to convince the regulatory body to further
232
+ autonomous driving operation permits.
233
+
234
+ In the case of PerceptIn, the compliance cost of one deployment project is $ 344,000 on
235
+ average, whereas the average R&D cost is around $150,000, making the compliance costs 2.3
236
+ times the amount of R&D costs, far exceeding the 17.6% estimation of the Europe AI Act.
237
+
238
+ 5. The Silver Linings
239
+
240
+ The root cause of the compliance trap is the lack of a standardized AI regulatory framework.
241
+ An ultimate solution to this problem lies in creating a global golden standard for AI regulation.
242
+ A study of the Food and Drug Administration's (FDA's) history sheds light on properly
243
+ regulating a new field. First, pharmaceutical products a century ago and AI today are both
244
+ viewed as black boxes. Even the most sophisticated scientists could not predict their
245
+ development trajectory, let alone legal experts. Second, pharmaceutical and AI technologies
246
+ can potentially cause severe public risks if they are not adequately regulated. Third, both
247
+ industries have enormous potential for improving people's well-being. Like the FDA, a
248
+ consumer protection agency shall be established to ensure that AI is developed for people's
249
+ well-being. Such an agency should develop the expertise and capability to scientifically judge
250
+ whether an AI product is ethical and legal. Such an agency should provide guidance to various
251
+ governments within the U.S. and worldwide on AI regulations.
252
+ However, before a consensus can be reached regarding the golden standard, a new
253
+ business model, Compliance-as-a-Service (CaaS), can specialize in dealing with varying AI
254
+ regulatory frameworks and thus amortize compliance costs across different AI startups. In
255
+ addition, CaaS reduces the friction between regulatory bodies and AI startups by providing an
256
+ interface to compile legal terms into technical and operational plans. With the new business
257
+ model, AI entrepreneurs can adequately budget for compliance when evaluating the potential
258
+ of an innovative idea.
259
+
260
+ 6. Summary
261
+
262
+ AI is a promising industry mainly filled with startups exploring the applications of AI
263
+ technologies in different aspects of our daily lives. Compared to well-established tech giants,
264
+ AI startups are financially vulnerable. Unfortunately, the lack of standardized AI regulatory
265
+ frameworks creates a compliance trap that may destroy an AI startup financially, which could
266
+ lead to a more profound impact of creating a competitive advantage for tech giants over AI
267
+
268
+ startups. We have examined the details of compliance costs from a field deployment
269
+ perspective to demonstrate the reality of the compliance trap. Ideally, if a global golden
270
+ standard on AI regulation could be developed, then AI startups could accurately budget for
271
+ compliance costs. However, before a consensus can be reached regarding the golden
272
+ standard, we believe that a new business model, compliance as a service, can specialize in
273
+ dealing with varying AI regulatory frameworks and thus amortize compliance costs across
274
+ different AI startups.
275
+
276
+ References:
277
+ 1. Wu, W. and Liu, S., 2021. Dilemma of the Artificial Intelligence Regulatory
278
+ Landscape. Communications of the ACM, 2023.
279
+ 2. OECD. Publishing, 2014. OECD Regulatory Compliance Cost Assessment Guidance. OECD Publishing.
280
+ 3. PricewaterhouseCoppers, 2022. Illustrative IFRS consolidated financial statements.
281
+ 4. Renda, A., Arroyo, J., Fanni, R., Laurer, M., Sipiczki, A., Yeung, T., Maridis, G., Fernandes, M., Endrodi,
282
+ G. and Milio, S., 2021. Study to support an impact assessment of regulatory requirements for artificial
283
+ intelligence in Europe. European Commission: Brussels, Belgium.
284
+ 5. Fukuoka City conducts demonstration test of compact self-driving car by US company PerceptIn, Inc..
285
+ Nikkei, accessed 2023-01-05, https://www.nikkei.com/article/DGXLRSP518592_W9A900C1000000/
286
+ 6. List of Proposal Sectors and Private Companies, etc. . In Seeds proposal for realization of smart island,
287
+ Japanese Ministry of Land, Infrastructure, Transport and Tourism, accessed 2023-01-05,
288
+ https://www.mlit.go.jp/kokudoseisaku/chirit/kokudoseisaku_chirit_tk_000309.html
289
+
290
+
291
+ Biography:
292
+
293
+ Weiyue Wu is Chief Operating Officer of PerceptIn, an autonomous driving startup founded
294
+ in 2016. At PerceptIn, she has been in charge of commercial autonomous driving service
295
+ deployments in the US, Europe, Japan, and China. Before PerceptIn, she served as Investment
296
+ Director of Oxford Seed Fund and Investment Advisor of ARM Accelerator. She began her
297
+ career as a Multi-National Corporation Compliance Auditor at KPMG and a Senior Automobile
298
+ Consultant at Deloitte. She received her MBA from the University of Oxford. She is a founding
299
+ member of IEEE Special Technical Community on Autonomous Driving Technologies, a
300
+ Certified Public Accountant and a practicing lawyer in China.
301
+
302
+ Dr. Shaoshan Liu’s background is a unique combination of technology, entrepreneurship, and
303
+ public policy, which enables him to take on great global challenges. On technology, Dr. Liu
304
+ has published 4 textbooks, more than 100 research papers, and holds more than 150 patents
305
+ in autonomous systems. On entrepreneurship, Dr. Shaoshan Liu is CEO of PerceptIn and has
306
+ commercially deployed autonomous micro-mobility services in the U.S., Europe, Japan, and
307
+ China etc. He is the Asia Chair of IEEE Entrepreneurship. On public policy, Dr. Liu has served
308
+ on the World Economic Forum’s panel on Industry Response to Government Procurement
309
+ Policy, is leading the Autonomous Machine Computing roadmap under IEEE International
310
+ Roadmap of Devices and Systems (IRDS) and is a member of the ACM U.S. Technology Policy
311
+ Committee. Dr. Liu’s educational background includes a M.S. in Biomedical Engineering, a
312
+ Ph.D. in Computer Engineering from the U.C. Irvine, and a Master of Public Administration
313
+ (MPA) from Harvard University. He is an IEEE Senior Member, an IEEE Computer Society
314
+ Distinguished Speaker, an ACM Distinguished Speaker, an Advisory Council member of
315
+
316
+ Harvard Business Review, a member of MIT Technology Review’s Global Insights Panel, and a
317
+ member of the Forbes Technology Council.
318
+
B9FQT4oBgHgl3EQf-TfR/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,270 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf,len=269
2
+ page_content='Compliance Costs of AI Technology Commercialization: A Field Deployment Perspective Weiyue Wu and Shaoshan Liu 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
3
+ page_content=' Introduction While Artificial Intelligence (AI) technologies are progressing fast, compliance costs have become a huge financial burden for AI startups, which are already constrained on research & development budgets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
4
+ page_content=' This situation creates a compliance trap, as many AI startups are not financially prepared to cope with a broad spectrum of regulatory requirements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
5
+ page_content=' Particularly, the complex and varying regulatory processes across the globe subtly give advantages to well- established and resourceful technology firms over resource-constrained AI startups [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
6
+ page_content=" The continuation of this trend may phase out the majority of AI startups and lead to giant technology firms' monopolies of AI technologies." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
7
+ page_content=' To demonstrate the reality of the compliance trap, from a field deployment perspective, we delve into the details of compliance costs of AI commercial operations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
8
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
9
+ page_content=' Financial Vulnerability: Tech Giants vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
10
+ page_content=' AI Startups Compared to established tech giants, AI startups are much more financially vulnerable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
11
+ page_content=' Based on the OECD Regulatory Compliance Cost Assessment Guidance [2], we quantitatively compare the financial vulnerability of tech giants versus AI startups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
12
+ page_content=' Conducting a financial statement simulation provides a glimpse at the impact of changes in compliance costs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
13
+ page_content=' The simulation in Table 1 assumes that gross profit and expense are a fixed percentage of revenue.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
14
+ page_content=' The compliance cost is split into a fixed cost regardless of revenue and a variable cost that takes 5% of revenue.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
15
+ page_content=' When the fixed compliance cost increases by 200%, the operating margin of the startup changes from 13% to -7%, turning the company from a profitable business into a money-losing one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
16
+ page_content=' By contrast, such a change only brings a slight drop in operating margin in tech giants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
17
+ page_content=' Table 1: Sensitivity Analysis: Impact of Change in Compliance Cost on Operating Income Start-ups Tech Giants 200% increase in 200% increase in Base case fixed compliance cost Base case fixed compliance cost Revenue $2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
18
+ page_content='000,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
19
+ page_content='000 $2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
20
+ page_content='000,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
21
+ page_content='000 $20,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
22
+ page_content='000,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
23
+ page_content='000 $20,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
24
+ page_content='000,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
25
+ page_content='000 Gross Margin 40% 40% 40% 40% Gross Profit 800,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
26
+ page_content='000 800,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
27
+ page_content='000 8,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
28
+ page_content='000,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
29
+ page_content='000 8,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
30
+ page_content='000,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
31
+ page_content='000 Total Compliance Cost 300,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
32
+ page_content='000 700,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
33
+ page_content='000 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
34
+ page_content='200,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
35
+ page_content='000 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
36
+ page_content='600,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
37
+ page_content='000 Fixed compliance cost 200,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
38
+ page_content='000 600,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
39
+ page_content='000 200,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
40
+ page_content='000 600,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
41
+ page_content='000 Variable compliance cost 100,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
42
+ page_content='000 100,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
43
+ page_content='000 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
44
+ page_content='000,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
45
+ page_content='000 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
46
+ page_content='000,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
47
+ page_content='000 Expenses 240,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
48
+ page_content='000 240,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
49
+ page_content='000 2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
50
+ page_content='400,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
51
+ page_content='000 2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
52
+ page_content='400,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
53
+ page_content='000 Operating Income 260,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
54
+ page_content='000 (140,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
55
+ page_content='000) 4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
56
+ page_content='400,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
57
+ page_content='000 4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
58
+ page_content='000,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
59
+ page_content='000 Operating Margin 13% -7% 22% 20% The actual situation of AI startups is more complex than this estimation,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
60
+ page_content=' as it is nearly impossible for external analysts to estimate the compliance costs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
61
+ page_content=' According to Accounting Standards, companies are not required to disclose compliance cost explicitly in financial reports when the cost is not material [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
62
+ page_content=' Thus, compliance costs may become hidden by nature and classified into other categories, such as Research and Development expenses and other administrative expenses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
63
+ page_content=' Lacking first-hand information, analysts on the macro- economic level tend to underestimate the costs of AI regulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
64
+ page_content=' For instance, in an impact assessment report of the Europe AI Act, the estimated annual compliance cost of one AI product that averagely costs EUR 170,000 to develop is EUR 29,277, we believe this study has underestimated the actual costs of AI compliance [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
65
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
66
+ page_content=' The Compliance Trap AI is a highly regulated industry, but unfortunately, there is no standardized AI regulation framework, and hence compliance costs often become a financial trap for AI startups [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
67
+ page_content=" Most AI entrepreneurs may not even be aware of the existence of compliance costs, let alone the severe impact compliance costs may have on the company's overall financial health." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
68
+ page_content=' As illustrated in Figure 1, we summarize the following challenges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
69
+ page_content=' Figure 1: the compliance trap for AI startups First, unlike R&D budgeting, due to varying AI regulatory frameworks across the globe or even across multiple regions within a country, there is no standard method to budget for AI compliance costs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
70
+ page_content=' Even estimating the range of AI compliance costs is infeasible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
71
+ page_content=' Second, even with an AI compliance budget, the actual costs may significantly deviate from the budget.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
72
+ page_content=' AI startups often encounter new compliance issues as they progress through commercialization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
73
+ page_content=' In addition, opportunity costs arise as regulators inspect AI products on safety and privacy issues, causing delays in commercial deployments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
74
+ page_content=' Third, varying AI regulations often introduce indirect costs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
75
+ page_content=' For instance, a strict compliance environment demands engineers deal with regulatory issues such as responding to various compliance technical inquiries instead of spending time developing products.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
76
+ page_content=" Such a shift of focus does not reflect in financial reports, as engineers' costs are categorized as R&D costs." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
77
+ page_content=' No Standard Method to Budget Deviation from Compliance Budget Indirect Costs Al start-upsfacevarying Al regulatory Al start-ups encounter new compliance issues and Al start-ups might work around compliance frameworks across theglobe delay of commercial deployments by other activities such as R&D and marketing Compliancebudgetplanningoftechcompanies Rough budget-overrun disaggregation,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
78
+ page_content='% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
79
+ page_content='Classification ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
80
+ page_content='ofCompliance ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
81
+ page_content='Costs ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
82
+ page_content='- ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
83
+ page_content='Standard ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
84
+ page_content='waterfall ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
85
+ page_content='method ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
86
+ page_content='Pro-forma ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
87
+ page_content='Certification ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
88
+ page_content='cost ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
89
+ page_content='Situation ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
90
+ page_content='Revise ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
91
+ page_content='Finalize ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
92
+ page_content='budget ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
93
+ page_content='budget ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
94
+ page_content='budget ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
95
+ page_content='Regulatory ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
96
+ page_content='complexity ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
97
+ page_content='orecast ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
98
+ page_content='Actual ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
99
+ page_content='CompliancebudgetplanningofAl ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
100
+ page_content='companies ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
101
+ page_content='Shifting ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
102
+ page_content='requirements ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
103
+ page_content='cost ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
104
+ page_content='Marketing ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
105
+ page_content='cost ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
106
+ page_content='Total ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
107
+ page_content='Cost ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
108
+ page_content='R&Dcost ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
109
+ page_content='- ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
110
+ page_content='On ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
111
+ page_content='an ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
112
+ page_content='Ad-Hoc ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
113
+ page_content='basis ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
114
+ page_content='of ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
115
+ page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
116
+ page_content='Lack ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
117
+ page_content='of ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
118
+ page_content='standards ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
119
+ page_content='Compliance ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
120
+ page_content='Logistics ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
121
+ page_content='cost ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
122
+ page_content='Training ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
123
+ page_content='cost ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
124
+ page_content='Testing ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
125
+ page_content='and ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
126
+ page_content='Qualityassurance ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
127
+ page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
128
+ page_content='Insurancecost ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
129
+ page_content='Budget ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
130
+ page_content='30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
131
+ page_content='validation ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
132
+ page_content='cost ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
133
+ page_content='cost ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
134
+ page_content='Documentation ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
135
+ page_content='Marketing ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
136
+ page_content='cost ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
137
+ page_content='cost ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
138
+ page_content='15 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
139
+ page_content='Labor ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
140
+ page_content='cost ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
141
+ page_content='Direct ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
142
+ page_content='cost ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
143
+ page_content='Indirect ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
144
+ page_content='cost4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
145
+ page_content=' A Field Deployment Perspective In this section, with more than six years of first-hand experience in deploying commercial autonomous driving services, we delve into the details of compliance costs from a field deployment perspective, in the hope that the insights we provide can raise awareness of the adverse impact of the lack of standardized AI regulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
146
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
147
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
148
+ page_content=' Background PerceptIn is an autonomous driving startup founded in 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
149
+ page_content=' It offers autonomous micro- mobility solutions to customers from the United States, European Union, and Asia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
150
+ page_content=' The company only budgeted for ordinary compliance expenses, such as the direct labor cost of a safety driver on board and the equipment cost of a waterproof surveillance camera.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
151
+ page_content=' While facing a broad spectrum of regulatory obstacles across different countries, PerceptIn had fallen into the compliance trap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
152
+ page_content=' Many financial and human resources have been spent out of budget to comply with various regulatory frameworks in different regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
153
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
154
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
155
+ page_content=' Scenario 1 – No Standard Method to Budget The AI regulation framework in China was blurry, and when the company first launched the autonomous micro-mobility project in China, it was impossible to budget for compliance costs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
156
+ page_content=' For instance, since relevant regulations were absent back then, the company needed to develop its own testing plan to obtain deployment approval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
157
+ page_content=' Without detailed testing standards, the company had to spend $25,000 per month to simulate real-world scenarios at the initial stage for a testing site for testing and demonstration purposes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
158
+ page_content=' The testing process is to obtain detailed validation results, whereas the demonstration process is to convince the regulatory body regarding the safety and reliability of the service.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
159
+ page_content=" The $300,000 annual cost was not included in the company’s original budget and imposed a heavy burden on the company's financial health." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
160
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
161
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
162
+ page_content=' Scenario 2 – Deviation from Compliance Budget The company was invited to launch an autonomous driving pilot program in a European city.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
163
+ page_content=' Before rolling out the project, the company was asked to prepare a risk mitigation plan for 40 different scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
164
+ page_content=' To cope with the regulatory process, the R&D team shifted its focus to responding to scenarios-based functional specifications and supplemented the mitigation plan with real-time data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
165
+ page_content=' During the project budgeting phase, the company had prepared 20 man-days to cope with the AI regulatory process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
166
+ page_content=' Nevertheless, the process turned out to consume 400 man-days to complete the process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
167
+ page_content=' While the original budget was $10,000, in the end, the process consumed $200,000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
168
+ page_content=' Such a severe mismatch was caused by the lack of a standardized regulatory process, as any response from our technical team would bring on the next round of regulatory questions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
169
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
170
+ page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
171
+ page_content=' Scenario 3 – Indirect Costs Japan is famous for its rigid structure in organizations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
172
+ page_content=' Thus without an established compliance process in place, gaining the confidence of the Japanese government is essential to commercial deployment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
173
+ page_content=' To gain the confidence of the Japanese government, the company first debuted a marketing campaign to promote safe autonomous micro-mobility services in a smart city project [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
174
+ page_content=' With a successful local case and globally established brand, the company then discussed operation permits with the Ministry of Land, Infrastructure, Transport, and Tourism (MLIT) [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
175
+ page_content=' The preparation and initiation of the project took over 24 months, costing $500,000 in promotion, material preparation, and marketing campaigns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
176
+ page_content=' Traditionally marketing activities were not meant to cope with compliance requirements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
177
+ page_content=' However, in this case, marketing was a tool to convince the regulatory body to further autonomous driving operation permits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
178
+ page_content=' In the case of PerceptIn, the compliance cost of one deployment project is $ 344,000 on average, whereas the average R&D cost is around $150,000, making the compliance costs 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
179
+ page_content='3 times the amount of R&D costs, far exceeding the 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
180
+ page_content='6% estimation of the Europe AI Act.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
181
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
182
+ page_content=' The Silver Linings The root cause of the compliance trap is the lack of a standardized AI regulatory framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
183
+ page_content=' An ultimate solution to this problem lies in creating a global golden standard for AI regulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
184
+ page_content=" A study of the Food and Drug Administration's (FDA's) history sheds light on properly regulating a new field." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
185
+ page_content=' First, pharmaceutical products a century ago and AI today are both viewed as black boxes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
186
+ page_content=' Even the most sophisticated scientists could not predict their development trajectory, let alone legal experts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
187
+ page_content=' Second, pharmaceutical and AI technologies can potentially cause severe public risks if they are not adequately regulated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
188
+ page_content=" Third, both industries have enormous potential for improving people's well-being." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
189
+ page_content=" Like the FDA, a consumer protection agency shall be established to ensure that AI is developed for people's well-being." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
190
+ page_content=' Such an agency should develop the expertise and capability to scientifically judge whether an AI product is ethical and legal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
191
+ page_content=' Such an agency should provide guidance to various governments within the U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
192
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
193
+ page_content=' and worldwide on AI regulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
194
+ page_content=' However, before a consensus can be reached regarding the golden standard, a new business model, Compliance-as-a-Service (CaaS), can specialize in dealing with varying AI regulatory frameworks and thus amortize compliance costs across different AI startups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
195
+ page_content=' In addition, CaaS reduces the friction between regulatory bodies and AI startups by providing an interface to compile legal terms into technical and operational plans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
196
+ page_content=' With the new business model, AI entrepreneurs can adequately budget for compliance when evaluating the potential of an innovative idea.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
197
+ page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
198
+ page_content=' Summary AI is a promising industry mainly filled with startups exploring the applications of AI technologies in different aspects of our daily lives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
199
+ page_content=' Compared to well-established tech giants, AI startups are financially vulnerable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
200
+ page_content=' Unfortunately, the lack of standardized AI regulatory frameworks creates a compliance trap that may destroy an AI startup financially, which could lead to a more profound impact of creating a competitive advantage for tech giants over AI startups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
201
+ page_content=' We have examined the details of compliance costs from a field deployment perspective to demonstrate the reality of the compliance trap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
202
+ page_content=' Ideally, if a global golden standard on AI regulation could be developed, then AI startups could accurately budget for compliance costs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
203
+ page_content=' However, before a consensus can be reached regarding the golden standard, we believe that a new business model, compliance as a service, can specialize in dealing with varying AI regulatory frameworks and thus amortize compliance costs across different AI startups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
204
+ page_content=' References: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
205
+ page_content=' Wu, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
206
+ page_content=' and Liu, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
207
+ page_content=', 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
208
+ page_content=' Dilemma of the Artificial Intelligence Regulatory Landscape.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
209
+ page_content=' Communications of the ACM, 2023.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
210
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
211
+ page_content=' OECD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
212
+ page_content=' Publishing, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
213
+ page_content=' OECD Regulatory Compliance Cost Assessment Guidance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
214
+ page_content=' OECD Publishing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
215
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
216
+ page_content=' PricewaterhouseCoppers, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
217
+ page_content=' Illustrative IFRS consolidated financial statements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
218
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
219
+ page_content=' Renda, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
220
+ page_content=', Arroyo, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
221
+ page_content=', Fanni, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
222
+ page_content=', Laurer, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
223
+ page_content=', Sipiczki, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
224
+ page_content=', Yeung, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
225
+ page_content=', Maridis, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
226
+ page_content=', Fernandes, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
227
+ page_content=', Endrodi, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
228
+ page_content=' and Milio, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
229
+ page_content=', 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
230
+ page_content=' Study to support an impact assessment of regulatory requirements for artificial intelligence in Europe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
231
+ page_content=' European Commission: Brussels, Belgium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
232
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
233
+ page_content=' Fukuoka City conducts demonstration test of compact self-driving car by US company PerceptIn, Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
234
+ page_content='. Nikkei, accessed 2023-01-05, https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
235
+ page_content='nikkei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
236
+ page_content='com/article/DGXLRSP518592_W9A900C1000000/ 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
237
+ page_content=' List of Proposal Sectors and Private Companies, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
238
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
239
+ page_content=' In Seeds proposal for realization of smart island, Japanese Ministry of Land, Infrastructure, Transport and Tourism, accessed 2023-01-05, https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
240
+ page_content='mlit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
241
+ page_content='go.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
242
+ page_content='jp/kokudoseisaku/chirit/kokudoseisaku_chirit_tk_000309.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
243
+ page_content='html Biography: Weiyue Wu is Chief Operating Officer of PerceptIn, an autonomous driving startup founded in 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
244
+ page_content=' At PerceptIn, she has been in charge of commercial autonomous driving service deployments in the US, Europe, Japan, and China.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
245
+ page_content=' Before PerceptIn, she served as Investment Director of Oxford Seed Fund and Investment Advisor of ARM Accelerator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
246
+ page_content=' She began her career as a Multi-National Corporation Compliance Auditor at KPMG and a Senior Automobile Consultant at Deloitte.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
247
+ page_content=' She received her MBA from the University of Oxford.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
248
+ page_content=' She is a founding member of IEEE Special Technical Community on Autonomous Driving Technologies, a Certified Public Accountant and a practicing lawyer in China.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
249
+ page_content=' Dr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
250
+ page_content=' Shaoshan Liu’s background is a unique combination of technology, entrepreneurship, and public policy, which enables him to take on great global challenges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
251
+ page_content=' On technology, Dr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
252
+ page_content=' Liu has published 4 textbooks, more than 100 research papers, and holds more than 150 patents in autonomous systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
253
+ page_content=' On entrepreneurship, Dr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
254
+ page_content=' Shaoshan Liu is CEO of PerceptIn and has commercially deployed autonomous micro-mobility services in the U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
255
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
256
+ page_content=', Europe, Japan, and China etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
257
+ page_content=' He is the Asia Chair of IEEE Entrepreneurship.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
258
+ page_content=' On public policy, Dr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
259
+ page_content=' Liu has served on the World Economic Forum’s panel on Industry Response to Government Procurement Policy, is leading the Autonomous Machine Computing roadmap under IEEE International Roadmap of Devices and Systems (IRDS) and is a member of the ACM U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
260
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
261
+ page_content=' Technology Policy Committee.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
262
+ page_content=' Dr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
263
+ page_content=' Liu’s educational background includes a M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
264
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
265
+ page_content=' in Biomedical Engineering, a Ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
266
+ page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
267
+ page_content=' in Computer Engineering from the U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
268
+ page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
269
+ page_content=' Irvine, and a Master of Public Administration (MPA) from Harvard University.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
270
+ page_content=' He is an IEEE Senior Member, an IEEE Computer Society Distinguished Speaker, an ACM Distinguished Speaker, an Advisory Council member of Harvard Business Review, a member of MIT Technology Review’s Global Insights Panel, and a member of the Forbes Technology Council.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9FQT4oBgHgl3EQf-TfR/content/2301.13454v1.pdf'}
BtE1T4oBgHgl3EQfVwQu/content/tmp_files/2301.03105v1.pdf.txt ADDED
@@ -0,0 +1,1425 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.03105v1 [math.GT] 8 Jan 2023
2
+ FINITE GROUP ACTIONS ON 4-MANIFOLDS AND EQUIVARIANT
3
+ BUNDLES
4
+ NIMA ANVARI AND IAN HAMBLETON
5
+ Abstract. Given a 4-manifold with a homologically trivial and locally-linear cyclic
6
+ group action, we obtain necessary and sufficient conditions for the existence of equi-
7
+ variant bundles.
8
+ The conditions are derived from the twisted signature formula and
9
+ are in the form of congruence relations between the fixed point data and the isotropy
10
+ representations.
11
+ 1. Introduction
12
+ Finite group actions on 4-manifolds can be studied in various settings. We are mainly
13
+ interested in comparing smooth actions with those which are topological and locally linear,
14
+ but important examples arise for symplectic 4-manifolds and complex surfaces. Here is a
15
+ sampling of survey articles and recent work on aspects of this general theme: [1, 2, 3, 5,
16
+ 6, 7, 10, 15, 22, 20, 21, 23, 26, 31, 36]. We will focus on the existence and classification
17
+ of equivariant bundles, and their applications in Yang-Mills gauge theory to the study of
18
+ finite group actions.
19
+ We begin by recalling some standard definitions. Let (X, π) denote a simply-connected,
20
+ closed 4-manifold X together with a locally linear and homologically trivial action of a
21
+ cyclic group π = Z/p of prime order. The fixed point set Xπ has Euler characteristic
22
+ χ(Xπ) = b2(X) + 2, by the Lefschetz fixed point formula. In general Xπ will consist of
23
+ isolated fixed points and a disjoint union of fixed 2-spheres (see [9, §2]).
