jackkuo commited on
Commit
02f035a
·
verified ·
1 Parent(s): c9f885f

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. -tFQT4oBgHgl3EQf7DaV/content/2301.13441v1.pdf +3 -0
  2. -tFQT4oBgHgl3EQf7DaV/vector_store/index.faiss +3 -0
  3. .gitattributes +51 -0
  4. 09FQT4oBgHgl3EQfEDVH/content/tmp_files/2301.13236v1.pdf.txt +2222 -0
  5. 09FQT4oBgHgl3EQfEDVH/content/tmp_files/load_file.txt +0 -0
  6. 0dE1T4oBgHgl3EQfRgML/content/tmp_files/2301.03052v1.pdf.txt +826 -0
  7. 0dE1T4oBgHgl3EQfRgML/content/tmp_files/load_file.txt +0 -0
  8. 1tE0T4oBgHgl3EQfdgCu/content/2301.02378v1.pdf +3 -0
  9. 2dAyT4oBgHgl3EQfPvZl/content/2301.00030v1.pdf +3 -0
  10. 2dAyT4oBgHgl3EQfPvZl/vector_store/index.pkl +3 -0
  11. 5NE6T4oBgHgl3EQflhFb/vector_store/index.pkl +3 -0
  12. 5tAyT4oBgHgl3EQf2fk_/vector_store/index.pkl +3 -0
  13. 6NE5T4oBgHgl3EQfPg5N/vector_store/index.faiss +3 -0
  14. 9NFAT4oBgHgl3EQfph1b/content/tmp_files/2301.08640v1.pdf.txt +1875 -0
  15. 9NFAT4oBgHgl3EQfph1b/content/tmp_files/load_file.txt +0 -0
  16. 9dFLT4oBgHgl3EQfCC4D/content/tmp_files/2301.11973v1.pdf.txt +307 -0
  17. 9dFLT4oBgHgl3EQfCC4D/content/tmp_files/load_file.txt +203 -0
  18. ANAyT4oBgHgl3EQfdvjo/content/tmp_files/2301.00310v1.pdf.txt +3274 -0
  19. ANAyT4oBgHgl3EQfdvjo/content/tmp_files/load_file.txt +0 -0
  20. AtE2T4oBgHgl3EQfnAjp/content/2301.04005v1.pdf +3 -0
  21. AtE2T4oBgHgl3EQfnAjp/vector_store/index.faiss +3 -0
  22. AtE2T4oBgHgl3EQfnAjp/vector_store/index.pkl +3 -0
  23. D9FRT4oBgHgl3EQfxziA/content/2301.13643v1.pdf +3 -0
  24. D9FRT4oBgHgl3EQfxziA/vector_store/index.faiss +3 -0
  25. D9FRT4oBgHgl3EQfxziA/vector_store/index.pkl +3 -0
  26. DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf +3 -0
  27. DNFJT4oBgHgl3EQfBCxz/content/tmp_files/2301.11423v1.pdf.txt +1563 -0
  28. DNFJT4oBgHgl3EQfBCxz/content/tmp_files/load_file.txt +0 -0
  29. FNE4T4oBgHgl3EQfGwzZ/content/tmp_files/2301.04898v1.pdf.txt +722 -0
  30. FNE4T4oBgHgl3EQfGwzZ/content/tmp_files/load_file.txt +0 -0
  31. GNE1T4oBgHgl3EQfrAVQ/content/tmp_files/2301.03349v1.pdf.txt +957 -0
  32. GNE1T4oBgHgl3EQfrAVQ/content/tmp_files/load_file.txt +0 -0
  33. I9FJT4oBgHgl3EQfvy0q/content/tmp_files/2301.11627v1.pdf.txt +953 -0
  34. I9FJT4oBgHgl3EQfvy0q/content/tmp_files/load_file.txt +0 -0
  35. INAyT4oBgHgl3EQfTPda/content/tmp_files/2301.00101v1.pdf.txt +1650 -0
  36. INAyT4oBgHgl3EQfTPda/content/tmp_files/load_file.txt +0 -0
  37. J9FIT4oBgHgl3EQfZytY/content/2301.11254v1.pdf +3 -0
  38. JNAyT4oBgHgl3EQfsPky/content/tmp_files/2301.00572v1.pdf.txt +1238 -0
  39. JNAyT4oBgHgl3EQfsPky/content/tmp_files/load_file.txt +0 -0
  40. JNE1T4oBgHgl3EQfsAWQ/content/tmp_files/2301.03361v1.pdf.txt +3397 -0
  41. JNE1T4oBgHgl3EQfsAWQ/content/tmp_files/load_file.txt +0 -0
  42. KNE2T4oBgHgl3EQfAgYc/content/tmp_files/2301.03591v1.pdf.txt +283 -0
  43. KNE2T4oBgHgl3EQfAgYc/content/tmp_files/load_file.txt +264 -0
  44. KNE4T4oBgHgl3EQfJAzg/content/tmp_files/2301.04918v1.pdf.txt +1494 -0
  45. KNE4T4oBgHgl3EQfJAzg/content/tmp_files/load_file.txt +0 -0
  46. M9FKT4oBgHgl3EQfeS7D/content/tmp_files/2301.11824v1.pdf.txt +1653 -0
  47. M9FKT4oBgHgl3EQfeS7D/content/tmp_files/load_file.txt +0 -0
  48. MNE1T4oBgHgl3EQfHAOD/content/2301.02921v1.pdf +3 -0
  49. MNE1T4oBgHgl3EQfHAOD/vector_store/index.faiss +3 -0
  50. MNE1T4oBgHgl3EQfHAOD/vector_store/index.pkl +3 -0
-tFQT4oBgHgl3EQf7DaV/content/2301.13441v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d0172ae898a13d5ff658ea251ab85c0b3c897f64017b55cde5753fa996468cd6
3
+ size 1044862
-tFQT4oBgHgl3EQf7DaV/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e37490f897f2e4699be69957be9ea39a71a982446fb4c4c980bf20eb22b09280
3
+ size 5373997
.gitattributes CHANGED
@@ -8400,3 +8400,54 @@ ytFLT4oBgHgl3EQfnC-z/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -tex
8400
  79E1T4oBgHgl3EQfBwKM/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8401
  ANE0T4oBgHgl3EQfxgKB/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8402
  ztAzT4oBgHgl3EQftf2q/content/2301.01677v1.pdf filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8400
  79E1T4oBgHgl3EQfBwKM/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8401
  ANE0T4oBgHgl3EQfxgKB/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8402
  ztAzT4oBgHgl3EQftf2q/content/2301.01677v1.pdf filter=lfs diff=lfs merge=lfs -text
8403
+ ddE3T4oBgHgl3EQfGwlg/content/2301.04317v1.pdf filter=lfs diff=lfs merge=lfs -text
8404
+ bdE4T4oBgHgl3EQfPQyn/content/2301.04972v1.pdf filter=lfs diff=lfs merge=lfs -text
8405
+ idFJT4oBgHgl3EQfWizT/content/2301.11518v1.pdf filter=lfs diff=lfs merge=lfs -text
8406
+ -tFQT4oBgHgl3EQf7DaV/content/2301.13441v1.pdf filter=lfs diff=lfs merge=lfs -text
8407
+ sdAzT4oBgHgl3EQfPPvE/content/2301.01181v1.pdf filter=lfs diff=lfs merge=lfs -text
8408
+ stE0T4oBgHgl3EQfrgHc/content/2301.02568v1.pdf filter=lfs diff=lfs merge=lfs -text
8409
+ D9FRT4oBgHgl3EQfxziA/content/2301.13643v1.pdf filter=lfs diff=lfs merge=lfs -text
8410
+ s9E3T4oBgHgl3EQfjgr4/content/2301.04590v1.pdf filter=lfs diff=lfs merge=lfs -text
8411
+ AtE2T4oBgHgl3EQfnAjp/content/2301.04005v1.pdf filter=lfs diff=lfs merge=lfs -text
8412
+ DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf filter=lfs diff=lfs merge=lfs -text
8413
+ AtE2T4oBgHgl3EQfnAjp/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8414
+ ndAzT4oBgHgl3EQfqf0O/content/2301.01628v1.pdf filter=lfs diff=lfs merge=lfs -text
8415
+ -tFQT4oBgHgl3EQf7DaV/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8416
+ J9FIT4oBgHgl3EQfZytY/content/2301.11254v1.pdf filter=lfs diff=lfs merge=lfs -text
8417
+ WdE0T4oBgHgl3EQfmAG-/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8418
+ UNE3T4oBgHgl3EQfagoR/content/2301.04506v1.pdf filter=lfs diff=lfs merge=lfs -text
8419
+ sNE1T4oBgHgl3EQfjQRT/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8420
+ D9FRT4oBgHgl3EQfxziA/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8421
+ bdE4T4oBgHgl3EQfPQyn/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8422
+ vdAzT4oBgHgl3EQfP_uD/content/2301.01193v1.pdf filter=lfs diff=lfs merge=lfs -text
8423
+ sdAzT4oBgHgl3EQfPPvE/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8424
+ n9E_T4oBgHgl3EQf8Byb/content/2301.08373v1.pdf filter=lfs diff=lfs merge=lfs -text
8425
+ XNAzT4oBgHgl3EQf1v6R/content/2301.01804v1.pdf filter=lfs diff=lfs merge=lfs -text
8426
+ stE1T4oBgHgl3EQfjgQE/content/2301.03262v1.pdf filter=lfs diff=lfs merge=lfs -text
8427
+ zNAyT4oBgHgl3EQf0vni/content/2301.00725v1.pdf filter=lfs diff=lfs merge=lfs -text
8428
+ ddE2T4oBgHgl3EQfGAap/content/2301.03653v1.pdf filter=lfs diff=lfs merge=lfs -text
8429
+ QNE3T4oBgHgl3EQfCwmU/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8430
+ 6NE5T4oBgHgl3EQfPg5N/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8431
+ TtE0T4oBgHgl3EQf2QKO/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8432
+ b9AyT4oBgHgl3EQf-PqC/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8433
+ SNAzT4oBgHgl3EQfJPtx/content/2301.01076v1.pdf filter=lfs diff=lfs merge=lfs -text
8434
+ udFKT4oBgHgl3EQf3i5N/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8435
+ zdAzT4oBgHgl3EQfC_pK/content/2301.00968v1.pdf filter=lfs diff=lfs merge=lfs -text
8436
+ ptE4T4oBgHgl3EQfvQ3k/content/2301.05241v1.pdf filter=lfs diff=lfs merge=lfs -text
8437
+ _tE1T4oBgHgl3EQf8wWT/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8438
+ YtFOT4oBgHgl3EQf-DRf/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8439
+ 2dAyT4oBgHgl3EQfPvZl/content/2301.00030v1.pdf filter=lfs diff=lfs merge=lfs -text
8440
+ zdAzT4oBgHgl3EQfC_pK/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8441
+ 1tE0T4oBgHgl3EQfdgCu/content/2301.02378v1.pdf filter=lfs diff=lfs merge=lfs -text
8442
+ ddE2T4oBgHgl3EQfGAap/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8443
+ UNE3T4oBgHgl3EQfagoR/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8444
+ cNAzT4oBgHgl3EQfnf3Z/content/2301.01583v1.pdf filter=lfs diff=lfs merge=lfs -text
8445
+ Y9FRT4oBgHgl3EQfPDf9/content/2301.13516v1.pdf filter=lfs diff=lfs merge=lfs -text
8446
+ htAyT4oBgHgl3EQfXvc6/content/2301.00188v1.pdf filter=lfs diff=lfs merge=lfs -text
8447
+ u9E3T4oBgHgl3EQfNwnN/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8448
+ ptE4T4oBgHgl3EQfvQ3k/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8449
+ MNE1T4oBgHgl3EQfHAOD/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8450
+ _tA0T4oBgHgl3EQfPf_J/content/2301.02177v1.pdf filter=lfs diff=lfs merge=lfs -text
8451
+ vdAzT4oBgHgl3EQfP_uD/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8452
+ MNE1T4oBgHgl3EQfHAOD/content/2301.02921v1.pdf filter=lfs diff=lfs merge=lfs -text
8453
+ VtE4T4oBgHgl3EQfng0j/content/2301.05176v1.pdf filter=lfs diff=lfs merge=lfs -text
09FQT4oBgHgl3EQfEDVH/content/tmp_files/2301.13236v1.pdf.txt ADDED
@@ -0,0 +1,2222 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ SoftTreeMax: Exponential Variance Reduction in Policy Gradient
2
+ via Tree Search
3
+ Gal Dalal * Assaf Hallak * Gugan Thoppe Shie Mannor Gal Chechik
4
+ Abstract
5
+ Despite the popularity of policy gradient meth-
6
+ ods, they are known to suffer from large vari-
7
+ ance and high sample complexity. To mitigate
8
+ this, we introduce SoftTreeMax – a generaliza-
9
+ tion of softmax that takes planning into account.
10
+ In SoftTreeMax, we extend the traditional logits
11
+ with the multi-step discounted cumulative reward,
12
+ topped with the logits of future states. We con-
13
+ sider two variants of SoftTreeMax, one for cumu-
14
+ lative reward and one for exponentiated reward.
15
+ For both, we analyze the gradient variance and
16
+ reveal for the first time the role of a tree expan-
17
+ sion policy in mitigating this variance. We prove
18
+ that the resulting variance decays exponentially
19
+ with the planning horizon as a function of the
20
+ expansion policy. Specifically, we show that the
21
+ closer the resulting state transitions are to uni-
22
+ form, the faster the decay. In a practical imple-
23
+ mentation, we utilize a parallelized GPU-based
24
+ simulator for fast and efficient tree search. Our
25
+ differentiable tree-based policy leverages all gra-
26
+ dients at the tree leaves in each environment step
27
+ instead of the traditional single-sample-based gra-
28
+ dient. We then show in simulation how the vari-
29
+ ance of the gradient is reduced by three orders
30
+ of magnitude, leading to better sample complex-
31
+ ity compared to the standard policy gradient. On
32
+ Atari, SoftTreeMax demonstrates up to 5x better
33
+ performance in a faster run time compared to dis-
34
+ tributed PPO. Lastly, we demonstrate that high
35
+ reward correlates with lower variance.
36
+ 1. Introduction
37
+ Policy Gradient (PG; Sutton et al. 1999) methods for Re-
38
+ inforcement Learning (RL) are often the first choice for
39
+ environments that allow numerous interactions at a fast pace
40
+ (Schulman et al., 2017). Their success is attributed to several
41
+ *Equal contribution .
42
+ Correspondence to:
43
+ Gal Dalal
44
+ <gdalal@nvidia.com>, Assaf Hallak <ahallak@nvidia.com>.
45
+ Preperint.
46
+ factors, including that they are easy-to-distribute to multiple
47
+ workers, require no assumptions on an underlying value
48
+ function, and have both on-policy and off-policy variants.
49
+ Despite their popularity, PG algorithms are also notoriously
50
+ unstable since they compute gradients over entire trajec-
51
+ tories (Liu et al., 2020; Xu et al., 2020). As a result, PG
52
+ algorithms tend to be highly inefficient in terms of sample
53
+ complexity. Several solutions were proposed to mitigate the
54
+ instability of PG methods, including baseline subtraction
55
+ (Greensmith et al., 2004; Weaver & Tao, 2001; Thomas &
56
+ Brunskill, 2017; Wu et al., 2018), anchor-point averaging
57
+ (Papini et al., 2018), and other variance reduction techniques
58
+ (Zhang et al., 2021; Shen et al., 2019; Pham et al., 2020).
59
+ A second family of algorithms that achieved state-of-the-art
60
+ results in several domains is based on planning (Silver et al.,
61
+ 2016; Ye et al., 2021). Planning is exercised primarily in the
62
+ context of value-based RL and is usually implemented using
63
+ a Tree Search (TS; Coulom 2006; Silver 2009). In this work,
64
+ we combine PG with TS by introducing a parameterized dif-
65
+ ferentiable policy that incorporates tree expansion. Namely,
66
+ our SoftTreeMax policy replaces the standard policy logits
67
+ of a state and action, with the expected value of trajectories
68
+ that originate from these state and action.
69
+ Combining TS into PG suite should be done with care given
70
+ the biggest hurdle of PG – its high gradient variance. This
71
+ raises prominent actionable questions that were ignored un-
72
+ til this work: How does the tree-expansion policy affect
73
+ the PG variance? And, can we design tree-expansion that
74
+ is guaranteed to strongly reduces that variance? Here, we
75
+ analyze the gradient variance of SoftTreeMax, and provide
76
+ a practical methodology to choose the expansion policy to
77
+ minimize the resulting variance. Our main result shows that
78
+ a desirable expansion policy is one that induces transitions
79
+ as close to uniform as possible. More generally, we show
80
+ that the gradient variance of SoftTreeMax decays at an expo-
81
+ nential rate of |λ2|d, where d is the tree depth and λ2 is the
82
+ second eigenvalue of the transition matrix induced by the
83
+ tree expansion policy. This paper is the first to prove such a
84
+ relation between PG variance and TS expansion policy.
85
+ Common practices for expanding the tree rely on a value
86
+ estimate, using UCT (Kocsis & Szepesv´ari, 2006; Browne
87
+ et al., 2012), or based on some prior knowledge such as
88
+ arXiv:2301.13236v1 [cs.LG] 30 Jan 2023
89
+
90
+ SoftTreeMax: Exponential Variance Reduction in Policy Gradient via Tree Search
91
+ human-collected trajectories (Silver et al., 2018). Our work
92
+ raises the question of whether optimal variance reduction
93
+ corresponds to the appealing regret properties of UCT.
94
+ To verify our results, we implemented a practical version of
95
+ SoftTreeMax that exhaustively searches the entire tree and
96
+ applies a neural network on its leaves. We test our algorithm
97
+ in the Atari domain, where it is possible to span the whole
98
+ tree of the (nearly) deterministic Atari environment. Hence,
99
+ the gradient variance has no sampling component, and our
100
+ variance calculations indeed match the empirical gradient
101
+ variance. Our search mechanism uses a GPU simulator that
102
+ allows multiple copies of the environment to be run in par-
103
+ allel (Dalton et al., 2020). To enable a tractable deep search,
104
+ up to depth eight, we also introduce a pruning technique
105
+ that limits the width of the tree. We do so by sampling only
106
+ the most promising nodes at each level.
107
+ We integrate our SoftTreeMax GPU implementation into
108
+ the popular PPO (Schulman et al., 2017) and compare it to
109
+ the flat distributed variant of PPO. For a fair comparison,
110
+ we also run the distributed PPO baseline with the parallel
111
+ GPU emulator by Dalton et al. (2020). In all tested Atari
112
+ games, our results outperform the baseline and obtain up
113
+ to 5x more reward. We further show in Section 6 that the
114
+ associated gradient variance is smaller by three orders of
115
+ magnitude in all games, demonstrating the relation between
116
+ low gradient variance and high reward.
117
+ We summarize our key contributions:
118
+ 1. We explore the relation between two seemingly unre-
119
+ lated families of SoTA approaches: PG and TS, and
120
+ show how they can be combined.
121
+ 2. We introduce SoftTreeMax: A novel parametric policy
122
+ that generalizes softmax to planning. We propose both
123
+ cumulative and exponentiated reward variants.
124
+ 3. We prove that the gradient variance of SoftTreeMax in
125
+ its two variants decays exponentially with its TS depth.
126
+ Our analysis sheds new light on the choice of tree
127
+ expansion policy. It raises the question of optimality in
128
+ terms of variance versus the previously studied regret.
129
+ 4. We implement a differentiable deep version of
130
+ SoftTreeMax that employs a parallelized GPU TS. We
131
+ demonstrate how its gradient variance is reduced by
132
+ three orders of magnitude over PPO while obtaining
133
+ up to 5x reward.
134
+ 2. Preliminaries
135
+ We follow the standard notation by (Puterman, 2014). Con-
136
+ sider a discounted Markov Decision Process (MDP) M =
137
+ (S, A, P, r, γ), where S is a finite state space of size S, A
138
+ is a finite action space of size A, r : S × A → [0, 1] is
139
+ the reward function, P : S × A → ∆S is the transition
140
+ function, and γ ∈ (0, 1) is the discount factor. In vector
141
+ form, denote the transition matrix starting from state s by
142
+ [Ps]a,s′ = Pr(s′|a, s) ∈ [0, 1]A×S, and the corresponding
143
+ reward vector by Rs = r(s, ·) ∈ RA.
144
+ Let π : S → ∆A be a stationary policy. We define the in-
145
+ duced transition matrix P π(s′|s) = �
146
+ a π(a|s) Pr(s′|s, a)
147
+ and reward function Rπ(s) = �
148
+ a π(a|s)r(s, a).
149
+ De-
150
+ note by µπ ∈ RS the stationary distribution of P π, s.t.
151
+ µ⊤
152
+ π P π = P π. Also, let V π ∈ RS be the value function of
153
+ π defined by V π(s) = Eπ [�∞
154
+ t=0 γtr (st, π(st)) | s0 = s],
155
+ and let Qπ ∈ RS×A be the Q-function such that Qπ(s, a) =
156
+ Eπ [r(s, a) + γV π(s′)].
157
+ Our goal is to find an optimal policy π⋆ such that
158
+ V ⋆(s) ≡ V π⋆(s) = max
159
+ π
160
+ V π(s),
161
+ ∀s ∈ S.
162
+ Lastly, for the analysis in Section 4, we introduce the follow-
163
+ ing vector notation. Denote by Θ ∈ RS the vector represen-
164
+ tation of θ(s) ∀s ∈ S. For a vector u, denote by exp(u) the
165
+ coordinate-wise exponent of u and by D(u) the diagonal
166
+ square matrix with u in its diagonal. For matrix A, denote
167
+ its i-th eigenvalue by λi(A). Denote the k-dimensional iden-
168
+ tity matrix and all-ones vector by Ik and 1k, respectively.
169
+ We denote the trace operator by Tr . Finally, We treat all
170
+ vectors as column vectors.
171
+ 2.1. Policy Gradient
172
+ PG schemes seek to maximize the cumulative reward as a
173
+ function of the parameterized policy πθ(a|s) by perform-
174
+ ing gradient steps on θ. The celebrated Policy Gradient
175
+ Theorem (Sutton et al., 1999) states that
176
+
177
+ ∂θ
178
+
179
+ µ⊤
180
+ πθV πθ�
181
+ = Es∼µπθ ,a∼πθ(·|s) [∇θ log πθ(a|s)Qπθ(s, a)] .
182
+ The variance of the gradient is thus
183
+ Vars∼µπθ ,a∼πθ(·|s) (∇θ log πθ(a|s)Qπθ(s, a)) .
184
+ (1)
185
+ In the notation above, we denote the variance of a vector
186
+ random variable X by:
187
+ Varx (X) = Tr
188
+
189
+ Ex
190
+
191
+ (X − ExX)⊤ (X − ExX]
192
+ ��
193
+ ,
194
+ similarly as in (Greensmith et al., 2004). From here on, we
195
+ drop the subscript from Var in (1) for brevity.
196
+ When the action space is discrete, a commonly used param-
197
+ eterized policy is softmax:
198
+ πθ(a|s) ∝ exp (θ(s, a)) ,
199
+ where θ : S × A → R is a state-action parametrization.
200
+
201
+ SoftTreeMax: Exponential Variance Reduction in Policy Gradient via Tree Search
202
+ 3. SoftTreeMax: Exponent of trajectories
203
+ We introduce a new family of policies called SoftTreeMax,
204
+ which are a model-based generalization of the popu-
205
+ lar softmax.
206
+ We propose two variants:
207
+ Cumulative
208
+ (C-SoftTreeMax) and Exponentiated (E-SoftTreeMax). In
209
+ both variants, we replace the generic softmax logits θ(s, a)
210
+ with the score of a trajectory of horizon d starting from
211
+ s, a, generated by applying a behavior policy πb.
212
+ In
213
+ C-SoftTreeMax, we exponentiate the expectation of the log-
214
+ its. In E-SoftTreeMax, we first exponentiate the logits, and
215
+ only then compute their expectation.
216
+ Logits. Let the SoftTreeMax logit ℓs,a(d; θ) be a random
217
+ variable depicting the score of a trajectory of horizon d
218
+ starting from s, a and following the policy πb :
219
+ ℓs,a(d; θ) =
220
+ d−1
221
+
222
+ t=0
223
+ γtrt + γdθ(sd).
224
+ (2)
225
+ Namely, s0 = s, a0 = a, at ∼ πb(·|st) ∀t ≥ 1, and
226
+ rt ≡ r (st, at) . For brevity of the analysis, we let the para-
227
+ metric score θ in (2) be state-based, similarly to a value
228
+ function. Instead, one could use a state-action input analo-
229
+ gous to a Q-function. This freedom allows easy integration
230
+ of SoftTreeMax to the two types of RL algorithm imple-
231
+ mentations in standard packages.
232
+ C-SoftTreeMax. Given an inverse temperature parameter
233
+ β, let C-SoftTreeMax be
234
+ πC
235
+ d,θ(a|s) ∝ exp [βEπbℓs,a(d; θ)] .
236
+ (3)
237
+ C-SoftTreeMax gives higher weight for actions that result
238
+ in higher expected returns. While standard softmax relies
239
+ entirely on parametrization θ, C-SoftTreeMax also interpo-
240
+ lates a Monte-Carlo portion of the reward.
241
+ Using the monotone convergence theorem (since rewards
242
+ are non-negative), it follows that when d → ∞,
243
+ πC
244
+ d→∞,θ(a|s) ∝ exp [βQπb(s, a)] ,
245
+ corresponding to Boltzmann exploration (Sutton et al., 1999)
246
+ using the behavior policy πb.
247
+ E-SoftTreeMax. A second natural operator to consider is
248
+ E-SoftTreeMax, in which the expectation is taken outside
249
+ the exponent:
250
+ πE
251
+ d,θ(a|s) ∝ Eπb exp [(βℓs,a(d; θ))] .
252
+ (4)
253
+ This objective corresponds to the exponentiated reward ob-
254
+ jective which is often used for risk-sensitive RL (Howard
255
+ & Matheson, 1972; Fei et al., 2021; Noorani & Baras,
256
+ 2021). The common risk-sensitive objective is of the form
257
+ log E[exp(δR)], where δ is the risk parameter and R is the
258
+ cumulative reward. Similarly to that literature, the exponent
259
+ in (4) emphasizes the most promising trajectories.
260
+ SoftTreeMax properties. SoftTreeMax is a natural model-
261
+ based generalization of softmax. For d = 0, both variants
262
+ above coincide, since (2) becomes deterministic. In that
263
+ case and for a state-action parametrization, they reduce
264
+ to standard softmax. When β → 0, both variants again
265
+ coincide and sample actions uniformly (exploration). When
266
+ β → ∞, the policies become deterministic and greedily
267
+ optimize for the best trajectory (exploitation). The best
268
+ trajectory is in expectation in the case of C-SoftTreeMax,
269
+ and in terms of best sample-path for E-SoftTreeMax.
270
+ SoftTreeMax convergence. Under regularity conditions,
271
+ for any parametric policy, PG converges to local optima
272
+ (Bhatnagar et al., 2009), and thus also SoftTreeMax. Specif-
273
+ ically for softmax PG, asymptotic (Agarwal et al., 2021) and
274
+ rate results (Mei et al., 2020b) were recently obtained. A fu-
275
+ ture direction would be to extend those for the convergence
276
+ properties of SoftTreeMax.
277
+ SoftTreeMax gradient. The two variants of SoftTreeMax
278
+ involve an expectation. This expectation is taken over Sd
279
+ many trajectories from the root state s and are weighted
280
+ according to their probability. Thus, during the PG train-
281
+ ing process, the gradient ∇θ log πθ is calculated using a
282
+ weighted sum of gradients over all reachable states starting
283
+ from s. Our method exploits the exponential number of tra-
284
+ jectories to reduce the variance. Indeed, in the next section
285
+ we prove that the gradient variance of SoftTreeMax decays
286
+ exponentially fast as a function of the behavior policy πb and
287
+ trajectory length d. In the experiments in Section 6, we also
288
+ show how the practical version of SoftTreeMax achieves
289
+ a significant reduction in the noise of the PG process and
290
+ leads to faster convergence and higher reward.
291
+ 4. Theoretical Analysis
292
+ In this section, we bound the variance of PG when using
293
+ SoftTreeMax policy. Specifically, we show that the variance
294
+ decreases exponentially with the tree depth, where the rate
295
+ is determined by the second eigenvalue of the transition
296
+ kernel induced by πb. We analyze the gradient variance w.r.t.
297
+ state-action frequencies, as a function of problem param-
298
+ eters. Other types of analyses could have instead focused
299
+ on the estimation aspect in the context of sampling. Indeed,
300
+ in our implementation in Section 5, we manage to avoid
301
+ sampling and directly compute the expectations in Eqs. (3)
302
+ and (4). As we show later, we do so by leveraging efficient
303
+ parallel simulation on the GPU in feasible run-time. In our
304
+ application, due to the nature of the finite action space and
305
+ quasi-deterministic Atari dynamics (Bellemare et al., 2013),
306
+ our expectation estimator is noiseless. We encourage future
307
+ work to account for the finite-sample variance component.
308
+
309
+ SoftTreeMax: Exponential Variance Reduction in Policy Gradient via Tree Search
310
+ We begin with a general variance bound that holds for any
311
+ parametric policy. We defer all the proofs in this section to
312
+ Appendix A.1.
313
+ Lemma 4.1 (Bound on the policy gradient variance). For
314
+ any parametric policy πθ and function Qπθ : S × A → R,
315
+ Var (∇θ log πθ(a|s)Qπθ(s, a))
316
+ ��� max
317
+ s,a [Qπθ(s, a)]2 max
318
+ s
319
+ ||∇θ log πθ(·|s)||2
320
+ F ,
321
+ where ∇θ log πθ(·|s) ∈ RA×dim(θ) is a matrix whose a-th
322
+ row is ∇θ log πθ(a|s)⊤.
323
+ Hence, to bound (1), it is sufficient to bound the Frobenius
324
+ norm of the policy gradient ∇θ log πθ(·|s) for any s.
325
+ A common assumption in the RL literature (Szepesv´ari,
326
+ 2010) that we adopt for the remainder of the section is that
327
+ the transition matrix P πb, induced by the behavior policy
328
+ πb, is irreducible and aperiodic. Subsequently, its second
329
+ highest eigenvalue holds: |λ2(P πb)| < 1.
330
+ From here on, we split the variance results for the
331
+ two variants of SoftTreeMax to two subsections.
332
+ For
333
+ C-SoftTreeMax, the analysis is simpler and we provide an
334
+ exact bound. The case of E-SoftTreeMax is more involved
335
+ and we provide for it a more general result. In both cases,
336
+ we show that the variance decays exponentially with the
337
+ planning horizon.
338
+ 4.1. Variance of C-SoftTreeMax
339
+ We express C-SoftTreeMax in vector form as follows.
340
+ Lemma 4.2 (Vector form of C-SoftTreeMax). For d ≥ 1,
341
+ (3) is given by
342
+ πC
343
+ d,θ(·|s) =
344
+ exp
345
+
346
+ β
347
+
348
+ Cs,d + γdPs (P πb)d−1 Θ
349
+ ��
350
+ 1⊤
351
+ A exp
352
+
353
+ β
354
+
355
+ Cs,d + γdPs (P πb)d−1 Θ
356
+ ��,
357
+ (5)
358
+ where
359
+ Cs,d = Rs + Ps
360
+ �d−1
361
+
362
+ h=1
363
+ γh (P πb)h−1
364
+
365
+ Rπb.
366
+ (6)
367
+ The matrix Cs,d ∈ RA×S represents the cumulative dis-
368
+ counted reward in expectation along the trajectory of hori-
369
+ zon d. Starting from the state s, the reward Rs is collected
370
+ and a transition occurs according to Ps. Then, the policy
371
+ πb is applied to obtain the reward Rπb and transition, and
372
+ the process repeats. When depth d is reached, we apply the
373
+ score function on the last state as depicted in (5).
374
+ Next, we express the policy gradient of C-SoftTreeMax
375
+ Lemma
376
+ 4.3
377
+ (Gradient
378
+ of
379
+ C-SoftTreeMax).
380
+ The
381
+ C-SoftTreeMax gradient of dimension A × S is given by
382
+ ∇θ log πC
383
+ d,θ = βγd �
384
+ IA − 1A(πC
385
+ d,θ)⊤�
386
+ Ps (P πb)d−1 ,
387
+ where for brevity, we drop the s index in the policy above,
388
+ i.e., πC
389
+ d,θ ≡ πC
390
+ d,θ(·|s).
391
+ We are now ready to present our first main result:
392
+ Theorem
393
+ 4.4
394
+ (Exponential
395
+ variance
396
+ decay
397
+ of
398
+ C-SoftTreeMax). For every Q
399
+ :
400
+ S × A
401
+
402
+ R, the
403
+ C-SoftTreeMax policy gradient is bounded by
404
+ Var
405
+
406
+ ∇θ log πC
407
+ d,θ(a|s)Q(s, a)
408
+
409
+ ≤ 2 A2S2β2
410
+ (1 − γ)2 γ2d|λ2(P πb)|2(d−1).
411
+ Although we provide a rigorous proof in Appendix A.1.4,
412
+ since the proof relatively accessible, we briefly outline its
413
+ essence here.
414
+ Proof outline. Lemma 4.1 allows us to bound the variance
415
+ using a direct bound on the gradient norm. The gradient is
416
+ given in Lemma 4.3 as a product of three matrices, which
417
+ we now study from right to left. The matrix P πb is a row-
418
+ stochastic matrix. Because the associated Markov chain is
419
+ irreducible and aperiodic, it has a unique stationary distribu-
420
+ tion. This implies that P πb has one and only one eigenvalue
421
+ equal to 1; all others have magnitude strictly less than 1. Let
422
+ us suppose that all these other eigenvalues have multiplicity
423
+ 1 (the general case with repeated eigenvalues can be handled
424
+ via Jordan decompositions as in (Pelletier, 1998, Lemma1)).
425
+ Then, P πb has the spectral decomposition
426
+ P πb = 1Sµ⊤
427
+ πb +
428
+ S
429
+
430
+ i=2
431
+ λiviu⊤
432
+ i ,
433
+ where λi is the i-th eigenvalue of P πb (ordered in descend-
434
+ ing order according to their magnitude) and ui and vi are
435
+ the corresponding left and right eigenvectors, respectively.
436
+ Therefore,
437
+ (P πb)d−1 = 1Sµ⊤
438
+ πb +
439
+ S
440
+
441
+ i=2
442
+ λd−1
443
+ i
444
+ viu⊤
445
+ i .
446
+ (7)
447
+ The second matrix in the gradient relation in Lemma 4.3, Ps,
448
+ is a rectangular transition matrix that translates the vector
449
+ of all ones from dimension S to A : Ps1S = 1A.
450
+ Lastly,
451
+ the first matrix
452
+
453
+ IA − 1A(πC
454
+ d,θ)⊤�
455
+ is a pro-
456
+ jection whose null-space includes the vector 1A, i.e.,
457
+
458
+ IA − 1A(πC
459
+ d,θ)⊤�
460
+ 1A = 0.
461
+ Combining the three properties above when multiplying
462
+ the three matrices of the gradient, it is easy to see that
463
+ the first term in (7) gets canceled, and we are left with
464
+ bounded summands scaled by λi(P πb)d−1. Recalling that
465
+ |λi(P πb)| < 1 and that |λ2| > |λ3| > . . . for i = 2, . . . , S,
466
+ we obtain the desired result.
467
+
468
+ SoftTreeMax: Exponential Variance Reduction in Policy Gradient via Tree Search
469
+ 2
470
+ 4
471
+ 6
472
+ 8
473
+ 10
474
+ Depth d
475
+ 10
476
+ 31
477
+ 10
478
+ 26
479
+ 10
480
+ 21
481
+ 10
482
+ 16
483
+ 10
484
+ 11
485
+ 10
486
+ 6
487
+ 10
488
+ 1
489
+ SoftTreeMax
490
+ Gradient variance
491
+ Permutation: True variance
492
+ Permutation: Variance bound
493
+ Random: True variance
494
+ Random: Variance bound
495
+ Uniform: True variance
496
+ Uniform: Variance bound
497
+ Figure 1. A comparison of the analytical PG variance and our
498
+ bound for E-SoftTreeMax on randomly drawn MDPs. We present
499
+ three cases for P πb : (i) close to uniform, (ii) drawn randomly, and
500
+ (iii) close to a permutation matrix. This experiment verifies the
501
+ optimal and worse-case rate decay cases. The variance bounds here
502
+ are taken from Theorem 4.7 where we substitute α = |λ2(P πb)|.
503
+ Theorem 4.4 guarantees that the variance of the gradient
504
+ decays exponentially with d, regardless of γ. It also pro-
505
+ vides a novel insight that drives us to choose the behavior
506
+ policy πb as the policy that minimizes the absolute second
507
+ eigenvalue of the P πb. Indeed, the second eigenvalue of a
508
+ Markov chain has known connections to its connectivity and
509
+ its rate of convergence to the stationary distribution (Levin
510
+ & Peres, 2017).
511
+ Optimal variance decay. To achieve the best reduction
512
+ in variance, the behavior policy πb should be chosen to
513
+ achieve uniformity. That is, that transitions induced by
514
+ the interaction of πb with the environment are uniform. In
515
+ that case, P πb is a rank one matrix of the form 1Sµ⊤
516
+ πb, and
517
+ λ2(P πb) = 0. Then, Var (∇θ log πθ(a|s)Q(s, a)) = 0. As
518
+ we show in Section 5, we choose our tree expansion policy
519
+ accordingly.
520
+ Worst-case variance decay. In contrast, and somewhat
521
+ surprisingly, when πb is chosen so that the dynamics is
522
+ deterministic, there is no guarantee that it will decay expo-
523
+ nentially fast. For example, if P πb is a permutation matrix,
524
+ then λ2(P πb) = 1, and advancing the tree amounts to only
525
+ updating the gradient of one state for every action, as in the
526
+ basic softmax.
527
+ 4.2. Variance of E-SoftTreeMax
528
+ The proof of the variance bound for E-SoftTreeMax is sim-
529
+ ilar to that of C-SoftTreeMax, but more involved. It also
530
+ requires the assumption that the reward depends only on the
531
+ state, i.e. r(s, a) ≡ r(s). This is indeed the case in most
532
+ standard RL environments such as Atari and Mujoco.
533
+ We begin with expressing E-SoftTreeMax in vector form.
534
+ Lemma 4.5 (Vector form of E-SoftTreeMax). For d ≥ 1,
535
+ (4) is given by
536
+ πE
537
+ d,θ(·|s) =
538
+ Es,d exp(βγdΘ)
539
+ 1⊤
540
+ AEs,d exp(βγdΘ),
541
+ (8)
542
+ where
543
+ Es,d = Ps
544
+ d−1
545
+
546
+ h=1
547
+
548
+ D
549
+
550
+ exp(βγhR)
551
+
552
+ P πb�
553
+ .
554
+ (9)
555
+ The vector R above is the S-dimensional vector whose s-th
556
+ coordinate is r(s).
557
+ The matrix Es,d ∈ RA×S has a similar role to Cs,d from (6),
558
+ but it represents the exponentiated cumulative discounted
559
+ reward. Accordingly, it is a product of d matrices as opposed
560
+ to a sum. It captures the expected reward sequence starting
561
+ from s and then iteratively following P πb. After d steps, we
562
+ apply the score function on the last state as in (8).
563
+ Lemma
564
+ 4.6
565
+ (Gradient
566
+ of
567
+ E-SoftTreeMax).
568
+ The
569
+ E-SoftTreeMax gradient of dimension A × S is given by
570
+ ∇θ log πE
571
+ d,θ =
572
+ βγd �
573
+ IA − 1A(πE
574
+ d,θ)⊤� D
575
+
576
+ πE
577
+ d,θ
578
+ �−1
579
+ Es,dD(exp(βγdΘ))
580
+ 1⊤
581
+ AEs,d exp(βγdΘ)
582
+ ,
583
+ where for brevity, we drop the s index in the policy above,
584
+ i.e., πE
585
+ d,θ ≡ πE
586
+ d,θ(·|s).
587
+ This gradient structure is harder to handle than that of
588
+ C-SoftTreeMax in Lemma 4.3, but here we also prove an
589
+ exponential variance decay nonetheless.
590
+ Theorem
591
+ 4.7
592
+ (Exponential
593
+ variance
594
+ decay
595
+ of
596
+ E-SoftTreeMax). There exists α
597
+
598
+ (0, 1) such that,
599
+ for any function Q : S × A → R,
600
+ Var
601
+
602
+ ∇θ log πE
603
+ d,θ(a|s)Q(s, a)
604
+
605
+ ∈ O
606
+
607
+ β2γ2dα2d�
608
+ .
609
+ If all rewards are equal (r ≡ const), then α = |λ2(P πb)|.
610
+ The proof structure is similar in spirit to that of Theorem 4.4,
611
+ but several new technical arguments are needed. We give it
612
+ in full in Appendix A.1.4, but briefly outline it here.
613
+ Proof outline. Recall that thanks to Lemma 4.1, we can
614
+ bound the PG variance using a direct bound on the gradient
615
+ norm. The definition of the induced norm is
616
+ ∥∇θ log πE
617
+ d,θ∥ = max
618
+ z:∥z∥=1 ∥∇θ log πE
619
+ d,θz∥,
620
+
621
+ SoftTreeMax: Exponential Variance Reduction in Policy Gradient via Tree Search
622
+ with ∇θ log πE
623
+ d,θ given in Lemma 4.6. Let z ∈ RS be an
624
+ arbitrary vector such that ∥z∥ = 1. Then, z = �S
625
+ i=1 cizi,
626
+ where ci are scalar coefficients and zi are vectors spanning
627
+ the S-dimensional space. In the full proof, we show our
628
+ specific choice of zi and prove they are linearly independent
629
+ given that choice. We do note that z1 = 1S.
630
+ The first part of the proof relies on the fact that
631
+ (∇θ log πE
632
+ d,θ)z1 = 0. This is easy to verify using Lemma 4.6
633
+ together with (8), and because
634
+
635
+ IA − 1A(πE
636
+ d,θ)⊤�
637
+ is a pro-
638
+ jection matrix whose null-space is spanned by 1S. Thus,
639
+ ∇θ log πE
640
+ d,θz = ∇θ log πE
641
+ d,θ
642
+ S
643
+
644
+ i=2
645
+ cizi.
646
+ In the second part of the proof, we focus on Es,d from (9),
647
+ which appears within ∇θ log πE
648
+ d,θ. Notice that Es,d consists
649
+ of the product �d−1
650
+ h=1
651
+
652
+ D
653
+
654
+ exp(βγhR
655
+
656
+ P πb�
657
+ . Even though
658
+ the elements in this product are not stochastic matrices, in
659
+ the full proof we show how to normalize each of them to a
660
+ stochastic matrix Bh. We thus obtain that
661
+ Es,d = PsD(M1)
662
+ d−1
663
+
664
+ h=1
665
+ Bh,
666
+ where M1 ∈ RS is some strictly positive vector. Then,
667
+ we can apply a result by Mathkar & Borkar (2016), which
668
+ itself builds on (Chatterjee & Seneta, 1977). The result
669
+ states that the product of stochastic matrices �d−1
670
+ h=1 Bh of
671
+ our particular form converges exponentially fast to a matrix
672
+ of the form 1Sµ⊤ s.t. ∥1Sµ⊤ − �d−1
673
+ h=1 Bh∥ ≤ Cαd for
674
+ some constant C.
675
+ Lastly, 1Sµ⊤
676
+ πb gets canceled due to our choice of zi, i =
677
+ 2, . . . , S. This observation along with the above fact that the
678
+ remainder decays then shows that ∇θ log πE
679
+ d,θ
680
+ �S
681
+ i=2 zi =
682
+ O(αd), which gives the desired result.
683
+ Although our proof guarantees that α = |λ2(P πb)| only
684
+ in the constant-reward case, we conjecture that this is also
685
+ true in the general case. To demonstrate this, we run the
686
+ following simulation. We drew a random finite MDP, pa-
687
+ rameter vector Θ ∈ RS
688
+ +, and behavior policy πb. We then
689
+ analytically computed the PG variance of E-SoftTreeMax
690
+ as given in (1) and compared it to |λ2(P πb)|d. As seen, the
691
+ true variance and our bound matched almost identically.
692
+ This suggests that indeed α = |λ2(P πb)|. We repeat this
693
+ experiment three times for different P πb : (i) close to uni-
694
+ form, (ii) drawn randomly, and (iii) close to a permutation
695
+ matrix. The three cases match our takeaways on the opti-
696
+ mal and worst-case rate decay cases. We ran multiple such
697
+ experiments and in all of them the lines match closely; we
698
+ give here one such instance. To account the for constants,
699
+ we match the values for the first point in d = 1.
700
+ 𝑊(𝑆!"#
701
+ $,$ )
702
+ logits
703
+ for
704
+ logits
705
+ for
706
+ logits
707
+ for
708
+ 𝑎!"$
709
+ ($)
710
+ Policy
711
+ network
712
+ 𝑎!"$
713
+ (()
714
+ 𝑎!"$
715
+ ($)
716
+ 𝑎!"$
717
+ (()
718
+ 𝑎!"$
719
+ ($)
720
+ 𝑎!"$
721
+ (()
722
+ 𝑎!")
723
+ ($)
724
+ 𝑎!")
725
+ (#)
726
+ 𝑎!")
727
+ (()
728
+ 𝑎!"#
729
+ (%)
730
+ 𝑎!"#
731
+ (')
732
+ 𝑎!"#
733
+ (()
734
+ 𝑆!")
735
+ 𝑆!"$
736
+ ($)
737
+ 𝑆!"$
738
+ (#)
739
+ 𝑆!"$
740
+ (()
741
+ 𝑆!"#
742
+ ($,$)
743
+ 𝑆!"#
744
+ (#,$)
745
+ 𝑆!"#
746
+ ($,()
747
+ 𝑆!"#
748
+ (#,()
749
+ 𝑆!"#
750
+ ((,$)
751
+ 𝑆!"#
752
+ ((,()
753
+ 𝑊(𝑆!"#
754
+ $,( )
755
+ 𝑊(𝑆!"#
756
+ #,$ )
757
+ 𝑊(𝑆!"#
758
+ #,( )
759
+ 𝑊(𝑆!"#
760
+ (,$ )
761
+ 𝑊(𝑆!"#
762
+ (,( )
763
+ Figure 2. SoftTreeMax policy. Our exhaustive parallel TS ex-
764
+ pands all actions at each state up to depth d (= 2 here). The leaf
765
+ state of every trajectory is used as input to the policy network.
766
+ The output is then added to the trajectory’s cumulative reward as
767
+ described in (2). I.e., instead of the standard softmax logits, we
768
+ add the cumulative discounted reward to the policy network output.
769
+ This policy is differentiable and can be easily integrated into any
770
+ PG algorithm. In this work, we build on PPO and use its loss
771
+ function to train the policy network.
772
+ 5. SoftTreeMax: Deep Parallel
773
+ Implementation
774
+ Following the success of deep RL (Mnih et al., 2015), deep
775
+ neural networks are used nowadays almost exclusively in
776
+ practice. Depending on the RL algorithm, a loss function
777
+ is defined and gradients on the network weights can be
778
+ calculated. In PG methods, the scoring function used in the
779
+ softmax is commonly replaced by a neural network Wθ:
780
+ πθ(a|s) ∝ exp (Wθ(s, a)) .
781
+ Similarly, we implement SoftTreeMax by replacing θ(s) in
782
+ (2) with a neural network Wθ(s). Although both variants of
783
+ SoftTreeMax from Section 3 involve computing an expecta-
784
+ tion, this can be hard in general. One approach to handle it is
785
+ with sampling, though these introduce estimation variance
786
+ into the process. We leave the question of sample-based
787
+ theory and algorithmic implementations for future work.
788
+ Instead, in finite action space environments such as Atari,
789
+ we compute the exact expectation in SoftTreeMax with an
790
+ exhaustive TS of depth d. Despite the exponential computa-
791
+ tional cost of spanning the entire tree, recent advancements
792
+ in parallel GPU-based simulation allow efficient expansion
793
+ of all nodes at the same depth simultaneously (Dalal et al.,
794
+ 2021; Rosenberg et al., 2022). This is possible when a simu-
795
+ lator is implemented on GPU (Dalton et al., 2020; Makoviy-
796
+ chuk et al., 2021; Freeman et al., 2021), or when a forward
797
+ model is learned (Kim et al., 2020; Ha & Schmidhuber,
798
+ 2018). To reduce the complexity to be linear in depth, we
799
+ apply tree pruning to a limited width in all levels. We do so
800
+
801
+ SoftTreeMax: Exponential Variance Reduction in Policy Gradient via Tree Search
802
+ by sampling only the most promising actions at each level.
803
+ To summarize, in the practical SoftTreeMax algorithm we
804
+ perform an exhaustive TS to obtain all trajectories up to
805
+ depth d. We expand the tree by exhaustively expanding
806
+ all actions, which corresponds to a uniform tree expansion
807
+ policy πb. We apply a neural network on the leaf states,
808
+ and accumulate the result with the rewards along each tra-
809
+ jectory to obtain the logits in (2). Finally, we aggregate
810
+ the results using C-SoftTreeMax. We leave experiments
811
+ E-SoftTreeMax for future work on risk-averse RL. During
812
+ training, the gradient propagates to the NN weights of Wθ.
813
+ When the gradient ∇θ log πd,θ is calculated at each time
814
+ step, it updates Wθ for all leaf states, similarly to Siamese
815
+ networks (Bertinetto et al., 2016). An illustration of the
816
+ policy is given in Figure 2.
817
+ 6. Experiments
818
+ We conduct our experiments on multiple games from the
819
+ Atari simulation suite (Bellemare et al., 2013). As a baseline,
820
+ we train a PPO (Schulman et al., 2017) agent with 256
821
+ workers in parallel. In a hyperparameter search, we found
822
+ this number of workers to be the best in terms of run-time.
823
+ The environment engine is the highly efficient Atari-CuLE
824
+ (Dalton et al., 2020), a CUDA-based version of Atari that
825
+ runs on GPU. Similarly, we use Atari-CuLE for the GPU-
826
+ based breadth-first TS as done in (Dalal et al., 2021). We
827
+ then train SoftTreeMax for depths d = 1 . . . 8, with a single
828
+ worker. We use five seeds for each experiment.
829
+ For the implementation, we extend Stable-Baselines3 (Raf-
830
+ fin et al., 2019) with all parameters taken as default from the
831
+ original PPO paper (Schulman et al., 2017). We will release
832
+ the code upon publication. For depths d ≥ 3, we limited
833
+ the tree to a maximum width of 1024 nodes and pruned
834
+ non-promising trajectories in terms of estimated weights.
835
+ Since the distributed PPO baseline advances significantly
836
+ faster in terms of environment steps, for a fair comparison,
837
+ we ran all experiments for one week on the same machine
838
+ and use the wall-clock time as the x-axis. We use Intel(R)
839
+ Xeon(R) CPU E5-2698 v4 @ 2.20GHz equipped with one
840
+ NVIDIA Tesla V100 32GB.
841
+ In Figure 3, we plot the reward and variance of SoftTreeMax
842
+ for each game, as a function of depth. The dashed lines are
843
+ the results for PPO. Each value is taken after convergence,
844
+ i.e., the average over the last 20% of the run. The numbers
845
+ represent the average over five seeds per game. We choose
846
+ to exclude the standard deviation to avoid excessive clutter
847
+ in the plot. The plot conveys three intriguing conclusions.
848
+ First, in all cases, SoftTreeMax achieves significantly higher
849
+ reward than PPO. Its gradient variance is also orders of
850
+ magnitude lower than that of PPO. Second, the reward and
851
+ variance are negatively correlated – they mirror each other
852
+ in almost all of the games. This phenomenon demonstrates
853
+ how crucial it is to lower the variance of PG for improving
854
+ performance. And specifically, it highlights the benefits of
855
+ SoftTreeMax over “flat” PG. The third conclusion is that
856
+ each game has a different sweet-spot in terms of optimal TS
857
+ depth. Recall that we limit the run-time in all experiments
858
+ to one week. The deeper the TS, the slower each step and
859
+ less steps are finished by the end of the run. This type of
860
+ comparison also explains why there is no reason to expect
861
+ monotone variance reduction as a function of depth.
862
+ We also provide the training curves in Figure 4. For brevity,
863
+ we exclude a few of the depths from the plots. As seen, there
864
+ is a clear benefit for SoftTreeMax over distributed PPO with
865
+ the standard softmax policy. In most games, PPO with the
866
+ SoftTreeMax policy shows very high sample efficiency: it
867
+ achieves higher episodic reward even though it observes
868
+ much less episodes, for the same running time.
869
+ 7. Related Work
870
+ Our work intersects several fields of the RL literature:
871
+ Softmax Operator. The softmax policy became a canonical
872
+ part of PG to the point where theoretical results of PG focus
873
+ specifically on it (Zhang et al., 2021; Mei et al., 2020b; Li
874
+ et al., 2021; Schulman et al., 2017; Haarnoja et al., 2018).
875
+ Even though we focus on a tree extension to the softmax
876
+ policy, the methodology we propose is general and can be
877
+ easily applied to other discrete or continuous parameterized
878
+ policies as in (Mei et al., 2020a; Miahi et al., 2021).
879
+ Tree Search. Planning with a TS is the process of using a
880
+ forward model to consider possible future trajectories and
881
+ decide on the best action at the root. One famous such algo-
882
+ rithm is Monte-Carlo TS (MCTS; Browne et al. 2012) used
883
+ in AlphaGo (Silver et al., 2016) and MuZero (Schrittwieser
884
+ et al., 2020). Other principal algorithms such as Value Itera-
885
+ tion, Policy Iteration and DQN were also shown to give an
886
+ improved performance with a tree search extensions (Efroni
887
+ et al., 2019; Dalal et al., 2021).
888
+ Risk Aversion. Many works considered an exponential
889
+ utility function for risk aversion (Chen et al., 2007; Garcıa
890
+ & Fern´andez, 2015; Fei et al., 2021). This utility function
891
+ is the same as E-SoftTreeMax formulation from (4), but we
892
+ have it directly in the policy instead of the objective.
893
+ Reward-free RL. We showed that the gradient variance is
894
+ minimized when the transitions induced by the behavior
895
+ policy πb are uniform. This is expressed by the second
896
+ eigenvalue of the transition matrix P πb. This notion of
897
+ uniform exploration is common to the reward-free RL setup
898
+ (Jin et al., 2020). Several such works considered the same
899
+ second eigenvalue in their analysis (Liu & Brunskill, 2018;
900
+ Tarbouriech & Lazaric, 2019).
901
+
902
+ SoftTreeMax: Exponential Variance Reduction in Policy Gradient via Tree Search
903
+ Figure 3. Reward and Gradient variance: GPU SoftTreeMax (single worker) vs PPO (256 GPU workers). The blue reward plots
904
+ show the average of 50 evaluation episodes. The red variance plots show the average gradient variance of the corresponding training runs,
905
+ averaged over five seeds. The dashed lines represent the same for PPO. Note theat the variance y-axis is in log-scale. The reward and
906
+ variance are negatively correlated and mirror each other in almost all games. This demonstrates the necessity to lower the variance of PG
907
+ for improving performance. We limit the training run-time in all experiments to one week. The deeper the TS, the slower each step and
908
+ less steps are finished by the end of the training run. This explains the non-monotone performance and variance as a function of depth.
909
+ Figure 4. Training curves: GPU SoftTreeMax (single worker) vs PPO (256 GPU workers). The plots show average reward and
910
+ standard deviation over five seeds. The x-axis is the wall-clock time. The runs ended after a maximum of 200M time-steps, and after no
911
+ longer than one week. The standard PPO finished in less than one week. The training curves correspond to the evaluation runs in Figure 3.
912
+ 8. Discussion
913
+ Planning in RL is typically carried out with value-based
914
+ algorithms due to its seamless integration with the Bellman
915
+ operator, leaving aside the popular class of PG methods. In
916
+ this work, we introduced for the first time a differentiable
917
+ parametric policy that combines TS with PG. We prove that
918
+ SoftTreeMax is essentially an exponential variance reduc-
919
+ tion technique and provide novel insight on how to choose
920
+ the expansion policy to minimize the gradient variance. It
921
+ is an open question whether optimal variance reduction cor-
922
+ responds to the appealing regret properties tackled by UCT
923
+ (Kocsis & Szepesv´ari, 2006).
924
+ Mitigating
925
+ the
926
+ known
927
+ sample
928
+ inefficiency
929
+ issue,
930
+ SoftTreeMax
931
+ achieves
932
+ better
933
+ performance
934
+ than
935
+ the
936
+ widely used PPO with multiple workers and softmax policy.
937
+ Our method can be further applied to continuous control
938
+ tasks, or in tasks where the forward model is learned with
939
+ some estimation error. Other possible future directions
940
+ are: (i) to study the implications of sampling trajectories
941
+ instead of directly calculating their expectation; (ii) analyze
942
+ the convergence rate of SoftTreeMax, and (iii) to extend
943
+ SoftTreeMax to adaptively changing depths to optimize
944
+ run-time and performance.
945
+
946
+ Asteroids
947
+ Gopher
948
+ Krull
949
+ Breakout
950
+ 15000
951
+ 9000
952
+ 5000
953
+ +10-5
954
+ 800
955
+ 10-5
956
+ 10-5
957
+ p
958
+ 10-7
959
+ 10000
960
+ 8000 +
961
+ 10-6
962
+ 10-6
963
+ 10-7
964
+ 600
965
+ 601)
966
+ 10-9
967
+ 5000
968
+ 10-7
969
+ 7000-
970
+ 3000
971
+ 10-7
972
+ 400
973
+ SoftTreeMax Reward
974
+ 6
975
+ 2
976
+ 4
977
+ 4
978
+ 6
979
+ 8
980
+ 2
981
+ 4
982
+ 8
983
+ 2
984
+ 6
985
+ 8
986
+ 2
987
+ PPO Reward
988
+ Depth
989
+ Depth
990
+ Depth
991
+ Depth
992
+ SoftTreeMax Variance
993
+ Phoenix
994
+ VideoPinball
995
+ KungFuMaster
996
+ NameThisGame
997
+ PPO Variance
998
+ 800000 +
999
+ 10-5
1000
+ 10-5
1001
+ 20000
1002
+ 75000
1003
+ 600000
1004
+ 10-6
1005
+ 10-6
1006
+ 15000
1007
+ 50000
1008
+ 400000
1009
+ : 601)
1010
+ 10-7
1011
+ 10-7 25000-
1012
+ 10-)
1013
+ 10000
1014
+ 10-8
1015
+ 200000-
1016
+ 40000卡
1017
+ 9
1018
+ 2
1019
+ 2
1020
+ 4
1021
+ 6
1022
+ 2
1023
+ 4
1024
+ 6
1025
+ 8
1026
+ 2
1027
+ 4
1028
+ 8
1029
+ 4
1030
+ 6
1031
+ 8
1032
+ Depth
1033
+ Depth
1034
+ Depth
1035
+ DepthAsteroids
1036
+ Breakout
1037
+ Gopher
1038
+ Krull
1039
+ 8000-
1040
+ 6000
1041
+ 400
1042
+ 3000
1043
+ 6000
1044
+ Rewar
1045
+ 4000
1046
+ 200
1047
+ R 2000
1048
+ 2000
1049
+ 4000
1050
+ PPO
1051
+ 10
1052
+ SoftTreeMax Depth 2
1053
+ 100
1054
+ 0
1055
+ 100
1056
+ 0
1057
+ 100
1058
+ 0
1059
+ 100
1060
+ SoftTreeMax Depth 3
1061
+ Time [hours]
1062
+ Time [hours]
1063
+ Time [hours]
1064
+ Time [hours]
1065
+ SoftTreeMax Depth 5
1066
+ SoftTreeMax Depth 6
1067
+ KungFuMaster
1068
+ NameThisGame
1069
+ Phoenix
1070
+ VideoPinball
1071
+ SoftTreeMax Depth 8
1072
+ 60000
1073
+ 30000
1074
+ 200000
1075
+ 10000
1076
+ g
1077
+ 40000
1078
+ 20000
1079
+ Rewa
1080
+ 5000
1081
+ 10000
1082
+ 20000
1083
+ 0
1084
+ 100
1085
+ 0
1086
+ 100
1087
+ 0
1088
+ 100
1089
+ 0
1090
+ 100
1091
+ Time [hours]
1092
+ Time [hours]
1093
+ Time [hours]
1094
+ Time [hours]SoftTreeMax: Exponential Variance Reduction in Policy Gradient via Tree Search
1095
+ References
1096
+ Agarwal, A., Kakade, S. M., Lee, J. D., and Mahajan, G.
1097
+ On the theory of policy gradient methods: Optimality,
1098
+ approximation, and distribution shift. J. Mach. Learn.
1099
+ Res., 22(98):1–76, 2021.
1100
+ Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M.
1101
+ The arcade learning environment: An evaluation plat-
1102
+ form for general agents. Journal of Artificial Intelligence
1103
+ Research, 47:253–279, 2013.
1104
+ Bertinetto, L., Valmadre, J., Henriques, J. F., Vedaldi, A.,
1105
+ and Torr, P. H. Fully-convolutional siamese networks for
1106
+ object tracking. In European conference on computer
1107
+ vision, pp. 850–865. Springer, 2016.
1108
+ Bhatnagar, S., Sutton, R. S., Ghavamzadeh, M., and Lee,
1109
+ M. Natural actor–critic algorithms. Automatica, 45(11):
1110
+ 2471–2482, 2009.
1111
+ Browne, C. B., Powley, E., Whitehouse, D., Lucas, S. M.,
1112
+ Cowling, P. I., Rohlfshagen, P., Tavener, S., Perez, D.,
1113
+ Samothrakis, S., and Colton, S. A survey of monte carlo
1114
+ tree search methods. IEEE Transactions on Computa-
1115
+ tional Intelligence and AI in games, 4(1):1–43, 2012.
1116
+ Chatterjee, S. and Seneta, E. Towards consensus: Some
1117
+ convergence theorems on repeated averaging. Journal of
1118
+ Applied Probability, 14(1):89–97, 1977.
1119
+ Chen, X., Sim, M., Simchi-Levi, D., and Sun, P. Risk
1120
+ aversion in inventory management. Operations Research,
1121
+ 55(5):828–842, 2007.
1122
+ Coulom, R. Efficient selectivity and backup operators in
1123
+ monte-carlo tree search. In International conference on
1124
+ computers and games, pp. 72–83. Springer, 2006.
1125
+ Dalal, G., Hallak, A., Dalton, S., Mannor, S., Chechik, G.,
1126
+ et al. Improve agents without retraining: Parallel tree
1127
+ search with off-policy correction. Advances in Neural
1128
+ Information Processing Systems, 34:5518–5530, 2021.
1129
+ Dalton, S. et al.
1130
+ Accelerating reinforcement learning
1131
+ through gpu atari emulation. Advances in Neural In-
1132
+ formation Processing Systems, 33:19773–19782, 2020.
1133
+ Efroni, Y., Dalal, G., Scherrer, B., and Mannor, S. How
1134
+ to combine tree-search methods in reinforcement learn-
1135
+ ing. In Proceedings of the AAAI Conference on Artificial
1136
+ Intelligence, volume 33, pp. 3494–3501, 2019.
1137
+ Fei, Y., Yang, Z., Chen, Y., and Wang, Z. Exponential
1138
+ bellman equation and improved regret bounds for risk-
1139
+ sensitive reinforcement learning. Advances in Neural
1140
+ Information Processing Systems, 34:20436–20446, 2021.
1141
+ Freeman, C. D., Frey, E., Raichuk, A., Girgin, S., Mordatch,
1142
+ I., and Bachem, O. Brax-a differentiable physics en-
1143
+ gine for large scale rigid body simulation. In Thirty-fifth
1144
+ Conference on Neural Information Processing Systems
1145
+ Datasets and Benchmarks Track (Round 1), 2021.
1146
+ Garcıa, J. and Fern´andez, F. A comprehensive survey on safe
1147
+ reinforcement learning. Journal of Machine Learning
1148
+ Research, 16(1):1437–1480, 2015.
1149
+ Greensmith, E., Bartlett, P. L., and Baxter, J. Variance reduc-
1150
+ tion techniques for gradient estimates in reinforcement
1151
+ learning. Journal of Machine Learning Research, 5(9),
1152
+ 2004.
1153
+ Ha, D. and Schmidhuber, J. World models. arXiv preprint
1154
+ arXiv:1803.10122, 2018.
1155
+ Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft
1156
+ actor-critic: Off-policy maximum entropy deep reinforce-
1157
+ ment learning with a stochastic actor. In International
1158
+ conference on machine learning, pp. 1861–1870. PMLR,
1159
+ 2018.
1160
+ Howard, R. A. and Matheson, J. E. Risk-sensitive markov
1161
+ decision processes. Management science, 18(7):356–369,
1162
+ 1972.
1163
+ Jin, C., Krishnamurthy, A., Simchowitz, M., and Yu, T.
1164
+ Reward-free exploration for reinforcement learning. In
1165
+ International Conference on Machine Learning, pp. 4870–
1166
+ 4879. PMLR, 2020.
1167
+ Kim, S. W., Zhou, Y., Philion, J., Torralba, A., and Fi-
1168
+ dler, S. Learning to simulate dynamic environments with
1169
+ gamegan. In Proceedings of the IEEE/CVF Conference
1170
+ on Computer Vision and Pattern Recognition, pp. 1231–
1171
+ 1240, 2020.
1172
+ Kocsis, L. and Szepesv´ari, C. Bandit based monte-carlo
1173
+ planning. In European conference on machine learning,
1174
+ pp. 282–293. Springer, 2006.
1175
+ Levin, D. A. and Peres, Y. Markov chains and mixing times,
1176
+ volume 107. American Mathematical Soc., 2017.
1177
+ Li, G., Wei, Y., Chi, Y., Gu, Y., and Chen, Y. Softmax
1178
+ policy gradient methods can take exponential time to
1179
+ converge. In Conference on Learning Theory, pp. 3107–
1180
+ 3110. PMLR, 2021.
1181
+ Liu, Y. and Brunskill, E. When simple exploration is sample
1182
+ efficient: Identifying sufficient conditions for random
1183
+ exploration to yield pac rl algorithms. arXiv preprint
1184
+ arXiv:1805.09045, 2018.
1185
+ Liu, Y., Zhang, K., Basar, T., and Yin, W. An improved
1186
+ analysis of (variance-reduced) policy gradient and natural
1187
+
1188
+ SoftTreeMax: Exponential Variance Reduction in Policy Gradient via Tree Search
1189
+ policy gradient methods. Advances in Neural Information
1190
+ Processing Systems, 33:7624–7636, 2020.
1191
+ Makoviychuk, V., Wawrzyniak, L., Guo, Y., Lu, M., Storey,
1192
+ K., Macklin, M., Hoeller, D., Rudin, N., Allshire, A.,
1193
+ Handa, A., et al. Isaac gym: High performance gpu-based
1194
+ physics simulation for robot learning. arXiv preprint
1195
+ arXiv:2108.10470, 2021.
1196
+ Mathkar, A. S. and Borkar, V. S. Nonlinear gossip. SIAM
1197
+ Journal on Control and Optimization, 54(3):1535–1557,
1198
+ 2016.
1199
+ Mei, J., Xiao, C., Dai, B., Li, L., Szepesv´ari, C., and Schu-
1200
+ urmans, D. Escaping the gravitational pull of softmax.
1201
+ Advances in Neural Information Processing Systems, 33:
1202
+ 21130–21140, 2020a.
1203
+ Mei, J., Xiao, C., Szepesvari, C., and Schuurmans, D. On
1204
+ the global convergence rates of softmax policy gradient
1205
+ methods. In International Conference on Machine Learn-
1206
+ ing, pp. 6820–6829. PMLR, 2020b.
1207
+ Miahi, E., MacQueen, R., Ayoub, A., Masoumzadeh, A.,
1208
+ and White, M. Resmax: An alternative soft-greedy oper-
1209
+ ator for reinforcement learning. 2021.
1210
+ Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
1211
+ J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
1212
+ land, A. K., Ostrovski, G., et al. Human-level control
1213
+ through deep reinforcement learning. nature, 518(7540):
1214
+ 529–533, 2015.
1215
+ Noorani, E. and Baras, J. S. Risk-sensitive reinforce: A
1216
+ monte carlo policy gradient algorithm for exponential
1217
+ performance criteria. In 2021 60th IEEE Conference
1218
+ on Decision and Control (CDC), pp. 1522–1527. IEEE,
1219
+ 2021.
1220
+ Papini, M., Binaghi, D., Canonaco, G., Pirotta, M., and
1221
+ Restelli, M. Stochastic variance-reduced policy gradi-
1222
+ ent. In International conference on machine learning, pp.
1223
+ 4026–4035. PMLR, 2018.
1224
+ Pelletier, M. On the almost sure asymptotic behaviour of
1225
+ stochastic algorithms. Stochastic processes and their
1226
+ applications, 78(2):217–244, 1998.
1227
+ Pham, N., Nguyen, L., Phan, D., Nguyen, P. H., Dijk, M.,
1228
+ and Tran-Dinh, Q. A hybrid stochastic policy gradient
1229
+ algorithm for reinforcement learning. In International
1230
+ Conference on Artificial Intelligence and Statistics, pp.
1231
+ 374–385. PMLR, 2020.
1232
+ Puterman, M. L.
1233
+ Markov decision processes: discrete
1234
+ stochastic dynamic programming. John Wiley & Sons,
1235
+ 2014.
1236
+ Raffin, A., Hill, A., Ernestus, M., Gleave, A., Kanervisto,
1237
+ A., and Dormann, N. Stable baselines3, 2019.
1238
+ Rosenberg, A., Hallak, A., Mannor, S., Chechik, G., and
1239
+ Dalal, G. Planning and learning with adaptive lookahead.
1240
+ arXiv preprint arXiv:2201.12403, 2022.
1241
+ Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K.,
1242
+ Sifre, L., Schmitt, S., Guez, A., Lockhart, E., Hassabis,
1243
+ D., Graepel, T., et al. Mastering atari, go, chess and shogi
1244
+ by planning with a learned model. Nature, 588(7839):
1245
+ 604–609, 2020.
1246
+ Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
1247
+ Klimov, O. Proximal policy optimization algorithms.
1248
+ arXiv preprint arXiv:1707.06347, 2017.
1249
+ Shen, Z., Ribeiro, A., Hassani, H., Qian, H., and Mi, C. Hes-
1250
+ sian aided policy gradient. In International conference
1251
+ on machine learning, pp. 5729–5738. PMLR, 2019.
1252
+ Silver, D. Reinforcement learning and simulation-based
1253
+ search in computer go. 2009.
1254
+ Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
1255
+ Van Den Driessche, G., Schrittwieser, J., Antonoglou, I.,
1256
+ Panneershelvam, V., Lanctot, M., et al. Mastering the
1257
+ game of go with deep neural networks and tree search.
1258
+ nature, 529(7587):484–489, 2016.
1259
+ Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai,
1260
+ M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Grae-
1261
+ pel, T., et al. A general reinforcement learning algorithm
1262
+ that masters chess, shogi, and go through self-play. Sci-
1263
+ ence, 362(6419):1140–1144, 2018.
1264
+ Sutton, R. S., McAllester, D., Singh, S., and Mansour, Y.
1265
+ Policy gradient methods for reinforcement learning with
1266
+ function approximation. Advances in neural information
1267
+ processing systems, 12, 1999.
1268
+ Szepesv´ari, C. Algorithms for reinforcement learning. Syn-
1269
+ thesis lectures on artificial intelligence and machine
1270
+ learning, 4(1):1–103, 2010.
1271
+ Tarbouriech, J. and Lazaric, A. Active exploration in markov
1272
+ decision processes. In The 22nd International Confer-
1273
+ ence on Artificial Intelligence and Statistics, pp. 974–982.
1274
+ PMLR, 2019.
1275
+ Thomas, P. S. and Brunskill, E.
1276
+ Policy gradient meth-
1277
+ ods for reinforcement learning with function approxi-
1278
+ mation and action-dependent baselines. arXiv preprint
1279
+ arXiv:1706.06643, 2017.
1280
+ Weaver, L. and Tao, N. The optimal reward baseline for
1281
+ gradient-based reinforcement learning. In Proceedings
1282
+ of the Seventeenth conference on Uncertainty in artificial
1283
+ intelligence, pp. 538–545, 2001.
1284
+
1285
+ SoftTreeMax: Exponential Variance Reduction in Policy Gradient via Tree Search
1286
+ Wu, C., Rajeswaran, A., Duan, Y., Kumar, V., Bayen, A. M.,
1287
+ Kakade, S., Mordatch, I., and Abbeel, P. Variance reduc-
1288
+ tion for policy gradient with action-dependent factorized
1289
+ baselines. In International Conference on Learning Rep-
1290
+ resentations, 2018.
1291
+ Xu, P., Gao, F., and Gu, Q. An improved convergence
1292
+ analysis of stochastic variance-reduced policy gradient.
1293
+ In Uncertainty in Artificial Intelligence, pp. 541–551.
1294
+ PMLR, 2020.
1295
+ Ye, W., Liu, S., Kurutach, T., Abbeel, P., and Gao, Y. Mas-
1296
+ tering atari games with limited data. Advances in Neural
1297
+ Information Processing Systems, 34:25476–25488, 2021.
1298
+ Zhang, J., Ni, C., Szepesvari, C., Wang, M., et al. On the
1299
+ convergence and sample efficiency of variance-reduced
1300
+ policy gradient method. Advances in Neural Information
1301
+ Processing Systems, 34:2228–2240, 2021.
1302
+
1303
+ SoftTreeMax: Exponential Variance Reduction in Policy Gradient via Tree Search
1304
+ A. Appendix
1305
+ A.1. Proofs
1306
+ A.1.1. PROOF OF LEMMA 4.1 – BOUND ON THE POLICY GRADIENT VARIANCE
1307
+ For any parametric policy πθ and function Q : S × A → R,
1308
+ Var (∇θ log πθ(a|s)Q(s, a)) ≤ max
1309
+ s,a [Q(s, a)]2 max
1310
+ s
1311
+ ||∇θ log πθ(·|s)||2
1312
+ F ,
1313
+ where ∇θ log πθ(·|s) ∈ RA×dim(θ) is a matrix whose a-th row is ∇θ log πθ(a|s)⊤.
1314
+ Proof. The variance for a parametric policy πθ is given as follows:
1315
+ Var (∇θ log πθ(a|s)Q(a, s)) =Es∼µπθ ,a∼πθ(·|s)
1316
+
1317
+ ∇θ log πθ(a|s)⊤∇θ log πθ(a|s)Q(s, a)2�
1318
+
1319
+ Es∼ρπθ ,a∼πθ(·|s) [∇θ log πθ(a|s)Q(s, a)]⊤ Es∼µπθ ,a∼πθ(·|s) [∇θ log πθ(a|s)Q(s, a)] ,
1320
+ where Q(s, a) is the currently estimated Q-function and µπθ is the stationary distribution induced by following the policy
1321
+ πθ. Since the second term we subtract is always positive (it is of quadratic form v⊤v) we can bound the variance by the first
1322
+ term:
1323
+ Var (∇θ log πθ(a|s)Q(a, s)) ≤Es∼µπθ ,a∼πθ(·|s)
1324
+
1325
+ ∇θ log πθ(a|s)⊤∇θ log πθ(a|s)Q(s, a)2�
1326
+ =
1327
+
1328
+ s
1329
+ µπθ(s)
1330
+
1331
+ a
1332
+ πθ(a|s)∇θ log πθ(a|s)⊤∇θ log πθ(a|s)Q(s, a)2
1333
+ ≤ max
1334
+ s,a
1335
+
1336
+ [Q(s, a)]2 πθ(a|s)
1337
+ � �
1338
+ s
1339
+ µπθ(s)
1340
+
1341
+ a
1342
+ ∇θ log πθ(a|s)⊤∇θ log πθ(a|s)
1343
+ ≤ max
1344
+ s,a [Q(s, a)]2 max
1345
+ s
1346
+
1347
+ a
1348
+ ∇θ log πθ(a|s)⊤∇θ log πθ(a|s)
1349
+ = max
1350
+ s,a [Q(s, a)]2 max
1351
+ s
1352
+ ||∇θ log πθ(·|s)||2
1353
+ F .
1354
+ A.1.2. PROOF OF LEMMA 4.2 – VECTOR FORM OF C-SOFTTREEMAX
1355
+ In vector form, (3) is given by
1356
+ πC
1357
+ d,θ(·|s) =
1358
+ exp
1359
+
1360
+ β
1361
+
1362
+ Cs,d + γdPs (P πb)d−1 Θ
1363
+ ��
1364
+ 1⊤
1365
+ A exp
1366
+
1367
+ β
1368
+
1369
+ Cs,d + γdPs (P πb)d−1 Θ
1370
+ ��,
1371
+ (10)
1372
+ where
1373
+ Cs,d = Rs + Ps
1374
+ �d−1
1375
+
1376
+ h=1
1377
+ γh (P πb)h−1
1378
+
1379
+ Rπb.
1380
+ (11)
1381
+ Proof. Consider the vector ℓs,· ∈ R|A|. Its expectation satisfies
1382
+ Eπbℓs,·(d; θ) = Eπb
1383
+ �d−1
1384
+
1385
+ t=0
1386
+ γtrt + γdθ(sd)
1387
+
1388
+ = Rs +
1389
+ d−1
1390
+
1391
+ t=1
1392
+ γtPs(P πb)t−1Rπb + γdPs(P πb)d−1Θ.
1393
+ As required.
1394
+
1395
+ SoftTreeMax: Exponential Variance Reduction in Policy Gradient via Tree Search
1396
+ A.1.3. PROOF OF LEMMA 4.3 – GRADIENT OF C-SOFTTREEMAX
1397
+ The C-SoftTreeMax gradient of dimension A × S is given by
1398
+ ∇θ log πC
1399
+ d,θ = βγd �
1400
+ IA − 1A(πC
1401
+ d,θ)⊤�
1402
+ Ps (P πb)d−1 ,
1403
+ where for brevity, we drop the s index in the policy above, i.e., πC
1404
+ d,θ ≡ πC
1405
+ d,θ(·|s).
1406
+ Proof. The (j, k)-th entry of ∇θ log πC
1407
+ d,θ satisifes
1408
+ [∇θ log πC
1409
+ d,θ]j,k =
1410
+ ∂ log(πC
1411
+ d,θ(aj|s))
1412
+ ∂θ(sk)
1413
+ = βγd[Ps(P πb)d−1]j,k −
1414
+
1415
+ a
1416
+
1417
+ exp
1418
+
1419
+ β
1420
+
1421
+ Cs,d + γdPs (P πb)d−1 Θ
1422
+ ���
1423
+ a βγd �
1424
+ Ps(P πb)d−1�
1425
+ a,k
1426
+ 1⊤
1427
+ A exp
1428
+
1429
+ β
1430
+
1431
+ Cs,d + γdPs (P πb)d−1 Θ
1432
+ ��
1433
+ = βγd[Ps(P πb)d−1]j,k − βγd �
1434
+ a
1435
+ πC
1436
+ d,θ(a|s)
1437
+
1438
+ Ps(P πb)d−1�
1439
+ a,k
1440
+ = βγd[Ps(P πb)d−1]j,k − βγd �
1441
+ (πC
1442
+ d,θ)⊤Ps(P πb)d−1�
1443
+ k
1444
+ = βγd[Ps(P πb)d−1]j,k − βγd �
1445
+ 1A(πC
1446
+ d,θ)⊤Ps(P πb)d−1�
1447
+ j,k .
1448
+ Now, moving back to matrix form, we obtain the lemma.
