diff --git "a/EtE0T4oBgHgl3EQfywL5/content/tmp_files/load_file.txt" "b/EtE0T4oBgHgl3EQfywL5/content/tmp_files/load_file.txt" new file mode 100644--- /dev/null +++ "b/EtE0T4oBgHgl3EQfywL5/content/tmp_files/load_file.txt" @@ -0,0 +1,1177 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf,len=1176 +page_content='Notice: This manuscript has been authored by UT-Battelle, LLC, under Contract No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' DE- AC0500OR22725 with the U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' Department of Energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for the United States Government purposes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content='gov/downloads/doe-public-access-plan).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' Discovery of structure-property relations for molecules via hypothesis-driven active learning over the chemical space Ayana Ghosh,1 Sergei V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' Kalinin2 and Maxim A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' Ziatdinov1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content='3 1 Computational Sciences and Engineering Division,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' Oak Ridge National Laboratory,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' Oak Ridge,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' TN 37831 USA 2Department of Materials Science and Engineering,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' University of Knoxville,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' Knoxville,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' TN 37996 USA 3Center for Nanophase Materials Sciences,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' Oak Ridge National Laboratory,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' Oak Ridge,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' TN 37831 USA Discovery of the molecular candidates for applications in drug targets,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' biomolecular systems,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' catalysts,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' photovoltaics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' organic electronics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' and batteries,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' necessitates development of machine learning algorithms capable of rapid exploration of the chemical spaces targeting the desired functionalities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' Here we introduce a novel approach for the active learning over the chemical spaces based on hypothesis learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' We construct the hypotheses on the possible relationships between structures and functionalities of interest based on a small subset of data and introduce them as (probabilistic) mean functions for the Gaussian process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' This approach combines the elements from the symbolic regression methods such as SISSO and active learning into a single framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' Here, we demonstrate it for the QM9 dataset, but it can be applied more broadly to datasets from both domains of molecular and solid-state materials sciences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' email: ghosha@ornl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content='gov Introduction Chemical discovery1-4 is rooted in quantitative structure-activity/property relationships (QSAR/QSPR).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content='5-12 These efforts primarily rely on finding appropriate representation of molecules followed by establishing relationships between structure and activity they exhibit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' These models are harnessed to explore chemical space to select molecules of interest 13-15 for drug targets,16-20 antibiotics,21 catalysts,22-23 photovoltaics,24-27 organic electronics,28 redox-flow batteries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content='29 In addition, chemical discovery also includes understanding of chemical processes such as reaction energy pathways,30-32 optimization of reaction conditions,33 (for e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=', catalytic activity34), crystallization,35-36 docking,37 and synthesis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content='38-39 The QSAR/QSPR techniques have proven to be useful in all (not limited to) such scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' The popularity40-42 remains in their simplicity to incorporate structural information combined with physicochemical properties, reliability to capture the property landscape, capability to identify existing chemical patterns, and identify activity cliffs within the data while being computationally affordable to perform.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' The descriptors or features can be multi-dimensional descriptors capturing electronic or topological characteristics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' Alternatively, these can be fingerprints that are the effective representations of molecules via graph-based or string representations (SMILES,43 SELFIES44).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' QSAR/QSPR models began its journey almost 60 years ago with the seminal work lead by Hansch et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content='45 in which a few simple descriptors were used to capture a 2D structure- activity relationship.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' Since then, this field has seen a steep rise in utilization of variety of traditional ML algorithms (Naïve Bayes, Support Vector Machine, Random Forest, to name a few) for property/process prediction followed by validation by experimental synthesis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' Its success is also credited to generation of easily accessible public repositories (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=', PubChem,46-48 ZINC,49 ChEMBL,50-51 QM9,52 ANI-1x,53 and QM7-X54) containing structural and physiochemical properties (computed with quantum mechanical calculations or observed with experiments) on thousands to millions of molecules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' Altogether these have paved the path forward in chemical design, discovery with day-to-day applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' If QSAR/QSPR studies have created a revolution in in silico design efforts, applications of deep neural network (NN) algorithms55-56 have further accelerated this progress.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' They have enabled efficient usage of the big data for not only finding molecules of interest but also quantify57- 60 molecular interactions, chemical bonding, inverse design of molecules for targets and gain novel insights into mechanisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' However, the performance of any of these models is highly dependent on the quality, quantity, modelability of the datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' Furthermore, a discovery process necessitates extrapolation of learned correlative relationships onto the previously unseen regions of chemical space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' Correspondingly, the task of generation61 of new molecules by going beyond the standard (manual) design rules or solutions has gained much attention.