24
+ Definition 1.1. At each isolated fixed point x ∈ Xπ, the tangent space admits an equi-
25
+ variant decomposition (TxiX, π) = C(ai) ⊕ C(bi) of complex representation spaces. Let
26
+ t · (z1, z2) = (ζaiz1, ζbiz2)
27
+ denote the action for t a fixed generator in the cyclic group π, ζ = e2πi/p, and with integers
28
+ (ai, bi), both non-zero modulo p.
29
+ (i) The integers (ai, bi) are the local tangential rotation data, and are well-defined up
30
+ to order and simultaneous change in sign.
31
+ (ii) Similarly, for each point x on a π-fixed 2-sphere Fj, there is a representation
32
+ C ⊕ C(cj) corresponding to the equivariant splitting
33
+ TX | Fj = TFj ⊕ N(Fj)
34
+ where N(Fj) is the normal bundle with rotation ζcj, and cj ̸≡ 0 (mod p).
35
+ Date: January 4, 2023.
36
+ This research was partially supported by NSERC Discovery Grant A4000.
37
+ 1
38
+
39
+ 2
40
+ NIMA ANVARI AND IAN HAMBLETON
41
+ (iii) The total fixed point rotation data is the collection
42
+ F = {(ai, bi), (cj, αj) | i ∈ I, j ∈ J}.
43
+ where I and J index the isolated fixed points and 2-spheres respectively and
44
+ αj = [Fj]·[Fj] is the self-intersection number of the fixed spheres [Fj] ∈ H2(X; Z).
45
+ (iv) By an equivariant line bundle (L, π) → (X, π) we mean a principal U(1)-bundle
46
+ L over X together with a lift of the π-action to the total space. Given such a
47
+ lift, there exists a set of isotropy representations of the π-action on each fiber
48
+ over the fixed point set which we denote by L | xi = tλi over isolated fixed points
49
+ and L | Fj = tλj over a fixed 2-sphere. Denote the collection of these isotropy
50
+ representations by I = {λi, λj | i ∈ I, j ∈ J}.
51
+ With this notation we have our main result.
52
+ Theorem A. Let (X, π) denote a simply-connected, closed 4-manifold with a locally linear,
53
+ homologically trivial action of a cyclic group π = Z/p of odd prime order p, with fixed-point
54
+ rotation data F = {(ai, bi), (cj, αj) | i ∈ I, j ∈ J}.
55
+ A collection I of integers {λi, λj | i ∈ I, j ∈ J} can be realized (modulo p) as the isotropy
56
+ representations of an equivariant line bundle (L, π) → (X, π) if and only if there is a
57
+ collection of integers {mj | j ∈ J} such that
58
+ (1.1)
59
+
60
+ i∈I
61
+ λi
62
+ aibi
63
+ +
64
+
65
+ j∈J
66
+ cjmj − λjαj
67
+ c2
68
+ j
69
+ ≡ 0
70
+ (mod p).
71
+ When a solution exists, the integers mj = c1(i∗L)[Fj] satisfy equation (1.1).
72
+ Remark 1.2. A special case of this result can be found in [22, Proposition 1.4], for a
73
+ cyclic group π of odd order acting locally linearly and semi-freely on the complex projective
74
+ plane CP 2 with has three isolated fixed points. The necessary condition (1.1) in Theorem
75
+ A is established by extending the methods of [22, §2] to more general actions.
76
+ Remark 1.3. The definitions above generalize directly to actions (X, π) where π is any
77
+ finite group, and the structural group G of the principal bundle is any compact Lie group.
78
+ For applications in gauge theory, G = SU(2) is an important example. The details will
79
+ be left to the reader (see also [18, 19]).
80
+ 2. Some motivating questions
81
+ Here are some questions related to the general theme (all actions will be assumed to
82
+ preserve orientation). More information about some of these directions can be found in
83
+ the references.
84
+ 1. Does there exist a smooth Z/p-action on a (homotopy) K3 surface, which induces the
85
+ identity on integral homology ?
86
+ This is a well-known question of Allan Edmonds. Note that results of Edmonds and
87
+ Ewing [12] imply that topological locally linear examples exist for odd primes.
88
+ 2. Does there exist a smooth Z/p-action on a homotopy K3 surface, which contains an
89
+ invariant embedded Brieskorn homology 3-sphere Σ(2, 3, 7) ?
90
+
91
+ FINITE GROUP ACTIONS ON 4-MANIFOLDS AND EQUIVARIANT BUNDLES
92
+ 3
93
+ Fintushel and Stern [14] showed that many homotopy K3 surfaces admit embeddings
94
+ of Σ(2, 3, 7). The question concerns the possible existence of an equivariant splitting of
95
+ the K3 surface along the Brieskorn sphere.
96
+ 3. A Brieskorn homology 3-sphere Σ(a, b, c) admits a free Z/p-action if p ∤ abc. Does there
97
+ exist a smooth, homologically trivial extension of this action with isolated fixed points to
98
+ any smooth simply connected negative definite 4-manifold X with boundary Σ(a, b, c) ?
99
+ Anvari [1] proved that the free Z/7 on Σ(2, 3, 5) does not extend in this way over the min-
100
+ imal negative definite 4-manifold obtained by resolving the link singularity. The method of
101
+ proof involves studying equivariant Yang-Mills gauge theory on the non-compact manifold
102
+ with cylindrical end obtained from X by attaching the end Σ(2, 3, 5)×[0, ∞). Information
103
+ about the Floer homology of Brieskorn spheres is an essential ingredient in tackling this
104
+ problem (see Saveliev [32, 33, 34]).
105
+ 4. What sets of rotation numbers can be realized by a smooth, pseudo-free Z/n-action
106
+ on X = S2 × S2 ?
107
+ A pseudo-free action is one with isolated singular points. If the action is semi-free,
108
+ there are “standard models” with rotation data {(a, b), (c, d), (a, −b), (c, −d)} at the four
109
+ fixed points. This question for X = CP 2 was answered in [11, 20], where it turned out
110
+ that the rotation data was the same for locally linear actions.
111
+ 5. Let (X, π) denote a smooth action of a finite group π on a closed, simply connected
112
+ smooth 4-manifold. Under what conditins does there exist a π-equivariant principal G-
113
+ bundle over X with prescribed Chern classes, for G = U(1) or G = SU(2) ?
114
+ Some information about this question was provided in [22, 20] for X = CP 2 and π
115
+ finite cyclic, or more generally for X negative definite (see also [19] for the connection
116
+ between Chern classes and the isotropy representations).
117
+ For X = S4, the existence
118
+ and classification of such bundles was applied by Austin [4] and Furuta [15, 17, 16] to
119
+ study group actions via instanton gauge theory. The compactification of an equivariant
120
+ version of Donaldson’s Yang-Mills moduli space [8], [20] involves “bubbling” convergence
121
+ to equivariant instantons over the 4-sphere. Further applications of equivariant bundles
122
+ arise in studying the equivariant compactification of moduli spaces over cylindrical end
123
+ 4-manifolds.
124
+ 3. The G-Signature Formula
125
+ In this section we review the terms of the G-signature formula that we will need in
126
+ deriving congruence relations.
127
+ The G-signature of a closed 4-manifold X with an orientation preserving action of a
128
+ finite group G acting as isometries on X is defined as the virtual representation
129
+ (3.1)
130
+ Sign(X, G) = [H2
131
+ +(X; C)] − [H2
132
+ −(X; C)]
133
+ where H2
134
+ ±(X; C) are the maximal positive/negative definite G-invariant subspaces of
135
+ H2(X; C). Taking characters gives the g-signatures
136
+ (3.2)
137
+ Sign(g, X) = trg H2
138
+ +(X) − trg H2
139
+ −(X)
140
+
141
+ 4
142
+ NIMA ANVARI AND IAN HAMBLETON
143
+ which by the G-signature formula can be computed from the fixed point set Xg.
144
+ Let D : C∞(Λ+) → C∞(Λ−) denote the signature operator. The Lefschetz numbers
145
+ are computed as follows.
146
+ (3.3)
147
+ L(g, D) = (−1)n(n+1)/2 chg(Λ+ − Λ−)(TX | Xg ⊗ C)Td(TXg ⊗ C)
148
+ e(TXg) chg(Λ−1Ng ⊗ C)
149
+ [Xg]
150
+ Where n = dim Xg and note that TX | Xg = TXg ⊕ Ng and
151
+ (3.4)
152
+ chg(Λ+ − Λ−)(TX | Xg ⊗ C) = chg(Λ+ − Λ−)(TXg ⊗ C) chg(Λ+ − Λ−)(Ng ⊗ C).
153
+ Let F denote a fixed surface, then the contribution to the g-signature is given by
154
+ L(g, D) | F = (−1)(e−x − ex)(e−y−iθ − ey+iθ)
155
+ x(1 − ey+iθ)(1 − e−y−iθ)
156
+ x(−x)
157
+ (1 − e−x)(1 − ex)[F]
158
+ = coth
159
+ �y + iθ
160
+ 2
161
+
162
+ x cot
163
+ �x
164
+ 2
165
+
166
+ [F]
167
+ where the following trigonometric identity is used
168
+ (3.5)
169
+ coth
170
+ �x
171
+ 2
172
+
173
+ =
174
+ e−x − ex
175
+ (1 − e−x)(1 − ex).
176
+ To evaluate on [F], we use the Taylor expansions
177
+ x coth (x/2) = 2 + 1/6x2 + · · ·
178
+ coth
179
+ �y + iθ
180
+ 2
181
+
182
+ = coth (iθ/2) − 1
183
+ 2 csch2
184
+ �iθ
185
+ 2
186
+
187
+ y
188
+ Thus the contribution to the Lefschetz number is given by
189
+ L(g, D) | F = {2 coth(iθ/2) − csch2(iθ/2)y}[F]
190
+ = − csch2(iθ/2)[F]2 = csc2(θ/2)[F]2
191
+ =
192
+ −4tcF
193
+ (tcF − 1)2[F]2
194
+ where θ = 2πcF
195
+ p
196
+ and cF is the rotation number on the normal fiber of F and t = e2πi/p is
197
+ a primitive pth root of unity. Similarly we can compute the contribution from isolated
198
+ fixed points:
199
+ L(g, D) | pt =
200
+ (e−iθ1 − eiθ1)(e−iθ2 − eiθ2)
201
+ (1 − eiθ1)(1 − e−iθ1)(1 − eiθ2)(1 − e−iθ2)
202
+ = coth(iθ1/2) coth(iθ2/2)
203
+ = − cot(θ1/2) cot(θ2/2)
204
+ = (ta + 1)(tb + 1)
205
+ (ta − 1)(tb − 1)
206
+
207
+ FINITE GROUP ACTIONS ON 4-MANIFOLDS AND EQUIVARIANT BUNDLES
208
+ 5
209
+ where θ1 = 2πa
210
+ p
211
+ and θ2 = 2πb
212
+ p
213
+ are the rotation numbers at the fixed point. By summing
214
+ over the fixed point set the G-signature formula is given by
215
+ (3.6)
216
+ Sign(X) =
217
+
218
+ i
219
+ (tai + 1)
220
+ (tai − 1)
221
+ (tbi + 1)
222
+ (tbi − 1) +
223
+
224
+ j
225
+ −4αjtcj
226
+ (tcj − 1)2
227
+ where αj denotes the self-intersection [Fj] · [Fj] of the fixed 2-spheres {Fj}. This formula
228
+ can be viewed as an equation in the cyclotomic field Q[ζ] = Q[t]/Φp(t) where Φp(t) is the
229
+ cyclotomic polynomial 1 + t + t2 + · · · + tp−1.
230
+ 4. Congruence Relations for the G-Signature Formula
231
+ In this section we derive congruence relations satisfied by the rotation data F using the
232
+ G-signature formula. We first note that since (ta−1)/(t−1) is a unit in ring of cyclotomic
233
+ integers Z[ζ] when (a, p) = 1, multiplying both sides of the G-signature formula by (t−1)2
234
+ induces an equation in the ring R = Z[ζ]. The I-adic expansion of the resulting right-
235
+ hand side leads to congruence relations relating the rotation data, where I denote the
236
+ ideal generated by (t − 1) in R.
237
+ Following the method of [22] we lift the equation to Z[t], compute the Taylor expan-
238
+ sions about t = 1 and reduce the coefficients modulo p. Since the indeterminacy of the
239
+ coefficients are determined from the expansion of the cyclotomic polynomial Φp(t) (for
240
+ which p divides the coefficients of its Taylor expansion about t = 1 up to order p − 1) we
241
+ obtain valid congruence relations by equating coefficients modulo p up to order p − 1.
242
+ The expansion arising from contributions from isolated fixed points are given by
243
+ (ta + 1)
244
+ (ta − 1)
245
+ (tb + 1)
246
+ (tb − 1)(t − 1)2 = 4
247
+ ab + 4
248
+ ab(t − 1) + 1
249
+ 3
250
+ �a2 + b2 + 1
251
+ ab
252
+
253
+ (t − 1)2
254
+
255
+ 1
256
+ 180
257
+ �a4 + b4 − 5a2b2 + 3
258
+ ab
259
+
260
+ (t − 1)4 + · · ·
261
+ Similarly the expansion of the second term is given by expressions of the form
262
+ −4αtc
263
+ (tc − 1)2(t − 1)2 = −4α
264
+ c2
265
+ + −4α
266
+ c2 (t − 1) + 1
267
+ 3
268
+ α(c2 − 1)
269
+ c2
270
+ (t − 1)2
271
+ − 1
272
+ 60
273
+ α(c − 1)(1 + c + c2 + c3)
274
+ c2
275
+ (t − 1)4 + · · · .
276
+ Equating both sides of the expansion (mod p) from the resulting equation in R we thus
277
+ obtain the following congruence relations:
278
+ Theorem 4.1. [22, p. 625] Let (X, π) denote a simply connected, closed 4-manifold with
279
+ a homologically trivial, locally-linear group action of a finite cyclic group π = Z/p of odd
280
+
281
+ 6
282
+ NIMA ANVARI AND IAN HAMBLETON
283
+ order. Then the following congruence relations hold
284
+ (1)
285
+
286
+ i
287
+ 1
288
+ aibi
289
+
290
+
291
+ j
292
+ αj
293
+ c2
294
+ j
295
+ ≡ 0
296
+ (mod p)
297
+ (2)
298
+
299
+ i
300
+ a2
301
+ i + b2
302
+ i
303
+ aibi
304
+ +
305
+
306
+ j
307
+ αj ≡ 3 Sign(X)
308
+ (mod p)
309
+ (3)
310
+
311
+ i
312
+ a4
313
+ i + b4
314
+ i − 5a2
315
+ i b2
316
+ i
317
+ aibi
318
+ + 3
319
+
320
+ j
321
+ αjc2
322
+ j ≡ 0
323
+ (mod p)
324
+ (4)
325
+
326
+ i
327
+ 2a6
328
+ i − 7a4
329
+ i b2
330
+ i − 7a2
331
+ i b4
332
+ i + 2b6
333
+ i
334
+ aibi
335
+ + 10
336
+
337
+ j
338
+ αjc4
339
+ j ≡ 0
340
+ (mod p)
341
+ Higher-order relations are valid up to and including terms of order p − 1.
342
+ Example 4.2 (Linear models on CP 2). Let G = Z/p with odd prime p act linearly
343
+ on X = CP 2 by t · [z1 : z2 : z3] = [ζaz1 : z2 : z3] for 0 < a < p.
344
+ The fixed point
345
+ set consists of one isolated fixed point [1 : 0 : 0] with tangential rotation number (a, a)
346
+ and a fixed projective line F = {[z1 : z2 : z3] | z1 = 0} with self-intersection +1 and
347
+ a rotation of cF ≡ a (mod p) on the normal bundle.
348
+ Then it is easy to check that
349
+ the congruence relations are satisfied. Similarly, in the case when the action is given by
350
+ t·[z1 : z2 : z3] = [ζaz1 : ζbz2 : z3] for 0 < a < b < p the action consists of three isolated fixed
351
+ points [0 : 0 : 1], [1 : 0 : 0], [0 : 1 : 0] with rotation numbers (a, b), (b − a, −a), (a − b, −b)
352
+ and with some algebra it can be checked that the congruence relations hold. Additional
353
+ examples can be obtained for #nCP 2 by equivariant connected sums along fixed point
354
+ sets using the linear models.
355
+ 5. Equivariant Line Bundles
356
+ Let (X, π) denote a simply connected, closed 4-manifold with a homologically trivial
357
+ action of a finite cyclic group π = Z/p of odd prime p and L → X an equivariant line
358
+ bundle. We compute the contribution of a fixed surface F to the twisted G-signature
359
+ formula:
360
+ L(g, D) | F = {2 coth(iθ/2) − csch2(iθ/2)y}{chg(i∗L)}[F]
361
+ = {2 coth(iθ/2) − csch2(iθ/2)y}{ez+iφ}[F]
362
+ = {2 coth(iθ/2) − csch2(iθ/2)y}{eiφ + eiφz}[F]
363
+ = {2 coth(iθ/2)eiφz − csch2(iθ/2)yeiφ
364
+ = 2c1(i∗L)[F](tcF + 1)
365
+ (tcF − 1)tλ + −4[F]2tcF
366
+ (tcF − 1)2 tλ
367
+ where φ = 2πλ
368
+ p
369
+ and z = c1(i∗L). Similarly for the contribution to the isolated fixed points.
370
+ To summarize, given an equivariant line bundle (L, π) → (X, π), the index of the twisted
371
+ G-signature operator gives a virtual character given by
372
+
373
+ FINITE GROUP ACTIONS ON 4-MANIFOLDS AND EQUIVARIANT BUNDLES
374
+ 7
375
+ χ(t) =
376
+
377
+ i
378
+ (tai + 1)
379
+ (tai − 1)
380
+ (tbi + 1)
381
+ (tbi − 1)tλi +
382
+
383
+ j
384
+ −4αjtcj
385
+ (tcj − 1)2tλj +
386
+
387
+ j
388
+ 2c1(i∗L)[Fj](tcj + 1)
389
+ (tcj − 1)tλj
390
+ where {Fj} are fixed 2-spheres of the action on X with αj denoting the self-intersection
391
+ [Fj] · [Fj]. Note that
392
+ χ(1) = ch(L)L(X)[X] =
393
+
394
+ 1 + c1(L) + 1
395
+ 2c1(L)2
396
+ � �
397
+ 4 + p1
398
+ 3
399
+
400
+ [X]
401
+ (5.1)
402
+ =
403
+ �p1
404
+ 3 + 2c1(L)2�
405
+ [X] = Sign(X) + 2c1(L)2[X].
406
+ (5.2)
407
+ Since χ(t) is a virtual character for G = Z/p we may write χ(t) = �p−1
408
+ i=0 aiti for some
409
+ ai ∈ Z and
410
+ χ(t)(t − 1)2 = χ(1)(t − 1)2 + higher order terms
411
+ (mod p)
412
+ We can then take the Taylor expansion of the right-hand side of the twisted G-signature
413
+ formula after multiplying by (t−1)2 and equate the first and second order terms to obtain
414
+ two additional congruence relations. The first order term vanishes while the second order
415
+ term is congruent to χ(1) (mod p).
416
+ Taking Taylor expansions for these terms in the
417
+ G-signature formula give:
418
+ (ta + 1)
419
+ (ta − 1)
420
+ (tb + 1)
421
+ (tb − 1)(t − 1)2tλ = 4
422
+ ab + 4(λ + 1)
423
+ ab
424
+ (t − 1)+
425
+ 1
426
+ 3
427
+ (a2 + b2 + 1 + 6λ2 + 6λ)
428
+ ab
429
+ (t − 1)2 + · · · .
430
+ Similarly for the second term:
431
+ −4αtc
432
+ (tc − 1)2(t − 1)2tλ = −4α
433
+ c2
434
+ + −4α(1 + λ)
435
+ c2
436
+ (t − 1)+
437
+ 1
438
+ 3
439
+ α(c2 − 1 − 6λ − 6λ2)
440
+ c2
441
+ (t − 1)2 + · · · .
442
+ and for the third term:
443
+ 2m(tc + 1)
444
+ (tc − 1)(t − 1)2tλ = 4m
445
+ c (t − 1) + 2m(2λ + 1)
446
+ c
447
+ (t − 1)2 + · · ·
448
+ where m = c1(i∗L)[F]. Combining these expressions we obtain the following theorem:
449
+ Theorem 5.1. Let (L, π) → (X, π) denote an equivariant line bundle over a simply
450
+ connected, closed 4-manifold with a homologically trivial group action of a finite cyclic
451
+
452
+ 8
453
+ NIMA ANVARI AND IAN HAMBLETON
454
+ group π = Z/p of odd order. Then the following congruence relation holds
455
+ (i)
456
+
457
+ i
458
+ λi
459
+ aibi
460
+
461
+
462
+ j
463
+ λjαj
464
+ c2
465
+ j
466
+ +
467
+
468
+ j
469
+ c1(i∗L)[Fj]
470
+ cj
471
+ ≡ 0
472
+ (mod p)
473
+ (ii)
474
+
475
+ i
476
+ λ2
477
+ i
478
+ aibi
479
+
480
+
481
+ j
482
+ λ2
483
+ jαj
484
+ c2
485
+ j
486
+ + 2
487
+
488
+ j
489
+ λjc1(i∗L)[Fj]
490
+ cj
491
+ ≡ c1(L)2[X]
492
+ (mod p).
493
+ Example 5.2. Let π = Z/p act on X = CP 2 preserving an almost complex structure.
494
+ Then the complexified second exterior power of the tangent bundle is an equivariant line
495
+ bundle see [22, Proposition 1.8]).
496
+ Example 5.3 (Linear models on CP 2). Let p denote an odd prime and consider X = CP 2
497
+ and a linear action t·[z1 : z2 : z3] = [ζaz1 : ζbz2 : z3] for 0 < a < b < p. We give an explicit
498
+ construction of equivariant line bundles over X. Consider a finite dimensional complex
499
+ representation space V = C(λ1) ⊕ C(λ2) ⊕ C(λ3) with action given by ρ ∈ GL3(C):
500
+ (5.4)
501
+ ρ =
502
+
503
+
504
+ tλ1
505
+ tλ2
506
+ tλ3
507
+
508
+  : C3 \ {0} −→ C3 \ {0}
509
+ with the λi positive integer weights. Let S(V ) denote the unit sphere in V then ρ com-
510
+ mutes with the free S1-action on S(V ) and
511
+ CP 2 = S(V )/S1 = S5/S1.
512
+ The ρ-action on S(V ) is a lift of the linear action on X if the following system of linear
513
+ congruences
514
+ λ1 − λ3 ≡ a,
515
+ λ2 − λ3 ≡ b
516
+ λ2 − λ1 ≡ b − a,
517
+ λ3 − λ1 ≡ −a
518
+ λ1 − λ2 ≡ a − b,
519
+ λ3 − λ2 ≡ −b.
520
+ has a solution. This system has one degree of freedom; let λ3 = λ be a fixed parameter,
521
+ then the isotropy representations over the three isolated fixed points are given by:
522
+ fixed point p1 = [0 : 0 : 1], rotation number (a, b), with isotropyλ3 ≡ λ
523
+ fixed point p2 = [1 : 0 : 0], rotation number (b − a, −a), with isotropyλ1 ≡ λ + a
524
+ fixed point p3 = [0 : 1 : 0], rotation number (−b, a − b)with isotropyλ2 ≡ λ + b.
525
+ The equivariant line bundle
526
+ L = S(V ) ×S1 C
527
+ is the canonical bundle over CP 2 and the congruence relations of the theorem are satisfied:
528
+
529
+ i
530
+ λi
531
+ aibi
532
+ ≡ 0
533
+
534
+ i
535
+ λ2
536
+ i
537
+ aibi
538
+ ≡ 1.
539
+
540
+ FINITE GROUP ACTIONS ON 4-MANIFOLDS AND EQUIVARIANT BUNDLES
541
+ 9
542
+ In the case when b = 0 the action is given by t · [z1 : z2 : z3] = [ζaz1 : z2 : z3] and has
543
+ a fixed projective line F = {z1 = 0} with normal rotation number cF ≡ a (mod p) and
544
+ self-intersection +1, while the isolated fixed point [1 : 0 : 0] has rotation number (a, a).
545
+ The compatibility for a lift of the linear action is the congruence relation:
546
+ λ − λF ≡ a
547
+ (mod p).
548
+ It is easily seen that the congruence relation of the theorem are satisfied:
549
+ λ
550
+ a2 − λF
551
+ a2 + c1(i∗L)[F]
552
+ a
553
+ ≡ 0.
554
+ where we used c1(i∗L)[F] = −1 since the first Chern class of the canonical line bundle
555
+ over CP 2 is negative of the preferred generator [F] ∈ H2(CP 2; Z) [30, Theorem 14.10,
556
+ p. 169].
557
+ Similarly, the second relation is
558
+ λ2
559
+ a2 − λ2
560
+ F
561
+ a2 + 2λFc1(i∗L)[F]
562
+ a
563
+ ≡ (a + λF)2 − λ2
564
+ F
565
+ a2
566
+ + 2λFc1(i∗L)[F]
567
+ a
568
+ ≡ 1 ≡ c1(L)2[X].
569
+ Definition 5.5. Let (X, π) be a homologically trivial of π = Z/p in the setting of Theorem
570
+ A, with rotation data F = {(ai, bi), (cj, αj) | i ∈ I, j ∈ J}. We say that (X, π) satisfies the
571
+ condition of Theorem A if there exists a set of isotropy data I = {λi, λj | i ∈ I, j ∈ J},
572
+ and a set of integers {mj | j ∈ J} so that the equation given in Theorem A holds.
573
+ In the next statement, we apply the equivariant connected sum operation to line bun-
574
+ dles.
575
+ Lemma 5.6. Suppose that (X, π) satisfies the condition of Theorem A. There there is an
576
+ equivariant connected sum (X♯ CP 2, π) with a linear π-action on CP 2 which also satisfies
577
+ the condition of Theorem A.
578
+ Proof. We first suppose that (X, π) contains a fixed 2-sphere Fj with data {αj, cj}. Let
579
+ (CP 2, π) be the linear action given by t · [z1 : z2 : z3] = [ζ−cjz1 : z2 : z3] as in Example 4.2.
580
+ We do the equivariant connected sum (preserving the orientations) along a point in Fj
581
+ and a point in the fixed 2-sphere of CP 2. The new data is obtained by (i) adding the data
582
+ {(−cj, −cj); λj} for the newly created isolated fixed point (on CP 2), and (ii) the data
583
+ {(cj, αj + 1); λj} for the new fixed 2-sphere. With these choices, it follows that the action
584
+ (X♯ CP 2, π) satisfies the condition of Theorem A. The proof in case the action (X, π) has
585
+ only isolated fixed points is easier, and will be left to the reader.