1449
+ A.1.4. PROOF OF THEOREM 4.4 – EXPONENTIAL VARIANCE DECAY OF C-SOFTTREEMAX
1450
+ The C-SoftTreeMax policy gradient is bounded by
1451
+ Var
1452
+
1453
+ ∇θ log πC
1454
+ d,θ(a|s)Q(s, a)
1455
+
1456
+ ≤ 2 A2S2β2
1457
+ (1 − γ)2 γ2d|λ2(P πb)|2(d−1).
1458
+ Proof. We use Lemma 4.1 directly. First of all, it is know that when the reward is bounded in [0, 1], the maximal value of
1459
+ the Q-function is
1460
+ 1
1461
+ 1−γ as the sum as infinite discounted rewards. Next, we bound the Frobenius norm of the term achieved in
1462
+ Lemma 4.3, by applying the eigen-decomposition on P πb:
1463
+ P πb = 1Sµ⊤ +
1464
+ S
1465
+
1466
+ i=2
1467
+ λiuiv⊤
1468
+ i ,
1469
+ (12)
1470
+ where µ is the stationary distribution of P πb, and ui and vi are left and right eigenvectors correspondingly.
1471
+ ||βγd �
1472
+ IA,A − 1Aπ⊤�
1473
+ Ps(P πb)d−1||F = βγd||
1474
+
1475
+ IA,A − 1Aπ⊤�
1476
+ Ps
1477
+
1478
+ 1Sµ⊤ +
1479
+ S
1480
+
1481
+ i=2
1482
+ λd−1
1483
+ i
1484
+ uiv⊤
1485
+ i
1486
+
1487
+ ||F
1488
+ (Ps is stochastic)
1489
+ = βγd||
1490
+
1491
+ IA,A − 1Aπ⊤�
1492
+
1493
+ 1Aµ⊤ +
1494
+ S
1495
+
1496
+ i=2
1497
+ λd−1
1498
+ i
1499
+ Psuiv⊤
1500
+ i
1501
+
1502
+ ||F
1503
+ (projection nullifies 1Aµ⊤)
1504
+ = βγd||
1505
+
1506
+ IA,A − 1Aπ⊤�
1507
+ � S
1508
+
1509
+ i=2
1510
+ λd−1
1511
+ i
1512
+ Psuiv⊤
1513
+ i
1514
+
1515
+ ||F
1516
+ (triangle inequality)
1517
+ ≤ βγd
1518
+ S
1519
+
1520
+ i=2
1521
+ ||
1522
+
1523
+ IA,A − 1Aπ⊤� �
1524
+ λd−1
1525
+ i
1526
+ Psuiv⊤
1527
+ i
1528
+
1529
+ ||F
1530
+ (matrix norm sub-multiplicativity)
1531
+ ≤ βγd|λd−1
1532
+ 2
1533
+ |
1534
+ S
1535
+
1536
+ i=2
1537
+ ||IA,A − 1Aπ⊤||F ||Ps||F ||uiv⊤
1538
+ i ||F
1539
+ = βγd|λd−1
1540
+ 2
1541
+ |(S − 1)||IA,A − 1Aπ⊤||F ||Ps||F
1542
+
1543
+ SoftTreeMax: Exponential Variance Reduction in Policy Gradient via Tree Search
1544
+ Now we can bound the norm ||IA,A − 1Aπ⊤||F by direct calculation:
1545
+ ||IA,A − 1Aπ⊤||2
1546
+ F = Tr
1547
+ ��
1548
+ IA,A − 1Aπ⊤� �
1549
+ IA,A − 1Aπ⊤�⊤�
1550
+ (13)
1551
+ = Tr
1552
+
1553
+ IA,A − 1Aπ⊤ − π1⊤
1554
+ A + π⊤π1A1⊤
1555
+ A
1556
+
1557
+ (14)
1558
+ = A − 1 − 1 + Aπ⊤π
1559
+ (15)
1560
+ ≤ 2A
1561
+ (16)
1562
+ And from the Cauchy-Schwartz inequality:
1563
+ ||Ps||2
1564
+ F =
1565
+
1566
+ a
1567
+
1568
+ s
1569
+ [[Ps]a,s]2 =
1570
+
1571
+ a
1572
+ ||[Ps]a,·||2
1573
+ 2 ≤
1574
+
1575
+ a
1576
+ ||[Ps]a,·||1||[Ps]a,·||∞ ≤ A.
1577
+ So:
1578
+ Var
1579
+
1580
+ ∇θ log πC
1581
+ d,θ(a|s)Q(s, a)
1582
+
1583
+ ≤ max
1584
+ s,a [Q(s, a)]2 max
1585
+ s
1586
+ ||∇θ log πC
1587
+ d,θ(·|s)||2
1588
+ F
1589
+
1590
+ 1
1591
+ (1 − γ)2 ||βγd �
1592
+ IA,A − 1Aπ⊤�
1593
+ Ps(P πb)d−1||2
1594
+ F
1595
+
1596
+ 1
1597
+ (1 − γ)2 β2γ2d|λ2(P πb)|2(d−1)S2(2A2)
1598
+ Which obtains the desired bound.
1599
+ A.1.5. A LOWER BOUND ON C-SOFTTREEMAX GRADIENT (RESULT NOT IN THE PAPER)
1600
+ For completeness we also supply a lower bound on the Frobenius norm of the gradient. Note that this result does not
1601
+ translate to the a lower bound on the variance since we have no lower bound equivalence of Lemma 4.1.
1602
+ Lemma A.1. The Frobenius norm on the gradient of the policy is lower-bounded by:
1603
+ ||∇θ log πC
1604
+ d,θ(·|s)||F ≥ C · βγd|λ2(P πb)|(d−1).
1605
+ (17)
1606
+ Proof. We begin by moving to the induced l2 norm by norm-equivalence:
1607
+ ||βγd �
1608
+ IA,A − 1Aπ⊤�
1609
+ Ps(P πb)d−1||F ≥ ||βγd �
1610
+ IA,A − 1Aπ⊤�
1611
+ Ps(P πb)d−1||2
1612
+ Now, taking the vector u to be the eigenvector of the second eigenvalue of P πb:
1613
+ ||βγd �
1614
+ IA,A − 1Aπ⊤�
1615
+ Ps(P πb)d−1||2 ≥ ||βγd �
1616
+ IA,A − 1Aπ⊤�
1617
+ Ps(P πb)d−1u||2
1618
+ = βγd||
1619
+
1620
+ IA,A − 1Aπ⊤�
1621
+ Psu||2
1622
+ = βγd|λ2(P πb)|(d−1)||
1623
+
1624
+ IA,A − 1Aπ⊤�
1625
+ Psu||2
1626
+ Note that even though Psu can be 0, that is not the common case since we can freely change πb (and therefore the
1627
+ eigenvectors of P πb).
1628
+ A.1.6. PROOF OF LEMMA 4.5 – VECTOR FORM OF E-SOFTTREEMAX
1629
+ For d ≥ 1, (4) is given by
1630
+ πE
1631
+ d,θ(·|s) =
1632
+ Es,d exp(βγdΘ)
1633
+ 1⊤
1634
+ AEs,d exp(βγdΘ),
1635
+ (18)
1636
+ where
1637
+ Es,d = Ps
1638
+ d−1
1639
+
1640
+ h=1
1641
+
1642
+ D
1643
+
1644
+ exp[βγhR]
1645
+
1646
+ P πb�
1647
+ (19)
1648
+ with R being the |S|-dimensional vector whose s-th coordinate is r(s).
1649
+
1650
+ SoftTreeMax: Exponential Variance Reduction in Policy Gradient via Tree Search
1651
+ Proof. Recall that
1652
+ ℓs,a(d; θ) = r(s) +
1653
+ d−1
1654
+
1655
+ t=1
1656
+ γtr(st) + γdθ(sd).
1657
+ (20)
1658
+ and, hence,
1659
+ exp[βℓs,a(d; θ)] = exp
1660
+
1661
+ β
1662
+
1663
+ r(s) +
1664
+ d−1
1665
+
1666
+ t=1
1667
+ γtr(st) + γdθ(sd)
1668
+ ��
1669
+ .
1670
+ (21)
1671
+ Therefore,
1672
+ E[exp βℓs,a(d; θ)] = E
1673
+
1674
+ exp
1675
+
1676
+ β
1677
+
1678
+ r(s) +
1679
+ d−1
1680
+
1681
+ t=1
1682
+ γtr(st)
1683
+ ��
1684
+ E
1685
+
1686
+ exp
1687
+
1688
+ β
1689
+
1690
+ γdθ(sd)
1691
+ ����s1, . . . , sd−1
1692
+
1693
+
1694
+ (22)
1695
+ = E
1696
+
1697
+ exp
1698
+
1699
+ β
1700
+
1701
+ r(s) +
1702
+ d−1
1703
+
1704
+ t=1
1705
+ γtr(st)
1706
+ ��
1707
+ P πb(·|sd−1)
1708
+
1709
+ exp(βγdΘ)
1710
+ (23)
1711
+ = E
1712
+
1713
+ exp
1714
+
1715
+ β
1716
+
1717
+ r(s) +
1718
+ d−2
1719
+
1720
+ t=1
1721
+ γtr(st)
1722
+ ��
1723
+ exp[βγd−1r(sd−1)]P πb(·|sd−1)
1724
+
1725
+ exp(βγdΘ).
1726
+ (24)
1727
+ By repeatedly using iterative conditioning as above, the desired result follows. Note that exp(βr(s)) does not depend on the
1728
+ action and is therefore cancelled out with the denominator.
1729
+ A.1.7. PROOF OF LEMMA 4.6 – GRADIENT OF E-SOFTTREEMAX
1730
+ The E-SoftTreeMax gradient of dimension A × S is given by
1731
+ ∇θ log πE
1732
+ d,θ = βγd �
1733
+ IA − 1A(πE
1734
+ d,θ)⊤� D
1735
+
1736
+ πE
1737
+ d,θ
1738
+ �−1
1739
+ Es,dD(exp(βγdΘ))
1740
+ 1⊤
1741
+ AEs,d exp(βγdΘ)
1742
+ ,
1743
+ where for brevity, we drop the s index in the policy above, i.e., πE
1744
+ d,θ ≡ πE
1745
+ d,θ(·|s).
1746
+ Proof. The (j, k)-th entry of ∇θ log πE
1747
+ d,θ satisfies
1748
+ [∇θ log πE
1749
+ d,θ]j,k =
1750
+ ∂ log(πE
1751
+ d,θ(aj|s))
1752
+ ∂θ(sk)
1753
+ =
1754
+
1755
+ ∂θ(sk)
1756
+
1757
+ log[(Es,d)⊤
1758
+ j exp(βγdΘ)] − log[1⊤
1759
+ AEs,d exp(βγdΘ)]
1760
+
1761
+ = βγd(Es,d)j,k exp(βγdθ(sk))
1762
+ (Es,d)⊤
1763
+ j exp(βγdΘ)
1764
+ − βγd1⊤
1765
+ AEs,dek exp(βγdθ(sk))
1766
+ 1⊤
1767
+ AEs,d exp(βγdΘ)
1768
+ = βγd(Es,dek exp(βγdθ(sk)))j
1769
+ (Es,d)⊤
1770
+ j exp(βγdΘ)
1771
+ − βγd1⊤
1772
+ AEs,dek exp(βγdθ(sk))
1773
+ 1⊤
1774
+ AEs,d exp(βγdΘ)
1775
+ = βγd
1776
+
1777
+ e⊤
1778
+ j
1779
+ e⊤
1780
+ j Es,d exp(βγdΘ) −
1781
+ 1⊤
1782
+ A
1783
+ 1⊤
1784
+ AEs,d exp(βγdΘ)
1785
+
1786
+ Es,dek exp(βγdθ(sk)).
1787
+ Hence,
1788
+ [∇θ log πE
1789
+ d,θ]·,k = βγd �
1790
+ D(Es,d exp(βγdΘ))−1 − (1⊤
1791
+ AEs,d exp(βγdΘ))−11A1⊤
1792
+ A
1793
+
1794
+ Es,dek exp(βγdθ(sk))
1795
+ From this, it follows that
1796
+ ∇θ log πE
1797
+ d,θ = βγd �
1798
+ D
1799
+
1800
+ πE
1801
+ d,θ
1802
+ �−1 − 1A1⊤
1803
+ A
1804
+ � Es,dD(exp(βγdΘ))
1805
+ 1⊤
1806
+ AEs,d exp(βγdΘ)
1807
+ .
1808
+ (25)
1809
+ The desired result is now easy to see.
1810
+
1811
+ SoftTreeMax: Exponential Variance Reduction in Policy Gradient via Tree Search
1812
+ A.1.8. PROOF OF THEOREM 4.7 — EXPONENTIAL VARIANCE DECAY OF E-SOFTTREEMAX
1813
+ There exists α ∈ (0, 1) such that, for any function Q : S × A → R,
1814
+ Var
1815
+
1816
+ ∇θ log πE
1817
+ d,θ(a|s)Q(s, a)
1818
+
1819
+ ∈ O
1820
+
1821
+ β2γ2dα2d�
1822
+ .
1823
+ If all rewards are equal (r ≡ const), then α = |λ2(P πb)|.
1824
+ Proof. Let d ≥ 2. Recall that
1825
+ Es,d = Ps
1826
+ d−1
1827
+
1828
+ h=1
1829
+
1830
+ D
1831
+
1832
+ exp[βγhR]
1833
+
1834
+ P πb�
1835
+ ,
1836
+ (26)
1837
+ and that R refers to the S-dimensional vector whose s-th coordinate is r(s). Define
1838
+ Bi =
1839
+
1840
+ P πb
1841
+ if i = d − 1,
1842
+ D−1(P πbMi+1)P πbD(Mi+1)
1843
+ if i = 1, . . . , d − 2,
1844
+ (27)
1845
+ and the vector
1846
+ Mi =
1847
+
1848
+ exp(βγd−1R)
1849
+ if i = d,
1850
+ exp(βγiR) ◦ P πbMi+1
1851
+ if i = 1, . . . , d − 2,
1852
+ (28)
1853
+ where ◦ denotes the element-wise product. Then,
1854
+ Es,d = PsD(M1)
1855
+ d−1
1856
+
1857
+ i=1
1858
+ Bi.
1859
+ (29)
1860
+ It is easy to see that each Bi is a row-stochastic matrix, i.e., all entries are non-negative and Bi1S = 1S.
1861
+ Next, we prove that all non-zeros entries of Bi are bounded away from 0 by a constant. This is necessary to apply the next
1862
+ result from (Chatterjee & Seneta, 1977). The j-th coordinate of Mi satisfies
1863
+ (Mi)j = exp[βγiRj]
1864
+
1865
+ k
1866
+ [P πb]j,k(Mi+1)k ≤ ∥ exp[βγiR]∥∞∥Mi+1∥∞.
1867
+ (30)
1868
+ Separately, observe that ∥Md−1∥∞ ≤ ∥ exp(βγd−1R)∥∞. Plugging these relations in (28) gives
1869
+ ∥M1∥∞ ≤
1870
+ d−1
1871
+
1872
+ h=1
1873
+ ∥ exp[βγhR]∥∞ =
1874
+ d−1
1875
+
1876
+ h=1
1877
+ ∥ exp[βR]∥γh
1878
+ ∞ = ∥ exp[βR]∥
1879
+ �d−1
1880
+ h=1 γh
1881
+
1882
+ ≤ ∥ exp[βR]∥
1883
+ 1
1884
+ 1−γ
1885
+ ∞ .
1886
+ (31)
1887
+ Similarly, for every 1 ≤ i ≤ d − 1, we have that
1888
+ ∥Mi∥∞ ≤
1889
+ d−1
1890
+
1891
+ h=i
1892
+ ∥ exp[βR]∥γh
1893
+ ∞ ≤ ∥ exp[βR]∥
1894
+ 1
1895
+ 1−γ
1896
+ ∞ .
1897
+ (32)
1898
+ The jk-th entry of Bi = D−1(P πbMi+1)P πbD(Mi+1) is
1899
+ (Bi)jk =
1900
+ P πb
1901
+ jk [Mi+1]k
1902
+ �|S|
1903
+ ℓ=1 P πb
1904
+ jℓ [Mi+1]ℓ
1905
+
1906
+ P πb
1907
+ jk
1908
+ �|S|
1909
+ ℓ=1 P πb
1910
+ jℓ [Mi+1]ℓ
1911
+
1912
+ P πb
1913
+ jk
1914
+ ∥ exp[βR]∥
1915
+ 1
1916
+ 1−γ
1917
+
1918
+ .
1919
+ (33)
1920
+ Hence, for non-zero P πb
1921
+ jk , the entries are bounded away from zero by the same. We can now proceed with applying the
1922
+ following result.
1923
+ Now, by (Chatterjee & Seneta, 1977, Theorem 5) (see also (14) in (Mathkar & Borkar, 2016)), limd→∞
1924
+ �d−1
1925
+ i=1 Bi exists and
1926
+ is of the form 1Sµ⊤ for some probability vector µ. Furthermore, there is some α ∈ (0, 1) such that ε(d) :=
1927
+ ��d−1
1928
+ i=1 Bi
1929
+
1930
+
1931
+ 1S µ⊤ satisfies
1932
+ ∥ε(d)∥ = O(αd).
1933
+ (34)
1934
+
1935
+ SoftTreeMax: Exponential Variance Reduction in Policy Gradient via Tree Search
1936
+ Pick linearly independent vectors w2, . . . , wS such that
1937
+ µ⊤wi = 0 for i = 2, . . . , d.
1938
+ (35)
1939
+ Since �S
1940
+ i=2 αiwi is perpendicular to µ for any α2, . . . αS and because µ⊤ exp(βγdΘ) > 0, there exists no choice of
1941
+ α2, . . . , αS such that �S
1942
+ i=2 αiwi = exp(βγdΘ). Hence, if we let z1 = 1S and zi = D(exp(βγdΘ))−1wi for i = 2, . . . , S,
1943
+ then it follows that {z1, . . . , zS} is linearly independent. In particular, it implies that {z1, . . . , zS} spans RS.
1944
+ Now consider an arbitrary unit norm vector z := �S
1945
+ i=1 cizi ∈ RS s.t. ∥z∥2 = 1. Then,
1946
+ ∇θ log πE
1947
+ d,θz = ∇θ log πE
1948
+ d,θ
1949
+ S
1950
+
1951
+ i=2
1952
+ cizi
1953
+ (36)
1954
+ = βγd �
1955
+ IA − 1A(πE
1956
+ d,θ)⊤� D
1957
+
1958
+ πE
1959
+ d,θ
1960
+ �−1
1961
+ Es,dD(exp(βγdΘ))
1962
+ 1⊤
1963
+ AEs,d exp(βγdΘ)
1964
+ S
1965
+
1966
+ i=2
1967
+ cizi
1968
+ (37)
1969
+ = βγd �
1970
+ IA − 1A(πE
1971
+ d,θ)⊤� D
1972
+
1973
+ πE
1974
+ d,θ
1975
+ �−1
1976
+ Es,d
1977
+ 1⊤
1978
+ AEs,d exp(βγdΘ)
1979
+ S
1980
+
1981
+ i=2
1982
+ ciwi
1983
+ (38)
1984
+ = βγd �
1985
+ IA − 1A(πE
1986
+ d,θ)⊤� D
1987
+
1988
+ πE
1989
+ d,θ
1990
+ �−1 �
1991
+ 1Sµ⊤ + ε(d)
1992
+
1993
+ 1⊤
1994
+ AEs,d exp(βγdΘ)
1995
+ S
1996
+ ��
1997
+ i=2
1998
+ ciwi
1999
+ (39)
2000
+ = βγd �
2001
+ IA − 1A(πE
2002
+ d,θ)⊤� D
2003
+
2004
+ πE
2005
+ d,θ
2006
+ �−1
2007
+ ε(d)
2008
+ 1⊤
2009
+ AEs,d exp(βγdΘ)
2010
+ S
2011
+
2012
+ i=2
2013
+ ciwi
2014
+ (40)
2015
+ = βγd �
2016
+ IA − 1A(πE
2017
+ d,θ)⊤� D
2018
+
2019
+ πE
2020
+ d,θ
2021
+ �−1
2022
+ ε(d)D(exp(βγdΘ))
2023
+ 1⊤
2024
+ AEs,d exp(βγdΘ)
2025
+ (z − c11S),
2026
+ (41)
2027
+ where (36) follows from the fact that ∇θ log πE
2028
+ d,θz1 = ∇θ log πE
2029
+ d,θ1S = 0, (37) follows from Lemma 4.6, (38) holds
2030
+ since zi = D(exp(βγdΘ))−1wi, (40) because µ is perpendicular wi for each i, while (41) follows by reusing zi =
2031
+ D(exp(βγdΘ))−1wi relation along with the fact that z1 = 1S.
2032
+
2033
+ SoftTreeMax: Exponential Variance Reduction in Policy Gradient via Tree Search
2034
+ From (41), it follows that
2035
+ ∥∇θ log πE
2036
+ d,θz∥ ≤ βγd∥ε(d)∥
2037
+ �������
2038
+
2039
+ IA − 1A(πE
2040
+ d,θ)⊤�
2041
+ D
2042
+
2043
+ πE
2044
+ d,θ
2045
+ �−1
2046
+ 1⊤
2047
+ AEs,d exp(βγdΘ)
2048
+ �������
2049
+ ∥D(exp(βγdΘ))∥ ∥z − c11S∥
2050
+ (42)
2051
+ ≤ βγdαd(∥IA∥ + ∥1A(πE
2052
+ d,θ)⊤∥)
2053
+ �������
2054
+ D
2055
+
2056
+ πE
2057
+ d,θ
2058
+ �−1
2059
+ 1⊤
2060
+ AEs,d exp(βγdΘ)
2061
+ �������
2062
+ exp(βγd max
2063
+ s
2064
+ θ(s))∥z − c11S∥
2065
+ (43)
2066
+ ≤ βγdαd(1 +
2067
+
2068
+ A)
2069
+ �������
2070
+ D
2071
+
2072
+ πE
2073
+ d,θ
2074
+ �−1
2075
+ 1⊤
2076
+ AEs,d exp(βγdΘ)
2077
+ �������
2078
+ exp(βγd max
2079
+ s
2080
+ θ(s))∥z − c11S∥
2081
+ (44)
2082
+ ≤ βγdαd(1 +
2083
+
2084
+ A)
2085
+ ��D−1(Es,d exp(βγdΘ))
2086
+ �� exp(βγd max
2087
+ s
2088
+ θ(s))∥z − c11S∥
2089
+ (45)
2090
+ ≤ βγdαd(1 +
2091
+
2092
+ A)
2093
+ 1
2094
+ mins[Es,d exp(βγdΘ]s
2095
+ exp(βγd max
2096
+ s
2097
+ θ(s))∥z − c11S∥
2098
+ (46)
2099
+ ≤ βγdαd(1 +
2100
+
2101
+ A)
2102
+ exp(βγd maxs θ(s))
2103
+ exp(βγd mins θ(s)) mins |M1|∥z − c11S∥
2104
+ (47)
2105
+ ≤ βγdαd(1 +
2106
+
2107
+ A)
2108
+ exp(βγd maxs θ(s))
2109
+ exp(βγd mins θ(s)) exp(β mins r(s))∥z − c11S∥
2110
+ (48)
2111
+ ≤ βγdαd(1 +
2112
+
2113
+ A) exp(β[max
2114
+ s
2115
+ θ(s) − min
2116
+ s
2117
+ θ(s) − min
2118
+ s
2119
+ r(s)])∥z − c11S∥.
2120
+ (49)
2121
+ Lastly, we prove that ∥z−c11S∥ is bounded independently of d. First, denote by c = (c1, . . . , cS)⊤ and ˜c = (0, c2, . . . , cS)⊤.
2122
+ Also, denote by Z the matrix with zi as its i-th column. Now,
2123
+ ∥z − c11S∥ = ∥
2124
+ S
2125
+
2126
+ i=2
2127
+ cizi∥
2128
+ (50)
2129
+ = ∥Z˜c∥
2130
+ (51)
2131
+ ≤ ∥Z∥∥˜c∥
2132
+ (52)
2133
+ ≤ ∥Z∥∥c∥
2134
+ (53)
2135
+ = ∥Z∥∥Z−1z∥
2136
+ (54)
2137
+ ≤ ∥Z∥∥Z−1∥,
2138
+ (55)
2139
+ where the last relation is due to z being a unit vector. All matrix norms here are l2-induced norms.
2140
+ Next, denote by W the matrix with wi in its i-th column. Recall that in (35) we only defined w2, . . . , wS. We now set
2141
+ w1 = exp(βγdΘ). Note that w1 is linearly independent of {w2, . . . , wS} because of (35) together with the fact that
2142
+ µ⊤w1 > 0. We can now express the relation between Z and W by Z = D−1(exp(βγdΘ))W. Substituting this in (55), we
2143
+ have
2144
+ ∥z − c11S∥ ≤ ∥D−1(exp(βγdΘ))W∥∥W −1D(exp(βγdΘ))∥
2145
+ (56)
2146
+ ≤ ∥W∥∥W −1∥∥D(exp(βγdΘ))∥∥D−1(exp(βγdΘ))∥.
2147
+ (57)
2148
+ It further holds that
2149
+ ∥D(exp(βγdΘ))∥ ≤ max
2150
+ s
2151
+ exp
2152
+
2153
+ βγdθ(s)
2154
+
2155
+ ≤ max{1, exp[β max
2156
+ s
2157
+ θ(s)])},
2158
+ (58)
2159
+ where the last relation equals 1 if θ(s) < 0 for all s. Similarly,
2160
+ ∥D−1(exp(βγdΘ))∥ ≤
2161
+ 1
2162
+ mins exp (βγdθ(s)) ≤
2163
+ 1
2164
+ min{1, exp[β mins θ(s)])}.
2165
+ (59)
2166
+
2167
+ SoftTreeMax: Exponential Variance Reduction in Policy Gradient via Tree Search
2168
+ Furthermore, by the properties of the l2-induced norm,
2169
+ ∥W∥2 ≤
2170
+
2171
+ S∥W∥1
2172
+ (60)
2173
+ =
2174
+
2175
+ S max
2176
+ 1≤i≤S ∥wi∥1
2177
+ (61)
2178
+ =
2179
+
2180
+ S max{exp(βγdΘ), max
2181
+ 2≤i≤S ∥wi∥1}
2182
+ (62)
2183
+
2184
+
2185
+ S max{1, exp[β max
2186
+ s
2187
+ θ(s)], max
2188
+ 2≤i≤S ∥wi∥1)}.
2189
+ (63)
2190
+ Lastly,
2191
+ ∥W −1∥ =
2192
+ 1
2193
+ σmin(W)
2194
+ (64)
2195
+
2196
+ �S−1
2197
+
2198
+ i=1
2199
+ σmax(W)
2200
+ σi(W)
2201
+
2202
+ 1
2203
+ σmin(W)
2204
+ (65)
2205
+ = (σmax(W))S−1
2206
+ �S
2207
+ i=1 σi(W)
2208
+ (66)
2209
+ = ∥W∥S−1
2210
+ | det(W)|.
2211
+ (67)
2212
+ The determinant of W is a sum of products involving its entries. To upper bound (67) independently of d, we lower bound
2213
+ its determinant by upper and lower bounds on the entries [W]i,1 that are independent of d, depending on their sign:
2214
+ min{1, exp[β min
2215
+ s
2216
+ θ(s)])} ≤ [W]i,1 ≤ max{1, exp[β max
2217
+ s
2218
+ θ(s)])}.
2219
+ (68)
2220
+ Using this, together with (55), (57), (58), (59), and (63), we showed that ∥z − c11S∥ is upper bounded by a constant
2221
+ independent of d. This concludes the proof.
2222
+
09FQT4oBgHgl3EQfEDVH/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
0dE1T4oBgHgl3EQfRgML/content/tmp_files/2301.03052v1.pdf.txt ADDED
@@ -0,0 +1,826 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ AI Maintenance:
2
+ A Robustness Perspective
3
+ Pin-Yu Chen and Payel Das
4
+ IBM Research
5
+ pin-yu.chen@ibm.com and daspa@us.ibm.com
6
+ Abstract—With the advancements in machine learning (ML) methods and compute resources,
7
+ artificial intelligence (AI) empowered systems are becoming a prevailing technology. However,
8
+ current AI technology such as deep learning is not flawless. The significantly increased model
9
+ complexity and data scale incur intensified challenges when lacking trustworthiness and
10
+ transparency, which could create new risks and negative impacts. In this paper, we carve out AI
11
+ maintenance from the robustness perspective. We start by introducing some highlighted
12
+ robustness challenges in the AI lifecycle and motivating AI maintenance by making analogies to
13
+ car maintenance. We then propose an AI model inspection framework to detect and mitigate
14
+ robustness risks. We also draw inspiration from vehicle autonomy to define the levels of AI
15
+ robustness automation. Our proposal for AI maintenance facilitates robustness assessment,
16
+ status tracking, risk scanning, model hardening, and regulation throughout the AI lifecycle,
17
+ which is an essential milestone toward building sustainable and trustworthy AI ecosystems.
18
+ 1. Introduction
19
+ Just like the indispensable role of cars in the
20
+ modern world, AI-empowered technology, and
21
+ ML-based systems and algorithms are bringing
22
+ revolutionary changes and far-reaching impacts
23
+ on our life, society, and environment, if not
24
+ happening already. As AI models are perceived
25
+ as a new “vehicle” to a better future, this article
26
+ aims to stress the importance of formalizing and
27
+ practicing AI maintenance from the robustness
28
+ perspective, by drawing analogies in the model
29
+ development and deployment between car and AI.
30
+ Towards achieving trustworthiness and sustain-
31
+ ability for AI, this article is motivated by the fol-
32
+ lowing question: Cars require regular inspection,
33
+ maintenance, and continuous status monitoring,
34
+ why should AI technology be any different?
35
+ Robustness in AI often entails multiple mean-
36
+ ings depending on the context and use cases.
37
+ In this article, we study robustness from the
38
+ perspective of the generalization capability of an
39
+ AI model in adversarial and unseen scenarios.
40
+ In general, the performance of an AI model is
41
+ evaluated in the average case, by comparing the
42
+ model predictions on a set of data samples to their
43
+ ground-truth labels and then using the average
44
+ prediction result as a performance metric, such
45
+ as the top-1 classification accuracy measuring the
46
+ fraction of correct model prediction on the most-
47
+ likely (top-1) class over a dataset. In contrast, the
48
+ adversarial scenario evaluates the model perfor-
49
+ mance in the worst case among all possible and
50
+ plausible changes (often pre-specified) to the data
51
+ and AI model, by assuming a virtual adversary is
52
+ in place. Moreover, the unseen scenario evaluates
53
+ the model performance on new data samples that
54
+ are drawn from a different data distribution than
55
+ the seen data samples during training (but not
56
+ necessarily the worst-case distribution), possibly
57
+ caused by natural data/label shifts, and real-world
58
+ observational noises, among others.
59
+ The rationale for studying AI maintenance
60
+ © preprint
61
+ 1
62
+ arXiv:2301.03052v1 [cs.LG] 8 Jan 2023
63
+
64
+ from the robustness viewpoint is motivated by
65
+ the rapidly intensified demand for inspecting and
66
+ preventing failure modes for AI models, in or-
67
+ der to understand the limitations and prepare AI
68
+ technology for the real world against malicious
69
+ attempts and contiguous data changes. According
70
+ to a recent Gartner report1, 30% of cyberattacks
71
+ by 2022 will involve data poisoning, model theft
72
+ or adversarial examples (see [1] for an overview
73
+ of these new risks centered on machine learn-
74
+ ing). However, the industry seems underprepared.
75
+ In a survey of 28 organizations spanning small
76
+ and large organizations, 25 organizations did not
77
+ know how to secure their AI/ML systems [2].
78
+ Unlike car insurances that cover damage and
79
+ liability, the risk of lacking robustness in AI
80
+ models can be further amplified if cyber insurance
81
+ providers impose stringent requirements when the
82
+ root cause is related to AI failure modes2. More-
83
+ over, AI maintenance is closely related to action
84
+ plans for enhancing trustworthiness in safety-
85
+ related ML applications, such as fulfilling the
86
+ milestones and objectives defined in the roadmap
87
+ of the European Union Aviation Safety Agency
88
+ (EASA)3, the AI/ML Software as a Medical
89
+ Device Action Plan defined by U.S. Food &
90
+ Drug Administration4, and the NIST AI Risk
91
+ Management Framework5.
92
+ To gain insights into AI maintenance, this ar-
93
+ ticle first introduces major robustness challenges
94
+ in the AI lifecycle for model development and
95
+ deployment. Then, we make analogies of the
96
+ commonality between car and AI maintenance.
97
+ Finally, we propose the conceptual framework
98
+ named “AI model inspector” for holistic robust-
99
+ ness inspection and enhancement. Similar to the
100
+ definitions of driving automation for vehicle au-
101
+ tonomy, we define six levels of AI robustness
102
+ towards facilitating qualitative and quantitative
103
+ assessment of AI technology throughout the en-
104
+ tire lifecycle.
105
+ 1https://www.gartner.com/smarterwithgartner/
106
+ gartner-top-10-strategic-technology-trends-for-2020
107
+ 2https://hbr.org/2020/04/the-case-for-ai-insurance
108
+ 3https://www.easa.europa.eu/newsroom-and-events/news/
109
+ easa-releases-its-concept-paper-first-usable-guidance-level-1-machine-0
110
+ 4https://www.fda.gov/medical-devices/
111
+ software-medical-device-samd/artificial-intelligence-and-machine-learning-software-medical-device
112
+ 5https://www.nist.gov/itl/ai-risk-management-framework
113
+ 2. Robustness Challenges in AI
114
+ Lifecycle
115
+ Figure 1 provides an overview of robustness
116
+ inspection pipeline in the AI lifecycle (left panel)
117
+ and the highlighted robustness challenges (right
118
+ panel). The AI lifecycle is recurring between
119
+ two phases: model development and deployment.
120
+ The model development phase consists of two
121
+ states: (i) data collection and processing, and
122
+ (ii) model training. Data collection and process-
123
+ ing include typical data operations such as data
124
+ acquisition and labeling, feature normalization,
125
+ filtering, anonymization, and data augmentation.
126
+ Model training involves machine learning model
127
+ selection, algorithm development, system design,
128
+ and optimization. Between states (i) and (ii), data
129
+ sanitization inspects the data fidelity and performs
130
+ mitigation steps (e.g., deleting problematic data
131
+ samples or correcting mislabeled samples) prior
132
+ to model training. After model development, the
133
+ AI lifecycle enters the state of (iii) model deploy-
134
+ ment, in which the trainable model parameters are
135
+ frozen for use. Between (ii) and (iii), performance
136
+ validation inspects and reduces the gap between
137
+ model training and deployment. If the deployed
138
+ model undergoes significant performance degra-
139
+ dation, possibly due to naturally occurring data
140
+ shifts or malicious attempts, the AI lifecycle will
141
+ re-enter the model development phase to collect
142
+ new data or update the model. Between (iii) and
143
+ (i), continuous monitoring inspects the perfor-
144
+ mance status of the currently deployed model
145
+ and gives a notice upon observing significant
146
+ performance degradation or detecting anomalous
147
+ events.
148
+ There are different types of robustness chal-
149
+ lenges in the model development and deployment
150
+ phases that can lead to model misbehavior and
151
+ degraded performance, varied by their objectives,
152
+ feasible actions on intervening in the AI model,
153
+ and knowledge about the AI model. In the ad-
154
+ versarial scenario, the robustness challenges can
155
+ be related to a “threat model” specifying what
156
+ an attacker can know and do to compromise the
157
+ AI model. In the unseen scenario, the robustness
158
+ challenges are associated with the domain gener-
159
+ alization capability between the development and
160
+ deployment phases. Figure 1 (right panel) lists
161
+ two highlighted robustness challenges for each
162
+ 2
163
+
164
+ Figure 1. Left: Schematic illustration of robustness inspection pipeline (data sanitization, performance
165
+ validation, and continuous monitoring) in the AI lifecycle consisting of three major states: data collection and
166
+ processing, model training, and model deployment. The model development phase includes data collection
167
+ and processing and model training. Right: Highlighted robustness challenges in the AI lifecycle. In the model
168
+ development phase, the robustness challenges assume the training data are subject to manipulation prior to
169
+ model training. In the model deployment phase, the robustness challenges have no access to the training data
170
+ but may assume some knowledge of the deployed model such as the model architecture and the associated
171
+ model parameters. Based on the categorization of states in the AI lifecycle, the chart can be extended to
172
+ incorporate other robustness challenges and other trustworthiness dimensions such as safety, privacy, etc.
173
+ phase, which are detailed as follows.
174
+ 2.1. Robustness challenges in development
175
+ phase
176
+ Data poisoning concerns the model perfor-
177
+ mance when trained on noisy data. The source of
178
+ noise may come from imperfect data collection
179
+ and processing such as incorrect data annotation,
180
+ data bias and imbalance, and context-irrelevant
181
+ spurious features. The noise may also be inten-
182
+ tionally introduced to the training data by adding
183
+ a set of poisoned data samples for the purpose of
184
+ undermining the model performance in the de-
185
+ ployment phase. For example, making the target
186
+ model has low classification errors in develop-
187
+ ment but high classification errors in deployment.
188
+ Such intentional data poisoning attacks usually
189
+ assume the ability to manipulate the training data
190
+ and have access or some partial knowledge about
191
+ the model details and training procedure [3].
192
+ Backdoor is a Trojan attack targeting machine
193
+ learning [4]. It works by injecting some pattern
194
+ (a trigger) with modified labels to a subset of
195
+ training data. Due to the memorization effect of
196
+ state-of-the-art machine learning models such as
197
+ neural networks, models trained on the tampered
198
+ dataset will contain a backdoor. In the deployment
199
+ phase, backdoored models will allow an attacker
200
+ to gain control of the model output in the presence
201
+ of the designated trigger, regardless of the actual
202
+ content of the data input. However, in the absence
203
+ of the trigger, the backdoored model will behave
204
+ like a normal model trained on the untampered
205
+ training dataset. Therefore, backdoor attacks are
206
+ stealthy because the tampered model will not
207
+ misbehave if the backdoor is inactivated. This
208
+ challenge can be amplified in distributed and de-
209
+ centralized machine learning paradigms involving
210
+ multiple parties exchanging limited information
211
+ about their local private data, such as federated
212
+ learning [5].
213
+ 2.2. Robustness challenges in deployment
214
+ phase
215
+ The deployment phase takes a fully-tuned
216
+ model in the development phase and freezes the
217
+ model for subsequent data inference tasks. A
218
+ deployed model is called a white-box model if its
219
+ details are transparent to a user (e.g., releasing a
220
+ deep learning model with its model architecture
221
+ 3
222
+
223
+ (i) Data
224
+ collection &
225
+ Robustness
226
+ processing
227
+ Challenges in
228
+ Al Lifecylce
229
+ Continuous
230
+ Data
231
+ Model
232
+ Model
233
+ Monitoring
234
+ Sanitization
235
+ Development
236
+ Deployment
237
+ Performance
238
+ Out-of-
239
+ (ili) Model
240
+ (ii) Model
241
+ Validation
242
+ Data
243
+ Adversarial
244
+ Backdoor
245
+ Distribution
246
+ deployment
247
+ training
248
+ Poisoning
249
+ Examples
250
+ Generalization
251
+ Al Lifecycle
252
+ robustness inspectionand pre-trained weights). Otherwise, if model
253
+ details are unknown (or partially known) to a user,
254
+ it is called a black-box (gray-box) model, such
255
+ as a prediction application programming interface
256
+ (API) or proprietary software that only gives
257
+ model prediction results and does not reveal other
258
+ details. For robustness assessment, the white-box
259
+ mode enables full-stack system debugging and
260
+ internal penetration testing, while the black-box
261
+ mode allows practical vulnerability and informa-
262
+ tion leakage analysis based on user access.
263
+ Adversarial examples are carefully crafted
264
+ data samples that cause prediction evasion when
265
+ compared to the original unmodified data samples
266
+ [6]. The easiness in prediction evasion reflects the
267
+ model sensitivity against small changes in data
268
+ inputs, such as a human-imperceptible additive
269
+ perturbation. The robustness challenges of adver-
270
+ sarial examples are often associated with safety-
271
+ critical and security-related AI applications, such
272
+ as autonomous driving cars, identification and
273
+ recognition, and malware detection because their
274
+ existence can be interpreted as counter-examples
275
+ that violate the required robustness constraints. In
276
+ the black-box setting, adversarial examples can be
277
+ generated by iteratively modifying a data input
278
+ based only on the model’s prediction output [7].
279
+ Out-of-distribution generalization refers to the
280
+ characterization of model performance when the
281
+ input data samples undergo certain semantic-
282
+ preserving transformations that deviate from the
283
+ seen data distribution during model training. In
284
+ contrast, in-distribution generalization refers to
285
+ the model performance on data samples or in-
286
+ stances drawn from the same distribution as the
287
+ training data or environments. The quest for out-
288
+ of-distribution generalization is motivated by re-
289
+ taining robust predictions against natural varia-
290
+ tions (their effect can be either observable or hid-
291
+ den). The examples include distributional shifts
292
+ between development and deployment phases,
293
+ data/label drifts in online data streaming, com-
294
+ mon corruptions caused by measurement/device
295
+ errors, and data-invariant operations made by
296
+ image rotation or scaling. An ideal model in
297
+ deployment should generalize well or has the
298
+ ability to quickly recognize and adapt to unseen
299
+ data samples that are out-of-distribution yet share
300
+ similar contexts to the in-distribution data seen
301
+ during training.
302
+ 3. Analogies between Car and AI
303
+ Maintenance
304
+ As AI-empowered algorithms and systems are
305
+ often perceived as a powerful yet mysterious tech-
306
+ nology to end users, we believe making analogies
307
+ to (autonomous) cars can deliver better trans-
308
+ parency and a more comprehensive understand-
309
+ ing of AI technology’s utilities and limitations.
310
+ Towards formalizing and standardizing the notion
311
+ of AI maintenance, we aim to draw connections
312
+ to a more familiar case – car maintenance – as
313
+ AI and car share many commonalities in model
314
+ development and deployment. The development
315
+ of new car models is a resource-intensive process
316
+ (e.g., electric cars). It is taken for granted that
317
+ essential regulatory and law requirements such as
318
+ reliability and safety are fully certified throughout
319
+ the development process, to avoid catastrophic
320
+ failures, fatal damage, and critical product recalls.
321
+ Similarly, AI model development can be quite ex-
322
+ pensive, especially when it comes to the training
323
+ of foundation models [8] that require pre-training
324
+ on large-scale datasets with neural networks con-
325
+ sisting of a massive number of trainable parame-
326
+ ters. Take the Generative Pre-trained Transformer
327
+ 3 (GPT-3) [9] as an example, which is one of
328
+ the largest language models ever trained to date.
329
+ GPT-3 has 175 billion parameters and is trained
330
+ on a dataset consisting of 499 billion tokens. The
331
+ estimated training cost is about 4.6 million US
332
+ dollars even with the lowest priced GPU cloud
333
+ on the market in 20206. Having invested so much,
334
+ one would expect the resulting AI model is risk-
335
+ proof and robust to be deployed.
336
+ In deployment, car maintenance involves reg-
337
+ ular mechanical and electrical inspection, perfor-
338
+ mance testing and certification, automobile part
339
+ replacement, and repair. We argue that many
340
+ familiar concepts in car maintenance can be well-
341
+ mapped to AI models. In what follows, we make
342
+ analogies between car and AI to facilitate the
343
+ consolidation of AI maintenance for robustness.
344
+ Table 1 summarizes the key terms that share
345
+ analogies between car and AI maintenance for ro-
346
+ bustness. In what follows, we divide those terms
347
+ into four categories and discuss their connections.
348
+ 6https://lambdalabs.com/blog/demystifying-gpt-3/
349
+ 4
350
+
351
+ Table 1. Analogies between car and AI models for maintenance and robustness divided into four categories.
352
+ Category
353
+ Car
354
+ AI
355
+ Model descriptions
356
+ and performance
357
+ characterization
358
+ user manual
359
+ model specification
360
+ automobile parts
361
+ machine learning modules
362
+ warrant
363
+ robustness checkpoints
364
+ transmission efficiency
365
+ memory/data/power efficiency
366
+ Systematic inspection
367
+ and monitoring
368
+ collision test & safety report
369
+ internal robustness assessment
370
+ mechanical and electrical inspection
371
+ penetration testing and debugging
372
+ problematic status warning
373
+ operational errors
374
+ health state monitoring
375
+ model behavior tracking
376
+ Fix and update
377
+ repair
378
+ model fix and update
379
+ wheel alignment
380
+ model calibration
381
+ winter tire
382
+ model hardening
383
+ flat tire response
384
+ fast adaptation
385
+ Education and
386
+ societal impacts
387
+ driver licence
388
+ AI ethics and value alignment
389
+ sustainability
390
+ green and righteous AI
391
+ 3.1. Model descriptions and performance
392
+ characterization
393
+ The “user manual” provides instructions for
394
+ an AI system, with descriptions specifying nec-
395
+ essary information for transparency and account-
396
+ ability, such as data and model training details,
397
+ privacy, usability, and impact statements regard-
398
+ ing recommended uses and possible misuse. The
399
+ “automobile parts” in AI means functional and
400
+ configurable modules in the machine learning
401
+ pipeline that can be modified and ideally stan-
402
+ dardized for the ease of model fix and update. The
403
+ “warrant” in AI means qualitative and quantitative
404
+ performance checkpoints in the development pro-
405
+ cess. The “transmission efficiency” in AI relates
406
+ to how the model scales with data, memory,
407
+ and power, such as floating-point operations per
408
+ second (FLOPS).
409
+ 3.2. Systematic inspection and monitoring
410
+ During model development, the “collision
411
+ test” for AI refers to internal comprehensive ro-
412
+ bustness assessment, white-hat hacking, and red-
413
+ teaming to identify limitations and hidden issues,
414
+ similar to comprehensive road testing and car
415
+ reviews. The results can be used to generate a
416
+ “safety report” providing a quantified level of
417
+ robustness in adversarial and unseen scenarios.
418
+ The “mechanical and electrical inspection” for
419
+ AI means penetration testing and debugging of
420
+ the entire system (e.g., the software and hard-
421
+ ware supporting AI technology) using probing
422
+ and active measurement. The “problematic status
423
+ warning” refers to real-time operational abnormal
424
+ event detection during deployment, such as erro-
425
+ neous instances or malfunctioning. The “health
426
+ state monitoring” means continuous tracking of
427
+ model behaviors, such as identifying the emer-
428
+ gence of adversarial threats and data drifts.
429
+ 3.3. Fix and update
430
+ After inspecting and identifying errors and
431
+ risks, the “repair” for AI models refers to mit-
432
+ igation strategies to fix, update, and re-certify
433
+ the underlying model. The “wheel-alignment” for
434
+ AI means model calibration, the “winter tire”
435
+ means hardening the model with a more robust
436
+ module, and the “flat tire response” means fast
437
+ adaption of an AI model in the face of model
438
+ performance degradation and anomalous events.
439
+ Depending on the severity of the found robustness
440
+ risks, user demand, and enforced regulation for
441
+ AI technology, model fix and update for AI main-
442
+ tenance can have differentiated services at varying
443
+ costs, ranging from simple model patching and
444
+ quick problem fixing, module replacement, partial
445
+ model upgrade, to model rebuild.
446
+ 3.4. Education and societal impacts
447
+ The “driver license” for AI means education
448
+ on the ethics and value alignment when using
449
+ AI technology, to understand its capabilities and
450
+ limitations. The “sustainability” for AI involves
451
+ gaining environmental awareness such as greener
452
+ AI models with reduced energy consumption, as
453
+ well as achieving positive societal impacts, in
454
+ order to fulfill social responsibility and prevent
455
+ possible misuse.
456
+ 4. AI Model Inspector
457
+ Towards practicing and realizing the notion
458
+ of AI maintenance, in this section we propose a
459
+ 5
460
+
461
+ Figure 2. The AI model inspector framework consists of detection and mitigation stages. The model under
462
+ inspection first takes a series of robustness testing and checkpoints, including procedural and operational
463
+ assessment, passive evaluation on representative datasets, and active probing by generating new instances
464
+ on-the-fly to find failure modes. In the detection stage, the inspector extracts statistics and runs a diagnosis
465
+ to identify possible risks in robustness. In the mitigation stage, the inspector employs model fix and update to
466
+ mitigate the identified robustness risks, and then re-assesses the model using the same robustness checklist.
467
+ Finally, the inspector returns a risk-mitigated model. The entire process is analog to car inspection, fixing, and
468
+ cleaning for car maintenance.
469
+ methodology called AI model inspector, which is
470
+ a conceptual pipeline for proactive detection and
471
+ mitigation of robustness issues throughout the AI
472
+ lifecycle. We also highlight two case studies on
473
+ different robustness challenges to illustrate how
474
+ the AI model inspector can be realized. Finally,
475
+ as motivated by vehicle autonomy, we define
476
+ different levels of AI robustness.
477
+ 4.1. Robustness inspection: detection and
478
+ mitigation
479
+ Figure 2
480
+ shows the pipeline of AI model
481
+ inspector consisting of two stages: detection and
482
+ mitigation. First, a user using the AI mainte-
483
+ nance service provides a model and/or some
484
+ data samples for robustness inspection. The in-
485
+ spection takes a series of robustness testing and
486
+ checkpoints in both qualitative and quantitative
487
+ manners, including procedural and operational
488
+ assessment, passive model performance evalua-
489
+ tion on representative datasets, and active probing
490
+ by generating new instances on-the-fly to find
491
+ failure modes. Qualitative assessment includes
492
+ soliciting system characterization and problem
493
+ descriptions from the model operator to gain a
494
+ comprehensive understanding of the scope and
495
+ details of model development and deployment,
496
+ such as what model and data are used for training,
497
+ how the model is deployed, how much informa-
498
+ tion is known to a user, what types of robustness
499
+ challenges are of top concerns, to name a few.
500
+ Based on the qualitative assessment, quantitative
501
+ analysis includes running the corresponding di-
502
+ agnosis and reporting the numerical results and
503
+ summary by generating and leveraging proper test
504
+ cases and datasets for performance evaluation.
505
+ Specifically, in the detection stage, the inspec-
506
+ tor extracts discriminative statistics and runs a
507
+ diagnosis to identify possible risks in robustness.
508
+ Then, in the mitigation stage, the inspector em-
509
+ ploys model fix and update to mitigate the iden-
510
+ tified robustness risks, such as model finetuning
511
+ and re-training, adding or replacing some mod-
512
+ ules in the AI system, and re-assessing the model
513
+ using the same robustness checklist. Finally, the
514
+ inspector returns a risk-mitigated model. The en-
515
+ tire process is analog to car maintenance in terms
516
+ of car inspection, fixing, and cleaning. The no-
517
+ tion of differentiated services in car maintenance
518
+ can also be mapped to the varying demand and
519
+ 6
520
+
521
+ Al model for
522
+ Mitigation
523
+ Detection
524
+ inspection
525
+ 大一石
526
+ Robustness
527
+ No robustness
528
+ Car inspection
529
+ Car fix
530
+ Car wash
531
+ checklist
532
+ issuesfoundcost of AI maintenance, such as fast scanning,
533
+ thorough inspection, quick patching, and detailed
534
+ fix and update. We note that the usage of the AI
535
+ model inspector is continuous rather than one-
536
+ shot. Based on the recurrence of the states in
537
+ the AI lifecycle, a model will repeatedly undergo
538
+ several transitions between the states of data col-
539
+ lection & processing, model training, and model
540
+ deployment. Moreover, a model can be fixed but
541
+ broken again later. This is analogous to the notion
542
+ of weariness and fatigue testing in predictive car
543
+ maintenance – after inspection, some parts need
544
+ to be updated or replaced on a regular basis to
545
+ ensure the model remains in good condition.
546
+ Based on the robustness challenges shown in
547
+ Figure 1, we make the following two examples
548
+ that realize the concept of the AI model inspector.
549
+ Backdoor detection and mitigation: In the de-
550
+ tection stage, the inspector adopts the Trojan net
551
+ detector proposed in [10], which uses a limited
552
+ number of untampered clean data samples (as
553
+ few as one sample per class) to derive a dis-
554
+ criminate statistic for discerning a trained neural
555
+ network classifier has any hidden backdoor. The
556
+ detector can even achieve data-free detection for
557
+ convolutional neural networks. After detection,
558
+ the inspector can adopt the mitigation strategy of
559
+ model sanitization proposed in [11] to remove the
560
+ backdoor by finetuning the model parameters.
561
+ Anomalous input detection and mitigation:
562
+ Given a data input to an AI model under inspec-
563
+ tion, the inspector can use internal data represen-
564
+ tations (e.g., similarity to training data), domain
565
+ knowledge (e.g., innate data characteristics and
566
+ physical rules), or external knowledge checking
567
+ (e.g., searching and reasoning over a knowl-
568
+ edge graph or a database) to determine whether
569
+ the data input is anomalous or not. Here, the
570
+ anomaly encompasses different robustness chal-
571
+ lenges, such as adversarial examples and out-
572
+ of-distribution samples. For instance, the innate
573
+ temporal dependency in audio data is used in
574
+ [12] to detect audio adversarial examples for
575
+ automatic speech recognition, and many distance
576
+ metrics based on the internal data representations
577
+ extracted from the model have been proposed to
578
+ detect out-of-distribution samples [13]. In addi-
579
+ tion to filtering out anomalous inputs, the in-
580
+ spector can further take mitigation strategies to
581
+ update the model and strengthen its robustness
582
+ against anomalous inputs. For instance, the self-
583
+ progressing robust training method proposed in
584
+ [14] can further strengthen a trained model for
585
+ enhanced adversarial robustness by instructing the
586
+ model to mitigate the self-discovered ambiguity
587
+ during model finetuning.
588
+ 4.2. Adversarial Machine Learning for
589
+ Robustness
590
+ Cars like the Mars Exploration Rovers can
591
+ successfully execute the assigned task on new
592
+ and unseen terrain because they were developed
593
+ in comprehensive simulated environments. For AI
594
+ models, one can incorporate the failure examples
595
+ generated from model inspection tools to improve
596
+ the robustness in unseen and even adversarial en-
597
+ vironments. This methodology is known as adver-
598
+ sarial machine learning, by introducing a virtual
599
+ adversary in the AI lifecycle to help create better
600
+ and more robust models. In the development
601
+ phase, the role of the virtual adversary is to simu-
602
+ late the out-of-distribution or worst-case scenarios
603
+ and generate new challenging cases to help the
604
+ model generalize better in unseen and adversarial
605
+ environments. In the deployment case, the role
606
+ of the virtual adversary is to employ proactive
607
+ robustness evaluation and risk discovery, in order
608
+ to prevent real damage and negative impacts.
609
+ One typical example is adversarial training [15]
610
+ which exploits self-generated adversarial exam-
611
+ ples during model training to strengthen adver-
612
+ sarial robustness against adversarial inputs in the
613
+ deployment phase. We refer the readers to [16] for
614
+ recent advances in adversarial machine learning
615
+ for AI robustness.
616
+ 4.3. Roadmap towards the levels of AI
617
+ robustness
618
+ Inspired by the definitions for six levels of
619
+ driving automation for autonomous vehicles7, we
620
+ define six levels of AI robustness to facilitate
621
+ technical progress tracing, risk quantification, and
622
+ inspection, model auditing, and standardization.
623
+ Table 2 compares the defined levels for vehicle
624
+ autonomy and AI robustness, respectively. The
625
+ level of robustness quantifies the progress in the
626
+ soundness of machine intelligence for robustness.
627
+ As the level increases, it signifies the practice
628
+ 7https://www.sae.org/standards/content/j3016 202104/
629
+ 7
630
+
631
+ Table 2. Comparisons between the levels of vehicle autonomy versus AI robustness.
632
+ Level
633
+ Vehicle Autonomy
634
+ AI Robustness
635
+ 0
636
+ no driving automation
637
+ no robustness (standard training)
638
+ 1
639
+ driver assistance
640
+ generalization under distribution shifts
641
+ 2
642
+ partial driving automation
643
+ robustness against single risk
644
+ 3
645
+ conditional driving automation
646
+ robustness against multiple risks
647
+ 4
648
+ high driving automation
649
+ universal robustness to known risks
650
+ 5
651
+ full driving automation
652
+ human-aligned and augmented robustness
653
+ and guarantee of robustness in a more practical
654
+ and comprehensive manner. For AI robustness,
655
+ an increased level means broader coverage of
656
+ robustness risks under consideration. We believe
657
+ formalizing the levels of AI robustness can be
658
+ useful for the discussion and practice of AI
659
+ standardization related to robustness, security, and
660
+ safety, such as ISO/IEC JTC 1/WG 13 on Trust-
661
+ worthiness8 and ISO/TC 22/SC 32/WG 14 on
662
+ Safety and Artificial Intelligence9.
663
+ Level 0 means the original robustness ob-
664
+ tained from a standard model training process
665
+ without any risk mitigation operations. Level 1
666
+ concerns the generalization capability on natu-
667
+ rally occurring shifted data distributions, such
668
+ as maintaining robust predictions against dis-
669
+ tributional changes caused by spurious features
670
+ that are irrelevant to the actual semantic context
671
+ (e.g., classifying traffic signs with altering sky
672
+ backgrounds). Level 2 considers the worst-case
673
+ robustness against single risk (e.g., adversarial
674
+ examples), and Level 3 extends to multiple risks,
675
+ such as the multi-objective (but selected) ro-
676
+ bustness to adversarial examples, common data
677
+ corruptions, and spurious correlations [17]. Level
678
+ 4 guarantees universal robustness to all known
679
+ risks. Here universal robustness means joint ef-
680
+ fectiveness on all known robustness risks. Finally,
681
+ Level 5 aligns robustness with human-centered
682
+ values and user feedback, and it has the capability
683
+ to automatically augment new robustness that
684
+ is complimentary to existing robustness require-
685
+ ments. Depending on the requirements (e.g., law
686
+ regulation) and contexts of the applications, dif-
687
+ ferent levels can be necessitated as pre-requisite
688
+ before deployment. For example, some high-risk
689
+ AI applications should pass the criterion of higher
690
+ levels – similar to the necessary requirements
691
+ 8https://www.iso.org/committee/45020.html
692
+ 9https://standards.iteh.ai/catalog/tc/iso/
693
+ 6ec701ad-7678-442d-b186-a84b9ba2bbdf/iso-tc-22-sc-32
694
+ for different driving automation conditions (e.g.,
695
+ driving on highways versus urban environments).
696
+ It is worth noting that the assessment of
697
+ level-1 robustness can likely be accomplished by
698
+ static evaluation on a representative dataset or
699
+ benchmark. However, moving forward to level 2
700
+ and above, the validation of worst-case robustness
701
+ performance also requires model intervention,
702
+ such as active model scanning and probing for
703
+ finding failure cases. Moreover, AI model inspec-
704
+ tor takes proactive steps for detecting and mit-
705
+ igating potential robustness risks, which differs
706
+ from existing frameworks such as Factsheets [18],
707
+ Model Cards [19], and Datasheets for Datasets
708
+ [20] that only employ passive model character-
709
+ ization and specification. Finally, in addition to
710
+ maintenance for AI, one can also adopt AI to
711
+ improve maintenance, such as predictive main-
712
+ tenance that takes preventive care to AI models
713
+ based on historical records and risk forecasting.
714
+ 5. Concluding Remarks
715
+ This article discusses a novel maintenance
716
+ framework for robustness in AI technology based
717
+ on analogies to the development and deployment
718
+ of car models. To instill and improve trustworthi-
719
+ ness in the AI lifecycle, we propose an automated
720
+ and scalable solution based on the principle of
721
+ AI model inspector for detecting and mitigating
722
+ potential risks when lacking robustness. Inspired
723
+ by vehicle autonomy, we also define different
724
+ AI robustness levels for formalizing, evaluating,
725
+ standardizing, and regulating risk-proof AI mod-
726
+ els. As AI technology is transforming our life,
727
+ society, and environment with greater width and
728
+ depth and at a faster speed than cars, we believe
729
+ the quest for AI maintenance is imminent and
730
+ necessary. Beyond robustness, the AI model in-
731
+ spector framework can also be extended to incor-
732
+ porate other dimensions of trustworthy AI, such
733
+ as fairness, explainability, privacy, accountability,
734
+ 8
735
+
736
+ and uncertainty quantification.
737
+ REFERENCES
738
+ 1. P.-Y. Chen and S. Liu, “Holistic adversarial robustness
739
+ of deep learning models,” Proceedings of the AAAI
740
+ Conference on Artificial Intelligence, 2023.
741
+ 2. R. S. S. Kumar, M. Nystr¨om, J. Lambert, A. Marshall,
742
+ M. Goertzel, A. Comissoneru, M. Swann, and S. Xia,
743
+ “Adversarial machine learning-industry perspectives,” in
744
+ 2020 IEEE Security and Privacy Workshops (SPW),
745
+ 2020, pp. 69–75.
746
+ 3. M. Jagielski, A. Oprea, B. Biggio, C. Liu, C. Nita-Rotaru,
747
+ and B. Li, “Manipulating machine learning: Poisoning
748
+ attacks and countermeasures for regression learning,”
749
+ in IEEE Symposium on Security and Privacy, 2018, pp.
750
+ 19–35.
751
+ 4. T. Gu, K. Liu, B. Dolan-Gavitt, and S. Garg, “BadNets:
752
+ Evaluating backdooring attacks on deep neural net-
753
+ works,” IEEE Access, vol. 7, pp. 47 230–47 244, 2019.
754
+ 5. C. Xie, K. Huang, P.-Y. Chen, and B. Li, “DBA: Dis-
755
+ tributed backdoor attacks against federated learning,” in
756
+ International Conference on Learning Representations,
757
+ 2020.
758
+ 6. I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explain-
759
+ ing and harnessing adversarial examples,” International
760
+ Conference on Learning Representations, 2015.
761
+ 7. P.-Y. Chen, H. Zhang, Y. Sharma, J. Yi, and C.-J. Hsieh,
762
+ “ZOO: Zeroth order optimization based black-box at-
763
+ tacks to deep neural networks without training substitute
764
+ models,” in ACM Workshop on Artificial Intelligence and
765
+ Security, 2017, pp. 15–26.
766
+ 8. R. Bommasani, D. A. Hudson, E. Adeli, R. Altman,
767
+ S. Arora, S. von Arx, M. S. Bernstein, J. Bohg, A. Bosse-
768
+ lut, E. Brunskill et al., “On the opportunities and risks
769
+ of foundation models,” arXiv preprint arXiv:2108.07258,
770
+ 2021.
771
+ 9. T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Ka-
772
+ plan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry,
773
+ A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger,
774
+ T. Henighan, R. Child, A. Ramesh, D. Ziegler, J. Wu,
775
+ C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin,
776
+ S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish,
777
+ A. Radford, I. Sutskever, and D. Amodei, “Language
778
+ models are few-shot learners,” in Advances in Neural
779
+ Information Processing Systems, vol. 33, 2020, pp.
780
+ 1877–1901.
781
+ 10. R. Wang, G. Zhang, S. Liu, P.-Y. Chen, J. Xiong, and
782
+ M. Wang, “Practical detection of trojan neural networks:
783
+ Data-limited and data-free cases,” in European Confer-
784
+ ence on Computer Vision, 2020, pp. 222–238.
785
+ 11. P. Zhao, P.-Y. Chen, P. Das, K. N. Ramamurthy, and
786
+ X. Lin, “Bridging mode connectivity in loss landscapes
787
+ and adversarial robustness,” in International Confer-
788
+ ence on Learning Representations, 2020.
789
+ 12. Z. Yang, B. Li, P.-Y. Chen, and D. Song, “Characteriz-
790
+ ing audio adversarial examples using temporal depen-
791
+ dency,” International Conference on Learning Repre-
792
+ sentations, 2019.
793
+ 13. J. Yang, K. Zhou, Y. Li, and Z. Liu, “Generalized
794
+ out-of-distribution detection: A survey,��� arXiv preprint
795
+ arXiv:2110.11334, 2021.
796
+ 14. M. Cheng, P.-Y. Chen, S. Liu, S. Chang, C.-J. Hsieh, and
797
+ P. Das, “Self-progressing robust training,” Proceedings
798
+ of the AAAI Conference on Artificial Intelligence, 2021.
799
+ 15. A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and
800
+ A. Vladu, “Towards deep learning models resistant to
801
+ adversarial attacks,” International Conference on Learn-
802
+ ing Representations, 2018.
803
+ 16. P.-Y. Chen and C.-J. Hsieh, Adversarial Robustness for
804
+ Machine Learning.
805
+ Elsevier, 2022.
806
+ 17. S. Paul and P.-Y. Chen, “Vision transformers are robust
807
+ learners,” in Proceedings of the AAAI Conference on
808
+ Artificial Intelligence, vol. 36, no. 2, 2022, pp. 2071–
809
+ 2081.
810
+ 18. M. Arnold, R. K. Bellamy, M. Hind, S. Houde, S. Mehta,
811
+ A. Mojsilovi´c, R. Nair, K. N. Ramamurthy, A. Olteanu,
812
+ D. Piorkowski et al., “Factsheets: Increasing trust in ai
813
+ services through supplier’s declarations of conformity,”
814
+ IBM Journal of Research and Development, vol. 63, no.
815
+ 4/5, pp. 6–1, 2019.
816
+ 19. M. Mitchell, S. Wu, A. Zaldivar, P. Barnes, L. Vasser-
817
+ man, B. Hutchinson, E. Spitzer, I. D. Raji, and T. Gebru,
818
+ “Model cards for model reporting,” in Proceedings of
819
+ the conference on fairness, accountability, and trans-
820
+ parency, 2019, pp. 220–229.
821
+ 20. T. Gebru, J. Morgenstern, B. Vecchione, J. W. Vaughan,
822
+ H. Wallach, H. D. Iii, and K. Crawford, “Datasheets for
823
+ datasets,” Communications of the ACM, vol. 64, no. 12,
824
+ pp. 86–92, 2021.
825
+ 9
826
+
0dE1T4oBgHgl3EQfRgML/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
1tE0T4oBgHgl3EQfdgCu/content/2301.02378v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:edf3ef091b0b601f5a8a3b6f0603f731c127c9effbcff57d477dde0f3e799148
3
+ size 13012589
2dAyT4oBgHgl3EQfPvZl/content/2301.00030v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5c0c310e6cb18810703ba3f5b5637dc34135895d8c5e07f0472eefdb462fe75e
3
+ size 183717
2dAyT4oBgHgl3EQfPvZl/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f7a0f5ab000a617088c0aad1c9e5221d600bf306a06335705d69c8d5ca72693e
3
+ size 66257
5NE6T4oBgHgl3EQflhFb/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d59de9954173e33bcb9ba81ba771e598862f0728ff4e7b25f880109e4cf8f35e
3
+ size 251965
5tAyT4oBgHgl3EQf2fk_/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b25217e542a14de270c2efab97464259e73dbe20886981148b6f571a8b0ff928
3
+ size 350578
6NE5T4oBgHgl3EQfPg5N/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5f6ff8266d8c56dfb3eeccbb76f5cb49cb022baac927bf2423928a89c0b819c9
3
+ size 3080237
9NFAT4oBgHgl3EQfph1b/content/tmp_files/2301.08640v1.pdf.txt ADDED
@@ -0,0 +1,1875 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.08640v1 [astro-ph.HE] 20 Jan 2023
2
+ Draft version January 23, 2023
3
+ Typeset using LATEX manuscript style in AASTeX631
4
+ Tracing the Evolution of SMBHs and Stellar Objects in Galaxy Mergers: An
5
+ Multi-mass Direct N-body Model
6
+ Shuo Li,1, 2 Shiyan Zhong,3 Peter Berczik,4, 5, 6 Rainer Spurzem,1, 4, 7 Xian Chen,2, 7 and
7
+ F.K. Liu2, 7
8
+ 1National Astronomical Observatories and Key Laboratory of Computational Astrophysics,
9
+ Chinese Academy of Sciences, 20A Datun Rd., Chaoyang District, Beijing 100012, China
10
+ 2Department of Astronomy, School of Physics, Peking University,
11
+ Yiheyuan Lu 5, Haidian Qu, Beijing 100871, China
12
+ 3Yunnan Observatories, Chinese Academy of Sciences,
13
+ 396 Yang-Fang-Wang, Guandu District, 650216, Kunming, Yunnan, China
14
+ 4Astronomisches Rechen-Institut, Zentrum f¨ur Astronomie, University of Heidelberg,
15
+ M¨ochhofstrasse 12-14, Heidelberg 69120, Germany
16
+ 5Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, E¨otv¨os Lor´and Research Network
17
+ (ELKH), MTA Centre of Excellence, Konkoly Thege Mikl´os ´ut 15-17, 1121 Budapest, Hungary
18
+ 6Main Astronomical Observatory, National Academy of Sciences of Ukraine,
19
+ 27 Akademika Zabolotnoho St., 03680 Kyiv, Ukraine
20
+ 7Kavli Institute for Astronomy and Astrophysics, Peking University,
21
+ Yiheyuan Lu 5, Haidian Qu, Beijing 100871, China
22
+ ABSTRACT
23
+ By using direct N-body numerical simulations, we model the dynamical co-evolution
24
+ of two supermassive black holes (SMBHs) and the surrounding stars in merging galaxies.
25
+ In order to investigate how different stellar components evolve during the merger, we
26
+ generate evolved stellar distributions with an initial mass function. Special schemes
27
+ have also been developed to deal with some rare but interesting events, such as tidal
28
+ disruption of main sequence stars, the plunge of low mass stars, white dwarfs, neutron
29
+ stars and stellar mass black holes, and the partial tidal disruption of red giants or
30
+
31
+ 2
32
+ Li et al.
33
+ asymptotic giant branch stars.
34
+ Our results indicate that the formation of a bound
35
+ supermassive black hole binary (SMBHB) will enhance the capture rates of stellar
36
+ objects by the SMBHs. Compared to the equal stellar mass model, the multi-mass
37
+ model tends to result in a higher average mass of disrupted stars. Instead of being
38
+ tidally disrupted by the SMBH, roughly half of the captured main sequence stars will
39
+ directly plunge into the SMBH because of their small stellar radius. Giant stars, on the
40
+ other hand, can be stripped of their envelopes if they are close enough to the SMBH.
41
+ Though most remnants of the giant stars can survive after the disruption, a small
42
+ fraction still could plunge into the SMBH quickly or after many orbital periods. Our
43
+ results also indicate significant mass segregation of compact stars at the beginning of
44
+ the merger, and then this effect is destroyed as the two SMBHs form a bound binary.
45
+ Keywords: Galaxies: evolution — Galaxies: interactions — Galaxies: kinematics and
46
+ dynamics — Galaxies: nuclei — Methods: numerical
47
+ 1. INTRODUCTION
48
+ Supermassive black hole binaries (SMBHBs) are predicted as the descendents of the hierarchical
49
+ galaxy formation model (Begelman et al. 1980; Volonteri et al. 2003). Over the past few decades,
50
+ more and more observational evidence has indicated that most massive galaxies, if not all, have a
51
+ supermassive black hole (SMBH) hidden in the center (Kormendy & Ho 2013). Since massive galaxies
52
+ could undergo several mergers in their evolutionary history, it is natural to predict the existence of
53
+ SMBHBs in merging or merged galaxies.
54
+ Besides, many investigations find that there is a close
55
+ connection between the SMBH and its host galaxy (Magorrian et al. 1998; Ferrarese & Merritt 2000;
56
+ Gebhardt et al. 2000; Tremaine et al. 2002; Kormendy & Ho 2013). Therefore it is essential to find
57
+ out how SMBHBs evolve in galaxy mergers.
58
+ In a merging galaxy, two SMBHs will first approach each other mainly through dynamical friction.
59
+ However, as two SMBHs get closer, this effect gets weaker and weaker. When two SMBHs are close
60
+ enough to form a bound binary system, the dynamical friction is not efficient enough to drive the
61
+
62
+ MULTI-MASS N-BODY MODEL
63
+ 3
64
+ SMBHB coalesce within Hubble time in most of the massive galaxies (Begelman et al. 1980). A
65
+ hard SMBHB can eject surrounding stars to transfer their orbital energy and angular momentum,
66
+ which may be efficient to drive two SMBHs coalesce quickly (Saslaw et al. 1974; Mikkola & Valtonen
67
+ 1992; Quinlan 1996). But it needs enough close encounter stars to be ejected by the SMBHB, which
68
+ may be not always the case, because stars scattered into the vicinity of the SMBHB through two-
69
+ body relaxation may be inefficient in spherical stellar distributions (Begelman et al. 1980; Yu 2002;
70
+ Milosavljevi´c & Merritt 2003; Berczik et al. 2005). Fortunately, both gas dynamics and more realistic
71
+ stellar dynamics other than spherical two-body relaxation can avoid this problem (Gould & Rix 2000;
72
+ Chatterjee et al. 2003; Merritt & Poon 2004; Berczik et al. 2006; Preto et al. 2011; Khan et al. 2011).
73
+ There are many observational evidence to confirm the above scenario, such as dual active galactic
74
+ nuclei (AGNs), jet reorientation in X-shaped radio galaxies, double-peaked emission lines, quasi-
75
+ periodic outbursts in some blazars and so on (Liu & Wu 2002; Komossa et al. 2003; Liu 2004;
76
+ Shen et al. 2013; Komossa et al. 2020; Tang et al. 2021).
77
+ Most of these are indirect evidence of
78
+ SMBHBs and they are in gaseous environments. In gas poor environments, hard SMBHBs are very
79
+ difficult to detect. Besides emitting electromagnetic waves, a close SMBHB has strong gravitational
80
+ wave (GW) emission, which could be detected by the ongoing Pulsar Timing Arrays (PTAs) and
81
+ the planned space borne GW detectors such as the Laser Interferometer Space Antenna (LISA)1
82
+ , Taiji Program and Tianqin Project2 (Foster & Backer 1990; Verbiest et al. 2016; Mei et al. 2021;
83
+ Luo et al. 2021). However, after years of effort, though PTAs may already get some clue on the
84
+ stochastic GW background, the specific detection is still missing (Shannon et al. 2015; Babak et al.
85
+ 2016; Arzoumanian et al. 2016, 2020).
86
+ There are also other processes connected to SMBHs and
87
+ SMBHBs, which could generate GW emission for LISA or similar instruments. For instance, com-
88
+ pact stellar objects can inspiral to SMBHs with detectable GW emissions for LISA, which is the
89
+ so-called extreme mass ratio inspirals (EMRIs) (Amaro-Seoane 2018, and references therein). Simi-
90
+ lar events should also exist in the SMBHB system. But it has not been well studied. Nevertheless,
91
+ 1 https://www.elisascience.org/
92
+ 2 http://tianqin.sysu.edu.cn/en/
93
+
94
+ 4
95
+ Li et al.
96
+ due to limited spatial resolutions of GW detectors, even if a GW signal from the SMBHB could be
97
+ detected, it is still difficult to locate its host galaxy. The inconsistency between theoretical expecta-
98
+ tion on SMBHBs and GW observations may be due to many processes that have not been clarified.
99
+ It is important to design observations that can be used to best constrain the evolution of SMBHBs.
100
+ A dormant SMBH can be temporarily illuminated by tidal disruption events (TDEs). If a star
101
+ closely approaches the SMBH by less than a critical distance, it will be torn into debris by the
102
+ SMBH, which may prompt temporary flares with periods from days to years (Hills 1975; Rees 1988;
103
+ Evans & Kochanek 1989; Guillochon & Ramirez-Ruiz 2013). We use for the critical distance tidal
104
+ radius
105
+ rt ⋍ µr∗(MBH/m∗)1/3,
106
+ (1)
107
+ where µ is a dimensionless parameter of order unity which reflects the stellar structure, r∗, m∗ and
108
+ MBH are the stellar radius, the stellar mass and the mass of black hole (BH), respectively. Since the
109
+ first identified event in the 1990s, dozens of TDEs have been reported, with emission range from γ-ray
110
+ to radio bands (Komossa & Bade 1999; Komossa 2015; Gezari 2021, and references therein). Similar
111
+ events can also happen in SMBHB systems, but light curves may be different from normal single
112
+ SMBH TDEs. Due to the perturbation of the companion SMBH, a TDE in SMBHB system could have
113
+ repeated gaps or be truncated, which has been investigated theoretically and numerically (Liu et al.
114
+ 2009; Ricarte et al. 2016; Coughlin et al. 2017; Vigneron et al. 2018). With the expansion of the
115
+ TDE sample in these years, a few SMBHB TDE candidates also have been founded in observation
116
+ (Liu et al. 2014; Shu et al. 2020; Huang et al. 2021). With more and more optical and X-ray transient
117
+ surveys, such as the Large Synoptic Survey Telescope (LSST)3, the All-Sky Automated Survey for
118
+ Supernovae (ASAS-SN)4, and the Einstein Probe (EP)5, join the game, the sample of the SMBHB
119
+ TDE could significantly increase in the near future.
120
+ 3 https://www.lsst.org
121
+ 4 http://www.astronomy.ohio-state.edu/asassn/index.shtml
122
+ 5 http://ep.bao.ac.cn/
123
+
124
+ MULTI-MASS N-BODY MODEL
125
+ 5
126
+ There are some attempts to investigate the tidal disruption rate (TDR) of SMBHBs. Theoret-
127
+ ical analyses and numerical scattering experiments indicate that, due to the perturbation of the
128
+ companion SMBH and the triaxial stellar distribution, TDR in galaxy merger remnants could be
129
+ enhanced from a few times to a few orders of magnitudes (Ivanov et al. 2005; Chen et al. 2009;
130
+ Wegg & Nate Bode 2011; Liu & Chen 2013). However, since the interaction of two SMBHs and sur-
131
+ rounding stars is chaotic during the formation of the SMBHB, these results are limited and can not
132
+ fully reveal the underlying physical processes. In order to investigate the dynamical co-evolution of
133
+ SMBHBs and stars in galaxy mergers with more depth, we used GPU accelerated direct N −body
134
+ simulations to analyze a series of models on the TDR evolution of SMBHBs in both major mergers
135
+ Li et al. (2017, hereafter Paper I) and minor mergers Li et al. (2019, hereafter Paper II). Both equal
136
+ and unequal mass models indicate significantly enhanced TDRs during two SMBHs forming bound
137
+ binary systems, which can be considered as a possible explanation for the high detection rates of
138
+ TDEs preferred in E+A galaxies (Arcavi et al. 2014). However, for simplicity, it was assumed in
139
+ both papers that all stars are solar type stars with the same mass. In reality, for example, giant
140
+ stars will be partially tidally disrupted by the SMBH at relatively large distances. Compact ob-
141
+ jects (neutron stars, black holes), on the other hand, could directly plunge into the SMBH without
142
+ disruption. Even main sequence stars could have different fates after considering different masses.
143
+ According to Eq. 1, massive main sequence stars with larger stellar radius correspond to larger tidal
144
+ radius. Low mass main sequence stars usually correspond to smaller tidal radius. Massive stars
145
+ with large envelopes may as well have only partial mass loss from TDE (see e.g.Zhong et al. (2022)).
146
+ Finally, instead of a tidal disruption with significant flare, many main sequence stars near the low
147
+ mass end actually will be entirely swallowed by the SMBH, because their tidal radii are very close to
148
+ the Schwarzschild radius of the SMBH.
149
+ In this work we improve our model by using a realistic distribution of stellar properties (mass and
150
+ radius) instead of equal mass stars as in previous papers such as e.g. Li et al. (2019). In a dry major
151
+ merger case, the typical evolution time is ∼ 1 Gyr (Colpi 2014). This period of time is long enough
152
+ for a stellar system to evolve from the zero-age main sequence to different stellar components. For
153
+
154
+ 6
155
+ Li et al.