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' Several studies62 have been reported where different NN-based algorithms are explored to accomplish this challenge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' Autoencoders are one of the common models that are being used to encode molecules63 via complex latent representations to optimize for specific properties and map them back to molecular structures through decoding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' Another set of examples include applications of recurrent NN64 algorithms where molecule generation is treated as a sequencing task and the algorithm is permitted to generate samples at each stage, as informed by the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' There are also studies on using self- attention driven transformer models65-66 for targeted structure generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' In addition, reinforcement learning strategies67-68 have been implemented in this context where molecules with multiple target objectives can be found.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' The modern molecular generative models have transformed standard string representations of molecules towards embedded spaces69 with information on the entire molecular scaffold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' However, the learning approach behind most of the generative models traverse through latent embeddings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' The latter are generally not smooth, precluding direct gradient-based optimization methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' Once trained over full libraries of molecules, the fraction of the space occupied with molecules with useful functionalities is typically small, making their discovery complex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' The chemical space is non-differentiable, precluding the gradient-based descent or simple Gaussian processes (GPs)70-71 based methodologies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' ML methods including variational autoencoders aim to construct a suitable low-dimensional and ideally differentiable latent embeddings for the chemical space, allowing for the Bayesian optimization (BO)72-74 type processes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' However, these methodologies to date have been based on either construction of the embedding space for the full library of candidate molecules or finding similar kernel of representation for these molecules for target explorations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' Historically, Gaussian process (GPs) has been used within the active learning and BO, making these processes purely data-driven and non-parametric in nature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' It interpolates functional behavior over relatively low-dimensional parameters space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' In a classical GP, a kernel function (such as radial basis function kernel) is utilized to define the degree of correlation across the parameters space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' The kernel parameters are inferred based on the available data, obtained during exploration-exploitation steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' It does not incorporate any prior information of physical or chemical behavior of the system in the process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' It learns the physics of the system from the data itself via kernel function with possibilities of leading to suboptimal results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' Consequently, the number of optimization steps necessary to reconstruct functional behavior, even scanning over low parameters space becomes large.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' More advanced physics-informed kernel functions75-77 may help in such cases which is an area of active research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' However, proper application of this technique in the domain of chemical or physical sciences demands going above the usage of conventional GP in BO framework to model functionalities of interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content='78-81 A series of molecular kernels82 such as fingerprint kernels (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=', scalar product kernel, Tanimoto kernel), string kernels (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=', kernels based on SMILEs, SELFIEs) and graph kernels (typically uses molecular fragments) can be used in GP framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' Once the best-performing kernel is chosen, BO is performed for applications in real world scenarios such as optimization of chemical reactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' In a recent work, Ziatdinov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content='83-85 introduced a physics-augmented algorithm for active learning and Bayesian optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' It combines the flexibility of GP models with physical priors allowing for the hypothesis-driven discovery in ML.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' To date, it has been applied86 to the experiments in scanning probe microscopy, providing new insights into the concentration-induced phase transition and identifying domain growth laws in ferroelectric materials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' Here, we extend the concept of hypothesis learning to molecular discovery.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' We combine it with the compressed-sensing methodologies for identifying relevant structural descriptors and evaluate multiple automatically generated hypotheses with a reward-driven acquisition (similar to the reinforcement learning) to select next evaluation points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' Specifically, the hypotheses are selected using the compressed sensing performed on combinations of nonlinear functionalized features to find a list of the most relevant combinations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' This step is followed by balancing dimensions (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=', respecting physics constraints) with respect to the target property to formulate them into feasible equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' Here, we only consider a handful of easily computable features related to property of interest, to keep the hypotheses in a simple form that is easy to calculate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' Finally, we evaluate the hypotheses over a wide parameters space to predict functionalities of interest within the active learning loop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' We have utilized the QM9 dataset on isolated molecules as a use case to establish this tail of our work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' A schematic of the generalized framework detailing the active cruise between design and discovery using hypothesis learning is shown in Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' The results along with estimated uncertainties show a generalized cost-effective way to approximate structure-property relations, applicable to a wide variety of material systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' Figure 1: Schematic of workflow, from design to discovery.