586
+
587
+ Remark 5.7. Suppose that (X, π) has data satisfying the condition of Theorem A, and
588
+ contains a fixed 2-sphere F. Let X0 ⊂ X denote the complement of a linear π-invariant
589
+ 4-ball neighbourhood of a point x ∈ F. If L is an equivariant line bundle over (X♯ CP 2, π),
590
+ then the restriction of L to X0 extends to an equivariant line bundle over (X, π) realizing
591
+ the given data.
592
+
593
+ 10
594
+ NIMA ANVARI AND IAN HAMBLETON
595
+ 6. The proof of Theorem A
596
+ The first relation in Theorem 5.1 proves the necessary conditions of Theorem A. To
597
+ prove sufficiency we will need the following lemmas.
598
+ Note that in a standard lens space Y = L(n; a, b), a generator µ ∈ H1(Y ; Z) is repre-
599
+ sented by a circle fibre in the fibration S1 → L(n; a, b) → S2 given by the quotient of a
600
+ free Z/n action on S3.
601
+ Lemma 6.1. The linking paring lk: H1(Y ) × H1(Y ) → Q/Z in the lens space Y =
602
+ L(n; a, b) is given by lk(µ, µ) = ab
603
+ p where µ is a generator of H1(Y ; Z) = Z/n.
604
+ Proof. In the usual representation of lens spaces L(n; q) as the quotient of the free Z/n
605
+ action t · (z1, z2) = (ζz1, ζqz2) on S3, the linking pairing is given by lk(µ, µ) = q
606
+ n. The
607
+ diffeomorphism L(n; a∗b) → L(n; a, b) arising from changing the generator in Z/n induces
608
+ a map on first homology given by multiplication by a. It follows that the linking pairing
609
+ on Y is given by
610
+ lk(aµ, aµ) = a2 ·
611
+ �a∗b
612
+ n
613
+
614
+ = ab
615
+ n ∈ Q/Z.
616
+
617
+ Lemma 6.2 ((See [22, Proposition 1.4, p. 621], [25, Lemma 2.11, p. 95])). Let φ: π1(Y ) −→
618
+ U(1) be the holonomy representation of a flat U(1)-bundle over the lens space Y
619
+ =
620
+ L(n; a, b) that sends a generator µ to exp(2πiλ/n). Then the Poincar´e dual of the first
621
+ Chern class PD(c1(L)) is given by λ
622
+ ab[µ] in H1(Y ; Z).
623
+ Proof. The adjoint to the linking form Φ: H1(Y ; Z) → Hom(H1(Y ; Z), Q/Z) sends m[µ]
624
+ to lk(mµ, −) which can be identified with the holonomy representation of the flat bundle
625
+ via :
626
+ e2πi·lk(mµ,−) : H1(Y ; Z) → U(1)
627
+ and this maps the generator to exp(2πi · mab/n). It follows that m ≡ λ
628
+ ab (mod n).
629
+
630
+ If Y is a lens space, we let ˆµ ∈ H2(Y ; Z) denote a standard cohomology generator: the
631
+ Poincar´e dual to the circle fibre class µ ∈ H1(Y ; Z).
632
+ Lemma 6.3. Let u: Y ′ → Y be a d-fold regular covering of lens space, where H1(Y ; Z) ∼=
633
+ Z/dn and H1(Y ′; Z) ∼= Z/n, with gcd(d, n) = 1. Then u∗(ˆµ) = ˆµ′ ∈ H2(Y ′; Z).
634
+ Proof. For a d-fold regular covering u: Y ′ → Y of lens spaces, we have u∗[µ′] = d[µ] ∈
635
+ H1(Y, Z) and u∗[Y ′] = d[Y ] ∈ H3(Y ; Z).
636
+ The cohomology generator ˆµ = [Y ] ∩ µ ∈
637
+ H2(Y ; Z) is the Poincar´e dual of µ, and similarly for ˆµ′ ∈ H2(Y ′; Z). We have the formula
638
+ u∗([Y ′] ∩ u∗(ˆµ)) = u∗(µ′) = dµ.
639
+ If H1(Y ; Z) = Z/dn and H1(Y ′; Z) = Z/n, where gcd(d, n) = 1, then u∗(ˆµ) = kˆµ′ implies
640
+ that k ≡ 1 (mod n). Hence u∗(ˆµ) = ˆµ′ ∈ H2(Y ′; Z).
641
+
642
+
643
+ FINITE GROUP ACTIONS ON 4-MANIFOLDS AND EQUIVARIANT BUNDLES
644
+ 11
645
+ Suppose that (X, π) satisfies the assumptions of Theorem 5.1. Let Σ ⊂ X denote the
646
+ singular set of the action, and let X0 := X − Σ. Write αj = pajαj, where αj is prime to
647
+ p (for each fixed 2-sphere Fj).
648
+ Lemma 6.4. If the singular set Σ ⊂ X contains an isolated point, then H1(X0; Z) is a
649
+ quotient of � Z/αj and has order prime to p.
650
+ Proof. Let F ⊂ X denote the disjoint union of the fixed 2-spheres, so F = �
651
+ j Fj. First
652
+ note that H1(X0) ∼= H3(X, F) and we have an exact sequence
653
+ · · · → H2(X) → H2(F) → H3(X, F) → H3(X) → . . .
654
+ Since H3(X) = 0, and the homology classes of the fixed 2-spheres are linearly independent
655
+ mod p (by [9, Corollary 2.6]), it follows that H3(X, F) ∼= H1(X0) is a torsion group of
656
+ order prime to p.
657
+ Moreover, the exact Mayer-Vietoris sequence
658
+ 0 → H2(X0) ⊕ H2(F) → H2(X) → H1(∂X0) → H1(X0) → 0
659
+ and the equality H1(∂X0) = H1(∂ν(F)) ∼= � Z/αj completes the proof.
660
+
661
+ The proof of Theorem A. By Theorem 5.1(i), the indicated formulas hold if (X, π) admits
662
+ an equivariant line bundle. It remains to prove that a solution {λi, λj, mj | i ∈ I, j ∈ J}
663
+ to the congruence relation
664
+
665
+ i
666
+ λi
667
+ aibi
668
+
669
+
670
+ j
671
+ λjαj
672
+ c2
673
+ j
674
+ +
675
+
676
+ j
677
+ mj
678
+ cj
679
+ ≡ 0
680
+ (mod p)
681
+ is sufficient for the existence of an equivariant line bundle with {λi, λj} isotropy repre-
682
+ sentations over the isolated fixed points and 2-spheres respectively, and mj ≡ c1(i∗L | Fj)
683
+ mod αj. For simplicity, we will assume that the action (X, π) contains at least one iso-
684
+ lated fixed point. This may always be arranged by taking the equivariant connected sum
685
+ of (X, π) along a fixed 2-sphere with a suitable linear π-action on CP 2 (see Lemma 5.6).
686
+ Let X0 = X−N, where N = ν(Σ) is a π-invariant tubular neighbourhood of the singular
687
+ set Σ ⊂ X. More explicitly, X0 is the compact 4-manifold with boundary obtained by
688
+ removing π-invariant 4-balls around each isolated fixed point and π-invariant tubular
689
+ neighbourhoods D2 → ν(Fj) → Fj around each π-fixed 2-sphere Fj with rotation tcj on
690
+ D2-fibers. Then ν(Fj) is a 2-disk bundle over S2 with Euler class αj[F] ∈ H2(F; Z) ∼= Z,
691
+ and the lens space ∂ν(Fj) = L(αj, 1) inherits a free Z/p action with rotation number cj
692
+ on the circle fibre.
693
+ If W0 := X0/π denotes the quotient manifold with (regular) covering map q: X0 → W0
694
+ classified by u: W0 → Bπ, then the boundary ∂W0 consists of lens spaces Yi = L(p; ai, bi)
695
+ and Yj = L(pαj; cj, cj). Note that
696
+ H1(W0; Z) ∼= Z/p ⊕ H1(X0, Z)
697
+ by the spectral sequence of the covering.
698
+ By Lemma 6.4, H1(X0; Z) is a quotient of
699
+ � Z/αj and has order prime to p.
700
+ Recall that π-equivariant line bundles L over (X, π) are classified by an element
701
+ θ(L) ∈ H2
702
+ π(X; Z) = H2(X ×π Eπ; Z)
703
+
704
+ 12
705
+ NIMA ANVARI AND IAN HAMBLETON
706
+ in the Borel requivariant cohomology of X (see [27]). Since the π-action on X0 is free, for
707
+ the restriction L0 ց X0 we have θ(L0) ∈ H2
708
+ π(X0; Z) ∼= H2(W0; Z), and θ(L0) = c1(¯L0),
709
+ where ¯L0 is the line bundle over W0 obtained by dividing out the free π-action on the
710
+ total space of L0. Moreover, in the short exact sequence
711
+ 0 → H2(Z/p; Z)
712
+ c∗
713
+ −→ H2(W0; Z)
714
+ q∗
715
+ −→ H2(X0; Z) → 0
716
+ the pullback q∗(θ(L0)) = c1(q∗(¯L0)) = c1(L0) ∈ H2(X0; Z).
717
+ The strategy will be to find a suitable element θ(L) ∈ H2
718
+ π(X; Z) by studying the Mayer-
719
+ Vietoris sequence
720
+ · · · → H2
721
+ π(X) → H2
722
+ π(X0) ⊕ H2
723
+ π(N) → H2
724
+ π(∂X0)
725
+ δ−→ H3
726
+ π(X) → H3
727
+ π(X0) ⊕ H3
728
+ π(N) → . . .
729
+ in Borel cohomology associated to the π-equivariant decomposition X = X0 ∪ N.
730
+ We observe the following:
731
+ (i) The Mayer-Vietoris coboundary map H2
732
+ π(∂X0)
733
+ δ−→ H3
734
+ π(X) factors
735
+ H2
736
+ π(∂X0)
737
+ δ−→ H3
738
+ π(X0, ∂X0) ∼= H3
739
+ π(X, N) → H3
740
+ π(X).
741
+ (ii) The cokernel of the map H2
742
+ π(N) → H2
743
+ π(∂X0) has exponent p. This follows from
744
+ the commutative diagram of restriction maps
745
+ H2
746
+ π(N)
747
+
748
+
749
+ H2
750
+ π(∂X0)
751
+
752
+ � � Z/pαj
753
+
754
+ H2(N)
755
+ � H2(∂X0)
756
+
757
+ = � � Z/αj
758
+ since the map H2
759
+ π(N) → H2(N) is surjective (by the Borel spectral sequence) and
760
+ the map H2(N, ∂N) → H2(N) is adjoint to the (diagonal) intersection form on
761
+ N, with cokernel H2(∂N) = H2(∂X0), hence determined by the self-intersection
762
+ numbers {αj}.
763
+ (iii) We have H3
764
+ π(X0, ∂X0) ∼= H3(W0, ∂W0) ∼= H1(W0) ∼= Z/p⊕H1(X0), where H1(X0)
765
+ is a quotient of � Z/αj and has order prime to p (by Lemma 6.4).
766
+ To complete the proof of Theorem A, it is now enough to produce a class
767
+ θ0 ∈ H2
768
+ π(X0) ∼= H2(W0),
769
+ which added together with the classes already found in H2
770
+ π(N) will have image zero in
771
+ H2
772
+ π(∂X0). By the observations above, this amounts to finding a U(1)-bundle ¯L0 on ∂W0
773
+ whose first Chern class θ0 = c1(¯L0) has image of order prime to p under the coboundary
774
+ map
775
+ H2(∂W0) → H3(W0, ∂W0).
776
+ In other words, we need to find suitable U(1)-bundles over each of boundary components
777
+ of ∂W0, so that the sum of their first Chern classes is zero (mod p). This required relation
778
+ is exactly the condition (1.1) given in the statement of Theorem A.
779
+ Let Y denote one of the lens spaces in ∂W0, For convenience, we will identify Z/p ∼=
780
+ H2(Y ; Z) by a �→ a · ˆµ, for a ∈ Z/p, where ˆµ ∈ H2(Y ; Z) denotes a standard generator,
781
+ Poincar´e dual to the circle fibre class µ ∈ H1(Y ; Z) (introduced in Lemma 6.1).
782
+
783
+ FINITE GROUP ACTIONS ON 4-MANIFOLDS AND EQUIVARIANT BUNDLES
784
+ 13
785
+ If Y = L(p; ai, bi) then choose the holonomy representation that sends a generator in
786
+ π1(Y ) to exp(2πiλi/p). The first Chern class of the associated flat U(1)-bundle is
787
+ λi
788
+ aibi
789
+ [ˆµ] ∈ H2(Yi; Z) ∼= Z/p.
790
+ In the case when the π-action on X has only isolated fixed points, the condition for an
791
+ extension is that these elements lie in the kernel of δ in H2(∂W0; Z) = �
792
+ i H2(Yi; Z) which
793
+ is equivalent to the condition �
794
+ i
795
+ λi
796
+ aibi
797
+ ≡ 0 (mod p).
798
+ In the general case when components of the fixed set contain 2-spheres, we need to
799
+ consider contributions from the lens spaces Yj = L(pαj; cj, cj). These lens spaces arise
800
+ from the free tcj-action on �Yj := ∂ν(Fj) ≈ L(αj; 1). Conisder the induced covering spaces
801
+ of Yj by the lens spaces L(paj+1, 1) and L(αj, 1), where αj = pajαj, and note that the
802
+ covering maps induce an isomorphism:
803
+ (6.5)
804
+ H2(Yj; Z)
805
+
806
+ =
807
+
808
+
809
+ =
810
+
811
+ H2(L(paj+1, 1)) ⊕ H2(L(αj, 1))
812
+
813
+ =
814
+
815
+ Z/pαj
816
+
817
+ =
818
+ � Z/paj+1 ⊕ Z/αj
819
+ Under the two covering maps, the standard cohomology generator ˆµj ∈ H2(Yj; Z) is sent
820
+ to the standard generators in H2(L(paj+1, 1)) and H2(L(αj, 1)), respectively, by Lemma
821
+ 6.3. The maps in the lower sequence are the reductions mod paj+1 and α, after using the
822
+ identifications provided by the cohomology generators.
823
+ Now the following congruences uniquely determines a Chern class c1(¯Lj) = ℓj
824
+ c2
825
+ j
826
+ [ˆµj] ∈
827
+ H2(Yj; Z), by choosing:
828
+ (6.6)
829
+ ℓj
830
+
831
+ −λjαj
832
+ (mod paj+1),
833
+ ℓj
834
+
835
+ cjmj
836
+ (mod αj).
837
+ and hence a U(1)-bundle ¯Lj ց Yj. The minus sign is chosen in the first congruence
838
+ because the induced orientation on Yj from ∂W0 is opposite to its orientation as the disk
839
+ bundle over S2 with Euler class αj.
840
+ By diagram (6.5) and Lemma 6.3, the first Chern class has image
841
+ c1(¯Lj) = ℓj
842
+ c2
843
+ j
844
+ [µj] = −λjαj + cjmj
845
+ c2
846
+ j
847
+ [µj] ∈ H2(Yj; Z)
848
+ with respect to the decomposition H2(Yj; Z) ∼= Z/paj+1 ⊕ Z/αj. After substituting these
849
+ expressions into the formula of Theorem 5.1, we see that the sum vanishes mod p, and
850
+ hence the required line bundle ¯L0 over W0 exists.
851
+
852
+ 7. Equivariant SU(2) Bundles
853
+ In this section we compute a (necessary) congruence relation similar to the previous
854
+ section, but for equivariant SU(2)-bundles.
855
+ As above, we work over a closed, simply
856
+ connected, oriented 4-manifold with a finite homologically trivial cyclic group action. We
857
+
858
+ 14
859
+ NIMA ANVARI AND IAN HAMBLETON
860
+ again use the twisted G-signature formula (with the previously established notation). In
861
+ particular, let D denote the signature operator twisted by an equivaraint SU(2)-bundle
862
+ E −→ X, then the contribution to the Lefschetz numbers from isolated fixed points is
863
+ given by
864
+ L(g, D) | pt = (ta + 1)
865
+ (ta − 1)
866
+ (tb + 1)
867
+ (tb − 1)(tλ + t−λ).
868
+ We need to compute the contribution from isolated fixed 2-spheres F.
869
+ Since E | F =
870
+ L ⊕ L−1, we have chg(L ⊕ L−1 | F) = {eλ+z + e−λ−z}[F] and
871
+ L(g, D) | F = {2 cot(iθ/2) − csch2(iθ/2)y} chg(L ⊕ L−1 | F)[F]
872
+ = {2(tc + 1)
873
+ (tc − 1) −
874
+ 4tcy
875
+ (tc − 1)2}{eλ(1 + z) + e−λ(1 − z)}[F]
876
+ = {2(tc + 1)
877
+ (tc − 1) −
878
+ 4tcy
879
+ (tc − 1)2}{tλ + t−λ + z(tλ − t−λ)}[F]
880
+ = − 4tc[F]2
881
+ (tc − 1)2(tλ + t−λ) + 2c1(L)[F](tc + 1)
882
+ (tc − 1)(tλ − t−λ).
883
+ Also note
884
+ χ(1) = ch(E)L(X)[X] = (2 − c2(E))(4 + 1
885
+ 3p1)
886
+ = 2 Sign(X) − 4c2(E).
887
+ We now again multiply both sides of the G-signature formula by (t − 1), take Taylor
888
+ expansions about t = 1 and reduce coefficients modulo p:
889
+ (ta + 1)
890
+ (ta − 1)
891
+ (tb + 1)
892
+ (tb − 1)(t − 1)2(tλ + t−λ) = 8
893
+ ab + 8
894
+ ab(t − 1)+
895
+ 2
896
+ 3
897
+ (a2 + b2 + 1 + 6λ2)
898
+ ab
899
+ (t − 1)2 + · · · .
900
+ and for the second term, where we let m denote c1(L)[F]:
901
+ (t − 1)2{ −4αtc
902
+ (tc − 1)2(tλ + t−λ) + 2m(tc + 1)
903
+ (tc − 1)(tλ + t−λ)}
904
+ = −8α
905
+ c2
906
+ + −8α
907
+ c2 (t − 1) + 2
908
+ 3
909
+ (αc2 − α − 6αλ2 + 12mcλ)
910
+ c2
911
+ (t − 1)2 + · · ·
912
+ Summing over all the fixed sets and simplifying the coefficient of second order term (t−1)2,
913
+ we obtain:
914
+ 2 Sign(X) +
915
+
916
+ i
917
+ 4λ2
918
+ i
919
+ aibi
920
+
921
+
922
+ j
923
+ 4αjλ2
924
+ j
925
+ c2
926
+ j
927
+ +
928
+
929
+ j
930
+ 8mjλj
931
+ cj
932
+ .
933
+ Equating this with χ(1) = 2 Sign(X) − 4c2(E) and reducing coefficients modulo p gives
934
+ the following congruence relation:
935
+
936
+ FINITE GROUP ACTIONS ON 4-MANIFOLDS AND EQUIVARIANT BUNDLES
937
+ 15
938
+ Theorem 7.1. Let (E, π) → (X, π) denote an equivariant SU(2)-bundle over a simply
939
+ connected, closed 4-manifold with a homologically trivial group action of a finite cyclic
940
+ group π = Z/p of odd prime order. Then the following congruence relation holds
941
+
942
+ i
943
+ λ2
944
+ i
945
+ aibi
946
+
947
+
948
+ j
949
+ αjλ2
950
+ j
951
+ c2
952
+ j
953
+ +
954
+
955
+ j
956
+ 2λj
957
+ cj
958
+ c1(i∗Lj)[Fj] ≡ −c2(E)[X]
959
+ (mod p),
960
+ where Lj is a local reduction E | Fj = Lj ⊕ L−1
961
+ j .
962
+ Example 7.2 (Linear Models on S4). Let X = S4 with a linear Z/p-action which gives
963
+ rotation numbers (a, b) and (a, −b). Let E denote the instanton one equivariant SU(2)-
964
+ bundle, i.e. with c2(E) = 1. Then the congruence relation is given by
965
+ −c2(E) = λ2
966
+ 1
967
+ ab − λ2
968
+ 2
969
+ ab
970
+ (mod p)
971
+ It is elementary to check that for congruence relation is satisfied with the following isotropy
972
+ representations
973
+ λ1 = b − a
974
+ 2
975
+ λ2 = a + b
976
+ 2
977
+ .
978
+ over the fibres of the fixed points.
979
+ Example 7.3 (Linear Models on CP
980
+ 2). Let X = CP
981
+ 2 with a linear Z/p-action with
982
+ one isolated fixed point with rotation number (a, −a) for some a (mod p) and a fixed
983
+ projective line F with rotation number a (mod p) on the normal bundle. Let E again
984
+ denote the instanton one equivariant SU(2)-bundle. The congruence relation gives
985
+ −1 ≡ −λ2
986
+ a2 + λ2
987
+ F
988
+ a2 + 2mλF
989
+ a
990
+ where m = c1(i∗L)[F]. There exists two distinct lifts giving rise to equivariant bundles
991
+ which admit G-invariant ASD connections. In the case when the equivariant lift comes
992
+ from ”bubbling” on the isolated fixed point then m = 0 and
993
+ λ ≡ a
994
+ (mod p)
995
+ λF ≡ 0
996
+ (mod p).
997
+ Thus the congruence is satisfied. On the other hand, if we choose the equivariant lift
998
+ associated to the fixed 2-sphere (from 3-dimensional fixed connected component in the
999
+ moduli space of equivariant ASD connections with c2(E) = 1) then m = −1 and
1000
+ λ ≡ a/2
1001
+ (mod p)
1002
+ λF ≡ a/2
1003
+ (mod p),
1004
+ again the congruence relation is satisfied.
1005
+ In the next section we compute the dimension of the moduli space of invariant anti-self
1006
+ dual connections for a given equivariant SU(2)-bundle.
1007
+
1008
+ 16
1009
+ NIMA ANVARI AND IAN HAMBLETON
1010
+ 8. Equivariant Index Computation
1011
+ Let X be a simply connected, closed, smooth negative definite 4-manifold, with a
1012
+ homologically trivial action of a finite group G.
1013
+ If E ց X is an SU(2)-bundle with
1014
+ c2(E) = k, the moduli space M∗
1015
+ 1(X) of irreducible ASD connections (on an SU(2)-bundle
1016
+ E with c2(E) = 1) inherits a G-action, and the connected components of the fixed point
1017
+ set MG
1018
+ 1 (X) correspond to G-invariant ASD connections for certain equivariant lifts of the
1019
+ G-action on X to E (see [15], [6], [20, Theorem A], [24, §2]).
1020
+ We want to compute the dimension of the moduli space MG
1021
+ k (X) of irreducible G-
1022
+ invariant ASD connections. This is motivated by the following example, for which the
1023
+ formal dimension dim M∗
1024
+ 1(X) = 5.
1025
+ In this case, we expect a dimension formula that
1026
+ gives 1 and 3-dimensional strata depending on contributions from isolated fixed points
1027
+ or isolated fixed 2-spheres in X and on the isotropy representations from the equivariant
1028
+ lift (see [6] and [21] for details). There are similar index calculations in the literature in
1029
+ various gauge-theoretic settings (for example, see [13, §3], [4]), [28, 29], [35], [1]).
1030
+ We first very briefly review the dimension calculation in the non-equivariant setting to
1031
+ set some notation. Let D+
1032
+ A = d∗
1033
+ A + d+
1034
+ A : Ω1(ad E) → Ω0(ad E) ⊕ Ω2
1035
+ +(ad E) denote the
1036
+ anti-self duality operator, and let Mk denote the ASD moduli space with c2(E) = k. Note
1037
+ that the formal dimension is given by dim Mk = − Ind(D+
1038
+ A) and this is given by
1039
+ (8.1)
1040
+ Ind(D+
1041
+ A) = ˆA(X) ch(S+) ch(adC E)[X]
1042
+ where S = S+ ⊕S− and ˆA(X) = �
1043
+ xi/2
1044
+ sinh(xi/2) with ch(S) = �(exi/2 + e−xi/2) and ch(S+) −
1045
+ ch(S−) = �(exi/2 − e−xi/2). Using this we compute
1046
+ 2 ˆA(X) ch(S+) ch(adC E)[X] = (4 + 1
1047
+ 3p1 + χ)(3 − 4c2(E))[X]
1048
+ = −16c2(E) + 3(p1
1049
+ 3 + χ).
1050
+ Thus the index Ind(D+
1051
+ A) = −8c2(E) + 3
1052
+ 2(Sign +χ)(X) and we get the usual expression
1053
+ dim Mk = 8k − 3/2(χ + Sign)(X) for the dimension of the moduli space. Also note the
1054
+ following alternative expression for the index:
1055
+ Ind(D+
1056
+ A) = ch(S+ − S−) ch(S+) ch(adC E)Td(TX ⊗ C)
1057
+ e(X)
1058
+ [X]
1059
+ = ˆA(X) ch(S+ ⊗ adC E)[X].
1060
+ For the equivariant setting E is an equivariant SU(2)-bundle and let D = D+
1061
+ A denote the
1062
+ anti-self duality operator d∗
1063
+ A + d+
1064
+ A : Ω1(ad E)G → Ω0(ad E)G ⊕ Ω2
1065
+ +(ad E)G. We compute
1066
+ the equivariant index by averaging the Lefschetz numbers as in [13]:
1067
+ Ind(D) = 1
1068
+ p
1069
+
1070
+ g∈G
1071
+ L(g, D)
1072
+
1073
+ FINITE GROUP ACTIONS ON 4-MANIFOLDS AND EQUIVARIANT BUNDLES
1074
+ 17
1075
+ Ind(D) = 1
1076
+ p{L(1, D) +
1077
+
1078
+ g̸=1
1079
+ L(g, D)}
1080
+ = 1
1081
+ p{−8c2(E) + 3
1082
+ 2(χ + Sign)(X) +
1083
+
1084
+ g̸=1
1085
+ L(g, D)}
1086
+ = 1
1087
+ p{−8c2(E) + 3p
1088
+ 2 (χ + Sign)(X/G) − 3
1089
+ 2(dχ + dσ)(XG) +
1090
+
1091
+ g̸=1
1092
+ L(g, D)}
1093
+ where pχ(X/G) = χ(X) + dχ with dχ = �
1094
+ g̸=1 χ(Xg) is the Euler characteristic defect
1095
+ terms and similarly for the signature defect term:
1096
+ − 3
1097
+ 2(dχ + dσ)[pt] = −3
1098
+ 2(1 − cot(θ1/2) cot(θ2/2))
1099
+ − 3
1100
+ 2(dχ + dσ)[F] = −3
1101
+ 2(2 + [F]2 csc2(θ/2)),
1102
+ where (θ1, θ2) are the rotation numbers at an isolated fixed point and θ = cF is the rotation
1103
+ number on the normal bundle to F. Decomposing the contributions from isolated fixed
1104
+ points and 2-spheres:
1105
+
1106
+ g̸=1
1107
+ L(g, D)(XG) =
1108
+
1109
+ g̸=1
1110
+ {
1111
+
1112
+ i
1113
+ L(g, D) | (ai,bi) +
1114
+
1115
+ j
1116
+ L(g, D) | Fj}.