156
+ this reason, our stellar population is initialized with an age of ∼ 1 Gyr to account for the lifetime of
157
+ the galaxies before their merger. We developed a special scheme to deal with TDEs of different types
158
+ of stars, which includes variation of the tidal disruption radius as a function of stellar parameters,
159
+ partial tidal disruption of giant stars, and direct plunges of compact objects (see for details next
160
+ section and Fig. 1). With these modifications we are able to trace the co-evolution of all kinds of
161
+ stars and SMBHs in galaxy mergers. This paper is organized as follows. We introduce our simulation
162
+ models in Section 2. Our simulation results on different types of stars are presented in Section 3. In
163
+ Section 4 we discuss how to extrapolate our results to more realistic systems, and some observational
164
+ implications are also provided. A short summary is allocated to Section 5.
165
+ 2. THE DIRECT N -BODY MODEL WITH MORE REALISTIC STELLAR OBJECTS
166
+ Our numerical model base on a direct N-body code ϕ -Grape/ϕ -GPU, which is an accu-
167
+ rate GPU accelerated code with fourth-order Hermite integrator and efficient parallel scheme
168
+ (Makino & Aarseth 1992; Berczik et al. 2005; Harfst et al. 2007).
169
+ ϕ -Grape/ϕ -GPU has been
170
+ proved to be an efficient tool on investigating the dynamical co-evolution of SMBH and stars in
171
+ both single galaxy and galaxy mergers (Berczik et al. 2006; Gualandris & Merritt 2008; Khan et al.
172
+ 2011; Preto et al. 2011). It can be also adapted to investigate the tidal disruption evolution, with
173
+ a simplified tidal disruption scheme included (Zhong et al. 2014; Li et al. 2017; Panamarev et al.
174
+ 2018). Recently, Khan et al. (2018) have tried to study the coalescence time of supermassive black
175
+ holes in galaxy mergers with post-Newtonian (PN) terms and stellar mass function included. In this
176
+ work, we try to introduce a more realistic model, which can self-consistently study how different type
177
+ stellar objects, such as main sequence(MS) star, red giant (RG), asymptotic giant branch(AGB),
178
+ white dwarf (WD), neutron star (NS), stellar mass black hole (BH), interact with SMBHs in galaxy
179
+ mergers.
180
+ 2.1. Initial Mass Function and Stellar Evolution
181
+ Compared with previous equal stellar mass models, a more realistic multi-mass model with initial
182
+ mass function is adopted. We assume that the stellar mass of a star cluster ranges from 0.1 M⊙ to
183
+
184
+ MULTI-MASS N-BODY MODEL
185
+ 7
186
+ 100 M⊙, and the initial mass function follows a multiple-part power-law as Kroupa (2001) suggested.
187
+ This model corresponds to an average initial mass m∗ ∼ 0.6 M⊙.
188
+ For simplicity, we are focusing on dry mergers with gas poor environments, which are usually
189
+ dominated by early type galaxies, and the starbursts induced by mergers are not significant. It is
190
+ reasonable to assume that all the stars have evolved for a relatively long time as the initial condition.
191
+ We evolve all the stars for 1 Gyr by using the stellar evolution package SSE (Hurley et al. 2000). After
192
+ the evolution, our model with largest particle number N = 106 has 4484 giant branch stars (includes
193
+ RGs, core He burning stars, early AGBs and thermally pulsing AGBs), 29811 WDs(includes C/O
194
+ WDs and O/Ne WDs), 5246 NSs and 1884 BHs. And the average mass decreased to m∗ ∼ 0.4 M⊙ due
195
+ to the mass loss during the stellar evolution. The same scheme as Panamarev et al. (2019) adopted
196
+ is involved to model the natal kick during the formation of NSs and BHs. The kick amplitude of NSs
197
+ is represented by a Maxwellian distribution with 1D velocity dispersion σ = 265 km s−1 (Hobbs et al.
198
+ 2005). For BHs, both the mass and kick velocity sensitively depend on the ”fallback” of debris,
199
+ those materials failed to escape during the explosion of the progenitors (Colgate 1971; Chevalier
200
+ 1989; Zhang et al. 2008). We take this effect into account by following the scheme suggested by
201
+ Belczynski et al. (2002).
202
+ As a result, a group of stars with different stellar components including NSs and BHs with initial
203
+ kick velocities have been generated. In order to model a dense star cluster, the next step is to assign
204
+ position and velocity to every star according to a proper stellar mass distribution.
205
+ 2.2. Dense Star Cluster Model
206
+ The dynamical parameters of the initial condition are similar to those in Paper I. The stellar
207
+ distribution of the dense star cluster around the SMBH is represented by a Dehnen model (Dehnen
208
+ 1993).
209
+ ρ(r) = 3 − γ
210
+
211
+ MaD
212
+ rγ(r + aD)4−γ ,
213
+ (2)
214
+
215
+ 8
216
+ Li et al.
217
+ where aD, M and γ denote the scaling radius, the total mass of the galaxy/nucleus and the density
218
+ profile index, respectively.
219
+ Here we adopt the units G = M = aD = 1, and assume γ = 1 in
220
+ the following discussion for simplicity, because models with more steep central density profiles are
221
+ very time consuming in the integration. The influence of γ has been carefully discussed in Paper I,
222
+ with equal stellar mass models. The general results should be still informative here. According to
223
+ results in Paper I, steep density profiles usually correspond to significantly higher TDRs, and the
224
+ boosted TDRs in phase II are common for all models with different γ. However, the magnitude of
225
+ the enhancement of the averaged TDRs in phase II only weakly depends on γ. Detailed discussions
226
+ can be found in Paper I. The relation between numerical and physical quantities can be derived as
227
+ [T]=
228
+ �GM
229
+ a3
230
+ D
231
+ �−1/2
232
+ =1.491 × 107(2
233
+ 1
234
+ 3−γ − 1)3/2
235
+
236
+ M
237
+ 109 M⊙
238
+ �−1/2 � r1/2
239
+ 1 kpc
240
+ �3/2
241
+ yr,
242
+ (3)
243
+ [V]=
244
+ �GM
245
+ aD
246
+ �1/2
247
+ =65.58 × (2
248
+ 1
249
+ 3−γ − 1)−1/2
250
+
251
+ M
252
+ 109 M⊙
253
+ �1/2 � r1/2
254
+ 1 kpc
255
+ �−1/2
256
+ km s−1,
257
+ (4)
258
+ [R]=aD = (2
259
+ 1
260
+ 3−γ − 1)
261
+ � r1/2
262
+ 1 kpc
263
+
264
+ kpc,
265
+ (5)
266
+ [ ˙M]=M/[T]
267
+ =67.07 × (2
268
+ 1
269
+ 3−γ − 1)−3/2
270
+
271
+ M
272
+ 109 M⊙
273
+ �3/2 � r1/2
274
+ 1 kpc
275
+ �−3/2
276
+ M⊙/ yr.
277
+ (6)
278
+ The SMBH is represented by a heavy particle with mass MBH = 0.01 at the center. The Dehnen
279
+ model above does not considered the influence of SMBH and multiple stellar mass distribution. Sim-
280
+ ilar to Paper I, to relax the SMBH with surrounding stars, we integrate the entire system for dozens
281
+ of N-body unit time before the simulation, which is roughly the two-body relaxation timescale at the
282
+ influence radius of the SMBH in the model. After this relaxation procedure, the mass segregation
283
+ of heavy stellar components in the central region is significant. It has been confirmed by the result
284
+
285
+ MULTI-MASS N-BODY MODEL
286
+ 9
287
+ in the left panel of Fig. 4 Based on this template model, two identical galaxies/nuclei are set in a
288
+ parabolic orbit with initial separation d ∼ 20 and the first pericenter ∼ 1. The pericenter distance
289
+ here is for the convenience of comparison with Paper I. A closer encounter will lead to faster evolu-
290
+ tion, but the general results should be similar. All the integrations are executed on the laohu GPU
291
+ cluster in National Astronomical Observatories of China (NAOC).
292
+ 2.3. Scheme of Close Encounters with SMBHs
293
+ The interactions between merging SMBHs and the surrounding stars, especially those stars close
294
+ to SMBHs, are the focus of this work. In order to carefully investigate these ”close encounters” we
295
+ involve some special treatments. In general, there are four kinds of close encounters in our model:
296
+ normal stars tidally disrupted by the SMBH, main sequence stars with relatively light mass swallowed
297
+ by the SMBH without tidal flares, giant branch stars partially disrupted, and compact stars, such
298
+ as NSs and BHs, forming EMRIs or the extreme mass ratio bursts(EMRBs, more discussions can be
299
+ found in Seciton 4.2).
300
+ Fig. 1 demonstrates what will happen if an ordinary star passes by a SMBH within the tidal radius.
301
+ Most of stars in our model are MS stars. If the stellar mass of a star is massive enough, there will
302
+ be a typical TDE. Conversely, the tidal radius of a relatively light MS star or WD could be smaller
303
+ than the Schwarzschild radius. The star will be directly swallowed by the SMBH without flare. The
304
+ critical swallow radius of a BH, comparing to the Schwarzschild radius rsch, can be enlarged when
305
+ we take into account the eccentricity of the intruder star. In this work we adopt the pericenter of
306
+ the marginally stable orbit rMSO as the critical boundary. A star will be marked as a plunge event
307
+ when it’s tidal radius and separation to the SMBH are both smaller than rMSO (Cutler et al. 1994;
308
+ Gair et al. 2005)
309
+ rMSO = 3 + e
310
+ 1 + ersch,
311
+ (7)
312
+ where rsch = 2GMBH/c2 is the Schwarzschild radius, e is the eccentricity of the star. rMSO determines
313
+ the minimum pericenter distance of a test particle with fixed eccentricity.
314
+ A test particle with
315
+
316
+ 10
317
+ Li et al.
318
+ Red Giant
319
+ TP AGB
320
+ Early AGB
321
+ Naked He
322
+ Giant Branch
323
+ Core He
324
+ Burning
325
+ Naked
326
+ He MS
327
+ C/O WD
328
+ Naked He
329
+ Hertzsprung Gap
330
+ O/Ne WD
331
+ He WD
332
+ Intruding
333
+ Stars
334
+ Giant TD
335
+ (GTD)
336
+ Normal TD
337
+ Standard TD
338
+ (STD)
339
+ Swallow
340
+ (PLG)
341
+ Figure 1. The fate of different types of stars after close encounters with SMBHs.
342
+ pericenter distance smaller than rMSO plunges directly into the black hole. If e = 0 the rMSO is
343
+ equivalent to the innermost stable circular orbit(ISCO). For extreme hyperbolic situations with e →
344
+ ∞, only orbits with pericenter distances larger than the rsch can survive. For simplicity, the mass
345
+ and linear momentum of both the disrupted and swallowed stars will directly add to the SMBH in
346
+ our model. Here we only take into account the linear momentum, and the angular momentum is not
347
+ considered because we can not trace the spin evolution of the SMBH without the PN approximations
348
+ included.
349
+ In addition to main sequence stars, there are many giant branch stars (GBs), such as RGs and
350
+ AGBs. These stars, with their compact cores and diffuse envelopes, usually have very large radii
351
+ compared with MS stars, which consequently corresponds to significantly large tidal radii. In most
352
+ cases a giant tidal disruption (GTD) will not cause a complete disruption. Inversely, the stellar core,
353
+ and even a large fraction of the envelope of the star can survive (MacLeod et al. 2012). We assume
354
+ that the envelope will be completely striped and accreted by the SMBH immediately after the GTD,
355
+
356
+ MULTI-MASS N-BODY MODEL
357
+ 11
358
+ and the remnant could be considered as a production of a fast evolved giant star. According to the
359
+ predicted evolution paths proposed by Hurley et al. (2000), we make a simplified evolution scheme of
360
+ GTDs in Fig. 1. Depending on the initial mass of the disrupted star, GTDs in this scheme may result
361
+ in different types of remnants, such as naked helium main sequence stars, WDs and naked helium
362
+ stars in the Hertzsprung gap. More details can be found in the discussion of Hurley et al. (2000).
363
+ Compact stars, on the other hand, are simply assumed to be directly swallowed by the SMBH if
364
+ their separations to the SMBH are smaller than the ISCO. In that case, the linear momentum and
365
+ mass of the compact stars will be added to the SMBH. Therefore the capture criteria of compact stars
366
+ is different from other stars. Our integration does not include the post-Newtonian approximation
367
+ because it is very difficult to be involved in three body problems.
368
+ The orbits of those compact
369
+ stars with heavier masses, especially when they are close to ISCO, are not accurate enough. The
370
+ eccentricity evolution due to GW emission can not be well traced in this work. We prefer to leave
371
+ this problem in future works. For this reason we did not adopt the rMSO as the criteria for simplicity.
372
+ 2.4. From numerical models to the reality
373
+ Direct N-body simulations are limited by particle resolution. Even taking into account the accel-
374
+ eration of Heterogeneous Computing, the maximum particle number that can be managed by direct
375
+ N-body simulation with reasonable integration time is only several million, which is obviously less
376
+ than the number of stars in a typical galaxy. A direct consequence of limited particle resolution is
377
+ that the TDEs are so rare in the simulation that we can not collect enough events to make statistical
378
+ analyses. For example, if there is a galaxy with total mass 109 M⊙, and the half mass radius is
379
+ r1/2 = 1 kpc, then a length scaling relation can be set up by Eq. 5. For a solar type star, the tidal
380
+ radius is ∼ 10−5 pc corresponding to ∼ 10−8 in this simulation unit, which is a very tiny scale in the
381
+ simulation. The collected TDEs in such configuration will be only a few in the entire simulation.
382
+ In order to collect more TDEs in the simulation, we have to adopt a larger ”tidal radius”, which is
383
+ rt ∼ 10−4. And the Schwarzschild radius also adopts the same scaling to make sure that rt/rsch is
384
+ the same both in simulation and reality. By integrating several models with different tidal radii, we
385
+ can try to extrapolate the simulation result to reality. This scheme has been proved to be feasible in
386
+
387
+ 12
388
+ Li et al.
389
+ Paper I. Since rt ∝ M1/3
390
+ BH , while rMSO ∝ MBH, it is not recommended to make direct extrapolations
391
+ from simulation results to other real systems with different MBH. Otherwise the results of the normal
392
+ TDEs and those swallow events could be inconsistent. For this reason, we have to fix the mass of the
393
+ SMBH in our simulations. In the following discussion, we set the total mass of each galaxy/nucleus
394
+ is 109 M⊙, and the mass of each SMBH is 107 M⊙.
395
+ The limited particle resolution also induced other artificial effects. Some dynamical processes are
396
+ N dependent. For instance, the two-body relaxation timescale follows tr ∝ N/ ln N, which means the
397
+ two-body relaxation in our model will be much faster than the case of a real galaxy. In a spherical
398
+ stellar system with a SMBH in the center, two-body relaxation is the most important mechanism to
399
+ scatter stars into the tidal disruption loss-cone, the phase space region corresponding to the orbits
400
+ of stars can be tidally disrupted (Frank & Rees 1976; Lightman & Shapiro 1977). The process that
401
+ scatters stars into loss-cone is the so-called loss-cone refilling. The situation in merging galaxies is
402
+ quite different. In principle, as we did in Paper I, we can divide the dynamical evolution of the
403
+ SMBHB in a galaxy merger into three phase. In phase I, two galaxies and their central SMBHs have
404
+ so large separation that the interaction between central SMBH and surrounding stars is roughly the
405
+ same as the case of a single SMBH in an isolated galaxy. That means the loss-cone refilling will
406
+ be dominated by two-body relaxation. Thus the TDEs rate will be N dependent in phase I. As
407
+ two SMBHs get more and more close to each other, the perturbation becomes stronger and stronger
408
+ in phase II. As a result, the perturbation will dominate the loss-cone refilling, which will result in
409
+ an approximate N independent TDEs rate. In phase III, two SMBHs form a compact binary and
410
+ the loss-cone refilling is very complicated. By carefully analyzing the different situations in different
411
+ phases, it is possible to make a credible extrapolation based on analytical models and our numerical
412
+ models with different N.
413
+ Detailed discussions can be found in Paper I and II. There are more
414
+ discussions in Section 4.1.
415
+ In addition to the artificial effects mentioned above, the stellar evolution model also needs to
416
+ consider the influence of the limited particle resolution.
417
+ For instance, if we use 106 particles to
418
+ represent a dense star cluster, the total mass of stars in the Kroupa model should be ∼ 6 × 105 M⊙.
419
+
420
+ MULTI-MASS N-BODY MODEL
421
+ 13
422
+ However, we have to adapt this cluster to represent a galaxy with 109 stars. That means every particle
423
+ in our model actually corresponds to a group of 1000 stars in the real galaxy. A straightforward
424
+ discrepancy between our model and the real galaxy is that they have different two-body relaxation
425
+ timescale.
426
+ For example, we can assume that all the stars in the cluster have evolved for 1 Gyr.
427
+ In our model, due to the limited particle number, the system could be well relaxed.
428
+ While the
429
+ same thing should not happen in a real dense star cluster with 109 stars. Therefore we need to
430
+ have a proper scaling relation between the stellar evolution timescale in reality and the two-body
431
+ relaxation timescale in our model.
432
+ A simplified solution is to make sure that the ratio between
433
+ relaxation timescale and stellar evolution time scale in the real dense star cluster should be equal
434
+ to the ratio in our model (Panamarev et al. 2019). This scaling relation is essential for models with
435
+ stellar evolution included (more discussions can be found in Panamarev et al. (2019)). However, as
436
+ we mentioned before, we are focusing on the merging phase, which corresponds to a relatively short
437
+ period of time. Consequently, in dry mergers with all stars that have already evolved for quite a
438
+ long time, the stellar evolution during the merger could be neglected. Instead of including stellar
439
+ evolution, it is more important to have an initial model with properly evolved stars before the merger,
440
+ which is adopted here.
441
+ 3. RESULTS
442
+ 3.1. Dynamical evolution of SMBHs and surrounding stars
443
+ Compared with previous major merger models with equal mass stars, we have more realistic models
444
+ with different stellar components. Fig. 2 demonstrates the dynamical evolution of SMBHs in merger
445
+ galaxies, which are numerically integrated by our models with N = 2×106 particles. Unless otherwise
446
+ specified, all results in following discussions are based on this model. For better comparison, we have
447
+ two integrations with and without initial mass function (IMF), which are represented by blue solid
448
+ lines and red dashed lines, respectively. The left panel represents the evolution of dBH, the separation
449
+ of two SMBHs, and the right panel demonstrates the evolution of the semi-major axis a.
450
+ Since
451
+ bound SMBHBs are not formed in phase I, the time begins from t ∼ 80 in the figure. As the results
452
+
453
+ 14
454
+ Li et al.
455
+ 0
456
+ 50
457
+ 100
458
+ 150
459
+ 200
460
+ t ([T])
461
+ 10
462
+ −4
463
+ 10
464
+ −3
465
+ 10
466
+ −2
467
+ 10
468
+ −1
469
+ 10
470
+ 0
471
+ 10
472
+ 1
473
+ d
474
+ BH
475
+ ([R])
476
+ 80
477
+ 100
478
+ 120
479
+ 140
480
+ 160
481
+ 180
482
+ 200
483
+ t ([T])
484
+ 0
485
+ 100
486
+ 200
487
+ 300
488
+ 400
489
+ 500
490
+ 1/a
491
+ EQ
492
+ MS
493
+ Figure 2. The dynamical evolution of two SMBHs in merging galaxies. Red dashed and blue solid lines
494
+ correspond to equal stellar mass model and multi-mass model, respectively. The left panel represents the
495
+ separation evolution of two SMBHs. The right panel represents the semi-major axis evolution of the SMBHB,
496
+ after a bound binary system is formed.
497
+ indicated, though the evolutions of two SMBHs in different models are roughly the same in phase I,
498
+ there is a significant difference in phase II. The SMBHB in the model with IMF evolves slower than
499
+ the case of the equal mass model, which looks inconsistent with Khan et al. (2018). However, our
500
+ integrations only continued to ∼ 100 N-body time unit, which is far less than Khan et al. (2018) did.
501
+ According to the Fig. 1 and Fig. 2 in their paper, the difference between equal mass and multi-mass
502
+ models is not obvious in the early stages of the SMBHB formation.
503
+ The evolution of Lagrangian radii is demonstrated in Fig. 3. A Lagrangian radius is a sphere with
504
+ the center of the stellar system. Stars inside this sphere occupy a fixed fraction of the total mass of
505
+ the system. By tracing the evolution of several Lagrangian radii with different mass fractions, we
506
+ can trace the dynamical evolution of the star cluster. Here dashed lines and solid lines denote equal
507
+ mass and multi-mass models respectively. Different colors correspond to 0.1%, 1%, 10%, 50%, and
508
+ 90% of the total mass respectively, which have been marked in the legend. It should be noticed that
509
+ the 1% curve is close to the influence radius, because the stellar mass inside this radius is close to the
510
+ mass of the central SMBH. The upper left panel of the figure represents the Lagrangian radii relative
511
+ to the center of mass. Since two galaxies are far away from each other, there are only a few stars
512
+ around the center of mass, which results in the large Lagrangian radii at the beginning. The upper
513
+
514
+ MULTI-MASS N-BODY MODEL
515
+ 15
516
+ right panel demonstrates the Lagrangian radii relative to one of the SMBH. The inner region around
517
+ the SMBH of the equal mass model is slightly more compact than the multi-mass model, which is
518
+ consistent with a similar multi-mass model with single BH (Baumgardt et al. 2004). The bottom
519
+ panels are the corresponding average mass inside each Lagrangian radii. In the equal mass model,
520
+ all average masses are equal to 10−6, the single particle mass in the simulation. In the multi-mass
521
+ model, the average masses inside larger radii, which correspond to all Lagrangian radii equal and
522
+ larger than 10% in the figure, are very close to 10−6. However, this is not the case in the inner region.
523
+ According to bottom panels, the average mass inside Lagrangian radii of mass fraction 0.1% and
524
+ 1% are significantly heavier than the average mass of the entire system, which can be considered as
525
+ the consequence of the mass segregation at the inner region. In the bottom left panel, the average
526
+ masses of the inner region are close to 10−6 at the beginning of the integration, because the center
527
+ of mass is at the midpoint where the stellar density is very low. The mass segregation effect is more
528
+ significant in the plot relative to one SMBH, which is demonstrated in the bottom right panel. The
529
+ inner region average masses are significantly higher than the equal mass model at the beginning of
530
+ the integration. However, during the formation of the bound SMBHB, the central average masses
531
+ decline sharply. The strong interaction between the two SMBHs and the violent evolution of stars
532
+ in the central region suppress the mass segregation quickly. After the two SMBHs form a compact
533
+ binary, the average mass at the central region starts to recover with gradually increasing.
534
+ Fig. 4 demonstrates the evolution of Lagrangian radii and corresponding average masses of different
535
+ components relative to one of the SMBH. We classified stars into three groups: normal stars (NORM,
536
+ solid lines) including MS star and WD, giant branch stars (GB, dotted lines) including RGs and AGBs
537
+ and compact stars (CPT, dashed lines) including NSs and BHs. Different colors in the figure denote
538
+ different mass fractions of corresponding component. Two vertical gray lines divide the evolution
539
+ into three phases. The criteria for dividing three phases are based on the fluctuations of the TDE
540
+ rate. Other criteria, for instance, a criteria based on dynamical evolution, will only slightly change
541
+ the position and period of phase II, and will not lead to significantly different results. More details
542
+ can be found in Paper II. Since NORM stars correspond to the largest fraction, the Lagrangian radii
543
+
544
+ 16
545
+ Li et al.
546
+ 0
547
+ 50
548
+ 100
549
+ 150
550
+ 200
551
+ t ([T])
552
+ 10
553
+ −2
554
+ 10
555
+ −1
556
+ 10
557
+ 0
558
+ 10
559
+ 1
560
+ 10
561
+ 2
562
+ r
563
+ Lagr.
564
+ ([r])
565
+ 0
566
+ 50
567
+ 100
568
+ 150
569
+ 200
570
+ t ([T])
571
+ 10
572
+ −2
573
+ 10
574
+ −1
575
+ 10
576
+ 0
577
+ 10
578
+ 1
579
+ 10
580
+ 2
581
+ r
582
+ Lagr.
583
+ ([r])
584
+ 0.1%EQ
585
+ 0.1%MS
586
+ 1%EQ
587
+ 1%MS
588
+ 10%EQ
589
+ 10%MS
590
+ 50%EQ
591
+ 50%MS
592
+ 90%EQ
593
+ 90%MS
594
+ 0
595
+ 50
596
+ 100
597
+ 150
598
+ 200
599
+ t ([T])
600
+ 0.9
601
+ 1.0
602
+ 1.1
603
+ 1.2
604
+ 1.3
605
+ 1.4
606
+ M
607
+ avg
608
+ ([M])
609
+ ×10
610
+ −6
611
+ 0
612
+ 50
613
+ 100
614
+ 150
615
+ 200
616
+ t ([T])
617
+ 0.9
618
+ 1.0
619
+ 1.1
620
+ 1.2
621
+ 1.3
622
+ 1.4
623
+ M
624
+ avg
625
+ ([M])
626
+ ×10
627
+ −6
628
+ Figure 3. The evolution of Lagrangian radii and corresponding average mass. The upper left panel is
629
+ the Lagrangian radii relative to the center of mass, and the upper right panel corresponds to one of the
630
+ SMBH. Dashed lines and solid lines denote equal mass and multi-mass models respectively. The bottom left
631
+ and right panels demonstrate corresponding average mass inside each Lagrangian radius. Different colors
632
+ represent different mass fractions of the total mass.
633
+ of NORM stars are almost the same as the radii of all the stars. In the left panel, CPT stars with
634
+ heavier mass show significant mass segregation in the central region, especially before the formation
635
+ of SMBHB. Due to the heating of SMBHB, all the Lagrangian radii in the central region expand
636
+ after two SMBHs form a bound system. Especially in the phase II, a large fraction of CPT stars in
637
+
638
+ MULTI-MASS N-BODY MODEL
639
+ 17
640
+ 0
641
+ 50
642
+ 100
643
+ 150
644
+ 200
645
+ t ([T])
646
+ 10
647
+ −2
648
+ 10
649
+ −1
650
+ 10
651
+ 0
652
+ r
653
+ Lagr.
654
+ ([r])
655
+ PI
656
+ PII
657
+ PIII
658
+ 0
659
+ 50
660
+ 100
661
+ 150
662
+ 200
663
+ t ([T])
664
+ 10
665
+ −6
666
+ 10
667
+ −5
668
+ 10
669
+ −4
670
+ M
671
+ avg
672
+ ([M])
673
+ 0.1%NORM
674
+ 0.1%GB
675
+ 0.1%CPT
676
+ 1%NORM
677
+ 1%GB
678
+ 1%CPT
679
+ 10%NORM
680
+ 10%GB
681
+ 10%CPT
682
+ Figure 4. The evolution of Lagrangian radii and corresponding average masses of different components
683
+ relative to one of the SMBH. Solid lines, dotted lines and dashed lines denote normal stars, GBs, and compact
684
+ stars, respectively. Different colors represent different mass fractions of the total mass of each component.
685
+ The entire evolution has been divided into three phases by two vertical gray lines. The left panel is the
686
+ evolution of Lagrangian radii, and the right panel is the evolution of average mass inside each Lagrangian
687
+ radius.
688
+ the central region are kicked out or swallowed by the SMBHs, which result in a significant jump of
689
+ the Lagrangian radii inside the influence radius. This result is consistent with Gualandris & Merritt
690
+ (2012), who has numerically investigated the evolution of SMBHBs in multi-component merging
691
+ galaxies. According to the results in the right panel, only CPT stars at central region have significant
692
+ evolution on average mass. NORM and GB stars roughly keep a constant average mass during the
693
+ integration, with latter corresponding to heavier value. Similar to the Fig. 3, the average mass of
694
+ CPT stars at inner region has a sharp drop in phase II. Since the drops of other two components are
695
+ not significant, the sharp decline of the average mass in phase II should be mainly contributed by
696
+ CPT stars.
697
+ 3.2. Tidal disruptions in multi-mass models
698
+ In our multi-component simulation there are 13991 TDEs/swallow events within the 200 N-
699
+ body time unit, and ∼ 94% are made by MS stars. The fraction of GB, WD, NS and BH are,
700
+ respectively, ∼ 2.3%, ∼ 2.7%, ∼ 0.7% and ∼ 0.3%. Similar to the equal mass model, the tidal
701
+
702
+ 18
703
+ Li et al.
704
+ 0
705
+ 50
706
+ 100
707
+ 150
708
+ 200
709
+ t ([T])
710
+ 0
711
+ 1
712
+ 2
713
+ 3
714
+ 4
715
+ 5
716
+ ̇
717
+ M([
718
+ ̇
719
+ M])
720
+ ×10
721
+ −4
722
+ EQ
723
+ MS
724
+ 0
725
+ 50
726
+ 100
727
+ 150
728
+ 200
729
+ t ([T])
730
+ 0
731
+ 100
732
+ 200
733
+ 300
734
+ 400
735
+ ̇
736
+ N
737
+ 0
738
+ 50
739
+ 100
740
+ 150
741
+ 200
742
+ t ([T])
743
+ 0.8
744
+ 1.0
745
+ 1.2
746
+ 1.4
747
+ 1.6
748
+ M
749
+ avg
750
+ ([M])
751
+ ×10
752
+ −6
753
+ Figure 5. The evolution of the total tidal disruption/swallowed rate in the multi-mass model and the equal
754
+ mass model. The red dashed and blue solid lines represent the result of equal mass model and multi-mass
755
+ model respectively. The left panel and middle panel are, respectively, the evolution of the mass accretion
756
+ rate and the event rate. The right panel is the average mass of disrupted/swallowed stars.
757
+ disruption in multi-mass models also can be divided into three phases, which correspond to before,
758
+ during and after the formation of bound SMBHBs. Fig. 5 demonstrates the total capture rate, which
759
+ includes both disrupted stars and swallowed normal stars or compact stars, in the multi-mass model
760
+ and the equal mass model. The red dashed and blue solid lines represent the result of equal mass
761
+ model and multi-mass model respectively. The left panel and middle panel are, respectively, the
762
+ evolution of the mass accretion rate and the event rate. In the simulation, we assume that all the
763
+ mass of the disrupted stars will be accreted into the SMBH. That means, the evolution of the mass
764
+ accretion rate and the event rate in the equal mass models are the same thing. However, it is different
765
+ in multi-mass models. As a result, the peak mass accretion rates of the equal mass and multi-mass
766
+ model in phase II are at the same level. While their event rates are different. Compared with the
767
+ multi-mass model which has peak event rate ˙N = 275/[T], the equal mass model has significantly
768
+ higher peak event rate ˙N = 421.5/[T]. According to this result, though the disrupted/swallowed
769
+ stars are less than the case in the equal mass model, the disrupted/swallowed stars in the multi-mass
770
+ model are preferred at the high mass end. It has been confirmed by the right panel of Fig. 5, which
771
+ represents the average mass of disrupted/swallowed stars. This effect is mainly due to the larger
772
+ tidal radii of heavier stars, and the mass segregation may also have some contributions.
773
+
774
+ MULTI-MASS N-BODY MODEL
775
+ 19
776
+ 3.2.1. Tidal disruptions of main sequence stars
777
+ Tidal disruption of MS stars dominate the TDEs in our models. As discussed in Section 2.3, MS
778
+ stars with relatively low mass generally correspond to small radii. Stars with tidal radius smaller
779
+ than rMSO will be essentially swallowed when they get close enough to the SMBH. According to our
780
+ simulation results with the largest particle number, there are ∼ 45% MS stars, with masses range
781
+ from ∼ 0.1 M⊙ to ∼ 0.4 M⊙, that have been swallowed by the SMBH. It should be noticed that
782
+ all the WDs will be swallowed by the SMBH too. But they only contribute less than 3% of the
783
+ total disruption/swallow events. Other models with different particle numbers give similar results.
784
+ In general, nearly half of captured stars will directly plunge into the SMBH without flares. Fig. 6
785
+ demonstrates the disruption/swallow evolution of MS stars. The orange and green lines in the figure
786
+ denote stars with standard tidal disruption flare (STD) and stars with plunge orbits without flare
787
+ (PLG), respectively. Blue lines and gray lines denote the evolution of all stars and the separation
788
+ of two SMBHs, respectively. The entire evolution is divided into three phases by two vertical gray
789
+ lines. The left y-axis represents the separation, and the right y-axis in the left and right panels are,
790
+ respectively, the mass accretion rate and event number rate.
791
+ Fig. 6 indicates that, due to the strong perturbation and the rapid evolution of the stellar dis-
792
+ tribution around two SMBHs, both swallowed stars and normal disrupted stars have significantly
793
+ enhanced rate in phase II. And there will be a rate peak every time two SMBHs get close. This result
794
+ is consistent with the previous equal mass model in Paper I. From the right panel we can easily see
795
+ that the normal TDEs and the plunge cases have very close event rates. However, it is obvious that
796
+ the plunge stars only contribute a small fraction of the mass accretion rate in the left panel, because
797
+ they are dominated by the stars at the low-mass end.
798
+ 3.2.2. Tidal disruptions of giant branch stars
799
+ GB stars usually have very large radii, which means a GB star has a very large tidal radius. Usually,
800
+ there is a dense core with significant mass concentrated in a GB star. During the tidal disruption,
801
+ instead of being totally disrupted by the SMBH, only the envelope of the GB star will be striped
802
+
803
+ 20
804
+ Li et al.
805
+ 0
806
+ 50
807
+ 100
808
+ 150
809
+ 200
810
+ t ([T])
811
+ 10
812
+ −4
813
+ 10
814
+ −3
815
+ 10
816
+ −2
817
+ 10
818
+ −1
819
+ 10
820
+ 0
821
+ 10
822
+ 1
823
+ d
824
+ BH
825
+ ([R])
826
+ PI
827
+ PII
828
+ PIII
829
+ 0
830
+ 1
831
+ 2
832
+ 3
833
+ 4
834
+ 5
835
+ ̇
836
+ M([
837
+ ̇
838
+ M])
839
+ ×10
840
+ −4
841
+ 0
842
+ 50
843
+ 100
844
+ 150
845
+ 200
846
+ t ([T])
847
+ 10
848
+ −4
849
+ 10
850
+ −3
851
+ 10
852
+ −2
853
+ 10
854
+ −1
855
+ 10
856
+ 0
857
+ 10
858
+ 1
859
+ d
860
+ BH
861
+ ([R])
862
+ d
863
+ BH
864
+ ALL
865
+ STD
866
+ PLG
867
+ 0
868
+ 50
869
+ 100
870
+ 150
871
+ 200
872
+ 250
873
+ 300
874
+ 350
875
+ ̇
876
+ N
877
+ Figure 6. The tidal disruption/swallow evolution of MS stars. The left panel and right panel are, respec-
878
+ tively, the evolution of mass accretion rate and the event rate. Blue, orange and green solid lines represent the
879
+ result of all of MS stars, standard TDE, and the MS stars which directly plunge into the SMBH, respectively.
880
+ Two vertical gray lines divide the evolution into three phases.
881
+ away, leading to a light accretion with only a fraction of the stellar mass. As demonstrated in Fig. 7,
882
+ the tidal disruption evolution of GB stars is similar to MS stars. The evolution can be divided into
883
+ three phases and there is a significant enhanced rate in phase II. Here blue and orange lines represent
884
+ the evolution of CPT and GB stars respectively, the rest of the legend and labels are the same as
885
+ Fig. 6.
886
+ As mentioned in Section 2.3, after the disruption, the remnant stars usually are WDs or naked
887
+ helium MS stars. Most of them will fly by the SMBH and not be swallowed. However, according to
888
+ our result, there is ∼ 14% remnants will finally plunge into the SMBH. Some of them will quickly
889
+ plunge into the SMBH within one orbital period, and the rest may be captured by the SMBH first
890
+ and finally swallowed with a time delay ∆t. Fig. 8 represents the distribution of these accreted
891
+ remnant stars.
892
+ The x-axis and y-axis, respectively, represent ”t1stTD”, the time that stars been
893
+ tidally disrupted by the SMBH and the time delay ∆t between the first tidal disruption and the final
894
+ plunge. The mass of remnants after the first tidal disruption has been denoted in different colors,
895
+ with a color bar in solar mass. The size of the filled circles represents the mass of striped envelopes
896
+ during GTD with the range from 2.6 × 10−5 M⊙ to 1.8 M⊙. According to the figure, most of the
897
+ plunge events of the remnants are recorded soon after the first tidal disruption. There are some
898
+
899
+ MULTI-MASS N-BODY MODEL
900
+ 21
901
+ 0
902
+ 50
903
+ 100
904
+ 150
905
+ 200
906
+ t ([T])
907
+ 10
908
+ −4
909
+ 10
910
+ −3
911
+ 10
912
+ −2
913
+ 10
914
+ −1
915
+ 10
916
+ 0
917
+ 10
918
+ 1
919
+ d
920
+ BH
921
+ ([R])
922
+ PI
923
+ PII
924
+ PIII
925
+ 0
926
+ 1
927
+ 2
928
+ 3
929
+ 4
930
+ 5
931
+ 6
932
+ 7
933
+ 8
934
+ ̇
935
+ M([
936
+ ̇
937
+ M])
938
+ ×10
939
+ −5
940
+ 0
941
+ 50
942
+ 100
943
+ 150
944
+ 200
945
+ t ([T])
946
+ 10
947
+ −4
948
+ 10
949
+ −3
950
+ 10
951
+ −2
952
+ 10
953
+ −1
954
+ 10
955
+ 0
956
+ 10
957
+ 1
958
+ d
959
+ BH
960
+ ([R])
961
+ CPT
962
+ GB
963
+ 0
964
+ 2
965
+ 4
966
+ 6
967
+ 8
968
+ 10
969
+ 12
970
+ 14
971
+ ̇
972
+ N
973
+ Figure 7. The tidal disruption evolution of CPT stars and GB stars. The left panel and right panel are,
974
+ respectively, the evolution of mass accretion rate and the event rate. Blue and orange solid lines represent
975
+ the result of CPT and GB stars respectively. Two vertical gray lines divide the evolution into three phases.
976
+ exceptions which can survive for a relatively long time after the first tidal disruption. And most of
977
+ such large time delay cases are in early phases. After a compact SMBHB formed in phase III, the
978
+ remnants will be more easily kicked by the companion SMBH and avoid the final plunge. Since our
979
+ integration terminated at t = 200, there may be some plunge events at t > 200 missed. In addition,
980
+ we also find that ∼ 17 stars in Fig. 8 have been stripped off more than half of their mass during the
981
+ GTD.
982
+ 3.2.3. SMBHB and compact objects
983
+ Fig. 7 demonstrates the swallow rate evolution of CPT stars, which is similar to GB stars. According
984
+ to the heavier mass, though CPT plunge events are not as frequent as GTD, their contributions on
985
+ mass accretion is more significant than GB stars. Fig. 9 represents the mass distribution of swallowed
986
+ NSs and BHs. Most swallowed NSs concentrate in the low mass end, while the BHs are the opposite.
987
+ It should be noted that, since general relativity effects are not included in all of these integrations, the
988
+ orbits of compact stars very close to SMBHs are not accurate. In principle, by using post-Newtonian
989
+ approximation we can integrate the orbital evolution of a two-body system with relatively high
990
+ accuracy. However, such an approximation is not easy to be adopted in a triple system which we
991
+
992
+ 22
993
+ Li et al.
994
+ 0
995
+ 25
996
+ 50
997
+ 75
998
+ 100
999
+ 125
1000
+ 150
1001
+ 175
1002
+ 200
1003
+ t
1004
+ 1stTD
1005
+ −10
1006
+ 0
1007
+ 10
1008
+ 20
1009
+ 30
1010
+ 40
1011
+ 50
1012
+ 60
1013
+ 70
1014
+ Δt
1015
+ PI
1016
+ PII
1017
+ PIII
1018
+ 0.30
1019
+ 0.35
1020
+ 0.40
1021
+ 0.45
1022
+ 0.50
1023
+ 0.55
1024
+ M
1025
+ PLG
1026
+ [M
1027
+
1028
+ ]
1029
+ Figure 8. The GB stars which have been finally swallowed by the SMBH after a tidal disruption. The
1030
+ x-axis and y-axis represent the time that stars have been tidally disrupted by the SMBH and the time delay
1031
+ between the tidal disruption and the final plunge. Two vertical gray lines divide the evolution into three
1032
+ phases. The color bar denotes the mass of the tidal disruption remnants which finally plunge into the SMBH,
1033
+ in solar mass.
1034
+ are discussing here. Bonetti et al. (2016) has achieved an improvement with corrections up to 2.5PN
1035
+ order. We prefer to solve this problem with similar methods in future work. This simplification will
1036
+ not make a significant influence on the TDR evolution. Because most of disrupted stars are tend to
1037
+ be concentrated on the low mass end which was relatively less affected. The rate may only be slightly
1038
+ underestimated, but the evolution should be the same. While for CPT stars, specially those with
1039
+ orbits very close to SMBHs, the absence of the PN corrections may lead to the suppressed EMRIs
1040
+ formation.
1041
+ 4. DISCUSSION
1042
+
1043
+ MULTI-MASS N-BODY MODEL
1044
+ 23
1045
+ 1.4
1046
+ 1.6
1047
+ 1.8
1048
+ 2.0
1049
+ 2.2
1050
+ m * [M⊙]
1051
+ 0
1052
+ 5
1053
+ 10
1054
+ 15
1055
+ 20
1056
+ 25
1057
+ ⊙0
1058
+ ⊙5
1059
+ N
1060
+ NS
1061
+
1062
+ 4
1063
+ 5
1064
+ 6
1065
+ 7
1066
+ 8
1067
+ 9
1068
+ 10
1069
+ m * [M⊙]
1070
+ 0
1071
+ 2
1072
+ 4
1073
+ 6
1074
+ 8
1075
+ 10
1076
+ 12
1077
+ N
1078
+ BH
1079
+ Figure 9.
1080
+ The mass distribution of swallowed NSs and BHs.
1081
+ The left panel and the right panel are,
1082
+ respectively, the distribution of swallowed NSs and BHs. The masses of CPT stars are in solar mass and
1083
+ the y-axis represents the event counts.
1084
+ 4.1. Extrapolations to galaxies
1085
+ As discussed in Section 2.4, the simulation results here can not be directly used to estimate the
1086
+ tidal disruption rate evolution in a galaxy. Due to the limited particle resolution, extrapolations
1087
+ based on the simulation results are crucial. Here we follow the same scheme as Paper I. We choose
1088
+ N = 5 × 105 for each galaxy and the average tidal radius rt = 5 × 10−4 as fiducial parameters.
1089
+ In order to investigate the rt and N dependence, we vary rt with fixed fiducial N, and vary N
1090
+ with fiducial rt individually. The rt varies in [10−5, 10−4.5, 10−4, 10−3.5, 10−3], and the N varies in
1091
+ [1.25 × 105, 2.5 × 105, 5 × 105, 106]. In every model, the average tidal disruption accretion rates and
1092
+ event rates in three phases are calculated individually.
1093
+ Fig. 10 demonstrates the corresponding simulation results of phase I and II for different stellar
1094
+ components. The red, green and blue dots represent the tidal disruption accretion rates of STD,
1095
+ PLG and CPT stars respectively. Limited by the particle resolution, even the model with largest
1096
+ star particles does not record enough events of GTD and CPT for statistical study in some phases.
1097
+ Especially in phase II, due to the short time periods, only STD and PLG stars have enough recorded
1098
+ events for statistical study. The left and middle panels in the figure demonstrate the rt dependence
1099
+
1100
+ 24
1101
+ Li et al.
1102
+ 0
1103
+ 5
1104
+ 10
1105
+ r
1106
+ t
1107
+ ([r])
1108
+ 0.0
1109
+ 0.2
1110
+ 0.4
1111
+ 0.6
1112
+ 0.8
1113
+ 1.0
1114
+ 1.2
1115
+ ̇
1116
+ M([
1117
+ ̇
1118
+ M])
1119
+ ×10
1120
+ −4
1121
+ ×10
1122
+ −4
1123
+ PI
1124
+ STD
1125
+ PLG
1126
+ CPT
1127
+ 0
1128
+ 500
1129
+ 1000
1130
+ N
1131
+ 0.00
1132
+ 0.25
1133
+ 0.50
1134
+ 0.75
1135
+ 1.00
1136
+ 1.25
1137
+ 1.50
1138
+ ̇
1139
+ M([
1140
+ ̇
1141
+ M])
1142
+ ×10
1143
+ −4
1144
+ ×10
1145
+ 3
1146
+ PI
1147
+ 0
1148
+ 5
1149
+ 10
1150
+ r
1151
+ t
1152
+ ([r])
1153
+ 0
1154
+ 1
1155
+ 2
1156
+ 3
1157
+ 4
1158
+ ̇
1159
+ M([
1160
+ ̇
1161
+ M])
1162
+ ×10
1163
+ −4
1164
+ ×10
1165
+ −4
1166
+ PII
1167
+ Figure 10. The disruption rate extrapolations of phase I and II. The red, green and blue dots represent
1168
+ the tidal disruption accretion rates of STD, PLG and CPT events based on simulation results respectively.
1169
+ The red solid, the green dashed and the blue dotted lines represent the corresponding fitting results based
1170
+ on analytical estimations. The left and middle panels demonstrate the rt dependence and N dependence in
1171
+ phase I, respectively. And the right panel denotes the rt dependence in phase II.
1172
+ and N dependence in phase I, respectively. And the right panel represents the rt dependence in
1173
+ phase II.
1174
+ Based on the discussions in Paper I and II, the tidal disruption in phase I is dominated by two-body
1175
+ relaxation, and the accretion rate can be well estimated by
1176
+ ˙M ∝
1177
+ � N
1178
+ ln Λ
1179
+ �α
1180
+
1181
+ t ,
1182
+ (8)
1183
+ where α and β can be fitted through numerical simulation results, and ln Λ is the Coulomb logarithm
1184
+ and can be estimated by
1185
+ ln Λ ≈ ln
1186
+ �MBH
1187
+ 2m∗
1188
+
1189
+ ,
1190
+ (9)
1191
+ where m∗ is the average mass of stars (Preto et al. 2004).
1192
+ However, unlike the equal stellar mass models, the mass accretion rates in multi-mass models can
1193
+ not intuitively reflect the event rate. As a rough estimation, we can simply assume ˙N = ˙M/m∗. The
1194
+ TDE rate in phase I can be estimated by
1195
+ ˙N ∝ N
1196
+ �ln Λ
1197
+ N
1198
+ �ζ
1199
+
1200
+ t,
1201
+ (10)
1202
+ where ζ and ξ can be fitted through numerical simulation results.
1203
+
1204
+ MULTI-MASS N-BODY MODEL
1205
+ 25
1206
+ The tidal disruption loss cone refilling in phase II is almost full, which means the tidal disruption
1207
+ mass accretion rate weakly depends on N. Therefore the rate can be approximated as a power law of
1208
+ rt. But the event rate ˙N should be divided by m∗, or equivalent to multiplying by N. The situation
1209
+ is very complicated in phase III. Two-body relaxation, perturbation of companion SMBH and the
1210
+ triaxial stellar distributions have significant contributions to the loss cone refilling. It is very difficult
1211
+ to analytically estimate the disruption rate in phase III. Therefore the extrapolation in phase III is
1212
+ not reliable.
1213
+ With above analytical models, and assuming that different stellar components roughly follow the
1214
+ same relations, we can make rough extrapolations for different stellar components in phase I and II.
1215
+ 4.1.1. Phase I
1216
+ Following the similar scheme in Paper I, combining with simulation results, the tidal disruption
1217
+ mass accretion rate of STD stars in phase I can be estimated as
1218
+ ˙MSTD ∼ 1.48 ×
1219
+ � N
1220
+ ln Λ
1221
+ �−0.57
1222
+ r0.48
1223
+ t
1224
+ ,
1225
+ (11)
1226
+ which can be extrapolated as
1227
+ ˙MSTD ∼ 2.7 × 10−2
1228
+ � N
1229
+ ln Λ
1230
+ �−0.57 � r1/2
1231
+ 1 kpc
1232
+ �−1.98 �
1233
+ rt
1234
+ 10−6pc
1235
+ �0.48
1236
+ M⊙ yr−1.
1237
+ (12)
1238
+ The event rate is
1239
+ ˙NSTD ∼ 0.84N
1240
+ � N
1241
+ ln Λ
1242
+ �−0.57
1243
+ r0.48
1244
+ t
1245
+ ,
1246
+ (13)
1247
+ which can be extrapolated as
1248
+ ˙NSTD ∼ 1.5 × 10−2 M⊙
1249
+ m∗
1250
+ � N
1251
+ ln Λ
1252
+ �−0.57 � r1/2
1253
+ 1 kpc
1254
+ �−1.98 �
1255
+ rt
1256
+ 10−6pc
1257
+ �0.48
1258
+ yr−1.
1259
+ (14)
1260
+ For our fiducial model with M = 109 M⊙, MBH = 107 M⊙, r1/2 = 1 kpc, and according to our
1261
+ simulation results with m∗ = 0.43 M⊙ corresponding to stellar radius r∗ = 0.40R⊙, we can derive
1262
+ the mass accretion rate of the disrupted stars should be ∼ 1.0 × 10−6M⊙ yr−1, and the event rate is
1263
+ ∼ 1.3 × 10−6yr−1.
1264
+
1265
+ 26
1266
+ Li et al.
1267
+ Similarly, the mass accretion rate of PLG stars can be estimated as
1268
+ ˙MPLG ∼ 0.16 ×
1269
+ � N
1270
+ ln Λ
1271
+ �−0.47
1272
+ r0.51
1273
+ t
1274
+ ,
1275
+ (15)
1276
+ with corresponding event rate
1277
+ ˙NPLG ∼ 0.32N
1278
+ � N
1279
+ ln Λ
1280
+ �−0.47
1281
+ r0.51
1282
+ t
1283
+ .
1284
+ (16)
1285
+ The extrapolation of the mass accretion rate and the event rate are
1286
+ ˙MPLG ∼ 1.6 × 10−3
1287
+ � N
1288
+ ln Λ
1289
+ �−0.47 � r1/2
1290
+ 1 kpc
1291
+ �−2.01 �
1292
+ rt
1293
+ 10−6pc
1294
+ �0.51
1295
+ M⊙ yr−1,
1296
+ (17)
1297
+ ˙NPLG ∼ 3.2 × 10−3 M⊙
1298
+ m∗
1299
+ � N
1300
+ ln Λ
1301
+ �−0.47 � r1/2
1302
+ 1 kpc
1303
+ �−2.01 �
1304
+ rt
1305
+ 10−6pc
1306
+ �0.51
1307
+ yr−1.
1308
+ (18)
1309
+ In our fiducial model, the mass accretion rate should be ∼ 4.0 × 10−7M⊙ yr−1, and the event rate is
1310
+ ∼ 1.8 × 10−6yr−1.
1311
+ GTD and CPT events are not popular in all simulations. GTD events are quite rare. However, we
1312
+ can still find some CPT stars swallowed by SMBHs in phase I. Although the data is not very good
1313
+ for statistical study, we can still try some extrapolations, which gives the mass accretion rate
1314
+ ˙MCPT ∼ 62.74 ×
1315
+ � N
1316
+ ln Λ
1317
+ �−1.04
1318
+ r0.55
1319
+ t
1320
+ ,
1321
+ (19)
1322
+ and the event rate
1323
+ ˙NCPT ∼ 7.18N
1324
+ � N
1325
+ ln Λ
1326
+ �−1.04
1327
+ r0.55
1328
+ t
1329
+ .
1330
+ (20)
1331
+ The extrapolation relations of the mass accretion rate and the event rate are
1332
+ ˙MCPT ∼ 0.29
1333
+ � N
1334
+ ln Λ
1335
+ �−1.04 � r1/2
1336
+ 1 kpc
1337
+ �−2.05 �
1338
+ rt
1339
+ 10−6pc
1340
+ �0.55
1341
+ M⊙ yr−1,
1342
+ (21)
1343
+ ˙NCPT ∼ 3.3 × 10−2 M⊙
1344
+ m∗
1345
+ � N
1346
+ ln Λ
1347
+ �−1.04 � r1/2
1348
+ 1 kpc
1349
+ �−2.05 �
1350
+ rt
1351
+ 10−6pc
1352
+ �0.55
1353
+ yr−1.
1354
+ (22)
1355
+ And the corresponding accretion rate and the event rate of the fiducial model are, respectively,
1356
+ ˙M ∼ 1.6 × 10−9M⊙ yr−1 and ˙N ∼ 4.4 × 10−10yr−1. It should be noticed that our results here are
1357
+ purely Newtonian. Since the post-Newtonian approach is not included in our model, the results here
1358
+ can only be considered as a crude approximation.
1359
+
1360
+ MULTI-MASS N-BODY MODEL
1361
+ 27
1362
+ 0
1363
+ 2
1364
+ 4
1365
+ 6
1366
+ 8
1367
+ 10
1368
+ 12
1369
+ rt([r])
1370
+ 0
1371
+ 5
1372
+ 10
1373
+ 15
1374
+ 20
1375
+ 25
1376
+ 30
1377
+ 35
1378
+ ̇N
1379
+ ×10−4
1380
+ PI
1381
+ STD
1382
+ PLG
1383
+ ̇PT
1384
+ 0
1385
+ 200 400 600 800 10001200
1386
+ N
1387
+ 0
1388
+ 5
1389
+ 10
1390
+ 15
1391
+ 20
1392
+ 25
1393
+ 30
1394
+ 35
1395
+ ̇N
1396
+ ×103
1397
+ PI
1398
+ 0
1399
+ 2
1400
+ 4
1401
+ 6
1402
+ 8
1403
+ 10
1404
+ 12
1405
+ rt([r])
1406
+ 0
1407
+ 20
1408
+ 40
1409
+ 60
1410
+ 80
1411
+ 100
1412
+ 120
1413
+ 140
1414
+ ̇N
1415
+ ×10−4
1416
+ PII
1417
+ 0
1418
+ 200 400 600 800 10001200
1419
+ N
1420
+ 0
1421
+ 20
1422
+ 40
1423
+ 60
1424
+ 80
1425
+ 100
1426
+ 120
1427
+ 140
1428
+ ̇N
1429
+ ×103
1430
+ PII
1431
+ Figure 11. The disruption event rate extrapolations of phase I and II. The legends are similar to the
1432
+ Fig. 10. The first and the second rows demonstrate the results of phase I and phase II, respectively. The
1433
+ left and right panels in each row demonstrate the rt dependence and N dependence, respectively.
1434
+ Fig. 10 and 11 demonstrate the extrapolation fitting results of the mass accretion rate and event
1435
+ rate respectively. Red, green and blue dots in two figures represent simulation results of STD, PLG
1436
+ and CPT stars respectively. Red solid, green dashed and blue dotted lines are, respectively, fitting
1437
+ results of STD, PLG and CPT stars based on the derived extrapolation formulas in Section 4.1.1 and
1438
+ 4.1.2. It should be aware that, due to very limited event records, the extrapolation fitting results of
1439
+ swallowed CPT stars in PI are not as good as STD or PLG stars. Compare the two figures, the STD
1440
+
1441
+ 28
1442
+ Li et al.
1443
+ and PLG have similar event rates in phase I. But the STD stars correspond to significantly higher
1444
+ mass accretion rates. Our extrapolation results of the fiducial model also indicate that more than
1445
+ half events are contributed by PLG stars, which may not induce any observational effects. But more
1446
+ than half accreted mass is contributed by STD stars.
1447
+ 4.1.2. Phase II
1448
+ Both analytical estimations and our numerical simulations indicate that the tidal disruption rate
1449
+ in phase II does not significantly depend on N. The accretion rate of STD stars can be estimated by
1450
+ ˙MSTD ∼ 0.11r0.82
1451
+ t
1452
+ ,
1453
+ (23)
1454
+ with extrapolation relation
1455
+ ˙MSTD ∼ 2.2 × 10−6
1456
+ � r1/2
1457
+ 1 kpc
1458
+ �−2.32 �
1459
+ rt
1460
+ 10−6pc
1461
+ �0.82
1462
+ M⊙ yr−1,
1463
+ (24)
1464
+ which corresponds to ˙M ∼ 5.0 × 10−6M⊙ yr−1 for our fiducial model.
1465
+ The event rate is
1466
+ ˙NSTD ∼ 5.97 × 10−2Nr0.82
1467
+ t
1468
+ ,
1469
+ (25)
1470
+ and the extrapolation can be wrote as
1471
+ ˙NSTD ∼ 1.2 × 10−6 M⊙
1472
+ m∗
1473
+ � r1/2
1474
+ 1 kpc
1475
+ �−2.32 �
1476
+ rt
1477
+ 10−6pc
1478
+ �0.82
1479
+ yr−1,
1480
+ (26)
1481
+ which corresponds to ˙N ∼ 6.3 × 10−6yr−1 for the fiducial model.
1482
+ Similarly, the mass accretion rate of PLG stars can be estimated by
1483
+ ˙MPLG ∼ 2.69 × 10−2r0.85
1484
+ t
1485
+ ,
1486
+ (27)
1487
+ with extrapolation relation
1488
+ ˙MPLG ∼ 3.3 × 10−7
1489
+ � r1/2
1490
+ 1 kpc
1491
+ �−2.35 �
1492
+ rt
1493
+ 10−6pc
1494
+ �0.85
1495
+ M⊙ yr−1.
1496
+ (28)
1497
+ For our fiducial model, that corresponds to ˙M ∼ 7.6 × 10−7M⊙ yr−1.
1498
+
1499
+ MULTI-MASS N-BODY MODEL
1500
+ 29
1501
+ Table 1. Averaged mass accretion rates and event rates in different phases.
1502
+ Stage
1503
+ ˙
1504
+ MSTD
1505
+ ˙NSTD
1506
+ ˙MPLG
1507
+ ˙NPLG
1508
+ ˙MCPT
1509
+ ˙NCPT
1510
+ ×10−6M⊙/yr
1511
+ ×10−6/yr
1512
+ ×10−6M⊙/yr
1513
+ ×10−6/yr
1514
+ ×10−9M⊙/yr
1515
+ ×10−9/yr
1516
+ (1)
1517
+ (2)
1518
+ (3)
1519
+ (4)
1520
+ (5)
1521
+ (6)
1522
+ (7)
1523
+ PI
1524
+ 1.0
1525
+ 1.3
1526
+ 0.4
1527
+ 1.8
1528
+ 1.6
1529
+ 0.4
1530
+ PII
1531
+ 5.0
1532
+ 6.3
1533
+ 0.8
1534
+ 3.5
1535
+ -
1536
+ -
1537
+ Note—Col.(1): Stage of the evolution.
1538
+ Col.(2): Mass accretion rate of disrupted STD stars.
1539
+ Col.(3): Event rate of disrupted STD stars. Col.(4): Mass accretion rate of swallowed PLG
1540
+ stars. Col.(5): Event rate of swallowed PLG stars. Col.(6): Mass accretion rate of swallowed
1541
+ CPT stars. Col.(7): Event rate of swallowed CPT stars.
1542
+ The event rate of PLG stars is
1543
+ ˙NPLG ∼ 5.36 × 10−2Nr0.85
1544
+ t
1545
+ .
1546
+ (29)
1547
+ and the extrapolation can be wrote as
1548
+ ˙NPLG ∼ 6.5 × 10−7 M⊙
1549
+ m∗
1550
+ � r1/2
1551
+ 1 kpc
1552
+ �−2.35 �
1553
+ rt
1554
+ 10−6pc
1555
+ �0.85
1556
+ yr−1,
1557
+ (30)
1558
+ which corresponding to ˙N ∼ 3.5×10−6yr−1 for the fiducial model. Obviously, both the mass accretion
1559
+ rate and the event rate in phase II have significant increases. The rate of STD has increased several
1560
+ times compared with PI, which is consistent with the result in Paper I and II.
1561
+ Since the period of phase II in all of our models is around 20 N-body time units, there are not many
1562
+ recorded events contributed by CPT and GTD stars. The extrapolation can not be well managed
1563
+ for them.
1564
+ Table. 1 summarizes the extrapolation results of averaged mass accretion rates and event rates in
1565
+ phase I and II, for disrupted/swallowed STD, PLG and CPT stars respectively. Since the swallowed
1566
+ CPT stars in phase II are relatively rare, we do not estimate their rates in the table.
1567
+ 4.2. Delectability by space based GW instruments
1568
+
1569
+ 30
1570
+ Li et al.
1571
+ As strong GW sources, SMBHBs could be directly detected by PTAs or space born detectors such
1572
+ as LISA, TaiJi and TianQin in the future. There are many discussions on this topic, which is out
1573
+ of the scope of this paper. Here we want to discuss EMRIs, another kind of typical GW source
1574
+ produced by SMBHs which could be detected by LISA/TaiJi/TianQin. Such events could also be
1575
+ prompted around a SMBHB. However, a typical EMRI should spiral the SMBH for many orbits. It
1576
+ needs accurate integrations with general relativity effects considered, which is not included in our
1577
+ integrations. Therefore, it is not reliable to estimate the rate of EMRIs based on our models. Another
1578
+ interesting event are EMRBs, which are GW bursts from stellar objects passing by a SMBH with
1579
+ very small pericenter distances. It has been considered as the precursor to EMRIs, because many
1580
+ EMRBs will lose their energy and angular momentum through GW radiation and finally evolve into
1581
+ EMRIs (Rubbo et al. 2006). Hopman et al. (2007) demonstrates that the burst rates for stellar BHs
1582
+ and MSs/WDs are, respectively, 1 yr−1 and 0.1 yr−1 in the Milky Way. If extragalactic sources could
1583
+ be included, a detector like LISA could manage the detection out to ∼ 100 Mpc for a 10 M⊙ BH,
1584
+ with event rate of ∼ 0.2 yr−1 (Berry & Gair 2013b,c). Recently, Han et al. (2020) calculates the event
1585
+ rates of very extreme mass ratio bursts with a mass ratio about 10−8. They especially considered the
1586
+ contribution of plunge stellar objects such as brown dwarfs with unbound orbits. Their estimation
1587
+ indicates that, for small stellar objects with mass ∼ 0.1 M⊙, the space based facilities could detect
1588
+ the bursts inside 10 Mpc, with corresponding event rate 4 − 8 yr−1.
1589
+ In our model, as discussed in Section 4.1, the rates of compact stars such as NSs and BHs getting
1590
+ swallowed by SMBHs are quite low. However, there are many low mass main sequence stars that
1591
+ plunge into SMBHs. According to the result of our largest simulation, the average mass of swallowed
1592
+ stars is ∼ 0.2 M⊙, which have similar mass as Han et al. (2020) discussed. In principal, the signal-
1593
+ to-noise ratio (SNR) of such kind of EMRBs is proportional to m∗R−1M2/3
1594
+ BH, with R is the distance
1595
+ from the source to observers (Berry & Gair 2013b). With carefully numerical estimations, Han et al.
1596
+ (2020) finds that the SNRs of plunging events with 0.1 M⊙ stars in the Galactic Center can be up
1597
+ to ten thousands for LISA. If we consider a 0.2 M⊙ star swallowed by an 107 M⊙ SMBH, the SNR
1598
+ can be still as large as ∼ 8 at ∼ 50 Mpc. However, according to estimations in Section 4.1, the event
1599
+
1600
+ MULTI-MASS N-BODY MODEL
1601
+ 31
1602
+ rates of the PLG are only around 10−6 yr−1 in phase I and II. Since there are not too many galaxies
1603
+ inside ∼ 50 Mpc, it is unlikely to detect such kind of EMRBs with space borne GW detectors in the
1604
+ near future.
1605
+ 5. SUMMARY
1606
+ We investigated full and partial tidal disruption of stars and direct plunges into supermassive black
1607
+ holes (MSBH) in nuclear star clusters during and after a galaxy merger. For that a full direct N-
1608
+ body simulation has been used with stars obtained from a realistic stellar mass distribution, evolved
1609
+ for ∼ 1 Gyr (to account for the age of the galaxies before the merger), surrounding two SMBH
1610
+ situated in the centres of the two merging galaxies.
1611
+ With the stellar evolution included, there are different stellar components, from low mass main
1612
+ sequence stars to white dwarfs, neutron stars and stellar mass black holes. Different stellar objects,
1613
+ according to their properties like mass and radius, have different fates after the close encounter with
1614
+ central SMBHs. Compared to the equal mass model, the multi-mass model with similar parameters
1615
+ tends to have similar or even slightly higher mass accretion rate. However, although their event
1616
+ rates in phase I and III (before and after the galaxy merger) are similar, the multi-mass model has
1617
+ lower event rate compared to the equal mass model in phase II (the short time while the merger is
1618
+ dynamically ongoing), which indicates that the disrupted/swallowed stars in multi-mass model prefer
1619
+ high mass end.
1620
+ In the multi-mass model, if a main sequence star is heavy enough, its close encounter with a SMBH
1621
+ may lead to a standard TDE. Otherwise a light main sequence star may correspond to a tiny tidal
1622
+ radius which makes it inside the marginally bound orbits. That will result in a plunge event. During
1623
+ the galaxy merger, due to the perturbation of the companion SMBH and stars around it, both STD
1624
+ and PLG event rates will be enhanced in phase II. STD and PLG have similar event rates. But STD
1625
+ events correspond to significantly higher mass accretion rate, because the PLG events are preferring
1626
+ to low mass stars. Since PLG events may not have any observational signatures, probably nearly
1627
+ half of the SMBH tidal capture events are invisible.
1628
+
1629
+ 32
1630
+ Li et al.
1631
+ Post sequence stars, such as RGs or AGB stars, could be partially disrupted. There might be a
1632
+ core that survived after a GTD which stripped away the envelope. The remnant could escape or
1633
+ plunge into the SMBH. Our largest numerical simulation gets ∼ 10% GTD stars finally plunge into
1634
+ SMBHs after their disruption. Some of them can have bound orbits around the SMBH and survive
1635
+ for many orbits.
1636
+ CPT stars show significant mass segregation in the central region during phase I. Due to the heating
1637
+ of the newly formed SMBHB, the Lagrangian radii in the central region expand quickly during phase
1638
+ II. Since our integrations are totally Newtonian, the orbits of compact stars close to the SMBH are
1639
+ not accurate. According to our limited results, the rate of compact stars getting swallowed by SMBHs
1640
+ in phase II could be significantly enhanced. And most swallowed NSs concentrate on the low mass
1641
+ end, while BHs are the opposite.
1642
+
1643
+ MULTI-MASS N-BODY MODEL
1644
+ 33
1645
+ We
1646
+ are
1647
+ grateful
1648
+ to
1649
+ the
1650
+ support
1651
+ of
1652
+ the
1653
+ National
1654
+ Natural
1655
+ Science
1656
+ Foundation
1657
+ of
1658
+ China
1659
+ (NSFC11988101,NSFC11303039), the Key International Partnership Program of the Chinese
1660
+ Academy of Sciences (CAS) (No.114A11KYSB20170015), and the Strategic Priority Research Pro-
1661
+ gram (Pilot B) Multiwavelength gravitational wave universe of CAS (No.XDB23040100). We (SL,
1662
+ PB, RS) acknowledge support by CAS through the Silk Road Project at National Astronomical Ob-
1663
+ servatories (NAOC) of China, and the support by Key Laboratory of Computational Astrophysics.
1664
+ The computations have been done on the Laohu supercomputer at the Center of Information and
1665
+ Computing at NAOC, CAS, funded by the Ministry of Finance of People’s Republic of China under
1666
+ the grant ZDY Z2008−2. LS and RS acknowledge the support of Yunnan Academician Workstation
1667
+ of Wang Jingxiu (No. 202005AF150025). LS acknowledges support from the K.C.Wong Education
1668
+ Foundation. PB acknowledges the special support by the CAS President’s International Fellowship
1669
+ for Visiting Scientists (PIFI) program during his stay in NAOC, CAS. XC acknowledges the support
1670
+ of the National Natural Science Foundation of China (No. 11873022). The work of PB was sup-
1671
+ ported by the Volkswagen Foundation under the special stipend No. 9B870 and the grant No. 97778.
1672
+ PB acknowledge the support within the grant No. AP14870501 of the Science Committee of the
1673
+ Ministry of Science and Higher Education of Kazakhstan. The work of PB was supported under
1674
+ the special program of the NRF of Ukraine Leading and Young Scientists Research Support - ”As-
1675
+ trophysical Relativistic Galactic Objects (ARGO): life cycle of active nucleus”, No. 2020.02/0346.
1676
+ PB thanks the support from the ACIISI, Consejer´ıa de Econom´ıa, Conocimiento y Empleo del Gob-
1677
+ ierno de Canarias and the European Regional Development Fund (ERDF) under grant with reference
1678
+ PROID2021010044.
1679
+ REFERENCES
1680
+ Amaro-Seoane, P. 2018, Living Reviews in
1681
+ Relativity, 21, 4. doi:10.1007/s41114-018-0013-8
1682
+ Arcavi, I., Gal-Yam, A., Sullivan, M., et al. 2014,
1683
+ ApJ, 793, 38. doi:10.1088/0004-637X/793/1/38
1684
+ Arzoumanian, Z., Brazier, A., Burke-Spolaor, S.,
1685
+ et al. 2016, ApJ, 821, 13.
1686
+ doi:10.3847/0004-637X/821/1/13
1687
+
1688
+ 34
1689
+ Li et al.
1690
+ Arzoumanian, Z., Baker, P. T., Blumer, H., et al.
1691
+ 2020, ApJL, 905, L34.
1692
+ doi:10.3847/2041-8213/abd401
1693
+ Babak, S., Petiteau, A., Sesana, A., et al. 2016,
1694
+ MNRAS, 455, 1665. doi:10.1093/mnras/stv2092
1695
+ Baumgardt, H., Makino, J., & Ebisuzaki, T. 2004,
1696
+ ApJ, 613, 1143
1697
+ Begelman, M. C., Blandford, R. D., & Rees, M. J.
1698
+ 1980, Nature, 287, 307
1699
+ Belczynski, K., Kalogera, V., & Bulik, T. 2002,
1700
+ ApJ, 572, 407. doi:10.1086/340304
1701
+ Berczik, P., Merritt, D., & Spurzem, R. 2005,
1702
+ ApJ, 633, 680. doi:10.1086/491598
1703
+ Berczik, P., Merritt, D., Spurzem, R., & Bischof,
1704
+ H.-P. 2006, ApJL, 642, L21. doi:10.1086/504426
1705
+ Berry, C. P. L. & Gair, J. R. 2013b, MNRAS, 433,
1706
+ 3572. doi:10.1093/mnras/stt990
1707
+ Berry, C. P. L. & Gair, J. R. 2013c, MNRAS, 435,
1708
+ 3521. doi:10.1093/mnras/stt1543
1709
+ Bonetti, M., Haardt, F., Sesana, A., et al. 2016,
1710
+ MNRAS, 461, 4419. doi:10.1093/mnras/stw1590
1711
+ Chatterjee, P., Hernquist, L., & Loeb, A. 2003,
1712
+ ApJ, 592, 32
1713
+ Chen, X., Madau, P., Sesana, A., & Liu, F. K.
1714
+ 2009, ApJL, 697, L149
1715
+ Chevalier, R. A. 1989, ApJ, 346, 847.
1716
+ doi:10.1086/168066
1717
+ Colgate, S. A. 1971, ApJ, 163, 221.
1718
+ doi:10.1086/150760
1719
+ Colpi, M. 2014, SSRv, 183, 189.
1720
+ doi:10.1007/s11214-014-0067-1
1721
+ Coughlin, E. R., Armitage, P. J., Nixon, C., &
1722
+ Begelman, M. C. 2017, MNRAS, 465, 3840.
1723
+ doi:10.1093/mnras/stw2913
1724
+ Cutler, C., Kennefick, D., & Poisson, E. 1994,
1725
+ PhRvD, 50, 3816.
1726
+ doi:10.1103/PhysRevD.50.3816
1727
+ Dehnen, W. 1993, MNRAS, 265, 250
1728
+ Evans, C. R., & Kochanek, C. S. 1989, ApJL, 346,
1729
+ L13
1730
+ Ferrarese, L., & Merritt, D. 2000, ApJL, 539, L9
1731
+ Foster, R. S., & Backer, D. C. 1990, ApJ, 361,
1732
+ 300. doi:10.1086/169195
1733
+ Frank, J., & Rees, M. J. 1976, MNRAS, 176, 633.
1734
+ doi:10.1093/mnras/176.3.633
1735
+ Gair, J. R., Kennefick, D. J., & Larson, S. L.
1736
+ 2005, PhRvD, 72, 084009.
1737
+ doi:10.1103/PhysRevD.72.084009
1738
+ Gebhardt, K., Bender, R., Bower, G., et al. 2000,
1739
+ ApJL, 539, L13
1740
+ Gezari, S. 2021, ARA&A, 59, 21,
1741
+ doi:10.1146/annurev-astro-111720-030029
1742
+ Gould, A., & Rix, H.-W. 2000, ApJL, 532, L29.
1743
+ doi:10.1086/312562
1744
+ Gualandris, A., & Merritt, D. 2008, ApJ, 678, 780.
1745
+ doi:10.1086/586877
1746
+ Gualandris, A. & Merritt, D. 2012, ApJ, 744, 74.
1747
+ doi:10.1088/0004-637X/744/1/74
1748
+ Guillochon, J., & Ramirez-Ruiz, E. 2013, ApJ,
1749
+ 767, 25
1750
+ Han, W.-B., Zhong, X.-Y., Chen, X., et al. 2020,
1751
+ MNRAS, 498, L61. doi:10.1093/mnrasl/slaa115
1752
+
1753
+ MULTI-MASS N-BODY MODEL
1754
+ 35
1755
+ Harfst, S., Gualandris, A., Merritt, D., Spurzem,
1756
+ R., Portegies Zwart, S., & Berczik, P. 2007,
1757
+ New Astronomy, 12, 357.
1758
+ doi:10.1016/j.newast.2006.11.003
1759
+ Hills, J. G. 1975, Nature, 254, 295.
1760
+ doi:10.1038/254295a0
1761
+ Hobbs, G., Lorimer, D. R., Lyne, A. G., et al.
1762
+ 2005, MNRAS, 360, 974.
1763
+ doi:10.1111/j.1365-2966.2005.09087.x
1764
+ Hopman, C., Freitag, M., & Larson, S. L. 2007,
1765
+ MNRAS, 378, 129.
1766
+ doi:10.1111/j.1365-2966.2007.11758.x
1767
+ Huang, S., Hu, S., Yin, H., et al. 2021, ApJ, 920,
1768
+ 12. doi:10.3847/1538-4357/ac0eff
1769
+ Hurley, J. R., Pols, O. R., & Tout, C. A. 2000,
1770
+ MNRAS, 315, 543.
1771
+ doi:10.1046/j.1365-8711.2000.03426.x
1772
+ Ivanov, P. B., Polnarev, A. G., & Saha, P. 2005,
1773
+ MNRAS, 358, 1361.
1774
+ doi:10.1111/j.1365-2966.2005.08843.x
1775
+ Khan, F. M., Berczik, P., & Just, A. 2018, A&A,
1776
+ 615, A71. doi:10.1051/0004-6361/201730489
1777
+ Khan, F. M., Just, A., & Merritt, D. 2011, ApJ,
1778
+ 732, 89. doi:10.1088/0004-637X/732/2/89
1779
+ Komossa, S. 2015, Journal of High Energy
1780
+ Astrophysics, 7, 148.
1781
+ doi:10.1016/j.jheap.2015.04.006
1782
+ Komossa, S., & Bade, N. 1999, A&A, 343, 775.
1783
+ Komossa, S., Burwitz, V., Hasinger, G., et al.
1784
+ 2003, ApJL, 582, L15. doi:10.1086/346145
1785
+ Komossa, S., Grupe, D., Parker, M. L., et al. 2020,
1786
+ MNRAS, 498, L35. doi:10.1093/mnrasl/slaa125
1787
+ Kormendy, J., & Ho, L. C. 2013, ARA&A, 51, 511
1788
+ Kroupa, P. 2001, MNRAS, 322, 231.
1789
+ doi:10.1046/j.1365-8711.2001.04022.x
1790
+ Li, S., Liu, F. K., Berczik, P., & Spurzem, R.
1791
+ 2017, ApJ, 834, 195
1792
+ Li, S., Berczik, P., Chen, X., Liu, F. K., Spurzem,
1793
+ R., & Qiu, Y. 2019, ApJ, 883, 132
1794
+ Lightman, A. P., & Shapiro, S. L. 1977, ApJ, 211,
1795
+ 244. doi:10.1086/154925
1796
+ Liu, F. K. 2004, MNRAS, 347, 1357.
1797
+ doi:10.1111/j.1365-2966.2004.07325.x
1798
+ Liu, F. K., & Chen, X. 2013, ApJ, 767, 18.
1799
+ doi:10.1088/0004-637X/767/1/18
1800
+ Liu, F. K., & Wu, X.-B. 2002, A&A, 388, L48.
1801
+ doi:10.1051/0004-6361:20020566
1802
+ Liu, F. K., Li, S., & Chen, X. 2009, ApJL, 706,
1803
+ L133
1804
+ Liu, F. K., Li, S., & Komossa, K. 2014, ApJ, 786,
1805
+ 103
1806
+ Luo, Z., Wang, Y., Wu, Y., et al. 2021, Progress of
1807
+ Theoretical and Experimental Physics, 2021,
1808
+ 05A108. doi:10.1093/ptep/ptaa083
1809
+ MacLeod, M., Guillochon, J., & Ramirez-Ruiz, E.
1810
+ 2012, ApJ, 757, 134.
1811
+ doi:10.1088/0004-637X/757/2/134
1812
+ Makino, J., & Aarseth, S. J. 1992, PASJ, 44, 141
1813
+ Magorrian, J., Tremaine, S., Richstone, D., et al.
1814
+ 1998, AJ, 115, 2285
1815
+ Mei, J., Bai, Y.-Z., Bao, J., et al. 2021, Progress
1816
+ of Theoretical and Experimental Physics, 2021,
1817
+ 05A107. doi:10.1093/ptep/ptaa114
1818
+ Merritt, D., & Poon, M. Y. 2004, ApJ, 606, 788
1819
+
1820
+ 36
1821
+ Li et al.
1822
+ Mikkola, S., & Valtonen, M. J. 1992, MNRAS,
1823
+ 259, 115
1824
+ Milosavljevi´c, M., & Merritt, D. 2003, in
1825
+ American Institute of Physics Conference
1826
+ Series, Vol. 686, The Astrophysics of
1827
+ Gravitational Wave Sources, ed. J. M.
1828
+ Centrella, 201–210, doi:10.1063/1.1629432
1829
+ Panamarev, T., Shukirgaliyev, B., Meiron, Y., et
1830
+ al. 2018, MNRAS, 476, 4224.
1831
+ doi:10.1093/mnras/sty459
1832
+ Panamarev, T., Just, A., Spurzem, R., et al. 2019,
1833
+ MNRAS, 484, 3279. doi:10.1093/mnras/stz208
1834
+ Preto, M., Merritt, D., & Spurzem, R. 2004,
1835
+ ApJL, 613, L109
1836
+ Preto, M., Berentzen, I., Berczik, P., & Spurzem,
1837
+ R. 2011, ApJL, 732, L26.
1838
+ doi:10.1088/2041-8205/732/2/L26
1839
+ Quinlan, G. D. 1996, NewA, 1, 35
1840
+ Rees, M. J. 1988, Nature, 333, 523
1841
+ Ricarte, A., Natarajan, P., Dai, L., et al. 2016,
1842
+ MNRAS, 458, 1712. doi:10.1093/mnras/stw355
1843
+ Rubbo, L. J., Holley-Bockelmann, K., & Finn,
1844
+ L. S. 2006, ApJL, 649, L25. doi:10.1086/508326
1845
+ Saslaw, W. C., Valtonen, M. J., & Aarseth, S. J.