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' Figure (left panel) shows commonly used simulation techniques to generate reliable data for various materials systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' The right panel establishes the active learning loop - combining features to come up with mathematical formulations as statistically derived scientific hypotheses, to be evaluated for discovery structure- property relations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' Coarse grained MD Ab initio MD Atomistic MD Quantum Mathematical formulations Selection & combination of physical descriptors Features Experiment Physics informed featurization & sparsification Initialization Scientific hypothesis !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' "#$!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content='⋯# → &!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content='⋯# Exploration Results and Discussion General Considerations: The physics-informed featurization scheme that we designed is built upon the compressed sensing methodologies utilized by Ghiringhelli et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content='87 for features selection, implemented here as the seed step for the discovery cycle of an active learning process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' Similar to the original SISSO implementation, our physics-informed featurization and sparsification scheme allows for the selection of the most relevant descriptors which is obtained by using the least absolute shrinkage and selection operator (LASSO).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' The LASSO algorithm employed as a part of feature selection scheme uses the sparsity of the l1 norm to effectively reduce a descriptor set to the most relevant descriptors (di) contained in full set (D).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' It selects the non-zero terms of the l1 regularized linear least squares approximation of the target property (P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' The target property is approximated as P(d) = dc, where c is the coefficient (or weight) associated with Ω dimensional descriptor d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' The solution to this equation can be determined by minimizing the argmin (||𝑃 − 𝐷𝑐||!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=') + 𝜆||𝑐||".' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' The coefficient c is non-zero for all featurized descriptor which is then ranked to determine the corresponding importance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' The generation of nonlinear combinations of descriptors (di) by applying several mathematical operators such as, 1/x, √x, x2, x3, log(x), 1/ log(x), and exp(x), on each feature allows to form a nonlinear mapping between D and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' In addition, the complexity by combining these functionalized descriptors via summation allows to generate a more effective map between D and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' We have considered functionalized descriptors utilizing 2 or 3 terms for the purpose of this study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' Here, we note that inclusion of more terms may lead to more accurate correlation to endpoint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' However, it also introduces additional uncertainty carried by each of the terms combined with mathematical operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' The physics-informed featurization and sparsification method allows us to combine multiple features in a linear combination to establish direct correlation to the endpoint target.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' Within this method, we search over a large combinatorial space, combine features followed by balancing units/dimensionality (with coefficients) to convert them into feasible equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' These are the mathematical formulations that are then turned into probabilistic models (hypotheses) by introducing suitable priors on parameters, applicable to all use cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' The second element of the proposed approach is the hypothesis-driven active learning built upon SISSO-derived functional forms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' In the hypothesis learning, we utilize a structured GP (sGP) as opposed to standard zero mean GP as our surrogate model(s) to insert physics-informed priors in the GP/BO framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' To illustrate this approach, we note that in the conventional GP/BO process, GP is defined as 𝑦 = 𝑓(𝑥) + e, 𝑓 ~ 𝑀𝑉𝑁𝑜𝑟𝑚𝑎𝑙 (𝑚, 𝐾) ( 1) where MVNormal is a multivariate normal distribution, m is a prior mean function typically set to 0, 𝐾 is a prior covariance functions (kernel), and e is a normally distributed observational noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' The training process of GP model involves inferring kernel parameters given the available set of observations (x, y) using Bayesian inference techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' Once the training is completed, the probabilistic predictions of the function over the unmeasured parameter space can be obtained by sampling from a distribution: 𝑓∗ ~ 𝑀𝑉𝑁𝑜𝑟𝑚𝑎𝑙8𝜇$ %&\'(, Σ$ %&\'(< ( 2) 𝜇$ %&\'( = 𝑚(𝑋∗) + 𝐾(𝑋∗, 𝑋|𝜃)𝐾(𝑋, 𝑋|𝜃))"8𝑦 − 𝑚(𝑋)<, Σ$ %&\'( = 𝐾(𝑋∗, 𝑋∗|𝜃) − 𝐾(𝑋∗, 𝑋|𝜃)(𝑋, 𝑋|𝜃))"𝐾(𝑋, 𝑋∗|𝜃) ( 3) Here new inputs are denoted by 𝑋∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' We can obtain a posterior predictive distribution for each set of kernel parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' The next point to evaluate is then determined by 𝑥*+,( = arg 𝑚𝑎𝑥, 1 𝑀 D 𝛼F𝜇$!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=" %&'(, Σ$!" metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=" %&'(G - ." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content='/" ( 4) Here 𝛼 is a pre-defined acquisition function and M is the number of posterior samples with kernel parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' Within the sGP, the prior mean function in Equation 1 is substituted by a physics-informed probabilistic model whose parameters are inferred jointly with the kernel parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=' The posterior mean function in Equation 3 then becomes 𝜇$!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content='0!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content=" %&'( = 𝑚8𝑋∗|𝜙." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content='< + 𝐾8𝑋∗, 𝑋|𝜃.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content='<𝐾8𝑋, 𝑋|𝜃.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content='< )" F𝑦 − 𝑚8𝑋|𝜙.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtE0T4oBgHgl3EQfywL5/content/2301.02665v1.pdf'} +page_content='