1117
+ Now chg(adC E)(pt) = 3 − 4 sin2( πkℓ
1118
+ p ), with ℓ the isotropy representation on the fiber of E
1119
+ over the fixed point. The Lefshetz numbers from the fixed sets can be computed directly
1120
+ from the index formula and are given by:
1121
+ (8.3)
1122
+ L(g, D) | pt = −1
1123
+ 2 [cot(θ1/2) cot(θ2/2) − 1] chg(adC E)[pt]
1124
+ (8.4)
1125
+ L(g, D) | F = [−i cot(θ/2) + 1
1126
+ 2(χ + csc2(θ/2)y)] chg(adC E)[F],
1127
+ with χ the Euler class of the tangent bundle to F and y is the Euler class of the normal
1128
+ bundle to F. We first compute the contribution from isolated fixed points.
1129
+ L(g, D) | pt = −1
1130
+ 2 [cot(θ1/2) cot(θ2/2) − 1][3 − 4 sin2(πkℓ
1131
+ p )][pt]
1132
+ = −3
1133
+ 2[cot(θ1/2) cot(θ2/2) − 1] − 2 sin2(πkℓ
1134
+ p )
1135
+ + 2 cot(θ1/2) cot(θ2/2) sin2(πkℓ
1136
+ p ).
1137
+
1138
+ 18
1139
+ NIMA ANVARI AND IAN HAMBLETON
1140
+ Summing over all isolated fixed points gives
1141
+ 1
1142
+ p
1143
+
1144
+ g̸=1
1145
+
1146
+ i
1147
+ L(g, D) | (ai,bi) = 3
1148
+ 2p
1149
+
1150
+ i
1151
+ (dχ + dσ)(ai, bi) − 2
1152
+ p
1153
+
1154
+ i
1155
+ p−1
1156
+
1157
+ k=1
1158
+ sin(πkℓi
1159
+ p )
1160
+ + 2
1161
+ p
1162
+
1163
+ i
1164
+ p−1
1165
+
1166
+ k=1
1167
+ cot(aiπk
1168
+ p
1169
+ ) cot(biπk
1170
+ p ) sin2(πkℓi
1171
+ p )
1172
+ = 3
1173
+ 2p
1174
+
1175
+ i
1176
+ (dχ + dσ)(ai, bi) + m +
1177
+
1178
+ i
1179
+ ρL(p, ai, bi, ℓi)
1180
+ where m is the number isolated fixed points with non-trivial representation on the fiber
1181
+ and ρL(p, a, b, ℓ) is the rho invariant of lens spaces.
1182
+ We need to compute chg(adC E | F). Since an SU(2) bundle restricted over a fixed 2-
1183
+ submanifold has a local abelian reduction E | F = L ⊕ L−1 for some L, we have ad E | F =
1184
+ L2 ⊕ R. We need to compute chg(adC E | F) = chg(L2) + chg(L2) + 1 and this contributes
1185
+ chg(adC E | F) = (g + gc1(L2)) + (g−1 + g−1c1(L2)) + 1
1186
+ = (g + g−1 + 1) + c1(L2)(g − g−1)
1187
+ = (3 − 4 sin2(πkℓ
1188
+ p )) + 2ic1(L2) sin(2πkℓ
1189
+ p
1190
+ ),
1191
+ where now ℓ is the isotropy representation on the fibre over the fixed 2-sphere F. Substi-
1192
+ tuting these terms, the Lesfchetz number L(g, D) | F evaluated on fixed 2-spheres gives:
1193
+ L(g, D) | F = [−i cot(θ/2) + 1
1194
+ 2(χ + csc2(θ/2)y)][(3 − 4 sin2(πkℓ
1195
+ p )) + 2ic1(L2) sin(2πkℓ
1196
+ p
1197
+ )][F]
1198
+ = 1
1199
+ 2[χ + csc2(θ/2)y][3 − 4 sin2(πkℓ
1200
+ p )] + 2c1(L2) sin(2πkℓ
1201
+ p
1202
+ ) cot(θ
1203
+ 2).
1204
+ Let us introduce a kind of rho invariant term for fixed surfaces:
1205
+ ρF(ℓ) = 2
1206
+ p
1207
+ p−1
1208
+
1209
+ k=1
1210
+ csc2(πcFk
1211
+ p
1212
+ ) sin2(πkℓ
1213
+ p )[F]2 − 4c1(L)[F]
1214
+ p
1215
+ p−1
1216
+
1217
+ k=1
1218
+ sin(2πkℓ
1219
+ p
1220
+ ) cot(πkcF
1221
+ p
1222
+ ),
1223
+ with this notation we have
1224
+ 1
1225
+ p
1226
+
1227
+ g̸=1
1228
+
1229
+ j
1230
+ L(g, D) | Fj = 3
1231
+ 2p
1232
+
1233
+ j
1234
+ (dχ + dσ)[Fj] − 2
1235
+ p
1236
+
1237
+ j
1238
+ χ(Fj)
1239
+ p−1
1240
+
1241
+ k=1
1242
+ sin2(πkℓj
1243
+ p
1244
+ )
1245
+
1246
+
1247
+ j
1248
+ ρFj(ℓj).
1249
+
1250
+ FINITE GROUP ACTIONS ON 4-MANIFOLDS AND EQUIVARIANT BUNDLES
1251
+ 19
1252
+ Now combining all the terms we obtain:
1253
+ Ind(DA) = −8
1254
+ p c2(E) + 3
1255
+ 2(χ + Sign)(X/G)) − m +
1256
+
1257
+ i
1258
+ ρL(p, ai, bi, ℓi)
1259
+
1260
+
1261
+ j with ℓj̸=0
1262
+ χ(Fj) −
1263
+
1264
+ j
1265
+ ρFj(ℓj).
1266
+ Since dim MG
1267
+ k (X) = − Ind(DA), the dimension formula is
1268
+ dim MG
1269
+ k (X) = 8
1270
+ pc2(E) − 3
1271
+ 2(χ + Sign)(X/G) + m −
1272
+
1273
+ i
1274
+ ρL(p, ai, bi, ℓi)
1275
+ +
1276
+
1277
+ j with ℓj̸=0
1278
+ χ(Fj) +
1279
+
1280
+ j
1281
+ ρFj(ℓj).
1282
+ Before giving an example we note a few special cases.
1283
+ When the action on X only
1284
+ has isolated fixed points, let (ai, bi) denote the rotation numbers and ℓi the isotropy
1285
+ representation over the points, the formula reduces to the following:
1286
+ dim MG
1287
+ k (X) = 8c2(E)
1288
+ p
1289
+ − 3
1290
+ 2(χ + Sign)(X/G) + m −
1291
+
1292
+ i
1293
+ ρL(p, ai, bi, ℓi).
1294
+ For invariant ASD connections on the four-sphere this formula reduces to that of [4, p.
1295
+ 394]. In the case of SO(3)-bundles in the orbifold setting, see Fintushel and Stern [13].
1296
+ When the action on X is a smooth involution with fixed 2-sphere and non-trivial action
1297
+ on fibre cF ≡ ℓ ≡ 1 mod 2 the formula above reduces to:
1298
+ dim MG
1299
+ k (X) = 4c2(E) − 3
1300
+ 2(χ + Sign)(X/G) + χ(F) + [F]2.
1301
+ which matches with Wang [35, Theorem 18, p. 130].
1302
+ We finish this section with an
1303
+ example.
1304
+ Example 8.5. Let X = #3CP
1305
+ 2 with a linear Z/p-action with p = 5 that arises from
1306
+ equivariant connected sums of linear actions in the following way. Take the equivariant
1307
+ connected sum of two copies of CP
1308
+ 2 along the two dimensional fixed sets which fixes a pro-
1309
+ jective line and a rotation number of (1, −1) at the isolated fixed points in each copy. Now
1310
+ at one of the isolated fixed points take the equivariant connected sum with CP
1311
+ 2 that has
1312
+ a linear action with 3 isolated fixed points with rotation numbers (1, 1), (2, −1), (2, −1).
1313
+ The result is a smooth, homologically trivial Z/5-action on X that has 3 isolated fixed
1314
+ points with rotation data {(1, −1), (2, −1), (2, −1)} and a single fixed 2-sphere F with
1315
+ rotation number cF ≡ 1 (mod p) on the normal bundle and has self intersection −2.
1316
+ The compactified, equivariant ASD instanton one moduli space M1(X) has dimension
1317
+ 5 with fixed components that are 1 and 3-dimensional which correspond to invariant ASD
1318
+ connections for a lifted action to the SU(2)-bundle (see [21]).
1319
+ The boundary of the moduli space is the ”bubbling” of highly concentrated ASD con-
1320
+ nections which can be identified with a copy of X. The isolated fixed points propagate
1321
+
1322
+ 20
1323
+ NIMA ANVARI AND IAN HAMBLETON
1324
+ 1-fixed dimensional strata into the moduli space. We will compute the dimension of these
1325
+ strata using the dimension formula from this section and from the fixed point data.
1326
+ For example, at the isolated fixed point (2, −1) the highly concentrated instantons
1327
+ correspond to ASD connections on the 4-sphere, with equivariant lifts matching the linear
1328
+ models which then pull back to X using the degree 1-map in the formation of the Taubes
1329
+ boundary. This determines the equivariant lift on X and has isotropy representation tλ1
1330
+ over the fixed point (2, −1) with λ1 ≡ −3 (mod p) and tλ2 over all the other fixed point
1331
+ sets with λ2 ≡ 1 (mod p). The dimension formula gives:
1332
+ 8
1333
+ p − ρL(p, 2, −1, −3) − ρL(p, 2, −1, 1) − ρL(p, 1, −1, 1) + χ(F) + ρF(1) = 1.
1334
+ On the other hand, at a point on the fixed 2-sphere F following the same procedure with
1335
+ the degree one Taubes map, we can pull-back an equivariant bundle from the linear model
1336
+ on S4 with a fixed embedded 2-sphere. This time we get an equivariant SU(2)-bundle on
1337
+ X with c1(L)[F] = −1 in the local reduction E | F = L⊕L−1. The isotropy representation
1338
+ is tλ over all the fixed point sets with λ ≡ 1 (mod p). We then have:
1339
+ 8
1340
+ p − 2ρL(p, 2, −1, 1) − ρL(p, 1, −1, 1) + χ(F) + ρF(1) = 3.
1341
+ after substituting the data into the dimension formula.
1342
+ References
1343
+ [1] N. Anvari, Extending smooth cyclic group actions on the Poincar´e homology sphere, Pacific J. Math.
1344
+ 282 (2016), 9–25.
1345
+ [2] N. Anvari and I. Hambleton, Cyclic group actions on contractible 4–manifolds, Geometry & Topology
1346
+ 20 (2016), 1127–1155.
1347
+ [3]
1348
+ , Cyclic branched coverings of Brieskorn spheres bounding acyclic 4-manifolds, Glasg. Math.
1349
+ J. 63 (2021), 400–413.
1350
+ [4] D. M. Austin, SO(3)-instantons on L(p, q) × R, J. Differential Geom. 32 (1990), 383–413.
1351
+ [5] D. Baraglia and P. Hekmati, Brieskorn spheres, cyclic group actions and the Milnor conjecture, 2022.
1352
+ [6] P. J. Braam and G. Mati´c, The Smith conjecture in dimension four and equivariant gauge theory,
1353
+ Forum Math. 5 (1993), 299–311.
1354
+ [7] W. Chen, Group actions on 4-manifolds: some recent results and open questions, Proceedings of the
1355
+ G¨okova Geometry-Topology Conference 2009, Int. Press, Somerville, MA, 2010, pp. 1–21.
1356
+ [8] S. K. Donaldson and P. B. Kronheimer, The geometry of four-manifolds, Oxford Mathematical Mono-
1357
+ graphs, The Clarendon Press Oxford University Press, New York, 1990, Oxford Science Publications.
1358
+ [9] A. L. Edmonds, Aspects of group actions on four-manifolds, Topology and its Applications 31 (1989),
1359
+ 109–124.
1360
+ [10]
1361
+ , A survey of group actions on 4-manifolds, Handbook of group actions. Vol. III, Adv. Lect.
1362
+ Math. (ALM), vol. 40, Int. Press, Somerville, MA, 2018, pp. 421–460.
1363
+ [11] A. L. Edmonds and J. H. Ewing, Locally linear group actions on the complex projective plane, Topol-
1364
+ ogy 28 (1989), 211–223.
1365
+ [12]
1366
+ , Realizing forms and fixed point data in dimension four, Amer. J. Math. 114 (1992), 1103–
1367
+ 1126.
1368
+ [13] R. Fintushel and R. J. Stern, Pseudofree orbifolds, Ann. of Math. (2) 122 (1985), 335–364.
1369
+ [14]
1370
+ , Homotopy K3 surfaces containing Σ(2, 3, 7), J. Differential Geom. 34 (1991), 255–265.
1371
+ [15] M. Furuta, A remark on a fixed point of finite group action on S4, Topology 28 (1989), 35–38.
1372
+
1373
+ FINITE GROUP ACTIONS ON 4-MANIFOLDS AND EQUIVARIANT BUNDLES
1374
+ 21
1375
+ [16]
1376
+ , Za-invariant SU(2) instantons over the four sphere, Geometry of low-dimensional mani-
1377
+ folds, 1 (Durham, 1989), London Math. Soc. Lecture Note Ser., vol. 150, Cambridge Univ. Press,
1378
+ Cambridge, 1990, pp. 161–174.
1379
+ [17] M. Furuta and Y. Hashimoto, Invariant instantons on S4, J. Fac. Sci. Univ. Tokyo Sect. IA Math.
1380
+ 37 (1990), 585–600.
1381
+ [18] I. Hambleton and J.-C. Hausmann, Equivariant principal bundles over spheres and cohomogeneity
1382
+ one manifolds, Proc. London Math. Soc. (3) 86 (2003), 250–272.
1383
+ [19]
1384
+ , Equivariant bundles and isotropy representations, Groups Geom. Dyn. 4 (2010), 127–162.
1385
+ [20] I. Hambleton and R. Lee, Perturbation of equivariant moduli spaces, Math. Ann. 293 (1992), 17–37.
1386
+ [21]
1387
+ , Smooth group actions on definite 4-manifolds and moduli spaces, Duke Math. J. 78 (1995),
1388
+ 715–732.
1389
+ [22] I. Hambleton, R. Lee, and I. Madsen, Rigidity of certain finite group actions on the complex projective
1390
+ plane, Comment. Math. Helv. 64 (1989), 618–638.
1391
+ [23] I. Hambleton and S. Pamuk, Rank conditions for finite group actions on 4-manifolds, Canad. J.
1392
+ Math. 74 (2022), 550–572.
1393
+ [24] I. Hambleton and M. Tanase, Permutations, isotropy and smooth cyclic group actions on definite
1394
+ 4-manifolds, Geom. Topol. 8 (2004), 475–509.
1395
+ [25] M. Hedden and P. Kirk, Chern-Simons invariants, SO(3) instantons, and Z/2 homology cobordism,
1396
+ Chern-Simons gauge theory: 20 years after, AMS/IP Stud. Adv. Math., vol. 50, Amer. Math. Soc.,
1397
+ Providence, RI, 2011, pp. 83–114.
1398
+ [26] S. Kwasik and T. Lawson, Nonsmoothable Zp actions on contractible 4-manifolds, J. Reine Angew.
1399
+ Math. 437 (1993), 29–54.
1400
+ [27] R. K. Lashof, J. P. May, and G. B. Segal, Equivariant bundles with abelian structural group, Pro-
1401
+ ceedings of the Northwestern Homotopy Theory Conference (Evanston, Ill., 1982), Contemp. Math.,
1402
+ vol. 19, Amer. Math. Soc., Providence, RI, 1983, pp. 167–176.
1403
+ [28] T. Lawson, Compactness results for orbifold instantons, Math. Z. 200 (1988), 123–140.
1404
+ [29]
1405
+ , A note on trigonometric sums arising in gauge theory, Manuscripta Math. 80 (1993), 265–
1406
+ 272.
1407
+ [30] J. W. Milnor and J. D. Stasheff, Characteristic classes, Annals of Mathematics Studies, No. 76,
1408
+ Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974.
1409
+ [31] D. Ruberman, Involutions on spin 4-manifolds, Proc. Amer. Math. Soc. 123 (1995), 593–596.
1410
+ [32] N. Saveliev, Floer homology of Brieskorn homology spheres, J. Differential Geom. 53 (1999), 15–87.
1411
+ [33]
1412
+ , Invariants for homology 3-spheres, Springer, 2000.
1413
+ [34]
1414
+ , Fukumoto-Furuta invariants of plumbed homology 3-spheres, Pacific J. Math. 205 (2002),
1415
+ 465–490.
1416
+ [35] S. Wang, Moduli spaces over manifolds with involutions, Math. Ann. 296 (1993), 119–138.
1417
+ [36] D. M. Wilczy´nski, Group actions on the complex projective plane, Trans. Amer. Math. Soc. 303
1418
+ (1987), 707–731.
1419
+ Department of Mathematics & Statistics, McMaster University L8S 4K1, Hamilton,
1420
+ Ontario, Canada
1421
+ Email address: anvarin@math.mcmaster.ca
1422
+ Department of Mathematics & Statistics, McMaster University L8S 4K1, Hamilton,
1423
+ Ontario, Canada
1424
+ Email address: hambleton@mcmaster.ca
1425
+
BtE1T4oBgHgl3EQfVwQu/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
CNE2T4oBgHgl3EQf9AkT/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:144899726149fd01c3be44764fe6ac601ee16ec6ced3cedc3da55d806ff20fc7
3
+ size 5111853
CtAyT4oBgHgl3EQf4fpz/content/2301.00787v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:24e868c57233a9dfe899e190a7c932d5f28ad5d45711944d5e4bcdccfbec3a34
3
+ size 177221
CtAyT4oBgHgl3EQf4fpz/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:868a85764b3334f72ad079dcdee80225b5f5efa1f19272bd5ab9528a14279fcd
3
+ size 1572909
CtAyT4oBgHgl3EQf4fpz/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1f5feefc25c5b777e654273229f6dc9023214aac4bfe575fb6d9a8f7f37d0d6d
3
+ size 66941
D9FJT4oBgHgl3EQfBywq/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f7360354a3455958128ede5c6e59b624b1a30fcabea35fd6b540e922670e1cd5
3
+ size 6422573
DNA0T4oBgHgl3EQfAv8K/content/2301.01965v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:62631ddd5b29001d80c7787f5554b7de04f8f2dc72ba8764980aa6c2f809ed1e
3
+ size 778438
DNA0T4oBgHgl3EQfAv8K/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:03d07ca059b85044909ea03405fd804da91c34b019276ca5c97b2e9046666ede
3
+ size 3997741
DNFQT4oBgHgl3EQfPTY7/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:238d79afc249a695a6a737111f072cfa0be11eb320d6747508db6f7f19150bdd
3
+ size 180680
E9AyT4oBgHgl3EQfSfeg/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dae66e6df4c9b96d8ce61dfa96020a23d34e012646b83380987200c7f2c9e083
3
+ size 4063277
E9AyT4oBgHgl3EQfSfeg/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:00aa4462145991dec327118b58db226f1390780841b009bb7999d3201b603a6c
3
+ size 148294
EtE0T4oBgHgl3EQfywL5/content/tmp_files/2301.02665v1.pdf.txt ADDED
@@ -0,0 +1,851 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Notice: This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-
2
+ AC0500OR22725 with the U.S. Department of Energy. The United States Government retains
3
+ and the publisher, by accepting the article for publication, acknowledges that the United States
4
+ Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or
5
+ reproduce the published form of this manuscript, or allow others to do so, for the United States
6
+ Government purposes. The Department of Energy will provide public access to these results of
7
+ federally sponsored research in accordance with the DOE Public Access Plan
8
+ (http://energy.gov/downloads/doe-public-access-plan).
9
+
10
+
11
+
12
+
13
+
14
+
15
+
16
+
17
+
18
+
19
+
20
+
21
+
22
+
23
+
24
+
25
+
26
+
27
+
28
+
29
+ Discovery of structure-property relations for molecules via hypothesis-driven active
30
+ learning over the chemical space
31
+
32
+ Ayana Ghosh,1 Sergei V. Kalinin2 and Maxim A. Ziatdinov1,3
33
+
34
+ 1 Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge,
35
+ TN 37831 USA
36
+ 2Department of Materials Science and Engineering, University of Knoxville, Knoxville, TN
37
+ 37996 USA
38
+ 3Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN
39
+ 37831 USA
40
+
41
+
42
+ Discovery of the molecular candidates for applications in drug targets, biomolecular systems,
43
+ catalysts, photovoltaics, organic electronics, and batteries, necessitates development of machine
44
+ learning algorithms capable of rapid exploration of the chemical spaces targeting the desired
45
+ functionalities. Here we introduce a novel approach for the active learning over the chemical
46
+ spaces based on hypothesis learning. We construct the hypotheses on the possible relationships
47
+ between structures and functionalities of interest based on a small subset of data and introduce
48
+ them as (probabilistic) mean functions for the Gaussian process. This approach combines the
49
+ elements from the symbolic regression methods such as SISSO and active learning into a single
50
+ framework. Here, we demonstrate it for the QM9 dataset, but it can be applied more broadly to
51
+ datasets from both domains of molecular and solid-state materials sciences.
52
+
53
+
54
+
55
+
56
+
57
+
58
+
59
+
60
+
61
+
62
+
63
+
64
+
65
+ email: ghosha@ornl.gov
66
+
67
+
68
+ Introduction
69
+ Chemical discovery1-4 is rooted in quantitative structure-activity/property relationships
70
+ (QSAR/QSPR).5-12 These efforts primarily rely on finding appropriate representation of molecules
71
+ followed by establishing relationships between structure and activity they exhibit. These models
72
+ are harnessed to explore chemical space to select molecules of interest 13-15 for drug targets,16-20
73
+ antibiotics,21 catalysts,22-23 photovoltaics,24-27 organic electronics,28 redox-flow batteries.29 In
74
+ addition, chemical discovery also includes understanding of chemical processes such as reaction
75
+ energy pathways,30-32 optimization of reaction conditions,33 (for e.g., catalytic activity34),
76
+ crystallization,35-36 docking,37 and synthesis.38-39
77
+ The QSAR/QSPR techniques have proven to be useful in all (not limited to) such scenarios.
78
+ The popularity40-42 remains in their simplicity to incorporate structural information combined with
79
+ physicochemical properties, reliability to capture the property landscape, capability to identify
80
+ existing chemical patterns, and identify activity cliffs within the data while being computationally
81
+ affordable to perform. The descriptors or features can be multi-dimensional descriptors capturing
82
+ electronic or topological characteristics. Alternatively, these can be fingerprints that are the
83
+ effective representations of molecules via graph-based or string representations (SMILES,43
84
+ SELFIES44). QSAR/QSPR models began its journey almost 60 years ago with the seminal work
85
+ lead by Hansch et al.45 in which a few simple descriptors were used to capture a 2D structure-
86
+ activity relationship. Since then, this field has seen a steep rise in utilization of variety of traditional
87
+ ML algorithms (Naïve Bayes, Support Vector Machine, Random Forest, to name a few) for
88
+ property/process prediction followed by validation by experimental synthesis. Its success is also
89
+ credited to generation of easily accessible public repositories (e.g., PubChem,46-48 ZINC,49
90
+ ChEMBL,50-51 QM9,52 ANI-1x,53 and QM7-X54) containing structural and physiochemical
91
+ properties (computed with quantum mechanical calculations or observed with experiments) on
92
+ thousands to millions of molecules. Altogether these have paved the path forward in chemical
93
+ design, discovery with day-to-day applications.
94
+ If QSAR/QSPR studies have created a revolution in in silico design efforts, applications of
95
+ deep neural network (NN) algorithms55-56 have further accelerated this progress. They have
96
+ enabled efficient usage of the big data for not only finding molecules of interest but also quantify57-
97
+ 60 molecular interactions, chemical bonding, inverse design of molecules for targets and gain novel
98
+ insights into mechanisms. However, the performance of any of these models is highly dependent
99
+ on the quality, quantity, modelability of the datasets. Furthermore, a discovery process necessitates
100
+ extrapolation of learned correlative relationships onto the previously unseen regions of chemical
101
+ space.
102
+ Correspondingly, the task of generation61 of new molecules by going beyond the standard
103
+ (manual) design rules or solutions has gained much attention. Several studies62 have been reported
104
+ where different NN-based algorithms are explored to accomplish this challenge. Autoencoders are
105
+ one of the common models that are being used to encode molecules63 via complex latent
106
+ representations to optimize for specific properties and map them back to molecular structures
107
+ through decoding. Another set of examples include applications of recurrent NN64 algorithms
108
+ where molecule generation is treated as a sequencing task and the algorithm is permitted to
109
+
110
+ generate samples at each stage, as informed by the model. There are also studies on using self-
111
+ attention driven transformer models65-66 for targeted structure generation. In addition,
112
+ reinforcement learning strategies67-68 have been implemented in this context where molecules with
113
+ multiple target objectives can be found. The modern molecular generative models have
114
+ transformed standard string representations of molecules towards embedded spaces69 with
115
+ information on the entire molecular scaffold.
116
+ However, the learning approach behind most of the generative models traverse through
117
+ latent embeddings. The latter are generally not smooth, precluding direct gradient-based
118
+ optimization methods. Once trained over full libraries of molecules, the fraction of the space
119
+ occupied with molecules with useful functionalities is typically small, making their discovery
120
+ complex. The chemical space is non-differentiable, precluding the gradient-based descent or
121
+ simple Gaussian processes (GPs)70-71 based methodologies. ML methods including variational
122
+ autoencoders aim to construct a suitable low-dimensional and ideally differentiable latent
123
+ embeddings for the chemical space, allowing for the Bayesian optimization (BO)72-74 type
124
+ processes. However, these methodologies to date have been based on either construction of the
125
+ embedding space for the full library of candidate molecules or finding similar kernel of
126
+ representation for these molecules for target explorations.