1846
+ 1974, ApJ, 190, 253
1847
+ Shannon, R. M., Ravi, V., Lentati, L. T., et al.
1848
+ 2015, Science, 349, 1522.
1849
+ doi:10.1126/science.aab1910
1850
+ Shen, Y., Liu, X., Loeb, A., & Tremaine, S. 2013,
1851
+ ApJ, 775, 49. doi:10.1088/0004-637X/775/1/49
1852
+ Shu, X., Zhang, W., Li, S., et al. 2020, Nature
1853
+ Communications, 11, 5876.
1854
+ doi:10.1038/s41467-020-19675-z
1855
+ Tang, S., Silverman, J. D., Ding, X., et al. 2021,
1856
+ ApJ, 922, 83. doi:10.3847/1538-4357/ac1ff0
1857
+ Tremaine, S., Gebhardt, K., Bender, R., et al.
1858
+ 2002, ApJ, 574, 740
1859
+ Verbiest, J. P. W., Lentati, L., Hobbs, G., et al.
1860
+ 2016, MNRAS, 458, 1267.
1861
+ doi:10.1093/mnras/stw347
1862
+ Vigneron, Q., Lodato, G., & Guidarelli, A. 2018,
1863
+ MNRAS, 476, 5312
1864
+ Volonteri, M., Haardt, F., & Madau, P. 2003,
1865
+ ApJ, 582, 559
1866
+ Wegg, C., & Nate Bode, J. 2011, ApJL, 738, L8.
1867
+ doi:10.1088/2041-8205/738/1/L8
1868
+ Yu, Q. 2002, MNRAS, 331, 935
1869
+ Zhang, W., Woosley, S. E., & Heger, A. 2008,
1870
+ ApJ, 679, 639. doi:10.1086/526404
1871
+ Zhong, S., Berczik, P., & Spurzem, R. 2014, ApJ,
1872
+ 792, 137
1873
+ Zhong, S., Li, S., Berczik, P., et al. 2022, ApJ,
1874
+ 933, 96
1875
+
9NFAT4oBgHgl3EQfph1b/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
9dFLT4oBgHgl3EQfCC4D/content/tmp_files/2301.11973v1.pdf.txt ADDED
@@ -0,0 +1,307 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ GAIN-SWITCHED VCSEL AS A QUANTUM ENTROPY SOURCE:
3
+ THE PROBLEM OF QUANTUM AND CLASSICAL NOISE
4
+ 1,2R.А. Shakhovoy✉, 1E.I. Maksimova,
5
+ 1QRate, 100 Novaya str., Skolkovo, Russia
6
+ 2NTI Center for Quantum Communications, National University of Science and Technology
7
+ 1MISiS, 4 Leninsky prospekt, Moscow, Russia
8
+ ✉r.shakhovoy @goqrate.com
9
+
10
+ Abstract. We consider the problem of quantum noise extraction from polarization swapping
11
+ in a gain-switched VCSEL. The principle of operation of a quantum random number generator is
12
+ based on the generation of laser pulses with one of two orthogonal polarization states, followed by
13
+ digitization of polarization-resolved pulses with a comparator. At intensity values of laser pulses
14
+ close to the threshold value of the comparator, the contribution of the classical noise of the
15
+ photodetector will have a crucial role in making a decision on the choice of a logical zero or one.
16
+ We show how to evaluate the contribution of classical noise and how to calculate the quantum
17
+ reduction factor required for post-processing.
18
+ Keywords: quantum random number generators, vertical surface emitting laser, quantum
19
+ noise extraction
20
+ Funding: This work was supported by Russian Science Foundation (grant no. 17-71-20146).
21
+
22
+ Introduction
23
+ Random number generators (RNGs) play a primary role in modern cryptographic
24
+ applications. Due to the development of quantum cryptography, a special place among RNGs
25
+ occupy now quantum RNGs (QRNGs), which use various quantum sources of entropy. Over the
26
+ past 15-20 years, a number of approaches have been proposed to obtain quantum randomness;
27
+ however, optical QRNGs, which employ laser noise, have gained the most popularity. Laser noise
28
+ can be associated with various effects, e.g., with temperature-related fluctuations of the laser cavity
29
+ length or with pump fluctuations. However, at relatively high frequencies, laser noise is associated
30
+ mainly with spontaneous emission occurring due to zero-point oscillations of an electromagnetic
31
+ field, which have purely quantum nature and are generally considered to have the properties of
32
+ white noise. Due to this, laser noise can be employed as a high-frequency source of quantum
33
+ entropy.
34
+ The main difference between optical QRNGs based on laser noise lies in how the noise is
35
+ measured. Thus, interference-based optical QRNGs use phase noise of laser radiation, which is
36
+ converted into amplitude fluctuations in the interferometer and then is readily measured with
37
+ conventional photodetectors. In lasers that do not have fixed polarization of light, one may also
38
+ use fluctuations of the polarization state in addition to phase fluctuations. Such an approach can
39
+ be used, e.g., in a vertical-cavity surface-emitting laser (VCSEL). A VCSEL-based QRNG
40
+ employing spontaneous polarization switching was first described in [1], where the author
41
+ demonstrated the random bit generation rate up to 2 Mbps. Recently, we discussed a simple optical
42
+ scheme of a QRNG based on a gain-switched VCSEL, which allows generating the sequence of
43
+ random “on-off” pulses at several gigahertz [2]. Experimental demonstration of theoretical
44
+ calculations performed there have been published in [3]. In the present article, we consider the
45
+ problem of quantum noise extraction from polarization swapping in a gain-switched VCSEL. We
46
+ use the approach developed in [4], namely, we introduce for the QRNG under consideration the
47
+ quantum reduction factor containing information on the amount of classical noise “falling” into
48
+ the digitized random sequence due to fluctuations in the photodetector. We also describe how this
49
+ classical noise can be filtered out with the post-processing procedure.
50
+
51
+ Simulations
52
+ A simplified scheme of the proposed QRNG is shown in Fig. 1(a). A gain-switched VCSEL
53
+ is driven by a high-frequency laser driver, which is, in turn, controlled by the computer or FPGA.
54
+ Laser output is followed by the polarization filter (PF) that allows obtaining polarization-resolved
55
+
56
+ 2
57
+ optical pulses, which are converted into the electrical signal via a broadband photodetector (PD).
58
+ Random bits are obtained by digitizing pulses with a comparator, whose threshold voltage is
59
+ calculated in the FPGA, which also performs post-processing procedures including randomness
60
+ extraction.
61
+
62
+ Fig. 1. (a) A simplified scheme of a VCSEL-based QRNG.
63
+ (b) Pulses at the comparator input and the results of the digitization
64
+
65
+ In Fig. 1(b), we simulated the digitization process of polarization-resolved laser pulses. It
66
+ was assumed in simulations that the polarizer in Fig. 1(a) passes to the photodetector the x -linear
67
+ polarization. Laser pulses were simulated with VCSEL rate equations given in [1]; the calculated
68
+ signal was then processed with a low-pass digital filter (30 GHz bandpass) to simulate the finite
69
+ bandwidth of the photodetector. The level of the comparator threshold (
70
+ th
71
+ V ) is shown by the dash-
72
+ dotted line in Fig. 1(b); red circles correspond to the moments of the comparator latch actuation.
73
+ The result of digitization (‘0’-s or ‘1’-s) is shown in the corresponding frames (each time frame is
74
+ shown by the blue rectangle).
75
+ Generally, a laser pulse at the VCSEL output contains both polarization components ( x and
76
+ y ), such that polarization state of a given pulse can be referred to as “quasi-elliptical”. Relative
77
+ contribution of orthogonal components is a random quantity; however, it depends on the width of
78
+ the pulse and the rate of relaxation processes (transients). To demonstrate this, we calculated
79
+ probability density function (PDF) of the normalized integral signal
80
+ xS at three different repetition
81
+ rates (Fig. 2(a)). In the ideal case, we would get two peaks at the values
82
+ 0
83
+ xS =
84
+ and
85
+ 1
86
+ xS = , which
87
+ means that all optical power goes into one particular linear polarization ( y and x respectively).
88
+ However, due to the finiteness of transients,
89
+ xS could take intermediate values between 0 and 1.
90
+ The influence of transients becomes more prominent when decreasing the pulse width, which is
91
+ clearly seen in Fig. 2(a), where the area under the PDF curve in the middle of the histogram is
92
+ increased when increasing the pulse repetition rate from 2.5 to 7 GHz. Polarization-resolved laser
93
+ pulses ( x-pulses in our case) that fall into this intermediate region are the most affected by classical
94
+ (non-quantum) noises of the photodetector; therefore, ‘0’-s and ‘1’-s resulted from digitization of
95
+ such pulses can be considered as “untrusted” bits. The proportion of these bits can be thought of
96
+ as a quantum reduction factor
97
+ , whose value determines how much the raw random sequence
98
+ should be “compressed” using the randomness extractor. We propose the following formula to
99
+ find
100
+ :
101
+
102
+ )
103
+ (
104
+ 1
105
+ 1
106
+ H
107
+ P
108
+ (1)
109
+
110
+ 0
111
+ 0
112
+ 0
113
+ Vmax
114
+ th
115
+ 0
116
+ 2
117
+ 3
118
+ 4
119
+ Time, ns3
120
+ where H is the min-entropy of the raw random sequence, and P is the probability to obtain the
121
+ pulse with the
122
+ x
123
+ S value inside some “window” around the middle of the probability distribution,
124
+ whose width is proportional to the relative r.m.s. value of the photodetector noise σ (“measured”
125
+ in terms of the normalized value
126
+ x
127
+ S ).
128
+ We also calculated the dependence of
129
+ on the photodetector’s noise σ at different pulse
130
+ repetition rates (see Fig. 2(b)). One can see that the reduction factor
131
+ grows when increasing the
132
+ pulse repetition rate and begins to grow faster with increasing σ . It means that it does not make
133
+ much sense to increase the repetition rate of laser pulses if the photodetector is quite noisy.
134
+
135
+
136
+ Fig. 2. Probability densities of the normalized integral signal
137
+ x
138
+ S (a) and dependences of the reduction
139
+ factor
140
+ on the photodetector’s noise σ (b) at different pulse repetition rates.
141
+
142
+ Post-processing
143
+ The digitized random sequence in the proposed scheme must be subjected to the randomness
144
+ extraction procedure with the reduction factor
145
+ , defined by (1). We may, however, use a
146
+ deterministic extractor, e.g., the von Neumann extractor [5], which extracts randomness regardless
147
+ the value of the reduction factor. The von Neumann extractor discards repeated bits in a sequence
148
+ and replaces the two-bit words '01' and '10' with bits '0' and '1', respectively. Unfortunately, this
149
+ extractor reduces the length of a sequence by at least 4 times, which is not very efficient. Therefore,
150
+ one generally uses instead a seeded extractor. In cryptographic applications, an extractor with a
151
+ seed is generally implemented in the form of 2-universal hash functions, whose efficiency is
152
+ guaranteed by the leftover hash lemma [6]. A common way to implement 2-universal hashing is
153
+ to multiply the input raw sequence by a random binary matrix [7]. Without loss of generality, one
154
+ may always use for these purposes random Boolean Toeplitz matrices, which allow significantly
155
+ saving the seed length. In our case, the randomness extractor is then divided into three steps:
156
+ 1)
157
+ For a “raw” binary sequence of length n, determine the length of the output
158
+ sequence m by the formula: m
159
+ n
160
+ =
161
+ .
162
+ 2)
163
+ Generate the Toeplitz matrix using the “seed” of length
164
+ 1
165
+ m
166
+ n
167
+ +
168
+ − bits.
169
+ 3)
170
+ Multiply the Toeplitz matrix by the raw sequence. This yields the resulting random
171
+ sequence.
172
+ It is important to discuss the method of obtaining the seed. By default, it is assumed that the
173
+ seed is obtained from a strong source of entropy, i.e., one that allows getting truly random bits. If
174
+ the RNG being developed is not a strong source of entropy, then an additional source of entropy
175
+ must be used. We propose, however, the following algorithm to obtain the seed. When switching-
176
+ on the QRNG, the system buffers a raw random sequence of a given (relatively small) length.
177
+ Then, this sequence is subjected to a deterministic extractor, e.g., the von Neumann extractor. The
178
+ random sequence obtained after the extractor can be now used as a seed in hashing algorithms.
179
+ 0.01
180
+ 0.02
181
+ 0.03
182
+ 0.04
183
+ 0.05
184
+ 0.06
185
+ 1.0
186
+ 1.2
187
+ 1.4
188
+ 1.6
189
+ 0.0
190
+ 0.5
191
+ 1.0
192
+ 0
193
+ 2
194
+ 4
195
+ 6
196
+ (a)
197
+ 5 GHz
198
+ 7 GHz
199
+ 2.5 GHz
200
+ PDF
201
+ 2.5 GHz
202
+ (b)
203
+ 0.0
204
+ 0.5
205
+ 1.0
206
+ 5 GHz
207
+ 0.0
208
+ 0.5
209
+ 1.0
210
+ 7 GHz
211
+
212
+ 4
213
+ “Equipped” with such a procedure, the QRNG under consideration is an autonomous source of
214
+ entropy that does not need an additional entropy source, i.e., the device can operate even in the
215
+ absence of a pre-memorized random sequence.
216
+ One of the common ways to test the quality of randomness, is to perform statistical tests,
217
+ e.g., NIST tests [8]. Unfortunately, we did not have an access to real (obtained in the experiment)
218
+ random numbers; however, we have a fairly detailed theoretical model, which may be used to
219
+ follow the whole route the laser noise “travels” from spontaneous emission to the sequence of
220
+ random bits. For this, we simulated 106 laser pulses similar to those shown in Fig. 1(b). To
221
+ “digitize” them, the energy of each pulse (area under the pulse) was calculated and compared with
222
+ a certain threshold energy. The obtained random bits were then grouped into k -bit words (we put
223
+ 8
224
+ k =
225
+ ), which we denote as [ ]
226
+ x i . The sequence of [ ]
227
+ x i were processed with a second-order FIR
228
+ filter according to the following formula: [ ]
229
+ mod( [ ] 2 [
230
+ 1]
231
+ [
232
+ 2],2 )
233
+ k
234
+ y i
235
+ x i
236
+ x i
237
+ x i
238
+ =
239
+ +
240
+
241
+ +
242
+
243
+ , where each [ ]
244
+ y i
245
+ is an i -th output word. The obtained data were then concatenate to a (“filtered”) random bit string.
246
+ After filtering, we processed the data with the randomness extractor described above. Finally, we
247
+ performed NIST tests with random bits; the results of the test are summarized in Fig. 3. As one
248
+ can see, the obtained random sequence successfully passed all the test.
249
+
250
+ Fig. 3. NIST statistical test result.
251
+
252
+ Conclusion
253
+ We propose here an approach for quantum noise extraction from polarization swapping in a
254
+ gain-switched VCSEL and proposed a simple method to get a seed for hashing the raw random
255
+ sequence without an additional entropy source. The discussed algorithms allow developing a fully
256
+ autonomous QRNG with proven “quantumness” of generated random bits.
257
+
258
+ Acknowledgments
259
+ Authors are grateful to Vladimir Meshkov for valuable comments.
260
+
261
+ REFERENCES
262
+ 1. V. N. Chizhevsky, Bistable vertical cavity laser with periodic pump modulation as a random
263
+ bits generator, Optics and Spectroscopy, 108 (3) (2010) 343-346.
264
+ 2. R. Shakhovoy, E. Maksimova, V. Sharoglazova, M. Puplauskis and Y. Kurochkin, Fast
265
+ and compact VCSEL-based quantum random number generator, Journal of Physics: Conference
266
+ Series, 1984 (1) (2021) 012005.
267
+ 3. A. Quirce and A. Valle, Quantum random number generation based on polarization switching
268
+ in gain-switched VCSELs, Optics Express, 30 (7) (2022) 10513-10527.
269
+ 4. R. Shakhovoy, D. Sych, V. Sharoglazova, A. Udaltsov, A. Fedorov and Y. Kurochkin,
270
+ Quantum noise extraction from the interference of laser pulses in optical quantum random number
271
+ generator, Optics Express, 28 (5) (2020) 6209-6224.
272
+ 5. J. von Neumann, Various Techniques Used in Connection With Random Digits, J. Res. Nat.
273
+ Bur. Stand. Appl. Math. Series, 3 (1951) 36-38.
274
+ 6. N. Nisan and A. Ta-Shma, Extracting Randomness: A Survey and New Constructions, Journal
275
+ of Computer and System Sciences, 58 (1) (1999) 148-173.
276
+ 0,001
277
+ 0,01
278
+ 0,1
279
+ 1
280
+ p – value
281
+ MonobitFrequencyTest
282
+ BlockFrequencyTest90Blocks
283
+ RunsTest
284
+ LongestRunsOnes10000
285
+ BinaryMatrixRankTest
286
+ SpectralTest
287
+ NonOverlappingTemplateMatching
288
+ OverlapingTemplateMatching
289
+ MaurersUniversalStatisticTest
290
+ LinearComplexityTest
291
+ SerialTest
292
+ ApproximateEntropyTest
293
+ CumulativeSumsTest
294
+ RandomExcursionsTest
295
+ RandomExcursionsVariantTest
296
+
297
+ 5
298
+ 7. H. Krawczyk, LFSR-based Hashing and Authentication, In: Proceedings of the Advances in
299
+ Cryptology — CRYPTO ’94, Berlin, Heidelberg, 1994, 129-139.
300
+ 8. A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel,
301
+ D. Banks, A. Heckert, J. Dray, and S. Vo, A statistical test suite for random and pseudorandom
302
+ number generators for cryptographic applications, NIST Special Publication 800-22 revision 1a,
303
+ (2010).
304
+
305
+
306
+
307
+
9dFLT4oBgHgl3EQfCC4D/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,203 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf,len=202
2
+ page_content='1 GAIN-SWITCHED VCSEL AS A QUANTUM ENTROPY SOURCE: THE PROBLEM OF QUANTUM AND CLASSICAL NOISE 1,2R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
3
+ page_content='А.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
4
+ page_content=' Shakhovoy✉, 1E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
5
+ page_content='I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
6
+ page_content=' Maksimova, 1QRate, 100 Novaya str.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
7
+ page_content=', Skolkovo, Russia 2NTI Center for Quantum Communications, National University of Science and Technology 1MISiS, 4 Leninsky prospekt, Moscow, Russia ✉r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
8
+ page_content='shakhovoy @goqrate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
9
+ page_content='com Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
10
+ page_content=' We consider the problem of quantum noise extraction from polarization swapping in a gain-switched VCSEL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
11
+ page_content=' The principle of operation of a quantum random number generator is based on the generation of laser pulses with one of two orthogonal polarization states, followed by digitization of polarization-resolved pulses with a comparator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
12
+ page_content=' At intensity values of laser pulses close to the threshold value of the comparator, the contribution of the classical noise of the photodetector will have a crucial role in making a decision on the choice of a logical zero or one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
13
+ page_content=' We show how to evaluate the contribution of classical noise and how to calculate the quantum reduction factor required for post-processing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
14
+ page_content=' Keywords: quantum random number generators, vertical surface emitting laser, quantum noise extraction Funding: This work was supported by Russian Science Foundation (grant no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
15
+ page_content=' 17-71-20146).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
16
+ page_content=' Introduction Random number generators (RNGs) play a primary role in modern cryptographic applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
17
+ page_content=' Due to the development of quantum cryptography, a special place among RNGs occupy now quantum RNGs (QRNGs), which use various quantum sources of entropy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
18
+ page_content=' Over the past 15-20 years, a number of approaches have been proposed to obtain quantum randomness;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
19
+ page_content=' however, optical QRNGs, which employ laser noise, have gained the most popularity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
20
+ page_content=' Laser noise can be associated with various effects, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
21
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
22
+ page_content=', with temperature-related fluctuations of the laser cavity length or with pump fluctuations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
23
+ page_content=' However, at relatively high frequencies, laser noise is associated mainly with spontaneous emission occurring due to zero-point oscillations of an electromagnetic field, which have purely quantum nature and are generally considered to have the properties of white noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
24
+ page_content=' Due to this, laser noise can be employed as a high-frequency source of quantum entropy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
25
+ page_content=' The main difference between optical QRNGs based on laser noise lies in how the noise is measured.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
26
+ page_content=' Thus, interference-based optical QRNGs use phase noise of laser radiation, which is converted into amplitude fluctuations in the interferometer and then is readily measured with conventional photodetectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
27
+ page_content=' In lasers that do not have fixed polarization of light, one may also use fluctuations of the polarization state in addition to phase fluctuations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
28
+ page_content=' Such an approach can be used, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
29
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
30
+ page_content=', in a vertical-cavity surface-emitting laser (VCSEL).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
31
+ page_content=' A VCSEL-based QRNG employing spontaneous polarization switching was first described in [1], where the author demonstrated the random bit generation rate up to 2 Mbps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
32
+ page_content=' Recently, we discussed a simple optical scheme of a QRNG based on a gain-switched VCSEL, which allows generating the sequence of random “on-off” pulses at several gigahertz [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
33
+ page_content=' Experimental demonstration of theoretical calculations performed there have been published in [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
34
+ page_content=' In the present article, we consider the problem of quantum noise extraction from polarization swapping in a gain-switched VCSEL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
35
+ page_content=' We use the approach developed in [4], namely, we introduce for the QRNG under consideration the quantum reduction factor containing information on the amount of classical noise “falling” into the digitized random sequence due to fluctuations in the photodetector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
36
+ page_content=' We also describe how this classical noise can be filtered out with the post-processing procedure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
37
+ page_content=' Simulations A simplified scheme of the proposed QRNG is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
38
+ page_content=' 1(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
39
+ page_content=' A gain-switched VCSEL is driven by a high-frequency laser driver, which is, in turn, controlled by the computer or FPGA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
40
+ page_content=' Laser output is followed by the polarization filter (PF) that allows obtaining polarization-resolved 2 optical pulses, which are converted into the electrical signal via a broadband photodetector (PD).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
41
+ page_content=' Random bits are obtained by digitizing pulses with a comparator, whose threshold voltage is calculated in the FPGA, which also performs post-processing procedures including randomness extraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
42
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
43
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
44
+ page_content=' (a) A simplified scheme of a VCSEL-based QRNG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
45
+ page_content=' (b) Pulses at the comparator input and the results of the digitization In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
46
+ page_content=' 1(b), we simulated the digitization process of polarization-resolved laser pulses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
47
+ page_content=' It was assumed in simulations that the polarizer in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
48
+ page_content=' 1(a) passes to the photodetector the x -linear polarization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
49
+ page_content=' Laser pulses were simulated with VCSEL rate equations given in [1];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
50
+ page_content=' the calculated signal was then processed with a low-pass digital filter (30 GHz bandpass) to simulate the finite bandwidth of the photodetector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
51
+ page_content=' The level of the comparator threshold ( th V ) is shown by the dash- dotted line in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
52
+ page_content=' 1(b);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
53
+ page_content=' red circles correspond to the moments of the comparator latch actuation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
54
+ page_content=' The result of digitization (‘0’-s or ‘1’-s) is shown in the corresponding frames (each time frame is shown by the blue rectangle).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
55
+ page_content=' Generally, a laser pulse at the VCSEL output contains both polarization components ( x and y ), such that polarization state of a given pulse can be referred to as “quasi-elliptical”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
56
+ page_content=' Relative contribution of orthogonal components is a random quantity;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
57
+ page_content=' however, it depends on the width of the pulse and the rate of relaxation processes (transients).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
58
+ page_content=' To demonstrate this, we calculated probability density function (PDF) of the normalized integral signal xS at three different repetition rates (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
59
+ page_content=' 2(a)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
60
+ page_content=' In the ideal case, we would get two peaks at the values 0 xS = and 1 xS = , which means that all optical power goes into one particular linear polarization ( y and x respectively).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
61
+ page_content=' However, due to the finiteness of transients, xS could take intermediate values between 0 and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
62
+ page_content=' The influence of transients becomes more prominent when decreasing the pulse width, which is clearly seen in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
63
+ page_content=' 2(a), where the area under the PDF curve in the middle of the histogram is increased when increasing the pulse repetition rate from 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
64
+ page_content='5 to 7 GHz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
65
+ page_content=' Polarization-resolved laser pulses ( x-pulses in our case) that fall into this intermediate region are the most affected by classical (non-quantum) noises of the photodetector;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
66
+ page_content=' therefore, ‘0’-s and ‘1’-s resulted from digitization of such pulses can be considered as “untrusted” bits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
67
+ page_content=' The proportion of these bits can be thought of as a quantum reduction factor , whose value determines how much the raw random sequence should be “compressed” using the randomness extractor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
68
+ page_content=' We propose the following formula to find : ) ( 1 1 H P (1) 0 0 0 Vmax th 0 2 3 4 Time, ns3 where H\uf0a5 is the min-entropy of the raw random sequence, and P is the probability to obtain the pulse with the x S value inside some “window” around the middle of the probability distribution, whose width is proportional to the relative r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
69
+ page_content='m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
70
+ page_content='s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
71
+ page_content=' value of the photodetector noise σ (“measured” in terms of the normalized value x S ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
72
+ page_content=' We also calculated the dependence of on the photodetector’s noise σ at different pulse repetition rates (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
73
+ page_content=' 2(b)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
74
+ page_content=' One can see that the reduction factor grows when increasing the pulse repetition rate and begins to grow faster with increasing σ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
75
+ page_content=' It means that it does not make much sense to increase the repetition rate of laser pulses if the photodetector is quite noisy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
76
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
77
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
78
+ page_content=' Probability densities of the normalized integral signal x S (a) and dependences of the reduction factor on the photodetector’s noise σ (b) at different pulse repetition rates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
79
+ page_content=' Post-processing The digitized random sequence in the proposed scheme must be subjected to the randomness extraction procedure with the reduction factor , defined by (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
80
+ page_content=' We may, however, use a deterministic extractor, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
81
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
82
+ page_content=', the von Neumann extractor [5], which extracts randomness regardless the value of the reduction factor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
83
+ page_content=" The von Neumann extractor discards repeated bits in a sequence and replaces the two-bit words '01' and '10' with bits '0' and '1', respectively." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
84
+ page_content=' Unfortunately, this extractor reduces the length of a sequence by at least 4 times, which is not very efficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
85
+ page_content=' Therefore, one generally uses instead a seeded extractor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
86
+ page_content=' In cryptographic applications, an extractor with a seed is generally implemented in the form of 2-universal hash functions, whose efficiency is guaranteed by the leftover hash lemma [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
87
+ page_content=' A common way to implement 2-universal hashing is to multiply the input raw sequence by a random binary matrix [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
88
+ page_content=' Without loss of generality, one may always use for these purposes random Boolean Toeplitz matrices, which allow significantly saving the seed length.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
89
+ page_content=' In our case, the randomness extractor is then divided into three steps: 1) For a “raw” binary sequence of length n, determine the length of the output sequence m by the formula: m n = \uf047.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
90
+ page_content=' 2) Generate the Toeplitz matrix using the “seed” of length 1 m n + − bits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
91
+ page_content=' 3) Multiply the Toeplitz matrix by the raw sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
92
+ page_content=' This yields the resulting random sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
93
+ page_content=' It is important to discuss the method of obtaining the seed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
94
+ page_content=' By default, it is assumed that the seed is obtained from a strong source of entropy, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
95
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
96
+ page_content=', one that allows getting truly random bits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
97
+ page_content=' If the RNG being developed is not a strong source of entropy, then an additional source of entropy must be used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
98
+ page_content=' We propose, however, the following algorithm to obtain the seed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
99
+ page_content=' When switching- on the QRNG, the system buffers a raw random sequence of a given (relatively small) length.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
100
+ page_content=' Then, this sequence is subjected to a deterministic extractor, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
101
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
102
+ page_content=', the von Neumann extractor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
103
+ page_content=' The random sequence obtained after the extractor can be now used as a seed in hashing algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
104
+ page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
105
+ page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
106
+ page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
107
+ page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
108
+ page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
109
+ page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
110
+ page_content='06 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
111
+ page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
112
+ page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
113
+ page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
114
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
115
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
116
+ page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
117
+ page_content='0 0 2 4 6 (a) 5 GHz 7 GHz 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
118
+ page_content='5 GHz PDF 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
119
+ page_content='5 GHz (b) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
120
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
121
+ page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
122
+ page_content='0 5 GHz 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
123
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
124
+ page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
125
+ page_content='0 7 GHz 4 “Equipped” with such a procedure, the QRNG under consideration is an autonomous source of entropy that does not need an additional entropy source, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
126
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
127
+ page_content=', the device can operate even in the absence of a pre-memorized random sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
128
+ page_content=' One of the common ways to test the quality of randomness, is to perform statistical tests, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
129
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
130
+ page_content=', NIST tests [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
131
+ page_content=' Unfortunately, we did not have an access to real (obtained in the experiment) random numbers;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
132
+ page_content=' however, we have a fairly detailed theoretical model, which may be used to follow the whole route the laser noise “travels” from spontaneous emission to the sequence of random bits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
133
+ page_content=' For this, we simulated 106 laser pulses similar to those shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
134
+ page_content=' 1(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
135
+ page_content=' To “digitize” them, the energy of each pulse (area under the pulse) was calculated and compared with a certain threshold energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
136
+ page_content=' The obtained random bits were then grouped into k -bit words (we put 8 k = ), which we denote as [ ] x i .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
137
+ page_content=' The sequence of [ ] x i were processed with a second-order FIR filter according to the following formula: [ ] mod( [ ] 2 [ 1] [ 2],2 ) k y i x i x i x i = + − + − , where each [ ] y i is an i -th output word.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
138
+ page_content=' The obtained data were then concatenate to a (“filtered”) random bit string.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
139
+ page_content=' After filtering, we processed the data with the randomness extractor described above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
140
+ page_content=' Finally, we performed NIST tests with random bits;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
141
+ page_content=' the results of the test are summarized in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
142
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
143
+ page_content=' As one can see, the obtained random sequence successfully passed all the test.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
144
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
145
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
146
+ page_content=' NIST statistical test result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
147
+ page_content=' Conclusion We propose here an approach for quantum noise extraction from polarization swapping in a gain-switched VCSEL and proposed a simple method to get a seed for hashing the raw random sequence without an additional entropy source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
148
+ page_content=' The discussed algorithms allow developing a fully autonomous QRNG with proven “quantumness” of generated random bits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
149
+ page_content=' Acknowledgments Authors are grateful to Vladimir Meshkov for valuable comments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
150
+ page_content=' REFERENCES 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
151
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
152
+ page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
153
+ page_content=' Chizhevsky, Bistable vertical cavity laser with periodic pump modulation as a random bits generator, Optics and Spectroscopy, 108 (3) (2010) 343-346.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
154
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
155
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
156
+ page_content=' Shakhovoy, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
157
+ page_content=' Maksimova, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
158
+ page_content=' Sharoglazova, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
159
+ page_content=' Puplauskis and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
160
+ page_content=' Kurochkin, Fast and compact VCSEL-based quantum random number generator, Journal of Physics: Conference Series, 1984 (1) (2021) 012005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
161
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
162
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
163
+ page_content=' Quirce and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
164
+ page_content=' Valle, Quantum random number generation based on polarization switching in gain-switched VCSELs, Optics Express, 30 (7) (2022) 10513-10527.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
165
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
166
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
167
+ page_content=' Shakhovoy, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
168
+ page_content=' Sych, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
169
+ page_content=' Sharoglazova, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
170
+ page_content=' Udaltsov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
171
+ page_content=' Fedorov and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
172
+ page_content=' Kurochkin, Quantum noise extraction from the interference of laser pulses in optical quantum random number generator, Optics Express, 28 (5) (2020) 6209-6224.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
173
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
174
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
175
+ page_content=' von Neumann, Various Techniques Used in Connection With Random Digits, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
176
+ page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
177
+ page_content=' Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
178
+ page_content=' Bur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
179
+ page_content=' Stand.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
180
+ page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
181
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
182
+ page_content=' Series, 3 (1951) 36-38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
183
+ page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
184
+ page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
185
+ page_content=' Nisan and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
186
+ page_content=' Ta-Shma, Extracting Randomness: A Survey and New Constructions, Journal of Computer and System Sciences, 58 (1) (1999) 148-173.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
187
+ page_content=' 0,001 0,01 0,1 1 p – value MonobitFrequencyTest BlockFrequencyTest90Blocks RunsTest LongestRunsOnes10000 BinaryMatrixRankTest SpectralTest NonOverlappingTemplateMatching OverlapingTemplateMatching MaurersUniversalStatisticTest LinearComplexityTest SerialTest ApproximateEntropyTest CumulativeSumsTest RandomExcursionsTest RandomExcursionsVariantTest 5 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
188
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
189
+ page_content=' Krawczyk, LFSR-based Hashing and Authentication, In: Proceedings of the Advances in Cryptology — CRYPTO ’94, Berlin, Heidelberg, 1994, 129-139.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
190
+ page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
191
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
192
+ page_content=' Rukhin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
193
+ page_content=' Soto, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
194
+ page_content=' Nechvatal, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
195
+ page_content=' Smid, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
196
+ page_content=' Barker, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
197
+ page_content=' Leigh, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
198
+ page_content=' Levenson, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
199
+ page_content=' Vangel, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
200
+ page_content=' Banks, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
201
+ page_content=' Heckert, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
202
+ page_content=' Dray, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
203
+ page_content=' Vo, A statistical test suite for random and pseudorandom number generators for cryptographic applications, NIST Special Publication 800-22 revision 1a, (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dFLT4oBgHgl3EQfCC4D/content/2301.11973v1.pdf'}
ANAyT4oBgHgl3EQfdvjo/content/tmp_files/2301.00310v1.pdf.txt ADDED
@@ -0,0 +1,3274 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Graphlets over Time: A New Lens for Temporal Network Analysis
2
+ Deukryeol Yoon
3
+ KAIST AI
4
+ Seoul, South Korea
5
+ deukryeol.yoon@kaist.ac.kr
6
+ Dongjin Lee
7
+ KAIST EE
8
+ Daejeon, South Korea
9
+ dongjin.lee@kaist.ac.kr
10
+ Minyoung Choe
11
+ KAIST AI
12
+ Seoul, South Korea
13
+ minyoung.choe@kaist.ac.kr
14
+ Kijung Shin
15
+ KAIST AI & EE
16
+ Seoul, South Korea
17
+ kijungs@kaist.ac.kr
18
+ ABSTRACT
19
+ Graphs are widely used for modeling various types of interactions,
20
+ such as email communications and online discussions. Many of
21
+ such real-world graphs are temporal, and specifically, they grow
22
+ over time with new nodes and edges.
23
+ Counting the instances of each graphlet (i.e., an induced sub-
24
+ graph isomorphism class) has been successful in characterizing local
25
+ structures of graphs, with many applications. While graphlets have
26
+ been extended for temporal graphs, the extensions are designed
27
+ for examining temporally-local subgraphs composed of edges with
28
+ close arrival times, instead of long-term changes in local structures.
29
+ In this paper, as a new lens for temporal graph analysis, we
30
+ study the evolution of distributions of graphlet instances over time
31
+ in real-world graphs at three different levels (graphs, nodes, and
32
+ edges). At the graph level, we first discover that the evolution
33
+ patterns are significantly different from those in random graphs.
34
+ Then, we suggest a graphlet transition graph for measuring the
35
+ similarity of the evolution patterns of graphs, and we find out a
36
+ surprising similarity between the graphs from the same domain. At
37
+ the node and edge levels, we demonstrate that the local structures
38
+ around nodes and edges in their early stage provide a strong signal
39
+ regarding their future importance. In particular, we significantly
40
+ improve the predictability of the future importance of nodes and
41
+ edges using the counts of the roles (a.k.a., orbits) that they take
42
+ within graphlets.
43
+ 1
44
+ INTRODUCTION
45
+ Graphs are a simple yet powerful tool, and thus they have been
46
+ used for representing various types of interactions: email commu-
47
+ nications, online Q/As, research collaborations, to name a few. Due
48
+ to newly formed interactions, such real-world graphs are temporal,
49
+ i.e., they evolve over time with new nodes and edges. Many studies
50
+ have examined the dynamics of real-world temporal graphs and re-
51
+ vealed interesting patterns, including densification [26], shrinking
52
+ diameter [26], and temporal locality in triangle formation [23].
53
+ Graphlets have been widely employed for analyzing local struc-
54
+ tures of graphs. Graphlets [36] are defined as the sets of isomorphic
55
+ small subgraphs with a predefined number of nodes. Specifically,
56
+ the relative counts of the instances of different graphlets effec-
57
+ tively characterize the local structures of graphs, with successful
58
+ Permission to make digital or hard copies of all or part of this work for personal or
59
+ classroom use is granted without fee provided that copies are not made or distributed
60
+ for profit or commercial advantage and that copies bear this notice and the full citation
61
+ on the first page. Copyrights for components of this work owned by others than ACM
62
+ must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
63
+ to post on servers or to redistribute to lists, requires prior specific permission and/or a
64
+ fee. Request permissions from permissions@acm.org.
65
+ Conference’17, July 2017, Washington, DC, USA
66
+ © 2023 Association for Computing Machinery.
67
+ ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
68
+ https://doi.org/10.1145/nnnnnnn.nnnnnnn
69
+ Hep
70
+ pTPh
71
+ He
72
+ h
73
+ Patent
74
+ Enron -
75
+ EU -
76
+ College -
77
+ Math -
78
+ Ask-
79
+ Stack -
80
+ I
81
+ -
82
+ 1•
83
+ |
84
+ - 1.0
85
+ l卜 0.5
86
+ - 0.0
87
+ (a) Similarity between graphs w.r.t.
88
+ graphlet transitions
89
+ (classification accuracy = 97.2%)
90
+ HepPh
91
+ HepTh
92
+ Patent
93
+ Enron -
94
+ EU­
95
+ College -
96
+ Math -
97
+ Ask­
98
+ Stack -
99
+ 1.0
100
+ 0.5
101
+ - 0.0
102
+ (b) Similarity between graphs w.r.t.
103
+ graphlet occurrences
104
+ (classification accuracy = 83.3%)
105
+ Figure 1: Real-world temporal graphs from the same do-
106
+ main share similar evolution patterns captured by transi-
107
+ tions between graphlets. The figures show the pairwise sim-
108
+ ilarity between 9 graphs from 3 domains (distinguished by
109
+ text colors) with respect to the transitions between graphlets
110
+ (see (a)) and the occurrences of graphlets (see (b)). The do-
111
+ mains of graphs can be classified more accurately in (a) than
112
+ in (b). Specifically, with the best thresholds of similarity, the
113
+ classification accuracy is 97.2% in (a) and 83.3% in (b). See
114
+ Section 3.2 for details about the similarity measures.
115
+ applications in graph classification [31, 32], community detection
116
+ [5, 10, 39], anomaly detection [20], and node embedding [24, 28, 42].
117
+ As temporal graphs are pervasive, the concept of graphlets has
118
+ been generalized in a number of ways for temporal graph analysis.
119
+ Temporal network motifs [21, 35] are sets of temporal subgraphs
120
+ that are (a) identical not just topologically but also temporally, (b)
121
+ composed of a fixed number of nodes, and (c) temporally local,
122
+ i.e., composed of edges whose arrival times are close enough (see
123
+ Section 6 for details). Due to the last condition, they are suitable
124
+ for analyzing short-term changes of graphs but not for long-term
125
+ changes in local structures, which are the focus of this paper.
126
+ In this paper, we examine the long-term evolution of local struc-
127
+ tures captured by graphlets, as a new lens for temporal graph analy-
128
+ sis, in nine real-world temporal graphs from three different domains.
129
+ Our analysis is at three levels: graphs, nodes, and edges.
130
+ At the graph level, we first investigate the changes in the distribu-
131
+ tions of graphlet instances over time. We find out that the evolution
132
+ patterns are distinguished from those in randomized graphs that
133
+ are obtained by randomly shuffling edges. Moreover, the evolution
134
+ patterns in graphs from the same domain share some common
135
+ characteristics. In order to compare the evolution patterns in a sys-
136
+ tematic way, we introduce graphlet transition graphs, which encode
137
+ transitions between graphlets due to changes in graphs. As shown
138
+ in Figure 1(a), graphs from the same domain share similar graphlet-
139
+ transition patterns, which facilitates accurate graph classification,
140
+ although the sizes of the graphs vary.
141
+ At the node and edge levels, we investigate how local structures
142
+ around each node and edge in their early stage signal their future
143
+ importance. Specifically, as local structures, we consider node roles
144
+ arXiv:2301.00310v1 [cs.SI] 1 Jan 2023
145
+
146
+ 1
147
+ 2
148
+ 3
149
+ 4
150
+ 5
151
+ 6
152
+ 8
153
+ 7
154
+ 9
155
+ 13
156
+ 10
157
+ 11
158
+ 12
159
+ (a) 13 graphlets
160
+ 1
161
+ 2
162
+ 3
163
+ 4
164
+ 5
165
+ 6
166
+ 8
167
+ 7
168
+ 9
169
+ 10
170
+ 11
171
+ 12
172
+ 13
173
+ 15
174
+ 14
175
+ 16
176
+ 17
177
+ 18
178
+ 19
179
+ 20
180
+ 23
181
+ 21
182
+ 22
183
+ 24
184
+ 25
185
+ 28
186
+ 26
187
+ 27
188
+ 30
189
+ 29
190
+ (b) 30 node roles (also known as, node orbits)
191
+ 7
192
+ 19
193
+ 25
194
+ 1
195
+ 2
196
+ 3
197
+ 4
198
+ 5
199
+ 6
200
+ 8
201
+ 9
202
+ 10
203
+ 11
204
+ 12
205
+ 13
206
+ 15
207
+ 14
208
+ 16
209
+ 17
210
+ 18
211
+ 20
212
+ 23
213
+ 21
214
+ 22
215
+ 24
216
+ 28
217
+ 26
218
+ 27
219
+ 30
220
+ 29
221
+ (c) 30 edge roles (also known as, edge orbits)
222
+ Figure 2: (a) The 13 graphlets [36] with three nodes. (b) The 30 node roles [36] within the graphlets (see the positions of black
223
+ nodes). (c) The 30 edge roles within the graphlets (see the positions of edges from a red node to a blue node).
224
+ (formally, node automorphism orbits [36]) and edge roles [17], which
225
+ are roughly sets of symmetric positions of nodes and edges within
226
+ graphlets. We also demonstrate that the counts of the roles taken
227
+ by each node and edge in their early stage are more informative
228
+ than previously-used features [41], and they are complementary
229
+ to simple global features (e.g., total counts of nodes and edges) for
230
+ the task of predicting future centralities (specifically, in-degree,
231
+ betweenness [15], closeness [9], and PageRank [34]).
232
+ We summarize our contributions as follows:
233
+ • Patterns: We make several interesting observations about the
234
+ temporal evolution of graphlets: a surprising similarity in graphs
235
+ from the same domain and local-structural signals regarding the
236
+ future importance of nodes and edges.
237
+ • Tool: We introduce graphlet transition graphs, which is an ef-
238
+ fective tool for measuring the similarity of local dynamics in
239
+ temporal graphs of different sizes.
240
+ • Prediction: We enhance the prediction accuracy of the future
241
+ importance of nodes and edges by introducing role-based local
242
+ features, which are complementary to global features.
243
+ Reproducibility: The code and the datasets are available at https:
244
+ //github.com/deukryeol-yoon/graphlets-over-time.
245
+ In Section 2, we introduce basic concepts, notations, and datasets.
246
+ In Section 3, we present our graph-level analysis. In Section 4 and
247
+ Section 5, we present our node-level and edge-level analyses. In
248
+ Section 6, we present a brief survey of related works. In Section 7,
249
+ we conclude our work.
250
+ 2
251
+ BASIC CONCEPTS, NOTATIONS, AND DATA
252
+ In this section, we first introduce some basic concepts and notations.
253
+ Then, we describe the nine datasets used in this paper.
254
+ 2.1
255
+ Basic Concepts and Notations
256
+ Temporal Graph: A temporal graph G = (V, E, T) consists of a
257
+ set of nodes V, a set of directed edges E := {𝑒1, · · · ,𝑒|E |}, and a
258
+ multiset of edge arrival times T := [𝑡1, · · · ,𝑡|E |]. For each directed
259
+ edge 𝑒𝑖 ∈ E, we use 𝑡𝑖 ∈ T to denote the arrival time of 𝑒𝑖. We use
260
+ 𝑢 → 𝑣 to denote a directed edge from a node 𝑢 to a node 𝑣, and the
261
+ nodes 𝑢 and 𝑣 are adjacent if 𝑢 → 𝑣 or 𝑣 → 𝑢 exists. From now on,
262
+ Table 1: Table of symbols.
263
+ Notation
264
+ Definition
265
+ G = (V, E, T)
266
+ temporal graph with nodes V, edges E, and times T
267
+ G(𝑡) = (V (𝑡), E (𝑡))
268
+ snapshot of G at time 𝑡
269
+ ˜G = (V, E, ˜T)
270
+ a temporal graph randomized from G
271
+ ˜G(𝑡) = ( ˜
272
+ V (𝑡), ˜E (𝑡))
273
+ snapshot of ˜G at time 𝑡
274
+ 𝑚(𝑡)
275
+ 𝑖
276
+ (𝑣)
277
+ count of node role 𝑖 at a node 𝑣 in G(𝑡)
278
+ we will use the term edge to indicate a directed edge when there is
279
+ no ambiguity.
280
+ Randomized Graph: A randomized graph ˜G = (V, E, ˜T) of G =
281
+ (V, E, T) is obtained by assigning arrival times in T to edges in E
282
+ uniformly at random in a one-to-one manner. For each edge 𝑒𝑖 ∈ E,
283
+ we use ˜𝑡𝑖 ∈ ˜T to denote the arrival time assigned to it.
284
+ Snapshot: We define the snapshot at time 𝑡 of G = (V, E, T)
285
+ as G(𝑡) = (V (𝑡), E (𝑡)) where E (𝑡) := {𝑒𝑖 ∈ E : 𝑡𝑖 ≤ 𝑡} and
286
+ V (𝑡) ⊆ V is the endpoints of any edge in E (𝑡). That is, G(𝑡)
287
+ consists of the nodes and edges arriving at time𝑡 or earlier. Similarly,
288
+ the snapshot at time 𝑡 of ˜G = (V, E, ˜T) is ˜G(𝑡) = ( ˜
289
+ V (𝑡), ˜E (𝑡))
290
+ where ˜E (𝑡) := {𝑒𝑖 ∈ E : ˜𝑡𝑖 ≤ 𝑡} and ˜
291
+ V (𝑡) is the endpoints of
292
+ any edge in ˜E (𝑡). We define the neighbors of a node 𝑣 ∈ V (𝑡) in
293
+ a snapshot G(𝑡) as the nodes adjacent to 𝑣 in G(𝑡). We define the
294
+ degree of a node 𝑣 ∈ V (𝑡) in a snapshot G(𝑡), which is denoted by
295
+ 𝑑 (𝑡) (𝑣), as the number of directed edges whose endpoints include
296
+ 𝑣 in G(𝑡). We simply use 𝑑(𝑣) to denote the degree of the node 𝑣 in
297
+ the last snapshot G(𝑡|E|).
298
+ Induced Subgraphs: A subgraph of a snapshot G(𝑡) = (V (𝑡), E (𝑡))
299
+ is induced if and only if it consists of a subset of V (𝑡) and all of the
300
+ edges connecting pairs of the nodes in the subset. Two subgraphs
301
+ H and H ′ are isomorphic if there exists a one-to-one mapping 𝑓
302
+ between the nodes of both graphs such that there exists an edge
303
+ from a node 𝑢 to a node 𝑣 in H if and only if there exists an edge
304
+ from the node 𝑓 (𝑢) to the node 𝑓 (𝑣) in H ′.
305
+ Graphlets: A graphlet is the set of induced subgraphs that are
306
+ isomorphic to each other. In this paper, we limit our attention to
307
+ the 13 graphlets consisting of three connected nodes. An induced
308
+
309
+ Table 2: Summary of nine real-world temporal graphs used
310
+ throughout this paper.
311
+ Domain
312
+ Dataset
313
+ |𝑉 |
314
+ |𝐸𝑇 |
315
+ Period
316
+ Citation
317
+ HepPh
318
+ 34, 565
319
+ 346, 849
320
+ 9 years
321
+ HepTh
322
+ 18, 477
323
+ 136, 190
324
+ 10 years
325
+ Patent
326
+ 3, 774, 362
327
+ 16, 512, 782
328
+ 25 years
329
+ Email/Message
330
+ Enron
331
+ 55, 655
332
+ 209, 203
333
+ 24 years
334
+ EU
335
+ 986
336
+ 24, 929
337
+ 1.5 years
338
+ College
339
+ 1, 899
340
+ 20, 296
341
+ 0.5 years
342
+ Online Q/A
343
+ Askubuntu
344
+ 159, 316
345
+ 262, 106
346
+ 6 years
347
+ Mathoverflow
348
+ 24, 818
349
+ 90, 489
350
+ 7 years
351
+ Stackoverflow
352
+ 2, 601, 977
353
+ 16, 266, 395
354
+ 8 years
355
+ subgraph is called an instance of graphlet 𝑘 if it is isomorphic to
356
+ the 𝑘-th graph in Figure 2(a).
357
+ Node Roles: Consider an induced subgraph H with a node set V′.
358
+ An automorphism of H is an isomorphism between H and itself.
359
+ i.e., an automorphism of H is a one-to-one mapping between nodes
360
+ of H such that there exists an edge from a node 𝑢 to a node 𝑣 in
361
+ H if and only if there exists an edge from the node corresponding
362
+ to 𝑢 to the node corresponding to 𝑣 in H. If denoting the set of
363
+ automorphisms of H by 𝐴𝑢𝑡(H), the automorphism orbit of a node
364
+ 𝑢 ∈ V′ is the set {𝑦 ∈ V′ : ∃𝑔 ∈ 𝐴𝑢𝑡(H) s.t. 𝑦 = 𝑔(𝑢)} of
365
+ nodes [36]. Formally, node roles are node automorphism orbits,
366
+ and roughly, they are sets of symmetric positions of nodes within
367
+ graphlets. Figure 2(b) (see the positions of black nodes) shows
368
+ all 30 node roles in the 13 graphlets that we consider. We say a
369
+ node 𝑣 “takes” node role 𝑖 in a graphlet instance if there exists
370
+ an isomorphism of the graphlet instance and the 𝑖-th graph in
371
+ Figure 2(b) that maps 𝑣 to the black node in the graph. We define the
372
+ count of node role 𝑖 at a node 𝑣 as the number of graphlet instances
373
+ where 𝑣 takes 𝑖, and 𝑚(𝑡)
374
+ 𝑖
375
+ (𝑣) denotes the count at a snapshot G(𝑡).
376
+ Edge Roles: Consider an induced subgraph H with an edge set
377
+ E′. Based on the concepts defined above, we define the edge role
378
+ of an edge 𝑢 → 𝑣 is the set {𝑥 → 𝑦 ∈ E′ : ∃𝑔 ∈ 𝐴𝑢𝑡(H) s.t. 𝑥 =
379
+ 𝑔(𝑢) ∧ 𝑦 = 𝑔(𝑣)} of edges. Roughly, edge roles are the sets of
380
+ symmetric positions of edges within graphlets. Figure 2(c) (see the
381
+ positions of edges from a red node to a blue node) shows all 30 edge
382
+ roles in the 13 considered graphlets. We say an edge 𝑢 → 𝑣 “takes”
383
+ edge role 𝑗 in a graphlet instance if there exists an isomorphism of
384
+ the graphlet instance and the 𝑗-th graph in Figure 2(c) that maps 𝑢
385
+ and 𝑣 to the red node and the blue node, respectively, in the graph.
386
+ We define the count of edge role 𝑗 at an edge 𝑒 as the number of
387
+ graphlet instances where 𝑒 takes 𝑗.
388
+ 2.2
389
+ Datasets
390
+ Throughout this paper, we use the nine real-world temporal graphs
391
+ from the three domains, which are summarized in Table 2.
392
+ Citation Graphs: Each node is a paper or a patent. Each directed
393
+ edge from a node 𝑢 to a node 𝑣 means that 𝑢 cites 𝑣.
394
+ Email/Message Graphs: Each node is a user. Each directed edge
395
+ from a node 𝑢 to a node 𝑣 indicates that 𝑢 sends 𝑣 emails (messages).
396
+ Online Q/A Graphs: Each node is a user. Each directed edge from
397
+ a node 𝑢 to a node 𝑣 means that 𝑢 answers 𝑣’s questions.
398
+ Algorithm 1: Counting the Instances of Each Graphlet in
399
+ a Temporal Graph
400
+ Input
401
+ :Temporal Graph G = (V, E, T)
402
+ Output:The count of the instances of each graphlet in G
403
+ 1 Initialize the count of the instances of each graphlet to zero
404
+ 2 Initialize E to an empty set
405
+ 3 for each edge 𝑒𝑖 = 𝑢 → 𝑣 in arrival order do
406
+ 4
407
+ N ← union of the neighbors of 𝑢 and the neighbors of 𝑣
408
+ (except for 𝑢 and 𝑣)
409
+ 5
410
+ for each 𝑤 ∈ N do
411
+ 6
412
+ if 𝑢, 𝑣 and 𝑤 form a graphlet instance then
413
+ 7
414
+ decrement the count of the graphlet of the instance
415
+ formed by 𝑢, 𝑣 and 𝑤
416
+ 8
417
+ add 𝑢 → 𝑣 to E
418
+ 9
419
+ for each 𝑤 ∈ N do
420
+ 10
421
+ increment the count of the graphlet of the instance formed
422
+ by 𝑢, 𝑣 and 𝑤
423
+ 11 return count of the instances of each graphlet instances
424
+ 3
425
+ GRAPH LEVEL ANALYSIS
426
+ In this section, we study the evolution of local structures in real-
427
+ world graphs. We examine the dynamics in the distribution of
428
+ graphlet instances and transitions between graphlets.
429
+ 3.1
430
+ Global Level 1. Graphlets Over Time
431
+ We track how the ratio of the instances of each graphlet changes as
432
+ the considered real-world graphs evolve over time. Our tracking al-
433
+ gorithm, which is described in Algorithm 1, is adapted from StreaM
434
+ [38], which maintains the counts of the instances of the 4-node
435
+ undirected graphlets in a fully dynamic graph stream, where edges
436
+ are not just added but also deleted over time. The time complex-
437
+ ity of Algorithm 1 is Θ(Σ𝑣∈V (𝑑(𝑣))2), as proven in Theorem 1. It
438
+ should be noticed that, by Lemma 1, the time complexity is Θ(the
439
+ number of instances of all graphlets in the last snapshot), which
440
+ is the optimal time complexity achievable by any algorithm that
441
+ counts graphlet instances by enumerating them.
442
+ Theorem 1. The time complexity of Algorithm 1 is Θ(Σ𝑣∈V (𝑑(𝑣))2).
443
+ Proof. Since the number of nodes forming each graphlet in-
444
+ stance is a constant, finding the graphlet corresponding to a given
445
+ instance and updating the corresponding count (lines 6-7 and 10)
446
+ take 𝑂(1) time. Thus, the time complexity of processing each in-
447
+ coming edge 𝑒𝑖 = 𝑢 → 𝑣 is that of computing the union of the neigh-
448
+ bors of 𝑢 and 𝑣 (line 4), which is Θ(𝑑 (𝑡𝑖−1) (𝑢) +𝑑 (𝑡𝑖−1) (𝑣)). Hence,
449
+ the total complexity is Θ(�
450
+ 𝑒𝑖=𝑢→𝑣∈𝐸 (𝑑 (𝑡𝑖−1) (𝑢) + 𝑑 (𝑡𝑖−1) (𝑣)) =
451
+ Θ(�
452
+ 𝑣∈V (𝑑(𝑣))2).
453
+
454
+ Lemma 1. The number of instances of all graphlets in a snapshot
455
+ G(𝑡) is Θ(Σ𝑣∈V (𝑡) (𝑑 (𝑡) (𝑣))2).
456
+ Proof. Given a snapshot G(𝑡) = (V (𝑡), E (𝑡)), for each node
457
+ 𝑣 ∈ V (𝑡), if we count the instances of all graphlets that consist
458
+ of 𝑣 and its two neighbors, then the count of such instances is
459
+ Θ((𝑑 (𝑡) (𝑣))2) for each node 𝑣, and since 𝑑 (𝑡) (𝑣) ≥ 1 for every
460
+ node 𝑣, the total count 𝐶 is Θ(Σ𝑣∈V (𝑡) (𝑑 (𝑡) (𝑣))2).
461
+
462
+ Table 3: Ratios of graphlets over time. The colors in the plots are matched with the colors of the graphlets in Figure 2, and the
463
+ evolution ratio means the fraction of edges added to graphs. The evolution patterns in real-world graphs vary depending on
464
+ domains (Observation 1), and they are clearly distinguished from the evolution patterns in randomized graphs (Observation 2).
465
+ Temporal graph G
466
+ Randomized graph ˜G
467
+ Citation
468
+ 0.0
469
+ 0.5
470
+ 1.0
471
+ Evolution Ratio
472
+ 0.0
473
+ 0.5
474
+ 1.0
475
+ Graphlet Ratio
476
+ HepPh
477
+ 0.0
478
+ 0.5
479
+ 1.0
480
+ Evolution Ratio
481
+ 0.0
482
+ 0.5
483
+ 1.0
484
+ Graphlet Ratio
485
+ HepTh
486
+ 0.0
487
+ 0.5
488
+ 1.0
489
+ Evolution Ratio
490
+ 0.0
491
+ 0.5
492
+ 1.0
493
+ Graphlet Ratio
494
+ Patent
495
+ 0.0
496
+ 0.5
497
+ 1.0
498
+ Evolution Ratio
499
+ 0.0
500
+ 0.5
501
+ 1.0
502
+ Graphlet Ratio
503
+ HepPh
504
+ 0.0
505
+ 0.5
506
+ 1.0
507
+ Evolution Ratio
508
+ 0.0
509
+ 0.5
510
+ 1.0
511
+ Graphlet Ratio
512
+ HepTh
513
+ 0.0
514
+ 0.5
515
+ 1.0
516
+ Evolution Ratio
517
+ 0.0
518
+ 0.5
519
+ 1.0
520
+ Graphlet Ratio
521
+ Patent
522
+ Email/Message
523
+ 0.0
524
+ 0.5
525
+ 1.0
526
+ Evolution Ratio
527
+ 0.0
528
+ 0.5
529
+ 1.0
530
+ Graphlet Ratio
531
+ EU
532
+ 0.0
533
+ 0.5
534
+ 1.0
535
+ Evolution Ratio
536
+ 0.0
537
+ 0.5
538
+ 1.0
539
+ Graphlet Ratio
540
+ Enron
541
+ 0.0
542
+ 0.5
543
+ 1.0
544
+ Evolution Ratio
545
+ 0.0
546
+ 0.5
547
+ 1.0
548
+ Graphlet Ratio
549
+ College
550
+ 0.0
551
+ 0.5
552
+ 1.0
553
+ Evolution Ratio
554
+ 0.0
555
+ 0.5
556
+ 1.0
557
+ Graphlet Ratio
558
+ EU
559
+ 0.0
560
+ 0.5
561
+ 1.0
562
+ Evolution Ratio
563
+ 0.0
564
+ 0.5
565
+ 1.0
566
+ Graphlet Ratio
567
+ Enron
568
+ 0.0
569
+ 0.5
570
+ 1.0
571
+ Evolution Ratio
572
+ 0.0
573
+ 0.5
574
+ 1.0
575
+ Graphlet Ratio
576
+ College
577
+ Online Q/A
578
+ 0.0
579
+ 0.5
580
+ 1.0
581
+ Evolution Ratio
582
+ 0.0
583
+ 0.5
584
+ 1.0
585
+ Graphlet Ratio
586
+ Math
587
+ 0.0
588
+ 0.5
589
+ 1.0
590
+ Evolution Ratio
591
+ 0.0
592
+ 0.5
593
+ 1.0
594
+ Graphlet Ratio
595
+ Ask
596
+ 0.0
597
+ 0.5
598
+ 1.0
599
+ Evolution Ratio
600
+ 0.0
601
+ 0.5
602
+ 1.0
603
+ Graphlet Ratio
604
+ Stack
605
+ 0.0
606
+ 0.5
607
+ 1.0
608
+ Evolution Ratio
609
+ 0.0
610
+ 0.5
611
+ 1.0
612
+ Graphlet Ratio
613
+ Math
614
+ 0.0
615
+ 0.5
616
+ 1.0
617
+ Evolution Ratio
618
+ 0.0
619
+ 0.5
620
+ 1.0
621
+ Graphlet Ratio
622
+ Ask
623
+ 0.0
624
+ 0.5
625
+ 1.0
626
+ Evolution Ratio
627
+ 0.0
628
+ 0.5
629
+ 1.0
630
+ Graphlet Ratio
631
+ Stack
632
+ Lower Bound: Since each graphlet instance, which consists of
633
+ three nodes, is counted at most three times, 𝐶 is at most three times
634
+ the number of instances of all graphlets in G(𝑡). In other words,
635
+ the number of instances of all graphlets is at least 1/3 of 𝐶, and
636
+ thus it is Ω(Σ𝑣∈V (𝑡) (𝑑 (𝑡) (𝑣))2).
637
+ Upper Bound: In each graphlet instance, there exists at least one
638
+ center node, who composes the graphlet together with its neighbors.
639
+ Thus, each instance is counted at least once, and thus 𝐶 is at least
640
+ the number of instances of all graphlets in G(𝑡). In other words,
641
+ the number of instances of all graphlets is at most 𝐶, and thus it is
642
+ 𝑂(Σ𝑣∈V (��) (𝑑 (𝑡) (𝑣))2).
643
+
644
+ As seen in Table 3, the dynamics of the ratios depend on the
645
+ domains of the graphs, as summarized in Observation 1.
646
+ Observation 1. The dynamics in the distributions of graphlet in-
647
+ stances in graphs from the same domain share some commonalities.
648
+ • Instances of graphlet 4 are more dominant in the citation graphs
649
+ than other graphs.
650
+ • Graphlets with many edges (e.g., graphlets 8, 12, and 13) account for
651
+ a larger fraction in email/message networks than in other networks.
652
+ • The fraction of graphlet 1 increases over time only in the online
653
+ Q/A graphs.
654
+ However, the dynamics are not exactly the same within domains.
655
+ For example, while graphlets 1, 2, and 4 are dominant compared to
656
+ other graphlets in all citation graphs, the ratios among them vary
657
+ greatly in different graphs.
658
+ We also notice a consistent difference between the dynamics in
659
+ real-world graphs and those in randomized graphs (see Section 2.1),
660
+ as summarized in Observation 2.
661
+ Observation 2. The ratios of graphlet instances change more lin-
662
+ early in randomized graphs than in real-world graphs.
663
+ Table 4: The non-linearity of the ratios of graphlet instances
664
+ over time in real-world graphs and randomized graphs. We
665
+ describe in Section 3.1 how the non-linearity is measured.
666
+ The lower the non-linearity is, the more linear the change
667
+ of the ratio of the corresponding graphlet instances is. Note
668
+ that the ratios of graphlet instances change more linearly in
669
+ randomized graphs than in real-world graphs.
670
+ Dataset
671
+ HepPh
672
+ HepTh
673
+ Patent
674
+ EU
675
+ Enron
676
+ College
677
+ Math
678
+ Ask
679
+ Stack
680
+ real
681
+ 0.0027
682
+ 0.0080
683
+ 0.0093
684
+ 0.0107
685
+ 0.0042
686
+ 0.0095
687
+ 0.0028
688
+ 0.0038
689
+ 0.0047
690
+ random
691
+ 0.0003
692
+ 0.0011
693
+ 0.0000
694
+ 0.0081
695
+ 0.0017
696
+ 0.0058
697
+ 0.0007
698
+ 0.0005
699
+ 0.0001
700
+ In order to numerically support this observation, we measure the
701
+ non-linearity [18, 22] of the ratios of graphlet instances over time.
702
+ Specifically, we fit a linear regression model and a non-linear poly-
703
+ nomial regression model to each time series in Table 3, and then
704
+ we measure the average absolute difference between the predicted
705
+ values of the two models as the non-linearity of the time series.1
706
+ Lastly, we average the non-linearity of all time-series from each
707
+ graph and report the results in Table 4. Note that non-linearity is
708
+ significantly higher in real-world graphs than in corresponding
709
+ randomized graphs. That is, the ratios of graphlet instances change
710
+ more linearly in randomized graphs than in real-world graphs.
711
+ 3.2
712
+ Global Level 2. Graphlet Transitions
713
+ In a temporal graph, an instance of a graphlet may transition to
714
+ an instance of another graphlet due to new edges added to it. In
715
+ this subsection, we examine the counts of such transitions between
716
+ graphlets to characterize the local dynamics in temporal graphs
717
+ and also to make comparisons between them.
718
+ 1We use the linearity test implemented in Analyse-it (Ver. 5.65) and select a cubic
719
+ model as the non-linearity polynomial model, as suggested in the program. For com-
720
+ putational efficiency, we measure the absolute difference at 1,000 evolution ratios
721
+ sampled uniformly at equal intervals.
722
+
723
+ Table 5: Using graphlet transition graphs (GTGs) and characteristic profiles (CPs) from GTGs, we can accurately characterize
724
+ the dynamics of local structures in real-world graphs. The colors of edges in GTGs indicate their normalized weights. Note
725
+ that GTGs and CPs are particularly similar in real-world graphs from the same domains (Observation 3).
726
+ Graphlet transition graphs (GTGs)
727
+ Characteristic profiles (CPs)
728
+ Citation
729
+ 3
730
+ 10
731
+ 2
732
+ 9
733
+ 7
734
+ 5
735
+ 8
736
+ 12
737
+ 4
738
+ new
739
+ 1
740
+ 11
741
+ 6
742
+ 13
743
+ HepPh
744
+ 0.0
745
+ 0.3
746
+ 0.6
747
+ 3
748
+ 10
749
+ 2
750
+ 9
751
+ 7
752
+ 5
753
+ 8
754
+ 12
755
+ 4
756
+ new
757
+ 1
758
+ 11
759
+ 6
760
+ 13
761
+ HepTh
762
+ 0.0
763
+ 0.3
764
+ 0.6
765
+ 3
766
+ 10
767
+ 2
768
+ 9
769
+ 7
770
+ 5
771
+ 8
772
+ 12
773
+ 4
774
+ new
775
+ 1
776
+ 11
777
+ 6
778
+ 13
779
+ Patent
780
+ 0.0
781
+ 0.3
782
+ 0.6
783
+ HepTh
784
+ HepPh
785
+ Patent
786
+ Email/Message
787
+ 3
788
+ 10
789
+ 2
790
+ 9
791
+ 7
792
+ 5
793
+ 8
794
+ 12
795
+ 4
796
+ new
797
+ 1
798
+ 11
799
+ 6
800
+ 13
801
+ EU
802
+ 0.0
803
+ 0.3
804
+ 0.6
805
+ 3
806
+ 10
807
+ 2
808
+ 9
809
+ 7
810
+ 5
811
+ 8
812
+ 12
813
+ 4
814
+ new
815
+ 1
816
+ 11
817
+ 6
818
+ 13
819
+ Enron
820
+ 0.0
821
+ 0.3
822
+ 0.6
823
+ 3
824
+ 10
825
+ 2
826
+ 9
827
+ 7
828
+ 5
829
+ 8
830
+ 12
831
+ 4
832
+ new
833
+ 1
834
+ 11
835
+ 6
836
+ 13
837
+ College
838
+ 0.0
839
+ 0.3
840
+ 0.6
841
+ Enron
842
+ EU
843
+ College
844
+ Online Q/A
845
+ 3
846
+ 10
847
+ 2
848
+ 9
849
+ 7
850
+ 5
851
+ 8
852
+ 12
853
+ 4
854
+ new
855
+ 1
856
+ 11
857
+ 6
858
+ 13
859
+ Math
860
+ 0.0
861
+ 0.3
862
+ 0.6
863
+ 3
864
+ 10
865
+ 2
866
+ 9
867
+ 7
868
+ 5
869
+ 8
870
+ 12
871
+ 4
872
+ new
873
+ 1
874
+ 11
875
+ 6
876
+ 13
877
+ Ask
878
+ 0.0
879
+ 0.3
880
+ 0.6
881
+ 3
882
+ 10
883
+ 2
884
+ 9
885
+ 7
886
+ 5
887
+ 8
888
+ 12
889
+ 4
890
+ new
891
+ 1
892
+ 11
893
+ 6
894
+ 13
895
+ Stack
896
+ 0.0
897
+ 0.3
898
+ 0.6
899
+ Ask
900
+ Math
901
+ Stack
902
+ Graphlet Transition Graph: We define graphlet transition graphs
903
+ (GTGs) to encode transitions between graphlets.
904
+ Definition 1 (Graphlet transition graph). A graphlet transi-
905
+ tion graph (GTG) 𝐺 = (𝑉, 𝐸,𝑊 ) of a temporal graph G is a static
906
+ directed weighted graph where the nodes are graphlets and each
907
+ edge indicates that the source graphlet is transformed into the des-
908
+ tination graphlet by an edge added to G. The weight of edges is
909
+ the number of occurrences of the corresponding transitions. We use
910
+ 𝑊 = {𝑤1, · · · ,𝑤 |𝐸 |} to denote the edge weights.
911
+ Since we focus on the 13 graphlets in Figure 2(a), a GTG consists
912
+ of the 28 types of transitions between these graphlets. In Table 5,
913
+ we visualize the GTGs from the real-world graphs. Algorithm 2 de-
914
+ scribes the computation of the edge weights of a GTG. In a nutshell,
915
+ for each edge in arrival order, we count the transitions caused by it.
916
+ Its time complexity is formalized in Theorem 2.
917
+ Theorem 2. The time complexity of Algorithm 2 is Θ(Σ𝑣∈V (𝑑(𝑣))2)
918
+ = Θ(the number of instances of all graphlets in the last snapshot).
919
+ Proof. We can prove the complexity of Θ(Σ𝑣∈V (𝑑(𝑣))2) simi-
920
+ larly to Theorem 1, and by Lemma 1, it is Θ(the number of instances
921
+ of all graphlets in the last snapshot).
922
+
923
+ Characteristic Profile (CP): We characterize the evolution of lo-
924
+ cal structure in a graph G using the significance of edge weights in
925
+ its GTG 𝐺 = (𝑉, 𝐸,𝑊 ). In order to measure the significance, we fol-
926
+ low the steps in [31] for measuring the significance of each graphlet
927
+ itself. To this end, we construct the graphlet transition graph ˜𝐺 of
928
+ a randomized graph ˜G. Then, we measure the significance 𝑆𝑃𝑖 of
929
+ each edge weight 𝑤𝑖 in 𝐺 as follows:
930
+ 𝑆𝑃𝑖 :=
931
+ 𝑤𝑖 − ˜𝑤𝑖
932
+ 𝑤𝑖 + ˜𝑤𝑖 + 𝜖 ,
933
+ (1)
934
+ Algorithm 2: Computing the Edge Weights of Graphlet
935
+ Transition Graphs
936
+ Input
937
+ :Temporal graph G = (V, E, T)
938
+ Output:Edge weights of the graphlet transition graph of G
939
+ 1 Initialize all edge weights to zero
940
+ 2 Initialize E to an empty set
941
+ 3 for each edge 𝑒𝑖 = 𝑢 → 𝑣 in arrival order do
942
+ 4
943
+ for each 𝑤1 ∈ neighbors(𝑢) \ {𝑣} do
944
+ 5
945
+ UPDATE(𝑢, 𝑣, 𝑤1)
946
+ 6
947
+ for each 𝑤2 ∈ neighbors(𝑣) \{neighbors(𝑢) ∪ 𝑢} do
948
+ 7
949
+ UPDATE(𝑢, 𝑣, 𝑤2)
950
+ 8
951
+ add 𝑢 → 𝑣 to E
952
+ 9 return the edge weights
953
+ 10 Procedure UPDATE(𝑢, 𝑣, 𝑤)
954
+ 11
955
+ if 𝑢, 𝑣, and 𝑤 form a graphlet instance then
956
+ 12
957
+ prev ← graphlet of the instance (𝑢, 𝑣, 𝑤) without 𝑢 → 𝑣
958
+ 13
959
+ next ← graphlet of the instance (𝑢, 𝑣, 𝑤) with 𝑢 → 𝑣
960
+ 14
961
+ 𝑖 ← index of the graphlet transition from prev to next
962
+ 15
963
+ increase the weight of the edge 𝑖 (i.e., 𝑤𝑖) by 1
964
+ where ˜𝑤𝑖 is the corresponding edge weight in ˜𝐺, and 𝜖 is a constant,
965
+ which we fix to 4. For ˜𝑤𝑖, we generate 50 instances of randomized
966
+ graphs and we use the average edge weights in them. Lastly, we
967
+ normalize each significance as follows:
968
+ 𝐶𝑃𝑖 := 𝑆𝑃𝑖/
969
+ √︃
970
+ Σ|𝐸 |
971
+ 𝑖=1𝑆𝑃2
972
+ 𝑖 .
973
+ (2)
974
+ We characterize the evolution of local structures in G using the vec-
975
+ tor of the normalized significances (i.e., [𝐶𝑃1, · · · ,𝐶𝑃|𝐸 |]), which
976
+ we call characteristic profile (CP).
977
+ Comparison between CPs: We plot the CPs of the considered
978
+ real-world graphs in Table 5, and high levels of similarity are ob-
979
+ served within domains. We numerically measure the similarity
980
+
981
+ Vormalized
982
+ 0
983
+ 5
984
+ 10
985
+ 15
986
+ 20
987
+ 25
988
+ GraphletTransitionIndexNormalized
989
+ gnificance
990
+ 0
991
+ 5
992
+ 10
993
+ 15
994
+ 20
995
+ 25
996
+ GraphletTransitionIndexNormalized
997
+ 0
998
+ 5
999
+ 10
1000
+ 15
1001
+ 20
1002
+ 25
1003
+ GraphletTransitionIndexHigh
1004
+ Low
1005
+ Low
1006
+ High
1007
+ {2, 4}
1008
+ (a) 𝑑𝜃 = 2
1009
+ High
1010
+ Low
1011
+ Low
1012
+ High
1013
+ {2, 4, 7, 9}
1014
+ (b) 𝑑𝜃 = 4
1015
+ High
1016
+ Low
1017
+ Low
1018
+ High
1019
+ {2, 4, 7, 9, 11, 12}
1020
+ (c) 𝑑𝜃 = 8
1021
+ Figure 3: Example signals from the local structures of nodes
1022
+ regarding their future importance. The ratios of some node
1023
+ roles (e.g., node roles 2 and 4) at nodes monotonically in-
1024
+ crease with respect to the future in-degrees of the nodes.
1025
+ The ratios are rescaled so that their maximum values are
1026
+ the same.
1027
+ between CPs using the Pearson correlation coefficients, and the
1028
+ results are shown in Figure 1(a). The correlation coefficients are
1029
+ particularly high between graphs from the same domain, and specif-
1030
+ ically the domains can be classified with 97.2% accuracy if we use
1031
+ the best threshold of the correlation coefficient (0.58). The results
1032
+ demonstrate that CPs accurately characterize the evolution of local
1033
+ structures. Our observations are summarized in Observation 3.
1034
+ Observation 3. The evolution patterns of local structures are simi-
1035
+ lar in real-world graphs from the same domains.
1036
+ Comparison with Other Methods: We evaluate three other graph
1037
+ characterization methods, as we evaluate ours in the right above
1038
+ paragraph. In Figure 1(b), we provide the correlation coefficients
1039
+ between the CPs obtained from the count of the instances of each
1040
+ graphlet [31]. Note that the email/message graphs (blue) and the
1041
+ online Q/A graphs (green) are not distinguished clearly. Numeri-
1042
+ cally, with the best threshold of correlation coefficient (0.95), the
1043
+ classification accuracy is 83.3%.
1044
+ We also compute the similarity between the considered real-
1045
+ world graphs using Graphlet-orbit Transition (GoT) [4] and Orbit
1046
+ Temporal Agreement (OTA) [4], which are also based on transi-
1047
+ tions between graphlets (see Section 6 for details). Our way of
1048
+ characterization has the following major advantages over them:
1049
+ • (1) Speed: Empirically, GoT and OTA are up to 10× slower than
1050
+ our method, as shown in Appendix A. The time complexity of
1051
+ them is proportional to the sum of the counts of graphlet in-
1052
+ stances in all used snapshots, while the time complexity of Algo-
1053
+ rithm 2 is proportional only the to the count of graphlet instances
1054
+ in the last snapshot (Theorem 2).
1055
+ • (2) Space Efficiency: GoT and OTA run out of memory in the
1056
+ two largest graphs (Patent and Stackoverflow), as shown in Ap-
1057
+ pendix A, while our method does not. They need to store all
1058
+ graphlet instances in each considered snapshot for comparison
1059
+ with those in the next snapshot, while Algorithm 2 maintains only
1060
+ the latest snapshot without having to store graphlet instances.
1061
+ • (3) Characterization Accuracy: The best classification accura-
1062
+ cies computed using the considered real-world graphs (except
1063
+ for Patent and Stackoverflow for which GoT and OTA run out of
1064
+ memory) are 81.0% (GoT) and 85.7% (OTA), which is lower than
1065
+ our classification accuracy (97.2%). Detailed results are given in
1066
+ Appendix A. Note that GoT and OTA approximate the counts
1067
+ of transitions between graphlets based on a small number of
1068
+ snapshots, while Algorithm 2 exactly counts the transitions.
1069
+ Table 6: The absolute value of the Spearman’s rank correla-
1070
+ tion coefficients between node role ratios and future central-
1071
+ ities (averaged over all node roles and all datasets for each
1072
+ centrality measure) and each value of the threshold 𝑑𝜃. As
1073
+ the number of node neighbors increases (i.e., 𝑑𝜃 increases),
1074
+ the local-structural signals about future centralities become
1075
+ stronger (i.e., the absolute values increase).
1076
+ 𝑑𝜃
1077
+ Degree
1078
+ Betweenness
1079
+ Closeness
1080
+ PageRank
1081
+ Edge Betweenness
1082
+ 2
1083
+ 0.640
1084
+ 0.697
1085
+ 0.682
1086
+ 0.663
1087
+ 0.546
1088
+ 4
1089
+ 0.721
1090
+ 0.723
1091
+ 0.712
1092
+ 0.704
1093
+ 0.558
1094
+ 8
1095
+ 0.816
1096
+ 0.793
1097
+ 0.759
1098
+ 0.701
1099
+ 0.599
1100
+ In summary, our way of characterizing temporal graphs
1101
+ using GTGs distinguishes the domains of temporal graphs
1102
+ most accurately with the accuracy of 97.2%. The accuracies of
1103
+ the other methods are 83.3%, 81.0%, and 85.7%.
1104
+ 4
1105
+ NODE LEVEL ANALYSIS
1106
+ In this section, we study how local structures around nodes are re-
1107
+ lated to their future importance. Then, we enhance the predictability
1108
+ of future node centrality using the relations.
1109
+ 4.1
1110
+ Patterns
1111
+ We characterize the local structures of nodes using node roles and
1112
+ examine their relation to the nodes’ future centrality.
1113
+ Local Structures of Nodes: Given a temporal graph G, we char-
1114
+ acterize the local structure of each node 𝑣 in their early stage by
1115
+ measuring the ratio of each node role at 𝑣 in the snapshot at time 𝑡
1116
+ when the in-degree of 𝑣 first reaches a threshold 𝑑𝜃. That is, each
1117
+ node 𝑣 is represented as a 30-dimensional vector whose 𝑖-th is
1118
+ 𝑚(𝑡)
1119
+ 𝑖
1120
+ (𝑣)/(�30
1121
+ 𝑗=1 𝑚(𝑡)
1122
+ 𝑗
1123
+ (𝑣)) (see Section 2.1 for 𝑚(𝑡)
1124
+ 𝑖
1125
+ (𝑣)).
1126
+ Future Importance of Nodes: Given a temporal graph G, as fu-
1127
+ ture importance of each node, we measure its in-degree, node
1128
+ betweenness centrality [15], closeness centrality [9], and PageR-
1129
+ ank [34] in the last snapshot of G. Based on each centrality measure,
1130
+ we divide the nodes in G into six groups (Group 1: top 50-100%,
1131
+ Group 2: top 30-50%, Group 3: top 10-30%, Group 4: top 5-10%,
1132
+ Group 5: top 1-5%, and Group 6: top 0-1%).
1133
+ Finding Signals: For each group, we average the ratio vectors
1134
+ of the nodes in the group. Figure 3 shows some averaged ratios
1135
+ when in-degree is used as the centrality measure. Note that the
1136
+ ratios of node roles 2 and 4 monotonically grow as future centrality
1137
+ increases, regardless of 𝑑𝜃 values. That is, the ratios of node roles 2
1138
+ and 4 give a consistent signal regarding the nodes’ future in-degree.
1139
+ In Figure 4, we report the Spearman’s rank correlation coeffi-
1140
+ cient [43] between each averaged ratio and the future centralities
1141
+ of nodes (specifically, the above group numbers between 1 and
1142
+ 6). We also report in Table 6 the absolute value of the coefficients
1143
+ (averaged over all node roles and all datasets) for each centrality
1144
+ measure and each value of the threshold 𝑑𝜃. Note that the average
1145
+ values are significantly greater than 0 and specifically around 0.7;
1146
+ and they increase as 𝑑𝜃 increases, as summarized in Observation 4.
1147
+ Observation 4. In real-world graphs, the local structures of nodes
1148
+ in their early stage provide a signal regarding their future impor-
1149
+ tance. The signals become stronger as nodes have more neighbors.
1150
+
1151
+ Node Role
1152
+ Relative
1153
+ Ratio
1154
+ R
1155
+ 12345
1156
+ 6
1157
+ Centrality
1158
+ (Binned)Node Role
1159
+ Relative
1160
+ Ratio
1161
+ R
1162
+ 12345
1163
+ 6
1164
+ Centrality
1165
+ (Binned)Node Role
1166
+ Relative
1167
+ Ratio
1168
+ 1
1169
+ 2
1170
+ 34
1171
+ 5
1172
+ Centrality
1173
+ (Binned)5
1174
+ 10
1175
+ 15
1176
+ 20
1177
+ 25
1178
+ 30
1179
+ Node Role
1180
+ HepPh
1181
+ HepTh
1182
+ Enron
1183
+ EU
1184
+ College
1185
+ Math
1186
+ Ask
1187
+ In-degree
1188
+ 1.0
1189
+ 0.5
1190
+ 0.0
1191
+ 0.5
1192
+ 1.0
1193
+ 5
1194
+ 10
1195
+ 15
1196
+ 20
1197
+ 25
1198
+ 30
1199
+ Node Role
1200
+ HepPh
1201
+ HepTh
1202
+ Enron
1203
+ EU
1204
+ College
1205
+ Math
1206
+ Ask
1207
+ Betweenness
1208
+ 1.0
1209
+ 0.5
1210
+ 0.0
1211
+ 0.5
1212
+ 1.0
1213
+ 5
1214
+ 10
1215
+ 15
1216
+ 20
1217
+ 25
1218
+ 30
1219
+ Node Role
1220
+ HepPh
1221
+ HepTh
1222
+ Enron
1223
+ EU
1224
+ College
1225
+ Math
1226
+ Ask
1227
+ Closeness
1228
+ 1.0
1229
+ 0.5
1230
+ 0.0
1231
+ 0.5
1232
+ 1.0
1233
+ 5
1234
+ 10
1235
+ 15
1236
+ 20
1237
+ 25
1238
+ 30
1239
+ Node Role
1240
+ HepPh
1241
+ HepTh
1242
+ Enron
1243
+ EU
1244
+ College
1245
+ Math
1246
+ Ask
1247
+ Pagerank
1248
+ 1.0
1249
+ 0.5
1250
+ 0.0
1251
+ 0.5
1252
+ 1.0
1253
+ Figure 4: The Spearman’s rank correlation coefficient between node role ratios (when nodes have in-degree four, i.e., 𝑑𝜃 = 4)
1254
+ and future node centralities. The darker a cell is, the larger the absolute value of the corresponding coefficient is. Note that
1255
+ the absolute values of most coefficients are significantly greater than 0.
1256
+ 4.2
1257
+ Prediction
1258
+ Based on the observations above, we predict the future centrality
1259
+ of nodes using the counts of their roles at them in their early stage.
1260
+ Problem Formulation: We formulate the prediction problem as
1261
+ a classification problem, as described in Problem 1.
1262
+ Problem 1 (Node Centrality Prediction).
1263
+ • Given: the snapshot G(𝑡𝑣,𝑑𝜃 ) of the input graph when the in-
1264
+ degree of a node 𝑣 first reaches 𝑑𝜃,
1265
+ • Predict: whether the centrality of the node 𝑣 belongs to the top
1266
+ 20% in the last snapshot of G.
1267
+ As the centrality measure, we use in-degree, betweenness centrality,
1268
+ closeness centrality, and PageRank. As 𝑑𝜃, we use 2, 4, or 8.
1269
+ Input Features: For each node 𝑣, we consider the snapshot G(𝑡)
1270
+ of the input graph G when the in-degree of 𝑣 first reaches 𝑑𝜃. That
1271
+ is, 𝑡 = 𝑡𝑣,𝑑𝜃 and G(𝑡) = G(𝑡𝑣,𝑑𝜃 ). Then, we extract the following
1272
+ sets of input features for 𝑣:
1273
+ • Local-NR: The count of each node role at 𝑣 in G(𝑡). That is,
1274
+ [𝑚(𝑡)
1275
+ 1 (𝑣), 𝑚(𝑡)
1276
+ 2 (𝑣), · · · ,𝑚(𝑡)
1277
+ 30 (𝑣)] (see Section 2.1 for 𝑚(𝑡)
1278
+ 𝑖
1279
+ (𝑣)).
1280
+ • Local-NPP [41]: In G(𝑡), we compute (1) the count of triangles
1281
+ at 𝑣, (2) the count of wedges centered at 𝑣, (3) the count of wedges
1282
+ ended at 𝑣.
1283
+ • Global-Basic: Counts of nodes and edges in the snapshot.
1284
+ • Global-NR: We compute the 30-dimensional vector whose 𝑖-th
1285
+ entry 𝑚(𝑡)
1286
+ 𝑖
1287
+ (𝑣)/(�30
1288
+ 𝑗=1 𝑚(𝑡)
1289
+ 𝑗
1290
+ (𝑣)) is the ratio of each node role at 𝑣
1291
+ in G(𝑡). Then, we standardize (i.e., compute the 𝑧-score of) the
1292
+ role ratio vector using the mean and standard deviation from the
1293
+ role ratio vectors (in G(𝑡)) of all nodes with degree 𝑑𝜃 in G(𝑡).
1294
+ The features in Local-NR are also included.
1295
+ • Global-NPP [41]: In G(𝑡), we compute (1) the number of edges
1296
+ not incident to 𝑣 and (2) the number of non-adjacent node pairs
1297
+ where one is a neighbor of 𝑣 and the other is neither a neighbor
1298
+ of 𝑣 nor 𝑣 itself. The features in Local-NPP are also included.
1299
+ • ALL: All of Global-NR, Global-NPP, and Global-Basic.
1300
+ Note that we categorize the above sets into global and local
1301
+ depending on whether global information in G(𝑡) (i.e., the number
1302
+ of all nodes in G(𝑡)) is used or only local information at 𝑣 is used.
1303
+ Prediction Method: As the classifier, we use the random forest
1304
+ model from the Scikit-learn library. The model has 30 decision trees
1305
+ with a maximum depth of 10.
1306
+ Table 7: F1-score, accuracy, and AUROC on the task of pre-
1307
+ dicting future node importance when 𝑑𝜃 = 2 averaged over
1308
+ the 7 considered real-world graphs. Among local features,
1309
+ using Local-NR yields better performance than using Local-
1310
+ NPP in all settings. Using ALL leads to the best performance
1311
+ in most cases, indicating that the considered sets of features
1312
+ are complementary to each other. Detailed results on each
1313
+ dataset can be found in Appendix C.
1314
+ Target
1315
+ Degree
1316
+ Betweenness
1317
+ Measure
1318
+ F1-score
1319
+ Accuracy
1320
+ AUROC
1321
+ F1-score
1322
+ Accuracy
1323
+ AUROC
1324
+ Local-NR
1325
+ 0.39
1326
+ 0.69
1327
+ 0.68
1328
+ 0.59
1329
+ 0.83
1330
+ 0.82
1331
+ Local-NPP
1332
+ 0.38
1333
+ 0.68
1334
+ 0.64
1335
+ 0.58
1336
+ 0.81
1337
+ 0.79
1338
+ Global-NR
1339
+ 0.57
1340
+ 0.74
1341
+ 0.78
1342
+ 0.64
1343
+ 0.84
1344
+ 0.85
1345
+ Global-NPP
1346
+ 0.57
1347
+ 0.73
1348
+ 0.77
1349
+ 0.64
1350
+ 0.84
1351
+ 0.85
1352
+ Global-Basic
1353
+ 0.50
1354
+ 0.72
1355
+ 0.73
1356
+ 0.24
1357
+ 0.73
1358
+ 0.67
1359
+ ALL
1360
+ 0.57
1361
+ 0.74
1362
+ 0.78
1363
+ 0.65
1364
+ 0.85
1365
+ 0.86
1366
+ Target
1367
+ Closeness
1368
+ PageRank
1369
+ Measure
1370
+ F1-score
1371
+ Accuracy
1372
+ AUROC
1373
+ F1-score
1374
+ Accuracy
1375
+ AUROC
1376
+ Local-NR
1377
+ 0.51
1378
+ 0.76
1379
+ 0.78
1380
+ 0.42
1381
+ 0.73
1382
+ 0.73
1383
+ Local-NPP
1384
+ 0.43
1385
+ 0.70
1386
+ 0.69
1387
+ 0.37
1388
+ 0.69
1389
+ 0.67
1390
+ Global-NR
1391
+ 0.68
1392
+ 0.82
1393
+ 0.87
1394
+ 0.54
1395
+ 0.75
1396
+ 0.79
1397
+ Global-NPP
1398
+ 0.66
1399
+ 0.80
1400
+ 0.85
1401
+ 0.54
1402
+ 0.74
1403
+ 0.78
1404
+ Global-Basic
1405
+ 0.59
1406
+ 0.75
1407
+ 0.79
1408
+ 0.47
1409
+ 0.71
1410
+ 0.74
1411
+ ALL
1412
+ 0.69
1413
+ 0.83
1414
+ 0.88
1415
+ 0.56
1416
+ 0.75
1417
+ 0.79
1418
+ Evaluation Method: We use 80% of the nodes for training and
1419
+ the remaining 20% for testing. We evaluate the predictive perfor-
1420
+ mance in terms of F1-score, accuracy, and Area Under the ROC curve
1421
+ (AUROC). A higher value indicates better prediction performance.
1422
+ Result: Table 7 shows the predictive performance from each set
1423
+ of input features when 𝑑𝜃 = 2, and Table 8 shows how the per-
1424
+ formance depends on the in-degree threshold 𝑑𝜃. In the tables, we
1425
+ report the mean of each prediction performance over 10 runs in
1426
+ the 7 datasets in Section 2.2 except for the two largest ones (i.e.,
1427
+ Patent and Stackoverflow). From the results, we draw the following
1428
+ observations.
1429
+ Observation 5. Among local features, the counts of node roles at
1430
+ each node (Local-NR) are more informative than (Local-NPP) for
1431
+ future importance prediction.
1432
+ Observation 6. The considered sets of features are complementary
1433
+ to each other. Using them all (ALL) leads to the best predictive
1434
+ performance in most cases.
1435
+ Observation 7. As nodes have more neighbors, their future impor-
1436
+ tance can be predicted more accurately.
1437
+
1438
+ Table 8:
1439
+ Average F1-score, accuracy, and AUROC on the
1440
+ task of predicting future node importance depending on 𝑑𝜃
1441
+ (i.e., in-degree of nodes when their input features are ex-
1442
+ tracted). The overall performance improves with respect to
1443
+ 𝑑𝜃 in most cases. That is, as nodes have more neighbors,
1444
+ their future importance can be predicted more accurately.
1445
+ Detailed results on each dataset can be found in Appendix C.
1446
+ Target
1447
+ Degree
1448
+ Betweenness
1449
+ Measure
1450
+ F1-score
1451
+ Accuracy
1452
+ AUROC
1453
+ F1-score
1454
+ Accuracy
1455
+ AUROC
1456
+ ALL (𝑑𝜃 = 2)
1457
+ 0.59
1458
+ 0.74
1459
+ 0.78
1460
+ 0.65
1461
+ 0.85
1462
+ 0.86
1463
+ ALL (𝑑𝜃 = 4)
1464
+ 0.69
1465
+ 0.78
1466
+ 0.79
1467
+ 0.73
1468
+ 0.83
1469
+ 0.87
1470
+ ALL (𝑑𝜃 = 8)
1471
+ 0.80
1472
+ 0.81
1473
+ 0.86
1474
+ 0.82
1475
+ 0.85
1476
+ 0.90
1477
+ Target
1478
+ Closeness
1479
+ PageRank
1480
+ Measure
1481
+ F1-score
1482
+ Accuracy
1483
+ AUROC
1484
+ F1-score
1485
+ Accuracy
1486
+ AUROC
1487
+ ALL (𝑑𝜃 = 2)
1488
+ 0.69
1489
+ 0.83
1490
+ 0.88
1491
+ 0.55
1492
+ 0.75
1493
+ 0.79
1494
+ ALL (𝑑𝜃 = 4)
1495
+ 0.78
1496
+ 0.83
1497
+ 0.89
1498
+ 0.73
1499
+ 0.77
1500
+ 0.80
1501
+ ALL (𝑑𝜃 = 8)
1502
+ 0.86
1503
+ 0.88
1504
+ 0.92
1505
+ 0.85
1506
+ 0.85
1507
+ 0.83
1508
+ Figure 5: The Spearman’s rank correlation coefficient be-
1509
+ tween edge role ratios (when endpoints have in-degree 4 in
1510
+ total, i.e., 𝑑𝜃 = 4) and future edge centralities. The darker a
1511
+ cell is, the larger the absolute value of the corresponding
1512
+ coefficient is. Note that the absolute values of many coeffi-
1513
+ cients are significantly greater than 0, while they tend to be
1514
+ smaller than those in Figure 4.
1515
+ Feature Importance: Additionally, we measure the importance
1516
+ of each feature in the set ALL using Gini-importance [29], and we
1517
+ report the top five important features in Table 10 in Appendix B.
1518
+ Observation 8. Strong predictors vary depending on centrality
1519
+ measures. For example, for betweenness centrality, the counts of node
1520
+ roles as bridges (i.e., Local NR-4 and Global NR-4) are strong.
1521
+ 5
1522
+ EDGE LEVEL ANALYSIS
1523
+ In this section, we investigate the signal of local structures of each
1524
+ edge regarding their future centrality, and based on the signal, we
1525
+ predict the future importance of edges.
1526
+ We generally follow the procedures in Section 4, except for the
1527
+ following differences: (a) we examine the ratios of edge roles at each
1528
+ edge 𝑢 → 𝑣 when the sum of the in-degrees of 𝑢 and 𝑣 becomes
1529
+ 𝑑𝜃, (b) we use edge betweenness centrality [15] as the importance
1530
+ measure, (c) we formulate the problem of predicting future edge
1531
+ importance as described in Problem 2, (d) we extract feature sets
1532
+ Local-ER and Global-ER using the (relative) counts of edge roles
1533
+ at edges as we extract Local-NR and Global-NR, and (e) we union
1534
+ Global-ER and Global-Basic for ALL.
1535
+ Problem 2 (Edge Centrality Prediction).
1536
+ • Given: the snapshot G(𝑡𝑒,𝑑𝜃 ) of the input graph when the sum of
1537
+ the in-degrees of the endpoints of each edge first reaches 𝑑𝜃,
1538
+ • Predict: whether the centrality of each edge belongs to the top
1539
+ 20% in the last snapshot of G.
1540
+ From Figure 5, Table 6, and Table 9, we draw the following
1541
+ observations.
1542
+ Table 9: F1-score, accuracy, and AUROC on the task of pre-
1543
+ dicting future edge importance averaged over the 7 con-
1544
+ sidered real-world graphs. Using edge role-based features
1545
+ (Local-ER and Global-ER) yields better performance than us-
1546
+ ing Global-Basic in most settings. The overall performance
1547
+ improves with respect to 𝑑𝜃. That is, as edges are better con-
1548
+ nected, their future importance is predicted more accurately.
1549
+ Detailed results on each dataset can be found in Appendix D
1550
+ Target
1551
+ Edge betweenness
1552
+ Measure
1553
+ F1-Score
1554
+ Accuracy
1555
+ AUROC
1556
+ Local-ER (𝑑𝜃 = 2)
1557
+ 0.45
1558
+ 0.78
1559
+ 0.76
1560
+ Global-ER (𝑑𝜃 = 2)
1561
+ 0.47
1562
+ 0.81
1563
+ 0.78
1564
+ Global-Basic (𝑑𝜃 = 2)
1565
+ 0.42
1566
+ 0.79
1567
+ 0.73
1568
+ ALL (𝑑𝜃 = 2)
1569
+ 0.50
1570
+ 0.80
1571
+ 0.75
1572
+ ALL (𝑑𝜃 = 2)
1573
+ 0.50
1574
+ 0.80
1575
+ 0.75
1576
+ ALL (𝑑𝜃 = 4)
1577
+ 0.53
1578
+ 0.82
1579
+ 0.84
1580
+ ALL (𝑑𝜃 = 8)
1581
+ 0.52
1582
+ 0.85
1583
+ 0.85
1584
+ Observation 9. In real-world graphs, the signals from the local
1585
+ structures of edges in their early stage regarding their future im-
1586
+ portance are weaker, compared to the signals that from the local
1587
+ structures of nodes (see Figure 5).
1588
+ Observation 10. However, the signals become stronger as the edges
1589
+ are better connected, leading to better prediction performance (see
1590
+ Tables 6 and 9).
1591
+ Observation 11. The features from edge roles (Local-ER and
1592
+ Global-ER) are more informative than simple global statistics
1593
+ (Global-Basic) for future importance prediction (see Table 9).
1594
+ 6
1595
+ RELATED WORK
1596
+ Previous studies on temporal graph analysis are largely categorized
1597
+ into (a) designing algorithms for streaming graphs [13, 23, 27, 30],
1598
+ (b) discovering temporal patterns in graphs [2, 3, 7, 11, 26], and
1599
+ (c) generating graphs with realistic dynamics [3, 8, 25]. This work
1600
+ belongs to the second category.
1601
+ Studies in this category have revealed (a) universal temporal
1602
+ patterns, such as densification [26], shrinking diameter [26], and
1603
+ power-laws between principle eigenvalues and edge counts [3]; and
1604
+ (b) domain-specific patterns in hyperlink networks [12], metabolic
1605
+ networks (e.g., biochemical reactions and protein interactions) [11],
1606
+ communication networks (e.g., phone calls and texts) [2, 16], and
1607
+ friendship networks [7].
1608
+ In particular, for the analysis of local structures, the concept of
1609
+ graphlets [36] (i.e., the sets of isomorphic small subgraphs with
1610
+ a predefined number of nodes) has been extended to temporal
1611
+ graphs. The extensions, which are called temporal network motifs,
1612
+ have multiple variants. Kovanen et al. [21] defined them as sets
1613
+ of temporal subgraphs with a fixed number of nodes that are (a)
1614
+ topologically equivalent, (b) temporally equivalent (specifically,
1615
+ relative orders of constituent edges are identical), (c) consecutive
1616
+ (specifically, constituent edges are consecutive for every node), and
1617
+ (d) temporally local (specifically, arrival times of consecutive edges
1618
+ are close enough). Hulovaty et al. [19] ignores (c); and Paranjape
1619
+ et al. [35] ignores (c) and relaxes (d) by restricting only the time
1620
+ difference between the first edge and the last edge. Note that all
1621
+ these notions focus on temporally local subgraphs, and thus they
1622
+ are suitable only for analyzing short-term dynamics.
1623
+
1624
+ For long-term dynamics in local structures, David et al. [4] pro-
1625
+ posed Graph-orbit Transition (GoT) and Orbit Temporal Agreement
1626
+ (OTA), which characterize the dynamic of a temporal graph by ap-
1627
+ proximately counting the number of transitions between node roles.
1628
+ However, due to high computational overhead, only a small frac-
1629
+ tion of snapshots can be compared for estimating the counts of
1630
+ transitions, and as a result, their characterization powers are sig-
1631
+ nificantly weaker than our characterization method using GTGs
1632
+ (see Section 3.2). Recall that our method counts “every” transition
1633
+ between graphlets, and it is still significantly faster than GOT and
1634
+ OTA (see Section A in Appendix).
1635
+ For predicting the future in-degree of nodes, Yang et al. [41]
1636
+ proposed to use five features obtained from graphlets with three
1637
+ nodes (see Section 4.2 for descriptions). As shown empirically, our
1638
+ proposed features tend to provide better prediction performance
1639
+ than these five features, and more importantly, they are comple-
1640
+ mentary to each other. Faisal and Milenković [14] aimed to detect
1641
+ aging-related nodes, whose topological properties (e.g,. graphlet
1642
+ counts) change highly over time, in the gene expression process.
1643
+ On the algorithmic aspect, a great number of algorithms have
1644
+ been developed for the problem of counting the instances of each
1645
+ graphlet, which is also known as the subgraph counting problem.
1646
+ As suggested in a survey on subgraph counting [37], subgraph-
1647
+ counting algorithms are largely categorized into exact counting [1,
1648
+ 32, 33, 38] and approximated counting [6, 40]. Those in the first cat-
1649
+ egory are further categorized into enumeration-based approaches
1650
+ [32, 38], matrix-based approaches [33], and decomposition-based
1651
+ approaches [1]. Algorithm 1 belongs to the first subcategory, and
1652
+ it achieves the optimal time complexity achievable by those in
1653
+ this subcategory, as discussed in the beginning of Section 3.1. It
1654
+ is adapted from StreaM [38], which maintains the counts of the
1655
+ instances of 4-node undirected graphlets in a fully dynamic graph
1656
+ stream (i.e., a stream of edge insertions and deletions).
1657
+ 7
1658
+ CONCLUSION
1659
+ In this work, we examined the long-term evolution of local struc-
1660
+ tures captured by graphlets at the graph, node, and edge levels. We
1661
+ summarize our contribution as follows:
1662
+ • Patterns: We examined various patterns regarding the dynamics
1663
+ of local structures in temporal graphs. For example, the distribu-
1664
+ tions of graphlets over time in real-world graphs differ signifi-
1665
+ cantly from those in random graphs, and the transitions between
1666
+ graphlets are surprisingly similar in graphs from the same do-
1667
+ mains. Moreover, local structures at nodes and edges in their early
1668
+ stages provide strong signals regarding their future importance.
1669
+ • Tools: We introduced graphlet transition graphs, and we demon-
1670
+ strated that it is an effective tool for measuring the similarity
1671
+ between temporal graphs of different sizes.
1672
+ • Predictability: We enhanced the accuracy of predicting the fu-
1673
+ ture importance of nodes and edges by introducing new features
1674
+ based on node roles and edge roles. The features are also com-
1675
+ plementary to global graph statistics.
1676
+ Reproducibility: The code and the datasets are available at https:
1677
+ //github.com/deukryeol-yoon/graphlets-over-time.
1678
+ REFERENCES
1679
+ [1] Nesreen K Ahmed, Jennifer Neville, Ryan A Rossi, Nick G Duffield, and
1680
+ Theodore L Willke. 2017. Graphlet decomposition: Framework, algorithms,
1681
+ and applications. KAIS 50, 3 (2017), 689–722.
1682
+ [2] Leman Akoglu and Bhavana Dalvi. 2010. Structure, tie persistence and event
1683
+ detection in large phone and SMS networks. In MLG.
1684
+ [3] Leman Akoglu, Mary McGlohon, and Christos Faloutsos. 2008. RTM: Laws and a
1685
+ recursive generator for weighted time-evolving graphs. In ICDM.
1686
+ [4] David Aparício, Pedro Ribeiro, and Fernando Silva. 2018. Graphlet-orbit Tran-
1687
+ sitions (GoT): A fingerprint for temporal network comparison. PloS one 13, 10
1688
+ (2018), e0205497.
1689
+ [5] Alex Arenas, Alberto Fernandez, Santo Fortunato, and Sergio Gomez. 2008. Motif-
1690
+ based communities in complex networks. Journal of Physics A: Mathematical and
1691
+ Theoretical 41, 22 (2008), 224001.
1692
+ [6] Çigdem Aslay, Muhammad Anis Uddin Nasir, Gianmarco De Francisci Morales,
1693
+ and Aristides Gionis. 2018. Mining frequent patterns in evolving graphs. In
1694
+ CIKM.
1695
+ [7] Ashwin Bahulkar, Boleslaw K Szymanski, Omar Lizardo, Yuxiao Dong, Yang
1696
+ Yang, and Nitesh V Chawla. 2016. Analysis of link formation, persistence and
1697
+ dissolution in NetSense data. In ASONAM.
1698
+ [8] Albert-László Barabási and Réka Albert. 1999. Emergence of scaling in random
1699
+ networks. science 286, 5439 (1999), 509–512.
1700
+ [9] Alex Bavelas. 1950. Communication patterns in task-oriented groups. The journal
1701
+ of the acoustical society of America 22, 6 (1950), 725–730.
1702
+ [10] Austin R Benson, David F Gleich, and Jure Leskovec. 2016. Higher-order organi-
1703
+ zation of complex networks. Science 353, 6295 (2016), 163–166.
1704
+ [11] Antje Beyer, Peter Thomason, Xinzhong Li, James Scott, and Jasmin Fisher. 2010.
1705
+ Mechanistic insights into metabolic disturbance during type-2 diabetes and
1706
+ obesity using qualitative networks. In Transactions on Computational Systems
1707
+ Biology XII. Springer, 146–162.
1708
+ [12] Andrei Broder, Ravi Kumar, Farzin Maghoul, Prabhakar Raghavan, Sridhar Ra-
1709
+ jagopalan, Raymie Stata, Andrew Tomkins, and Janet Wiener. 2011. Graph
1710
+ structure in the web. In The Structure and Dynamics of Networks. Princeton
1711
+ University Press, 183–194.
1712
+ [13] Dhivya Eswaran, Christos Faloutsos, Sudipto Guha, and Nina Mishra. 2018. Spot-
1713
+ light: Detecting anomalies in streaming graphs. In KDD.
1714
+ [14] Fazle E Faisal and Tijana Milenković. 2014. Dynamic networks reveal key players
1715
+ in aging. Bioinformatics 30, 12 (2014), 1721–1729.
1716
+ [15] Linton C Freeman. 1977. A set of measures of centrality based on betweenness.
1717
+ Sociometry (1977), 35–41.
1718
+ [16] Cesar A Hidalgo and Carlos Rodríguez-Sickert. 2008. The dynamics of a mobile
1719
+ phone network. Physica A: Statistical Mechanics and its Applications 387, 12
1720
+ (2008), 3017–3024.
1721
+ [17] Tomaž Hočevar and Janez Demšar. 2016. Computation of graphlet orbits for
1722
+ nodes and edges in sparse graphs. Journal of Statistical Software 71, 1 (2016),
1723
+ 1–24.
1724
+ [18] Eric Hsieh and Jen-pei Liu. 2008. On statistical evaluation of the linearity in
1725
+ assay validation. Journal of biopharmaceutical statistics 18, 4 (2008), 677–690.
1726
+ [19] Yuriy Hulovatyy, Huili Chen, and Tijana Milenković. 2015. Exploring the struc-
1727
+ ture and function of temporal networks with dynamic graphlets. Bioinformatics
1728
+ 31, 12 (2015), i171–i180.
1729
+ [20] Krzysztof Juszczyszyn and Grzegorz Kołaczek. 2011. Motif-based attack detection
1730
+ in network communication graphs. In CMS.
1731
+ [21] Lauri Kovanen, Márton Karsai, Kimmo Kaski, János Kertész, and Jari Saramäki.
1732
+ 2011. Temporal motifs in time-dependent networks. Journal of Statistical Me-
1733
+ chanics: Theory and Experiment 2011, 11 (2011), P11005.
1734
+ [22] Martin H Kroll and Kenneth Emancipator. 1993. A theoretical evaluation of
1735
+ linearity. Clinical chemistry 39, 3 (1993), 405–413.
1736
+ [23] Dongjin Lee, Kijung Shin, and Christos Faloutsos. 2020. Temporal locality-aware
1737
+ sampling for accurate triangle counting in real graph streams. VLDB 29, 6 (2020),
1738
+ 1501–1525.
1739
+ [24] John Boaz Lee, Ryan A Rossi, Xiangnan Kong, Sungchul Kim, Eunyee Koh, and
1740
+ Anup Rao. 2019. Graph convolutional networks with motif-based attention. In
1741
+ CIKM.
1742
+ [25] Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg, Christos Faloutsos, and
1743
+ Zoubin Ghahramani. 2010. Kronecker graphs: an approach to modeling networks.
1744
+ JMLR 11, 2 (2010).
1745
+ [26] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. 2005. Graphs over time:
1746
+ densification laws, shrinking diameters and possible explanations. In KDD.
1747
+ [27] David Liben-Nowell and Jon Kleinberg. 2007. The link-prediction problem for
1748
+ social networks. JASIST 58, 7 (2007), 1019–1031.
1749
+ [28] Zhijun Liu, Chao Huang, Yanwei Yu, and Junyu Dong. 2021. Motif-Preserving
1750
+ Dynamic Attributed Network Embedding. In WWW.
1751
+ [29] Wei-Yin Loh. 2011. Classification and regression trees. WIREs: data mining and
1752
+ knowledge discovery 1, 1 (2011), 14–23.
1753
+ [30] Andrew McGregor. 2014. Graph stream algorithms: a survey. ACM SIGMOD
1754
+ Record 43, 1 (2014), 9–20.
1755
+
1756
+ Table 10: Results of feature importance analysis. We report the five strongest predictors and their Gini importance.
1757
+ Centrality
1758
+ Rank 1
1759
+ Rank 2
1760
+ Rank 3
1761
+ Rank 4
1762
+ Rank 5
1763
+ Degree
1764
+ # of edges
1765
+ 0.07
1766
+ Global-NPP 2
1767
+ 0.06
1768
+ # of nodes
1769
+ 0.06
1770
+ Global-NR 3
1771
+ 0.04
1772
+ Global-NR 10
1773
+ 0.03
1774
+ Betweenness
1775
+ Local-NPP 2
1776
+ 0.10
1777
+ Local-NR 4
1778
+ 0.09
1779
+ Global-NR 4
1780
+ 0.08
1781
+ Local-NR 9
1782
+ 0.06
1783
+ Global-NR 3
1784
+ 0.05
1785
+ Closeness
1786
+ Global-NR 5
1787
+ 0.09
1788
+ Local-NR 5
1789
+ 0.07
1790
+ # of edges
1791
+ 0.07
1792
+ Global-NPP 2
1793
+ 0.06
1794
+ # of nodes
1795
+ 0.06
1796
+ PageRank
1797
+ Local-NR 1
1798
+ 0.07
1799
+ # of edges
1800
+ 0.06
1801
+ Global-NPP 2
1802
+ 0.06
1803
+ # of nodes
1804
+ 0.05
1805
+ Global-NR 1
1806
+ 0.05
1807
+ Edge betweenness
1808
+ Global-ER 7
1809
+ 0.11
1810
+ Global-ER 2
1811
+ 0.09
1812
+ Global-ER 3
1813
+ 0.09
1814
+ # of nodes
1815
+ 0.07
1816
+ Local-ER 7
1817
+ 0.07
1818
+ Hep
1819
+ pTPh
1820
+ He
1821
+ h
1822
+ Patent
1823
+ Enron -
1824
+ EU -
1825
+ College -
1826
+ Math -
1827
+ Ask-
1828
+ Stack -
1829
+ I
1830
+ -
1831
+ 1•
1832
+ |
1833
+ - 1.0
1834
+ l卜 0.5
1835
+ - 0.0
1836
+ (a) Ours
1837
+ (b) GoT
1838
+ HepPh
1839
+ - 1.0
1840
+ HepTh
1841
+ I- 0.8
1842
+ Enron -
1843
+ |� 0.6
1844
+ EU -
1845
+ College -
1846
+ I'- 0.4
1847
+ Math-
1848
+ - 0.2
1849
+ Ask-
1850
+ - 0.0
1851
+ (c) OTA
1852
+ Figure 6: Similarity matrices from ours, GoT, and OTA. The
1853
+ domains of graphs (distinguished by colors) are classified
1854
+ more accurately by ours than by GoT or OTA.
1855
+ [31] Ron Milo, Shalev Itzkovitz, Nadav Kashtan, Reuven Levitt, Shai Shen-Orr, Inbal
1856
+ Ayzenshtat, Michal Sheffer, and Uri Alon. 2004. Superfamilies of evolved and
1857
+ designed networks. Science 303, 5663 (2004), 1538–1542.
1858
+ [32] Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri Chklovskii,
1859
+ and Uri Alon. 2002. Network motifs: simple building blocks of complex networks.
1860
+ Science 298, 5594 (2002), 824–827.
1861
+ [33] Mark Ortmann and Ulrik Brandes. 2017. Efficient orbit-aware triad and quad
1862
+ census in directed and undirected graphs. Applied network science 2, 1 (2017),
1863
+ 1–17.
1864
+ [34] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The
1865
+ PageRank citation ranking: Bringing order to the web. Technical Report. Stanford
1866
+ InfoLab.
1867
+ [35] Ashwin Paranjape, Austin R Benson, and Jure Leskovec. 2017. Motifs in temporal
1868
+ networks. In WSDM.
1869
+ [36] Nataša Pržulj. 2007. Biological network comparison using graphlet degree distri-
1870
+ bution. Bioinformatics 23, 2 (2007), e177–e183.
1871
+ [37] Pedro Ribeiro, Pedro Paredes, Miguel EP Silva, David Aparicio, and Fernando Silva.
1872
+ 2021. A survey on subgraph counting: concepts, algorithms, and applications to
1873
+ network motifs and graphlets. CSUR 54, 2 (2021), 1–36.
1874
+ [38] Benjamin Schiller, Sven Jager, Kay Hamacher, and Thorsten Strufe. 2015. Stream-
1875
+ A stream-based algorithm for counting motifs in dynamic graphs. In AlCoB.
1876
+ [39] Charalampos E Tsourakakis, Jakub Pachocki, and Michael Mitzenmacher. 2017.
1877
+ Scalable motif-aware graph clustering. In WWW.
1878
+ [40] Sebastian Wernicke. 2005. A faster algorithm for detecting network motifs. In
1879
+ WABI. Springer, 165–177.
1880
+ [41] Yang Yang, Yuxiao Dong, and Nitesh V Chawla. 2014. Predicting node degree
1881
+ centrality with the node prominence profile. Scientific reports 4, 1 (2014), 1–7.
1882
+ [42] Yanlei Yu, Zhiwu Lu, Jiajun Liu, Guoping Zhao, and Ji-rong Wen. 2019. Rum:
1883
+ Network representation learning using motifs. In ICDE.
1884
+ [43] Daniel Zwillinger and Stephen Kokoska. 1999. CRC standard probability and
1885
+ statistics tables and formulae. Crc Press.
1886
+ A
1887
+ COMPARISON WITH GOT AND OTA
1888
+ We provide additional details regarding the comparison between our
1889
+ characterization method based on graphlet transition graphs (GTGs)
1890
+ and regarding the comparison with Graphlet-orbit Transition (GoT)
1891
+ and Orbit Temporal Agreement (OTA).
1892
+ Detailed Setting: Our experiments were conducted on a desktop
1893
+ with a 3.8 GHz AMD Ryzen 3900x CPU and 128GB memory. We
1894
+ implemented our characterization method based on GTGs in Java,
1895
+ O.O.M
1896
+ O.O.M
1897
+ 9.75x
1898
+ 7.05x
1899
+ 4.86x
1900
+ 3.66x
1901
+ 4.07x
1902
+ 10.14x
1903
+ 7.17x
1904
+ Ours
1905
+ GoT & OTA
1906
+ Ours
1907
+ GoT & OTA
1908
+ Figure 7:
1909
+ Running times of ours, GoT and OTA. Ours is
1910
+ consistently and significantly faster than both competitors,
1911
+ which run out of memory in the two largest datasets.
1912
+ and we used the official implementations for GoT and OTA provided
1913
+ by the authors, which were implemented in C++. In each dataset,
1914
+ we used 12 snapshots with the same intervals for GoT and OTA.
1915
+ Output Similar Matrix: Figure 6 shows the output similar matri-
1916
+ ces from our characterization method based on GTGs, GoT, and
1917
+ OTA. GoT and OTA run out of memory in the two largest datasets
1918
+ (Patent and Stackoverflow). Both GoT and OTA fail to distinguish
1919
+ email/message graphs (blue) and online Q/A graphs (green) clearly.
1920
+ Numerically, with the best thresholds of similarity, the classification
1921
+ accuracies are 81.0% (GoT) and 85.7% (OTA), while the accuracy
1922
+ is 97.2% in ours.
1923
+ Speed Comparison: As seen in Figure 7, ours is faster than GoT
1924
+ and OTA in all the graphs. Specifically, ours is 6.68× faster than
1925
+ the others on average.
1926
+ B
1927
+ FEATURE IMPORTANT ANALYSIS
1928
+ We measure the importance of each feature in the set ALL (see
1929
+ Section 4.2 of the main paper) using the Gini importance [29], and
1930
+ we report the top five important features in Table 10.
1931
+ C
1932
+ DETAILED RESULTS OF FUTURE NODE
1933
+ IMPORTANCE PREDICTION
1934
+ In Tables 11-16, we provide the average predictive performances
1935
+ and standard deviations over 10 runs on the task of predicting
1936
+ future node centrality in each real-world graph in terms of several
1937
+ evaluation metrics. The detailed experimental settings can be found
1938
+ in Section 4.2 of the main paper.
1939
+ D
1940
+ DETAILED RESULTS OF FUTURE EDGE
1941
+ IMPORTANCE PREDICTION
1942
+ In Tables 17-19, we provide the average predictive performances
1943
+ and standard deviations over 10 runs on the task of predicting
1944
+ future node centrality in each real-world graph in terms of several
1945
+ evaluation metrics. The detailed experimental settings can be found
1946
+ in Section 5 of the main paper.
1947
+
1948
+ HepPh
1949
+ HepTh
1950
+ Enron
1951
+ EU
1952
+ College
1953
+ Math
1954
+ Ask三Table 11: F1-score on the task of predicting future node importance when 𝑑𝜃 = 2.
1955
+ Centrality
1956
+ Feature
1957
+ Citation Networks
1958
+ Email/Message Networks
1959
+ Online Q/A Networks
1960
+ Average
1961
+ HepPh
1962
+ Hepth
1963
+ Email-EU
1964
+ Email-Enron
1965
+ Message-College
1966
+ Mathoverflow
1967
+ Askubuntu
1968
+ Degree
1969
+ Local-NR
1970
+ 0.11±0.008
1971
+ 0.20±0.014
1972
+ 0.36±0.092
1973
+ 0.68±0.007
1974
+ 0.27±0.027
1975
+ 0.38±0.017
1976
+ 0.73±0.002
1977
+ 0.39
1978
+ Local-NPP
1979
+ 0.12±0.013
1980
+ 0.19±0.016
1981
+ 0.40±0.102
1982
+ 0.60±0.011
1983
+ 0.27±0.040
1984
+ 0.36±0.016
1985
+ 0.72±0.003
1986
+ 0.38
1987
+ Global-NR
1988
+ 0.52±0.013
1989
+ 0.56±0.013
1990
+ 0.51±0.077
1991
+ 0.79±0.004
1992
+ 0.37±0.025
1993
+ 0.52±0.021
1994
+ 0.70±0.004
1995
+ 0.57
1996
+ Global-NPP
1997
+ 0.51±0.010
1998
+ 0.57±0.018
1999
+ 0.51±0.063
2000
+ 0.76±0.005
2001
+ 0.40±0.030
2002
+ 0.52±0.022
2003
+ 0.70±0.006
2004
+ 0.57
2005
+ Global-basic
2006
+ 0.36±0.014
2007
+ 0.38±0.024
2008
+ 0.44±0.073
2009
+ 0.77±0.008
2010
+ 0.34±0.050
2011
+ 0.51±0.022
2012
+ 0.71±0.003
2013
+ 0.50
2014
+ ALL
2015
+ 0.53±0.010
2016
+ 0.58±0.013
2017
+ 0.52±0.043
2018
+ 0.79±0.008
2019
+ 0.38±0.041
2020
+ 0.52±0.026
2021
+ 0.70±0.005
2022
+ 0.57
2023
+ Betweenness
2024
+ Local-NR
2025
+ 0.59±0.011
2026
+ 0.88±0.009
2027
+ 0.34±0.063
2028
+ 0.49±0.011
2029
+ 0.34±0.033
2030
+ 0.74±0.011
2031
+ 0.73±0.007
2032
+ 0.59
2033
+ Local-NPP
2034
+ 0.58±0.010
2035
+ 0.87±0.006
2036
+ 0.35±0.076
2037
+ 0.45±0.010
2038
+ 0.36±0.073
2039
+ 0.74±0.011
2040
+ 0.73±0.007
2041
+ 0.58
2042
+ Global-NR
2043
+ 0.64±0.007
2044
+ 0.90±0.005
2045
+ 0.48±0.089
2046
+ 0.62±0.014
2047
+ 0.38±0.047
2048
+ 0.75±0.008
2049
+ 0.74±0.006
2050
+ 0.64
2051
+ Global-NPP
2052
+ 0.62±0.010
2053
+ 0.89±0.006
2054
+ 0.49±0.037
2055
+ 0.58±0.019
2056
+ 0.40±0.034
2057
+ 0.75±0.010
2058
+ 0.74±0.006
2059
+ 0.64
2060
+ Global-basic
2061
+ 0.01±0.003
2062
+ 0.27±0.028
2063
+ 0.40±0.079
2064
+ 0.36±0.017
2065
+ 0.25±0.038
2066
+ 0.32±0.013
2067
+ 0.10±0.013
2068
+ 0.24
2069
+ ALL
2070
+ 0.64±0.007
2071
+ 0.90±0.007
2072
+ 0.53±0.052
2073
+ 0.62±0.016
2074
+ 0.38±0.045
2075
+ 0.75±0.010
2076
+ 0.74±0.007
2077
+ 0.65
2078
+ Closeness
2079
+ Local-NR
2080
+ 0.49±0.010
2081
+ 0.53±0.010
2082
+ 0.28±0.077
2083
+ 0.69±0.008
2084
+ 0.24±0.034
2085
+ 0.58±0.014
2086
+ 0.75±0.005
2087
+ 0.51
2088
+ Local-NPP
2089
+ 0.37±0.015
2090
+ 0.51±0.014
2091
+ 0.31±0.067
2092
+ 0.46±0.010
2093
+ 0.25±0.038
2094
+ 0.43±0.017
2095
+ 0.66±0.006
2096
+ 0.43
2097
+ Global-NR
2098
+ 0.84±0.006
2099
+ 0.75±0.007
2100
+ 0.47±0.046
2101
+ 0.83±0.008
2102
+ 0.38±0.055
2103
+ 0.69±0.024
2104
+ 0.81±0.002
2105
+ 0.68
2106
+ Global-NPP
2107
+ 0.83±0.008
2108
+ 0.74±0.007
2109
+ 0.52±0.047
2110
+ 0.76±0.008
2111
+ 0.39±0.022
2112
+ 0.64±0.019
2113
+ 0.71±0.005
2114
+ 0.66
2115
+ Global-basic
2116
+ 0.82±0.004
2117
+ 0.70±0.010
2118
+ 0.44±0.074
2119
+ 0.72±0.010
2120
+ 0.33±0.010
2121
+ 0.51±0.015
2122
+ 0.60±0.004
2123
+ 0.59
2124
+ ALL
2125
+ 0.85±0.008
2126
+ 0.76±0.008
2127
+ 0.53±0.043
2128
+ 0.83±0.007
2129
+ 0.36±0.051
2130
+ 0.69±0.022
2131
+ 0.81±0.003
2132
+ 0.69
2133
+ PageRank
2134
+ Local-NR
2135
+ 0.44±0.013
2136
+ 0.15±0.018
2137
+ 0.42±0.069
2138
+ 0.64±0.008
2139
+ 0.25±0.038
2140
+ 0.46±0.016
2141
+ 0.58±0.009
2142
+ 0.42
2143
+ Local-NPP
2144
+ 0.41±0.012
2145
+ 0.18±0.017
2146
+ 0.43±0.086
2147
+ 0.39±0.009
2148
+ 0.25±0.040
2149
+ 0.41±0.013
2150
+ 0.53±0.008
2151
+ 0.37
2152
+ Global-NR
2153
+ 0.64±0.014
2154
+ 0.41±0.015
2155
+ 0.49±0.078
2156
+ 0.74±0.006
2157
+ 0.35±0.056
2158
+ 0.53±0.019
2159
+ 0.63±0.009
2160
+ 0.54
2161
+ Global-NPP
2162
+ 0.64±0.012
2163
+ 0.43±0.015
2164
+ 0.55±0.046
2165
+ 0.65±0.011
2166
+ 0.38±0.047
2167
+ 0.52±0.017
2168
+ 0.61±0.007
2169
+ 0.54
2170
+ Global-basic
2171
+ 0.63±0.010
2172
+ 0.31±0.023
2173
+ 0.41±0.054
2174
+ 0.65±0.007
2175
+ 0.28±0.035
2176
+ 0.49±0.010
2177
+ 0.54±0.008
2178
+ 0.47
2179
+ ALL
2180
+ 0.64±0.009
2181
+ 0.44±0.013
2182
+ 0.55±0.035
2183
+ 0.74±0.006
2184
+ 0.37±0.030
2185
+ 0.53±0.020
2186
+ 0.63±0.008
2187
+ 0.56
2188
+ Table 12: Accuracy on the task of predicting future node importance when 𝑑𝜃 = 2.
2189
+ Centrality
2190
+ Feature
2191
+ Citation Networks
2192
+ Email/Message Networks
2193
+ Online Q/A Networks
2194
+ Average
2195
+ HepPh
2196
+ Hepth
2197
+ Email-EU
2198
+ Email-Enron
2199
+ Message-College
2200
+ Mathoverflow
2201
+ Askubuntu
2202
+ Degree
2203
+ Local-NR
2204
+ 0.71±0.008
2205
+ 0.72±0.006
2206
+ 0.80±0.024
2207
+ 0.62±0.006
2208
+ 0.77±0.019
2209
+ 0.66±0.008
2210
+ 0.58±0.003
2211
+ 0.69
2212
+ Local-NPP
2213
+ 0.71±0.010
2214
+ 0.72±0.007
2215
+ 0.79±0.031
2216
+ 0.55±0.006
2217
+ 0.75±0.020
2218
+ 0.65±0.016
2219
+ 0.58±0.002
2220
+ 0.68
2221
+ Global-NR
2222
+ 0.76±0.007
2223
+ 0.77±0.007
2224
+ 0.82±0.024
2225
+ 0.77±0.004
2226
+ 0.76±0.017
2227
+ 0.68±0.014
2228
+ 0.61±0.004
2229
+ 0.74
2230
+ Global-NPP
2231
+ 0.75±0.003
2232
+ 0.77±0.007
2233
+ 0.80±0.023
2234
+ 0.75±0.004
2235
+ 0.77±0.019
2236
+ 0.68±0.012
2237
+ 0.61±0.004
2238
+ 0.73
2239
+ Global-basic
2240
+ 0.73±0.006
2241
+ 0.74±0.008
2242
+ 0.77±0.028
2243
+ 0.75±0.006
2244
+ 0.74±0.019
2245
+ 0.67±0.011
2246
+ 0.60±0.003
2247
+ 0.72
2248
+ ALL
2249
+ 0.76±0.008
2250
+ 0.78±0.006
2251
+ 0.82±0.019
2252
+ 0.77±0.005
2253
+ 0.76±0.016
2254
+ 0.68±0.014
2255
+ 0.61±0.004
2256
+ 0.74
2257
+ Betweenness
2258
+ Local-NR
2259
+ 0.79±0.005
2260
+ 0.93±0.005
2261
+ 0.78±0.017
2262
+ 0.82±0.006
2263
+ 0.76±0.019
2264
+ 0.86±0.005
2265
+ 0.90±0.003
2266
+ 0.83
2267
+ Local-NPP
2268
+ 0.79±0.004
2269
+ 0.92±0.004
2270
+ 0.75±0.028
2271
+ 0.81±0.005
2272
+ 0.65±0.032
2273
+ 0.86±0.005
2274
+ 0.90±0.003
2275
+ 0.81
2276
+ Global-NR
2277
+ 0.81±0.004
2278
+ 0.94±0.003
2279
+ 0.81±0.017
2280
+ 0.84±0.007
2281
+ 0.75±0.016
2282
+ 0.86±0.004
2283
+ 0.90±0.002
2284
+ 0.84
2285
+ Global-NPP
2286
+ 0.80±0.005
2287
+ 0.94±0.003
2288
+ 0.79±0.021
2289
+ 0.83±0.007
2290
+ 0.76±0.020
2291
+ 0.86±0.004
2292
+ 0.90±0.003
2293
+ 0.84
2294
+ Global-basic
2295
+ 0.71±0.005
2296
+ 0.73±0.010
2297
+ 0.75±0.033
2298
+ 0.77±0.007
2299
+ 0.70±0.019
2300
+ 0.67±0.008
2301
+ 0.77±0.004
2302
+ 0.73
2303
+ ALL
2304
+ 0.81±0.003
2305
+ 0.94±0.004
2306
+ 0.82±0.018
2307
+ 0.84±0.008
2308
+ 0.75±0.019
2309
+ 0.86±0.004
2310
+ 0.90±0.003
2311
+ 0.85
2312
+ Closeness
2313
+ Local-NR
2314
+ 0.76±0.003
2315
+ 0.76±0.005
2316
+ 0.78±0.027
2317
+ 0.75±0.005
2318
+ 0.76±0.015
2319
+ 0.72±0.006
2320
+ 0.78±0.003
2321
+ 0.76
2322
+ Local-NPP
2323
+ 0.73±0.003
2324
+ 0.75±0.006
2325
+ 0.75±0.032
2326
+ 0.63±0.007
2327
+ 0.74±0.016
2328
+ 0.65±0.010
2329
+ 0.64±0.004
2330
+ 0.70
2331
+ Global-NR
2332
+ 0.91±0.003
2333
+ 0.86±0.004
2334
+ 0.80±0.018
2335
+ 0.85±0.006
2336
+ 0.75±0.019
2337
+ 0.77±0.011
2338
+ 0.82±0.002
2339
+ 0.82
2340
+ Global-NPP
2341
+ 0.90±0.005
2342
+ 0.85±0.002
2343
+ 0.81±0.013
2344
+ 0.80±0.007
2345
+ 0.76±0.011
2346
+ 0.73±0.010
2347
+ 0.73±0.003
2348
+ 0.80
2349
+ Global-basic
2350
+ 0.90±0.003
2351
+ 0.82±0.004
2352
+ 0.76±0.033
2353
+ 0.77±0.008
2354
+ 0.73±0.024
2355
+ 0.66±0.009
2356
+ 0.64±0.003
2357
+ 0.75
2358
+ ALL
2359
+ 0.91±0.004
2360
+ 0.86±0.004
2361
+ 0.82±0.020
2362
+ 0.85±0.005
2363
+ 0.75±0.017
2364
+ 0.77±0.011
2365
+ 0.82±0.002
2366
+ 0.83
2367
+ PageRank
2368
+ Local-NR
2369
+ 0.76±0.007
2370
+ 0.72±0.009
2371
+ 0.80±0.020
2372
+ 0.74±0.006
2373
+ 0.75±0.017
2374
+ 0.66±0.011
2375
+ 0.65±0.006
2376
+ 0.73
2377
+ Local-NPP
2378
+ 0.74±0.007
2379
+ 0.72±0.007
2380
+ 0.77±0.023
2381
+ 0.65±0.018
2382
+ 0.73±0.023
2383
+ 0.63±0.005
2384
+ 0.62±0.006
2385
+ 0.69
2386
+ Global-NR
2387
+ 0.81±0.005
2388
+ 0.75±0.007
2389
+ 0.81±0.022
2390
+ 0.80±0.005
2391
+ 0.75±0.015
2392
+ 0.68±0.010
2393
+ 0.67±0.006
2394
+ 0.75
2395
+ Global-NPP
2396
+ 0.81±0.005
2397
+ 0.74±0.007
2398
+ 0.82±0.023
2399
+ 0.74±0.011
2400
+ 0.76±0.019
2401
+ 0.67±0.008
2402
+ 0.66±0.006
2403
+ 0.74
2404
+ Global-basic
2405
+ 0.81±0.004
2406
+ 0.73±0.008
2407
+ 0.75±0.021
2408
+ 0.74±0.006
2409
+ 0.70±0.025
2410
+ 0.65±0.007
2411
+ 0.59±0.006
2412
+ 0.71
2413
+ ALL
2414
+ 0.81±0.005
2415
+ 0.75±0.004
2416
+ 0.81±0.017
2417
+ 0.80±0.006
2418
+ 0.75±0.014
2419
+ 0.68±0.010
2420
+ 0.67±0.005
2421
+ 0.75
2422
+
2423
+ Table 13: AUROC on the task of predicting future node importance when 𝑑𝜃 = 2.
2424
+ Centrality
2425
+ Feature
2426
+ Citation Networks
2427
+ Email/Message Networks
2428
+ Online Q/A Networks
2429
+ Average
2430
+ HepPh
2431
+ Hepth
2432
+ Email-EU
2433
+ Email-Enron
2434
+ Message-College
2435
+ Mathoverflow
2436
+ Askubuntu
2437
+ Degree
2438
+ Local-NR
2439
+ 0.69±0.006
2440
+ 0.70±0.006
2441
+ 0.80±0.037
2442
+ 0.67±0.007
2443
+ 0.69±0.020
2444
+ 0.65±0.012
2445
+ 0.58±0.006
2446
+ 0.68
2447
+ Local-NPP
2448
+ 0.64±0.005
2449
+ 0.67±0.007
2450
+ 0.75±0.032
2451
+ 0.56±0.007
2452
+ 0.64±0.025
2453
+ 0.63±0.012
2454
+ 0.56±0.004
2455
+ 0.64
2456
+ Global-NR
2457
+ 0.81±0.004
2458
+ 0.83±0.005
2459
+ 0.85±0.037
2460
+ 0.86±0.005
2461
+ 0.73±0.026
2462
+ 0.71±0.013
2463
+ 0.65±0.006
2464
+ 0.78
2465
+ Global-NPP
2466
+ 0.80±0.002
2467
+ 0.83±0.005
2468
+ 0.83±0.032
2469
+ 0.83±0.005
2470
+ 0.74±0.026
2471
+ 0.71±0.012
2472
+ 0.65±0.005
2473
+ 0.77
2474
+ Global-basic
2475
+ 0.74±0.004
2476
+ 0.74±0.007
2477
+ 0.82±0.035
2478
+ 0.84±0.006
2479
+ 0.68±0.037
2480
+ 0.68±0.009
2481
+ 0.62±0.005
2482
+ 0.73
2483
+ ALL
2484
+ 0.81±0.004
2485
+ 0.84±0.006
2486
+ 0.85±0.036
2487
+ 0.86±0.005
2488
+ 0.73±0.025
2489
+ 0.71±0.014
2490
+ 0.65±0.006
2491
+ 0.78
2492
+ Betweenness
2493
+ Local-NR
2494
+ 0.84±0.006
2495
+ 0.98±0.002
2496
+ 0.79±0.033
2497
+ 0.80±0.007
2498
+ 0.70±0.029
2499
+ 0.83±0.010
2500
+ 0.82±0.005
2501
+ 0.82
2502
+ Local-NPP
2503
+ 0.83±0.006
2504
+ 0.98±0.003
2505
+ 0.73±0.031
2506
+ 0.68±0.008
2507
+ 0.65±0.041
2508
+ 0.82±0.010
2509
+ 0.81±0.006
2510
+ 0.79
2511
+ Global-NR
2512
+ 0.87±0.005
2513
+ 0.99±0.002
2514
+ 0.81±0.030
2515
+ 0.87±0.007
2516
+ 0.71±0.032
2517
+ 0.86±0.008
2518
+ 0.86±0.005
2519
+ 0.85
2520
+ Global-NPP
2521
+ 0.85±0.007
2522
+ 0.98±0.002
2523
+ 0.81±0.032
2524
+ 0.84±0.008
2525
+ 0.72±0.033
2526
+ 0.86±0.008
2527
+ 0.86±0.005
2528
+ 0.85
2529
+ Global-basic
2530
+ 0.62±0.008
2531
+ 0.74±0.013
2532
+ 0.76±0.042
2533
+ 0.74±0.005
2534
+ 0.63±0.038
2535
+ 0.63±0.014
2536
+ 0.60±0.007
2537
+ 0.67
2538
+ ALL
2539
+ 0.87±0.006
2540
+ 0.99±0.001
2541
+ 0.83±0.024
2542
+ 0.87±0.007
2543
+ 0.71±0.033
2544
+ 0.86±0.009
2545
+ 0.86±0.005
2546
+ 0.86
2547
+ Closeness
2548
+ Local-NR
2549
+ 0.79±0.005
2550
+ 0.79±0.006
2551
+ 0.76±0.047
2552
+ 0.84±0.006
2553
+ 0.68±0.026
2554
+ 0.76±0.009
2555
+ 0.84±0.002
2556
+ 0.78
2557
+ Local-NPP
2558
+ 0.74±0.005
2559
+ 0.78±0.008
2560
+ 0.72±0.042
2561
+ 0.65±0.009
2562
+ 0.61±0.022
2563
+ 0.63±0.007
2564
+ 0.70±0.005
2565
+ 0.69
2566
+ Global-NR
2567
+ 0.97±0.002
2568
+ 0.93±0.005
2569
+ 0.82±0.035
2570
+ 0.93±0.003
2571
+ 0.73±0.024
2572
+ 0.83±0.011
2573
+ 0.89±0.002
2574
+ 0.87
2575
+ Global-NPP
2576
+ 0.96±0.003
2577
+ 0.92±0.004
2578
+ 0.83±0.028
2579
+ 0.88±0.004
2580
+ 0.73±0.026
2581
+ 0.79±0.011
2582
+ 0.81±0.003
2583
+ 0.85
2584
+ Global-basic
2585
+ 0.95±0.003
2586
+ 0.89±0.005
2587
+ 0.79±0.044
2588
+ 0.85±0.007
2589
+ 0.69±0.035
2590
+ 0.68±0.012
2591
+ 0.70±0.003
2592
+ 0.79
2593
+ ALL
2594
+ 0.97±0.002
2595
+ 0.94±0.005
2596
+ 0.82±0.027
2597
+ 0.93±0.004
2598
+ 0.75±0.028
2599
+ 0.83±0.010
2600
+ 0.90±0.001
2601
+ 0.88
2602
+ PageRank
2603
+ Local-NR
2604
+ 0.77±0.006
2605
+ 0.65±0.010
2606
+ 0.80±0.031
2607
+ 0.81±0.004
2608
+ 0.67±0.011
2609
+ 0.69±0.015
2610
+ 0.70±0.006
2611
+ 0.73
2612
+ Local-NPP
2613
+ 0.75±0.004
2614
+ 0.63±0.008
2615
+ 0.77±0.031
2616
+ 0.63±0.010
2617
+ 0.62±0.024
2618
+ 0.64±0.009
2619
+ 0.67±0.006
2620
+ 0.67
2621
+ Global-NR
2622
+ 0.87±0.005
2623
+ 0.78±0.006
2624
+ 0.84±0.035
2625
+ 0.88±0.003
2626
+ 0.72±0.029
2627
+ 0.71±0.012
2628
+ 0.73±0.005
2629
+ 0.79
2630
+ Global-NPP
2631
+ 0.86±0.005
2632
+ 0.77±0.007
2633
+ 0.85±0.028
2634
+ 0.82±0.008
2635
+ 0.72±0.018
2636
+ 0.70±0.011
2637
+ 0.71±0.006
2638
+ 0.78
2639
+ Global-basic
2640
+ 0.86±0.005
2641
+ 0.73±0.010
2642
+ 0.81±0.033
2643
+ 0.81±0.008
2644
+ 0.66±0.026
2645
+ 0.66±0.011
2646
+ 0.62±0.004
2647
+ 0.74
2648
+ ALL
2649
+ 0.87±0.005
2650
+ 0.79±0.007
2651
+ 0.85±0.035
2652
+ 0.88±0.004
2653
+ 0.72±0.031
2654
+ 0.71±0.014
2655
+ 0.73±0.005
2656
+ 0.79
2657
+ Table 14: F1-score on the task of predicting future node importance depending on 𝑑𝜃 (i.e., in-degree of nodes when their input
2658
+ features are extracted).
2659
+ Centrality
2660
+ Feature
2661
+ Citation Networks
2662
+ Email/Message Networks
2663
+ Online Q/A Networks
2664
+ Average
2665
+ HepPh
2666
+ Hepth
2667
+ Email-EU
2668
+ Email-Enron
2669
+ Message-College
2670
+ Mathoverflow
2671
+ Askubuntu
2672
+ Degree
2673
+ ALL (𝑑𝜃 = 2)
2674
+ 0.53±0.010
2675
+ 0.58±0.013
2676
+ 0.52±0.043
2677
+ 0.19±0.005
2678
+ 0.38±0.041
2679
+ 0.52±0.026
2680
+ 0.70±0.005
2681
+ 0.59
2682
+ ALL (𝑑𝜃 = 4)
2683
+ 0.67±0.007
2684
+ 0.78±0.008
2685
+ 0.62±0.062
2686
+ 1.00*
2687
+ 0.49±0.045
2688
+ 0.89±0.006
2689
+ 1.00*
2690
+ 0.69
2691
+ ALL (𝑑𝜃 = 8)
2692
+ 0.82±0.006
2693
+ 0.93±0.006
2694
+ 0.74±0.036
2695
+ 1.00*
2696
+ 0.71±0.022
2697
+ 1.00*
2698
+ 1.00*
2699
+ 0.80
2700
+ Betweenness
2701
+ ALL (𝑑𝜃 = 2)
2702
+ 0.64±0.007
2703
+ 0.90±0.007
2704
+ 0.53±0.052
2705
+ 0.62±0.016
2706
+ 0.38±0.045
2707
+ 0.75±0.010
2708
+ 0.74±0.007
2709
+ 0.65
2710
+ ALL (𝑑𝜃 = 4)
2711
+ 0.72±0.012
2712
+ 0.94±0.007
2713
+ 0.52±0.066
2714
+ 0.75±0.006
2715
+ 0.50±0.042
2716
+ 0.84±0.009
2717
+ 0.84±0.008
2718
+ 0.73
2719
+ ALL (𝑑𝜃 = 8)
2720
+ 0.77±0.008
2721
+ 0.97±0.005
2722
+ 0.65±0.045
2723
+ 0.86±0.009
2724
+ 0.69±0.057
2725
+ 0.91±0.009
2726
+ 0.89±0.007
2727
+ 0.82
2728
+ Closeness
2729
+ ALL (𝑑𝜃 = 2)
2730
+ 0.85±0.008
2731
+ 0.76±0.008
2732
+ 0.53±0.043
2733
+ 0.83±0.007
2734
+ 0.36±0.051
2735
+ 0.69±0.022
2736
+ 0.81±0.003
2737
+ 0.69
2738
+ ALL (𝑑𝜃 = 4)
2739
+ 0.87±0.008
2740
+ 0.85±0.010
2741
+ 0.55±0.072
2742
+ 0.91±0.006
2743
+ 0.54±0.032
2744
+ 0.85±0.013
2745
+ 0.91±0.004
2746
+ 0.78
2747
+ ALL (𝑑𝜃 = 8)
2748
+ 0.88±0.007
2749
+ 0.90±0.009
2750
+ 0.65±0.061
2751
+ 0.97±0.004
2752
+ 0.74±0.045
2753
+ 0.95±0.007
2754
+ 0.98±0.003
2755
+ 0.86
2756
+ PageRank
2757
+ ALL (𝑑𝜃 = 2)
2758
+ 0.64±0.009
2759
+ 0.44±0.013
2760
+ 0.52±0.035
2761
+ 0.74±0.006
2762
+ 0.37±0.030
2763
+ 0.53±0.020
2764
+ 0.63±0.006
2765
+ 0.55
2766
+ ALL (𝑑𝜃 = 4)
2767
+ 0.74±0.008
2768
+ 0.71±0.010
2769
+ 0.62±0.037
2770
+ 0.87±0.006
2771
+ 0.48±0.040
2772
+ 0.79±0.008
2773
+ 0.89±0.003
2774
+ 0.73
2775
+ ALL (𝑑𝜃 = 8)
2776
+ 0.83±0.007
2777
+ 0.85±0.012
2778
+ 0.68±0.049
2779
+ 0.95±0.003
2780
+ 0.72±0.033
2781
+ 0.95±0.006
2782
+ 0.98±0.003
2783
+ 0.85
2784
+ * All nodes satisfying the condition on 𝑑𝜃 have the same class, belonging to top 20% in terms of the considered centrality measure.
2785
+ Table 15: Accuracy on the task of predicting future node importance depending on 𝑑𝜃.
2786
+ Centrality
2787
+ Feature
2788
+ Citation Networks
2789
+ Email/Message Networks
2790
+ Online Q/A Networks
2791
+ Average
2792
+ HepPh
2793
+ Hepth
2794
+ Email-EU
2795
+ Email-Enron
2796
+ Message-College
2797
+ Mathoverflow
2798
+ Askubuntu
2799
+ Degree
2800
+ ALL (𝑑𝜃 = 2)
2801
+ 0.76±0.008
2802
+ 0.78±0.006
2803
+ 0.82±0.019
2804
+ 0.77±0.005
2805
+ 0.76±0.016
2806
+ 0.68±0.014
2807
+ 0.61±0.004
2808
+ 0.74
2809
+ ALL (𝑑𝜃 = 4)
2810
+ 0.76±0.006
2811
+ 0.80±0.009
2812
+ 0.83±0.028
2813
+ 1.00*
2814
+ 0.70±0.046
2815
+ 0.81±0.009
2816
+ 1.00*
2817
+ 0.78
2818
+ ALL (𝑑𝜃 = 8)
2819
+ 0.79±0.006
2820
+ 0.88±0.010
2821
+ 0.86±0.021
2822
+ 1.00*
2823
+ 0.72±0.025
2824
+ 1.00*
2825
+ 1.00*
2826
+ 0.81
2827
+ Betweenness
2828
+ ALL (𝑑𝜃 = 2)
2829
+ 0.81±0.003
2830
+ 0.94±0.004
2831
+ 0.82±0.018
2832
+ 0.84±0.008
2833
+ 0.75±0.019
2834
+ 0.86±0.004
2835
+ 0.90±0.003
2836
+ 0.85
2837
+ ALL (𝑑𝜃 = 4)
2838
+ 0.81±0.008
2839
+ 0.96±0.004
2840
+ 0.80±0.023
2841
+ 0.82±0.004
2842
+ 0.70±0.023
2843
+ 0.86±0.009
2844
+ 0.89±0.006
2845
+ 0.83
2846
+ ALL (𝑑𝜃 = 8)
2847
+ 0.81±0.004
2848
+ 0.98±0.004
2849
+ 0.82±0.019
2850
+ 0.85±0.009
2851
+ 0.70±0.049
2852
+ 0.88±0.010
2853
+ 0.88±0.006
2854
+ 0.85
2855
+ Closeness
2856
+ ALL (𝑑𝜃 = 2)
2857
+ 0.91±0.004
2858
+ 0.86±0.004
2859
+ 0.82±0.020
2860
+ 0.85±0.005
2861
+ 0.75±0.017
2862
+ 0.77±0.011
2863
+ 0.82±0.002
2864
+ 0.83
2865
+ ALL (𝑑𝜃 = 4)
2866
+ 0.91±0.005
2867
+ 0.88±0.007
2868
+ 0.80±0.022
2869
+ 0.89±0.007
2870
+ 0.70±0.021
2871
+ 0.80±0.015
2872
+ 0.86±0.006
2873
+ 0.83
2874
+ ALL (𝑑𝜃 = 8)
2875
+ 0.91±0.006
2876
+ 0.89±0.009
2877
+ 0.82±0.020
2878
+ 0.94±0.006
2879
+ 0.73±0.046
2880
+ 0.91±0.013
2881
+ 0.95±0.006
2882
+ 0.88
2883
+ PageRank
2884
+ ALL (𝑑𝜃 = 2)
2885
+ 0.81±0.005
2886
+ 0.75±0.004
2887
+ 0.81±0.017
2888
+ 0.80±0.006
2889
+ 0.75±0.014
2890
+ 0.68±0.010
2891
+ 0.67±0.006
2892
+ 0.75
2893
+ ALL (𝑑𝜃 = 4)
2894
+ 0.81±0.006
2895
+ 0.75±0.007
2896
+ 0.83±0.017
2897
+ 0.83±0.007
2898
+ 0.68±0.025
2899
+ 0.68±0.011
2900
+ 0.81±0.003
2901
+ 0.77
2902
+ ALL (𝑑𝜃 = 8)
2903
+ 0.83±0.005
2904
+ 0.81±0.012
2905
+ 0.82±0.023
2906
+ 0.92±0.004
2907
+ 0.72±0.025
2908
+ 0.91±0.011
2909
+ 0.96±0.003
2910
+ 0.85
2911
+ * All nodes satisfying the condition on 𝑑𝜃 have the same class, belonging to top 20% in terms of the considered centrality measure.
2912
+
2913
+ Table 16: AUROC on the task of predicting future node importance depending on 𝑑𝜃.
2914
+ Centrality
2915
+ Feature
2916
+ Citation Networks
2917
+ Email/Message Networks
2918
+ Online Q/A Networks
2919
+ Average
2920
+ HepPh
2921
+ Hepth
2922
+ Email-EU
2923
+ Email-Enron
2924
+ Message-College
2925
+ Mathoverflow
2926
+ Askubuntu
2927
+ Degree
2928
+ ALL (𝑑𝜃 = 2)
2929
+ 0.81±0.004
2930
+ 0.84±0.005
2931
+ 0.85±0.035
2932
+ 0.86±0.005
2933
+ 0.73±0.025
2934
+ 0.71±0.014
2935
+ 0.65±0.005
2936
+ 0.78
2937
+ ALL (𝑑𝜃 = 4)
2938
+ 0.83±0.005
2939
+ 0.87±0.006
2940
+ 0.85±0.036
2941
+ 1.00*
2942
+ 0.72±0.027
2943
+ 0.68±0.018
2944
+ 1.00*
2945
+ 0.79
2946
+ ALL (𝑑𝜃 = 8)
2947
+ 0.87±0.007
2948
+ 0.90±0.013
2949
+ 0.88±0.027
2950
+ 1.00*
2951
+ 0.78±0.031
2952
+ 1.00*
2953
+ 1.00*
2954
+ 0.86
2955
+ Betweenness
2956
+ ALL (𝑑𝜃 = 2)
2957
+ 0.87±0.005
2958
+ 0.99±0.001
2959
+ 0.83±0.024
2960
+ 0.87±0.007
2961
+ 0.71±0.033
2962
+ 0.86±0.009
2963
+ 0.86±0.005
2964
+ 0.86
2965
+ ALL (𝑑𝜃 = 4)
2966
+ 0.89±0.006
2967
+ 0.99±0.001
2968
+ 0.81±0.040
2969
+ 0.89±0.004
2970
+ 0.73±0.026
2971
+ 0.90±0.007
2972
+ 0.91±0.004
2973
+ 0.87
2974
+ ALL (𝑑𝜃 = 8)
2975
+ 0.90±0.003
2976
+ 1.00±0.001
2977
+ 0.84±0.026
2978
+ 0.93±0.006
2979
+ 0.77±0.044
2980
+ 0.94±0.009
2981
+ 0.94±0.006
2982
+ 0.90
2983
+ Closeness
2984
+ ALL (𝑑𝜃 = 2)
2985
+ 0.97±0.002
2986
+ 0.94±0.005
2987
+ 0.84±0.033
2988
+ 0.93±0.004
2989
+ 0.73±0.028
2990
+ 0.83±0.010
2991
+ 0.90±0.002
2992
+ 0.88
2993
+ ALL (𝑑𝜃 = 4)
2994
+ 0.97±0.002
2995
+ 0.95±0.004
2996
+ 0.82±0.027
2997
+ 0.95±0.004
2998
+ 0.75±0.030
2999
+ 0.88±0.012
3000
+ 0.93±0.004
3001
+ 0.89
3002
+ ALL (𝑑𝜃 = 8)
3003
+ 0.97±0.003
3004
+ 0.96±0.006
3005
+ 0.88±0.024
3006
+ 0.98±0.004
3007
+ 0.79±0.043
3008
+ 0.92±0.016
3009
+ 0.95±0.013
3010
+ 0.92
3011
+ PageRank
3012
+ ALL (𝑑𝜃 = 2)
3013
+ 0.87±0.005
3014
+ 0.79±0.008
3015
+ 0.85±0.035
3016
+ 0.88±0.004
3017
+ 0.72±0.031
3018
+ 0.71±0.014
3019
+ 0.73±0.005
3020
+ 0.79
3021
+ ALL (𝑑𝜃 = 4)
3022
+ 0.89±0.006
3023
+ 0.83±0.008
3024
+ 0.87±0.018
3025
+ 0.90±0.006
3026
+ 0.71±0.028
3027
+ 0.69±0.009
3028
+ 0.70±0.007
3029
+ 0.80
3030
+ ALL (𝑑𝜃 = 8)
3031
+ 0.91±0.005
3032
+ 0.87±0.013
3033
+ 0.87±0.034
3034
+ 0.95±0.009
3035
+ 0.79±0.018
3036
+ 0.73±0.040
3037
+ 0.71±0.049
3038
+ 0.83
3039
+ * All nodes satisfying the condition on 𝑑𝜃 have the same class, belonging to top 20% in terms of the considered centrality measure.
3040
+ Table 17: F1-score on the task of predicting future edge importance.
3041
+ Centrality
3042
+ Feature
3043
+ Citation Networks
3044
+ Email/Message Networks
3045
+ Online Q/A Networks
3046
+ Average
3047
+ HepPh
3048
+ Hepth
3049
+ Email-EU
3050
+ Email-Enron
3051
+ Message-College
3052
+ Mathoverflow
3053
+ Askubuntu
3054
+ Edge Betweenness
3055
+ Local-ER (𝑑𝜃 = 2)
3056
+ 0.68 ± 0.004
3057
+ 0.59 ± 0.011
3058
+ 0.14 ± 0.094
3059
+ 0.74 ± 0.013
3060
+ 0.41 ± 0.042
3061
+ 0.21 ± 0.038
3062
+ 0.40 ± 0.013
3063
+ 0.45
3064
+ Global-ER (𝑑𝜃 = 2)
3065
+ 0.69 ± 0.015
3066
+ 0.63 ± 0.041
3067
+ 0.18 ± 0.122
3068
+ 0.79 ± 0.051
3069
+ 0.38 ± 0.060
3070
+ 0.23 ± 0.058
3071
+ 0.39 ± 0.022
3072
+ 0.47
3073
+ Global-Basic (𝑑𝜃 = 2)
3074
+ 0.69 ± 0.013
3075
+ 0.51 ± 0.168
3076
+ 0.22 ± 0.132
3077
+ 0.75 ± 0.072
3078
+ 0.37 ± 0.064
3079
+ 0.15 ± 0.116
3080
+ 0.26 ± 0.180
3081
+ 0.42
3082
+ ALL (𝑑𝜃 = 2)
3083
+ 0.71 ± 0.005
3084
+ 0.68 ± 0.009
3085
+ 0.25 ± 0.186
3086
+ 0.84 ± 0.005
3087
+ 0.40 ± 0.062
3088
+ 0.23 ± 0.060
3089
+ 0.36 ± 0.018
3090
+ 0.50
3091
+ ALL (𝑑𝜃 = 2)
3092
+ 0.71 ± 0.005
3093
+ 0.68 ± 0.009
3094
+ 0.25 ± 0.186
3095
+ 0.84 ± 0.005
3096
+ 0.40 ± 0.062
3097
+ 0.23 ± 0.060
3098
+ 0.36 ± 0.018
3099
+ 0.50
3100
+ ALL (𝑑𝜃 = 4)
3101
+ 0.71 ± 0.007
3102
+ 0.72 ± 0.009
3103
+ 0.33 ± 0.104
3104
+ 0.77 ± 0.006
3105
+ 0.43 ± 0.086
3106
+ 0.29 ± 0.071
3107
+ 0.46 ± 0.014
3108
+ 0.53
3109
+ ALL (𝑑𝜃 = 8)
3110
+ 0.69 ± 0.004
3111
+ 0.75 ± 0.009
3112
+ 0.17 ± 0.079
3113
+ 0.72 ± 0.011
3114
+ 0.39 ± 0.052
3115
+ 0.31 ± 0.055
3116
+ 0.53 ± 0.023
3117
+ 0.52
3118
+ Table 18: Accuracy on the task of predicting future edge importance.
3119
+ Centrality
3120
+ Feature
3121
+ Citation Networks
3122
+ Email/Message Networks
3123
+ Online Q/A Networks
3124
+ Average
3125
+ HepPh
3126
+ Hepth
3127
+ Email-EU
3128
+ Email-Enron
3129
+ Message-College
3130
+ Mathoverflow
3131
+ Askubuntu
3132
+ Edge Betweenness
3133
+ Local-ER (𝑑𝜃 = 2)
3134
+ 0.66 ± 0.003
3135
+ 0.72 ± 0.005
3136
+ 0.87 ± 0.041
3137
+ 0.75 ± 0.012
3138
+ 0.70 ± 0.030
3139
+ 0.91 ± 0.008
3140
+ 0.91 ± 0.003
3141
+ 0.78
3142
+ Global-ER (𝑑𝜃 = 2)
3143
+ 0.68 ± 0.020
3144
+ 0.75 ± 0.023
3145
+ 0.88 ± 0.041
3146
+ 0.81 ± 0.058
3147
+ 0.70 ± 0.035
3148
+ 0.91 ± 0.009
3149
+ 0.91 ± 0.003
3150
+ 0.81
3151
+ Global-Basic (𝑑𝜃 = 2)
3152
+ 0.66 ± 0.036
3153
+ 0.72 ± 0.046
3154
+ 0.87 ± 0.040
3155
+ 0.79 ± 0.052
3156
+ 0.67 ± 0.053
3157
+ 0.91 ± 0.009
3158
+ 0.91 ± 0.008
3159
+ 0.79
3160
+ ALL (𝑑𝜃 = 2)
3161
+ 0.67 ± 0.037
3162
+ 0.73 ± 0.047
3163
+ 0.87 ± 0.042
3164
+ 0.81 ± 0.055
3165
+ 0.68 ± 0.052
3166
+ 0.91 ± 0.009
3167
+ 0.91 ± 0.007
3168
+ 0.80
3169
+ ALL (𝑑𝜃 = 2)
3170
+ 0.67 ± 0.037
3171
+ 0.73 ± 0.005
3172
+ 0.87 ± 0.042
3173
+ 0.81 ± 0.055
3174
+ 0.68 ± 0.052
3175
+ 0.91 ± 0.009
3176
+ 0.91 ± 0.007
3177
+ 0.80
3178
+ ALL (𝑑𝜃 = 4)
3179
+ 0.73 ± 0.006
3180
+ 0.79 ± 0.005
3181
+ 0.86 ± 0.050
3182
+ 0.78 ± 0.024
3183
+ 0.78 ± 0.024
3184
+ 0.93 ± 0.007
3185
+ 0.90 ± 0.004
3186
+ 0.82
3187
+ ALL (𝑑𝜃 = 8)
3188
+ 0.75 ± 0.003
3189
+ 0.81 ± 0.005
3190
+ 0.88 ± 0.046
3191
+ 0.82 ± 0.017
3192
+ 0.82 ± 0.017
3193
+ 0.94 ± 0.005
3194
+ 0.91 ± 0.002
3195
+ 0.85
3196
+ Table 19: AUROC on the task of predicting future edge importance.