127
+ Historically, Gaussian process (GPs) has been used within the active learning and BO,
128
+ making these processes purely data-driven and non-parametric in nature. It interpolates functional
129
+ behavior over relatively low-dimensional parameters space. In a classical GP, a kernel function
130
+ (such as radial basis function kernel) is utilized to define the degree of correlation across the
131
+ parameters space. The kernel parameters are inferred based on the available data, obtained during
132
+ exploration-exploitation steps. It does not incorporate any prior information of physical or
133
+ chemical behavior of the system in the process. It learns the physics of the system from the data
134
+ itself via kernel function with possibilities of leading to suboptimal results. Consequently, the
135
+ number of optimization steps necessary to reconstruct functional behavior, even scanning over low
136
+ parameters space becomes large. More advanced physics-informed kernel functions75-77 may help
137
+ in such cases which is an area of active research. However, proper application of this technique in
138
+ the domain of chemical or physical sciences demands going above the usage of conventional GP
139
+ in BO framework to model functionalities of interest.78-81 A series of molecular kernels82 such as
140
+ fingerprint kernels (e.g., scalar product kernel, Tanimoto kernel), string kernels (e.g., kernels based
141
+ on SMILEs, SELFIEs) and graph kernels (typically uses molecular fragments) can be used in GP
142
+ framework. Once the best-performing kernel is chosen, BO is performed for applications in real
143
+ world scenarios such as optimization of chemical reactions.
144
+ In a recent work, Ziatdinov et al.83-85 introduced a physics-augmented algorithm for active
145
+ learning and Bayesian optimization. It combines the flexibility of GP models with physical priors
146
+ allowing for the hypothesis-driven discovery in ML. To date, it has been applied86 to the
147
+ experiments in scanning probe microscopy, providing new insights into the concentration-induced
148
+ phase transition and identifying domain growth laws in ferroelectric materials.
149
+ Here, we extend the concept of hypothesis learning to molecular discovery. We combine
150
+ it with the compressed-sensing methodologies for identifying relevant structural descriptors and
151
+
152
+ evaluate multiple automatically generated hypotheses with a reward-driven acquisition (similar to
153
+ the reinforcement learning) to select next evaluation points. Specifically, the hypotheses are
154
+ selected using the compressed sensing performed on combinations of nonlinear functionalized
155
+ features to find a list of the most relevant combinations. This step is followed by balancing
156
+ dimensions (i.e., respecting physics constraints) with respect to the target property to formulate
157
+ them into feasible equations. Here, we only consider a handful of easily computable features
158
+ related to property of interest, to keep the hypotheses in a simple form that is easy to calculate.
159
+ Finally, we evaluate the hypotheses over a wide parameters space to predict functionalities of
160
+ interest within the active learning loop. We have utilized the QM9 dataset on isolated molecules
161
+ as a use case to establish this tail of our work.
162
+ A schematic of the generalized framework detailing the active cruise between design and
163
+ discovery using hypothesis learning is shown in Figure 1. The results along with estimated
164
+ uncertainties show a generalized cost-effective way to approximate structure-property relations,
165
+ applicable to a wide variety of material systems.
166
+
167
+ Figure 1: Schematic of workflow, from design to discovery. Figure (left panel) shows
168
+ commonly used simulation techniques to generate reliable data for various materials systems. The
169
+ right panel establishes the active learning loop - combining features to come up with mathematical
170
+ formulations as statistically derived scientific hypotheses, to be evaluated for discovery structure-
171
+ property relations.
172
+
173
+ Coarse-grained MD
174
+ Ab-initio MD
175
+ Atomistic MD
176
+ Quantum
177
+ Mathematical
178
+ formulations
179
+ Selection &
180
+ combination of
181
+ physical
182
+ descriptors
183
+ Features
184
+ Experiment
185
+ Physics-informed
186
+ featurization & sparsification
187
+ Initialization
188
+ Scientific
189
+ hypothesis
190
+ !"#$!⋯# → &!⋯#
191
+ Exploration
192
+
193
+ Results and Discussion
194
+ General Considerations:
195
+ The physics-informed featurization scheme that we designed is built upon the compressed
196
+ sensing methodologies utilized by Ghiringhelli et al.87 for features selection, implemented here as
197
+ the seed step for the discovery cycle of an active learning process. Similar to the original SISSO
198
+ implementation, our physics-informed featurization and sparsification scheme allows for the
199
+ selection of the most relevant descriptors which is obtained by using the least absolute shrinkage
200
+ and selection operator (LASSO). The LASSO algorithm employed as a part of feature selection
201
+ scheme uses the sparsity of the l1 norm to effectively reduce a descriptor set to the most relevant
202
+ descriptors (di) contained in full set (D). It selects the non-zero terms of the l1 regularized linear
203
+ least squares approximation of the target property (P). The target property is approximated as P(d)
204
+ = dc, where c is the coefficient (or weight) associated with Ω dimensional descriptor d. The
205
+ solution to this equation can be determined by minimizing the argmin (||𝑃 − 𝐷𝑐||!
206
+ !) + 𝜆||𝑐||".
207
+ The coefficient c is non-zero for all featurized descriptor which is then ranked to determine the
208
+ corresponding importance.
209
+ The generation of nonlinear combinations of descriptors (di) by applying several mathematical
210
+ operators such as, 1/x, √x, x2, x3, log(x), 1/ log(x), and exp(x), on each feature allows to form a
211
+ nonlinear mapping between D and P. In addition, the complexity by combining these
212
+ functionalized descriptors via summation allows to generate a more effective map between D and
213
+ P. We have considered functionalized descriptors utilizing 2 or 3 terms for the purpose of this
214
+ study. Here, we note that inclusion of more terms may lead to more accurate correlation to
215
+ endpoint. However, it also introduces additional uncertainty carried by each of the terms combined
216
+ with mathematical operators. The physics-informed featurization and sparsification method allows
217
+ us to combine multiple features in a linear combination to establish direct correlation to the
218
+ endpoint target. Within this method, we search over a large combinatorial space, combine features
219
+ followed by balancing units/dimensionality (with coefficients) to convert them into feasible
220
+ equations. These are the mathematical formulations that are then turned into probabilistic models
221
+ (hypotheses) by introducing suitable priors on parameters, applicable to all use cases.
222
+
223
+ The second element of the proposed approach is the hypothesis-driven active learning built
224
+ upon SISSO-derived functional forms. In the hypothesis learning, we utilize a structured GP (sGP)
225
+ as opposed to standard zero mean GP as our surrogate model(s) to insert physics-informed priors
226
+ in the GP/BO framework. To illustrate this approach, we note that in the conventional GP/BO
227
+ process, GP is defined as
228
+
229
+
230
+
231
+
232
+ 𝑦 = 𝑓(𝑥) + e,
233
+ 𝑓 ~ 𝑀𝑉𝑁𝑜𝑟𝑚𝑎𝑙 (𝑚, 𝐾)
234
+ ( 1)
235
+ where MVNormal is a multivariate normal distribution, m is a prior mean function typically set to
236
+ 0, 𝐾 is a prior covariance functions (kernel), and e is a normally distributed observational noise.
237
+
238
+ The training process of GP model involves inferring kernel parameters given the available
239
+ set of observations (x, y) using Bayesian inference techniques. Once the training is completed, the
240
+
241
+ probabilistic predictions of the function over the unmeasured parameter space can be obtained by
242
+ sampling from a distribution:
243
+
244
+ 𝑓∗ ~ 𝑀𝑉𝑁𝑜𝑟𝑚𝑎𝑙8𝜇$
245
+ %&'(, Σ$
246
+ %&'(<
247
+ ( 2)
248
+ 𝜇$
249
+ %&'( = 𝑚(𝑋∗) + 𝐾(𝑋∗, 𝑋|𝜃)𝐾(𝑋, 𝑋|𝜃))"8𝑦 − 𝑚(𝑋)<,
250
+ Σ$
251
+ %&'( = 𝐾(𝑋∗, 𝑋∗|𝜃) − 𝐾(𝑋∗, 𝑋|𝜃)(𝑋, 𝑋|𝜃))"𝐾(𝑋, 𝑋∗|𝜃)
252
+ ( 3)
253
+ Here new inputs are denoted by 𝑋∗. We can obtain a posterior predictive distribution for each set
254
+ of kernel parameters. The next point to evaluate is then determined by
255
+ 𝑥*+,( = arg 𝑚𝑎𝑥,
256
+ 1
257
+ 𝑀 D 𝛼F𝜇$!
258
+ %&'(, Σ$!
259
+ %&'(G
260
+ -
261
+ ./"
262
+
263
+ ( 4)
264
+ Here 𝛼 is a pre-defined acquisition function and M is the number of posterior samples with kernel
265
+ parameters.
266
+
267
+ Within the sGP, the prior mean function in Equation 1 is substituted by a physics-informed
268
+ probabilistic model whose parameters are inferred jointly with the kernel parameters. The posterior
269
+ mean function in Equation 3 then becomes
270
+ 𝜇$!0!
271
+ %&'( = 𝑚8𝑋∗|𝜙.< + 𝐾8𝑋∗, 𝑋|𝜃.<𝐾8𝑋, 𝑋|𝜃.<
272
+ )" F𝑦 − 𝑚8𝑋|𝜙.<G
273
+ ( 5)
274
+
275
+ Hence, the active learning scheme with sGP incorporates the uncertainty associated with
276
+ the model parameters. The parametric nature of the model captures the physics-based knowledge
277
+ to determine the next point of exploration.
278
+
279
+ The hypothesis-driven learning utilizes an ensemble of the sGP models that are effectively
280
+ competing to reconstruct physical behavior over a large parameters space. The prior mean
281
+ functions are derived from SISSO method. We utilize Matern kernel for all the sGP models and
282
+ use the predictive uncertainty as the acquisition function, 𝛼 = diag(Σ$
283
+ %&'() A basic reinforcement
284
+ learning policy (epsilon-greedy) is used to sample a hypothesis at each exploration step. The
285
+ sampled hypothesis gets wrapped into sGP whose parameters are inferred using Hamiltonian
286
+ Monte Carlo. The posterior distributions over the sGP parameters are used to obtain a probabilistic
287
+ prediction over the unmeasured parts of the parameter space. The total predictive uncertainty is
288
+ then compared with that from a previous step, and the sampled model gets rewarded (penalized)
289
+ if the uncertainty decreased (increased).
290
+
291
+
292
+
293
+ Formation enthalpy of molecules:
294
+ Predicting molecular energetics to understand formability and stability of isolated
295
+ molecules have become one of the top applications of modern day’s ML models. These molecules
296
+ play key role in both materials design and drug discovery. Quantum mechanical (QM) calculations
297
+ within various approximations serve as the basis for studying underlying chemistry, finding active
298
+ sites to understanding chemical reactions. Among various freely accessible online datasets owning
299
+ such information, QM9 is popular among researchers due to data homogeneity, purity, and lack of
300
+ noise. As a result, it has turned out to be a classical benchmark for testing various ML models.
301
+ QM9 dataset contains information on geometric, energetic, electronic, and thermodynamic
302
+ properties of ~130,000 organic compounds with elements C, H, O, N and F, as computed with
303
+ molecular DFT with B3LYP/6- 31G (2df, p) level of theory. Common ML algorithms such as
304
+ linear regression, kernel ridge regression (KRR), random forest regression and deep neural
305
+ networks88 have been used to predict atomization energy,89 HOMO-LUMO energy,90 formation
306
+ energy.91
307
+
308
+
309
+
310
+
311
+ Figure 2: Flow diagram for QM9 dataset. Figure shows the key stages of the framework as
312
+ implemented for the QM9 dataset. The key steps include generation of a partial dataset with a
313
+ combination of a few features from the original QM9 dataset, followed by formulation of scientific
314
+ hypotheses by physics-informed featurization method which get evaluated in the reward-driven
315
+ hypothesis-driven learning scheme.
316
+
317
+ Proper benchmarking investigations,92-99 comparing computational accuracy, time, convergence
318
+ of algorithms, starting from traditional ML to state-of-the-art neural networks (NNs) are also
319
+ available in literature. Most of these studies are dependent on either high dimensional feature space
320
+ or molecular representations to reach target property. In general, an 80/20 split between the training
321
+ and test is assumed to perform the benchmarking tasks while drawing conclusions on existing
322
+ structure-property relations.
323
+
324
+ Despite the extensive effort, it has not been clearly understood how to establish structure-
325
+ property relationships on unknown chemical space (even within QM9). In other words, for learning
326
+ about new molecules and their corresponding properties - which is where capability of ML tools
327
+ can really be tested - we also need to learn physical or phenomenological laws relating variables
328
+ with the target of interest on-the-fly in the data-efficient manner.
329
+
330
+ QM9 dataset
331
+ Partial QM9 dataset
332
+ with few features
333
+ Generate
334
+ Hypotheses
335
+ Active learning for
336
+ entire dataset
337
+
338
+
339
+ Figure 3: Distribution and prediction of formation enthalpy (Hartree/g/mol). (a) Comparative
340
+ plot and (b) histograms of probability density of formation enthalpy for the entire QM9 dataset
341
+ superimposed with that of 1000 molecules, used in hypotheses generation. (b) Average rewards
342
+ for each model predicting formation enthalpy in active learning scheme.
343
+
344
+ In this example, we lay out how we can employ hypothesis-driven learning to reconstruct
345
+ behavior of formation enthalpy (FE, Hartree/g/mol) at 298.15 K with respect to topological or
346
+ (c)
347
+ (a)
348
+ (b)
349
+
350
+ 4.0
351
+ QM9 dataset
352
+ Molecules for hypotheses generation
353
+ 3.5
354
+ 3.0
355
+ 2.5
356
+ 2.0
357
+ 1.5
358
+ 1.0
359
+ 0.5
360
+ 0.0
361
+ -2.5
362
+ -5.0
363
+ -4.5
364
+ -4.0
365
+ -3.5
366
+ -3.0
367
+ Enthalpy (Hartree/g/mol)QM9 full dataset
368
+ Molecules for hypotheses generationpolar surface area (TPSA, Å2) for QM9 dataset. A schematic of the framework as implemented for
369
+ this example is shown in Figure 2. We select the first 1,000 molecules from the QM9 dataset and
370
+ create a feature-target dataset with a handful of features such as molecular weight (MW), polar
371
+ surface area (TPSA), molar log P (molelogP), spatial extent (SP) and internal energy (IE). Features
372
+ such as MW, TPSA, molelogP are computed (easy and computationally cheap to obtain) using the
373
+ python implementation of RdKit package. The chemical properties such as SP and IE are directly
374
+ available from QM9 dataset, which are otherwise are calculated using computationally expensive
375
+ DFT methods.
376
+ The general chemistry (as described by the features computed with structural information)
377
+ of the first 1000 molecules in QM9 largely differ from what is encompassed by the entire dataset.
378
+ Therefore, the challenge is to find if simple mathematical expressions generated with a small
379
+ percentage of QM9 are capable to be extended for the remaining data set to yield meaningful
380
+ predictions of FE. A plot showing distribution of FE of the entire dataset containing 133885
381
+ molecules as compared to 0.74% of the dataset as used for generating hypotheses are shown in
382
+ Figure 3 (a). The normalized histogram plots of FE in Figure 3 (b) show how the first set of 1000
383
+ molecules represent the full dataset. We perform the physics-informed featurization to draw three
384
+ different competing hypotheses as mentioned below.
385
+
386
+ 𝐹𝐸 = 𝐼𝐸 ∗ O1 + P𝑇𝑃𝑆𝐴
387
+ 𝑆𝑃 T
388
+ !
389
+ U
390
+ ( 6)
391
+ 𝐹𝐸 = 𝐼𝐸 ∗ O1 + P𝑇𝑃𝑆𝐴
392
+ 𝑆𝑃 T
393
+ !
394
+ + 𝑚𝑜𝑙𝑒𝑙𝑜𝑔𝑃!U
395
+ ( 7)
396
+ 𝐹𝐸 = 𝐼𝐸 ∗ P1 + 𝑚𝑜𝑙𝑒𝑙𝑜𝑔𝑃
397
+ 1 + 𝑇𝑃𝑆𝐴T
398
+ ( 8)
399
+
400
+ We have considered priors for all parameters as listed below in Table 1. Next, we
401
+ implement the hypothesis-driven learning scheme by treating the Equations 6-8 as individual
402
+ probabilistic models wrapped into sGP.
403
+ Table 1: Table lists priors considered for all parameters listed in the equations for predicting
404
+ excitation energy.
405
+ Parameter
406
+ Prior
407
+ IE (Hartree/g/mol)
408
+ Uniform [-4, 2]
409
+ SP (Å2)
410
+ Uniform [2, 0.05]
411
+
412
+ Molecules utilized at the stage of hypotheses generation are discarded from training and testing.
413
+ We use 300 samples picked randomly from the dataset as seeds or starting points. Five different
414
+ set of samples are initialized in this manner. The average reward over all initializations for each
415
+
416
+ model after 200 explorations is shown in Figure 3 (c). Model 2 appears to have accumulated the
417
+ highest reward to reconstruct FE for the entire chemical space of QM9.
418
+ However, if we look at individual runs as plotted in Figure 4, it is evident that Model 1 and
419
+ Model 2 compete during exploration. The median uncertainty (a, c, e) and reward (b, d, f) for each
420
+
421
+ Figure 4: Hypothesis-driven active learning with structured Gaussian processes (sGPs) for
422
+ entire QM9 dataset. The median uncertainty (a, c, e) and reward (b, d, f) for each model with
423
+ respect to explorations step for three different random initializations are shown here.
424
+
425
+ (a)
426
+ (b)
427
+ (c)
428
+ (d)
429
+ (e)
430
+ (f)
431
+
432
+ model 1
433
+ model 2
434
+ model 3model 1
435
+ model 2
436
+ model 3model 1
437
+ model 2
438
+ model 3model with respect to exploration steps for three different random initializations are plotted in
439
+ Figure 4. The additional jumps in the uncertainty during a segment of exploration steps can be
440
+ attributed to structural complexity, evolution of the power laws during the learning process. In
441
+ addition, the approximations given by Model 1 and Model 2 have similar functional forms, due to
442
+ which, both lead to reasonable predictions. Model 3 always collects the least amount of reward
443
+ indicating failure of this specific approximation to capture the distribution of FE over the full
444
+ dataset. The approximations given by the models may slightly vary depending on the initial set of
445
+ molecules on which the hypotheses are generated. These variations can still be captured by going
446
+ to higher order approximations during formulation of model expressions which is expected to
447
+ include combination of the already utilized terms in our present models.
448
+ This example establishes the capability of this technique to reconstruct behavior of a
449
+ molecular property and how it varies over a wide variety of chemical space. It only utilizes a
450
+ handful of easily computable features along with simplistic (more interpretable) mathematical
451
+ formulations, leading to meaningful predictions.
452
+ In summary, we have presented an example for molecules in QM9 dataset to showcase the
453
+ capability of physics-informed featurization combined with hypothesis-driven active learning for
454
+ reconstruction of materials property. It helps to understand and approximate the functional
455
+ behavior of systems belonging to different materials class for which data from simulations or
456
+ experiments may not be available. The framework proposed in this work allows for a couple of
457
+ prominent advances in the physical science and ML community. First is its potential to serve as a
458
+ template to come up with easily interpretable models to represent functionalities, obtained from
459
+ previous observations. It also attempts to meet both design and discovery requirements, truly
460
+ needed for facilitating progresses in physical sciences.
461
+
462
+ Acknowledgements
463
+ This research is sponsored by the INTERSECT Initiative as part of the Laboratory Directed
464
+ Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle,
465
+ LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. Part of this
466
+ research was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office
467
+ of Science User Facility.
468
+
469
+ Author contributions
470
+ A.G. proposed, designed the workflow, and wrote the draft of the manuscript. S.V.K. discussed
471
+ the concept and participated in writing. M.Z. developed the structured GP approach and oversaw
472
+ the preparation of the manuscript.
473
+ Data Availability
474
+ All datasets as utilized in this work can be accessed via the github repository.
475
+ https://github.com/aghosh92/SISSO_sGP
476
+
477
+
478
+ Code Availability
479
+ The workflow can be accessed via the github repository. https://github.com/aghosh92/SISSO_sGP
480
+
481
+ Conflict of interest
482
+ The authors declare no competing interests.
483
+
484
+
485
+
486
+
487
+
488
+
489
+
490
+
491
+
492
+
493
+
494
+
495
+
496
+
497
+
498
+
499
+
500
+
501
+
502
+
503
+
504
+
505
+
506
+
507
+
508
+ References:
509
+ 1.
510
+ Tkatchenko, A., Machine learning for chemical discovery. Nature Communications 2020, 11.
511
+ 2.
512
+ von Lilienfeld, O. A., Müller, K.-R. & Tkatchenko, Exploring chemical compound space with
513
+ quantum-based machine learning. Nat. Rev. Chem. 2020, 4.
514
+ 3.
515
+ Bartók, A. P. e. a., Machine learning unifies the modeling of materials and molecules. Sci. Adv.
516
+ 2017, 3.
517
+ 4.
518
+ Cutarolo, S., The high-throughput highway to computational materials design. Nat. Mater. 2013,
519
+ 12.
520
+ 5.
521
+ Paula Carracedo-Reboredo, J. L.-B., Nereida Rodríguez-Fernández, Francisco Cedrón, Francisco J.
522
+ Novoa, Adrian Carballal, Victor Maojo, Alejandro Pazos, Carlos Fernandez-Lozano, A review on machine
523
+ learning approaches and trends in drug discovery. Computational and Structural Biotechnology Journal
524
+ 2021, 19, 4538-4558.
525
+ 6.
526
+ J. Phillip Kennedy, L. W., Thomas M. Bridges, R. Nathan Daniels, David Weaver, and Craig W.
527
+ Lindsley, Application of Combinatorial Chemistry Science on Modern Drug
528
+ Discovery. Journal of Combinatorial Chemsitry 2008, 10, 345-354.
529
+ 7.
530
+ Jun Xu, A. H., Cheminformatics and drug discovery. Molecules 2002, 7, 566-600.
531
+ 8.
532
+ Muratov, E. N., Jürgen Bajorath, Robert P. Sheridan, Igor V. Tetko, Dmitry Filimonov, Vladimir
533
+ Poroikov, Tudor I. Oprea et al, QSAR without borders. Chemical Society Reviews 2020, 49, 3525-3564.
534
+ 9.
535
+ Tropsha, A., Best practices for QSAR model development, validation, and exploration. Molecular
536
+ Informatics 2010, 29, 476-488.
537
+ 10.
538
+ A.Lill, M., Multi-dimensional QSAR in drug discovery. Drug Discovery Today 2007, 12 (23-24),
539
+ 1013-1017.
540
+ 11.
541
+ Tropsha, A. G., Alexander, Predictive QSAR Modeling Workflow, Model Applicability Domains,
542
+ and Virtual Screening. Current pharmaceutical design 2007, 13, 3494-3504.
543
+ 12.
544
+ Sheridan, R. P. F., B. P.; Maiorov, V. N.; Kearsley, S. K., Similarity to Molecules in the Training Set
545
+ Is a Good Discriminator for Prediction Accuracy in QSAR. J. Chem. Inf. Comput. Sci. 2004, 44, 1912-1928.
546
+ 13.
547
+ Butler, K. T., Davies, D. W., Cartwright, H., Isayev, O. & Walsh, A, Machine learning for molecular
548
+ and materials science. Nature 2018, 559.
549
+ 14.
550
+ Noé, F., Tkatchenko, A., Müller, K.-R. & Clementi, C., Machine learning for molecular simulation.
551
+ Ann. Rev. Phys. Chem. 2020, 71.
552
+ 15.
553
+ Takahashi, S., Masamichi Takahashi, Shota Tanaka, Shunsaku Takayanagi, Hirokazu Takami, Erika
554
+ Yamazawa, Shohei Nambu et al., A new era of neuro-oncology research pioneered by multi-omics
555
+ analysis and machine learning. Biomolecules 2021, 11 (4).
556
+ 16.
557
+ José Jiménez-Luna , F. G. a. G. S., Drug discovery with explainable artificial intelligence. Nature
558
+ Machine Intelligence 2020, 2, 573-584.
559
+ 17.
560
+ al., B. N. e., Large scale comparison of QSAR and conformal prediction methods and their
561
+ applications in drug discovery. J. Cheminf. 2019, 11.
562
+ 18.
563
+ Vamathevan, J., Dominic Clark, Paul Czodrowski, Ian Dunham, Edgardo Ferran, George Lee, Bin Li
564
+ et al., Applications of machine learning in drug discovery and development. Nature Reviews drug
565
+ discovery 2019, 18 (6), 463-477.
566
+ 19.
567
+ Ekins, S., Ana C. Puhl, Kimberley M. Zorn, Thomas R. Lane, Daniel P. Russo, Jennifer J. Klein,
568
+ Anthony J. Hickey, and Alex M. Clark, Exploiting machine learning for end-to-end drug discovery and
569
+ development. Nature Materials 2019, 18 (5), 435-441.
570
+ 20.
571
+ Lo, Y. C., Rensi, S.E., Torng, W. and Altman, R.B., Machine learning in chemoinformatics and drug
572
+ discovery. Drug Discovery Today 2018, 23 (8), 1538-1546.
573
+
574
+ 21.
575
+ Stokes, J. M. e. a., A deep learning approach to antibiotic discovery. Cell 2020, 180.
576
+ 22.
577
+ Toyao, T., Zen Maeno, Satoru Takakusagi, Takashi Kamachi, Ichigaku Takigawa, and Ken-ichi
578
+ Shimizu, Machine learning for catalysis informatics: recent applications and prospects. ACS Catalysis
579
+ 2019, 10 (3), 2260-2297.
580
+ 23.
581
+ Wenhong Yang, T. T. F., and Wen-Hua Sun, Machine Learning in Catalysis, From Proposal to
582
+ Practicing. ACS Omega 2020, 5 (1), 83-88.
583
+ 24.
584
+ Sun, W., Yujie Zheng, Ke Yang, Qi Zhang, Akeel A. Shah, Zhou Wu, Yuyang Sun et al, Machine
585
+ learning–assisted molecular design and efficiency prediction for high-performance organic photovoltaic
586
+ materials. Science Advances 2019, 5 (11), eaay4275.
587
+ 25.
588
+ B. Cao, L. A. A., A. O. Oliynyk, E. J. Luber, B. C. Olsen, A. Mar, J. M. Buriak, How to optimize
589
+ materials and devices via design of experiments and machine learning:
590
+ Demonstration using organic photovoltaics. ACS nano 2018, 12, 7434-7444.
591
+ 26.
592
+ J. Hachmann, R. O.-A., S. Atahan-Evrenk, C. Amador-Bedolla, R. S. Sánchez-Carrera, A. Gold-
593
+ Parker, L. Vogt, A. M. Brockway, A. Aspuru-Guzik,, The Harvard clean energy project: Large-scale
594
+ computational screening and design of organic photovoltaics on the world community grid. J. Phys.
595
+ Chem. Lett. 2011, 2, 2241-2251.
596
+ 27.
597
+ K. Sun, Z. X., S. Lu, W. Zajaczkowski, W. Pisula, E. Hanssen, J. M. White, R. M. Williamson, J.
598
+ Subbiah, J. Ouyang, A. B. Holmes, W. W. H. Wong, D. J. Jones, A molecular nematic liquid crystalline
599
+ material for high-performance organic photovoltaics. Nat. Commun. 2015, 6.
600
+ 28.
601
+ Gómez-Bombarelli, R. e. a., Design of efficient molecular organic light- emitting diodes by a high-
602
+ throughput virtual screening and experimental approach. Nature Materials 2016, 15.