3197
+ Centrality
3198
+ Feature
3199
+ Citation Networks
3200
+ Email/Message Networks
3201
+ Online Q/A Networks
3202
+ Average
3203
+ HepPh
3204
+ Hepth
3205
+ Email-EU
3206
+ Email-Enron
3207
+ Message-College
3208
+ Mathoverflow
3209
+ Askubuntu
3210
+ Edge Betweenness
3211
+ Local-ER (𝑑𝜃 = 2)
3212
+ 0.71 ± 0.003
3213
+ 0.77 ± 0.007
3214
+ 0.64 ± 0.080
3215
+ 0.82 ± 0.009
3216
+ 0.68 ± 0.035
3217
+ 0.85 ± 0.013
3218
+ 0.86 ± 0.006
3219
+ 0.76
3220
+ Global-ER (𝑑𝜃 = 2)
3221
+ 0.74 ± 0.027
3222
+ 0.80 ± 0.033
3223
+ 0.63 ± 0.092
3224
+ 0.88 ± 0.058
3225
+ 0.68 ± 0.032
3226
+ 0.85 ± 0.015
3227
+ 0.86 ± 0.007
3228
+ 0.78
3229
+ Global-Basic (𝑑𝜃 = 2)
3230
+ 0.71 ± 0.053
3231
+ 0.77 ± 0.055
3232
+ 0.64 ± 0.093
3233
+ 0.87 ± 0.049
3234
+ 0.65 ± 0.058
3235
+ 0.73 ± 0.164
3236
+ 0.76 ± 0.150
3237
+ 0.73
3238
+ ALL (𝑑𝜃 = 2)
3239
+ 0.72 ± 0.054
3240
+ 0.79 ± 0.057
3241
+ 0.64 ± 0.099
3242
+ 0.89 ± 0.051
3243
+ 0.66 ± 0.056
3244
+ 0.76 ± 0.150
3245
+ 0.78 ± 0.139
3246
+ 0.75
3247
+ ALL (𝑑𝜃 = 2)
3248
+ 0.72 ± 0.054
3249
+ 0.79 ± 0.057
3250
+ 0.64 ± 0.099
3251
+ 0.89 ± 0.051
3252
+ 0.66 ± 0.056
3253
+ 0.76 ± 0.150
3254
+ 0.78 ± 0.139
3255
+ 0.75
3256
+ ALL (𝑑𝜃 = 4)
3257
+ 0.80 ± 0.004
3258
+ 0.87 ± 0.004
3259
+ 0.75 ± 0.050
3260
+ 0.94 ± 0.002
3261
+ 0.74 ± 0.026
3262
+ 0.89 ± 0.016
3263
+ 0.89 ± 0.009
3264
+ 0.84
3265
+ ALL (𝑑𝜃 = 8)
3266
+ 0.82 ± 0.005
3267
+ 0.89 ± 0.005
3268
+ 0.70 ± 0.046
3269
+ 0.93 ± 0.002
3270
+ 0.79 ± 0.021
3271
+ 0.90 ± 0.011
3272
+ 0.90 ± 0.008
3273
+ 0.85
3274
+
ANAyT4oBgHgl3EQfdvjo/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
AtE2T4oBgHgl3EQfnAjp/content/2301.04005v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eb05a8c6e0c7c2ad193dbbf14d227eaa52917fbe4c7a9a38bbfeebc2307bf884
3
+ size 1204997
AtE2T4oBgHgl3EQfnAjp/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:090f8e0cc1202d2894271a8682cc64fed552d7dcdc051a65944314617f05ab74
3
+ size 1245229
AtE2T4oBgHgl3EQfnAjp/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aaf03e762be829d874f0c3b335efef2681d9362890fd3ac09564fd18446b8687
3
+ size 50478
D9FRT4oBgHgl3EQfxziA/content/2301.13643v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ce034ed57bee78d96f0e9b50d291f7f1da91f4e2d8bdd52c49e0a2894ace14d0
3
+ size 204208
D9FRT4oBgHgl3EQfxziA/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:def572f5c29bacd3454d4cbbe425c24eec8362e73da577645ea8a0f19fb285d7
3
+ size 3604525
D9FRT4oBgHgl3EQfxziA/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b76ad4f4f4abf826716707fe613ce7509a77a5ec5870ea04893183e486ffab5c
3
+ size 119310
DNE3T4oBgHgl3EQfUwpD/content/2301.04453v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe2a43930487d1329b31bb5382be187066f2907a164b20649b3e18435353ef58
3
+ size 1145278
DNFJT4oBgHgl3EQfBCxz/content/tmp_files/2301.11423v1.pdf.txt ADDED
@@ -0,0 +1,1563 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.11423v1 [math.CO] 26 Jan 2023
2
+ Improved Permutation Arrays for Kendall Tau Metric∗
3
+ Sergey Bereg
4
+ William Bumpass
5
+ Mohammadreza Haghpanah
6
+ Brian Malouf
7
+ I. Hal Sudborough
8
+ Abstract
9
+ Permutation arrays under the Kendall-τ metric have been considered for error-correcting
10
+ codes. Given n and d ∈ [1,
11
+ �n
12
+ 2
13
+
14
+ ], the task is to find a large permutation array of permutations
15
+ on n symbols with pairwise Kendall-τ distance at least d. Let P(n, d) denote the maximum
16
+ size of any permutation array of permutations on n symbols with pairwise Kendall-τ distance d.
17
+ Using new recursive techniques, new automorphisms, and programs that combine randomness
18
+ and greedy strategies, we obtain several improved lower bounds for P(n, d).
19
+ 1
20
+ Introduction
21
+ In [1, 2, 5, 8, 10, 11], permutation arrays under the Kendall-τ metric were studied. This comple-
22
+ mented many studies of permutation arrays under other metrics, such as the Hamming metric [3]
23
+ [4] [6], Chebyshev metric [9] and several others [7]. The use of the Kendall-τ metric was motivated
24
+ by applications of error correcting codes and rank modulation in flash memories [8].
25
+ Let σ and π be two permutations (or strings) over an alphabet Σ ⊆ [1...n] = {1, 2, ..., n}. The
26
+ Kendall-τ distance between σ and π, denoted by d(σ, π), is the minimum number of adjacent trans-
27
+ positions (bubble sort operations) required to transform σ into π. For an array (set) A of permuta-
28
+ tions (strings), the pairwise Kendall-τ distance of A, denoted by d(A), is min{ d(σ, π) | σ, π ∈ A }.
29
+ An array A of permutations on [1...n] with d(A) = d will be called a (n, d)-PA. Let P(n, d) denote
30
+ the maximum cardinality of any (n, d)-PA A.
31
+ Vijayakumaran [10] showed several lower bounds for P(5, d) and P(6, d) using integer linear
32
+ programming. Buzaglo and Etzion [5] showed many new bounds, including that P(7, 3) ≥ 588 using
33
+ two permutation representatives and a set of permutations generated by specific automorphism
34
+ operations. We also show results using automorphisms, namely those given in Table 1. Details of
35
+ these automorphisms are shown in Section 4.
36
+ We also used other programs to compute good lower bounds:
37
+ 1. Programs which find a maximum size clique in a graph.
38
+ 2. Programs which combine randomness with a Greedy approach.
39
+ That is, the first constructs a graph with a node for each permutation on n symbols and an edge
40
+ connecting two nodes whose permutations are at Kendall-τ distance at least d. The set of nodes
41
+ (permutations) in a maximum size clique in this graph is a (n, d)-PA. The second initially chooses
42
+ randomly a specified size set of permutations at pairwise Kendall-τ distance d, and then proceeds
43
+ through all remaining permutations in lexicographic order and adds them to the set if they have
44
+ Kendall-τ distance at least d.
45
+ 1
46
+
47
+ In Tables 1 and 2 are given sporadic results obtained by these techniques. Blank positions in
48
+ our tables signify other papers have the best lower bounds known e.g. [5], [10]. All other lower
49
+ bounds we give are larger than previous lower bounds, except for the two noted in Table 1.
50
+ n:d
51
+ 3
52
+ 4
53
+ 5
54
+ 6
55
+ 7
56
+ 8
57
+ 9
58
+ 6
59
+ 102(∗)
60
+ 7
61
+ 588(∗)
62
+ 336
63
+ 126
64
+ 84
65
+ 42
66
+ 8
67
+ 3,752
68
+ 2,240
69
+ 672
70
+ 448
71
+ 168
72
+ 9
73
+ 1,008
74
+ 288
75
+ Table 1: Improved lower bounds on P(n, d) by automorphisms. (The bounds for P(6, 3) and P(7, 3)
76
+ are from [10] and [5], respectively.)
77
+ n:d
78
+ 3
79
+ 4
80
+ 5
81
+ 6
82
+ 7
83
+ 8
84
+ 9
85
+ 8
86
+ 115
87
+ 57
88
+ 9
89
+ 26,831
90
+ 15,492
91
+ 3,882
92
+ 2,497
93
+ 608
94
+ 10
95
+ 233,421
96
+ 133,251
97
+ 29,113
98
+ 18,344
99
+ 5,629
100
+ 3,832
101
+ 1,489
102
+ 11
103
+ 247,014
104
+ 153,260
105
+ 42,013
106
+ 28,008
107
+ 9,747
108
+ 12
109
+ 73,068
110
+ n:d
111
+ 10
112
+ 11
113
+ 12
114
+ 13
115
+ 14
116
+ 15
117
+ 7
118
+ 13
119
+ 8
120
+ 7
121
+ 4
122
+ 8
123
+ 43
124
+ 26
125
+ 21
126
+ 15
127
+ 12
128
+ 8
129
+ 9
130
+ 195
131
+ 100
132
+ 77
133
+ 46
134
+ 37
135
+ 24
136
+ 10
137
+ 1,066
138
+ 491
139
+ 370
140
+ 195
141
+ 152
142
+ 89
143
+ 11
144
+ 6,890
145
+ 2,861
146
+ 2,108
147
+ 1,005
148
+ 768
149
+ 409
150
+ 12
151
+ 50,649
152
+ 19,227
153
+ 13,935
154
+ 6,087
155
+ 4,564
156
+ 2,239
157
+ Table 2: Improved lower bounds by random Greedy.
158
+ In [2] Barg and Mazumdar described their Theorem 4.5, which is given below:
159
+ Theorem 1. [2] Let m = ((n − 2)t+1 − 1)/(n − 3), where n − 2 is a prime power. Then
160
+ P(n, 2t + 1) ≥
161
+ n!
162
+ t(t + 1)m.
163
+ This was improved by Wang, Zhang, Yang, and Ge in [11].
164
+ Theorem 2. [11] Let m = ((n − 2)t+1 − 1)/(n − 3), where n − 2 is a prime power. Then
165
+ P(n, 2t + 1) ≥
166
+ n!
167
+ (2t + 1)m.
168
+ For example, by choosing t = 1 and n = 11, one obtains, by Theorem 2, P(11, 3) ≥ 1,330,560.
169
+ Theorem 2 applies only when n is two greater than a power of a prime. To compute good lower
170
+ bounds for P(n, d) when n is not two greater than a power of a prime, one needs other techniques.
171
+ The lower bounds given by Theorem 2 are close to corresponding upper bounds when the Kendall-τ
172
+ 2
173
+
174
+ distance is small, but not so close when the Kendall-τ distance is close to n. Our Theorems 6 and
175
+ 7, described below, give better lower bounds when the Kendall-τ distance is close to n.
176
+ The following theorem from [8] allows one to obtain good lower bounds for even Kendall-τ
177
+ distances.
178
+ Theorem 3. [8] For all n ≥ 1 and even d ≥ 2, we have P(n, d) ≥ 1
179
+ 2P(n, d − 1).
180
+ Theorem 4. [8] For all n, d ≥ 1 we have P(n + 1, d) ≤ (n + 1) · P(n, d).
181
+ Using Theorems 4 and 2 we have P(14, 11) ≥ P(15, 11)/15 ≥ 15!/(11 · 402234 · 15) ≈ 19, 703.2
182
+ Theorem 5. [8] For all n, d > 1 we have P(n + 1, d) ≥ ⌈n+1
183
+ d ⌉P(n, d).
184
+ For example, to compute a lower bound for P(14, 11) one can use, iteratively, Theorem 5 to
185
+ obtain P(14, 11) ≥ ⌈14
186
+ 11⌉·⌈13
187
+ 11⌉·P(12, 11) = 4·P(12, 11). By computation (using the random greedy
188
+ algorithm) we have P(12, 11) ≥ 19, 277, so P(14, 11) ≥ 76, 908. We next give generalizations of
189
+ Theorem 5 that yield improvements.
190
+ Let Sn,m be the set of permutations on [1...n] with the restriction that the first n−m symbols are
191
+ in sorted order, for a given m < n. A set A ⊆ Sn,m with Kendall-τ distance d is called a (n, m, d)-PA
192
+ or (n, m, d)-array. Let P(n, m, d) denote the maximum cardinality of any (n, m, d)-array A.
193
+ Theorem 6. For any m < n and d, P(n, d) ≥ P(n, m, d) · P(n − m, d).
194
+ Proof. Let A be a (n, m, d)-array and B be a (n − m, d)-array. For each permutation π in A and
195
+ each permutation τ in B, form the permutation (π, τ) by substituting the n − m symbols in the
196
+ order given by τ for the first n − m symbols, given in order, in π.
197
+ It is easily seen that d((π, τ), (ρ, σ)) ≥ d, if either π ̸= ρ or σ ̸= τ. That is, for π, ρ ∈ A, if
198
+ π ̸= ρ, then d(π, ρ) ≥ d. Clearly, changing the order of the other n − m symbols, which appear in
199
+ order in permutations in A, does not make the distance smaller. A symmetric argument applies
200
+ when σ, τ are different permutations in the (n − m, d)-array B.
201
+ In [8] Theorem 5 was proved using the set {1, d + 1, 2d + 1, . . . , ⌈n+1
202
+ d ⌉d + 1}, which corresponds
203
+ to a (n + 1, 1, d)-array. In general, a (n, m, d)-array can be much larger than one obtained by the
204
+ iterative use of Theorem 5. For example, for all n, we give (n, 2, 3)-arrays with n(n+1)
205
+ 6
206
+ permutations,
207
+ when n−1 is not divisible by 3. Also, for n = 14 we computed a (14, 2, 11)-array with 5 permutations
208
+ τ1, . . . , τ5 shown in Table 3. Thus, using Theorem 6 we obtain P(14, 11) ≥ 5·P(12, 11) ≥ 5·19, 277 =
209
+ 96, 135 which is a better lower bound than obtained by Theorem 5.
210
+ One can also improve on Theorem 6. For each permutation, say τ in a (n, m, d)-array A, one
211
+ can generally find a larger set of permutations than in the best (n−m, d)-array. Let Pτ(n, d) denote
212
+ the maximum cardinality of any (n, d) PA with the highest m symbols in the same positions as in
213
+ τ, but where the other n − m symbols can be in any order. We also denote it by P(n, d; i1, . . . , im),
214
+ where i1, . . . , im are the fixed positions of symbols n − m + 1, . . . , n, not necessarily in that order.
215
+ Theorem 7. For any (n, m, d)-array A, P(n, d) ≥ �
216
+ τ∈A Pτ(n, d).
217
+ Proof. Let A be a (n, m, d)-array and, for each permutation π ∈ A, let τ be a permutation in an
218
+ (n, d)-PA with the highest m symbols in the same position as in π. Form the new permutation
219
+ (π, τ) by substituting the n − m symbols in the order given by τ for the first n − m symbols, given
220
+ in order, in π.
221
+ It is easily seen, as in the proof of Theorem 6, that d((π, τ), (ρ, σ)) ≥ d, if either π ̸= ρ or
222
+ σ ̸= τ.
223
+ 3
224
+
225
+ 1
226
+ 2
227
+ 3 4 5 6
228
+ 7
229
+ 8 9 10 11 12 13 14 Pτi(14, 11)
230
+ τ1
231
+ 0
232
+ 0
233
+ 0 0 0 0 13 14 0
234
+ 0
235
+ 0
236
+ 0
237
+ 0
238
+ 0
239
+ 47,851
240
+ τ2
241
+ 0
242
+ 0 14 0 0 0
243
+ 0
244
+ 0 0
245
+ 0
246
+ 0
247
+ 0
248
+ 0 13
249
+ 36,250
250
+ τ3
251
+ 0 13
252
+ 0 0 0 0
253
+ 0
254
+ 0 0
255
+ 0
256
+ 0
257
+ 0
258
+ 0 14
259
+ 19,227
260
+ τ4 13 14
261
+ 0 0 0 0
262
+ 0
263
+ 0 0
264
+ 0
265
+ 0
266
+ 0
267
+ 0
268
+ 0
269
+ 19,227
270
+ τ5
271
+ 0
272
+ 0
273
+ 0 0 0 0
274
+ 0
275
+ 0 0
276
+ 0
277
+ 0
278
+ 0 14 13
279
+ 19,227
280
+ Table 3: (14, 2, 11)-array with 5 permutations τ1, . . . , τ5.
281
+ Since the first 12 symbols in all τi
282
+ are sorted, they are replaced by zeros.
283
+ The last column contains lower bounds for
284
+ Pτi(14, 11), i = 1, . . . , 5.
285
+ For example, we saw the result P(14, 11) ≥ 96, 125 using Theorem 6, with a (14, 2, 11)-array with
286
+ five permutations τi, i = 1, . . . , 5. We computed lower bounds for Pτi(14, 11), see the last column
287
+ in Table 3. By Theorem 7, we obtain the improved lower bound of P(14, 11) ≥ �5
288
+ i=1 Pτi(14, 11) ≥
289
+ 141, 782.
290
+ 2
291
+ Bounds for P(n, m, d)
292
+ There are
293
+ n!
294
+ (n−m)! permutations in Sn,m for finding P(n, m, d). When m is small, this is relatively
295
+ small compared to the n! permutations to explore for finding P(n, d). Also, P(n, m, d) generalizes
296
+ P(n, d) as P(n, d) = P(n, n, d). Finding exact values or bounds for P(n, m, d) is an interesting
297
+ problem in its own right. Clearly, P(n, 1, d) = ⌈n/d⌉. In general, by Theorem 5
298
+ P(n, m, d) ≥
299
+ �n
300
+ d
301
+
302
+ ·
303
+ �n − 1
304
+ d
305
+
306
+ · · · · ·
307
+ �n − m + 1
308
+ d
309
+
310
+ .
311
+ (1)
312
+ We denote by ε the identity permutation (1, 2, . . . , n).
313
+ Proposition 8. P(n, m, d) ≥ 2 if d ≤ mn−m(m+1)/2. The bound for d is tight for all n > m ≥ 1.
314
+ Proof. Let π = (n, n−1, . . . , n−m+1, 1, 2 . . . , n−m). The bubble sort for π uses n−1 transpositions
315
+ for symbol n, n − 2 transpositions for symbol n − 1, etc. Then d(ε, π) = (n − 1) + (n − 2) + · · · +
316
+ (n − m) = nm − (1 + 2 + · · · + m) = mn − m(m + 1)/2.
317
+ The bound is tight since for any permutation σ ̸= π, d(ε, σ) < mn − m(m + 1)/2.
318
+ We improve the bound in Equation 1 for m = 2.
319
+ Theorem 9. For any d ≥ 1,
320
+ (a) P(n, 2, d) ≥ 3 if d ≤ n + ⌊n/3⌋ − 2.
321
+ (b) P(n, 2, d) ≥ 5 if d ≤ n − 2.
322
+ Proof. (a) Let τ1 = (n − 1, n, 1, 2, . . . , n − 2), τ2 = (1, . . . , x − 1, n − 1, x, . . . , n − 2, n) and τ3 =
323
+ (1, . . . , x, n, x + 1, . . . , n − 1) where x = ⌊n/3⌋, see an example in Table 4. Transformation of τ1
324
+ to τ2 requires n − 1 transpositions for symbol n − 1 and x − 1 transpositions for symbol n. Then
325
+ d(τ1, τ2) = n+x−2 ≥ d. Similarly d(τ1, τ3) = (n−2)+x ≥ d, and d(τ2, τ3) = (n−x)+(n−x−2) =
326
+ 2n − 2x − 2 ≥ n + x − 2 ≥ d.
327
+ 4
328
+
329
+ 1 2 3 4 5 6 7 8 9
330
+ τ1 8 9 1 2 3 4 5 6 7
331
+ τ2 1 2 9 3 4 5 6 7 8
332
+ τ3 1 2 3 8 4 5 6 7 9
333
+ Table 4: P(9, 2, 10) ≥ 3.
334
+ (b) Suppose n = 2k. Consider 5 permutations τi, i = 1, . . . , 5 where symbols n − 1 and n are
335
+ placed at positions 1 and 2 for τ1, n − 1 and n for τ2, k and k + 1 for τ3, 1 and n for τ4, n and 1
336
+ for τ5, see an example in Table 5. We show that d(τi, τj) ≥ n − 2 if 1 ≤ i < j ≤ 5. For all pairs
337
+ i, j ∈ {1, 2, 4, 5} with i < j, transformation of τi to τj requires n − 2 transpositions for only one
338
+ of two symbols n − 1 or n. Transformation of τ3 to any τi, i = 1, 2, 4 requires k − 1 transpositions
339
+ for each symbol n − 1 and n. Transformation of τ3 to any τ5 requires k − 1 transpositions for each
340
+ symbol n − 1 and n after transposition of n − 1 and n.
341
+ 1
342
+ 2
343
+ 3
344
+ 4
345
+ 5
346
+ 6
347
+ 7
348
+ 8
349
+ 9 10 11 12
350
+ τ1 11 12
351
+ 0
352
+ 0
353
+ 0
354
+ 0
355
+ 0
356
+ 0
357
+ 0
358
+ 0
359
+ 0
360
+ 0
361
+ τ2
362
+ 0
363
+ 0
364
+ 0
365
+ 0
366
+ 0
367
+ 0
368
+ 0
369
+ 0
370
+ 0
371
+ 0 11 12
372
+ τ3
373
+ 0
374
+ 0
375
+ 0
376
+ 0
377
+ 0 11 12
378
+ 0
379
+ 0
380
+ 0
381
+ 0
382
+ 0
383
+ τ4 11
384
+ 0
385
+ 0
386
+ 0
387
+ 0
388
+ 0
389
+ 0
390
+ 0
391
+ 0
392
+ 0
393
+ 0 12
394
+ τ5 12
395
+ 0
396
+ 0
397
+ 0
398
+ 0
399
+ 0
400
+ 0
401
+ 0
402
+ 0
403
+ 0
404
+ 0 11
405
+ Table 5: P(12, 2, 10) ≥ 5. The first 10 symbols in all τi are in the sorted order and replaced by
406
+ zeros.
407
+ 1
408
+ 2
409
+ 3
410
+ 4
411
+ 5
412
+ 6
413
+ 7
414
+ 8
415
+ 9 10 11 12 13
416
+ τ1 12 13
417
+ 0
418
+ 0
419
+ 0
420
+ 0
421
+ 0
422
+ 0
423
+ 0
424
+ 0
425
+ 0
426
+ 0
427
+ 0
428
+ τ2
429
+ 0
430
+ 0
431
+ 0
432
+ 0
433
+ 0
434
+ 0
435
+ 0
436
+ 0
437
+ 0
438
+ 0
439
+ 0 12 13
440
+ τ3
441
+ 0
442
+ 0
443
+ 0
444
+ 0
445
+ 0 13 12
446
+ 0
447
+ 0
448
+ 0
449
+ 0
450
+ 0
451
+ 0
452
+ τ4 12
453
+ 0
454
+ 0
455
+ 0
456
+ 0
457
+ 0
458
+ 0
459
+ 0
460
+ 0
461
+ 0
462
+ 0
463
+ 0 13
464
+ τ5 13
465
+ 0
466
+ 0
467
+ 0
468
+ 0
469
+ 0
470
+ 0
471
+ 0
472
+ 0
473
+ 0
474
+ 0
475
+ 0 12
476
+ Table 6: An example for P(13, 2, 11) ≥ 5.
477
+ Similarly, a (n, 2, n − 2)-array can be constructed for n = 2k + 1 where symbols n and n − 1 are
478
+ placed at positions k and k + 1 for τ3, see an example in Table 6.
479
+ We have constructed a program for computing P(n, m, d) for various values of n, m, and d. For
480
+ each of the
481
+ � n
482
+ m
483
+
484
+ positions for m symbols out of n, and each of the possible m! orders of the m
485
+ symbols, the program uses the random/Greedy strategy described earlier. That is, it chooses a
486
+ specified number of random choices first and then tries adding all remaining possible permutations
487
+ in increasing order. When m is small, the program finds solutions quickly. It allows one to compute
488
+ P(15, 12), for example, without examining all 15! permutations of 15 symbols. That is, by Theorem
489
+ 6 one can first compute, for example, P(15, 3, 12), which as shown in Table 9 is at least 12, and
490
+ then compute P(12, 12).
491
+ As shown in Table 11 these are useful for obtaining improved lower bounds for P(n, d) when
492
+ 5
493
+
494
+ the Kendall-τ distance d is close to n. We give lower bounds for P(n, m, d), for 8 ≤ d ≤ 15 and
495
+ 10 ≤ n ≤ 20 in Tables 7, 8, 9, and 10.
496
+ n:m
497
+ 2
498
+ 3
499
+ 4
500
+ 5
501
+ 6
502
+ 10
503
+ 5
504
+ 14
505
+ 37
506
+ 113
507
+ 335
508
+ 11
509
+ 5
510
+ 16
511
+ 55
512
+ 186
513
+ 645
514
+ 12
515
+ 6
516
+ 21
517
+ 73
518
+ 285
519
+ 1145
520
+ 13
521
+ 6
522
+ 26
523
+ 99
524
+ 428
525
+ 1920
526
+ 14
527
+ 8
528
+ 31
529
+ 130
530
+ 625
531
+ 3117
532
+ 15
533
+ 8
534
+ 37
535
+ 172
536
+ 884
537
+ 4872
538
+ 16
539
+ 10
540
+ 45
541
+ 219
542
+ 1233
543
+ 7367
544
+ 17
545
+ 10
546
+ 52
547
+ 278
548
+ 1676
549
+ 10828
550
+ 18
551
+ 13
552
+ 61
553
+ 344
554
+ 2227
555
+ 15567
556
+ 19
557
+ 13
558
+ 71
559
+ 426
560
+ 2939
561
+ 21862
562
+ 20
563
+ 15
564
+ 80
565
+ 517
566
+ 3805
567
+ 30196
568
+ n:m
569
+ 2
570
+ 3
571
+ 4
572
+ 5
573
+ 6
574
+ 10
575
+ 3
576
+ 9
577
+ 24
578
+ 63
579
+ 162
580
+ 11
581
+ 5
582
+ 15
583
+ 34
584
+ 99
585
+ 301
586
+ 12
587
+ 5
588
+ 16
589
+ 46
590
+ 149
591
+ 523
592
+ 13
593
+ 6
594
+ 18
595
+ 59
596
+ 219
597
+ 861
598
+ 14
599
+ 6
600
+ 22
601
+ 78
602
+ 315
603
+ 1383
604
+ 15
605
+ 7
606
+ 26
607
+ 100
608
+ 445
609
+ 2119
610
+ 16
611
+ 8
612
+ 31
613
+ 128
614
+ 610
615
+ 3165
616
+ 17
617
+ 8
618
+ 36
619
+ 162
620
+ 824
621
+ 4613
622
+ 18
623
+ 10
624
+ 42
625
+ 201
626
+ 1097
627
+ 6589
628
+ 19
629
+ 10
630
+ 49
631
+ 244
632
+ 1427
633
+ 9179
634
+ 20
635
+ 12
636
+ 55
637
+ 292
638
+ 1827
639
+ 12581
640
+ Table 7: Lower bounds for P(n, m, 8) (left) and P(n, m, 9) (right).
641
+ n : m
642
+ 2
643
+ 3
644
+ 4
645
+ 5
646
+ 6
647
+ 10
648
+ 3
649
+ 7
650
+ 19
651
+ 48
652
+ 125
653
+ 11
654
+ 5
655
+ 10
656
+ 27
657
+ 76
658
+ 226
659
+ 12
660
+ 5
661
+ 13
662
+ 37
663
+ 116
664
+ 394
665
+ 13
666
+ 6
667
+ 16
668
+ 50
669
+ 167
670
+ 644
671
+ 14
672
+ 6
673
+ 18
674
+ 64
675
+ 241
676
+ 1011
677
+ 15
678
+ 6
679
+ 21
680
+ 83
681
+ 342
682
+ 1570
683
+ 16
684
+ 6
685
+ 25
686
+ 103
687
+ 467
688
+ 2337
689
+ 17
690
+ 8
691
+ 30
692
+ 129
693
+ 629
694
+ 2239
695
+ 18
696
+ 8
697
+ 35
698
+ 158
699
+ 829
700
+ 3185
701
+ 19
702
+ 10
703
+ 40
704
+ 192
705
+ 1084
706
+ 4405
707
+ 20
708
+ 10
709
+ 46
710
+ 233
711
+ 4184
712
+ 6017
713
+ n : m
714
+ 2
715
+ 3
716
+ 4
717
+ 5
718
+ 6
719
+ 10
720
+ 3
721
+ 6
722
+ 13
723
+ 27
724
+ 73
725
+ 11
726
+ 3
727
+ 7
728
+ 16
729
+ 41
730
+ 128
731
+ 12
732
+ 3
733
+ 10
734
+ 22
735
+ 61
736
+ 214
737
+ 13
738
+ 5
739
+ 11
740
+ 31
741
+ 96
742
+ 344
743
+ 14
744
+ 5
745
+ 13
746
+ 37
747
+ 120
748
+ 539
749
+ 15
750
+ 5
751
+ 17
752
+ 55
753
+ 163
754
+ 810
755
+ 16
756
+ 6
757
+ 20
758
+ 70
759
+ 220
760
+ 1193
761
+ 17
762
+ 6
763
+ 23
764
+ 86
765
+ 366
766
+ 1716
767
+ 18
768
+ 7
769
+ 26
770
+ 106
771
+ 472
772
+ 2413
773
+ 19
774
+ 8
775
+ 31
776
+ 127
777
+ 618
778
+ 3362
779
+ 20
780
+ 8
781
+ 35
782
+ 151
783
+ 789
784
+ 4571
785
+ Table 8: Lower bounds for P(n, m, 10) (left) and P(n, m, 11) (right).
786
+ 3
787
+ Improved Lower Bounds by Theorems 5, 6, and 7.
788
+ Each of the improved lower bounds given in Table 11 is explained in this section. Many of the
789
+ computations described took weeks on Apple MacBook Air computers with an M1 or M2 processor.
790
+ • By Theorem 7, P(12, 5) ≥ P(12, 5; 2) + P(12, 5; 7) + P(12, 5; 12) ≥ 318, 641 + 334, 200 +
791
+ 246, 968 = 899, 809.
792
+ • By Theorem 7, P(12, 7) ≥ P(12, 7; 3) + P(12, 7; 10) ≥ 2 · 64, 649 = 129, 298.
793
+ • By Theorem 7, P(12, 8) ≥ P(12, 8; 3) + P(12, 8; 11) ≥ 44, 042 + 41049 = 85, 091.
794
+ • By Theorem 7, P(13, 9) ≥ P(13, 9; 3) + P(13, 9; 12) ≥ 124, 047 + 112, 717 = 236, 764
795
+ 6
796
+
797
+ n : m
798
+ 2
799
+ 3
800
+ 4
801
+ 5
802
+ 6
803
+ 10
804
+ 2
805
+ 6
806
+ 13
807
+ 26
808
+ 58
809
+ 11
810
+ 3
811
+ 7
812
+ 17
813
+ 40
814
+ 101
815
+ 12
816
+ 3
817
+ 9
818
+ 23
819
+ 59
820
+ 168
821
+ 13
822
+ 3
823
+ 10
824
+ 30
825
+ 84
826
+ 273
827
+ 14
828
+ 5
829
+ 13
830
+ 37
831
+ 117
832
+ 420
833
+ 15
834
+ 5
835
+ 16
836
+ 45
837
+ 159
838
+ 622
839
+ 16
840
+ 5
841
+ 17
842
+ 58
843
+ 216
844
+ 919
845
+ 17
846
+ 6
847
+ 20
848
+ 72
849
+ 287
850
+ 1323
851
+ 18
852
+ 6
853
+ 22
854
+ 87
855
+ 375
856
+ 1859
857
+ 19
858
+ 6
859
+ 25
860
+ 103
861
+ 485
862
+ 2580
863
+ 20
864
+ 8
865
+ 30
866
+ 125
867
+ 620
868
+ 3503
869
+ n : m
870
+ 2
871
+ 3
872
+ 4
873
+ 5
874
+ 6
875
+ 10
876
+ 2
877
+ 4
878
+ 10
879
+ 20
880
+ 37
881
+ 11
882
+ 2
883
+ 6
884
+ 13
885
+ 28
886
+ 63
887
+ 12
888
+ 3
889
+ 7
890
+ 16
891
+ 40
892
+ 103
893
+ 13
894
+ 3
895
+ 9
896
+ 22
897
+ 56
898
+ 163
899
+ 14
900
+ 3
901
+ 10
902
+ 27
903
+ 79
904
+ 247
905
+ 15
906
+ 5
907
+ 12
908
+ 35
909
+ 106
910
+ 370
911
+ 16
912
+ 5
913
+ 15
914
+ 44
915
+ 141
916
+ 533
917
+ 17
918
+ 5
919
+ 16
920
+ 52
921
+ 181
922
+ 757
923
+ 18
924
+ 6
925
+ 18
926
+ 63
927
+ 242
928
+ 1058
929
+ 19
930
+ 6
931
+ 20
932
+ 73
933
+ 308
934
+ 1447
935
+ 20
936
+ 6
937
+ 23
938
+ 90
939
+ 390
940
+ 1965
941
+ Table 9: Lower bounds for P(n, m, 12) (left) and P(n, m, 13) (right).
942
+ n : m
943
+ 2
944
+ 3
945
+ 4
946
+ 5
947
+ 6
948
+ 10
949
+ 2
950
+ 4
951
+ 10
952
+ 16
953
+ 30
954
+ 11
955
+ 2
956
+ 4
957
+ 11
958
+ 23
959
+ 51
960
+ 12
961
+ 3
962
+ 6
963
+ 15
964
+ 34
965
+ 85
966
+ 13
967
+ 3
968
+ 7
969
+ 18
970
+ 48
971
+ 133
972
+ 14
973
+ 3
974
+ 9
975
+ 24
976
+ 65
977
+ 203
978
+ 15
979
+ 3
980
+ 10
981
+ 30
982
+ 88
983
+ 298
984
+ 16
985
+ 5
986
+ 13
987
+ 38
988
+ 118
989
+ 431
990
+ 17
991
+ 5
992
+ 15
993
+ 46
994
+ 153
995
+ 609
996
+ 18
997
+ 5
998
+ 16
999
+ 54
1000
+ 197
1001
+ 844
1002
+ 19
1003
+ 6
1004
+ 18
1005
+ 63
1006
+ 254
1007
+ 1163
1008
+ 20
1009
+ 6
1010
+ 20
1011
+ 75
1012
+ 323
1013
+ 1568
1014
+ n : m
1015
+ 2
1016
+ 3
1017
+ 4
1018
+ 5
1019
+ 6
1020
+ 10
1021
+ 2
1022
+ 4
1023
+ 6
1024
+ 12
1025
+ 19
1026
+ 11
1027
+ 2
1028
+ 4
1029
+ 10
1030
+ 20
1031
+ 31
1032
+ 12
1033
+ 2
1034
+ 5
1035
+ 12
1036
+ 21
1037
+ 48
1038
+ 13
1039
+ 3
1040
+ 6
1041
+ 15
1042
+ 30
1043
+ 72
1044
+ 14
1045
+ 3
1046
+ 7
1047
+ 16
1048
+ 40
1049
+ 107
1050
+ 15
1051
+ 3
1052
+ 9
1053
+ 23
1054
+ 52
1055
+ 154
1056
+ 16
1057
+ 3
1058
+ 10
1059
+ 29
1060
+ 84
1061
+ 221
1062
+ 17
1063
+ 5
1064
+ 12
1065
+ 35
1066
+ 109
1067
+ 385
1068
+ 18
1069
+ 5
1070
+ 14
1071
+ 41
1072
+ 138
1073
+ 530
1074
+ 19
1075
+ 5
1076
+ 16
1077
+ 41
1078
+ 174
1079
+ 720
1080
+ 20
1081
+ 5
1082
+ 17
1083
+ 46
1084
+ 220
1085
+ 961
1086
+ Table 10: Lower bounds for P(n, m, 14) (left) and P(n, m, 15) (right).
1087
+ • By Theorem 7, P(14, 9) ≥ P(14, 9; 2, 6, 8)+P(14, 9; 2, 3, 5)+P(14, 9; 1, 5, 6)+P(14, 9; 1, 6, 8)+
1088
+ P(14, 9; 4, 7, 8)+P(14, 9; 4, 9, 10)+P(12, 9; 8)+P(12, 9; 9)+P(13, 9; 4, 5)+P(12, 9; 3)+P(14, 9; 3, 5, 7)+
1089
+ P(14, 9; 3, 5, 14)+P(14, 9; 2, 4, 14)+P(14, 9; 2, 7, 9)+P(13, 9; 4, 5)+P(12, 9; 7)+2∗P(12, 9; 4)+
1090
+ P(13, 9; 3, 5)+P(13, 9; 2, 3)+P(12, 9; 3)+P(13, 9; 3, 4)+ ≥ 51, 871+26, 347+19, 878+31, 130+
1091
+ 39, 622 + 42, 132 + 18, 649 + 18, 397 = 19, 914 + 17, 294 + 48, 029 + 28, 367 + 25, 367 + 52, 958 +
1092
+ 19, 915 + 18, 807 + 36, 794 + 28, 348 + 16, 073 + 17, 294 + 18, 542 = 575, 728
1093
+ • By Theorem 7, P(13, 10) ≥ P(13, 10; 2) + P(13, 10; 12) ≥ 2 ∗ 79, 104 = 158, 208.
1094
+ • By Theorem 7, P(14, 10) ≥ P(14, 10; 5, 14)+P(14, 10; 8, 14)+P(14, 10; 6, 7)+P(14, 10; 1, 11)+
1095
+ P(14, 10; 1, 12)+P(14, 10; 1, 2) ≥ 94, 643+95, 052+102, 965+93, 157+89, 021+50, 649 ≥ 525, 427
1096
+ • By Theorem 7, P(13, 11) ≥ P(13, 11; 2) + P(13, 11; 13) ≥ 31, 809 + 19, 227 = 51, 046.
1097
+ • By Theorem 7, P(14, 11) ≥ P(14, 11; 7, 8)+P(14, 11; 14, 3)+P(14, 11; 13, 14)+P(14, 11; 1, 2)+
1098
+ P(14, 11; 1, 14) ≥ 47, 851 + 36, 250 + 3 ∗ 19, 227 = 141, 782.
1099
+ • By Theorem 7, P(15, 11) ≥ P(15, 11; 1, 7, 9) + P(15, 11; 9, 10, 15) + P(15, 11; 11, 14, 15) +
1100
+ 7
1101
+
1102
+ n:d
1103
+ 5
1104
+ 7
1105
+ 8
1106
+ 9
1107
+ 10
1108
+ 11
1109
+ 12
1110
+ 13
1111
+ 14
1112
+ 15
1113
+ 12 899,809 129,298 85,091
1114
+ 13
1115
+ 236,764 158,208
1116
+ 51,046
1117
+ 29,859
1118
+ 14,158
1119
+ 10,756
1120
+ 5,527
1121
+ 14
1122
+ 595,728 525,427
1123
+ 141,782
1124
+ 100,813
1125
+ 52,565
1126
+ 41,673
1127
+ 15,674
1128
+ 15
1129
+ 1,049,633
1130
+ 524,817
1131
+ 105,130 83,346
1132
+ 37,104
1133
+ 16
1134
+ 2,099,266 1,049,634 267,828 173,432 74,208
1135
+ 17
1136
+ 244,051
1137
+ Table 11: Improved lower bounds using Theorems 5, 6 and 7. Blanks indicate other methods have
1138
+ the best lower bounds known e.g. [11] or, for n=12, the best lower bounds are in Table
1139
+ 2.
1140
+ P(15, 11; 8, 9, 11)+P(15, 11; 6, 10, 15)+P(15, 11; 5, 7, 13)+P(15, 11; 5, 6, 15)+P(15, 11; 4, 12, 14)+
1141
+ P(15, 11; 4, 5, 6)+P(15, 11; 3, 14, 15)+P(15, 11; 2, 7, 11)+P(15, 11; 1, 13, 15)+P(15, 11; 1, 2, 3)+
1142
+ P(15, 11; 1, 2, 15)+P(15, 11; 1, 2, 15)+P(15, 11; 1, 2, 13)+P(15, 11; 1, 9, 11) ≥ 70, 509+47, 069+
1143
+ 36, 430+93, 986+85, 010+138, 475+47, 027+107, 707+45, 837+145, 804+3∗19227+31, 861+
1144
+ 69, 377 ≥ 1, 049, 633
1145
+ • By Theorem 4, P(16, 11) ≥ 2 ∗ P(15, 11) ≥ 2 ∗ 1, 049, 633 = 2, 099, 266
1146
+ • By Theorem 7, P(13, 12) ≥ P(13, 12; 7) ≥ 29, 859.
1147
+ • By Theorem 7, P(14, 12) ≥ P(14, 12; 7, 8)+P(14, 12; 13, 14)+P(14, 12; 14, 2)+P(14, 12; 1, 14)+
1148
+ P(14, 12; 1, 2) ≥ 35, 709 + 13, 935 + 23, 299 + 19, 227 + 19, 227 = 100, 813.
1149
+ • By Theorem 3, P(15, 12) ≥ 1
1150
+ 2P(15, 11) ≥ 524, 817.
1151
+ • By Theorem 4, P(16, 12) ≥ 2 ∗ P(15, 12) ≥ 1, 049, 634
1152
+ • By Theorem 7, P(13, 13) ≥ P(13, 13; 7) ≥ 14, 158.
1153
+ • By Theorem 7 P(14, 13) ≥ P(14, 13; 7, 13) + P(14, 13; 6, 14) + P(14, 13; 3, 4) ≥ 23, 388 +
1154
+ 14, 073 + 15, 104 ≥ 52, 565.
1155
+ • By Theorem 5, P(15, 13) ≥ 2 ∗ P(14, 13) ≥ 2 ∗ 52, 565 = 105, 130.
1156
+ • By Theorem 6, P(16, 13) ≥ P(12, 13) ∗ P(16, 4, 13) ≥ 6, 087 ∗ 44 = 267, 828.
1157
+ • By Theorem 7, P(13, 14) ≥ P(13, 14; 7) ≥ 10, 756.
1158
+ • By Theorem 7, P(14, 14) ≥ P(14, 14; 1, 3) + P(14, 14; 4, 14) + P(14, 14; 6, 11) ≥ 8, 036 +
1159
+ 10, 060 + 23, 577 = 41, 673
1160
+ • By Theorem 5, P(15, 14) ≥ 2 ∗ P(14, 14) ≥ 2 ∗ 41, 673 = 83, 346.
1161
+ • By Theorem 6, P(16, 14) ≥ P(12, 14) ∗ P(16, 4, 14) ≥ 4, 564 ∗ 38 = 173, 432.
1162
+ • By Theorem 7, P(13, 15) ≥ P(13, 15; 7) ≥ 5, 527.
1163
+ • By Theorem 7, P(14, 15) ≥ P(14, 15; 6, 14) + P(14, 15; 14, 6) + P(14, 15; 2, 3) ≥ 5, 493 +
1164
+ 5, 493 + 4, 688 = 15, 674.
1165
+ • By Theorem 7, P(15, 15) ≥ P(15, 15; 3, 4, 7, 8) + 3 ∗ P(11, 15) + P(15, 15; 4, 5, 6, 7) + 3 ∗
1166
+ P(14, 15; 6, 7, 8) + P(13, 15 : 2, 10) + P(15, 15; 2, 3, 4, 13) + P(3, 5, 7, 11) + P(15, 15, 2, 4, 10, 11) +
1167
+ 2P ∗ (13, 15; 2, 3) + P(12, 15; 3) + 4 ∗ P(12, 15; 2) + P(14, 15; 3, 4, 5) ≥ 4, 279 + 3 ∗ 409 + 1, 787 +
1168
+ 3 ∗ 1, 848 + 1, 738 + 1, 964 + 7, 798 + 5, 773 + 2 ∗ 879 + 895 + 4 ∗ 743 + 1, 369 ≥ 37, 104.
1169
+ 8
1170
+
1171
+ • By Theorem 5, P(16, 15) ≥ 2 ∗ P(16, 15) ≥ 74, 208.
1172
+ • By Theorem 6, P(17, 15) ≥ P(12, 15) ∗ P(17, 5, 15) ≥ 2, 239 ∗ 109 = 244, 051.
1173
+ 4
1174
+ Automorphism Lower Bounds
1175
+ It is known that for a permutation π(x) : Fq → Fq, where Fq denotes a finite field of order q, the
1176
+ operations of multiplying by a non-zero constant a, adding a constant c, and adding to the argument
1177
+ a constant b, each yield another permutation on Fq. That is, aπ(x + b) + c, for all non-zero a and
1178
+ all b, c ∈ Fq, is again a permutation. We use this to search for sets of permutations at specified
1179
+ Kendall-τ distance d. That is, the search can be done for a set of representative permutations and
1180
+ expanded into a full set of permutations using operations on the representatives. Our program
1181
+ verifies that the full set of permutations has the stipulated Kendall-τ distance.
1182
+ Example.
1183
+ Use the operation π(x) + c on the following 17 representatives.
1184
+ This gives 102
1185
+ permutations for P(6, 3).
1186
+ 0 1 2 3 5 4
1187
+ 0 1 2 4 5 3
1188
+ 0 1 3 5 4 2
1189
+ 0 1 5 4 2 3
1190
+ 0 2 3 4 1 5
1191
+ 0 2 4 5 1 3
1192
+ 0 2 5 3 4 1
1193
+ 0 3 1 4 2 5
1194
+ 0 3 2 5 1 4
1195
+ 0 3 4 2 5 1
1196
+ 0 3 5 4 1 2
1197
+ 0 4 1 5 3 2
1198
+ 0 4 2 1 3 5
1199
+ 0 4 5 3 2 1
1200
+ 0 5 2 1 3 4
1201
+ 0 5 3 1 2 4
1202
+ 0 5 4 2 1 3
1203
+ Example. Use the operations aπ(x) + c on the following 14 representatives. This gives 1, 008
1204
+ permutations for P(9, 7).
1205
+ 0 1 2 4 8 3 7 5 6
1206
+ 0 1 2 7 8 5 3 4 6
1207
+ 0 1 3 4 7 2 8 6 5
1208
+ 0 1 3 8 2 6 7 4 5
1209
+ 0 1 3 8 4 6 5 7 2
1210
+ 0 1 4 5 6 7 3 8 2
1211
+ 0 1 4 5 8 2 7 6 3
1212
+ 0 1 6 2 3 4 7 8 5
1213
+ 0 1 6 2 8 7 5 4 3
1214
+ 0 1 6 4 5 2 3 8 7
1215
+ 0 1 6 7 3 4 8 5 2
1216
+ 0 1 7 2 4 6 8 5 3
1217
+ 0 1 7 4 8 3 5 2 6
1218
+ 0 1 8 5 7 4 6 3 2
1219
+ Example.
1220
+ Use the operations aπ(x) + c on the following 8 representatives.
1221
+ This gives 576
1222
+ permutations for P(9, 8).
1223
+ 0 1 2 3 8 4 6 5 7
1224
+ 0 1 2 5 8 6 3 7 4
1225
+ 0 1 4 5 2 8 6 7 3
1226
+ 0 1 5 3 2 4 6 8 7
1227
+ 0 1 5 6 4 8 3 7 2
1228
+ 0 1 6 4 7 2 5 8 3
1229
+ 0 1 6 7 3 2 8 5 4
1230
+ 0 1 8 3 6 5 7 2 4
1231
+ Example. Use the operations aπ(x) + c on the following four representatives. This gives 288
1232
+ permutations for P(9, 9).
1233
+ 0 1 2 6 5 8 7 4 3
1234
+ 0 1 3 8 4 5 2 6 7
1235
+ 0 1 4 6 5 3 7 2 8
1236
+ 0 1 5 2 4 7 3 6 8
1237
+ Example.
1238
+ Use the operations π(x) + c on the following 12 representatives.
1239
+ This gives 84
1240
+ permutations for P(7, 6).
1241
+ 0 1 3 6 5 4 2
1242
+ 0 1 4 2 3 6 5
1243
+ 0 1 6 2 5 4 3
1244
+ 0 2 3 4 1 5 6
1245
+ 0 2 3 6 5 1 4
1246
+ 0 3 4 6 1 2 5
1247
+ 0 3 5 4 1 2 6
1248
+ 0 4 5 6 3 1 2
1249
+ 0 5 2 4 3 6 1
1250
+ 0 5 3 6 1 2 4
1251
+ 0 6 3 5 4 2 1
1252
+ 0 6 4 2 1 3 5
1253
+ Example. Use the operation aπ(x) + c on 8 permutations. This gives 448 permutations for
1254
+ P(8, 6).
1255
+ 9
1256
+
1257
+ 0 1 7 4 5 6 2 3
1258
+ 0 2 1 5 3 4 6 7
1259
+ 0 2 6 4 7 3 1 5
1260
+ 0 3 7 5 4 2 1 6
1261
+ 0 5 4 6 7 1 2 3
1262
+ 0 7 3 1 2 6 5 4
1263
+ 0 7 5 4 3 6 1 2
1264
+ 0 7 6 4 2 1 3 5
1265
+ Example. Use the operation aπ(x) + c on 67 permutation representatives. This gives 3,752
1266
+ permutations for P(8, 3).
1267
+ 0 1 2 3 4 5 6 7
1268
+ 0 1 2 5 3 6 7 4
1269
+ 0 1 3 5 7 2 6 4
1270
+ 0 1 5 4 3 6 2 7
1271
+ 0 1 6 2 7 3 4 5
1272
+ 0 1 6 3 4 2 7 5
1273
+ 0 1 6 7 4 5 2 3
1274
+ 0 1 7 3 2 5 6 4
1275
+ 0 1 7 5 3 2 4 6
1276
+ 0 1 7 5 6 3 4 2
1277
+ 0 2 3 5 1 4 7 6
1278
+ 0 2 3 5 7 6 4 1
1279
+ 0 2 3 6 5 4 7 1
1280
+ 0 2 4 1 6 5 7 3
1281
+ 0 2 4 5 6 3 1 7
1282
+ 0 2 5 1 7 4 3 6
1283
+ 0 2 5 3 4 6 7 1
1284
+ 0 2 5 4 3 1 6 7
1285
+ 0 2 5 6 4 1 7 3
1286
+ 0 2 6 4 3 5 1 7
1287
+ 0 2 6 4 7 1 5 3
1288
+ 0 3 1 5 4 7 2 6
1289
+ 0 3 2 4 1 7 6 5
1290
+ 0 3 2 5 4 7 1 6
1291
+ 0 3 2 6 1 4 5 7
1292
+ 0 3 6 2 4 5 1 7
1293
+ 0 3 7 4 5 6 2 1
1294
+ 0 3 7 5 4 2 1 6
1295
+ 0 4 1 6 2 3 5 7
1296
+ 0 4 2 7 3 1 5 6
1297
+ 0 4 2 7 5 6 1 3
1298
+ 0 4 5 6 2 1 3 7
1299
+ 0 4 6 1 7 2 3 5
1300
+ 0 4 6 2 5 3 7 1
1301
+ 0 4 6 2 7 1 5 3
1302
+ 0 4 7 5 2 3 1 6
1303
+ 0 4 7 6 3 5 2 1
1304
+ 0 5 1 6 7 4 3 2
1305
+ 0 5 1 7 3 6 2 4
1306
+ 0 5 2 1 6 3 7 4
1307
+ 0 5 2 3 6 4 1 7
1308
+ 0 5 2 6 4 3 7 1
1309
+ 0 5 3 1 4 6 2 7
1310
+ 0 5 3 2 6 1 7 4
1311
+ 0 5 3 4 1 2 7 6
1312
+ 0 5 3 7 6 1 4 2
1313
+ 0 5 4 6 2 7 1 3
1314
+ 0 5 4 6 3 1 2 7
1315
+ 0 5 6 3 1 2 7 4
1316
+ 0 5 6 3 7 4 1 2
1317
+ 0 5 7 6 4 3 1 2
1318
+ 0 6 1 5 2 3 4 7
1319
+ 0 6 2 4 3 7 5 1
1320
+ 0 6 3 1 7 4 5 2
1321
+ 0 6 3 7 2 4 5 1
1322
+ 0 6 4 3 5 7 1 2
1323
+ 0 6 5 1 7 3 2 4
1324
+ 0 6 7 1 3 5 4 2
1325
+ 0 6 7 5 3 2 1 4
1326
+ 0 7 1 2 3 4 5 6
1327
+ 0 7 1 3 5 4 6 2
1328
+ 0 7 1 4 3 6 2 5
1329
+ 0 7 3 4 2 1 5 6
1330
+ 0 7 3 6 1 4 2 5
1331
+ 0 7 4 6 3 1 2 5
1332
+ 0 7 4 6 5 2 3 1
1333
+ 0 7 5 1 2 3 6 4
1334
+ Example.
1335
+ Use the operation aπ(x) + c on 12 permutation representatives.
1336
+ This gives 672
1337
+ permutations for P(8, 5).
1338
+ 0 2 3 6 5 4 7 1
1339
+ 0 2 4 3 1 5 6 7
1340
+ 0 3 2 1 6 4 7 5
1341
+ 0 3 5 1 6 2 7 4
1342
+ 0 5 7 2 4 6 1 3
1343
+ 0 6 3 4 5 2 1 7
1344
+ 0 6 3 7 1 5 2 4
1345
+ 0 6 5 4 7 3 1 2
1346
+ 0 7 1 5 4 6 2 3
1347
+ 0 7 3 6 4 2 1 5
1348
+ 0 7 4 1 2 6 5 3
1349
+ 0 7 5 6 4 1 3 2
1350
+ Example. Use the operation aπ(x) + c on 40 permutation representatives. This gives 2,242
1351
+ permutations for P(8, 4).
1352
+ 0 1 4 5 7 6 3 2
1353
+ 0 1 7 3 2 5 6 4
1354
+ 0 2 1 3 7 4 5 6
1355
+ 0 2 1 5 7 4 6 3
1356
+ 0 2 1 6 7 5 4 3
1357
+ 0 2 3 6 1 5 4 7
1358
+ 0 2 4 3 5 6 1 7
1359
+ 0 2 5 3 7 4 6 1
1360
+ 0 2 7 1 4 5 3 6
1361
+ 0 2 7 3 1 4 6 5
1362
+ 0 2 7 3 6 5 1 4
1363
+ 0 2 7 6 1 4 5 3
1364
+ 0 3 2 1 5 7 4 6
1365
+ 0 3 5 6 4 7 1 2
1366
+ 0 3 5 7 6 1 2 4
1367
+ 0 3 6 2 5 1 7 4
1368
+ 0 4 1 6 2 3 5 7
1369
+ 0 4 1 7 6 2 3 5
1370
+ 0 4 2 1 5 6 3 7
1371
+ 0 4 2 5 7 6 3 1
1372
+ 0 4 2 7 1 5 6 3
1373
+ 0 4 3 1 7 5 6 2
1374
+ 0 4 3 5 6 1 7 2
1375
+ 0 5 2 1 6 3 7 4
1376
+ 0 5 3 2 6 1 7 4
1377
+ 0 5 3 2 7 1 4 6
1378
+ 0 5 4 2 1 3 6 7
1379
+ 0 5 4 7 6 2 3 1
1380
+ 0 5 6 2 1 7 4 3
1381
+ 0 5 6 4 1 3 2 7
1382
+ 0 5 7 1 6 4 2 3
1383
+ 0 5 7 3 2 4 6 1
1384
+ 0 6 1 2 4 3 5 7
1385
+ 0 6 7 2 4 3 1 5
1386
+ 0 7 1 2 6 3 5 4
1387
+ 0 7 2 5 1 4 6 3
1388
+ 0 7 2 5 3 6 4 1
1389
+ 0 7 4 3 1 5 2 6
1390
+ 0 7 5 1 4 2 3 6
1391
+ 0 7 5 6 2 1 4 3
1392
+ Example. Use the operation aπ(x) + c on 3 permutation representatives. This gives 168 permu-
1393
+ tations for P(8, 7).
1394
+ 0 5 3 1 4 6 2 7
1395
+ 0 6 1 3 2 5 7 4
1396
+ 0 7 3 1 2 6 5 4
1397
+ Example. Use the operation π(x) + c on the following 48 permutations. This gives 336 permu-
1398
+ tations for P(7, 4).
1399
+ 10
1400
+
1401
+ 0 1 2 4 3 6 5
1402
+ 0 1 2 5 4 6 3
1403
+ 0 1 3 2 6 5 4
1404
+ 0 1 3 4 2 5 6
1405
+ 0 1 4 5 6 2 3
1406
+ 0 1 5 3 6 2 4
1407
+ 0 1 6 2 3 4 5
1408
+ 0 1 6 5 2 4 3
1409
+ 0 2 1 3 5 4 6
1410
+ 0 2 3 4 1 6 5
1411
+ 0 2 3 6 5 4 1
1412
+ 0 2 4 1 5 3 6
1413
+ 0 2 4 6 5 1 3
1414
+ 0 2 5 1 6 3 4
1415
+ 0 2 5 3 4 1 6
1416
+ 0 2 5 6 4 3 1
1417
+ 0 2 6 1 4 3 5
1418
+ 0 3 1 5 2 4 6
1419
+ 0 3 1 6 5 4 2
1420
+ 0 3 2 5 1 6 4
1421
+ 0 3 2 6 1 4 5
1422
+ 0 3 4 1 6 2 5
1423
+ 0 3 4 2 5 1 6
1424
+ 0 3 4 5 6 1 2
1425
+ 0 3 6 5 4 2 1
1426
+ 0 4 2 1 6 3 5
1427
+ 0 4 2 5 3 6 1
1428
+ 0 4 3 1 5 2 6
1429
+ 0 4 3 6 2 5 1
1430
+ 0 4 5 1 2 3 6
1431
+ 0 4 6 1 3 2 5
1432
+ 0 4 6 5 1 2 3
1433
+ 0 5 1 2 3 4 6
1434
+ 0 5 2 4 1 6 3
1435
+ 0 5 3 1 4 6 2
1436
+ 0 5 3 6 2 1 4
1437
+ 0 5 4 1 6 3 2
1438
+ 0 5 4 3 6 2 1
1439
+ 0 5 6 1 4 2 3
1440
+ 0 6 1 4 2 5 3
1441
+ 0 6 1 5 3 4 2
1442
+ 0 6 2 5 3 1 4
1443
+ 0 6 3 1 4 2 5
1444
+ 0 6 3 2 4 5 1
1445
+ 0 6 3 5 1 2 4
1446
+ 0 6 4 2 3 1 5
1447
+ 0 6 4 5 3 2 1
1448
+ 0 6 5 2 4 1 3
1449
+ Example. Use the operation π(x) + c on the following 18 permutations. This gives 126 permu-
1450
+ tations for P(7, 5).
1451
+ 0 1 4 2 5 3 6
1452
+ 0 1 4 6 3 2 5
1453
+ 0 1 5 2 6 4 3
1454
+ 0 2 1 3 5 4 6
1455
+ 0 2 4 5 6 3 1
1456
+ 0 2 6 4 1 3 5
1457
+ 0 3 1 5 6 4 2
1458
+ 0 3 2 4 5 1 6
1459
+ 0 3 2 6 1 4 5
1460
+ 0 3 5 4 6 2 1
1461
+ 0 4 3 1 5 2 6
1462
+ 0 4 3 6 2 1 5
1463
+ 0 4 5 1 6 3 2
1464
+ 0 5 1 3 4 2 6
1465
+ 0 5 3 2 6 1 4
1466
+ 0 6 1 2 5 3 4
1467
+ 0 6 5 2 4 1 3
1468
+ 0 6 5 3 4 1 2
1469
+ 5
1470
+ Patterns for P(n, m, d)
1471
+ In this section, let us, for convenience, describe general patterns for strings (permutations) in
1472
+ P(n, 2, d) and P(n, 3, d), by replacing the symbols [1 . . . n−2] ([1 . . . n−3], respectively), which are
1473
+ in order, by blank symbols, i.e. ’-’.
1474
+ For example, for P(5, 2, 3), we have the set
1475
+ { 4 5 - - - ,
1476
+ - 5 4 - - ,
1477
+ - - 4 5 - ,
1478
+ - - - 5 4 ,
1479
+ 4 - - - 5 , 5 - - - 4 }.
1480
+ It is easy to verify that the Kendall-τ distance between any two strings in this set is at least 3.
1481
+ This set agrees with that found by our program, namely P(5, 2, 3) ≥ 6.
1482
+ Also, for P(10, 2, 3), we have the set
1483
+ { 9 10 - - - - - - - - ,
1484
+ - 10 9 - - - - - - -,
1485
+ - - 9 10 - - - - - - ,
1486
+ - - - 10 9 - - - - -,
1487
+ - - - - 9 10 - - - -,
1488
+ - - - - - 10 9 - - -,
1489
+ - - - - - - 9 10 - -,
1490
+ - - - - - - - 10 9 -,
1491
+ - - - - - - - - 9 10,
1492
+ 9 - - - 10 - - - - -,
1493
+ 10 - - - 9 - - - - -,
1494
+ - - 9 - - - 10 - - -,
1495
+ - - 10 - - - 9 - - -
1496
+ - - - 9 - - - - 10 -,
1497
+ - - - 10 - - - - 9 -,
1498
+ - - - - - 9 - - - 10,
1499
+ - - - - - 10 - - - - 9,
1500
+ 9 - - - - - 10 - - -,
1501
+ 10 - - - - - 9 - - -,
1502
+ - 9 - - - - - - - 10,
1503
+ - 10 - - - - - - - 9 }.
1504
+ It is easy to verify that the Kendall-τ distance between any two strings in this set is at least 3.
1505
+ This set agrees with that found by our program, namely P(10, 2, 3) ≥ 21.
1506
+ These examples show that sets of strings that form a (n, 2, 3)-array contain easily recognized
1507
+ patterns. It is an interesting open question if such patterns can be determined for other choices of
1508
+ n, m, and d.
1509
+ Along these lines, for d = 3, consider π1(a, b, c) = . . . , n − 1, . . . , n, . . . and π2(a, b, c) =
1510
+ . . . , n, . . . , n − 1, . . ., where a, b, c denote the number of symbols in the 3 gaps represented by the
1511
+ “. . .”. We will use π1(a, b, c) for a = 0, 2, 4, . . . and b = 0, 3, 6, . . ., and π2(a, b, c) for a = 1, 3, 5, . . .
1512
+ 11
1513
+
1514
+ and b = 0, 3, 6, . . ., for each choice of a and b for which the resulting string has length at most n.
1515
+ Using π1(a, b, c) and π2(a, b, c), it can be observed that P(n, 2, 3) ≥ n(n+1)
1516
+ 6
1517
+ , for n ̸≡ 1 mod 3
1518
+ and P(n, 2, 3) ≥ (n+2)(n−1)
1519
+ 6
1520
+ for n ≡ 1 mod 3. Similarly, for Kendall-τ distance 4 and for n = 2k +1,
1521
+ use π1(a, b, c) for a = 0, 2, 4, . . . and b = 0, 4, 8, . . .; π2(a, b, c) for a = 0, 2, 4, . . . and b = 3, 7, 11, . . ..
1522
+ Using these patterns, it can be observed that P(4k+1, 2, 4) ≥ 2k2+k for k ≥ 1 and P(4k+3, 2, 4) ≥
1523
+ 2k2 + 3k + 1 for k ≥ 0.
1524
+ 6
1525
+ Conclusions and Open Questions
1526
+ Theorems 6 and 7 improve many lower bounds.
1527
+ All of the bounds shown in Tables 1, 2, and
1528
+ 11 are improvements on previous results. The techniques described can be used to obtain other
1529
+ improvements, with sufficient time. Many of our computations required weeks.
1530
+ Our work on good patterns for (n, m, d)-arrays is continuing. We conjecture that (n, m, d)-
1531
+ arrays can be used to compute improved lower bounds for P(n, d), for all n, and for d close to
1532
+ n.
1533
+ References
1534
+ [1] A. Abdollahi, J. Bagherian, F. Jafari, M. Khatami, F. Parvaresh, and R. Sobhani.
1535
+ New
1536
+ bounds on the size of permutation codes with minimum Kendall τ-distance of three. arXiv,
1537
+ abs/2206.10193, 2022.
1538
+ [2] A. Barg and A. Mazumdar. Codes in permutations and error correction for rank modulation.
1539
+ IEEE Transactions on Information Theory, 56(7):3158–3165, 2010.
1540
+ [3] S. Bereg, A. Levy, and I. H. Sudborough.
1541
+ Constructing permutation arrays from groups.
1542
+ Designs, Codes and Cryptography, 86(5):1095–1111, 2018.
1543
+ [4] S. Bereg, Z. Miller, L. G. Mojica, L. Morales, and I. H. Sudborough. New lower bounds for
1544
+ permutation arrays using contraction. Designs, Codes and Cryptography, 87:2105–2128, 2019.
1545
+ [5] S. Buzaglo and T. Etzion. Bounds on the size of permutation codes with the Kendall tau
1546
+ metric. IEEE Trans. on Inform. Theory, 61(6):3241–3250, 2015.
1547
+ [6] W. Chu, C. J. Colbourn, and P. Dukes. Constructions for permutation codes in powerline
1548
+ communications. Designs, Codes and Cryptography, 2004.
1549
+ [7] M. M. Deza and T. Huang. Metrics on permutations, a survey. J. Comb. Inf. System Sci.,
1550
+ 23:173–185, 1998.
1551
+ [8] A. Jiang, M. Schwartz, and J. Bruck.
1552
+ Correcting charge-constrained errors in the rank-
1553
+ modulation scheme. IEEE Transactions on Information Theory, 56(5):2112–2120, 2010.
1554
+ [9] T. Kløve, T.-T. Lin, S.-C. Tsai, and W.-G. Tzeng. Permutation arrays under the Chebyshev
1555
+ distance. IEEE Trans. on Info. Theory, 56(6):2611 – 2617, 2010.
1556
+ 12
1557
+
1558
+ [10] S. Vijayakumaran. Largest permutation codes with Kendall τ-metric in S4 and S5. IEEE
1559
+ Communications Letters, 20(10):1912–1915, 2016.
1560
+ [11] X. Wang, Y. Zhang, Y. Yang, and G. Ge. New bounds of permutation codes under Hamming
1561
+ metric and Kendall’s τ-metric. Des. Codes Cryptography, 85(3):533–545, 2017.
1562
+ 13
1563
+
DNFJT4oBgHgl3EQfBCxz/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
FNE4T4oBgHgl3EQfGwzZ/content/tmp_files/2301.04898v1.pdf.txt ADDED
@@ -0,0 +1,722 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Optical fingerprints of the electronic band reconstruction in van der Waals magnetic
2
+ materials
3
+ M. Corasaniti†,1 R. Yang†,1 Y. Liu‡,2 C. Petrovic,2 and L. Degiorgi∗1
4
+ 1Laboratorium f¨ur Festk¨orperphysik, ETH - Z¨urich, 8093 Z¨urich, Switzerland
5
+ 2Condensed Matter Physics and Materials Science Department,
6
+ Brookhaven National Laboratory, Upton NY 11973, USA
7
+ (Dated: January 13, 2023)
8
+ We report a broadband study of the charge dynamics in the van der Waals (vdW) magnetic
9
+ materials 2H-MxTaS2 (M = Mn and Co), which span the onset of both long-range antiferromagnetic
10
+ (AFM) and ferromagnetic (FM) order, depending on the intercalation M and its concentration x.
11
+ We discover a spectral weight (SW) shift from high to low energy scales for FM compositions, while
12
+ reversely SW is removed from low towards high spectral energies for AFM compounds. This maps
13
+ the related reconstruction of the electronic band structure along the crossover from the FM to AFM
14
+ order, which restores an occupation balance in the density of states between spin majority and
15
+ minority bands of the intercalated 3d elements.
16
+ Understanding the physical mechanism as well as
17
+ functionalities of van der Waals (vdW) heterostructures
18
+ and electronic/spintronic devices is at present a cen-
19
+ tral topic of the ongoing solid state physics research
20
+ activities [1].
21
+ In this context, Fe3GeTe2 and MnSe2
22
+ are prototype examples [2, 3] of two-dimensional vdW
23
+ magnets.
24
+ The discovery of such a long-range mag-
25
+ netism lately boosted the several decades long investiga-
26
+ tion of the (mostly non-magnetic) vdW transition-metal
27
+ dichalcogenides (TMDCs) with appropriate magnetic in-
28
+ tercalations.
29
+ This enlarges the fundamental studies of
30
+ low-dimensional magnetism and provides a platform for
31
+ questing the nature of the critical behaviour of the spin
32
+ interactions, ranging from Heisenberg and XY to Ising
33
+ type [1].
34
+ The TMDC materials of general formula TX2 (e.g.,
35
+ with T = Nb, Ta and X = Se, S) consist of layered-
36
+ like sandwiches held together by relatively weak forces
37
+ across the vdW gaps, within which intercalation may oc-
38
+ cur. The latter is notably accompanied by charge transfer
39
+ between the intercalated species and the host layer but
40
+ is not supposed to change the local bonding within the
41
+ sandwich layers, so that the electronic properties of the
42
+ host TMDC materials could be treated within the rigid-
43
+ band model and consequently be fine-tuned depending
44
+ on the effective d-bands filling. Such a controllable de-
45
+ gree of band filling seems to be a feature quite unique to
46
+ low-dimensional structures [4, 5].
47
+ In this work, we focus our attention on the 2H-MxTaS2
48
+ compounds with M = Co and Mn. While the possibil-
49
+ ity to intercalate TMDCs with magnetic 3d elements M,
50
+ exhibiting diverse magnetic properties, is known since
51
+ the eighties, their physical properties have been only ad-
52
+ dressed recently [6–8].
53
+ Any intercalation with atoms,
54
+ that tend to preserve local moment when embedded in a
55
+ metallic host, induces long range magnetic order [9, 10].
56
+ This is different from the simple charge transfer that oc-
57
+ curs upon intercalation of non-magnetic atom such as Pd
58
+ or Li, and which commonly perturbs the charge-density-
59
+ wave (CDW) and enhances superconductivity [11, 12].
60
+ The pristine 2H-TaS2 compound is in fact a familiar
61
+ CDW material [13] and the peculiarities with respect to
62
+ its broken-symmetry ground state are amply documented
63
+ in the literature. The (magnetic) Co and Mn intercala-
64
+ tion (Fig. S1 in Supplemental Material (SM) [14]), be-
65
+ sides removing the CDW transition, expands the vdW
66
+ gap of the 2H-MxTaS2 crystals along the c-axis (i.e., or-
67
+ thogonal to the layers) and should result in an electronic
68
+ doping via hybridization with atoms around the vdW
69
+ gap [8]. This induces a ferromagnetic (FM) state with
70
+ an easy-plane anisotropy in 2H-MnxTaS2 [7, 15–19]. For
71
+ Co-intercalation, ferromagnetism with strong uniaxial
72
+ anisotropy in 2H-Co0.22TaS2 [6] and a three-dimensional
73
+ antiferromagnetic (AFM) state in 2H-Co0.34TaS2 [20]
74
+ have been firmly established. The evolving FM to AFM
75
+ transition promoted by the Co-intercalation and the re-
76
+ lated sign-change of the ordinary Hall coefficient hint
77
+ to an electronic multi-band occurrence and its recon-
78
+ struction based on the magnetic ground state [8]. The
79
+ temperature-dependent electrical resistivity (ρ(T)) dis-
80
+ plays an overall metallic behaviour for all samples (Fig.
81
+ S2 in SM [14]). A clear kink in ρ(T), a weak anomaly
82
+ in thermal conductivity, as well as a slope change in
83
+ thermopower were yet observed at the magnetic transi-
84
+ tions for 2H-Mn0.28TaS2 (TC ∼ 82 K) and 2H-Co0.34TaS2
85
+ (TN ∼ 36 K), albeit weaker for crystals with lower con-
86
+ centration x [8].
87
+ From a spectroscopic point of view, these materials
88
+ are still not comprehensively scrutinised. Here, we inves-
89
+ tigate the temperature (T) dependence of the (in-plane)
90
+ absorption spectrum [21] over a broad spectral range of
91
+ both Co-and Mn-intercalated 2H-MxTaS2. 2H-CoxTaS2
92
+ harbour a distinct and reverse spectral weight (SW)
93
+ reshuffling with regard to the FM and AFM transition at
94
+ TC and TN, respectively. The overall optical response of
95
+ the FM Co-intercalated materials (i.e., x ≤ 0.22) copies
96
+ with the data collected on the Mn compositions, which all
97
+ refer to a FM state. We supply arguments, which favour
98
+ a reconstruction of the electronic band structure upon
99
+ crossing over from the FM to AFM order with increas-
100
+ Typeset by REVTEX
101
+ arXiv:2301.04898v1 [cond-mat.mtrl-sci] 12 Jan 2023
102
+
103
+ 2
104
+ ing Co-concentration, bearing testimony to the progres-
105
+ sive lifting of the occupation imbalance in the density of
106
+ states between spin majority and minority bands of the
107
+ intercalated 3d elements.
108
+ We launch first the survey about the T dependence of
109
+ the real part (σ1(ω)) of the optical conductivity, shown in
110
+ Figs. 1(a-c) for three selected Mn- and Co-concentration
111
+ in the energy interval spanning the far- (FIR), mid-
112
+ (MIR) and near- (NIR) infrared up to the visible spec-
113
+ tral ranges at 5 or 10 and 300 K. We refer to SM in
114
+ Ref. 14 for further details and additional data for other
115
+ concentrations. The selected compositions are particu-
116
+ larly pertinent, since they encompass both the FM and
117
+ AFM magnetic phase transitions for the Co-intercalation
118
+ and address a representative Mn compound towards its
119
+ FM one (Table I in SM [14]). There is a metallic Drude-
120
+ like component, which gets narrow as well as robust upon
121
+ lowering T (i.e., it generally gains SW, see below). It
122
+ merges into a broad and T-dependent MIR absorption
123
+ between 1000 and 3000 cm−1 [14].
124
+ In order to focus the discussion on the impact of
125
+ the magnetic phase transition on the electronic proper-
126
+ ties, we propose their phenomenological Drude-Lorentz
127
+ fit [14], which is singled out for the spectra at 5 or 10
128
+ and 300 K in Figs.
129
+ 1(a-c).
130
+ The chosen layout of the
131
+ collected data allows to emphasise the SW redistribu-
132
+ tion and its evolution as a function of T among the
133
+ Lorentz (Li, i = 1 to 9) harmonic oscillators (HO). In
134
+ general, SW of the optical conductivity corresponds to
135
+ its integral SW(T) = Z0
136
+ π2
137
+ � ω2
138
+ ω1 σ1(ω′; T)dω′, expressed in
139
+ units of cm−2 (Z0 = 376.73 Ω, being the impedance of
140
+ free space) [21]. ωi (i = 1 and 2) define the energy in-
141
+ terval, relevant for the SW estimation. Ahead, we al-
142
+ ternatively propose to identify specific energy intervals
143
+ via the phenomenological fit components, for which the
144
+ related SW corresponds to the square of the (Drude)
145
+ plasma frequency or of the (Lorentz) HO strength (i.e.,
146
+ ω2
147
+ p,Di or Ω2
148
+ j in Eq.
149
+ (S1) in SM [14]).
150
+ As elaborated
151
+ in SM [14], the metallic part of σ1(ω) necessitates of two
152
+ Drude terms for the Co-intercalated materials, thus spot-
153
+ ting the multiband nature of their electronic structure,
154
+ while the Mn-intercalated compositions feature a single
155
+ Drude component. The resulting global Drude SW (i.e.,
156
+ SW = �
157
+ i ω2
158
+ p,Di, i ranging over the number of contem-
159
+ plated Drude terms) will be anyhow at the centre of our
160
+ attention.
161
+ The main findings of our work are summarised in Fig.
162
+ 1(d-f). First, in all compounds the T dependence of the
163
+ plasma frequencies (Fig. S8 in SM [14]) is such that the
164
+ total Drude SW either barely changes or moderately in-
165
+ creases upon lowering T. For the Co-compositions, this
166
+ also pairs with an additional SW accumulating into the
167
+ high frequency tail of the purely metallic response (rep-
168
+ resented by HO L1, Figs. 1(b-c) and S7(b) in SM [14]).
169
+ Such an enhancement results from a shift of SW from
170
+ higher energy scales. For the Mn-compounds, the Drude
171
+ tail is given by the combination of HO L1 and L2 (Fig.
172
+ 1(a) and S7(a) in SM [14]), which equally suffer a SW
173
+ reordering among them and in favour of the Drude term.
174
+ The SW reshuffling affecting the Drude term and even-
175
+ tually its high-energy tail turns out though to be rather
176
+ residual, compared to the SW redistribution at higher
177
+ energies (as e.g. emphasised by the inset in Fig. 1(d)
178
+ as well as in Fig. S7(c) in SM [14]). Second and even
179
+ more relevant for our discussion, there is an opposite
180
+ and strong redistribution of SW between HO L2 and L3
181
+ depending on whether a FM or AFM transition (Figs.
182
+ 1(b-c)) takes place for the Co-intercalated compounds.
183
+ For the Co-concentration x = 0.22, HO L3 losses SW,
184
+ which merges almost totally in HO L2 upon crossing TC
185
+ (Fig. 1(e)). The trend in the SW removal and reallo-
186
+ cation across the FM transition as observed in the Co-
187
+ intercalated composition is similarly confirmed by the ob-
188
+ servations in the Mn-intercalated ones (e.g., for x = 0.09
189
+ and 0.19 in Fig. 1(d) and Fig. S7(c) in SM [14], respec-
190
+ tively). On the contrary, for the AFM Co-concentration
191
+ x = 0.34 we principally encounter a progressive and grad-
192
+ ual shift of SW from HO L2 towards HO L3 upon ap-
193
+ proaching TN from high T (Fig. 1(f)). An equivalent
194
+ incidence is observed for the x = 0.26 Co-intercalation
195
+ (Fig. S7(d) in SM [14]), so that the SW reshuffling for
196
+ the AFM transition is fully exploited and leans towards a
197
+ constant behaviour pattern below TN. Summarising, we
198
+ overall discern a mostly incremental SW redistribution
199
+ at FIR and MIR-NIR energy intervals upon approaching
200
+ the magnetic phase transition from high T, which then
201
+ tends to saturate into the magnetic state (i.e., at T < TN
202
+ or TC). Additionally, a change of slope in ∆SW(T) is ob-
203
+ served in all compositions at T ranging between ∼ 100
204
+ and 250 K. This is noted by T ∗ (black arrows in Figs.