603
+ 29.
604
+ Er, S., Suh, C., Marshak, M. P. & Aspuru-Guzik, A., Computational design of molecules for an all-
605
+ quinone redox flow battery. Chem. Sci. 2015, 6, 885.
606
+ 30.
607
+ Segler, M. H. S., Preuss, M. & Waller, M. P., Planning chemical syntheses with deep neural
608
+ networks and symbolic AI. Nature 2018, 555.
609
+ 31.
610
+ Fedorov, D. V., Sadhukhan, M., Stöhr, M. & Tkatchenko A., Quantum- mechanical relation
611
+ between atomic dipole polarizability and the van der Waals radius. . Physical Review Letters 2018, 121.
612
+ 32.
613
+ Wilkins, D. M. e. a., Accurate molecular polarizabilities with coupled cluster theory and machine
614
+ learning. Proc. Natl Acad. Sci. 2019, 116.
615
+ 33.
616
+ Zhenpeng Zhou, X. L., and Richard N. Zare, Optimizing Chemical Reactions with Deep
617
+ Reinforcement Learning. ACS Cent. Sci. 2017, 3 (12), 1337-1344.
618
+ 34.
619
+ Jiayan Xu, X.-M. C. a. P. H., Perspective on computational reaction prediction using machine
620
+ learning methods in heterogeneous catalysis. Phys. Chem. Chem. Phys. 23, 11155-11179.
621
+ 35.
622
+ Christos Xiouras*, F. C., Gustavo Lunardon Quilló, Mihail E. Kavousanakis, Dionisios G. Vlachos,
623
+ and Georgios D. Stefanidis, Applications of Artificial Intelligence and Machine Learning Algorithms to
624
+ Crystallization. Chem. Rev. 2022, 122 (15).
625
+ 36.
626
+ Ayana Ghosh, L. L., Kapildev K Arora, Bruno C Hancock, Joseph F Krzyzaniak, Paul Meenan, Serge
627
+ Nakhmanson, Geoffrey PF Wood, Assessment of machine learning approaches for predicting the
628
+ crystallization propensity of active pharmaceutical ingredients. CrystEngComm 2019, 8, 1215-1223.
629
+ 37.
630
+ Shen, C., Junjie Ding, Zhe Wang, Dongsheng Cao, Xiaoqin Ding, and Tingjun Hou, Shen, Chao, et
631
+ al. "From machine learning to deep learning: Advances in scoring functions for protein–ligand docking.
632
+ Computational Molecular Science 2020, 10 (1).
633
+ 38.
634
+ Coley, C. W., William H. Green, and Klavs F. Jensen., Machine learning in computer-aided
635
+ synthesis planning. Accounts of chemical research 2018, 51 (5), 1281-1289.
636
+ 39.
637
+ Gromski, P. S., Jarosław M. Granda, and Leroy Cronin, Universal chemical synthesis and
638
+ discovery with ‘The Chemputer’. Trends in Chemistry 2020, 2 (1), 4-12.
639
+
640
+ 40.
641
+ Sheridan, R. P., The Relative Importance of Domain Applicability Metrics for Estimating
642
+ Prediction Errors in QSAR Varies with Training Set Diversity. J. Chem. Inf. Model 2015, 1098-1107.
643
+ 41.
644
+ Hanser, T. B., C.; Marchaland, J. F.; Werner, S., Applicability Domain: Towards a More Formal
645
+ Definition. . SAR QSAR Environ Res. 2016, 27, 865-871.
646
+ 42.
647
+ Baumann, D. B., K., Reliable Estimation of Prediction Errors for QSAR Models under Model
648
+ Uncertainty Using Double Cross-Validation. J. Cheminf. 2014, 6.
649
+ 43.
650
+ D, W., SMILES, a chemical language and information system. 1. Introduction to methodology and
651
+ encoding rules. J. Chem. Inf. Comput. Sci. 1988, 28, 31-36.
652
+ 44.
653
+ Krenn M, H. F., Nigam A, Friederich P and Aspuru-Guzik, Self-referencing embedded strings
654
+ (SELFIES): A 100% robust molecular string representation. Machine Learning: Science and Technology
655
+ 2020, 1.
656
+ 45.
657
+ Hansch C, F. T., p-sigma-p analysis. a method for the correlation of biological activity and
658
+ chemical structure. . J Am Chem Soc 1964, 86, 1616.
659
+ 46.
660
+ Wang, Y. X., J.; Suzek, T. O.; Zhang, J.; Wang, J.; Bryant, S. H., PubChem: A Public Information
661
+ System for Analyzing Bioactivities of Small Molecules. Nucleic Acids Res. 2009, 37, W623-W633.
662
+ 47.
663
+ Li, Q. C., T.; Wang, Y.; Bryant, S. H. , PubChem as a Public Resource for Drug Discovery. . Drug
664
+ Discovery Today 2010, 15, 1052-1057.
665
+ 48.
666
+ Kim, S. T., P. A.; Bolton, E. E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.; He, S.; Shoemaker, B.
667
+ A.; Wang, J.; Yu, B.; Zhang, J.; Bryant, S. H., PubChem Substance and Compound Databases. Nucleic Acids
668
+ Res. 2016, 44, D1202-D1213.
669
+ 49.
670
+ John J. Irwin*, T. S., Michael M. Mysinger, Erin S. Bolstad, and Ryan G. Coleman, ZINC: A Free
671
+ tool to discover chemistry to biology. J. Chem. Inf. Model 2012, 52 (7), 1757-1768.
672
+ 50.
673
+ Bento, A. P. G., A.; Hersey, A.; Bellis, L. J.; Chambers, J.; Davies, M.; Krüger, F. A.; Light, Y.; Mak,
674
+ L.; McGlinchey, S.; Nowotka, M.; Papadatos, G.; Santos, R.; Overington, J. P., The ChEMBL Bioactivity
675
+ Database: An Update. Nucleic Acids Res. 2014, 42, D1083-1090.
676
+ 51.
677
+ Gaulton, A. B., L. J.; Bento, A. P.; Chambers, J.; Davies, M.; Hersey, A.; Light, Y.; McGlinchey, S.;
678
+ Michalovich, D.; Al-Lazikani, B.; Overington, J. P. , ChEMBL: A Large-Scale Bioactivity Database for Drug
679
+ Discovery. Nucleic Acids Res. 2012, 40, D1100−D1107.
680
+ 52.
681
+ Ramakrishnan, R., Dral, P., Rupp, M. & vonLilienfeld, O. A., Quantum chemistry structures and
682
+ properties of 134 kilo molecules. Sci. Data 2014, 1, 140022.
683
+ 53.
684
+ al., J. S. e., The ANI-1ccx and ANI-1x data sets, coupled-cluster and density functional theory
685
+ properties for molecules. Sci. Data 2020, 7.
686
+ 54.
687
+ Hoja, J., Leonardo Medrano Sandonas, Brian G. Ernst, Alvaro Vazquez-Mayagoitia, Robert A.
688
+ DiStasio Jr, and Alexandre Tkatchenko, QM7-X, a comprehensive dataset of quantum-mechanical
689
+ properties spanning the chemical space of small organic molecules. Sci. Data 2021, 8 (1), 1-11.
690
+ 55.
691
+ Mohit Pandey, M. F., Francesco Gentile , Olexandr Isayev, Alexander Tropsha, Abraham C. Stern
692
+ and Artem Cherkasov, The transformational role of GPU computing and deep learning in drug discovery.
693
+ Nature Machine Intelligence 2022, 4, 211-221.
694
+ 56.
695
+ Justin S. Smith, B. N., Nicholas Lubbers, et al., Less is more: Sampling chemical space with active
696
+ learning. J. chem. Phys. 2018, 148.
697
+ 57.
698
+ Chmiela, S., Sauceda, H. E., Müller, K.-R. & Tkatchenko, A, Towards exact molecular dynamics
699
+ simulations with machine-learned force fields. Nat. Commun. 2018, 9.
700
+ 58.
701
+ Schütt, K. T., Arbabzadah, F., Chmiela, S., Müller, K. R. & Tkatchenko, A., Quantum-chemical
702
+ insights from deep tensor neural networks. Nat. Commun. Nat. Commun. 2017, 8.
703
+ 59.
704
+ Deringer, V. L. e. a., Realistic atomistic structure of amorphous silicon from
705
+ machine-learning-driven molecular dynamics. J. Phys. Chem. Lett. 2018, 9.
706
+
707
+ 60.
708
+ Zubatyuk, R., Smith, J. S., Leszczynski, J. & Isayev, O., Accurate and transferable multitask
709
+ prediction of chemical properties with an atoms-in-
710
+ molecules neural network. Sci. Adv. 2019, 5.
711
+ 61.
712
+ Maria Korshunova, N. H., Stephen Capuzzi, Dmytro S. Radchenko; Yuriy S. Moroz, C. I. W.,
713
+ Timothy M. Willson, Alexander Tropsha and Olexandr Isayev, Generative and reinforcement learning
714
+ approaches for the automated de novo design of bioactive compounds. Communications Chemistry
715
+ 2022, 5 (1), 1-11.
716
+ 62.
717
+ Barzilay, W. P. W. a. R., Applications of Deep Learning in Molecule Generation and Molecular
718
+ Property Prediction. Accounts of chemical research 2021, 54, 263-270.
719
+ 63.
720
+ Goḿez-Bombarelli, R. W., J.N.;Duvenaud,D.;Hernańdez- Lobato, J. M.; Sań chez-Lengeling, B.;
721
+ Sheberla, D.; Aguilera- Iparraguirre, J.; Hirzel, T. D.; Adams, R. P.; Aspuru-Guzik, A., Automatic Chemical
722
+ Design Using a Data-Driven Continuous Representation of Molecules. ACS Cent. Sci. 2018, 4, 268-276.
723
+ 64.
724
+ EJ Bjerrum, R. T., Molecular generation with recurrent neural networks (RNNs). arXiv preprint
725
+ 2017, arXiv:1705.04612.
726
+ 65.
727
+ Viraj Bagal, R. A., P. K. Vinod, and U. Deva Priyakumar*, MolGPT: Molecular Generation Using a
728
+ Transformer-Decoder Model. J. Chem. Inf. Model 2022, 62, 2064-2076.
729
+ 66.
730
+ Grechishnikova, D., Transformer neural network for protein-specific de novo drug generation as
731
+ a machine translation problem. Sci. Rep. 2021, 11.
732
+ 67.
733
+ Popova, M., Olexandr Isayev, and Alexander Tropsha, Deep reinforcement learning for de novo
734
+ drug design. Science Advances 2018, 4.
735
+ 68.
736
+ Olivecrona, M., Thomas Blaschke, Ola Engkvist, and Hongming Chen, Molecular de-novo design
737
+ through deep reinforcement learning. Journal of Cheminformatics 2017, 9 (1), 1-14.
738
+ 69.
739
+ Jin, W. B., R.; Jaakkola, T. , Junction Tree Variational Autoencoder for Molecular Graph
740
+ Generation. Proc. Mach. Learn. Res. 018, 80, 2323-2332.
741
+ 70.
742
+ Kanagawa, M. a. H., P. and Sejdinovic, D. and Sriperumbudur, B. K., Gaussian Processes and
743
+ Kernel Methods: A Review on Connections and Equivalences. arXiv preprint 2018, arXiv:1805.08845v1.
744
+ 71.
745
+ Ping Li, S. C., A review on Gaussian Process Latent Variable Models. CAAI Transactions on
746
+ Intelligence Technology 2016, 1 (4).
747
+ 72.
748
+ Shahriari B, S. K., Wang Z, Adams R P and Freitas N D, Taking the human out of the loop: A
749
+ review of Bayesian optimization. Proc. IEEE 2016, 104, 148-75.
750
+ 73.
751
+ J, K. H., A versatile stochastic model of a function of unknown and time varying form. Math.
752
+ Anal. Appl. 1962, 5, 150-67.
753
+ 74.
754
+ J, K. H., A new method of locating the maximum point of an arbitrary multipeak curve in the
755
+ presence of noise. J. Basic Eng. 1964, 86, 97-106.
756
+ 75.
757
+ Wilson, A. G.; Nickisch, H., Kernel interpolation for scalable structured Gaussian processes (KISS-
758
+ GP). In Proceedings of the 32nd International Conference on International Conference on Machine
759
+ Learning - Volume 37, JMLR.org: Lille, France, 2015; pp 1775–1784.
760
+ 76.
761
+ Wilson, A. G.; Hu, Z.; Salakhutdinov, R.; Xing, E. P. In Deep kernel learning, Artificial intelligence
762
+ and statistics, PMLR: 2016; pp 370-378.
763
+ 77.
764
+ Wilson, A.; Adams, R. In Gaussian process kernels for pattern discovery and extrapolation,
765
+ International conference on machine learning, PMLR: 2013; pp 1067-1075.
766
+ 78.
767
+ Grégoire Ferré, T. H., and Kipton Barros, Learning molecular energies using localized graph
768
+ kernels. Journal of Chemical Physics 2017, 146.
769
+ 79.
770
+ Ramakrishnan, R., and O. Anatole von Lilienfeld., Many molecular properties from one kernel in
771
+ chemical space. CHIMIA International Journal for Chemistry 2015, 69 (4), 182-186.
772
+
773
+ 80.
774
+ Johannes A. Mohr, B. J. J., and Klaus Obermayer†, Molecule Kernels: A Descriptor- and
775
+ Alignment-Free Quantitative Structure–Activity Relationship Approach. Journal of Chemical Information
776
+ and Modeling 2008, 48 (9), 1868-1881.
777
+ 81.
778
+ Hiroshi Yamashita, T. H., and Ryo Yoshida, Atom Environment Kernels on Molecules. Journal of
779
+ Chemical Information and Modeling 2014, 54 (5), 1289-1300.
780
+ 82.
781
+ Griffiths, R.-R., Leo Klarner, Henry Moss, Aditya Ravuri, Sang T. Truong, Bojana Rankovic, Yuanqi
782
+ Du et al, Griffiths, R. R., Klarner, L., Moss, H., Ravuri, A., Truong, S. T., Rankovic, B., ... & Tang, J. (2022).
783
+ GAUCHE: A Library for Gaussian Processes in Chemistry. In ICML 2022 2nd AI for Science Workshop,
784
+ 2022.
785
+ 83.
786
+ Maxim Ziatdinov, A. G., Sergei V Kalinin, Physics makes the difference: Bayesian optimization
787
+ and active learning via augmented Gaussian process. Machine Learning: Science and Technology 2021, 3
788
+ (1), 015022.
789
+ 84.
790
+ Maxim Ziatdinov, Y. L., Kyle Kelley, Rama Vasudevan, Sergei V Kalinin, Bayesian active learning
791
+ for scanning probe microscopy: from gaussian processes to hypothesis learning. ACS nano 2022, 16 (9),
792
+ 13492-12512.
793
+ 85.
794
+ Maxim A Ziatdinov, Y. L., Anna N Morozovska, Eugene A Eliseev, Xiaohang Zhang, Ichiro
795
+ Takeuchi, Sergei V Kalinin, Hypothesis learning in automated experiment: application to combinatorial
796
+ materials libraries. Advanced Materials 2022, 22013345.
797
+ 86.
798
+ Maxim A. Ziatdinov, Y. L., Anna N. Morozovska,Eugene A. Eliseev,Xiaohang Zhang,Ichiro
799
+ Takeuchi,Sergei V. Kalinin, Hypothesis Learning in Automated Experiment: Application to Combinatorial
800
+ Materials Libraries. Advanced Materials 2022, 2201345.
801
+ 87.
802
+ Ouyang, R. C., S.; Ahmetcik, E.; Scheffler, M.; Ghiringhelli, L. M., SISSO: A compressed-sensing
803
+ method for identifying the best low-dimensional descriptor in an immensity of offered candidates. Phys.
804
+ Rev. Mater. 2018, 2.
805
+ 88.
806
+ Gabriel A. Pinheiro*, J. M., Marinalva D. Soares, Ronaldo C. Prati, Juarez L. F. Da Silva, and
807
+ Marcos G. Quiles*, Machine Learning Prediction of Nine Molecular Properties Based on the SMILES
808
+ Representation of the QM9 Quantum-Chemistry Dataset. Journal of Physical Chemistry A 2020, 124,
809
+ 9854-9866.
810
+ 89.
811
+ Logan Ward, B. B., Ian Foster, Rajeev S. Assary, Badri Narayanan and Larry Curtiss, Machine
812
+ learning prediction of accurate atomization energies of organic molecules from low-fidelity quantum
813
+ chemical calculations. MRS Communications 2019, 9, 891-899.
814
+ 90.
815
+ Gagliardi*, O. R. a. A., Deep Learning Total Energies and Orbital Energies of Large Organic
816
+ Molecules Using Hybridization of Molecular Fingerprints. Journal of Chemical Information and Modeling
817
+ 2020, 60, 5971-5983.
818
+ 91.
819
+ Dominik Lemm, G. F. v. R. O. A. v. L., Machine learning based energy-free structure predictions
820
+ of molecules, transition states, and solids. Nature Communications 2021, 12.
821
+ 92.
822
+ Zhenqin Wu, B. R., Evan N. Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S. Pappu, Karl
823
+ Leswing and Vijay Pande, MoleculeNet: a benchmark for molecular machine learning. Chem. Sci. 2018, 9,
824
+ 513-530.
825
+ 93.
826
+ Zhang, S., Yang Liu, and Lei Xie. , Molecular mechanics-driven graph neural network with
827
+ multiplex graph for molecular structures. arXiv preprint 2020, (arXiv:2011.07457).
828
+ 94.
829
+ Shui, Z., & Karypis, G., Heterogeneous molecular graph neural networks for predicting molecule
830
+ properties. . In 2020 IEEE International Conference on Data Mining (ICDM) 2020; pp 492-500.
831
+ 95.
832
+ Unke, O. T., and Markus Meuwly, PhysNet: A neural network for predicting energies, forces,
833
+ dipole moments, and partial charges. Journal of chemical theory and computation 15 (6), 3678-3693.
834
+ 96.
835
+ Schütt, K., Pieter-Jan Kindermans, Huziel Enoc Sauceda Felix, Stefan Chmiela, Alexandre
836
+ Tkatchenko, and Klaus-Robert Müller, Schnet: A continuous-filter convolutional neural network for
837
+ modeling quantum interactions. Advances in Neural Information Processing Systems 2017, 30.
838
+
839
+ 97.
840
+ Faber, F. A., Luke Hutchison, Bing Huang, Justin Gilmer, Samuel S. Schoenholz, George E. Dahl,
841
+ Oriol Vinyals, Steven Kearnes, Patrick F. Riley, and O. Anatole von Lilienfeld., Machine learning
842
+ prediction errors better than DFT accuracy. arXiv preprint 2017, (arXiv:1702.05532).
843
+ 98.
844
+ Choudhary, K., and Brian DeCost, Atomistic Line Graph Neural Network for improved materials
845
+ property predictions. npj Computational Materials 2021, 7 (1), 1-8.
846
+ 99.
847
+ Chen, C., Weike Ye, Yunxing Zuo, Chen Zheng, and Shyue Ping Ong, Chen, Chi, et al. "Graph
848
+ networks as a universal machine learning framework for molecules and crystals. Chemistry of Materials
849
+ 2019, 31 (9), 3564-3572.
850
+
851
+
EtE0T4oBgHgl3EQfywL5/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
H9AyT4oBgHgl3EQfffh-/content/tmp_files/2301.00341v1.pdf.txt ADDED
@@ -0,0 +1,1398 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.00341v1 [math.CO] 1 Jan 2023
2
+ Symmetric polynomials connecting unsigned
3
+ and signed relative derangements
4
+ Ricky Xiao-Feng Chen, Yu-Chen Ruan
5
+ School of Mathematics, Hefei University of Technology
6
+ Hefei, Anhui 230601, P. R. China
7
+ xiaofengchen@hfut.edu.cn, 1059568476@qq.com
8
+ Abstract
9
+ In this paper, we introduce polynomials (in t) of signed relative derangements
10
+ that track the number of signed elements. The polynomials are clearly seen to be in
11
+ a sence symmetric. Note that relative derangements are those without any signed
12
+ elements, i.e., the evaluations of the polynomials at t = 0. Also, the numbers of
13
+ all signed relative derangements are given by the evaluations at t = 1. Then the
14
+ coefficients of the polynomials connect unsigned and signed relative derangements
15
+ and show how putting elements with signs affects the formation of derangements.
16
+ We first prove a recursion satisfied by these polynomials which results in a recursion
17
+ satisfied by the coefficients. A combinatorial proof of the latter is provided next. We
18
+ also show that the sequences of the coefficients are unimodal. Moreover, other results
19
+ are obtained, for instance, a kind of dual of a relation between signed derangements
20
+ and signed relative derangements previously proved by Chen and Zhang is presented.
21
+ Keywords: Derangements, Relative derangements, Symmetric polynomials, Uni-
22
+ modal
23
+ Mathematics Subject Classifications: 05C05, 05A19, 05A15
24
+ 1
25
+ Introduction
26
+ A derangement on a set [n] = {1, 2, . . ., n} is a permutation π = π1π2 · · · πn on [n] such
27
+ that πi ̸= i for all i ∈ [n], i.e., a permutation without fixed points. We use Dn to denote
28
+ the set of derangements on [n] and Dn to denote the number of derangements on [n].
29
+ The study of derangements may date back to Euler who showed that the probability for
30
+ a random permutation to be a derangement tends to 1/e. It is also well known (e.g.,
31
+ Stanley [8, Chapter 2]) that
32
+ Dn = (n − 1)(Dn−1 + Dn−2).
33
+ (1)
34
+ 1
35
+
36
+ A relative derangement π = π1π2 · · ·πn on [n] is a permutation such that πi+1 ̸= πi + 1
37
+ for 1 ≤ i ≤ n − 1. Let Qn denote the set of relative derangements on [n] and Qn = |Qn|.
38
+ With the aid of the notion of skew derangements, Chen [4] combinatorially showed that
39
+ Qn = Dn + Dn−1.
40
+ (2)
41
+ A signed permutation π on [n] can be viewed as a bijection on the set [n] �{1, . . . , n}
42
+ such that π(i) = π(i), where j = j.
43
+ Intuitively, a signed permutation on [n] is just
44
+ an ordinary permutation π = π1π2 · · · πn with some elements associated with a bar. For
45
+ example, 1342 is a signed permutation on {1, 2, 3, 4}. These elements with a bar are called
46
+ signed elements or bar-elements. The set of signed permutation on [n] is often denoted
47
+ by Bn. A signed derangement [1] on [n] is a signed permutation π = π1π2 · · · πn such that
48
+ πi ̸= i, for all i ∈ [n]. For example, 1342 is a signed derangement in B4, whereas 1342
49
+ is not since it has a fixed point 1. A signed relative derangement (or sometimes called
50
+ relative derangement of type B, see [5]) on [n] is a signed permutation on [n] such that
51
+ i is not followed by i + 1, and i is not followed by i + 1. For example, 1324 is a signed
52
+ relative derangement. We denote by DB
53
+ n and QB
54
+ n the sets of signed derangements and
55
+ signed relative derangements on [n], respectively. Let DB
56
+ n = |DB
57
+ n | and QB
58
+ n = |QB
59
+ n |. Based
60
+ on the notion of signed skew derangements, Chen and Zhang [5] proved that
61
+ QB
62
+ n = DB
63
+ n + DB
64
+ n−1.
65
+ (3)
66
+ One of our results in this paper is a kind of dual of this relation, that is, we present a
67
+ relation expressing DB
68
+ n in terms of fn that counts an essential subset of sequences in QB
69
+ n .
70
+ Obviously, the subset of sequences with zero signed elements is Qn and hence Qn ⊂ QB
71
+ n .
72
+ It is natural to consider the subset consisting of sequences with m signed elements. As
73
+ such, a polynomial tracking the number of signed elements is introduced. While many
74
+ polynomials or q-analogues associated to derangements have been studied, for instance,
75
+ the q-enumeration of derangements in Bn by flag major index [1], the excedances of
76
+ derangements [6,10], the q-enumeration of derangements by major index [9], and the cyclic
77
+ polynomials of derangements [7], our polynomials here seem to have been overlooked. In
78
+ addition, our polynomials have a nice property, namely, they are in a sense symmetric.
79
+ The paper is organized as follows. In Section 2, we introduce the symmetric poly-
80
+ nomials and prove a recursion satisfied by them. Various results are then derived as a
81
+ consequence. Section 3 is devoted to presenting a combinatorial proof of the resulting
82
+ recursion satisfied by the coefficients as well as proving a unimodality property.
83
+ 2
84
+ Symmetric polynomials
85
+ Let b(π) be the number of signed elements in π ∈ QB
86
+ n . The polynomial of signed relative
87
+ derangements recording the number of signed elements is then given by
88
+ QB
89
+ n (t) =
90
+
91
+ π∈QB
92
+ n
93
+ tb(π) =
94
+ n
95
+
96
+ m=0
97
+ qn,mtm,
98
+ 2
99
+
100
+ where qn,m denotes the number of signed relative derangements with exactly m signed
101
+ elements.
102
+ It is evident that qn,m = qn,n−m as we can obtain a signed relative derangment with
103
+ n − m bar-elements by turning a signed element into its unsigned counterpart and vice
104
+ versa. Therefore, the polynomial QB
105
+ n (t) is in a sense symmetric.
106
+ Denote by �QB
107
+ n the set of signed permutations on the set [n] where in each signed
108
+ permutation two consecutive entries of the form i(i+ 1) or i(i + 1) for some 1 ≤ i < n−1
109
+ appears exactly once. For example, 4231 ∈ �QB
110
+ 4 .
111
+ For π ∈ QB
112
+ n , we denote the resulting sequence from removing n or n whichever appears
113
+ in π by π↓. The following lemma should not be hard to observe.
114
+ Lemma 1. For any π ∈ QB
115
+ n , we have either π↓ ∈ QB
116
+ n−1 or π↓ ∈ �QB
117
+ n−1.
118
+ Accordingly, we immediately have
119
+ QB
120
+ n (t) =
121
+
122
+ π∈QB
123
+ n
124
+ tb(π) =
125
+
126
+ π∈QB
127
+ n , π↓∈�QB
128
+ n−1
129
+ tb(π) +
130
+
131
+ π∈QB
132
+ n , π↓∈QB
133
+ n−1
134
+ tb(π).
135
+ (4)
136
+ To obtain a recursion of QB
137
+ n (t), we next study the two sums on the right-hand side of
138
+ eq. (4) in detail. For π = π1π2 · · · πn−1 ∈ QB
139
+ n−1 and n ≥ 2, denote by S↑(π) the set
140
+ of sequences in �QB
141
+ n that result from π by lifting the elements larger than πi (for some
142
+ 1 ≤ i ≤ n − 1) by one and replacing πi with a length-two sequence πi(πi + 1), where we
143
+ define the addition for bar-elements by the rule i + 1 = i + 1. Moreover, if an element x
144
+ appears an entry in π, we write x ∈ π.