205
+ 1(d-f) and S7(c-d) in SM [14]).
206
+ The resulting kink in
207
+ ∆SW(T) is smooth in the Mn-intercalated materials and
208
+ rather abrupt and sudden in the Co-ones (at least for x
209
+ = 0.22 (Fig. 1(e)) and 0.26 (Fig. S7(d) in SM [14]) and
210
+ somehow stepwise for x = 0.34 (Fig. 1(f)). These ob-
211
+ servations fairly agree with similar findings (as kink or
212
+ upturn around T ∗) in the measured T dependence of the
213
+ in-plane thermopower and total thermal conductivity as
214
+ well as Hall resistivity [8]. The origin of these peculiari-
215
+ ties and their link to the advanced multiband nature of
216
+ these materials need to be better understood, as offered
217
+ here from the optical perspective.
218
+ The SW distribution and its evolution upon crossing
219
+ TC or TN seems to be a common property for both Co
220
+ or Mn intercalations and is exclusively driven by the tar-
221
+ geted, final magnetic state (i.e., independent of the el-
222
+ ement choice). Moreover, the encountered shift of SW
223
+ occurs at FIR-MIR energy scales up to the NIR spectral
224
+ range, while at visible and ultra-violet frequencies SW is
225
+ constant at any T (grey shaded areas in Figs. 1(a-c) and
226
+ Figs. S7(a-b) in SM [14]). This also means that the full
227
+ recovery of SW is achieved at about 1 eV. Nonetheless,
228
+ the opposite SW allocation discovered upon lowering T
229
+ through either a FM or AFM transition (see rounded ar-
230
+ rows in Figs. 1(a-c) and Figs. S7(a-b) in SM [14]) calls
231
+ for a yet different reconstruction of the related electronic
232
+
233
+ 3
234
+ Temperature (K)
235
+ 0
236
+ 100
237
+ 200
238
+ 300–6
239
+ –4
240
+ –2
241
+ 0
242
+ 2
243
+ 4
244
+ 6
245
+ ΔSW(T) [×107 (cm)-2]
246
+ Co0.34TaS2
247
+ Drude
248
+ L1
249
+ L2
250
+ L3
251
+ (f)
252
+ –12
253
+ –8
254
+ –4
255
+ 0
256
+ 4
257
+ 8
258
+ 12
259
+ ΔSW(T) [×107 (cm)-2]
260
+ Co0.22TaS2
261
+ Drude
262
+ L1
263
+ L2
264
+ L3
265
+ (e)
266
+ 101
267
+ 102
268
+ 103
269
+ 104
270
+ 0
271
+ 3
272
+ 6
273
+ Frequency (cm-1)
274
+ σ1(ω) [×103 (Ωcm)-1]
275
+ Co0.34TaS2 (TN = 36 K)
276
+ 10 K
277
+ Fit 10 K
278
+ 300 K
279
+ Fit 300 K
280
+ L1
281
+ L2
282
+ L3
283
+ Drude
284
+ L4-9
285
+ (c)
286
+ 0
287
+ 2
288
+ 4
289
+ 6
290
+ σ1(ω) [×103 (Ωcm)-1]
291
+ Co0.22TaS2 (TC = 26 K)
292
+ 10 K
293
+ Fit 10 K
294
+ 300 K
295
+ Fit 300 K
296
+ (b)
297
+ Drude
298
+ L1
299
+ L2
300
+ L3
301
+ L4-9
302
+ –2
303
+ –1
304
+ 0
305
+ 1
306
+ 2
307
+ ΔSW(T) [×107 (cm)-2]
308
+ Mn0.09TaS2
309
+ Drude
310
+ L1
311
+ L2
312
+ L3-L4
313
+ L5-L6
314
+ (d)
315
+ 0
316
+ 100 200 300
317
+ –0.04
318
+ 0
319
+ 0.04
320
+ 10–2
321
+ 10–1
322
+ 100
323
+ 0
324
+ 1
325
+ σ1(ω) [×103 (Ωcm)-1]
326
+ Mn0.09TaS2 (TC = 11 K)
327
+ 5 K
328
+ Fit 5 K
329
+ 300 K
330
+ Fit 300 K
331
+ (a)
332
+ Energy (eV)
333
+ Drude L1
334
+ L2
335
+ L3
336
+ L4
337
+ L5
338
+ L6
339
+ L7-9
340
+ Figure 1. (a-c) In-plane σ1(ω) below 4×104 cm−1 (1 eV = 8.06548×103 cm−1, please note the logarithmic energy scale) at
341
+ 5 or 10 and 300 K together with their respective total Drude-Lorentz fit (thick dashed line) after Eq. S1 in SM [14], and
342
+ (d-f) T dependence of the SW relative variation with respect to 300 K, i.e., ∆SW(T) = SW(T) − SW(300 K) for selected
343
+ fit components (see legend in panels (a-c)) of 2H-MxTaS2 (M = Mn and Co): (a,d) x = 0.09 (FM) Mn-concentration, and
344
+ (b,e) x = 0.22 (FM) as well as (c,f) x = 0.34 (AFM) Co-concentration. Panels (a-c) explicitly show all fit components: the
345
+ total Drude and Lorentz (Li, i = 1 to 9) HOs [14]. The coloured shaded areas emphasise SW encountered by each component
346
+ (reddish and blueish colours refer to 300 and 5 or 10 K, respectively, while the grey shaded area corresponds to SW being
347
+ T-independent). The rounded arrows in panels (a-c) highlight the direction in energy of the SW reshuffling upon lowering T,
348
+ which is stronger with thicker arrows. The inset in panel (d) is a blow-up of ∆SW for the total Drude term and HOs L1 and
349
+ L2. The vertical dashed and dotted lines in panels (d-f) mark TC and TN (see Table I in SM [14]), respectively. The error bars
350
+ in ∆SW(T) correspond to the direct propagation of the error in the HOs strength, estimated numerically within the non-linear
351
+ least-squares fit technique. The vertical black arrows in panels (d-f) indicate T ∗, as the onset of the faster ∆SW(T) variation
352
+ upon lowering T. Additional data with similar analysis are available in Fig. S7 in SM [14].
353
+ band structure, upon which we wish to argue for the rest
354
+ of our paper.
355
+
356
+ 4
357
+ EF
358
+ E
359
+ DOS
360
+ DOS
361
+ FM
362
+ AFM
363
+ MIR-NIR
364
+ energy scales
365
+ FIR
366
+ energy scales
367
+ Figure 2. Proposal for DOS particularly emphasising the in-
368
+ terband transitions grouping around the characteristic FIR
369
+ energy scales of 0.05-0.2 eV (i.e., between the blue bands)
370
+ and MIR-NIR ones of 0.3-0.5 eV (i.e., between the red bands).
371
+ The trend in the related transition probability (i.e., SW re-
372
+ distribution of the proposed interband excitations) is indi-
373
+ cated by the arrows thickness (violet vertical arrows for the
374
+ FM state and green vertical arrows for the AFM state). The
375
+ colour code of the arrows is in accord with the convention
376
+ used for the SW reshuffling in the AFM and FM state of
377
+ Figs. 1(a-c) and Figs. S7(a-b) in SM [14].
378
+ Figure 2 schematically depicts the density-of-states
379
+ (DOS), factual for the alleged progression of the inter-
380
+ band transition probability upon lowering T across the
381
+ FM and AFM transitions. The charge dynamics and the
382
+ evolution of its stored SW convey the presence of in-
383
+ terband transitions grouping within two distinct spectral
384
+ intervals, i.e., at FIR resonance energies between 50 and
385
+ 200 meV (i.e., involving the blue bands in Fig.
386
+ 2) as
387
+ well as at MIR-NIR ones between 300 and 500 meV (i.e.,
388
+ involving the red bands in Fig.
389
+ 2).
390
+ These ranges are
391
+ described by the combination of HOs L3-L4 and L5-L6
392
+ for the Mn-intercalated material and L2 and L3 for the
393
+ Co-intercalated compositions (Figs. 1(a-c)), respectively.
394
+ The thickness of the coloured (vertical) arrows in Fig. 2
395
+ mimics the strength (i.e., SW) of those two possible in-
396
+ terband transitions, which alike discriminate between the
397
+ two magnetic states. Below TN, the (convoluted) MIR-
398
+ NIR transition is stronger than the lower FIR one, while
399
+ the opposite seems to apply below TC.
400
+ The characteristic ingredients pertinent to the recon-
401
+ struction of the electronic band structure, depicted in
402
+ Fig. 2 and then driving the SW redistribution observed
403
+ in σ1(ω) (Fig. 1 and Fig. S7 in SM [14]), embrace several
404
+ findings and achieved knowledge on related, sister mate-
405
+ rials. First of all and from a general perspective, the FM
406
+ state in both Mn- and Co-intercalated 2H-TaS2 has been
407
+ tentatively reconciled within a Ruderman-Kittel-Kasuya-
408
+ Yosida interaction scenario [6–8], in which the local spins
409
+ of intercalated Mn and Co ions align ferromagnetically
410
+ through the itinerant Ta 5d electrons, as initially pro-
411
+ posed for the related Co-intercalated 2H-NbS2 material
412
+ [22].
413
+ Further, it is speculated that Co atoms tend to
414
+ hybridise more strongly with the electronic states associ-
415
+ ated with covalently bonded structural subunit (i.e., Ta
416
+ and S) when intercalated in the vdW gap. By enlarg-
417
+ ing the Co concentration, this leads to a suppression of
418
+ the spontaneous magnetic moment and to a stronger ten-
419
+ dency for AFM exchange coupling parameters [8, 23].
420
+ Along this line of thoughts, the FM to AFM crossover,
421
+ hither studied upon changing the intercalation and con-
422
+ tingently the concentration of the intercalated Co atom,
423
+ can be also achieved after two alternative ways: either
424
+ by differentiating the element-intercalation at given con-
425
+ centration or by applying pressure on a selected inter-
426
+ calated compound. It is experimentally known that the
427
+ structurally equivalent 2H-NbS2 compound [24], inter-
428
+ calated with 3d elements Cr, Mn and Fe for the con-
429
+ centration 1/3, exhibits a variety of magnetic states,
430
+ (roughly) classified as FM for the Cr and similarly Mn
431
+ materials [20, 25–27] and as AFM for the Fe composi-
432
+ tion [20, 28, 29].
433
+ The first-principles electronic band
434
+ structure calculations that have been performed us-
435
+ ing the fully relativistic Korringa-Kohn-Rostoker Green
436
+ function method [30] have pointed out the complex-
437
+ ity of their magnetic ordering.
438
+ For Cr1/3NbS2 and
439
+ Mn1/3NbS2, the in-plane magnetocrystalline anisotropy
440
+ and Dzyaloshinskii-Moriya interactions give rise to a heli-
441
+ magnetic structure along the c-axis, following the experi-
442
+ mental observations [25, 26]. On the other hand, the neg-
443
+ ative exchange interactions in the Fe1/3NbS2 compound
444
+ result in a noncollinear frustrated magnetic structure if
445
+ the magnetocrystalline anisotropy is not taken into ac-
446
+ count. However, a strong magnetocrystalline anisotropy
447
+ along the c-axis does lead to a magnetic state referred to
448
+ as an ordering of the third kind, which was indeed deter-
449
+ mined experimentally [20, 28, 29]. This may be pinned
450
+ down to the diverse DOS with respect to the magnetic
451
+ state in these series of compounds. For all compounds,
452
+ DOS is rather large for the majority-spin states at the
453
+ Fermi energy (EF ). In the case of minority-spin states of
454
+ Cr1/3NbS2 and Mn1/3NbS2, one can however observe a
455
+ pseudogap between the occupied and unoccupied states
456
+ [23, 30]. Such an imbalance then leads to the FM ground
457
+ state.
458
+ In the case of Fe1/3NbS2, EF is located at the
459
+ DOS maximum corresponding to the Fe minority-spin d
460
+ states. DOS is thus finite for both spin directions, which
461
+ facilitates an AFM ground state [30]. This latter trend
462
+ is reflected in the isotropic exchange coupling parameter
463
+ for the three compositions, which is predominantly posi-
464
+ tive for the Cr and Mn compounds (i.e., promoting FM)
465
+ but negative (i.e., leading to AFM) for Fe-Fe interactions
466
+ at short distance [30].
467
+ In turn, one can induce the crossover from the FM to
468
+
469
+ 5
470
+ AFM state in Mn1/4NbS2 upon applying pressure [31].
471
+ This possibility is instrumental, in order to better jus-
472
+ tify and support our schematic proposal in Fig. 2. Fo-
473
+ cusing the attention on the spin-resolved DOS on Mn
474
+ sites, which is foremost contributed by the d-orbitals, the
475
+ majority-spin states are almost occupied around both the
476
+ Γ and K points in the Brillouin zone at ambient pressure,
477
+ while the minority-spin states, essentially around the K
478
+ point of the Brillouin zone, are unoccupied. This favors
479
+ FM and further implies a dominating hole-type charac-
480
+ ter of the electric carriers and a positive slope of the Hall
481
+ resistivity [31]. Interband transitions within the FIR en-
482
+ ergy interval (so roughly peaked at 100 meV) are fore-
483
+ seen from the electronic band structure at both Γ and
484
+ K points of the Brillouin zone [31] and should play the
485
+ most prominent role in σ1(ω). Figure 2 catches a glimpse
486
+ of such a trim for our FM compositions (Figs.
487
+ 1(a-b)
488
+ and S7(a) in SM [14]). Conversely, the pressure increase
489
+ results in the broadening of the energy bands, which
490
+ premises an occupation of the bottom of the minority-
491
+ spin states (having mainly dx2−y2 and dxy character)
492
+ and a draining of the top of minority-spin states (pri-
493
+ marily of dxzand dyz character) at the K point of the
494
+ Brillouin zone in Mn1/4NbS2 [31]. This is accompanied
495
+ by a decrease of the exchange splitting of the majority-
496
+ and minority-spin d-states of Mn, which potentially turns
497
+ negative for the first neighbour interaction, as the prereq-
498
+ uisite for an AFM alignment of the magnetic moments
499
+ in the absence of any other interactions. In fact, such
500
+ a setting is translated into an electron-like character of
501
+ the ordinary Hall effect [31]. By inspecting the result-
502
+ ing electronic band structure in the AFM state [31], we
503
+ recognise the most cogent consequence for the excitation
504
+ spectrum: namely, low energy FIR interband transitions
505
+ are less probable, while the probability for high energy
506
+ ones at MIR and NIR frequencies (i.e., settled around
507
+ 400 meV) increases sensitively, as evinced in σ1(ω) (Figs.
508
+ 1(c) and S7(b) in SM [14]) and as also sketched in Fig.
509
+ 2 for our case. Therefore, we claim that the band recon-
510
+ struction in Mn1/4NbS2 upon applying pressure is imple-
511
+ mentable to 2H-CoxTaS2 with respect to the FM-AFM
512
+ crossover as a function of x, as backed up by the same
513
+ sign-change of the ordinary Hall coefficient upon varying
514
+ the magnetic ground state [8, 31].
515
+ In conclusion, the charge dynamics of 2H-MxTaS2 (M
516
+ = Mn and Co) allows to determine a distinct SW re-
517
+ distribution and to shed light on the relevant energy
518
+ scales shaping the reconstruction of the electronic band
519
+ structure upon crossing over from the FM to AFM order
520
+ with varying intercalation (i.e., element and/or its con-
521
+ centration). Our spectroscopic findings seem to be con-
522
+ sistent with dedicated first-principles calculations upon
523
+ tuning element-intercalation, pressure and/or magnetic
524
+ field on similar intercalated materials. The applicability
525
+ of the proposed comparison is validated by the fact, that
526
+ the quoted calculations do tackle the impact of (similar)
527
+ magnetic transitions on the electronic band structure of
528
+ equivalent materials, seemingly reflected in the charge
529
+ dynamics of our compositions, too.
530
+ Summing up, the significance of this work consists
531
+ in the first instance in the systematic investigation of
532
+ 2H-TaS2 with different intercalations and across distinct
533
+ magnetic transitions, hence widening out a previous,
534
+ more restricted attempt [32] and possibly challenging the
535
+ so far broadly accepted implementation of the rigid-band
536
+ model.
537
+ Moreover, since the continuous change of the
538
+ dominant magnetic exchange controls the FM to AFM
539
+ switching and being its impact mapped onto the easily
540
+ accessible FIR-MIR-NIR spectral range, one may exploit
541
+ our straightforward (broadband) experimental tool also
542
+ as a function of alternative tuneable variables than
543
+ chemical-intercalation, which would thoroughly flash on
544
+ the overall consistency of the emerging physical picture.
545
+ Finally, the present work demonstrates a feasible route
546
+ towards understanding magnetism in low dimensions
547
+ and may help in revealing robust properties, relevant
548
+ for the development of low-power spin-logic circuits
549
+ from layered materials [6]. The possibility of integration
550
+ of FM is generally of interest for spintronics, so that
551
+ novel fabrication of low-dimensional heterostructures
552
+ might be envisaged and motivated, as well; the few-layer
553
+ graphene/2H-TaS2 heterostructures with robust spin-
554
+ helical state [33] is already a promising development
555
+ and the recent discovery of one-dimensional vdW (yet
556
+ non magnetic) heterostructures [34] and multi-walled
557
+ 2H-TaS2 nanotubes [35] may open new avenues. Since
558
+ exotic phenomena such as skyrmions and magnetic
559
+ solitons [36, 37] were recently discovered in 2H-TaS2-
560
+ based vdW magnets, our results may therefore help to
561
+ efficiently tune their properties for further applications.
562
+ ACKNOWLEDGEMENTS
563
+ Work at Brookhaven National Laboratory was sup-
564
+ ported by the U.S. Department of Energy, Office of
565
+ Basic Energy Science, Division of Materials Science
566
+ and Engineering, under Contract No.
567
+ DE-SC0012704
568
+ (materials synthesis).
569
+ † Authors M.C. and R.Y. contributed equally to the
570
+ work.
571
+ ‡ Present address: Los Alamos National Laboratory,
572
+ Los Alamos, New Mexico 87545
573
+ ∗ Correspondence and requests for materials should be
574
+ addressed to: L. Degiorgi, Laboratorium f¨ur Festk¨orper-
575
+ physik, ETH - Z¨urich, 8093 Z¨urich, Switzerland; email:
576
+ degiorgi@solid.phys.ethz.ch.
577
+
578
+ 6
579
+ [1] W. Zhang, P. K. J. Wong, R. Zhu,
580
+ and A. T. S. Wee,
581
+ InfoMat 1, 479 (2019).
582
+ [2] Y. Deng, Y. Yu, Y. Song, J. Zhang, N. Z. Wang, Z. Sun,
583
+ Y. Yi, Y. Z. Wu, S. Wu, J. Zhu, J. Wang, X. H. Chen,
584
+ and Y. Zhang, Nature 563, 94 (2018).
585
+ [3] D. J. O’Hara, T. Zhu, A. H. Trout, A. S. Ahmed, Y. K.
586
+ Luo, C. H. Lee, M. R. Brenner, S. Rajan, J. A. Gupta,
587
+ D. W. McComb, and R. K. Kawakami, Nano Letters 18,
588
+ 3125 (2018).
589
+ [4] S. S. P. Parkin and R. H. Friend, Philosophical Magazine
590
+ B 41, 65 (1980).
591
+ [5] R. Friend and A. Yoffe, Advances in Physics 36, 1 (1987).
592
+ [6] Y. Liu, Z. Hu, E. Stavitski, K. Attenkofer, and C. Petro-
593
+ vic, Phys. Rev. Research 3, 023181 (2021).
594
+ [7] Y. Liu, Z. Hu, E. Stavitski, K. Attenkofer, and C. Petro-
595
+ vic, Phys. Rev. B 103, 144432 (2021).
596
+ [8] Y. Liu, Z. Hu, X. Tong, E. D. Bauer, and C. Petrovic,
597
+ Phys. Rev. Research 4, 013048 (2022).
598
+ [9] C. Zhang, J. Zhang, C. Liu, S. Zhang, Y. Yuan, P. Li,
599
+ Y. Wen, Z. Jiang, B. Zhou, Y. Lei, D. Zheng, C. Song,
600
+ Z. Hou, W. Mi, U. Schwingenschl¨ogl, A. Manchon, Z. Q.
601
+ Qiu, H. N. Alshareef, Y. Peng,
602
+ and X.-X. Zhang, Ad-
603
+ vanced Materials 33, 2101131 (2021).
604
+ [10] T. Hatanaka, T. Nomoto,
605
+ and R. Arita,
606
+ (2022),
607
+ 10.48550/ARXIV.2210.07740.
608
+ [11] D. Bhoi, S. Khim, W. Nam, B. S. Lee, C. Kim, B. G.
609
+ Jeon, B. H. Min, S. Park,
610
+ and K. H. Kim, Scientific
611
+ Reports 6, 24068 (2016).
612
+ [12] H. Liu, S. Huangfu, X. Zhang, H. Lin, and A. Schilling,
613
+ Phys. Rev. B 104, 064511 (2021).
614
+ [13] J. M. E. Harper, T. H. Geballe, and F. J. DiSalvo, Phys.
615
+ Rev. B 15, 2943 (1977).
616
+ [14] See Supplemental Material at [URL will be inserted
617
+ by publisher] for additional information on the samples
618
+ growth and properties, experimental techniques and data
619
+ analysis, which includes the additional Refs. 38–40.
620
+ [15] H. Hinode, T. Ohtani, and M. Wakihara, Journal of Solid
621
+ State Chemistry 114, 1 (1995).
622
+ [16] Y. Onuki, K. Ina, T. Hirai, and T. Komatsubara, Journal
623
+ of the Physical Society of Japan 55, 347 (1986).
624
+ [17] L. Li, W. Lu, X. Zhu, X. Zhu, Z. Yang, W. Song,
625
+ and
626
+ Y. Sun, Journal of Magnetism and Magnetic Materials
627
+ 323, 2536 (2011).
628
+ [18] P. Shand, C. Cooling, C. Mellinger, J. Danker, T. Kidd,
629
+ K. Boyle,
630
+ and L. Strauss, Journal of Magnetism and
631
+ Magnetic Materials 382, 49 (2015).
632
+ [19] H. Zhang, W. Wei, G. Zheng, J. Lu, M. Wu, X. Zhu,
633
+ J. Tang, W. Ning, Y. Han, L. Ling, J. Yang, W. Gao,
634
+ Y. Qin,
635
+ and M. Tian, Applied Physics Letters 113,
636
+ 072402 (2018).
637
+ [20] B. Van Laar, H. Rietveld, and D. Ijdo, Journal of Solid
638
+ State Chemistry 3, 154 (1971).
639
+ [21] M. Dressel and G. Gruner, Electrodynamics of Solids
640
+ (Cambridge University Press, Cambridge, 2002).
641
+ [22] N. Bariˇsi´c, I. Smiljani´c, P. Popˇcevi´c, A. Biluˇsi´c, E. Tutiˇs,
642
+ A. Smontara, H. Berger, J. Ja´cimovi´c, O. Yuli,
643
+ and
644
+ L. Forr´o, Phys. Rev. B 84, 075157 (2011).
645
+ [23] S. Polesya, S. Mankovsky, and H. Ebert, Zeitschrift f¨ur
646
+ Naturforschung B 74, 91 (2019).
647
+ [24] 2H-TaS2 and 2H-NbS2 share the same P6322 space group
648
+ [8, 14, 23]. Since Ta and Nb belong to the same chemi-
649
+ cal group, it is reasonable to expect that their electronic
650
+ band structure will be equivalent, beyond the band fill-
651
+ ing.
652
+ [25] F. Hulliger and E. Pobitschka, Journal of Solid State
653
+ Chemistry 1, 117 (1970).
654
+ [26] T. Miyadai, K. Kikuchi, H. Kondo, S. Sakka, M. Arai,
655
+ and Y. Ishikawa, Journal of the Physical Society of Japan
656
+ 52, 1394 (1983).
657
+ [27] Y. Kousaka, Y. Nakao, J. Kishine, M. Akita, K. Inoue,
658
+ and J. Akimitsu, Nuclear Instruments and Methods in
659
+ Physics Research Section A: Accelerators, Spectrometers,
660
+ Detectors and Associated Equipment 600, 250 (2009).
661
+ [28] O. Gorochov, A. L. Blanc-soreau, J. Rouxel, P. Im-
662
+ bert,
663
+ and G. Jehanno, Philosophical Magazine B 43,
664
+ 621 (1981).
665
+ [29] Y. Yamamura, S. Moriyama, T. Tsuji, Y. Iwasa, M. Koy-
666
+ ano, S. Katayama,
667
+ and M. Ito, Journal of Alloys and
668
+ Compounds 383, 338 (2004), proceedings of the 14th In-
669
+ ternational Conference on Solid Compounds of Transi-
670
+ tion Elements (SCTE 2003).
671
+ [30] S. Mankovsky, S. Polesya, H. Ebert,
672
+ and W. Bensch,
673
+ Phys. Rev. B 94, 184430 (2016).
674
+ [31] S. Polesya, S. Mankovsky, H. Ebert, P. G. Naumov, M. A.
675
+ ElGhazali, W. Schnelle, S. Medvedev, S. Mangelsen, and
676
+ W. Bensch, Phys. Rev. B 102, 174423 (2020).
677
+ [32] W. Z. Hu, G. T. Wang, R. Hu, C. Petrovic, E. Morosan,
678
+ R. J. Cava, Z. Fang, and N. L. Wang, Phys. Rev. B 78,
679
+ 085120 (2008).
680
+ [33] L. Li, J. Zhang, G. Myeong, W. Shin, H. Lim, B. Kim,
681
+ S. Kim, T. Jin, S. Cavill, B. S. Kim, C. Kim, J. Lischner,
682
+ A. Ferreira, and S. Cho, ACS Nano, ACS Nano 14, 5251
683
+ (2020).
684
+ [34] R. Xiang, T. Inoue, Y. Zheng, A. Kumamoto, Y. Qian,
685
+ Y. Sato,
686
+ M. Liu,
687
+ D. Tang,
688
+ D. Gokhale,
689
+ J. Guo,
690
+ K. Hisama,
691
+ S. Yotsumoto,
692
+ T. Ogamoto,
693
+ H. Arai,
694
+ Y.
695
+ Kobayashi,
696
+ H.
697
+ Zhang,
698
+ B.
699
+ Hou,
700
+ A.
701
+ Anisimov,
702
+ M. Maruyama, Y. Miyata, S. Okada, S. Chiashi, Y. Li,
703
+ J. Kong, E. I. Kauppinen, Y. Ikuhara, K. Suenaga, and
704
+ S. Maruyama, Science 367, 537 (2020).
705
+ [35] P. Li, C. L. Stender, E. Ringe, L. D. Marks, and T. W.
706
+ Odom, Small 6, 1096 (2010).
707
+ [36] C.-H. Zhang, H. Algaidi, P. Li, Y. Yuan,
708
+ and X.-X.
709
+ Zhang, Rare Metals 41, 3005 (2022).
710
+ [37] G. Zheng, M. Wang, X. Zhu, C. Tan, J. Wang, S. Al-
711
+ barakati, N. Aloufi, M. Algarni, L. Farrar, M. Wu,
712
+ Y. Yao, M. Tian, J. Zhou, and L. Wang, Nature Com-
713
+ munications 12, 3639 (2021).
714
+ [38] W. Z. Hu, G. Li, J. Yan, H. H. Wen, G. Wu, X. H. Chen,
715
+ and N. L. Wang, Phys. Rev. B 76, 045103 (2007).
716
+ [39] L. Z. Maulana, Z. Li, E. Uykur, K. Manna, S. Polatkan,
717
+ C. Felser, M. Dressel, and A. V. Pronin, Phys. Rev. B
718
+ 103, 115206 (2021).
719
+ [40] M. Corasaniti, R. Yang, K. Sen, K. Willa, M. Merz, A. A.
720
+ Haghighirad, M. Le Tacon, and L. Degiorgi, Phys. Rev.
721
+ B 102, 161109 (2020).
722
+
FNE4T4oBgHgl3EQfGwzZ/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
GNE1T4oBgHgl3EQfrAVQ/content/tmp_files/2301.03349v1.pdf.txt ADDED
@@ -0,0 +1,957 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+
3
+ Choosing statistical models to assess biological interaction as a
4
+ departure from additivity of effects
5
+
6
+ David M. Thompson, Yan Daniel Zhao
7
+
8
+ Abstract
9
+
10
+ Vanderweele and Knol define biological interaction as an instance wherein “two exposures
11
+ physically interact to bring about the outcome.” A hallmark of biological interaction is that the
12
+ total effect, produced when factors act together, differs from the sum of effects when the factors
13
+ operate independently.
14
+
15
+ Epidemiologists construct statistical models to assess biological interaction. The form of the
16
+ statistical model determines whether it is suited to detecting departures from additivity of effects
17
+ or for detecting departures from multiplicativity of effects. A consensus exists that biological
18
+ interaction should be assessed as a departure from additivity of effects.
19
+
20
+ This paper compares three statistical models’ assessment of a data example that appears in
21
+ several epidemiology textbooks to illustrate biological interaction in a binomial outcome. A
22
+ linear binomial model quantifies departure from additivity in the data example in terms of
23
+ differences in probabilities. It generates directly interpretable estimates and 95% confidence
24
+ intervals for parameters including the interaction contrast (IC). Log binomial and logistic
25
+ regression models detect no departure from multiplicativity in the data example. However, their
26
+ estimates contribute to calculation of a “Relative Excess Risk Due to Interaction” (RERI), a
27
+ measure of departure from additivity on a relative risk scale.
28
+
29
+ The linear binomial model directly produces interpretable assessments of departures from
30
+ additivity of effects and deserves wider use in research and in the teaching of epidemiology.
31
+ Strategies exist to address the model’s limitations.
32
+
33
+
34
+ Key Words: additivity and multiplicativity of effects; biological interaction; statistical
35
+ interaction; generalized linear models; interaction contrast (IC); Relative Excess Risk Due to
36
+ Interaction (RERI)
37
+
38
+ __________________________________________________________________________
39
+
40
+
41
+
42
+
43
+ 2
44
+
45
+ Key Messages
46
+ • A consensus exists in epidemiology, and is reflected in the STROBE statement, that
47
+ biological interaction should be assessed as a departure from additivity of effects.
48
+ • The log binomial and logistic regression models are widely used in epidemiology to
49
+ assess biological interaction, even though their statistical forms suit them for detecting
50
+ departures from multiplicativity of effects.
51
+ • The log binomial and logistic regression models can quantify departures from additivity,
52
+ on a relative risk scale, by estimating statistics like the Relative Excess Risk Due to
53
+ Interaction (RERI). However, the RERI is not directly interpretable as excess risk, and
54
+ inference (estimation and hypothesis testing) for the RERI are complicated.
55
+ • The linear model binomial model, which can be estimated using available software for
56
+ generalized linear models, directly estimates the interaction contrast (IC), which is
57
+ interpretable as excess risk.
58
+ • The linear binomial model deserves wider use in research and in the teaching of
59
+ epidemiology.
60
+
61
+
62
+
63
+
64
+ 3
65
+
66
+ Biological interaction and statistical interaction
67
+ Hypotheses related to biological interaction are often of interest in studies of clinical or
68
+ population health. Vanderweele and Knol [1 (p. 54)] define biological interaction as an instance
69
+ in which “two exposures physically interact to bring about the outcome.” Rothman [2 (p. 171)]
70
+ states that “biologic interaction between two causes occurs whenever the effect of one is
71
+ dependent on the presence of the other.”
72
+
73
+ Investigators construct statistical models to detect interaction and effect modification. Rothman
74
+ [2 (p.169)] points out that “in statistics, the term ‘interaction’ is used to refer to departure from
75
+ the underlying form of a statistical model.” A model’s form can suit it for detecting departures
76
+ from additivity of effects or for detecting departures from multiplicativity of effects. Because a
77
+ statistical model’s form affects the interpretation of statistical interaction, Rothman [2 (p.170)]
78
+ prefers the term “effect measure modification” to interaction.
79
+
80
+ Rothman links “biological independence” with an additivity of effects and connects “biological
81
+ interaction” with a departure from an additivity of effects. “Why is it,” Rothman asks, “that
82
+ biological interaction should be evaluated as departures from additivity of effect” [2 (p.178)]?
83
+ By 2007, the STROBE statement regarded the response to Rothman’s rhetorical question to
84
+ reflect a “consensus that the additive scale, which uses absolute risks, is more appropriate [than
85
+ the multiplicative scale] for public health and clinical decision making” [3 (p.817)]. The authors
86
+ of the STROBE statement remind investigators that “in many circumstances, the absolute risk
87
+ associated with an exposure is of greater interest than the relative risk” and ask them to “consider
88
+
89
+ 4
90
+
91
+ translating estimates of relative risk into absolute risk for a meaningful time period” [3 (p.825)].
92
+ Vanderweele and Knol [1 (p. 37)] remark, more pointedly, that “one reason why additive
93
+ interaction is important to assess (rather than only relying on multiplicative interaction measures)
94
+ is that it is the more relevant public health measure.”
95
+
96
+ Additivity and multiplicativity of effects
97
+
98
+ This paper aligns with this consensus but avoids using the term “additive interaction.” Instead, it
99
+ links the concept to statistical models that assess evidence of a departure from additivity of
100
+ effects. One such model, the “binomial model for the risk difference” [4], directly quantifies
101
+ departures from additivity of effects in terms of differences in probabilities, including the
102
+ interaction contrast (IC). This model is also called the “binomial regression model” [5, 6].
103
+ Richardson et al. [7], who employ it as a final step in a marginal structural model, call it the
104
+ “linear binomial model,” the term we will use.
105
+
106
+ In the linear binomial model, detection of statistical interaction constitutes direct evidence of a
107
+ departure from additivity of effects. The log binomial and logistic regression models can also
108
+ assess additivity indirectly, when their estimates of relative risks or odds ratios are recombined to
109
+ calculate statistics like the “Relative Excess Risk due to Interaction” (RERI).
110
+
111
+ The paper also avoids using the term “multiplicative interaction” but links that concept to
112
+ statistical models that assess evidence of departures from multiplicativity of effects. Log
113
+ binomial models estimate effects in terms of relative risks, also called risk ratios, prevalence
114
+
115
+ 5
116
+
117
+ ratios [4,7] or prevalence proportion ratios. Logistic regression models estimate effects in terms
118
+ of odds and odds ratios. In the log binomial and logistic models, which employ log
119
+ transformations of probabilities or of their corresponding odds, detection of statistical interaction
120
+ constitutes direct evidence of a departure from multiplicativity among effects.
121
+
122
+ Statistical models for binomial outcomes
123
+
124
+ The linear binomial, log binomial and logistic regression models are all examples of generalized
125
+ linear models. Each treats the outcome as arising from a binomial distribution. Each features a
126
+ linear predictor structured as a sum of terms. In this regard, all generalized linear models might
127
+ be considered “additive.” Accordingly, this paper does not refer to “additive or multiplicative
128
+ models” but refers instead to statistical models that assess additivity or multiplicativity of effects.
129
+
130
+ All three models link a binomial outcome to a linear predictor. They are distinguished by the link
131
+ functions they employ. The linear binomial model uses the identity link, the log binomial model
132
+ uses the log link, and the logistic regression model uses the logit link. Thus, the linear binomial
133
+ model operates directly on probabilities, while the others apply log transformations of the
134
+ probabilities or of their corresponding odds. Because each model estimates a different effect
135
+ measure, they differ in their ability to detect statistical interaction in a collection of data.
136
+
137
+ After reviewing the definition of additivity of effects, we compare the three statistical models
138
+ using a widely cited example of biological interaction [8]. The linear binomial model detects
139
+ statistical interaction in these data. The log binomial and logistic regression models, which
140
+
141
+ 6
142
+
143
+ assess multiplicativity of relative risks or of odds ratios, find no evidence of statistical
144
+ interaction. The absence of statistical interaction in these models does not point to an absence of
145
+ biological interaction, but to a lack of departure from multiplicativity of effects.
146
+
147
+ We conclude by summarizing the three models’ advantages and limitations for assessing
148
+ additivity of effects. The RERI is commonly used in epidemiologic research to quantify
149
+ departures from additivity despite complications in its estimation, testing and interpretation. In
150
+ comparison, the linear binomial model produces readily interpretable estimates of effects,
151
+ including the interaction contrast.
152
+
153
+ Defining additivity of effects
154
+ Consider a comparison of the probability or “risk” of an outcome Y among individuals who are
155
+ exposed or not exposed to one or both of two “risk factors,” X and Z. Then, pxz is a probability
156
+ whose subscripts signify the probability or risk of the outcome Y at “levels” of X and Z (Table
157
+ 1).
158
+ Table 1. Probabilities of an outcome (Y) at levels of two exposure or risk factors (X and Z)
159
+ ____________________________________________________________________
160
+ ____________________________________________________________________
161
+ Z=1 Z=0
162
+ (“exposed to factor Z”) (“not exposed to factor Z”)
163
+ _____________________________________________________________________
164
+ X=1 (“exposed to factor X”) p11 p10
165
+ X=0 (“not exposed to factor X”) p01 p00
166
+ _____________________________________________________________________
167
+
168
+
169
+
170
+
171
+ 7
172
+
173
+ Rothman [2 (p.178)] states that the following equation “establishes additivity as the definition of
174
+ biological independence.”
175
+ 𝑝11 − 𝑝00 = (𝑝10 − 𝑝00) + (𝑝01 − 𝑝00)
176
+
177
+
178
+ (Equation 1)
179
+
180
+ According to Rothman’s equation, two exposures (X and Z) are biologically independent, and
181
+ their effects are additive, when the effect on Y of their joint and simultaneous effects (p11 − p00)
182
+ is equal to the sum of the separate and independent effects of X (p10 − p00) and of Z (p01 −
183
+ p00). A departure from additivity of effect, which Rothman considers evidence of biological
184
+ interaction, is present when the exposures’ joint and simultaneous effect differs from the sum of
185
+ their separate effects.
186
+
187
+ Additivity can be defined equivalently as a homogeneity of effects. The terms of Equation 1 can
188
+ be reordered to obtain
189
+
190
+ 𝑝11 − 𝑝01 = 𝑝10 − 𝑝00 ,
191
+
192
+
193
+ (Equation 2)
194
+
195
+ p11 − p10 = p01 − p00.
196
+
197
+
198
+ (Equation 3)
199
+
200
+ Equation 2 states that the effect of X on Y is the same whether Z = 1 (p11 − p01) or Z = 0
201
+ (p10 − p00). Homogeneity of effects is reciprocal. Equation 3 states that the effect of Z on Y is
202
+ the same at all levels of X, that is, whether X=1 (𝑝11 − 𝑝10) or X=0 (𝑝01 − 𝑝00). When the
203
+ effects of X and Z are additive, the association between Y and X is homogenous at levels of Z,
204
+ and the association between Y and Z is homogenous at levels of X.
205
+
206
+ 8
207
+
208
+
209
+ Assessing additivity of effects using probabilities (the interaction contrast) or
210
+ ratios (the RERI)
211
+
212
+ Departures from an additivity of effects (or from biological independence), whether defined as
213
+ an inequality between joint and independent effects, or as a heterogeneity among effects, can be
214
+ formally assessed through the interaction contrast, whose terms are probabilities, and the RERI,
215
+ whose terms are relative risks.
216
+
217
+ The terms in equation (1) can be ordered to produce the interaction contrast [9]:
218
+
219
+ 𝑝11 − 𝑝10 − 𝑝01 + 𝑝00 = 0
220
+
221
+
222
+ (Equation 4)
223
+
224
+ Reordering the terms in Equation 4 and dividing each by p00 yields:
225
+
226
+ p11/p00 − p01/p00 − p10/p00 + 1 = 0.
227
+
228
+ Recognizing that these ratios of probabilities are relative risks (RR), we obtain:
229
+
230
+ RR11 − RR01 − RR10 + 1 = 0.
231
+
232
+ (Equation 5)
233
+
234
+ Rothman [10] names the quantity on the left side of equation 5 the “Relative Excess Risk due to
235
+ Interaction” (RERI). Rothman and Greenland [9] call it the “interaction contrast ratio” (ICR).
236
+
237
+ 9
238
+
239
+ Hosmer and Lemeshow [11] define it as “the proportion of disease among those with both
240
+ exposures that is attributable to their interaction.”
241
+
242
+ The algebraic equivalence between equations 1 (for the IC) and 5 (for the RERI) validates the
243
+ assessment of additivity of effects on either probability or relative risk scales. The IC and the
244
+ RERI formally test the hypothesis that the effects on Y of X and Z are additive or, equivalently,
245
+ that no interaction exists between X and Z. The STROBE statement [3 (p.825)] illustrates how
246
+ to use the RERI to assess departures from additivity of effects.
247
+
248
+ Data example: lung cancer mortality among workers with different exposures
249
+ to asbestos and smoking
250
+ Hammond et al. [8] compared the risk of a dichotomous outcome, mortality from lung cancer,
251
+ among 17,800 asbestos workers and among 73,763 workers who were not exposed to asbestos.
252
+ They also recorded smoking status, so participants displayed combinations of exposure to
253
+ cigarette smoking and to asbestos (Table 2). Hammond’s study is widely used in epidemiology
254
+ textbooks [2 (pp.168-180),12] to illustrate biological interaction.
255
+
256
+ Supplementary File 1 illustrates the creation of a dataset that closely approximates the properties
257
+ of the published data. So that the dataset’s risk probabilities (reported as lung cancer deaths per
258
+ 100,000) reflect the published ones, we assumed a smoking prevalence of 0.28 for both the
259
+ asbestos workers and for the comparison group of unexposed workers.
260
+
261
+
262
+ 10
263
+
264
+ Table 2. Lung cancer deaths (per 100,000 workers) among those with exposure to asbestos
265
+ and/or cigarette smoking
266
+ ________________________________________________________________________
267
+ Asbestos Exposure
268
+ _____________________________________________________
269
+ Cigarette smoking Asbestos Workers (n= 17800) Comparison Group (n=73763)
270
+ _____________________________________________________________________
271
+ Smokers p11=601.9 p10= 121.1
272
+ Non-smokers p01= 54.6 p00= 11.3
273
+ ________________________________________________________________________
274
+
275
+
276
+ The data example illustrates a departure from additivity of effects
277
+
278
+ If the effects of asbestos exposure and cigarette smoking are additive, the expected effect of
279
+ experiencing both exposures would equal the sum of the exposures’ separate effects (Equation
280
+ 1). Following the notation introduced in Table 1 to define pxz, where X denotes cigarette
281
+ smoking (1 = smokers and 0 = nonsmokers) and Z denotes asbestos exposure (1=exposed and 0=
282
+ not exposed), the estimated risk probabilities are:
283
+
284
+ 𝑝̂11 − 𝑝̂00 = 601.9 − 11.3 = 590.6 excess deaths per 100,000 people, attributable to
285
+ joint effects of both exposures.
286
+
287
+ 𝑝̂10 − 𝑝̂00 = 121.0 − 11.3 = 109.7 excess deaths per 100,000 attributable to smoking by
288
+ itself.
289
+
290
+
291
+ 11
292
+
293
+ 𝑝̂01 − 𝑝̂00 = 54.6 − 11.3 = 43.3 excess deaths per 100,000 people, attributable to
294
+ asbestos exposure by itself.
295
+
296
+ The number of lung cancer deaths attributable to dual exposure appears to exceed the sum of the
297
+ exposures’ separate effects. The interaction contrast for the data example: 𝑝11 − 𝑝10 − 𝑝01 +
298
+ 𝑝00 indicates that the risk of lung cancer death in those who experience both exposures exceeds,
299
+ by about 437.6 deaths per 100,000, the sum of the separate risks from smoking or from asbestos
300
+ exposure. Calculated for the data example, the RERI, which quantifies additivity of effects on
301
+ the relative risk scale, RR11 − RR01 − RR10 + 1 = [601.9/11.3] - [54.6/11.3] - [121.0/11.3] +1 =
302
+ 38.7.
303
+
304
+ The linear binomial model directly estimates the interaction contrast in the data
305
+ example
306
+ The linear binomial model [4,7] estimates the interaction contrast directly in terms of
307
+ probabilities and differences in probabilities:
308
+
309
+ P(Y = 1) = β0 + β1X + β2Z + β3XZ
310
+
311
+
312
+ (Equation 6)
313
+
314
+ Recalling that X and Z take values of 1 for “exposure” and 0 for “no exposure”, then
315
+ 𝑝̂00 = 𝛽0
316
+ 𝑝̂10 − 𝑝̂00 = (𝛽0 + 𝛽1) − 𝛽0 = 𝛽1
317
+ 𝑝̂01 − 𝑝̂00 = (𝛽0 + 𝛽2) − 𝛽0 = 𝛽2
318
+ 𝑝̂11 − 𝑝̂00 = (𝛽0 + 𝛽1 + 𝛽2 + 𝛽3) − 𝛽0 = 𝛽1 + 𝛽2 + 𝛽3
319
+
320
+ 12
321
+
322
+
323
+ Substituting these expressions into Equation 1, which defines additivity of effects,
324
+ 𝑝11 − 𝑝00 = (𝑝10 − 𝑝00) + (𝑝01 − 𝑝00)
325
+
326
+
327
+ 𝛽1 + 𝛽2 + 𝛽3 = 𝛽1 + 𝛽2
328
+
329
+ In the linear binomial model, effects are additive if 𝛽3, the regression coefficient associated with
330
+ the product or interaction term, is equal to zero.
331
+
332
+ Substituting the expressions into Equation 4 illustrates that the model’s estimate for β3 directly
333
+ estimates the interaction contrast:
334
+
335
+ p11 − p10 − p01 + p00 = (β0 + β1 + β2 + β3) − (β0 + β1) − (β0 + β2) + β0 = β3
336
+
337
+ Thus, the linear binomial model’s estimates for the interaction contrast and for the X*Z
338
+ interaction are equivalent. Both provide direct tests of additivity; evidence against the
339
+ hypothesis that β3 =0 is evidence of a departure from additivity.
340
+
341
+ Supplementary File 2 illustrates the construction of the linear binomial model using SAS PROC
342
+ GENMOD [4,7]. The model’s point estimates for the number of deaths per 100,000 workers,
343
+ which are presented in Table 3, are equal to those reported in Table 2. Table 3 also reports the
344
+ model’s estimates (and 95% CI) for regression coefficients. These coefficients include estimates
345
+ for the effect on lung cancer mortality of smoking among those not exposed to asbestos (β1), and
346
+ of asbestos exposure in non-smokers (β2).
347
+
348
+ 13
349
+
350
+
351
+ Table 3. Absolute risks (and risk differences) for death from lung cancer (per 100,000 workers)
352
+ for those with exposure to asbestos and/or cigarette smoking, estimated by linear binomial model
353
+ ________________________________________________________________________
354
+ Smoking Asbestos Estimate Deaths per 100,000 95% CI on estimate
355
+ ________________
356
+ Lower Upper
357
+ ________________________________________________________________________
358
+ p11 1 (yes) 1 (yes) 0.006019 601.926 387.183 816.669
359
+ p10 1 (yes) 0 (no) 0.001210 121.048 73.627 168.469
360
+ p01 0 (no) 1 (yes) 0.000546 54.619 14.169 95.070
361
+ p00 0 (no) 0 (no) 0.000113 11.298 2.258 20.337
362
+
363
+ β1 smk (𝑝̂10 − 𝑝̂00) 0.001098 109.750 61.475 158.025
364
+ β2 asbestos (𝑝̂01 − 𝑝̂00) 0.000433 43.322 1.873 84.770
365
+ β3 smk*asbestos 0.004376 437.557 213.768 661.345
366
+ IC p11-p10-p01+p00 0.004376 437.557 213.768 661.345
367
+ ________________________________________________________________________
368
+
369
+
370
+ The linear binomial model produces identical inference for β3 , which estimates the statistical
371
+ interaction between smoking and asbestos exposure, and for the IC (estimate: 437.6 deaths per
372
+ 100,000; 95% CI: 213.8, 661.3; P=0.00012702). The consistency between the p values
373
+ generated for these statistics verifies that they offer equivalent tests of the null hypothesis that
374
+ the effects of smoking and asbestos exposure are additive.
375
+
376
+ Figure 1, which depicts the estimates and confidence intervals generated by the linear binomial
377
+ model, illustrates the heterogeneity of the effects of smoking on lung cancer mortality in groups
378
+ defined by asbestos exposure. The syntax that produced Table 3 and Figure 1 is contained in
379
+ Supplementary File 3.
380
+
381
+
382
+ 14
383
+
384
+ Figure 1. Biological interaction, between asbestos exposure and smoking, illustrated as a non-
385
+ additivity or heterogeneity of effects
386
+
387
+
388
+
389
+
390
+
391
+
392
+
393
+
394
+
395
+
396
+
397
+
398
+ Log binomial and logistic regression models detect no departure from multiplicativity
399
+ of effects in the data example.
400
+
401
+ In contrast to the linear binomial model, models that employ logarithmic transformations of
402
+ probabilities (log binomial models) or their corresponding odds (logistic regression models)
403
+ assess departures from multiplicativity of effects. Multiplicativity of effects is defined in a
404
+ manner analogous to the definition of additivity of effects. The effects of two factors (X and Z)
405
+ on an outcome (Y) are multiplicative if their joint effects are equal to the product of their
406
+ separate and independent effects. When effects are multiplicative, relative risks will conform to
407
+
408
+
409
+ 800-
410
+ AsbestosWorkers(n=17800)
411
+ --ComparisonGroup(n=73763)
412
+ 100,000
413
+ 600
414
+ I cancer deaths per
415
+ 400
416
+ 200
417
+ Lung
418
+ 0
419
+ Non-smokers
420
+ Smokers15
421
+
422
+ the relationship: RRXZ = RRX × RRZ, and odds ratios will conform to the relationship: ORXZ =
423
+ ORX × ORZ. A log binomial model estimates and tests the multiplicativity of relative risks.
424
+
425
+ ln[P(Y = 1)] = β0 + β1X + β2Z + β3XZ,
426
+
427
+ P(Y = 1) = exp (β0 + β1X + β2Z + β3XZ).
428
+
429
+ it follows that: RRXZ = exp(β1X + β2Z + β3XZ); RRX = exp(β1X); RRZ = exp(β2Z).
430
+
431
+ If there is no departure from multiplicativity among relative risks, then:
432
+
433
+ RRXZ = RRX RRz
434
+
435
+ exp(β1X + β2Z + β3XZ) = exp(β1X)exp(β2Z) = exp(β1X + β2Z).
436
+
437
+ These equalities hold only if β3, the regression coefficient associated with the product term XZ,
438
+ is equal to zero. Similarly, the logistic regression model, ln[P(Y = 1) P(Y = 0)
439
+
440
+ ] = β0 + β1X +
441
+ β2Z + β3XZ, assesses multiplicativity of effects expressed as odds or odds ratios. In either
442
+ model, estimates or hypothesis tests that suggest that β3 does not equal zero constitute evidence
443
+ of a departure from multiplicativity of effects.
444
+
445
+ Applied to the data example, the log binomial model finds no evidence of statistical interaction
446
+ between smoking and asbestos exposure (P=0.9637); measured as relative risks, the factors’
447
+
448
+ 16
449
+
450
+ effects are multiplicative and homogenous. Similarly, a logistic regression model finds no
451
+ statistical interaction between smoking and asbestos exposure (P=0.9581) to suggest a departure
452
+ from multiplicativity of effects measured as odds ratios. Figures 2 and 3 depict the estimates
453
+ generated by the log binomial and logistic regression models. The models’ construction, using
454
+ SAS PROC GENMOD, is detailed in Supplementary File 4 along with the syntax that produced
455
+ Figures 2 and 3.
456
+
457
+ Figure 2. Predicted log probabilities illustrate a lack of departure from multiplicativity of effects
458
+ in the log binomial model.
459
+
460
+
461
+
462
+
463
+
464
+
465
+
466
+
467
+
468
+
469
+
470
+ Figure 3. Predicted log odds illustrate a lack of departure from multiplicativity of effects in the
471
+ logistic regression model.
472
+
473
+
474
+ -5
475
+ AsbestosWorkers(n=17800)
476
+ -
477
+ ComparisonGroup(n=73763)
478
+ -8
479
+ -9
480
+ -10
481
+ Non-smokers
482
+ Smokers17
483
+
484
+
485
+
486
+
487
+
488
+
489
+
490
+
491
+
492
+
493
+
494
+ The models’ differences in detecting statistical interaction do not confound the question of
495
+ whether the data exemplify biological interaction. Rather, they illustrate the importance of (1)
496
+ identifying an effect measure (either a difference or a ratio between probabilities or risks) that
497
+ reflects the hypothesized form of the interaction and then (2) constructing a statistical model that
498
+ directly estimates that effect measure.
499
+
500
+ Choosing among statistical models
501
+
502
+ Choosing log binomial or logistic regression models that generate estimates of the
503
+ RERI
504
+
505
+ Neither the log binomial model nor the logistic regression model detects statistical interaction in
506
+ the data example. The models’ form suits them for detecting departures from multiplicativity of
507
+
508
+
509
+ -5
510
+ AsbestosWorkers(n=17800)
511
+ 0--
512
+ ComparisonGroup(n=73763
513
+ -8
514
+ -9
515
+ -10
516
+ Non-smokers
517
+ Smokers18
518
+
519
+ effects. Nevertheless, they are widely used in epidemiology to assess departures from additivity
520
+ of effects through ratio measures like the RERI [3].
521
+
522
+ Although widely used, the RERI has disadvantages. Because it is constructed from ratios, the
523
+ RERI is not interpretable as the number of excess deaths attributable to exposure to both
524
+ smoking and asbestos. The RERI of 38.7, calculated for the data example, lacks the ease of
525
+ interpretation of the linear binomial model’s estimate of the IC of 437.6 excess deaths per
526
+ 100,000 (Table 3.) A second disadvantage relates to difficulties in obtaining standard errors
527
+ with which to construct confidence intervals for or to test hypotheses related to the RERI. An
528
+ influential approach, introduced by Hosmer and Lemeshow [11], estimates the RERI using
529
+ logistic regression and obtains standard errors for its estimates using the delta method. SAS
530
+ syntax for the approach is provided by Andersson et al. [13] and by Richardson and Kaufman
531
+ [14], who construct a “linear odds ratio model” using SAS PROC NLMIXED. As an alternative
532
+ approach, Richardson and Kaufmann [14] recommend bootstrapping for obtaining confidence
533
+ intervals. An empirical 95% confidence interval on the RERI, calculated for the data example
534
+ from 500 bootstrap samples, is 15.9, 132.6. However, because the bounds for the RERI’s
535
+ confidence interval are ratios, they present the same challenges to interpretation as the estimate
536
+ itself.
537
+
538
+
539
+ Choosing the linear binomial model that directly estimates the interaction contrast
540
+
541
+
542
+ 19
543
+
544
+ Logistic regression is widely used in epidemiology to study binomial outcomes, even though its
545
+ form is suited for detecting departures from multiplicativity of effects. A major reason for the
546
+ model’s popularity and durability is that its use of the logit link, which is the canonical link for a
547
+ binomial response, affords desirable statistical properties. Among these is logistic regression’s
548
+ reliability in converging on parameter estimates. Models that use other link functions can
549
+ encounter problems with convergence. Zou [15] and Spiegelman and Herzmark [4] discuss
550
+ problems with convergence in the log binomial model and advocate use of a modified Poisson
551
+ model to address the problem when it arises.
552
+
553
+ The linear binomial model, which uses the non-canonical identity link, can also fail to converge
554
+ on estimates. This limitation interferes with the model’s wider acceptance, despite its ability to
555
+ directly assess additivity of effects by estimating the interaction contrast. To address non-
556
+ convergence in the linear binomial model, Spiegelman and Herzmark [4] advocate modifying the
557
+ model, retaining the identity link but assuming that the outcome follows a Poisson distribution.
558
+ Although the approach ensures convergence, imposing the Poisson assumption causes the model
559
+ to misspecify the binomial outcome’s variance. This intentional misspecification of the
560
+ outcome’s distribution reduces the efficiency of the model’s standard errors and of the
561
+ hypothesis tests and confidence intervals that are based on them. Accordingly, Spiegelman and
562
+ Herzmark [4] recommend calculating standard errors that are robust despite misspecification.
563
+ Richardson et al. [7] also recommend the calculation of robust standard errors but, because they
564
+ apply it to weighted data, do not advocate otherwise modifying the linear binomial model.
565
+ Supplementary File 2 shows how to incorporate these various recommendations using SAS
566
+ PROC GENMOD.
567
+
568
+ 20
569
+
570
+
571
+ Cheung [5] addresses non-convergence in the linear binomial model by proposing a modified
572
+ least squares (MLS) model that also uses the identity link. Cheung’s approach also calculates
573
+ robust standard errors. Cheung’s approach differs in that it uses ordinary least squares (OLS)
574
+ instead of maximum likelihood estimation (MLE). In doing so, it avoids specifying the
575
+ outcome’s assumed distribution. This strategy cures the problem of non-convergence but cannot
576
+ guarantee that estimated probabilities will be in the logical range from 0 to 1.
577
+
578
+
579
+ Conclusions
580
+
581
+ Biological interaction is often hypothesized to manifest itself as a non-additivity of effects that
582
+ are quantified as differences in risks or probabilities. Applied to a data example widely used in
583
+ epidemiology education to illustrate biological interaction, a linear binomial model detects
584
+ statistical interaction while logistic and log binomial models do not.
585
+
586
+ The result affirms the consensus that biological interaction should generally be assessed as a
587
+ departure from an additivity of effects. Statistics like the RERI are widely used in epidemiology
588
+ to assess additivity on a relative risk scale. In contrast, the linear binomial model produces
589
+ estimates of differences in probabilities, including the interaction contrast, that are directly
590
+ interpretable as excess risks.
591
+
592
+
593
+ 21
594
+
595
+ Widely available software for generalized linear models permit researchers to construct the linear
596
+ binomial model and to obtain estimates and confidence intervals for the interaction contrast and
597
+ other effects. The model deserves wider use in research and judicious use in the teaching of
598
+ epidemiology. The linear binomial model can encounter problems with convergence, but
599
+ strategies exist to address this limitation.
600
+
601
+
602
+ Funding
603
+
604
+ Dr. Zhao’s work was partially supported by funding provided by National Institutes of Health,
605
+ National Institute of General Medical Sciences [Grant 1 U54GM104938, PI Judith James].
606
+
607
+
608
+ Acknowledgement:
609
+
610
+ The authors thank Dr. Tabitha Garwe for important comments on the manuscript.
611
+
612
+
613
+ Conflict of Interest: None declared.
614
+
615
+
616
+ References:
617
+
618
+ [1] VanderWeele TJ, Knol MJ. A tutorial on interaction. Epidemiologic Methods 2014;3:33-72.
619
+
620
+ [2] Rothman KJ. Epidemiology: an introduction. New York: Oxford University Press, 2002.
621
+
622
+ [3] Vandenbroucke JP, von Elm E, Altman DG, et al. Strengthening the reporting of
623
+ observational studies in epidemiology (STROBE): explanation and elaboration. Epidemiology
624
+ 2007;18(6):805‐835.
625
+
626
+ [4] Spiegelman D, Hertzmark E. Easy SAS calculations for risk or prevalence ratios and
627
+ differences. Am J Epidemiol 2005;162(3):199-200.
628
+
629
+ [5] Cheung YB. A modified least-squares regression approach to the estimation of risk
630
+ difference. Am J Epidemiol 2007;166(11):1337-44.
631
+
632
+ [6] Bieler GS, Brown GG, Williams RL, Brogan DJ. Estimating model-adjusted risks, risk
633
+ differences, and risk ratios from complex survey data. Am J Epidemiol 2010; 171(5):618-623.
634
+
635
+ [7] Richardson DB, Kinlaw AC, MacLehose RF, Cole SR. Standardized binomial models for
636
+ risk or prevalence ratios and differences. Int J Epidemiol 2015;44(5):1660-72.
637
+
638
+ 22
639
+
640
+
641
+ [8] Hammond EC, Selikoff IJ, Seidman H. Asbestos exposure, cigarette smoking and death rates.
642
+ Ann N Y Acad Sci 1979; 330:473-90.
643
+
644
+ [9] Rothman KJ, Greenland S. Modern epidemiology. Philadelphia: Lippincott Williams and
645
+ Wilkins, 1998.
646
+
647
+ [10] Rothman KJ. Modern epidemiology (1st Ed.). Boston: Little, Brown and Company, 1986.
648
+
649
+ [11] Hosmer DW, Lemeshow S. Confidence interval estimation of interaction. Epidemiology
650
+ 1992; 3(5):452-456.
651
+
652
+ [12] Szklo M, Nieto FJ. Epidemiology: beyond the basics (3rd Ed.). Sudbury, MA: Jones and
653
+ Bartlett, 2004.
654
+
655
+ [13] Andersson T, Alfredsson L, Källberg H, Zdravkovic S, Ahlbom, A. Calculating measures of
656
+ biological interaction. Eur J Epidemiol 2005; 20(7):575-579.
657
+
658
+ [14] Richardson DB, Kaufman JS. Estimation of the relative excess risk due to interaction and
659
+ associated confidence bounds, Am J Epidemiol 2009; 16(6):756–760.
660
+
661
+ [15] Zou G. A modified Poisson regression approach to prospective studies with binary data. Am
662
+ J Epidemiol 2004;159(7):702-706.
663
+
664
+
665
+
666
+ Contact information
667
+
668
+ David M. Thompson, Department of Biostatistics and Epidemiology, University of Oklahoma
669
+ Health Sciences Center, Oklahoma City, OK 73104 (e-mail: dave-thompson@ouhsc.edu).
670
+
671
+ Yan Daniel Zhao, Department of Biostatistics and Epidemiology, University of Oklahoma
672
+ Health Sciences Center, Oklahoma City, OK 73104 (e-mail: daniel-zhao@ouhsc.edu).
673
+
674
+
675
+
676
+ 23
677
+
678
+ Supplementary File 1. Data example
679
+
680
+ SAS syntax that creates a dataset that approximates the one published in Hammond et al. [8].
681
+ Outcome is lung cancer deaths per 100,000 workers. The prevalence of smoking is assumed to
682
+ be 0.28 for both the asbestos workers and for the comparison group of unexposed workers.
683
+
684
+ /*Data example*/
685
+ data one;
686
+ array asbn (2) (73763 17800); /*n in published study*/
687
+ array rate (4) (11.3 122.6 58.4 601.6);
688
+ /*lung ca deaths per 100k in published study*/
689
+ smokeprev=0.28; /*assumed prevalence of smoking*/
690
+ do asbestos=0 to 1;
691
+ do smk=0 to 1;
692
+
693
+ do lungcadeath=0 to 1;
694
+
695
+ mult=rate [2*asbestos + smk +1] / 100000;
696
+
697
+ count1=asbn[asbestos+1] *
698
+
699
+
700
+ (abs((1-smk)-smokeprev)) *
701
+ (abs((1-lungcadeath)-mult));
702
+
703
+ count=round(count1,1);
704
+
705
+ output;
706
+ end;
707
+ end;
708
+ end;
709
+ keep asbestos smk lungcadeath count;
710
+ run;
711
+ proc sort data=one (keep=asbestos smk lungcadeath count) out=two;
712
+ by descending asbestos descending smk descending lungcadeath;
713
+ run;
714
+
715
+ /*version of dataset with individual observations*/
716
+ data long;
717
+ set two;
718
+ do i=1 to count;
719
+ id+1;
720
+ output;
721
+ end;
722
+ run;
723
+
724
+ proc format;
725
+ value smkf 1="Smokers" 0="Non-smokers";
726
+ value gpf 1="Asbestos Workers (n= 17800)"
727
+ 0="Comparison Group (n=73763)";
728
+ value death 1="Deaths due to lung CA"
729
+ 0="Alive or dead due to other causes";
730
+ run;
731
+
732
+ /* Table 2. Lung cancer deaths (per 100,000 workers) among those with exposure
733
+ to asbestos and/or cigarette smoking*/
734
+ proc freq data=two order=data;
735
+ weight count;
736
+ tables asbestos*smk*lungcadeath / nocol nopct outpct out=three;
737
+ format smk smkf. asbestos gpf. lungcadeath death.;
738
+ run;
739
+
740
+
741
+ 24
742
+
743
+ data four;
744
+ set three;
745
+ perhunthou=pct_row*1000;
746
+ run;
747
+
748
+ proc report nowd data=four;
749
+ where lungcadeath=1;
750
+ columns smk asbestos, perhunthou;
751
+ define smk / group "Cigarette smoking" format=smkf. order=data;
752
+ define asbestos / across "Asbestos Exposure" format=gpf. order=data;
753
+ define perhunthou / analysis '' format=6.2;
754
+ run;
755
+
756
+
757
+
758
+ 25
759
+
760
+ Supplementary File 2. SAS syntax for linear binomial model
761
+
762
+ The syntax below illustrates the construction of the linear binomial model [4,7] using SAS
763
+ PROC GENMOD. A MODEL statement identifies the independent variables included in
764
+ comprise the linear predictor: smk (smoking status); asbestos (asbestos exposure status); and
765
+ smk*asbestos, the interaction between smoking status and asbestos exposure. Options in the
766
+ MODEL statement specify that the outcome (lung cancer) follows a binomial distribution and
767
+ link it directly (through an identity link) to the linear predictor. The LSMEANS statement
768
+ estimates the number of deaths per 100,000 workers for each combination of exposures. The
769
+ ESTIMATE statement lists the four coefficients (1 − 1 − 1 1) that define the interaction
770
+ contrast (IC):
771
+
772
+ (1) 𝑝11 + (−1)𝑝10 + (−1)𝑝01 + (1)𝑝00 = 0
773
+
774
+ /*linear binomial model*/
775
+ proc genmod data=long descending;
776
+ class smk (ref=first) asbestos (ref=first);
777
+ model lungcadeath = smk asbestos smk*asbestos
778
+ / link=identity dist=bin type3 wald;
779
+ lsmeans smk*asbestos / cl;
780
+ ods output lsmeans=lsmeans estimates=estimates parameterestimates=betas
781
+ modelanova=type3;
782
+ estimate "IC" smk*asbestos 1 -1 -1 1;
783
+ run;
784
+
785
+ /*Syntax that includes a REPEATED statement, which initiates GEE estimation
786
+ of robust standard errors, advocated by Richardson et al.[7].*/
787
+ proc genmod data=long descending;
788
+ class smk (ref=first) asbestos (ref=first) id;
789
+ model lungcadeath = smk asbestos smk*asbestos
790
+ / link=identity dist=bin type3 wald;
791
+ repeated subject=id / type=ind;
792
+ lsmeans smk*asbestos / cl;
793
+ estimate "IC" smk*asbestos 1 -1 -1 1;
794
+ run;
795
+
796
+ /*modification of linear binomial model advocated by Spiegelman and Herzmark
797
+ [4] for instances when convergence fails*/
798
+ proc genmod data=long descending;
799
+ class smk (ref=first) asbestos (ref=first) id;
800
+ model lungcadeath = smk asbestos smk*asbestos
801
+ / link=identity dist=poisson type3 wald ;
802
+ repeated subject=id / type=ind;
803
+ lsmeans smk*asbestos / cl;
804
+ estimate "IC" smk*asbestos 1 -1 -1 1;
805
+ run;
806
+
807
+
808
+
809
+ 26
810
+
811
+ Supplementary File 3. SAS syntax for Table 3 and Figure 1
812
+
813
+ The syntax below uses data sets output from the linear binomial model (Supplementary Box S2)
814
+ to create Table 3 and Figure 1.
815
+
816
+ /* Table 3. Absolute risks (and risk differences) for death from lung cancer
817
+ (per 100,000 workers) for those with exposure to asbestos and/or cigarette
818
+ smoking, estimated by linear binomial model*/
819
+ data mortality;
820
+ set lsmeans;
821
+ mortality=estimate*100000;
822
+ ucl=upper*100000;
823
+ lcl=lower*100000;
824
+ run;
825
+ proc print noobs data=mortality;
826
+ var smk asbestos estimate mortality lcl ucl;
827
+ run;
828
+
829
+ /*estimate for interaction contrast (IC)*/
830
+ data ic;
831
+ set estimates;
832
+ ic=meanestimate*100000;
833
+ ic_lcl=meanlowercl*100000;
834
+ ic_ucl=meanuppercl*100000;
835
+ run;
836
+ proc print noobs data=ic;
837
+ var label meanestimate ic ic_lcl ic_ucl probchisq;
838
+ format meanestimate 9.6 probchisq 12.8 ;
839
+ run;
840
+
841
+ /*Estimates of regression coefficients, which are interpretable as excess
842
+ deaths*/
843
+ data beta2;
844
+ set betas (where=(df=1));
845
+ excessdeaths=estimate*100000;
846
+ ucl=upperwaldcl*100000;
847
+ lcl=lowerwaldcl*100000;
848
+ run;
849
+ proc print noobs data=beta2;
850
+ var parameter estimate excessdeaths lcl ucl probchisq;
851
+ format estimate 9.6 probchisq 12.8;
852
+ run;
853
+
854
+ /* Figure 1. Biological interaction, between asbestos exposure and smoking,
855
+ illustrated as a non-additivity or heterogeneity of effects*/
856
+ proc template;
857
+ define style styles.mystyle;
858
+ parent=styles.default;
859
+ class graphbackground / color=white;
860
+ style GraphData1 from GraphData1 /
861
+ contrastcolor=black linestyle=1;
862
+ style GraphData2 from GraphData2 /
863
+ contrastcolor=black linestyle=2;
864
+ end;
865
+ run;
866
+
867
+ 27
868
+
869
+ ods html style=styles.mystyle;
870
+ proc sgplot data=mortality;
871
+ series y=mortality x=smk / group=asbestos name="one"
872
+ groupdisplay=cluster clusterwidth=0.05
873
+ markers markerattrs=(symbol=squarefilled size=10);
874
+ highlow x=smk high=ucl low=lcl / group=asbestos
875
+ groupdisplay=cluster clusterwidth=0.05
876
+ type=line lineattrs=(pattern=1) lowcap=serif highcap=serif;
877
+ xaxis values=(0 1) label=" " valueattrs=(size=14 weight=bold);
878
+ yaxis label="Lung cancer deaths per 100,000"
879
+ labelattrs=(size=14 weight=bold)
880
+ valueattrs=(size=14 weight=bold);
881
+ format smk smkf. asbestos gpf.;
882
+ keylegend "one" / title="" location=inside down=2 position=topleft
883
+ valueattrs=(size=12 weight=bold) ;
884
+ run;
885
+ ods html close;
886
+
887
+
888
+
889
+ 28
890
+
891
+ Supplementary File 4. Log binomial and logistic regression models
892
+
893
+ Log binomial model and depiction of its estimates in Figure 2.
894
+
895
+ proc genmod data=long descending;
896
+ class smk (ref=first) asbestos (ref=first) ;
897
+ model lungcadeath = smk asbestos smk*asbestos
898
+ / link=log dist=bin type3 wald lrci;
899
+ lsmeans smk*asbestos / cl;
900
+ ods output lsmeans=lsmeans ;
901
+ run;
902
+
903
+ ods html style=styles.mystyle;
904
+ proc sgplot data=lsmeans;
905
+ series y=estimate x=smk / group=asbestos name="one"
906
+ groupdisplay=cluster clusterwidth=0.05
907
+ markers markerattrs=(symbol=squarefilled size=10);
908
+ highlow x=smk high=upper low=lower / group=asbestos
909
+ groupdisplay=cluster clusterwidth=0.05
910
+ type=line lineattrs=(pattern=1) lowcap=serif highcap=serif;
911
+ xaxis values=(0 1) label=" " valueattrs=(size=14 weight=bold);
912
+ yaxis label="ln[p(Death from lung cancer)]"
913
+ labelattrs=(size=14 weight=bold)
914
+ valueattrs=(size=14 weight=bold);
915
+ format smk smkf. asbestos gpf.;
916
+ keylegend "one" / title="" location=inside down=2 position=topleft
917
+ valueattrs=(size=12 weight=bold) ;
918
+ run;
919
+ ods html close;
920
+
921
+ Logistic regression model and depiction of its estimates in Figure 3.
922
+
923
+ proc genmod data=long descending;
924
+ class smk (ref=first) asbestos (ref=first) ;
925
+ model lungcadeath = smk asbestos smk*asbestos
926
+ / link=logit dist=bin type3 wald lrci;
927
+ lsmeans smk*asbestos / cl;
928
+ ods output lsmeans=lsmeans ;
929
+ run;
930
+
931
+ ods html style=styles.mystyle;
932
+ proc sgplot data=lsmeans;
933
+ series y=estimate x=smk / group=asbestos name="one"
934
+ groupdisplay=cluster clusterwidth=0.05
935
+ markers markerattrs=(symbol=squarefilled size=10);
936
+ highlow x=smk high=upper low=lower / group=asbestos
937
+ groupdisplay=cluster clusterwidth=0.05
938
+ type=line lineattrs=(pattern=1) lowcap=serif highcap=serif;
939
+ xaxis values=(0 1) label=" " valueattrs=(size=14 weight=bold);
940
+ yaxis label="Log odds of death from lung cancer"
941
+ labelattrs=(size=14 weight=bold)
942
+ valueattrs=(size=14 weight=bold);
943
+ format smk smkf. asbestos gpf.;
944
+ keylegend "one" / title="" location=inside down=2 position=topleft
945
+ valueattrs=(size=12 weight=bold) ;
946
+
947
+ 29
948
+
949
+ run;
950
+ ods html close;
951
+
952
+
953
+
954
+
955
+
956
+
957
+
GNE1T4oBgHgl3EQfrAVQ/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
I9FJT4oBgHgl3EQfvy0q/content/tmp_files/2301.11627v1.pdf.txt ADDED
@@ -0,0 +1,953 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quantum information entropy of heavy mesons in the presence of a point-like
2
+ defect
3
+ C. A. S. Almeida1a, C. O. Edet2b,c,d, F. C. E. Lima3a, N. Ali4c,e, and M. Asjad5f
4
+ aUniversidade Federal do Cear´a (UFC), Departamento de F´ısica, Campus do Pici, Fortaleza-CE, 60455-760, Brazil.
5
+ bInstitute of Engineering Mathematics, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia.
6
+ cFaculty of Electronic Engineering Technology, Universiti Malaysia Perlis, Malaysia.
7
+ dDepartment of Physics, Cross River University of Technology, Calabar, Nigeria.
8
+ eAdvanced Communication Engineering (ACE) Centre of Excellence, Universiti Malaysia Perlis, 01000 Kangar, Perlis, Malaysia.
9
+ fDepartment of Mathematics, Khalifa University, Abu Dhabi 127788, United Arab Emirates.
10
+ Abstract
11
+ Using Schr¨odinger’s formalism, we investigate the quantum eigenstates of the heavy mesons trapped by a point-like
12
+ defect and by Cornell’s potential. One implements this defect to the model considering a spherical metric profile
13
+ coupled to it. Furthermore, the Nikiforov-Uvarov method is applied to theory to study the quantum eigenstates
14
+ of the heavy mesons. To calculate the quantum information entropy (QIE), one considers the wave functions that
15
+ describe the charmonium and bottomonium states. To explore the QIE, we use the well-known Shannon’s entropy
16
+ formulated at the position and reciprocal space.
17
+ The analysis of the QIE gives us relevant information about
18
+ how the quantum information change with the variation of the point-like defect. Consequently, considering the
19
+ Bialynicki-Birula and Mycielski (BBM) relation, we show how this defect influences the quarkonium position and
20
+ momentum uncertainty measures.
21
+ Keywords: Schr¨odinger equation; Nikiforov-Uvarov method; Cornell potential; Heavy mesons.
22
+ 1. Introduction
23
+ The growing interest in non-relativistic quantum mechanical systems is notorious [1, 2, 3, 4]. This interest is
24
+ because the results from quantum mechanics give us a good prediction of some phenomenological data [5, 6, 7].
25
+ Furthermore, these systems are the first step toward understanding more complex models [8]. Thus, considering
26
+ non-relativistic quantum mechanical systems, we found several studies in the literature [9, 10]. For example, one can
27
+ find some studies on theoretical measurements of mass spectra of heavy mesons [11], harmonic oscillators [12, 13, 14],
28
+ potential wells [16, 15], and solid-state physics problems (e. g., position-dependent mass problems) [17, 18, 19].
29
+ Generally, depending on the type of interaction used to describe the quantum-mechanical system, there may
30
+ be some difficulties in the analytical description. Thus, to bypass these difficulties, some techniques are applied.
31
+ 1Email address: carlos@fisica.ufc.br
32
+ 2Email address: collinsokonedet@gmail.com
33
+ 3Email address: cleiton.estevao@fisica.ufc.br
34
+ 4Email address: norshamsuri@unimap.edu.my
35
+ 5Email address: muhammad.asjad@ku.ac.ae
36
+ Preprint submitted to Annals of Physics
37
+ January 30, 2023
38
+ arXiv:2301.11627v1 [hep-ph] 27 Jan 2023
39
+
40
+ Among these techniques, there is the well-known Nikiforov-Uvarov (NU) method [3, 20, 21, 22], the Nikiforov-
41
+ Uvarov Functional Analysis (NUFA) [23, 24, 25], the Laplace transformation method (LTM) [26], the asymptotic
42
+ interaction method [27], the WKB approximation method [28]. However, it is relevant to highlight that among the
43
+ techniques mentioned, the NU method stands out [29, 30, 31]. Indeed, the NU method stands out because it allows
44
+ parameterizing Schr¨odinger’s equation [32], making it possible to find the solution for different physical potentials
45
+ of interest [32]. Thus, we will conveniently use the NU method in this work.
46
+ A relevant class of particles is mesons.
47
+ The historical framework of these particles began in 1974 [33].
48
+ It
49
+ was in 1974 that the Brookhaven National Laboratory announced the discovery of a new particle called J [33].
50
+ Simultaneously, the Stanford Linear Accelerator announced the existence of another particle called ψ [34].
51
+ A
52
+ relevant feature of these particles found is that they have similar properties. So has become possible to interpret these
53
+ particles as a new quark (namely, a charm quark). With the discovery of these particles, it was possible to explain the
54
+ suppression of weak kaon decays that change the flavor [35, 36]. Posteriorly, the fourth quark existence, the so called
55
+ bottom quark, was confirmed [35, 36]. Only in 1978 Cornell’s model was developed. In its original proposal, Cornell’s
56
+ potential took into account the quark-antiquark interaction in the heavy sector [37, 38, 39, 40]. Essentially the initial
57
+ assumptions were that interactions arise SU(3) color gauge symmetry with flavor broken only by quark masses.
58
+ Besides, this type of interaction admitted contributions from the Coulomb interaction (induced by a gluon exchange
59
+ interaction).
60
+ Furthermore, Cornell’s potential considered contributions from a phenomenological interaction of
61
+ confinement, considered linear. The interactions were independent of flavor and spin, thus implementing the well-
62
+ known Heavy Flavor Symmetry and Heavy Quark Spin Symmetry [37, 38, 39, 40].