145
+ Lemma 2. For n ≥ 3 and any π ∈ QB
146
+ n , we have
147
+
148
+ π′∈S↑(π)
149
+ tb(π′) = b(π)tb(π)+1 + (n − b(π))tb(π).
150
+ (5)
151
+ Proof. For any π = π1π2 · · ·πn ∈ QB
152
+ n , it has b(π) bar-elements and n − b(π) elements
153
+ without a bar. For any πi ∈ π with a bar, it will generate an additional bar-element after
154
+ lifting the elements larger than πi (for some 1 ≤ i ≤ n − 1) by one and replacing πi with
155
+ a length-two sequence πi(πi + 1). In other words, it will contribute tb(π)+1. However, for
156
+ any πi ∈ π without a bar, the number of bar-elements in the sequence will not change.
157
+ Therefore, it contributes tb(π). Summarizing the two cases gives the lemma.
158
+ The lemma right below is not difficult to verify.
159
+ Lemma 3. If π, π′ ∈ QB
160
+ n−1 and π ̸= π′, then S↑(π) � S↑(π′) = ∅. Moreover,
161
+ �QB
162
+ n =
163
+
164
+ π∈QB
165
+ n−1
166
+ S↑(π).
167
+ (6)
168
+ 3
169
+
170
+ Proposition 4. For n ≥ 3, we have
171
+
172
+ π∈QB
173
+ n , π↓∈�QB
174
+ n−1
175
+ tb(π) = (1 + t)
176
+
177
+ (t2 − t)QB
178
+ n−2
179
+ ′(t) + (n − 2)QB
180
+ n−2(t)
181
+
182
+ ,
183
+ (7)
184
+ where QB
185
+ n
186
+ ′(t) stands for the derivative of QB
187
+ n (t) with respect to t.
188
+ Proof. First, by construction, there are exactly two signed permutations π, π′ ∈ QB
189
+ n such
190
+ that π↓ = π′↓ ∈ �QB
191
+ n−1, and vice versa, where if n ∈ π then π′ can be obtained by replacing
192
+ n with n in π. Thus, tb(π↓) = tb(π′↓) = tb(π) = tb(π′)−1 and
193
+
194
+ π∈QB
195
+ n , π↓∈�QB
196
+ n−1
197
+ tb(π) =
198
+
199
+ π′∈�QB
200
+ n−1
201
+ (1 + t)tb(π′).
202
+ Next, we have
203
+
204
+ π′∈�QB
205
+ n−1
206
+ tb(π′) =
207
+
208
+ π′′∈QB
209
+ n−2
210
+
211
+ π′∈S↑(π′′)
212
+ tb(π′)
213
+ =
214
+
215
+ π′′∈QB
216
+ n−2
217
+
218
+ b(π′′) · t +
219
+
220
+ n − 2 − b(π′′)
221
+ ��
222
+ tb(π′′)
223
+ =
224
+
225
+ π′′∈QB
226
+ n−2
227
+
228
+ (t − 1)b(π′′)tb(π′′) + (n − 2)tb(π′′)�
229
+ = (t2 − t)QB
230
+ n−2
231
+ ′(t) + (n − 2)QB
232
+ n−2(t),
233
+ where the first two equalities follow from Lemma 3 and Lemma 2, respectively, and then
234
+ the proof follows.
235
+ Proposition 5. For n ≥ 3, we have
236
+
237
+ π∈QB
238
+ n , π↓∈QB
239
+ n−1
240
+ tb(π) = (nt + n − 1)QB
241
+ n−1(t) + (1 − t)
242
+
243
+ π′∈QB
244
+ n−1, n−1∈π′
245
+ tb(π′).
246
+ (8)
247
+ Proof. A sequence π ∈ QB
248
+ n where n appears can be clearly obtained by inserting n into a
249
+ sequence π↓ ∈ QB
250
+ n−1. We distinguish two cases:
251
+ • if n − 1 appears in π↓ ∈ QB
252
+ n−1, there are n − 1 positions where n can be inserted.
253
+ • if n − 1 appears in π↓ ∈ QB
254
+ n−1, there are n positions where n can be inserted.
255
+ Note that in both cases, we have b(π) = b(π↓). Thus,
256
+
257
+ π∈QB
258
+ n , π↓∈QB
259
+ n−1, n∈π
260
+ tb(π) =
261
+
262
+ π′∈QB
263
+ n−1, n−1∈π′
264
+ (n − 1) · tb(π′) +
265
+
266
+ π′∈QB
267
+ n−1, n−1∈π′
268
+ n · tb(π′)
269
+ = (n − 1)QB
270
+ n−1(t) +
271
+
272
+ π′∈QB
273
+ n−1, n−1∈π′
274
+ tb(π′) .
275
+ Similarly, the situation of inserting n can be calculated. We also distinguish two cases:
276
+ 4
277
+
278
+ • if n − 1 appears in π↓ ∈ QB
279
+ n−1, there are n positions where n can be inserted.
280
+ • if n − 1 appears in π↓ ∈ QB
281
+ n−1, there are n − 1 positions where n can be inserted.
282
+ The difference is that in this case, we have b(π) = b(π↓) + 1. Thus,
283
+
284
+ π∈QB
285
+ n , π↓∈QB
286
+ n−1, n∈π
287
+ tb(π) =
288
+
289
+ π′∈QB
290
+ n−1,n−1∈π′
291
+ nt · tb(π′) +
292
+
293
+ π′∈QB
294
+ n−1,n−1∈π′
295
+ (n − 1)t · tb(π′)
296
+ = ntQB
297
+ n−1(t) − t
298
+
299
+ π′∈QB
300
+ n−1,n−1∈π′
301
+ tb(π′).
302
+ Combining the above two cases, we obtain the proposition.
303
+ Proposition 6. For n ≥ 3, we have
304
+
305
+ π′∈QB
306
+ n−1, n−1∈π′
307
+ tb(π′) =(n − 1)tQB
308
+ n−2(t) + t
309
+
310
+ (t2 − t)QB
311
+ n−3
312
+ ′(t) + (n − 3)QB
313
+ n−3(t)
314
+
315
+ − t
316
+
317
+ π′′∈QB
318
+ n−2, n−2∈π′′
319
+ tb(π′′) .
320
+ (9)
321
+ Proof. Analogously, we first have
322
+
323
+ π′∈QB
324
+ n−1, n−1∈π′
325
+ tb(π′) =
326
+
327
+ π′∈QB
328
+ n−1, n−1∈π′, π′↓∈QB
329
+ n−2
330
+ tb(π′↓) +
331
+
332
+ π′∈QB
333
+ n−1, n−1∈π′, π′↓∈�QB
334
+ n−2
335
+ tb(π′↓).
336
+ The first sum of the right-hand side has been obtained in Proposition 5 and equals
337
+ (n − 1)tQB
338
+ n−2(t) − t
339
+
340
+ π′′∈QB
341
+ n−2, n−2∈π′′
342
+ tb(π′′).
343
+ Following the proof of Proposition 4, the second sum of the right-hand side equals
344
+
345
+ π′∈�QB
346
+ n−2
347
+ t · tb(π′) = t
348
+
349
+ π′′∈QB
350
+ n−3
351
+
352
+ π′∈S↑(π′′)
353
+ tb(π′)
354
+ = t
355
+
356
+ π′′∈QB
357
+ n−3
358
+
359
+ b(π′′) · t +
360
+
361
+ n − 3 − b(π′′)
362
+ ��
363
+ tb(π′′)
364
+ = t
365
+
366
+ π′′∈QB
367
+ n−3
368
+
369
+ (t − 1)b(π′′)tb(π′′) + (n − 3)tb(π′′)�
370
+ = t
371
+
372
+ (t2 − t)QB
373
+ n−3
374
+ ′(t) + (n − 3)QB
375
+ n−3(t)
376
+
377
+ .
378
+ The rest is clear and the proof follows.
379
+ Based on Proposition 4–6, we conclude
380
+ 5
381
+
382
+ Theorem 7. For n ≥ 3, the following holds
383
+ QB
384
+ n (t) = (n − 1)(t + 1)QB
385
+ n−1(t) +
386
+
387
+ (3n − 5)t + (n − 2)
388
+
389
+ QB
390
+ n−2(t)
391
+ + (t3 − t)QB
392
+ n−2
393
+ ′(t) + (2n − 6)tQB
394
+ n−3(t) + 2t2(t − 1)QB
395
+ n−3
396
+ ′(t),
397
+ (10)
398
+ and QB
399
+ 0 (t) = 0, QB
400
+ 1 (t) = 1 + t, QB
401
+ 2 (t) = t2 + 4t + 1.
402
+ Proof. According to Proposition 4–6, we first obtain
403
+ QB
404
+ n (t) =
405
+
406
+ π∈QB
407
+ n
408
+ tb(π) =
409
+
410
+ π∈QB
411
+ n , π↓∈�QB
412
+ n−1
413
+ tb(π) +
414
+
415
+ π∈QB
416
+ n , π↓∈QB
417
+ n−1
418
+ tb(π)
419
+ =(1 + t)
420
+
421
+ (t2 − t)QB
422
+ n−2
423
+ ′(t) + (n − 2)QB
424
+ n−2(t)
425
+
426
+ + (nt + n − 1)QB
427
+ n−1(t) + (1 − t)
428
+
429
+ π′∈QB
430
+ n−1
431
+ n−1∈π′
432
+ tb(π′)
433
+ =(1 + t)
434
+
435
+ (t2 − t)QB
436
+ n−2
437
+ ′(t) + (n − 2)QB
438
+ n−2(t)
439
+
440
+ + (nt + n − 1)QB
441
+ n−1(t)
442
+ + (1 − t)
443
+
444
+ (n − 1)tQB
445
+ n−2(t) + t
446
+
447
+ (t2 − t)QB
448
+ n−3
449
+ ′(t) + (n − 3)QB
450
+ n−3(t)
451
+
452
+ − t
453
+
454
+ π′′∈QB
455
+ n−2
456
+ n−2∈π′↓
457
+ tb(π′↓) �
458
+ .
459
+ Iterating using Proposition 6 and using the fact that
460
+
461
+ π′∈QB
462
+ 1 , 1∈π′
463
+ tb(π′) = t, we have
464
+ QB
465
+ n (t) =(nt + n − 1)QB
466
+ n−1(t) + (1 − t)
467
+ � n−2
468
+
469
+ k=1
470
+ (−1)k+1(n − k)tkQB
471
+ n−k−1(t)
472
+
473
+ + (−1)n(1 − t)tn−1 + (1 + t)
474
+
475
+ (t2 − t)QB
476
+ n−2
477
+ ′(t) + (n − 2)QB
478
+ n−2(t)
479
+
480
+ + (1 − t)
481
+ �n−2
482
+
483
+ k=1
484
+ (−1)k+1tk�
485
+ (t2 − t)QB
486
+ n−k−2
487
+ ′(t) + (n − k − 2)QB
488
+ n−k−2(t)
489
+
490
+
491
+ =(nt + n − 1)QB
492
+ n−1(t) + (2n − 4)QB
493
+ n−2(t) + (−1)n(1 − t)tn−1
494
+ +
495
+ n−2
496
+
497
+ k=1
498
+ (−1)ktk−1�
499
+ (n − k − 1) + (2k + 1 − 2n)t + (n − k)t2�
500
+ QB
501
+ n−k−1(t)
502
+ + (t3 − t)QB
503
+ n−2
504
+ ′(t) +
505
+ n−2
506
+
507
+ k=1
508
+ (−1)k+1tk+1(2t − 1 − t2)QB
509
+ n−k−2
510
+ ′(t).
511
+ (11)
512
+ Consequently, we have
513
+ QB
514
+ n−1(t) =
515
+
516
+ (n − 1)t + n − 2
517
+
518
+ QB
519
+ n−2(t) + (2n − 6)QB
520
+ n−3(t) + (−1)n−1(1 − t)tn−2
521
+ +
522
+ n−3
523
+
524
+ k=1
525
+ (−1)ktk−1�
526
+ (n − k − 2) + (2k + 3 − 2n)t + (n − k − 1)t2�
527
+ QB
528
+ n−k−2(t)
529
+ + (t3 − t)QB
530
+ n−3
531
+ ′(t) +
532
+ n−3
533
+
534
+ k=1
535
+ (−1)k+1tk+1(2t − 1 − t2)QB
536
+ n−k−3
537
+ ′(t).
538
+ 6
539
+
540
+ Then, it is observed that the two sums in the last expression of eq. (11) equals
541
+ (−t)
542
+
543
+ QB
544
+ n−1(t) −
545
+
546
+ (n − 1)t + n − 2
547
+
548
+ QB
549
+ n−2(t)
550
+ − (2n − 6)QB
551
+ n−3(t) − (−1)n−1(1 − t)tn−2 − (t3 − t)QB
552
+ n−3
553
+ ′(t)
554
+
555
+ .
556
+ Plugging it into eq. (11) and simplifying completes the proof.
557
+ Based on the obtained recursion eq. (10), the first few polynomials of QB
558
+ n (t) are com-
559
+ puted and listed below:
560
+ QB
561
+ 1 (t) =t + 1
562
+ QB
563
+ 2 (t) =t2 + 4t + 1
564
+ QB
565
+ 3 (t) =3t3 + 14t2 + 14t + 3
566
+ QB
567
+ 4 (t) =11t4 + 64t3 + 112t2 + 64t + 11
568
+ QB
569
+ 5 (t) =53t5 + 362t4 + 866t3 + 866t2 + 362t + 53
570
+ QB
571
+ 6 (t) =309t6 + 2428t5 + 7252t4 + 10300t3 + 7252t2 + 2428t + 309
572
+ QB
573
+ 7 (t) =2119t7 + 18806t6 + 66854t5 + 121838t4 + 121838t3 + 66854t2 + 18806t + 2119
574
+ QB
575
+ 8 (t) =16687t8 + 165016t7 + 677656t6 + 1497880t5 + 1937368t4 + 1497880t3
576
+ + 677656t2 + 165016t + 16687
577
+ QB
578
+ 9 (t) =148329t9 + 1616786t8 + 7513658t7 + 19444106t6 + 30752450t5 + 30752450t4
579
+ + 19444106t3 + 7513658t2 + 1616786t + 148329
580
+ Corollary 8. Let F(x, t) = �
581
+ n≥1
582
+ QB
583
+ n (t)xn be the generating function of QB
584
+ n (t).
585
+ Then,
586
+ F(0, t) = 0 and F(x, t) satisfies the following differential equation:
587
+ ∂F
588
+ ∂t (x, t) + t + 1 + 3tx + x + 2tx2
589
+ t(t2 − 1) + 2t2(t − 1)x
590
+ ∂F
591
+ ∂x (x, t)
592
+ =
593
+ −1 − t − 2tx
594
+ t(t2 − 1)x + 2t2(t − 1)x2 −
595
+ tx2 − 1
596
+ t(t2 − 1)x2 + 2t2(t − 1)x3 F(x, t).
597
+ (12)
598
+ The proof of Corollary 8 is provided in the appendix. Unfortunately, we are unable to
599
+ solve the differential equation to get explicit formulas for F(x, t) and QB
600
+ n (t).
601
+ Corollary 9. Let π ∈ QB
602
+ n be chosen uniformly at random. Then, the expectation and
603
+ variance of the number of signed elements b(π) are respectively
604
+ E[b(π)] = n
605
+ 2,
606
+ Var[b(π)] = Fn + 2n − n2
607
+ 4
608
+ ,
609
+ where Fn satisfies
610
+ Fn =
611
+
612
+ (n − 1)2 + (2n − 2)Fn−1
613
+ �QB
614
+ n−1
615
+ QB
616
+ n
617
+ +
618
+
619
+ (3n − 2)(n − 2) + (4n − 3)Fn−2
620
+ �QB
621
+ n−2
622
+ QB
623
+ n
624
+ +
625
+
626
+ (2n − 2)(n − 3) + (2n − 2)Fn−3
627
+ �QB
628
+ n−3
629
+ QB
630
+ n
631
+ .
632
+ 7
633
+
634
+ Proof. Recall that qn,m = qn,n−m, and it is easy to see
635
+ QB
636
+ n (1) =
637
+ n
638
+
639
+ m=0
640
+ qn,m,
641
+ QB
642
+ n
643
+ ′(t) =
644
+ n
645
+
646
+ m=0
647
+ mqn,mtm−1,
648
+ QB
649
+ n
650
+ ′(1) =
651
+ n
652
+
653
+ m=0
654
+ mqn,m,
655
+ QB
656
+ n
657
+ ′′(t) =
658
+ n
659
+
660
+ m=0
661
+ m(m − 1)qn,mtm−2,
662
+ QB
663
+ n
664
+ ′′(1) =
665
+ n
666
+
667
+ m=0
668
+ m(m − 1)qn,m.
669
+ Consequently, we have
670
+ E[b(π)] =
671
+ �n
672
+ m=0 mqn,m
673
+ �n
674
+ m=0 qn,m
675
+ =
676
+ �n
677
+ m=0(m + n − m)qn,m/2
678
+ �n
679
+ m=0 qn,m
680
+ = QB
681
+ n
682
+ ′(1)
683
+ QB
684
+ n (1) = n
685
+ 2.
686
+ As for the variance, we compute
687
+ Var[b(π)] =
688
+ n�
689
+ m=0
690
+ (m − E[b(π)])2qn,m
691
+ QB
692
+ n
693
+ =
694
+ n�
695
+ m=0
696
+ m2qn,m +
697
+ n�
698
+ m=0
699
+ E[b(π)]2qn,m − 2
700
+ n�
701
+ m=0
702
+ mE[b(π)]qn,m
703
+ QB
704
+ n
705
+ =
706
+ n�
707
+ m=0
708
+
709
+ m(m − 1) + m
710
+
711
+ qn,m +
712
+ n�
713
+ m=0
714
+ E[b(π)]2qn,m − 2
715
+ n�
716
+ m=0
717
+ mE[b(π)]qn,m
718
+ QB
719
+ n
720
+ = QB
721
+ n
722
+ ′′(1) + QB
723
+ n
724
+ ′(1) + E[b(π)]2QB
725
+ n (1) − 2E[b(π)]QB
726
+ n
727
+ ′(1)
728
+ QB
729
+ n (1)
730
+ = QB
731
+ n
732
+ ′′(1)
733
+ QB
734
+ n (1) + 2n − n2
735
+ 4
736
+ .
737
+ From Theorem 7, we next get
738
+ QB
739
+ n
740
+ ′′(1) = (2n − 2)QB
741
+ n−1
742
+ ′(1) + (2n − 2)QB
743
+ n−1
744
+ ′′(1) + (6n − 4)QB
745
+ n−2
746
+ ′(1) + (4n − 3)QB
747
+ n−2
748
+ ′′(1)
749
+ + (4n − 4)QB
750
+ n−3
751
+ ′(1) + (2n − 2)QB
752
+ n−3
753
+ ′′(1).
754
+ By dividing both sides by QB
755
+ n , the following recurrsion of Fn = QB
756
+ n
757
+ ′′(1)
758
+ QB
759
+ n (1) can be obtained:
760
+ Fn =
761
+
762
+ (n − 1)2 + (2n − 2)Fn−1
763
+ �QB
764
+ n−1(1)
765
+ QB
766
+ n (1) +
767
+
768
+ (3n − 2)(n − 2) + (4n − 3)Fn−2
769
+ �QB
770
+ n−2(1)
771
+ QB
772
+ n (1)
773
+ +
774
+
775
+ (2n − 2)(n − 3) + (2n − 2)Fn−3
776
+ �QB
777
+ n−3(1)
778
+ QB
779
+ n (1) .
780
+ This completes the proof.
781
+ 8
782
+
783
+ The following corollary follows from Theorem 7 as well.
784
+ Corollary 10. For n ≥ 3 and m ≥ 0, we have
785
+ Qn =(n − 1)Qn−1 + (n − 2)Qn−2,
786
+ (13)
787
+ QB
788
+ n =(2n − 1)QB
789
+ n−1 + (2n − 4)QB
790
+ n−2,
791
+ (14)
792
+ qn,m =(n − 1)qn−1,m−1 + (n − 1)qn−1,m + (m − 2)qn−2,m−2 + (3n − 5)qn−2,m−1
793
+ + (n − m − 2)qn−2,m + (2m − 4)qn−3,m−2 + (2n − 2m − 4)qn−3,m−1,
794
+ (15)
795
+ where we make the convention that qn,m = 0 if m < 0.
796
+ Proof. Eq. (13) and (14) follow from eq. (10) by setting t = 0 and t = 1, respectively.
797
+ Eq. (15) is obtained by comparing the coefficients of tm on both sides of eq. (10)
798
+ It is easy to see that the case m = 0 of eq. (15) agrees with eq. (13). Of course,
799
+ eq. (13) and (14) can be also obtained by making use of the recursions satisfied by Dn,
800
+ DB
801
+ n , eq. (2) and eq. (3). We leave the computation to the interested reader. In the next
802
+ section, we will present a direct combinatorial proof of the recursion of qn,m.
803
+ 3
804
+ Recursion and unimodality of qn,m
805
+ The goal of this section is to first prove the recursion of qn,m combinatorially, and then
806
+ prove the sequence of qn,m is unimodal.
807
+ Before we proceed, we present a connection to the work of the first author [3] using a
808
+ slight variation of signed relative derangements. Recall the definitions there: Let
809
+ Γn = {(0, −1), (−1, 0), (1, −2), (−2, 1), . . ., (n, −n − 1), (−n − 1, n)}
810
+ be a set of ordered pairs. For an ordered pair T = (a, b), the element a is called the left
811
+ entry of T and denoted by T l = a, while b the right entry of T and denoted by T r = b. A
812
+ signed relative derangement (SRD) on Γn is a sequence π = T0T1 · · · Tn such that Ti ∈ Γn,
813
+ each ordered pair appears at most once in π, (a, b) ∈ Γn and (b, a) ∈ Γn cannot be both
814
+ contained in π, and for 0 ≤ i ≤ n − 1, T r
815
+ i ̸= −T l
816
+ i+1. This particular form for SRDs was
817
+ chosen for a reason, as SRDs were also treated as fixed point involutions in [3]. As such,
818
+ the first author could provide an upper bound for the number of signed permutations
819
+ whose reversal distances are maximum possible.
820
+ An SRD of type 1 on Γn is an SRD π = T0T1T2 · · · Tn such that T0 = (0, −1) and
821
+ Tn ̸= (n, −n − 1). An SRD of type 2 on Γn is an SRD π = T0T1T2 · · ·Tn such that
822
+ T0 = (0, −1) and Tn = (n, −n − 1). Let fn and ˆfn denote the number of SRDs of type 1
823
+ and type 2 on Γn, respectively. Clearly, ˆfn = fn−1. One of the main results in Chen [3] is
824
+ the four-term recursion below
825
+ fn = (2n − 2)fn−1 + (4n − 3)fn−2 + (2n − 2)fn−3,
826
+ (16)
827
+ where f1 = 1, f2 = 4, f3 = 25.
828
+ 9
829
+
830
+ Following [3], we have known that there is a natural bijection for transfroming SRDs
831
+ on Γn to the signed relative derangements in the classical definition. That is, just view
832
+ (i, −i−1) as i and (−i−1, i) as i. But it is worth noting that the condition now becomes
833
+ that i is not followed by i + 1 and i + 1 is not followed by i.
834
+ Sometimes it is more
835
+ convenient to use this definition. For instance, let π[r] denote the sequence obtained from
836
+ π by reading π reversely (i.e., right to left) and changing i to i and vice versa. Then, if π
837
+ is an SRD, then π[r] is also an SRD. For example, for an SRD π = 2310, π[r] = 0132 is an
838
+ SRD too. We refer to π[r] as the conjugate-reverse of π. This is not true in the classical
839
+ definition. For example, for a signed relative derangement π = 3210, π[r] = 0123 is not a
840
+ signed relative derangement anymore in the classical definition. In the following, we will
841
+ use the new version of SRDs if not explicitly stated otherwise.
842
+ Lemma 11. For n ≥ 3,
843
+ QB
844
+ n = (fn + fn−1) + (fn−1 + fn−2).
845
+ (17)
846
+ Proof. The elements π1π2 · · · πn in QB
847
+ n consist of two classes: π1 = 1 and π1 ̸= 1. The
848
+ latter is equivalent to SRDs of type 1 and type 2 and counted by fn + ˆfn = fn + fn−1 as
849
+ discussed above. As for those starting with 1, the subsequence π2 · · ·πn must not start
850
+ with 2. It is then not hard to see that this class is counted by fn−1 + fn−2, completing
851
+ the proof.
852
+ In view of Lemma 11, the “core” of QB
853
+ n is really the subset of sequences not starting
854
+ with 1. Also, recall that QB
855
+ n = DB
856
+ n + DB
857
+ n−1 obtained by Chen and Zhang [5]. Accordingly,
858
+ it suggests the following relation which can be viewed as a dual of this relation.
859
+ Proposition 12 (Dual of eq. (3)). For n ≥ 2, we have
860
+ DB
861
+ n = fn + fn−1.
862
+ (18)
863
+ Proof. First, we take the opportunity to present a direct combinatorial proof of a recursion
864
+ of DB
865
+ n which is an analogue of eq. (1). Consider signed derangements of length n in DB
866
+ n .
867
+ We distinguish the following cases.
868
+ case 1: If 1 appears, it can be placed at any other n − 1 positions except the first
869
+ position. Suppose 1 is placed at the k-th position for a fixed 1 < k ≤ n, then we consider
870
+ the elements k and k.
871
+ • If k is placed at the first position, the remaining n − 2 entries (other than the first
872
+ and the k-th entries) could essentially form any signed derangement of length n−2.
873
+ Then, we have DB
874
+ n−2 signed derangements in this case.
875
+ • If k is not placed at the first position (note that k could still be placed at the first
876
+ position), viewing k as 1 (and k as 1), the remaining n − 1 entries other than the
877
+ k-th entry essentially form a signed derangement of length n − 1. Hence, there are
878
+ DB
879
+ n−1 signed derangements in this case.
880
+ 10
881
+
882
+ Since there are n − 1 options for k, we have (n − 1)(DB
883
+ n−2 + DB
884
+ n−1) signed derangements
885
+ where 1 appears.
886
+ case 2: Consider the case 1 appears.
887
+ • Clearly, there are DB
888
+ n−1 signed derangements where 1 is placed at the first position.
889
+ • If 1 is not placed at the first position, in analogy with case 1, we have (n−1)(DB
890
+ n−2+
891
+ DB
892
+ n−1) such signed derangements.
893
+ Summarizing the above discussion, we have
894
+ DB
895
+ n = (2n − 1)DB
896
+ n−1 + (2n − 2)DB
897
+ n−2.
898
+ (19)
899
+ Next, let Fn = fn + fn−1. Applying the four-term recurrence eq. (16), we have
900
+ Fn = (2n − 1)fn−1 + (4n − 3)fn−2 + (2n − 2)fn−3
901
+ = (2n − 1)Fn−1 + (2n − 2)Fn−2.
902
+ That is, DB
903
+ n and Fn satisfy the same recursion.
904
+ Meanwhile, we have DB
905
+ 2 = F2 = 5,
906
+ DB
907
+ 3 = F3 = 29. Therefore, DB
908
+ n and fn + fn−1 also have the same initial values. Thus, it
909
+ is proved that DB
910
+ n = fn + fn−1.
911
+ We remark that eq. (19) can be found in [2], but with a different proof. Combining
912
+ Proposition 12 and eq. (16), we immediately have an alternative proof of eq. (14).
913
+ Now we are in a position to prove the recursion eq. (15). Let qn,m denote the number
914
+ of π = π1π2 · · · πn ∈ QB
915
+ n with m bar-elements and π1 ̸= 1. Equivalently, qn,m counts SRDs
916
+ of type 1 and 2 on Γn that have m bar-elements. We first have the following relation
917
+ which is an analogue of eq. (17).
918
+ Lemma 13.
919
+ qn,m = qn,m + qn−1,m.
920
+ (20)
921
+ Proof. For any π ∈ QB
922
+ n with m bar-elements, π is either in the form π1π2 · · ·πn where
923
+ π1 ̸= 1 or 1π2 · · ·πn. The number of the former is just qn,m. And the number of the latter
924
+ is equal to the number of π2 · · · πn where π2 ̸= 2, namely qn−1,m, whence the lemma.
925
+ In the light of Lemma 13, in order for studying qn,m it suffices to study qn,m. To that
926
+ end, we generalize the idea for proving eq. (16) in [3] and obtain
927
+ Theorem 14. For n ≥ 4, we have
928
+ qn,m =(n − 1)qn−1,m + (n − m − 1)qn−2,m + (m − 1)qn−2,m−1 + nqn−1,n−m
929
+ + (m − 1)qn−2,n−m + (n − m − 1)qn−2,n−m−1.
930
+ (21)
931
+ 11
932
+
933
+ Proof. Note that SRDs of type 1 and 2 on Γn with m bar-elements are either in the form
934
+ 0A11A2 or 0A11A2. We will count SRDs in each case separately.
935
+ case 1: 0A11A2.
936
+ (i) A2 = ∅. In this case, A1 could essentially be any SRD of length n − 1 with m
937
+ bar-elements. It is easy to see there are qn−1,m + qn−2,m such SRDs.
938
+ (ii) A2 ̸= ∅. Consider the induced sequence 1A2A1.
939
+ If there exists no a ∈ [n] such that A2 ends with a while A1 starts with a − 1 or A2
940
+ ends with a − 1 while A1 starts with a, then the sequence 1A2A1 could be equivalently
941
+ any SRD of type 1 or 2 of length n−1 and with m bar-elements. The latter is counted by
942
+ qn−1,m. Moreover, there are n − 2 ways to transform each such a sequence into sequences
943
+ of the form A11A2. Hence, there are (n − 2)qn−1,m SRDs lying in this situation.
944
+ If otherwise, such an a exists, then by construction a ∈ [n] \ [2]. We claim that for a
945
+ fixed a ∈ [n] \ [2],
946
+ • the sequences of the form 1A′
947
+ 2aa − 1A′
948
+ 1 are in one-to-one correspondence to the
949
+ SRDs on the set Γn−1 \ {0, 0} starting with 1 and having m − 1 bar-elements which
950
+ are counted by qn−2,m−1;
951
+ • the sequences of the form 1A′
952
+ 2(a − 1)aA��
953
+ 1 are in one-to-one correspondence to the
954
+ SRDs on the set Γn−1 \ {0, 0} starting with 1 and having m bar-elements which are
955
+ counted by qn−2,m.
956
+ The above first case can be seen from replacing aa − 1 with a − 1 and decreasing all other
957
+ elements greater than a (regardless of if it has a bar) by 1. In particular, this will lose one
958
+ bar-element. The second case can be seen analogously, but without losing a bar-element.
959
+ Conversely, for each of the m − 1 bar-elements in the SRDs on the set Γn−1 \ {0, 0}
960
+ starting with 1, say a − 1 (a > 2), we first increase all elements no less than a by one, and
961
+ then replace a − 1 with aa − 1. Clearly, the resulting sequence is of the form 1A′
962
+ 2aa − 1A′
963
+ 1.
964
+ In addition, there is a unique way to transform such a sequence into an SRD of the form
965
+ 0A11A2, i.e., 0a − 1A′
966
+ 11A′
967
+ 2a. So, there are (m − 1)qn−2,m−1 SRDs lying in this situation.
968
+ Analogously, we find there are (n − 2 − m)qn−2,m SRDs of the form 0aA′
969
+ 11A′
970
+ 2(a − 1).
971
+ In summary, for n ≥ 4, the number of SRDs of type 1 and type 2 with m bar-elements
972
+ on Γn in the form 0A11A2 is given by
973
+ (n − 1)qn−1,m + (n − m − 1)qn−2,m + (m − 1)qn−2,m−1.
974
+ case 2: 0A11A2. Consider the induced sequence 1A[r]
975
+ 1 A[r]
976
+ 2 first (Recall A[r]
977
+ i
978
+ denotes the
979
+ conjugate-reverse of Ai). Apparently, there are n − m bar-elements in A[r]
980
+ 1 A[r]
981
+ 2 .
982
+ (i) A[r]
983
+ 1 = ∅.
984
+ In this scenario, A[r]
985
+ 2
986
+ could essentially be any SRD of length n − 1 with n − m bar-
987
+ elements the number of which is given by qn−1,n−m + ¯qn−2,n−m.
988
+ (ii) A[r]
989
+ 1 ̸= ∅.
990
+ 12
991
+
992
+ When A[r]
993
+ 2 = ∅, 1A[r]
994
+ 1 is the conjugate-reverse of A11 thus is an SRD of length n − 1.
995
+ Consequently, the number of SRDs in this case is qn−1,n−m.
996
+ Suppose A[r]
997
+ 2 ̸= ∅. Similar to case 1 (ii), there are (n − 2)qn−1,n−m SRDs where there
998
+ is no a ∈ [n] such that A[r]
999
+ 1
1000
+ ends with a while A[r]
1001
+ 2
1002
+ starts with a − 1 or A[r]
1003
+ 1
1004
+ ends with
1005
+ a − 1 while A[r]
1006
+ 2 starts with a. Suppose otherwise such an a exists. For a fixed a ∈ [n]/[2],
1007
+ similar to the discussion in case 1 (ii), we claim that
1008
+ • the sequences of the form 1A[r]
1009
+ 1
1010
+ ′aa − 1A[r]
1011
+ 2
1012
+ ′ are in one-to-one correspondence to the
1013
+ SRDs on the set Γn−1 \ {0, 0} starting with 1 and having n − m − 1 bar-elements
1014
+ which are counted by (n − m − 1)qn−2,n−m−1;
1015
+ • the sequences of the form 1A[r]
1016
+ 1
1017
+ ′(a−1)aA[r]
1018
+ 2
1019
+ ′ are in one-to-one correspondence to the
1020
+ SRDs on the set Γn−1 \ {0, 0} starting with 1 and having n − m bar-elements which
1021
+ are counted by (m − 2)qn−2,n−m.
1022
+ In summary, for n ≥ 4, the number of SRDs of type 1 and type 2 with m bar-elements
1023
+ on Γn in the form 0A11A2 is given by
1024
+ nqn−1,n−m + (m − 1)qn−2,n−m + (n − m − 1)qn−2,n−m−1.
1025
+ Combining the above two cases together, the theorem follows.
1026
+ Applying Theorem 14, we have
1027
+ qn,m =qn,m + qn−1,m
1028
+ =(n − m − 1)qn−1,m + (n − m − 2)qn−2,m + mqn−1,m + (m − 1)qn−2,m−1
1029
+ + (m − 1)qn−1,m−1 + (m − 1)qn−2,m−1 + (n − m + 1)qn−1,n−m
1030
+ + (n − m − 1)qn−2,n−m−1 + (n − m)qn−2,n−m−1 + (n − m − 2)qn−3,n−m−2,
1031
+ and
1032
+ qn−1,m−1 =qn−1,m−1 + qn−2,m−1
1033
+ =(n − m − 1)qn−2,m−1 + (n − m − 2)qn−3,m−1 + (m − 1)qn−2,m−1
1034
+ + (m−2)qn−3,m−2 + (m−2)qn−2,m−2 + (m−2)qn−3,m−2 + (n−m+1)qn−2,n−m
1035
+ + (n − m − 1)qn−3,n−m−1 + (n − m)qn−3,n−m−1 + (n − m − 2)qn−4,n−m−2.
1036
+ Summing up the above two equations, we can clear all numbers of the form qx,y and arrive
1037
+ at
1038
+ qn,m + qn−1,m−1 =nqn−1,m−1 + (n − 1)qn−1,m + (m − 2)qn−2,m−2 + (3n − 5)qn−2,m−1
1039
+ + (n − m − 2)qn−2,m + (2m − 4)qn−3,m−2 + (2n − 2m − 4)qn−3,m−1.
1040
+ Moving qn−1,m−1 to the right-hand side, we obtain eq. (15) as desired.
1041
+ 13
1042
+
1043
+ Is it true that there will be more signed relative derangements if we turn more unsigned
1044
+ elements into signed elements? Put it differently, is it easier to form a relative derangement
1045
+ if more elements have signs? The answer is apparently negative due to the symmetry of
1046
+ qn,m. But, how about the cases for m ≤ n/2? This is related to the unimodality of
1047
+ sequences. The sequence x0, x1, x2, · · · , xn is said to be unimodal if there exists an index
1048
+ 0 ≤ m ≤ n, called the mode of the sequence, such that x0 ≤ · · · ≤ xm−1 ≤ xm ≥ xm+1 ≥
1049
+ · · · ≥ xn.
1050
+ Theorem 15. For any fixed n ≥ 1, the sequence qn,0, qn,1, . . . , qn,n is unimodal.
1051
+ Proof. Thanks to the symmetry of qn,m, it suffices to prove P(n, m) = qn,m − qn,m−1 ≥ 0
1052
+ for m ≤ n/2, where we still make the convention qn,m = 0 if m < 0. We shall prove this
1053
+ mainly by induction.
1054
+ First, from the polynomials of QB
1055
+ n (t) listed in the last section, we observe that for
1056
+ n = 1, 2, . . . , 9 and m ≤ n/2, P(n, m) ≥ 0. Secondly, we claim
1057
+ • for any n ≥ 2, P(n, 1) ≥ 0;
1058
+ • for any n ≥ 4, P(n, 2) ≥ 0.
1059
+ In order for proving P(n, 1) ≥ 0 in the case of n ≥ 2, we construct an injection from
1060
+ Qn to QB
1061
+ n,1 (where QB
1062
+ n,i denotes the subset containing signed relative derangements with i
1063
+ bar-elements). For each sequence in Qn, replacing n with n, we obtain a unique sequence
1064
+ in QB
1065
+ n,1. Obviously, this is an injection and then P(n, 1) ≥ 0 follows.
1066
+ Analogously, we construct an injection from QB
1067
+ n,1 to QB
1068
+ n,2 for proving P(n, 2) ≥ 0. We
1069
+ will classify the sequences in QB
1070
+ n,1 by the largest bar-element.
1071
+ case 1: If the largest bar-element in QB
1072
+ n,1 is less than n − 1, then we map it to a
1073
+ relative derangement obtained by substituting n for n. In this case, the obtained relative
1074
+ derangements in QB
1075
+ n,2 have two bar-elements: n and i for some 1 ≤ i < n − 1.
1076
+ case 2: If the largest bar-element in QB
1077
+ n,1 is exactly n − 1, and n − 1 is not followed
1078
+ by n, then we substitute n for n. In the case that n − 1 is followed by n, we replace 1
1079
+ with 1 to obtain a sequence in QB
1080
+ n,2. In this case, the obtained relative derangements in
1081
+ QB
1082
+ n,2 have two bar-elements: either n − 1 and n, or n − 1 and 1 with an additional feature
1083
+ that n − 1 is followed by n.
1084
+ case 3: Suppose the largest bar-element in QB
1085
+ n,1 is n. If n−1 is not followed by n, then
1086
+ we remove the bar of n. Meanwhile, we replace n−1 with n − 1 and 1 with 1. If n follows
1087
+ n − 1, then we simply replace 1 with 1. In this case, the obtained relative derangements
1088
+ in QB
1089
+ n,2 have two bar-elements: either n − 1 and 1 with an additional feature that n − 1
1090
+ is not followed by n, or n and 1 with the feature that n follows n − 1.
1091
+ In the above mapping procedure, relative derangements in QB
1092
+ n,1 lying in the same
1093
+ case are clearly mapped to distinct relative derangements in QB
1094
+ n,2. Moreover, inspecting
1095
+ the patterns of the contained two bar-elements and the additional features, relative de-
1096
+ rangements from different cases are mapped to distinct relative derangements in QB
1097
+ n,2 (for
1098
+ n ≥ 4) as well. Therefore, the above map is indeed an injection. Hence, P(n, 2) ≥ 0.
1099
+ 14
1100
+
1101
+ Now suppose for 1 ≤ n ≤ N and any 0 ≤ m ≤ n/2, P(n, m) ≥ 0. Next, we shall show
1102
+ that P(N + 1, m) ≥ 0 for any 3 ≤ m ≤ (N + 1)/2. Applying Corollary 10, we first have
1103
+ P(N + 1, m) = qN+1,m − qN+1,m−1
1104
+ =N(qN,m − qN,m−2) + (N − m − 1)(qN−1,m − qN−1,m−1)
1105
+ + 3(N − 1)(qN−1,m−1 − qN−1,m−2) + (m − 3)(qN−1,m−2 − qN−1,m−3)
1106
+ + 2(N − m − 1)(qN−2,m−1 − qN−2,m−2) + 2(m − 3)(qN−2,m−2 − qN−2,m−3).
1107
+ (22)
1108
+ We proceed to distinguish two cases.
1109
+ (i) If 3 ≤ m ≤ (N − 1)/2, we compare the two subscripts of each term qx,y on the RHS
1110
+ of eq. (22) and find that y ≤ x/2. For instance, since the maximum value of m here is
1111
+ (N − 1)/2, as to qN−1,m−2, we have m − 2 = (N − 5)/2 which satisfies (N − 1)/2 ≥ m − 2.
1112
+ Consequently, qN−1,m−2 −qN−1,m−3 ≥ 0 by assumption. Other summands are nonnegative
1113
+ by the same token. Therefore, P(N + 1, m) ≥ 0 follows.
1114
+ (ii) If N/2 ≤ m ≤ (N + 1)/2, m equals either N/2 or (N + 1)/2 since m ∈ N. We check
1115
+ the two subscripts of qx,y and find that y > x/2 in some cases. Therefore, in the following
1116
+ reasoning, we will make some transformation by the symmetry of qn,m.
1117
+ When m = N/2, we replace qN−1,m with qN−1,N−m−1 and regroup the terms on the
1118
+ RHS of eq. (22), and obtain
1119
+ P(N + 1, m) =N(qN, N
1120
+ 2 − qN, N−4
1121
+ 2 ) + 3(N − 1)(qN−1, N−2
1122
+ 2
1123
+ − qN−1, N−4
1124
+ 2 )
1125
+ + N − 6
1126
+ 2
1127
+ (qN−1, N−4
1128
+ 2
1129
+ − qN−1, N−6
1130
+ 2 ) + (N − 2)(qN−2, N−2
1131
+ 2
1132
+ − qN−2, N−4
1133
+ 2 )
1134
+ + (N − 6)(qN−2, N−4
1135
+ 2
1136
+ − qN−2, N−6
1137
+ 2 ).
1138
+ (23)
1139
+ Similarly, when m = (N + 1)/2, we replace qN,m with qN,N−m, qN−1,m with qN−1,N−m−1
1140
+ and qN−2,m−1 with qN−2,N−m−1 in eq. (22) and regroup the terms to have
1141
+ P(N + 1, m) =N(qN, N−1
1142
+ 2
1143
+ − qN, N−3
1144
+ 2 ) + 5N − 3
1145
+ 2
1146
+ (qN−1, N−1
1147
+ 2
1148
+ − qN−1, N−3
1149
+ 2 )
1150
+ + N − 5
1151
+ 2
1152
+ (qN−1, N−3
1153
+ 2
1154
+ − qN−1, N−5
1155
+ 2 ) + (N − 5)(qN−2, N−3
1156
+ 2
1157
+ − qN−2, N−5
1158
+ 2 ).
1159
+ (24)
1160
+ Inspecting term by term on the RHS of eq. (23) and eq. (24), they are all nonnegative by
1161
+ assumption. Therefore, P(N + 1, m) ≥ 0. This completes the proof of the theorem.
1162
+ Acknowledgements
1163
+ The authors would like to thank Prof. Yi Wang for pointing out that the roots of QB
1164
+ n (t)’s
1165
+ are not necessarily all real.
1166
+ A
1167
+ Proof of Corollary 2.13
1168
+ In the following, we write ∂F
1169
+ ∂x (x, t) as Fx(x, t) and ∂F
1170
+ ∂t (x, t) as Ft(x, t). Then according to
1171
+ 15
1172
+
1173
+ the definition of F(x, t), we first have
1174
+ Fx(x, t) =
1175
+
1176
+ n≥1
1177
+ nQB
1178
+ n (t)xn−1, Ft(x, t) =
1179
+
1180
+ n≥1
1181
+ QB
1182
+ n
1183
+ ′(t)xn.
1184
+ For the terms on right-hand side of eq. (10), multiplying by xn and summing over n ≥ 3,
1185
+ we respectively obtain
1186
+
1187
+ n≥3
1188
+ (n − 1)tQB
1189
+ n−1(t)xn = tx2 �
1190
+ n≥3
1191
+ (n − 1)QB
1192
+ n−1(t)xn−2
1193
+ = tx2(Fx(x, t) − QB
1194
+ 1 (t))
1195
+
1196
+ n≥3
1197
+ (n − 1)QB
1198
+ n−1(t)xn = x2 �
1199
+ n≥3
1200
+ (n − 1)QB
1201
+ n−1(t)xn−2
1202
+ = x2(Fx(x, t) − QB
1203
+ 1 (t))
1204
+
1205
+ n≥3
1206
+ (t3 − t)QB
1207
+ n−2
1208
+ ′(t)xn = x2(t3 − t)
1209
+
1210
+ n≥3
1211
+ QB
1212
+ n−2
1213
+ ′(t)xn−2
1214
+ = x2(t3 − t)Ft(x, t)
1215
+
1216
+ n≥3
1217
+ (3n − 5)tQB
1218
+ n−2(t)xn = t
1219
+ � �
1220
+ n≥3
1221
+ 3nQB
1222
+ n−2(t)xn − 5
1223
+
1224
+ n≥3
1225
+ QB
1226
+ n−2(t)xn�
1227
+ = t
1228
+ � �
1229
+ n≥3
1230
+ 3(n − 2 + 2)QB
1231
+ n−2(t)xn − 5
1232
+
1233
+ n≥3
1234
+ QB
1235
+ n−2(t)xn�
1236
+ = t
1237
+
1238
+ 3
1239
+
1240
+ n≥3
1241
+ (n − 2)QB
1242
+ n−2(t)xn + 6
1243
+
1244
+ n≥3
1245
+ QB
1246
+ n−2(t)xn − 5
1247
+
1248
+ n≥3
1249
+ QB
1250
+ n−2xn�
1251
+ = t
1252
+
1253
+ 3x3 �
1254
+ n≥3
1255
+ (n − 2)QB
1256
+ n−2(t)xn−3 + x2 �
1257
+ n≥3
1258
+ QB
1259
+ n−2(t)xn−2�
1260
+ = t
1261
+
1262
+ 3x3Fx(x, t) + x2F(x, t)
1263
+
1264
+
1265
+ n≥3
1266
+ (n − 2)QB
1267
+ n−2(t)xn = x3 �
1268
+ n≥3
1269
+ (n − 2)QB
1270
+ n−2(t)xn−3 = x3Fx(x, t)
1271
+
1272
+ n≥3
1273
+ (2t3 − 2t2)QB
1274
+ n−3
1275
+ ′(t)xn = (2t3 − 2t2)x3 �
1276
+ n≥3
1277
+ QB
1278
+ n−3
1279
+ ′(t)xn−3
1280
+ = (2t3 − 2t2)x3Ft(x, t)
1281
+ 16
1282
+
1283
+
1284
+ n≥3
1285
+ (2n − 6)tQB
1286
+ n−3(t)xn = t
1287
+ � �
1288
+ n≥3
1289
+ 2nQB
1290
+ n−3(t)xn − 6
1291
+
1292
+ n≥3
1293
+ QB
1294
+ n−3(t)xn�
1295
+ = t
1296
+
1297
+ 2
1298
+
1299
+ n≥3
1300
+ (n − 3 + 3)QB
1301
+ n−3(t)xn − 6
1302
+
1303
+ n≥3
1304
+ QB
1305
+ n−3(t)xn�
1306
+ = t
1307
+
1308
+ 2
1309
+
1310
+ n≥3
1311
+ (n − 3)QB
1312
+ n−3(t)xn�
1313
+ = t
1314
+
1315
+ 2x4 �
1316
+ n≥3
1317
+ (n − 3)QB
1318
+ n−3(t)xn−4�
1319
+ = 2tx4Fx(x, t)
1320
+ According to the computation above, for n ≥ 3, we have
1321
+
1322
+ n≥3
1323
+ QB
1324
+ n (t)xn =tx2(Fx(x, t) − QB
1325
+ 1 (t)) + x2(Fx(x, t) − QB
1326
+ 1 (t)) + x2(t3 − t)Ft(x, t)
1327
+ + t
1328
+
1329
+ 3x3Fx(x, t) + x2F(x, t)
1330
+
1331
+ + x3Fx(x, t)
1332
+ + (2t3 − 2t2)x3Ft(x, t) + 2tx4Fx(x, t)
1333
+ =
1334
+
1335
+ (t + 1)x2 + (3t + 1)x3 + 2tx4�
1336
+ Fx(x, t)
1337
+ +
1338
+
1339
+ (t3 − t)x2 + (2t3 − 2t2)x3�
1340
+ Ft(x, t) + tx2F(x, t) − (t + 1)2x2.
1341
+ Then, F(x, t) is given as follows:
1342
+ F(x, t) =QB
1343
+ 1 (t)x + QB
1344
+ 2 (t)x2 +
1345
+
1346
+ n≥3
1347
+ QB
1348
+ n (t)xn
1349
+ =x + tx + t2x2 + 4tx2 + x2 +
1350
+
1351
+ (t + 1)x2 + (3t + 1)x3 + 2tx4�
1352
+ Fx(x, t)
1353
+ +
1354
+
1355
+ (t3 − t)x2 + (2t3 − 2t2)x3�
1356
+ Ft(x, t) + tx2F(x, t) − (t + 1)2x2
1357
+ =
1358
+
1359
+ (t + 1)x2 + (3t + 1)x3 + 2tx4�
1360
+ Fx(x, t)
1361
+ +
1362
+
1363
+ (t3 − t)x2 + (2t3 − 2t2)x3�
1364
+ Ft(x, t) + tx2F(x, t) + (t + 1)x + 2tx2.
1365
+ After sorting out the above equations, we eventually obtain
1366
+ Ft(x, t) + t + 1 + (3t + 1)x + 2tx2
1367
+ t(t2 − 1) + 2t2(t − 1)x Fx(x, t) +
1368
+ tx2 − 1
1369
+ t(t2 − 1)x2 + 2t2(t − 1)x3F(x, t)
1370
+ =
1371
+ −1 − t − 2tx
1372
+ t(t2 − 1)x + 2t2(t − 1)x2,
1373
+ completing the proof of Corollary 8.
1374
+ References
1375
+ [1] C.-O. Chow. On derangement polynomials of type B. S´em. Lothar. Combin., 55:Art.
1376
+ B55b, 2006.
1377
+ 17
1378
+
1379
+ [2] C.-O. Chow. On derangement polynomials of type B. II. J. Combin. Theory Ser. A,
1380
+ 116(4):816–830, 2005.
1381
+ [3] R.X.F. Chen. Signed relative derangements, reversal distance, and the signed Hult-
1382
+ man numbers. Ars. Combin., 147:281–288, 2019.
1383
+ [4] W.Y.C. Chen. The skew, relative, and classical derangements. Discrete Math.,
1384
+ 160:235–239, 1996.
1385
+ [5] W.Y.C. Chen and J.C.Y. Zhang. The skew and relative derangements of type B.
1386
+ Electron. J. Combin., 14:2147–2153, 2007.
1387
+ [6] W.Y.C. Chen, R. L. Tang and A.F.Y. Zhao. Derangement polynomials and ex-
1388
+ cedances of type B. Electron. J. Combin., 16(2):R15, 2009.
1389
+ [7] L.L. Liu and M. Dong. Cyclic derangement polynomials of the wreath product Cr≀Sn.
1390
+ Discrete Math., 343(12):112109, 2020.
1391
+ [8] R.P. Stanley. Enumerative Combinatorics, vol. 1. Cambridge University Press, Cam-
1392
+ bridge, 1997.
1393
+ [9] M.L. Wachs. On q-derangement numbers. Proc. Amer. Math. Soc., 106(1):273–278,
1394
+ 1989.
1395
+ [10] A.F.Y. Zhao. Excedance numbers for the permutations of type B. Electron. J. Com-
1396
+ bin., 20(2):P28, 2013.
1397
+ 18
1398
+
H9AyT4oBgHgl3EQfffh-/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
HNE0T4oBgHgl3EQfhgGY/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6f0cfae6d06ffa6baf519253a187a4be23a036c5d43130e2184785e5e543cb78
3
+ size 3604525
HdE1T4oBgHgl3EQfrgUP/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:72d32fcc846b46b47c873ae420ee8c2b0bc135e56d43427f6c1614ae44279feb
3
+ size 18219053
I9E2T4oBgHgl3EQfAAZV/content/2301.03586v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fc5f511391e2f6348442ccdabe10e029a7420392c02349869e9b820bd0d22a73
3
+ size 183070
I9E2T4oBgHgl3EQfAAZV/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:595e97523dff9296dda1a9f76c3ab574f331923c07a3c89089316fbf3edd2702
3
+ size 1900589
INAzT4oBgHgl3EQfxv6_/content/2301.01744v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3e38cd3b40552a00338aa8a022ee5da6446d4fce6ff906e7e8e1fcf8d9434b9b
3
+ size 1289260
INE1T4oBgHgl3EQfrwUe/content/2301.03357v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:363852f30a0c879f537089957cf94247375baeb72f9ab879d175ebf2d3c8635b
3
+ size 1489026