63
+ Seeking to investigate the quarkonia eigenstates, we will consider Cornell’s potential in our theory. This poten-
64
+ tial proves to be effective in explaining quark confinement. Furthermore, this potential explains the mass of the
65
+ quarkonium states and its relation with the angular momentum of the hadron (known as the Regge trajectory)
66
+ [37, 38, 39, 40]. Briefly, the Cornell potential has the following form:
67
+ V (r) = −4
68
+ 3
69
+ αs
70
+ r + σr + v0,
71
+ (1)
72
+ where r is the effective radius of the quarkium state, αs is the running coupling, σ is the QCD string tension, and
73
+ v0 ≃ −0.3GeV. Note that this potential has two contributions. The first contribution (i.e., − 4
74
+ 3
75
+ αs
76
+ r ) dominates at
77
+ short distances, in general for r < 0.1fm [41]. This short-range contribution is known as Yukawa’s potential. In this
78
+ case, this contribution is due to the exchange of a gluon between the quark and its antiquark. Meanwhile, the second
79
+ potential contribution (i.e., σr) is the linear confinement term responsible for describing the non-perturbative QCD
80
+ effects that result in color confinement. In this scenario, σ is the tension of the QCD string that forms when the
81
+ gluonic field lines collapse in a flow tube. One estimates that the tension value of the QCD string is σ ≃ 0.18GeV2
82
+ [42]. Furthermore, it is important to mention that Cornell’s potential (1) has been gaining supporters in recent
83
+ years. For example, the Cornell potential has been used in spectroscopy studies of mesons [43] and S-wave heavy
84
+ quarkonia [44], among other studies.
85
+ Not far from this discussion, we found, in literature, some works discussing the influence of defects in quantum
86
+ eigenstates [45, 46, 47]. Indeed, the study of topological defects in quantum mechanics problems has aroused the
87
+ 2
88
+
89
+ interest of several researchers [48, 49, 50], and this interest is due to its wide application. Generally speaking, there
90
+ are three classes of defects, i. e., the cosmic string defect, the global monopole, and domain walls [51, 52]. Usually,
91
+ one-dimensional cosmic string defects [53] and global monopoles [54, 55, 56] apply widely to quantum mechanical
92
+ systems. Indeed, in this scenario, these defects were implemented, for example, in studies of harmonic oscillators
93
+ [57, 58], charged particle scattering [59], and models with exotic interaction [60]. Considering these applications
94
+ arises the question: How does the monopole-like defect influence the eigenstate of heavy mesons? Throughout this
95
+ manuscript, we will seek to answer this question.
96
+ Quantum information entropy (QIE) is a useful tool in studies on quantum information and uncertainty mea-
97
+ surements in quantum-mechanical systems. Indeed, the QIE arises from a reinterpretation of Shannon’s information
98
+ entropy [61]. Essentially, this reinterpretation, i. e., the QIE, and the Bialynicki-Birula and Mycielski [62] relation,
99
+ gives us a generalized uncertainty measure of Heisenberg’s principle.
100
+ Due to this, the QIE has gained search-
101
+ light in studies on quantum-mechanical systems. Thus, one can find several works discussing the information of
102
+ quantum-mechanical systems through the QIE formalism. For example, some applications of the QIE in the quan-
103
+ tum system appear in investigations of hyperbolic potential wells [63], the Aharonov-Bohm effect [64], and effective
104
+ mass problems [16].
105
+ Considering the applications presented, two questions naturally arise. First, how do point-like global monopole
106
+ (PGM) defects change the mesons’ eigenstates? Second, how does the quantum information modifies due to this
107
+ defect? As far as we know, our work is the first to address these questions. Thus, the main purpose of this paper
108
+ is to study the QIE of heavy mesons in the presence of a point-like global monopole defect.
109
+ To reach our purpose, we organize the work as follows: In Sec. II, the quantum description of heavy mesons is
110
+ exposed, assuming Cornell’s potential. In Sec. III, we present a discussion and numerical results of the QIE of the
111
+ Charmonium and Bottomonium states of heavy mesons. Finally, in Sec. IV, the findings are announced.
112
+ 2. Quantum description of heavy mesons
113
+ As discussed in Ref. [54], allow us to start by considering background spacetime with PGM defect. Particularly,
114
+ let us assume a spherically symmetric spacetime described by the line element
115
+ ds2 = −dt2 + ηijdxidxj,
116
+ with
117
+ i, j = 1, 2, 3,
118
+ (2)
119
+ where the metric tensor ηij is
120
+ ηij =
121
+
122
+
123
+
124
+
125
+
126
+ 1
127
+ α2
128
+ 0
129
+ 0
130
+ 0
131
+ r2
132
+ 0
133
+ 0
134
+ 0
135
+ r2 sin2 θ
136
+
137
+
138
+
139
+
140
+
141
+ and
142
+ ηij =
143
+
144
+
145
+
146
+
147
+
148
+ α2
149
+ 0
150
+ 0
151
+ 0
152
+ 1
153
+ r2
154
+ 0
155
+ 0
156
+ 0
157
+ 1
158
+ r2 sin2 θ
159
+
160
+
161
+
162
+
163
+ � .
164
+ (3)
165
+ Here the α parameter is related to the PGM defect, which depends on the energy scale. Mathematically, α2 =
166
+ 1 − 8πGλ2 where λ is the energy scale and G the gravitational constant.
167
+ Indeed, several researchers have adopted the PGM defect in their studies. For example, in Ref. [65], to investigate
168
+ spin-0 particles in the presence of dyons and Aharonov-Bohm effect with scalar interaction, the authors adopted the
169
+ 3
170
+
171
+ existence of a PGM defect. Furthermore, Ahmed [47] discussed the topological effects produced by this background
172
+ on spin-0 particles subject to the Kratzed potential. Particularly the interest in this defect is because it induces
173
+ topological effects that influence the particle’s quantum dynamics. Motivated by this, we consider that spinless
174
+ mesons are in the spacetime (2).
175
+ Considering the non-relativistic scenario, one writes Schr¨odinger’s equation as
176
+ − ℏ2
177
+ 2µ∇2
178
+ LBψ(r, t) + V (r, t)ψ(r, t) = iℏ∂ψ(r, t)
179
+ ∂t
180
+ .
181
+ (4)
182
+ Here, µ is the particle’s mass and ∇2
183
+ LB is the Laplace-Beltrami operator defined as
184
+ ∇2
185
+ LB ≡
186
+ 1
187
+ √g ∂i(√ggij∂j),
188
+ (5)
189
+ where g ≡ det(gij). Furthermore, we will assume, in principle, that the interaction V (r, t) = V (r), i. e., an arbitrary
190
+ central potential.
191
+ Assuming the Laplace-Beltrami operator (5) and the metric signature (2), we write Schr¨odinger’s equation as
192
+ follows:
193
+ − ℏ2
194
+ 2µr2
195
+
196
+ α2 ∂
197
+ ∂r
198
+
199
+ r2 ∂
200
+ ∂r
201
+
202
+ +
203
+ 1
204
+ sin θ
205
+
206
+ ∂θ
207
+
208
+ sin θ ∂
209
+ ∂θ
210
+
211
+ +
212
+ 1
213
+ sin2 θ
214
+ � ∂2
215
+ ∂ϕ2
216
+ ��
217
+ ψ(r, θ, ϕ, t) + V (r)ψ(r, θ, ϕ, t) = iℏ∂ψ(r, θ, ϕ, t)
218
+ ∂t
219
+ .
220
+ Allow us to particularize our study for the case of spinless heavy mesons. In this case, the interaction of the
221
+ theory is
222
+ V (r) = W1r − W2
223
+ r .
224
+ (6)
225
+ This interaction is called Cornell’s potential. Essentially, Cornell’s potential is employed to model the quarkonium
226
+ interaction. Besides, one finds, in literature, several investigations on quantum-mechanics systems adopting Cornell’s
227
+ potential, e. g., see Refs. [66, 67].
228
+ To study the wave eigenfunctions that the theory describes, let us assume that the particular solutions of Eq.
229
+ (6) in terms of the eigenvalues of the angular momentum operator ˆL2 are
230
+ ψ(r, t) = e−
231
+ iEnlt
232
+
233
+ Rnl(r)
234
+ r
235
+ Ylm(θ, ϕ)
236
+ (7)
237
+ where Ylm(θ, ϕ) are spherical harmonics and Rnl(r) is the radial wave eigenfunction.
238
+ Substituting Eq. (7) into (6), we have that the radial part of Schr¨odinger’s equation for Cornell’s potential in
239
+ the presence of the PGM defect is
240
+ d2Rnl(r)
241
+ dr2
242
+ +
243
+ �2µEnl
244
+ α2ℏ2 − 2µW1r
245
+ α2ℏ2
246
+ + 2µW2
247
+ α2ℏ2r − l(l + 1)
248
+ α2r2
249
+
250
+ Rnl(r) = 0.
251
+ (8)
252
+ Eq. (8) is not solvable in its current form. To solve this, allow us to adopt r → x−1. This change of coordinates
253
+ leads us to
254
+ d2Rnl(x)
255
+ dx2
256
+ + 2
257
+ x
258
+ dRnl(x)
259
+ dx
260
+ + 1
261
+ x4
262
+ �2µEnl
263
+ α2ℏ2 − 2µW1
264
+ α2ℏ2x + 2µW2x
265
+ α2ℏ2
266
+ − l(l + 1)x2
267
+ α2
268
+
269
+ Rnl(x) = 0.
270
+ (9)
271
+ 4
272
+
273
+ Here let us implement an approximation scheme (AS) on the term W1
274
+ x by assuming that there is a characteristic
275
+ radius r0 of the meson. In this case, one obtains the expansion of W1
276
+ x
277
+ in a power series around r0, i. e., around
278
+ δ ≡ 1/r0, up to the second order. By setting y = x − δ around y = 0, we obtain that
279
+ d2Rnl(x)
280
+ dx2
281
+ + 2x
282
+ x2
283
+ dRnl(x)
284
+ dx
285
+ + 1
286
+ x4
287
+
288
+ −˜ϵ + ˜β1x − ˜β2x2�
289
+ Rnl(x) = 0,
290
+ (10)
291
+ where
292
+ −˜ϵ = 2µEnl
293
+ ℏ2α2 − 6µW1
294
+ α2ℏ2δ ,
295
+ ˜β1 = 2µW2
296
+ α2ℏ2 + 6µW1
297
+ α2ℏ2δ2 ,
298
+ and
299
+ ˜β2 = 2µW1
300
+ α2ℏ2δ3 + l(l + 1)
301
+ α2
302
+ .
303
+ (11)
304
+ Eq. (10) is the solvable form of the NU method. The major equation closely related to this method is
305
+ P ′′(x) + �τ(x)
306
+ σ(x)P ′(x) +
307
+ �σ(x)
308
+ (σ(x))2 P(x) = 0.
309
+ (12)
310
+ Comparing to Eq. (12) with Eq. (10), it follows that
311
+ ˜τ(x) = 2x,
312
+ σ(x) = x2
313
+ and
314
+ ˜σ(x) = −˜ϵ + ˜β1x − ˜β2x2.
315
+ (13)
316
+ That explicitly shows that Eq. (10) satisfies the requirement of the NU approach. Furthermore, it is also worth
317
+ noting that ˜σ(x) and σ(x) are polynomials of at most second degree, and ˜τ(x) is at most polynomials of the first
318
+ degree. The NU method is popular among mathematical scientists and related disciplines. Several authors have
319
+ used this method to solve problems of similar interest [29, 68, 69]. Although the method is quite popular, it will
320
+ be useful to highlight some details to make our article self-contained. For this reason, we will detail this approach
321
+ in the appendix (please, verify the appendix). Following the steps described in the appendix [Eqs. (A.1-A.8)], one
322
+ obtains that the self-energies and eigenfunctions of our system are, respectively,
323
+ Enl = 3W1
324
+ δ
325
+ − α2ℏ2
326
+
327
+
328
+
329
+ 6µW1
330
+ α2δ2ℏ2 + 2W2
331
+ α2ℏ2
332
+ n + 1
333
+ 2 +
334
+
335
+ 1
336
+ 4 +
337
+ 2µW1
338
+ δ3α2ℏ2 + l(l+1)
339
+ α2
340
+
341
+
342
+ 2
343
+ (14)
344
+ and
345
+ Rnl(r) = Nnlr
346
+ ˜
347
+ β1
348
+ 2
349
+
350
+ ˜ϵ e−rL
351
+ ˜
352
+ β1
353
+
354
+ ˜ϵ
355
+ n (2
356
+
357
+ ˜ϵr).
358
+ (15)
359
+ Figs. 1 and 2 expose the behavior of the radial wave eigenfunctions for the Charmonium and Bottomonium states
360
+ of heavy mesons.
361
+ 3. The quantum information entropy
362
+ Since the seminal paper by Claude E. Shannon on the mathematical theory of communication [61], there has
363
+ been a growing interest in the studies of information entropies, e. g., see Refs. [16, 45, 70, 71, 72]. In quantum
364
+ mechanics, part of this interest is because the quantum information entropies are related to the uncertainty measures
365
+ of the quantum system [73, 74, 75]. Furthermore, this entropy tells us how good the description of the quantum
366
+ states of the theory is [16, 45, 71, 72].
367
+ 5
368
+
369
+ 0
370
+ 5
371
+ 10
372
+ 15
373
+ 20
374
+ 25
375
+ 0.0
376
+ 0.1
377
+ 0.2
378
+ 0.3
379
+ 0.4
380
+ 0.5
381
+ r
382
+ R00(r)
383
+ α=0.5
384
+ α=0.6
385
+ α=0.7
386
+ α=0.8
387
+ 0
388
+ 5
389
+ 10
390
+ 15
391
+ 20
392
+ 25
393
+ -0.4
394
+ -0.3
395
+ -0.2
396
+ -0.1
397
+ 0.0
398
+ r
399
+ R10(r)
400
+ α=0.5
401
+ α=0.6
402
+ α=0.7
403
+ α=0.8
404
+ 0
405
+ 5
406
+ 10
407
+ 15
408
+ 20
409
+ 25
410
+ -0.4
411
+ -0.3
412
+ -0.2
413
+ -0.1
414
+ 0.0
415
+ r
416
+ R11(r)
417
+ α=0.5
418
+ α=0.6
419
+ α=0.7
420
+ α=0.8
421
+ (a)
422
+ (b)
423
+ (c)
424
+ Figure 1: Radial wave eigenfunctions of heavy mesons (Charmonium) when mc = 1.209 Gev, µ = 0.6045 Gev, W1 = 0.20 Gev, W2 =
425
+ 1.244 Gev, δ = 0.231 Gev, and ℏ = 1. Fig. (a) corresponds to the state n = 0 and l = 0. On the other hand, Fig (b) is the state n = 1
426
+ and l = 0. The state n = 1 and l = 1 is in Fig. (c).
427
+ 0
428
+ 5
429
+ 10
430
+ 15
431
+ 20
432
+ 25
433
+ 0.0
434
+ 0.1
435
+ 0.2
436
+ 0.3
437
+ 0.4
438
+ r
439
+ R00(r)
440
+ α=0.5
441
+ α=0.6
442
+ α=0.7
443
+ α=0.8
444
+ 0
445
+ 5
446
+ 10
447
+ 15
448
+ 20
449
+ 25
450
+ -0.4
451
+ -0.3
452
+ -0.2
453
+ -0.1
454
+ 0.0
455
+ r
456
+ R10(r)
457
+ α=0.5
458
+ α=0.6
459
+ α=0.7
460
+ α=0.8
461
+ 0
462
+ 5
463
+ 10
464
+ 15
465
+ 20
466
+ 25
467
+ -0.4
468
+ -0.3
469
+ -0.2
470
+ -0.1
471
+ 0.0
472
+ r
473
+ R11(r)
474
+ α=0.5
475
+ α=0.6
476
+ α=0.7
477
+ α=0.8
478
+ (a)
479
+ (b)
480
+ (c)
481
+ Figure 2: Radial wave eigenfunctions of heavy mesons (Bottomonium) when mb = 4.823 Gev, µ = 2.4115 Gev, W1 = 0.2 Gev, W2 =
482
+ 1.569 Gev, δ = 0.378 Gev, and ℏ = 1. Fig. (a) corresponds to the state n = 0 and l = 0. On the other hand, Fig (b) is the state n = 1
483
+ and l = 0. The state n = 1 and l = 1 is in Fig. (c).
484
+ Quantum information entropies are related to uncertainty measures through the well-known Bialynicki-Birula
485
+ and Mycielski (BBM) relation [62], i. e.,
486
+ Sr + Sp ≥ D (1 + lnπ).
487
+ (16)
488
+ Here, Sr is the information entropy at position space; Sp is the information entropy at momentum space (or
489
+ reciprocal space). Besides, D describes the spatial dimension of the system, e. g., D = 1 for the one-dimensional
490
+ case, D = 2 for two-dimensional one, and D = 3 for three-dimensional one. In particular, the BBM relation to the
491
+ quantum theory of the heavy mesons in the presence of point-like defects is Sr + Sp ≥ 6.43419. It is interesting to
492
+ mention that the Bialynicki-Birula and Mycielski relation (16) is a sophisticated version of Heisenberg’s uncertainty
493
+ principle. Thus, the results of quantum information entropy must respect this condition.
494
+ For the quantum system discussed earlier (see Sec. 2), the information entropy is
495
+ Sr = −
496
+ ˆ 2π
497
+ 0
498
+ ˆ π
499
+ 0
500
+ ˆ ∞
501
+ 0
502
+ |ψ(r, t)|2 ln[|ψ(r, t)|2]r2 sin θ dr dθ dφ.
503
+ (17)
504
+ 6
505
+
506
+ Meanwhile, the information entropy at the reciprocal space is
507
+ Sk = −
508
+ ˆ 2π
509
+ 0
510
+ ˆ π
511
+ 0
512
+ ˆ ∞
513
+ 0
514
+ |ψ(k, t)|2 ln[|ψ(k, t)|]2 k2 sin θk dkr dkθ dkφ.
515
+ (18)
516
+ The spherical wave eigenfunction at reciprocal space is
517
+ ψ(k, t) = (2π)3/2
518
+ k−1/2
519
+
520
+
521
+ l=0
522
+ (−i)l
523
+ l
524
+
525
+ m=−l
526
+ Ylm(kθ, kφ)
527
+ ˆ ∞
528
+ 0
529
+ J 1
530
+ 2 +l(krr)r3/2 dr
531
+ ˆ 2π
532
+ 0
533
+ ˆ π
534
+ 0
535
+ ψ(r, t)Ylm(θ, φ)r2 sin θ dθ dφ.
536
+ (19)
537
+ Eq. (19) is Hankel’s transform of the wave eigenfunction ψ(r, t). Hankel’s transform is a transform whose kernels are
538
+ Bessel functions. Thus, Hankel’s transform also is called Bessel’s transform. In general, Hankel’s transform is the
539
+ two-dimensional Fourier transform of a circularly symmetric function or also spherical three-dimensional functions
540
+ [76].
541
+ Considering the definitions presented in Eqs. (17-18), we can study the quantum information entropy of heavy
542
+ mesons. Thus, we begin our study by discussing the quantum information entropy of the Charmonium state.
543
+ 3.1. Quantum information entropy for the Charmonium
544
+ Quarkonia, in particle physics, are hadronic states made of a heavy quark-antiquark pair. For the vector case,
545
+ they are the charmonium meson J/ψ (made up of a cc pair) and bottomonium meson Υ (made up of a bb pair)
546
+ and their corresponding radial excitations.
547
+ In fact, in the literature, the word quarkonium refers to the state
548
+ charmonium and bottomonium [77]. Briefly, Charmonium is a bound state of a quark and charmed antiquark. We
549
+ found, in the literature, several investigations discussing the Charmonium states. For example, some investigations
550
+ study about properties of hot gluonic plasma [78], the classification of states of mesons and their electromagnetic
551
+ decays [79], and the collision of heavy ions [80].
552
+ Motivated by these applications, let us now study the quantum information of this state. Thus, we will now
553
+ particularize our study to the quantum information entropies of the Charmonium state. To inspect Charmonium’s
554
+ information it is necessary to assume mc = 1.209 Gev, µ = 0.6045 Gev, W1 = 0.20 Gev, W2 = 1.244 Gev, δ =
555
+ 0.231 Gev, and ℏ = 1. Using these values, we describe eigenfunctions (7) of the Charmonium eigenstates. With
556
+ the wave eigenfunctions (7), one constructs the probability densities of the theory, i. e., |ψ(r, t)|2. Substituting
557
+ the probability density in the definition of information entropy (17) comes to the numerical results of the quantum
558
+ information entropy at position space. In Tab 1, we expose the numerical result of the information at the position
559
+ space.
560
+ To calculate the information entropy associated with the momentum of the Charmonium, the Hankel
561
+ transform (19) of the eigenfunctions (7) is calculated. Substituting the spherical wave eigenfunctions (19) in the
562
+ definition (18), one obtains the numerical results of quantum information entropy at the momentum space shown
563
+ in Tab. 1.
564
+ The numerical results in Tab. 1 suggest that the quantum information entropy decreases at position space as
565
+ the topological defect increase. In other words, when the point-like global monopole defect increase, the greater
566
+ the quantum information of the Charmonium states. As a consequence of this behavior, the uncertainty measures
567
+ related to the position measurements of the heavy mesons will be smaller when the α parameter increases. In
568
+ 7
569
+
570
+ Table 1: Quantum entropy information for the heavy mesons (Charmonium state)
571
+ Eigenstates (n, l, m)
572
+ Parameter α
573
+ Sr
574
+ Sp
575
+ Sr + Sp
576
+ BBM relation
577
+ (0,0,0)
578
+ 0.5
579
+ 9.35657
580
+ -0.01643
581
+ 9.34014
582
+ 6.43419
583
+ 0.6
584
+ 8.67692
585
+ -0.00799
586
+ 8.66893
587
+ 6.43419
588
+ 0.7
589
+ 8.11763
590
+ 0.01172
591
+ 8.12935
592
+ 6.43419
593
+ 0.8
594
+ 7.64474
595
+ 0.04550
596
+ 7.69024
597
+ 6.43419
598
+ (1,0,0)
599
+ 0.5
600
+ 8.61339
601
+ -1.65703
602
+ 6.95636
603
+ 6.43419
604
+ 0.6
605
+ 8.11752
606
+ 0.09796
607
+ 8.21548
608
+ 6.43419
609
+ 0.7
610
+ 7.72505
611
+ 0.13561
612
+ 7.86066
613
+ 6.43419
614
+ 0.8
615
+ 7.40575
616
+ 0.17689
617
+ 7.58264
618
+ 6.43419
619
+ (1,1,0)
620
+ 0.5
621
+ 8.18144
622
+ -0.99643
623
+ 7.18501
624
+ 6.43419
625
+ 0.6
626
+ 7.68558
627
+ -0.90431
628
+ 6.78127
629
+ 6.43419
630
+ 0.7
631
+ 7.29310
632
+ -0.83069
633
+ 6.46241
634
+ 6.43419
635
+ 0.8
636
+ 7.16383
637
+ -0.72070
638
+ 6.44313
639
+ 6.43419
640
+ (1,1,1)
641
+ 0.5
642
+ 8.20998
643
+ -1.47165
644
+ 6.73833
645
+ 6.43419
646
+ 0.6
647
+ 7.78339
648
+ -1.05141
649
+ 6.73198
650
+ 6.43419
651
+ 0.7
652
+ 7.43900
653
+ -1.00400
654
+ 6.43500
655
+ 6.43419
656
+ 0.8
657
+ 7.15430
658
+ -0.69458
659
+ 6.45972
660
+ 6.43419
661
+ contrast, as the point-like global monopole defect becomes large, the information entropy associated with the
662
+ momentum of the mesons decreases. Thus, one can conclude that when the PGM defect increase, the momentum
663
+ uncertainty measures of the particles in the Charmonium eigenstate decrease. Furthermore, we note that the BBM
664
+ relation to the Charmonium state of the quarks remains valid for all eigenstates. Finally, it is possible to note that
665
+ for higher energy levels, when the parameter α → 1, BBM’s relation tends to the minimum uncertainty relation, i.
666
+ e., Sr + Sp ≈ 6.43419.
667
+ 3.2. Comments on Bottomonium Quantum Information Entropy
668
+ For the Charmonium state mc = 1.209 Gev, µ = 0.6045 Gev, W1 = 0.20 Gev, W2 = 1.244 Gev, δ =
669
+ 0.231 Gev, and ℏ = 1. For the Bottomonium status, these parameters assume the following values: mb = 4.823 Gev, µ =
670
+ 2.4115 Gev, W1 = 0.2 Gev, W2 = 1.569 Gev, δ = 0.378 Gev, and ℏ = 1. Notice that from the Charmonium state to
671
+ the Bottomonium state, there is an increment of these values and the wave function profile is invariant. Thus, by
672
+ inspection, one perceives that the quantum information entropy of the Bottomonium state has a similar behavior
673
+ to the Charmonium state. Indeed, the quantum information entropy Sr decreases at the position space as the
674
+ parameter α (the PGM defect) increases. Meanwhile, the information entropy Sp increases at the momentum space
675
+ when the parameter α decreases. The variation of the Sr and Sp information must vary so that the BBM relation
676
+ remains valid. These results of the quantum information entropy of the Bottomonium state (and Charmonium pre-
677
+ 8
678
+
679
+ sented previously) of the quarks agree with the predictions presented in Ref. [77] using the configurational entropy
680
+ formalism.
681
+ 4. Conclusion
682
+ In this work, we investigated the Charmonium and Bottomonium states that describe heavy mesons using
683
+ Schr¨odinger’s theory in the presence of a PGM defect. To carry out this study, we considered a curved background
684
+ coupled with the PGM defect. Using the Nikiforov-Uvarov (NU) formalism, the quantum eigenstates of the heavy
685
+ mesons were studied. Then, considering the wave functions that describe the quarkonium eigenstates, we investigate
686
+ the QIE of heavy mesons using Shannon’s formalism.
687
+ Analyzing quantum self-states that describe the heavy mesons, one notes that the radial eigenfunctions are the
688
+ associated Laguerre polynomials. Furthermore, to investigate the self-states, the NU method is considered. This
689
+ method leads us to the energy spectrum shown in Eq. (14). This spectrum tells us that in the classical limit
690
+ En,l→∞ ≈ 3W1/δ, i. e., the energy will depend purely on W1, the contribution of short-range of the potential.
691
+ Meanwhile, the fundamental states will depend on short- and long-range contributions of Cornell’s potential. Be-
692
+ sides, one perceives that the PGM defect alters the quantum eigenstates of the particles as it varies. Indeed, when
693
+ α increases, the wave function amplitude increases. Thus, the larger the α parameter, the greater the probability
694
+ of finding quarkonium in regions close to the PGM defect.
695
+ Analyzing the QIE, we perceive that the quantum information decreases (at the position space) as the PGM
696
+ defect increases. On the other hand, it increases if the contribution of the PGM defect decreases. In contrast,
697
+ at the reciprocal space, an opposite behavior is observed. Furthermore, it is necessary to mention that behaviors
698
+ of the quantum information are consequences of the wave function profiles that describe the Charmonium and
699
+ Bottomonium states. As a direct consequence, also, of this result, it is noted that the momentum’s uncertainty
700
+ measures of the heavy mesons decrease as the position uncertainties increase. Thus, it is possible to notice that the
701
+ BBM uncertainty relation remains valid for all energy levels. Furthermore, the BBM relation tends to a minimum
702
+ value for higher energy states when α → 1. This occurs because, in this scenario, the PGM defect traps the heavy
703
+ meson.
704
+ This work has some prospects. Among them, a direct perspective of this work is the study of the quantum
705
+ dynamics of heavy mesons in the presence of other classes of defects, e. g., string-like or domain wall defects.
706
+ Another perspective is the study of the thermodynamic and statistical properties of these particles when subjected
707
+ to thermal baths. We hope to carry out these studies soon.
708
+ Authors Declaration
709
+ Funding
710
+ This research has been carried out under LRGS Grant LRGS/1/2020/UM/01/5/2 (9012-00009) Fault-tolerant
711
+ Photonic Quantum States for Quantum Key Distribution provided by Ministry of Higher Education of Malaysia
712
+ (MOHE).
713
+ 9
714
+
715
+ Conflicts of interest/Competing interest
716
+ All the authors declared that there is no conflict of interest in this manuscript.
717
+ Acknowledgements
718
+ C. O. Edet acknowledges eJDS (ICTP). C. A. S. Almeida thanks to Conselho Nacional de Desenvolvimento
719
+ Cient´ıfico e Tecnol´ogico (CNPq), no 309553/2021-0. F. C. E. Lima is grateful to Coordena¸c˜ao de Aperfei¸coamento
720
+ de Pessoal de N´ıvel Superior (CAPES), no 88887.372425/2019-00.
721
+ Appendix A. Review of the Nikiforov-Uvarov (NU) Method
722
+ Initially proposed by Nikiforov and Uvarov, the NU method seeks to solve Hypergeometric-type differential
723
+ equations of the form of Eq. (12) [81, 82]. One can obtain the solutions of Eq. (12) employing the trial wave
724
+ function:
725
+ P(x) = Φ(x)yn(x),
726
+ (A.1)
727
+ which reduces the differential equation (12) to a Hypergeometric-type differential equation of the form:
728
+ σ(x)y′′
729
+ n(x) + τ(x)y′
730
+ n(x) + λyn(x) = 0.
731
+ (A.2)
732
+ Allow us to highlight that the function Φ(x) is defined as
733
+ Φ′(x)
734
+ Φ(x) = π(x)
735
+ σ(x),
736
+ (A.3)
737
+ where π(x) is a polynomial of first-degree. Meanwhile, the second term in Eq. (A.1) is the hypergeometric function
738
+ with its polynomial solution given by Rodriques relation, i. e.,
739
+ yn(x) = Bn
740
+ ρ(x)
741
+ dn
742
+ dsn [σnρ(x)]
743
+ (A.4)
744
+ The term Bn is the normalization constant, and ρ(x) is known as the weight function, which in principle must
745
+ satisfy the condition given;
746
+ d
747
+ ds [σρ(x)] = τ(x)ρ(x)
748
+ (A.5)
749
+ where τ(x) = ˜τ(x) + 2π(x).
750
+ Naturally, we note here that the derivative of τ(x) should be τ(x) < 0. Thus, one can obtain the eigenfunctions
751
+ and eigenvalues using the expression defined by π(x) and λ, i. e.,
752
+ π(x) =σ′(x) − ˜τ(x)
753
+ 2
754
+ ±
755
+ ��σ′(x) − ˜τ(x)
756
+ 2
757
+ �2
758
+ − ˜σ(x) + kσ(x)
759
+ (A.6)
760
+ and
761
+ λ = k + π′(x).
762
+ (A.7)
763
+ Considering the discriminant of the square root [in Eq. (A.6)] equal to zero, we obtain the value of k. In this
764
+ case, the new eigenvalue equation is
765
+ λ + nτ ′(x) + n(n − 1)
766
+ 2
767
+ σ′′(x) = 0,
768
+ with
769
+ n = 0, 1, 2, . . .
770
+ (A.8)
771
+ 10
772
+
773
+ Appendix B. Solutions in Detail
774
+ Substituting ˜σ(x) = −˜ϵ + ˜β1x − ˜β2x2 into Eq. (A.6), we arrived at
775
+ π(x) = ±
776
+
777
+ ˜ϵ − ˜β1x + (˜β2 + k)x2.
778
+ (B.1)
779
+ The discriminant of the quadratic expression under the square root above is
780
+ k =
781
+ ˜β2
782
+ 1 − 4˜β2˜ϵ
783
+ 4˜ϵ
784
+ .
785
+ (B.2)
786
+ Substituting Eq. (B.2) in (B.1), one obtains
787
+ π(x) = ±
788
+ � ˜β1x
789
+ 2
790
+
791
+ ˜ϵ
792
+ − ˜ϵ
793
+
794
+ ˜ϵ
795
+
796
+ ,
797
+ (B.3)
798
+ where
799
+ π′(x) = −
800
+ ˜β1
801
+ 2
802
+
803
+ ˜ϵ
804
+ .
805
+ (B.4)
806
+ Thus, we can conclude that
807
+ τ(x) = 2x −
808
+ ˜β1x
809
+
810
+ ˜ϵ
811
+ + ˜ϵ
812
+
813
+ ˜ϵ
814
+ and
815
+ τ ′(x) = 2 −
816
+ ˜β1
817
+
818
+ ˜ϵ
819
+ ,
820
+ (B.5)
821
+ which leads us to
822
+ ˜β2
823
+ 1 − 4˜β2˜ϵ
824
+ 4˜ϵ
825
+
826
+ ˜β1
827
+ 2
828
+
829
+ ˜ϵ
830
+ = n˜β1
831
+ 2
832
+
833
+ ˜ϵ
834
+ − n2 − n
835
+ (B.6)
836
+ Eq. (B.6) yields the energy equation of the Cornell potential presented in Eq. (14)
837
+ References
838
+ [1] W. -C. Qiang and S. -H. Dong, Phys. Lett. A 368 (2007) 13.
839
+ [2] J. Yu and S. -H. Dong, Phys. Lett. A 325 (2004) 194.
840
+ [3] M. -C. Zhang, G. -H. Sun and S. -H. Dong, Phys. Lett. A 374 (2010) 704.
841
+ [4] J. Yu, S. -H. Dong and G. -H. Sun, Phys. Lett. A 322 (2004) 290.
842
+ [5] C. Quigg and J. L. Rosner, Phys. Rep. 56 (1979) 167.
843
+ [6] X. He, T. Zhu, X. Wang, J. Liu, and J. Z. H. Zhang, Acc. Chem. Res. 47 (2014) 2748.
844
+ [7] Y. B. Band and Y. Avishai, Quantum mechanics with applications to nanotechnology and information science,
845
+ Academic Press, (2013).
846
+ [8] A. Bhat, S. Dey, M. Faizal, C. Hou and Q. Zhao, Phys. Lett. B 770 (2017) 325.
847
+ 11
848
+
849
+ [9] C. O. Edet, A. N. Ikot, M. C. Onyeaju, U. S. Okorie, G. J. Rampho, M. L. Lekala, S. Kaya, Physica E:
850
+ Low-dimensional Systems and Nanostructures 145 (2023) 115494.
851
+ [10] C. O. Edet, R. Khordad, E. B. Ettah, S. A. Aljunid, R. Endut, N. Ali, M. Asjad, P. O. Ushie, A. N. Ikot,
852
+ Scient. Rep. 12 (2022) 15430.
853
+ [11] E. Omugbe, O. E. Osafile, I. B. Okon, E. P. Inyang, E. S. William and A. Ja-hanshir, Few-Body Systems 63
854
+ (2022) 7.
855
+ [12] H. Dekker, Phys. Rep. 80 (1981) 1-110.
856
+ [13] J. -H. Chang, C. -Y. Lin and R. -K. Lee, Phys. Scr. 97 (2022) 025205.
857
+ [14] E. I. Jafarov, Physica E: Low-dimensional Systems and Nanostructures 139 (2022) 115160.
858
+ [15] J. Ruostekoski and D. F. Walls, Phys. Rev. A 58 (1998) R50(R).
859
+ [16] F. C. E. Lima, Ann. Phys. 442 (2022) 168906.
860
+ [17] A. S. Dutra and C. A. S. Almeida, Phys. Lett. A 275 (2000) 25.
861
+ [18] A. S. Dutra, M. Hott and C. A. S. Almeida, Europhys. Lett. 62 (2003) 8.
862
+ [19] R. Renan, M. H. Pacheco and C. A. S. Almeida, J. Phys. A: Math. Gen. 33 (2000) L509.
863
+ [20] E. S. William, E. P. Inyang and E. A. Thompson, Rev. Mex. Fis. 66(2020) 730.
864
+ [21] E. Omugbe, Canadian Journal of Physics 98 (2020) 1125.
865
+ [22] M. G. Miranga, G. -H. Sun and S. -H. Dong, Int. J. Mod. Phys. E 19 (2010) 129.
866
+ [23] E. P. Inyang, E. S. William, E. Omugbe, E. P. Inyang, E. A. Ibanga, F. Ayedun, I. O. Akpan and J. E. Ntibi,
867
+ Rev. Mex. Fis. 68 (2022) 14.
868
+ [24] A. N. Ikot, U. S. Okorie, P. O. Amadi, C. O. Edet, G. J. Rampho and R. Sever, Few-Body System 62 (2021)
869
+ 9.
870
+ [25] I. B. Okon, C. A. Onate, E. Omugbe, U. S. Okorie, C. O. Edet, A. D. Antia, J. P. Araujo, C. N. Isonguyo, M.
871
+ C. Onyeaju, E. S. William, R. Horchani and A. N. Ikot, Molecular Physics 120 (2022) e2046295.
872
+ [26] M. Abu-Shady, T. A. Abdel-Karim and E. M. Khokha, J. Quant. Phys. 45 (2018) 587.
873
+ [27] C. O. Edet, S. Mahmoud, E. P. Inyang, N. Ali, S. A. Aljunid, R. Endut, A. N. Ikot and M. Asjad, Mathematics
874
+ 10 (2022) 2824.
875
+ [28] E. Omugbe, O. E. Osafile and M. C. Onyeajh, Advances in High Energy Physics 10 (2020) 1143.
876
+ [29] H. Karayer, D. Demirhan and F. B¨uy¨ukkılı¸c, J. Math. Phys. 56 (2015) 063504.
877
+ 12
878
+
879
+ [30] B. G¨oon¨ul and K. K¨oksal. Phys. Scrip. 75 (2007) 686.
880
+ [31] A. F. Nikiforov and V. B. Uvarov, Special functions of mathematical physics, v. 205, Springer, (1988).
881
+ [32] C. Tezcan and R. Sever, Int. J. Theor. Phys. 48 (2009) 337.
882
+ [33] J. J. Aubert, U. Becker, P. J. Biggs, J. Burger, M. Chen, G. Everhart, P. Goldhagen, J. Leong, T. McCorriston,
883
+ T. G. Rhoades, M. Rohde, Samuel C. C. Ting, Sau Lan Wu and Y. Y. Lee, Phys. Rev. Lett. 33 (1974) 1404.
884
+ [34] S. L. Glashow, J. Iliopoulos and L. Maiani, Phys. Rev. D 2 (1970) 1285.
885
+ [35] S. W. Herb, D. C. Hom, L. M. Lederman, J. C. Sens, H. D. Snyder, J. K. Yoh, J. A. Appel, B. C. Brown, C.
886
+ N. Brown, W. R. Innes, K. Ueno, T. Yamanouchi, A. S. Ito, H. J¨ostlein, D. M. Kaplan and R. D. Kephart,
887
+ Phys. Rev. Lett. 39 (1977) 252.
888
+ [36] R. L. Kelly, C. P. Horne, M. J. Losty, A. Rittenberg, T. Shimada, T. G. Trippe, C. G. Wohl, G. P. Yost,
889
+ N. Barash-Schmidt, C. Bricman, C. Dionisi, M. Mazzucato, L. Montanet, R. L. Crawford, M. Roos, and B.
890
+ Armstrong (Particle Data Group), Rev. Mod. Phys. 52 (1980) S1.
891
+ [37] E. Eichten, K. Gottfried, T. Kinoshita, J. Kogut, K. D. Lane, and T. -M. Yan, Phys. Rev. Lett. 34 (1975) 369;
892
+ [38] E. Eichten, K. Gottfried, T. Kinoshita, J. Kogut, K. D. Lane, and T. -M. Yan, Phys. Rev. Lett. 36 (1976)
893
+ 1276.
894
+ [39] E. Eichten, K. Gottfried, T. Kinoshita, K. D. Lane, and T. -M. Yan, Phys. Rev. D 17 (1978) 3090.
895
+ [40] E. Eichten, K. Gottfried, T. Kinoshita, K. D. Lane, and T. -M. Yan, Phys. Rev. D 21 (1980) 313.
896
+ [41] N. Brambilla and G. M. Prosperi, Quark Confinement and the Hadron Spectrum, Proc. Int. Conf., International
897
+ Conference, Como, Italy, (1995).
898
+ [42] A. Deur, S. J. Brodsky, G. F. Teramond, Prog. Part. Nucl. Phys. 90 (2016) 1–74.
899
+ [43] N. R. Soni, B. R. Joshi, R. P. Shah, H. R. Chauhan and J. N. Pandya, Eur. Phys. J. C 78 (2018) 592.
900
+ [44] H. S. Chung, J. Lee, and D. Kang, Cornell potential parameters for S-wave heavy quarkonia, J. Korean Phys.
901
+ Soc. 52 (2008) 1151.
902
+ [45] C. O. Edet, F. C. E. Lima, C. A. S. Almeida, N. Ali and M. Asjad, Entropy 24 (2022) 1059.
903
+ [46] N. Ali, C. A. S. Almeida, C. O. Edet, F. C. E. Lima and A. R. P. Moreira, arXiv preprint arXiv: 2212.09208,
904
+ (2022). DOI: doi.org/10.48550/arXiv.2212.09208
905
+ [47] F. Ahmed, Phys. Scr. 98 (2023) 015403.
906
+ [48] W. C. F. Silva and K. Bakke, Eur. Phys. J. Plus 136 (2021) 920.
907
+ 13
908
+
909
+ [49] A. V. D. M. Maia and K. Bakke, Universe 8 (2022) 168.
910
+ [50] K. Bakke, Int. J. Mod. Phys. A 37 (2022) 2250046.
911
+ [51] T. W. B. Kibble, Phys. Rep. 67 (1980) 183.
912
+ [52] A. Vilenkin and E. P. S. Shellard, Strings and Other Topological Defects, (Cambridge: Cambridge University
913
+ Press, 1994).
914
+ [53] S. Zare, H. Hassanabadi and M. de Montigny, Gen. Relativ. Grav. 52 (2020) 25.
915
+ [54] M. Barriola and A. Vilenkin, Phys. Rev. Lett. 63 (1989) 341.
916
+ [55] D. P. Bennett and S. H. Rhie, Phys. Rev. Lett. 65 (1990) 1709.
917
+ [56] F. Ahmed, Sci. Rep. 12 (2022) 8794.
918
+ [57] C. Furtado and F. Moraes, J. Phys. A: Math. Gen. 33 (2000) 5513.
919
+ [58] R. L. L. Vitoria and H. Belich, Phys. Scr. 94 (2019) 125301.
920
+ [59] A. L. C. Oliveira and E. R. B. Mello, Int. J. Mod. Phys. A 18 (2003) 2051.
921
+ [60] P. Nwabuzor, C. O. Edet, A. N. Ikot, U. Okorie, M. Ramantswana, R. Horchani, A. -H. Abdel-Aty and G.
922
+ Rampho, Entropy 23 (2021) 1060.
923
+ [61] C. E. Shannon, Bell Syst. Tech. J., 27 (1948) 379.
924
+ [62] I. Bialynicki-Birula and J. Mycielski, Comm. Math. Phys. 44 (1975) 129.
925
+ [63] C. A. Gil-Barrera, R. S. Carrillo, G. -H. Sun and S. -H. Dong, Entropy 24 (2022) 604.
926
+ [64] C. O. Edet, E. B. Ettah, S. A. Aljunid, R. Endut, N. Ali, A. N. Ikot and M. Asjad, Entropy 14 (2022) 976.
927
+ [65] A. L. C. Oliveira and E. R. B. Mello, Phys. Scrip. 23 (2006) 5249.
928
+ [66] V. Kumar, R. M. Singh, S. B. Bhardwaj, R. Rani and F. Chand, Mod. Phys. Lett. A 37 (2022) 2250010.
929
+ [67] A. N. Ikot, L. F. Obagboye, U. S. Okorie, E. P. Inyang, P. O. Amadi, I. B. Okon and A. -H. Abdel-Aty, Eur.
930
+ Phys. J. Plus 137 (2022) 1370.
931
+ [68] F. Ya¸suk, C. Berkdemir and A. Berkdemir, J. Phys. A: Math. Gen. 38 (2005) 6579.
932
+ [69] C. A. Onate, O. Adebimpe, A. F. Lukman, I. J. Adama, J. O. Okoro and E. O. Davids, Heliyon, 4 (2018)
933
+ e00977.
934
+ [70] C. O. Edet and A. N. Ikot, Eur. Phys. J. Plus 136 (2021) 432.
935
+ 14
936
+
937
+ [71] F. C. E. Lima, A. R. P. Moreira, L. E. S. Machado and C. A. S. Almeida, Int. J. Quant. Chem. 121 (2021)
938
+ e26749.
939
+ [72] F. C. E. Lima, A. R. P. Moreira and C. A. S. Almeida, Int. J. Quant. Chem. 121 (2021) e26645.
940
+ [73] X. -D. Song, G. -H. Sun, S. -H. Dong, Phys. Lett. A 379 (2015) 1402.
941
+ [74] G. -H. Sun, S. -H. Dong, K. D. Launey, T. Dytrych and J. P. Draayer, Int. J. Quant. Chem. 115 (2015) 891.
942
+ [75] G. -H. Sun, D. Popov, O. Camacho-Nieto and S. -H. Dong, Chin. Phys. B 24 (2015) 100303.
943
+ [76] H. Weber and G. B. Arfken, Essentials of Math Methods for Physicists, Academic Press., (2013).
944
+ [77] N. R. F. Braga and R. da Rocha, Phys. Lett. B 776 (2018) 78.
945
+ [78] S. Datta, F. Karsch, P. Petreczky and I. Wetzorke, Phys. Rev. D 69 (2004) 094507.
946
+ [79] V. A. Novikov, L. B. Okun, M. A. Shifman, A. I. Vainshtein, M. B. Voloshin and V. I. Zakharov, Phys. Rep.
947
+ 41 (1978) 1-133.
948
+ [80] R. Rapp, D. Blaschke and P. Crochet, Prog. Part. Nuc. Phys. 65 (2010) 209.
949
+ [81] A. F. Nikiforov and V. B. Uvarov, Integral Transforms and Special Functions 1 (1993) 223.
950
+ [82] A. F. Nikiforov and V. B. Uvarov, Foundations of the theory of special functions, In: Special Functions of
951
+ Mathematical Physics, Birkh¨auser, Boston, MA, (1988).
952
+ 15
953
+
I9FJT4oBgHgl3EQfvy0q/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
INAyT4oBgHgl3EQfTPda/content/tmp_files/2301.00101v1.pdf.txt ADDED
@@ -0,0 +1,1650 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Material vs. structure: Topological origins of band-gap truncation resonances in
2
+ periodic structures
3
+ Matheus I. N. Rosa1, Bruce L. Davis2, Liao Liu2, Massimo Ruzzene1,2, Mahmoud I. Hussein2,3
4
+ University of Colorado Boulder, Boulder, CO, 80303
5
+ Abstract
6
+ While resonant modes do not exist within band gaps in infinite periodic materials, they may appear as in-gap localized
7
+ edge modes once the material is truncated to form a finite periodic structure. Here, we provide an analysis framework that
8
+ reveals the topological origins of truncation resonances, elucidating formally the conditions that influence their existence
9
+ and properties. Elastic beams with sinusoidal and step-wise property modulations are considered as classical examples of
10
+ periodic structures. Their non-trivial topological characteristics stem from the consideration of a phason parameter that
11
+ produces spatial shifts of the property modulation while continuously varying how the boundaries are truncated. In this
12
+ context, non-trivial band gaps are characterized by an integer topological invariant, the Chern number, which is equal to
13
+ the number of truncation resonances that traverse a band gap as the phason is varied. We highlight the existence of multi-
14
+ ple chiral edge states that may be localized at opposite boundaries, and illustrate how these can be independently tuned by
15
+ modified boundary-specific phason parameters. Boundary phasons modify the truncation of only one boundary at a time.
16
+ Furthermore, we show that the frequency location of a truncation resonance is influenced by the modulation wavelength,
17
+ modulation volume fraction, boundary conditions, and number of cells comprising the finite structure, thus quantify-
18
+ ing its robustness to these factors. Non-topological in-gap resonances induced by a defect are also demonstrated, with
19
+ their frequency dependence on the phason investigated to elucidate their contrast to truncation resonances. A coupling
20
+ between topological and non-topological modes is shown to be possible when the defect is located at an edge. Finally,
21
+ experimental investigations on bi-material phononic-crystal beams are conducted to support these findings. Our results
22
+ provide a fundamental perspective on the topological character of truncation resonances in periodic structures and how
23
+ this character relates to the underlying periodic material properties. The tunability of these unique structural resonances
24
+ through material-property modulation may be exploited both in applications where in-gap resonances are not desired,
25
+ such as vibration attenuation and thermal conductivity reduction, or where in-gap resonances provide a functional role,
26
+ such as filtering, waveguiding, energy harvesting, and flow control by phononic subsurfaces.
27
+ Keywords: Phononic materials, band-gap resonances, topological protection, phasons, experimental phononics
28
+ 1. Introduction
29
+ The study of elastic wave propagation in a continuous periodic medium is a classical problem in mechanics that can be
30
+ traced back to Rayleigh in 1887 [1]. With the advent of composite materials, the interest in this problem surged with early
31
+ contributions in the 1950s [2] and 1960s [3] formulating dispersion relations for wave propagation in laminated compos-
32
+ ites, and other forms of periodic media [4, 5], followed by extension to multi-dimensional composites in the 1970s [6]. The
33
+ field re-emerged in the early 1990s with the study of phononic crystals [7, 8] and the establishment of formal connections
34
+ with lattice dynamics in crystals [9], and gathered further pace with the rise of acoustic and elastic metamaterials [10].
35
+ In all these studies, periodicity is utilized enabling dynamic characterization by considering a representative unit cell, as
36
+ commonly done in condensed matter physics [11]. Calculating the dispersion relation, or the band structure, using the
37
+ Floquet/Bloch theorem [12, 13] formally enforces the assumption of an extended medium with an infinite number of unit
38
+ cells. This is not only computationally rewarding, but physically provides a fundamental description of the modal wave
39
+ propagation properties of the medium under investigation−removing any influence of overall size and external bound-
40
+ ary conditions. In this framework, the medium under consideration is rendered a material with characteristic intrinsic
41
+ properties, such as band gaps (whose locations may be predicted analytically [14–17]) and other key features revealed
42
+ Email addresses: massimo.ruzzene@colorado.edu (Massimo Ruzzene ), mih@colorado.edu (Mahmoud I. Hussein )
43
+ 1Paul M. Rady Department of Mechanical Engineering
44
+ 2Ann and H.J. Smead Department of Aerospace Engineering Sciences
45
+ 3Department of Physics
46
+ Preprint submitted to Elsevier
47
+ arXiv:2301.00101v1 [cond-mat.mtrl-sci] 31 Dec 2022
48
+
49
+ by the nature of the band structure. The thermal conductivity, for example, is an intrinsic material property that is di-
50
+ rectly influenced by the band structure−determined by analysis of only a single atomic-scale unit cell [18, 19]. Effective
51
+ dynamic properties, such as effective density and Young’s modulus [20], provide another example of intrinsic material
52
+ properties. On the other hand, unless a medium practically comprises thousands or millions of unit cells (as in a bulk
53
+ crystal for example), realistic realizations are formed from a relatively small finite number of unit cells, yielding a periodic
54
+ structure, rather than a material, with extrinsic properties. This is particularly the case in engineering problems such as
55
+ sound [21] and vibration [22] isolation, and other similar applications [23, 24], and also the case in nanoscale thermal
56
+ transport [25] where unique dynamical properties emerge primarily from the presence of finite size along the direction of
57
+ transport.
58
+ 1.1. Truncation resonances
59
+ A periodic structure in practice may still consist, in some cases, of a relatively large but tractable number of unit cells,
60
+ and in other cases, of only a few unit cells along the direction of vibration transmission. The number of cells impacts the
61
+ degree of attenuation within a band gap [26]. However, the contrast between the material and structure behavior may not
62
+ be limited to only quantitative differences but also to fundamental qualitative distinctions. One noticeable anomaly be-
63
+ tween the material and structure responses is the possibility of existence of resonances inside band gaps, i.e., resonance
64
+ peaks in the frequency response function (FRF) of a finite periodic structure that appear within band-gap frequency ranges
65
+ of the corresponding infinite periodic material. These resonances are often referred to as truncation resonances [27, 28] be-
66
+ cause they emerge from the truncation of a medium that is otherwise formed from an infinite number of unit cells. These
67
+ resonances are associated with mode shapes that localize at the truncation junction, and are thus also commonly referred
68
+ to as edge or surface modes [29–37]. The presence of these modes has been uncovered theoretically by Wallis [29] in his
69
+ study of a finite discrete diatomic chain of atoms with free ends. This followed the work of Born on finite atomic chains [38]
70
+ which was motivated by the study of the influence of lattice vibrations on X-ray scattering. Recent studies extended Wallis’
71
+ theory of finite discrete chains to more general conditions [28, 39, 40] and experiments on chains of discrete-like coupled
72
+ spheres validated the theory [35].
73
+ The problem of truncation resonances in continuous periodic media−the focus of this paper−has also been inves-
74
+ tigated extensively. Early studies examined one-dimensional wave propagation in periodically layered/lamenated com-
75
+ posites, also referred to as superlattices. Existence conditions for truncation resonances were derived for semi-infinite
76
+ superlattices for out-of-plane [30, 32, 34] and in-plane [31, 33, 37] waves. It was shown that surfaces modes in some in-
77
+ stances may appear below the lowest bulk band, i.e., the band that hosts conventional resonances. Investigations of the
78
+ truncation phenomenon were also done on finite layered phononic crystals examining transverse waves [36, 41], on finite
79
+ beam-based phononic crystals [42, 43] and locally resonant elastic metamaterials [44, 45], and on rod-based phononic
80
+ crystals [46, 47]. Among the factors that influence the frequency location of the truncation resonances are the unit-cell
81
+ symmetry and the boundary conditions [41, 43, 45–47]. When there is more than one layer in the unit cell, the number
82
+ of surface states increases [34, 37]. Techniques proposed for control of the truncation resonances also include tuning of
83
+ unit-cell spatial material distribution or volume fraction [42], and the anomalous addition of a “cap layer" [32, 34] or a
84
+ “tuning layer" [42, 48] at the edge of the structure. A cap layer is simply a homogeneous layer, whereas a tuning layer is
85
+ a purposefully truncated single unit cell. The concept of truncation resonances is also relevant to other areas in applied
86
+ physics such as photonic crystals [49] and quantum lattices [41].
87
+ 1.2. Connection to topological physics
88
+ The principle of a truncation resonance is fundamentally connected to the periodic structure’s topological proper-
89
+ ties; this connection forms the core focus of the present study. Inspired by the emergence of topological insulators in
90
+ condensed matter physics [50], classical analogues have been developed in photonics [51] and phononics [52], demon-
91
+ strating the features of robust topological waves. In passive elastic materials, topological interface modes are created
92
+ by contrasting two materials with band gaps existing at the same frequencies, but characterized by different topological
93
+ invariants. Examples include interface modes in one-dimensional (1D) structures [53–56] in analogy to the Su-Schrieffer-
94
+ Heeger model [57], and waveguiding along interfaces in two-dimensional (2D) materials in analogy to the Quantum Spin
95
+ Hall Effect [58, 59] or to the Quantum Valley Hall Effect [53, 60, 61]. These effects rely on symmetry breaking by interfacing
96
+ two domains whose unit cells have opposite symmetries, which results in contrasting topological properties in the recip-
97
+ rocal space. Hence, an actual interface between two materials is required, which presents a contrast to the truncation
98
+ resonances we explore in this paper. We will show an intriguing connection that stems from a stronger type of topolog-
99
+ ical effect associated with the Quantum Hall Effect (QHE) [62, 63]. The QHE manifests in 2D lattices of electrons under
100
+ the presence of a strong magnetic field, which leads to robust edge waves that propagate along the boundaries of a finite
101
+ sample (structure), without backscattering at corners or defects. It is therefore sufficient to exploit the interface between
102
+ a single material medium and vacuum. However, such a strong effect requires breaking time reversal symmetry, which in
103
+ 2
104
+
105
+ the quantum case is achieved through the magnetic field. Emulating similar features on 2D elastic materials is possible
106
+ through active components that break time reversal symmetry, such as rotating frames [64] or gyroscope spinners [65, 66].
107
+ An alternative that has emerged later, and which we adopt here, is to map the QHE to 1D passive structures that have
108
+ extended dimensionality emanating from their parameter spaces [67, 68]. This has been achieved by using patterned me-
109
+ chanical spinners [69], spring-mass lattices [70], acoustic waveguides [71, 72], and continuous phononic crystals or elastic
110
+ metamaterials with modulations of inclusions such as ground springs [73], stiffeners [74], and resonators [75, 76]. In these
111
+ examples, edge states localized at the boundaries of 1D periodic and quasi-periodic finite domains are observed to ap-
112
+ pear in correspondence to non-zero topological inavariants called Chern numbers. The boundary at which the localization
113
+ occurs can be determined by a phason parameter that is associated with spatial shifts in the medium’s modulated prop-
114
+ erties. This feature leads to possibilities for topological pumping by varying the phason parameter continuously along
115
+ time [77–79] or along a second spatial dimension [70, 80], inducing a transition of the edge states from being localized at
116
+ one boundary to the other. Thus, energy can be "pumped" between two boundaries of a system through a transition of a
117
+ topological edge state. The application of the field of topology to elastic and acoustic material systems has been attracting
118
+ much interest in recent years [52, 81, 82].
119
+ In this paper, we provide a formal framework for the identification of the topological character of truncation reso-
120
+ nances in periodic structures, drawing on concepts from the QHE. We consider a family of periodic elastic beams with
121
+ either sinusoidal or step-wise property modulations. The modulations offer key parameters that expand the structure’s
122
+ property space and allow us to readily apply the concepts of topological band theory. In particular, the variation of a peri-
123
+ odic beam’s spectral properties with respect to the modulation wavelength allows us to extract the Chern numbers of the
124
+ band-gaps and identify the locations of truncation resonances. Then, the phason parameters associated with spatial shifts
125
+ of the modulations further characterize the truncation resonances as topological edge states spanning the band gaps. The
126
+ frequency dependence of the location of a truncation resonance on the phason has recently been predicted, for periodic
127
+ rods, by means of a closed-form transfer-matrix-based mathematical formulation [47]. Here, we investigate, for periodic
128
+ flexural beams, the topological origins of this class of relations. We show that the number of truncation resonances within
129
+ a gap is equal to the predicted Chern number, for any set of boundary conditions, although the particular features of their
130
+ branches as they traverse the gaps may vary. We elucidate how additional boundary phason parameters can be defined,
131
+ formalizing the notion of the tuning layer [42, 48], to manipulate the edge states localized at different boundaries indepen-
132
+ dently. Furthermore, we examine the convergence of the truncation resonant frequencies as a function of the number of
133
+ unit cells−a matter of significant practical importance especially when this number is relatively small. The fundamental
134
+ differences, and the possibility of coupling, between truncation resonances and corresponding non-topological defect-
135
+ mode resonances are then investigated. Next, we provide laboratory results using a bi-material phononic-crystal beam
136
+ as experimental validation of some of the key features of truncation resonances and their association with topological
137
+ theory. Finally, we use our experiments to explore yet another important factor in the design space, namely the role of the
138
+ materials’ volume fraction within the unit cell in influencing the frequency locations of the truncation resonances.
139
+ The paper is organized as follows: following this introduction, Section 2 provides a description of the considered pe-
140
+ riodic flexural beams and their boundary truncation through phasons. Next, Section 3 develops the theory and compu-
141
+ tational analysis to characterize the topological properties of truncation resonances and those of non-topological defect
142
+ resonances, and the coupling of the two types of resonances, followed by Section 4 which provides experimental results
143
+ and further analysis. Finally, Section ?? has a general discussion on the key findings and their broader implications to
144
+ related areas of research, and Section 6 provides a closing summary and outlines possible future research directions.
145
+ 2. Modulated phononic-crystal beams: Truncation characterization by phasons
146
+ We consider elastic beams undergoing flexural motion described by transverse displacement w = w(x) and angle of
147
+ rotation ϕ = ϕ(x), where x is the axial position, as classical examples of 1D periodic materials or structures. The properties
148
+ of the beam are the Young’s modulus E = E(x), shear modulus G = G(x), density ρ = ρ(x), cross-sectional area A = A(x),
149
+ and second moment of area I = I(x). These properties are modulated in space as illustrated in Fig. 1. Two scenarios are
150
+ considered; in the first the Young’s modulus is modulated according to a cosine function, i.e. E(x) = E0[1+αcos(2πθx −
151
+ φ)], while other parameters remain constant (Fig. 1(a)). This cosine-modulated phononic crystal (CM-PnC) serves as an
152
+ idealized continuous periodic waveguide used to illustrate the behavior of interest in a simple setting. It is characterized
153
+ by a unit cell of length a = 1/θ, where α is the amplitude of the modulation with respect to the mean value E0 and θ may
154
+ be viewed as the modulation wavenumber. The second case corresponds to a beam modulated in a step-wise fashion,
155
+ which we refer to as step-wise modulated phononic crystal (SM-PnC). It generically represents a periodic material of
156
+ two alternating layers of lengths a1 and a2, with different constituent material or geometrical (e.g. cross-sectional area)
157
+ 3
158
+
159
+ properties. In this case, the material or geometrical properties are modulated through a step-wise function of period
160
+ a = 1/θ = a1 + a2 that takes two different values in the intervals of length a1 and a2.
161
+ The appearance of in-gap resonances stems from the truncation of the boundaries. The truncation details are here
162
+ characterized by phason parameters that are connected to non-trivial topological properties. The most natural choice of
163
+ the phason is simply the phase φ of the property modulations, which rigidly shifts the modulation in space. Thus it results
164
+ in a simultaneous change of the local properties of the beam at both boundaries. This is illustrated in the schematics of
165
+ Fig. 1 for both the sinusoidal and step-wise modulations. The blue boxes highlight the region of the modulations selected
166
+ to form the properties of the finite beams. From a given initial configuration, a change in phason over the range 0 < φ < 2π
167
+ (higher values of φ do not need to be considered due to the periodicity) can be interpreted as simultaneously adding a
168
+ segment of length φa/2π to the left boundary, while removing the same length from the right boundary. This will naturally
169
+ influence any vibration mode localized at either boundary. It’s effect can be further understood as the superpostion of two
170
+ independent parameters which we call boundary phasons. A change in the right boundary phason φr corresponds to
171
+ removing a length φr a/2π from the right boundary while keeping the left boundary unchanged, while a change in the
172
+ left boundary phason φl corresponds to adding a length φl a/2π to the left boundary while keeping the right boundary
173
+ unchanged. Hence, changing the phason φ corresponds to changing both the left and right boundary phasons by the
174
+ same amount (as illustrated in the figure). As we will show, the boundary phasons independently tune the topological
175
+ truncation resonances at their respective boundary, and their superimposed effect leads to the variation of the resonances
176
+ with respect to the conventional phason φ.
177
+ Herein, the flexural motion of the beam is modeled through Timoshenko theory as governed by the following two
178
+ coupled equations:
179
+ ρA ∂2w
180
+ ∂t2 − q(x,t) = ∂
181
+ ∂x
182
+
183
+ κsAG
184
+ �∂w
185
+ ∂x −ϕ
186
+ ��
187
+ ,
188
+ (1a)
189
+ ρI ∂2ϕ
190
+ ∂t2 = ∂
191
+ ∂x
192
+
193
+ EI ∂ϕ
194
+ ∂x
195
+
196
+ +κsAG
197
+ �∂w
198
+ ∂x −ϕ
199
+
200
+ ,
201
+ (1b)
202
+ where κs denotes the shear coefficient, and t and q = q(x,t) represent time and the external forcing, respectively. Equa-
203
+ tions 1a and 1b are combined to yield a single fourth-order partial differential equation with only w as the dependent
204
+ variable [83]. In our investigation, we consider three types of problems: a Bloch dispersion analysis problem for a unit-cell
205
+ representing an infinite material, an eigenvalue analysis problem for a finite structure with arbitrary boundary conditions
206
+ (BCs), and a harmonic forced-response problem for a finite structure with arbitrary BCs. In the first two problems, we set
207
+ Figure 1: Elastic periodic beams with (a) sinusoidal and (b) step-wise property modulation whose spatial distribution is defined by a phason φ or
208
+ boundary phasons φr and φl . A modulation characterized by φ is a superposition of modulations characterized by φr and φl .
209
+ 4
210
+
211
+ (a)
212
+ 1
213
+ E(x),p
214
+ w(x,t)
215
+ X
216
+ D
217
+ Φ(b)
218
+ 1
219
+ E(x),p(x)
220
+ X
221
+ -q = 0 and
222
+ w(x,t) = ˆwei(µx−ωt),
223
+ (2)
224
+ where ω denotes the frequency. In Eq.2, we set 0 ≤ µ ≤ π/a for the Bloch dispersion problem, where µ = 0 is used for
225
+ the finite periodic-structure eigenvalue with arbitrary BCs. The results are obtained by a finite-element discretization of
226
+ the equations of motion. The implementation details of these methods are omitted here for brevity since they are widely
227
+ available in the literature (for example, see Ref. [84]).
228
+ Motivated by the experimental portion of this work (see Section 4), we select the following parameters. The SM-PnC
229
+ consists of a bi-material beam composed of alternating layers of Aluminum (Al) and the polymer acrylonitrile butadiene
230
+ styrene (ABS). These materials are selected due to the contrast of mechanical properties leading to wide band gaps. Their
231
+ properties are as follows: Young’s moduli EAl = 68.9 GPa and EABS = 2.4 GPa, shear moduli GAl = 25.9 GPa and GABS = 0.872
232
+ GPa, and densities ρAl = 2700 kg/m3 and ρABS = 1040 kg/m3, respectively. While we will allow the unit-cell length to vary
233
+ through the θ parameter, the ABS polymer length filling fraction is fixed as aABS/a = 0.2; this ratio will be changed only in
234
+ Section 4.3. For purposes of comparison, the properties of the CM-PnC are then chosen to make it statically equivalent [26]
235
+ to the SM-PnC by selecting a fixed density ρ0 = (0.2ρABS + 0.8ρAl) and elastic modulus modulation with a mean value of
236
+ E0 = (0.2/EABS +0.8/EAl)−1. We consider a Poisson’s ratio of ν = 0.33, which consequently determines the shear modulus
237
+ through the relation G = E/(2(1+ν)). Throughout this paper, the CM-PnC modulation amplitude is fixed at α = 0.9, and
238
+ the beams have a square cross-section geometry with side length h = 2.54cm. The finite-element analysis follows by
239
+ discretizing the beams with linear Timoshenko beam elements with a shear coefficient of 5/6. The beam element length
240
+ varies according to the case studied but does not exceed a maximum length of ¯a/100, where ¯a = 203 mm is the unit-cell
241
+ size of the experimental beams and is used as a reference unit-cell length throughout the paper.
242
+ Figure 2 presents a comparison between the properties of the CM-PnC and SM-PnC for the reference unit-cell size
243
+ ¯a = 203 mm, highlighting the contrast between material and structure. Panels (a) and (b) display their dispersion diagrams
244
+ in a frequency range of interest from 0-9 kHz, which is a material feature. Both CM-PnC and SM-PnC exhibit the same
245
+ long-wave static limit that approaches the dispersion of the homogenized beam with material property constants ρ0,E0
246
+ (dashed lines), but display different band-gaps (shaded gray regions). In particular, the SM-PnC has wider gaps due to
247
+ its discrete nature and the contrast of both densities and elastic moduli, while the CM-PnC has smaller gaps due to a
248
+ fixed density and a continuous variation of the elastic modulus only. On the right side of the dispersion diagrams, the
249
+ eigenfrequencies of representative finite beams with 15 unit cells and free-free BCs are plotted as black dots, with φ = 0.2π
250
+ and φ = 0.4π selected for the CM-PnC and SM-PnC beams, respectively. Truncation resonances are observed to appear
251
+ in band gaps, a feature which is unique to the structure, non-existing at the material level. An arbitrary phason value
252
+ is chosen here to produce a large number of truncation resonances as an example, but the behavior with the full range
253
+ of φ will later be explored and explained. The truncation resonances are localized at one of the two boundaries of the
254
+ finite beams, with selected mode shapes displayed in Figs. 2(c-f). By looking at such isolated cases (as has been largely
255
+ done in previous studies), there is no apparent reason or pattern pertaining to the appearance of in-gap resonances, why
256
+ are they localized at one boundary instead of the other, and why these features can change by selecting different BCs or
257
+ different numbers of unit cells, etc. In the following sections, we will shed light on all of these questions by illustrating the
258
+ topological character of in-gap truncation resonances associated with non-zero Chern numbers, and consequently how
259
+ they can be manipulated through the phason and other parameters or design features.
260
+ 3. Topological properties of modulated phononic-crystal beams
261
+ In this section we develop the theoretical tools for the topological characterization truncation resonances by examin-
262
+ ing their behavior inside band gaps. We begin by investigating the effect of the modulation wavenumber θ, which allows
263
+ us to extract the topological invariants (Chern numbers). We then show how the Chern numbers are related to in-gap
264
+ truncation resonances through the variation of the phason parameters. We also study the effect of the number of unit
265
+ cells comprising the finite structure on the convergence of the truncation resonance frequencies. Finally, we provide a
266
+ comparison between topological truncation resonances and non-topological defect resonances, highlighting their key
267
+ differences and demonstrating the possibility of their coupling as a defect is moved towards a boundary.
268
+ 3.1. Topological characterization by the Chern number
269
+ In principle, the Chern number characterizes the topology of a vector field defined over a two-dimensional torus. For
270
+ 2D periodic materials the torus is composed of two orthogonal wavenumber coordinates κx and κy and describes the
271
+ reciprocal space Brillouin zone [53, 58, 59, 61, 85]. For 1D modulated materials such as the considered beams, the phason
272
+ φ serves as an additional dimension and replaces the missing wavenumber component to form a torus based on κ and
273
+ φ. [70]. The eigenvector field is the Bloch mode displacement ˆwn(κ,φ) corresponding to the nth band defined over the
274
+ torus (κ,φ) ∈ T2 = [0,2π]×[0,2π], recalling that the dispersion is 2π-periodic in both φ and κ, with κ = µa defined as the
275
+ 5
276
+
277
+ 0
278
+ 2
279
+ 4
280
+ 6
281
+ 8
282
+ Frequency, f (kHz)
283
+ 0
284
+ ��ā
285
+ Wavenumber, ��(m-1)
286
+ I
287
+ II
288
+ 0
289
+ ��ā
290
+ Wavenumber, ��(m-1)
291
+ I
292
+ II
293
+ 0
294
+ 1
295
+ -10
296
+ 5
297
+ 10
298
+ 15
299
+ Displacement, w
300
+ Position, x/ā
301
+ 0
302
+ 1
303
+ -10
304
+ 5
305
+ 10
306
+ 15
307
+ Position, x/ā
308
+ Mode I
309
+ Mode II
310
+ 0
311
+ 5
312
+ 10
313
+ 15
314
+ Position, x/ā
315
+ Mode I
316
+ 0
317
+ 5
318
+ 10
319
+ 15
320
+ Position, x/ā
321
+ Mode II
322
+ (a)
323
+ (b)
324
+ (e)
325
+ (f)
326
+ (c)
327
+ (d)
328
+ Displacement, w
329
+ 15 unit cells
330
+ 15 unit cells
331
+ 15 unit cells
332
+ 15 unit cells
333
+ Structure
334
+ Material
335
+ Structure
336
+ Material
337
+ Figure 2: Material versus structure properties. Dispersion diagrams (material) for the CM-PnC and the SM-PnC models are displayed in (a-b) as solid
338
+ lines, while dashed lines correspond to the homogenized beam dispersion. Band-gap frequency ranges are shaded grey. A finite structure with 15 unit
339
+ cells exhibits in-gap truncation resonances as illustrated alongside the dispersion diagrams, with selected mode shapes displayed in (c-f). For both
340
+ models, the unit-cell length is ¯a = 203 mm.
341
+ non-dimensional wavenumber. Due to the continuous nature of the beams, the dispersion frequency bands are invariant
342
+ with φ, which only produces a shift in the choice of the unit cell. However, the variation of φ produces changes in Bloch
343
+ eigenvectors, which may reflect in non-trivial topological properties. The Chern number Cn for the nth band is defined as
344
+ Cn =
345
+ 1
346
+ 2πi
347
+
348
+ D
349
+ βn dD,
350
+ (3)
351
+ where D = T2, βn = ∇ × An is called the Berry curvature, and An = ˆw∗
352
+ n · ∇ ˆwn is the Berry connection, with ()∗ denoting
353
+ a complex conjugate. The Chern number is an integer that quantifies the topological properties of the bands; these are
354
+ robust to small perturbations in the system’s unit cell as long as these perturbations do not close the gaps separating the
355
+ bands. Among other features, the Chern number is related to discontinuities (or vorticities) in the eigenvector field [85],
356
+ localization of the Berry curvature [53], and to phase accumulation of the Bloch modes along cyclic paths in the torus
357
+ Brillouin zone [62, 70].
358
+ Of particular relevance to the present work is the bulk-boundary correspondence principle that relates the existence
359
+ of in-gap edge states in finite systems to the Chern numbers [86]. This is done through the computation of a gap label Cg
360
+ given by the summation of the Chern numbers of the bands below the gap, i.e. C (r)
361
+ g
362
+ = �r
363
+ n=1Cn, which is equal to the num-
364
+ ber of truncation resonances found inside such gap when the phase φ varies in an interval of 2π (see Section 3.2 for more
365
+ details). However, the computation of the Chern number as given by Eq. (3) is often challenging due to phase or gauge
366
+ ambiguities [87]. Furthermore, it has to be done for each θ value that defines a different unit-cell size (see, for example,
367
+ Refs. [70, 80]). Here, we take an alternative, and more generic, approach that produces the gap labels Cg without direct
368
+ computation of the band Chern numbers Cn, and for all θ values at once. Such approach relies on density of states com-
369
+ putations based on the spectral variation with θ, which has been developed using mathematical principles of K-theory in
370
+ the context of periodic and aperiodic topological insulators [88, 89], and later extended to quasi-periodic acoustic/elastic
371
+ metamaterials [71–76]. This approach has not yet been extended to continuous elastic periodic waveguides such as the
372
+ 6
373
+
374
+ 0
375
+ 5
376
+ 10
377
+ 15
378
+ 20
379
+ 0
380
+ 2
381
+ 4
382
+ 6
383
+ 8
384
+ Frequency, f (kHz)
385
+ Modulation wavenumber,���(m-1)
386
+ 0
387
+ 5
388
+ 10
389
+ 15
390
+ 20
391
+ 0
392
+ 2
393
+ 4
394
+ 6
395
+ 8
396
+ Frequency, f (kHz)
397
+ 0
398
+ 2
399
+ 4
400
+ 6
401
+ 8
402
+ Frequency, f (kHz)
403
+ 0
404
+ 5
405
+ 10
406
+ 15
407
+ 20
408
+ 0
409
+ 5
410
+ 10
411
+ 15
412
+ 20
413
+ 25
414
+ IDS
415
+ 0
416
+ 5
417
+ 10
418
+ 15
419
+ 20
420
+ 0
421
+ 5
422
+ 10
423
+ 15
424
+ IDS
425
+ 0
426
+ 5
427
+ 10
428
+ 15
429
+ IDS
430
+ 0
431
+ 8
432
+ (a)
433
+ (b)
434
+ (c)
435
+ (d)
436
+ (e)
437
+ (f)
438
+ f
439
+ ��
440
+ IDS
441
+ f
442
+ ��
443
+ IDS
444
+ f
445
+ 1+�
446
+ 1+2�
447
+ 1+3�
448
+ 1+�
449
+ 1+2�
450
+ 1+3�
451
+ 0
452
+ 2.5
453
+ 5
454
+ 0
455
+ 2.5
456
+ 5
457
+ 1+4�
458
+ 1+5�
459
+ 1+6�
460
+ 1+8�
461
+ Modulation wavenumber,���(m-1)
462
+ Modulation wavenumber,���(m-1)
463
+ Modulation wavenumber,���(m-1)
464
+ Modulation wavenumber,���(m-1)
465
+ Modulation wavenumber,���(m-1)
466
+ Periodic BCs
467
+ Periodic BCs
468
+ Zoom
469
+ Zoom
470
+ Cg=1
471
+ Cg=2
472
+ Cg=3
473
+ Cg=1
474
+ Cg=2
475
+ Cg=3
476
+ Cg=1
477
+ Cg=2
478
+ Cg=3
479
+ Cg=8
480
+ Cg=4
481
+ Cg=5
482
+ Cg=6
483
+ Figure 3: Eigenfrequencies of finite beam with L = 100 ¯a and PBCs for (a) sinusoidal and (b) step-wise modulation, with zoomed view in (c). Black dots
484
+ represent eigenfrequencies while white areas denote band gaps. The corresponding IDS plots are displayed in the bottom panels (d-f), where selected
485
+ fitted lines have colors corresponding to the gaps marked and labeled in (a-c).
486
+ beams studied here.
487
+ 3.1.1. Extraction of the Chern number by varying the modulation wavenumber
488
+ To begin, we investigate the variation of the beams’ spectral properties as a function of the modulation wavelength θ.
489
+ The procedure relies on a large finite structure of fixed size L = 100 ¯a, and the computation of its eigenfrequencies under
490
+ periodic boundary conditions (PBCs). The results are illustrated in Fig. 3(a,b) for the CM-PnC and SM-PnC configurations,
491
+ where the eigenfrequencies are plotted as a function of θ as black dots. In the computation, the considered range of θ is
492
+ discretized in intervals of ∆θ = 1/L, i.e., θn = n/L, such that each considered structure has an integer number n of unit
493
+ cells. By doing so, the resulting eigenfrequencies sample the Bloch dispersion bands defined for the considered θ value,
494
+ and no frequencies are found inside the gaps due to the PBCs and the "perfect" periodicity emanating from an integer
495
+ number of unit cells [73]. The resulting spectrum provides a map for the location of the bands (black regions) and band
496
+ gaps (white regions) as a function of θ, and consequently of unit-cell length a = 1/θ. We note that SM-PnC produces a
497
+ more complex spectrum (Fig. 3(b)) with a larger number of gaps when compared to CM-PnC (Fig. 3(a)), in particular for
498
+ lower values of θ as illustrated in the zoomed view of Fig. 3(c).
499
+ The band-gap Chern numbers can be extracted by computing the Integrated Density of States (IDS) of the spectrum.
500
+ It is defined as
501
+ IDS(θ, f ) = lim
502
+ L→∞
503
+
504
+ n[fn ≤ f ]
505
+ L
506
+ ,
507
+ (4)
508
+ where [·] denotes the Iverson Brackets, which provides a value of 1 whenever the argument is true. In simple terms, for
509
+ a given θ and frequency f , the IDS is the summation of all the eigenfrequencies below f , normalized by the structure
510
+ size L. It theoretically converges as the structure size tends to infinity, but it is practically sufficient to consider large
511
+ structures such as the one with L = 100 ¯a considered in our investigation. The IDS is displayed for the CM-PnC medium in
512
+ Fig. 3(d), and for the SM-PnC medium in Fig. 3(e) with a zoomed view for the lower θ range in (f). In this representation,
513
+ the z-axis and the associated colormap represent frequency f as a function of IDS and θ. The insets in (d,e) illustrate
514
+ the 3D views highlighting sharp discontinuities in the surface plot, which are visualized as straight lines in the top view
515
+ colormaps. Each straight line is associated with a band gap and occurs since the IDS does not change inside the gap.
516
+ 7
517
+
518
+ 1Hence, a jump in frequency (color) occurs as the IDS changes from the last mode before the gap to the first mode right
519
+ after the gap. According to the theory [71], and confirmed by our findings, the variation of the IDS with θ inside the gaps
520
+ identify straight lines expressed as
521
+ IDS(f ) = n0 +Cg θ,
522
+ (5)
523
+ with the gap Chern number Cg corresponding to the slope. The lines of the most prominent gaps in Fig. 3 are fitted and
524
+ overlaid to the IDS plots, allowing the extraction of the Chern gap labels from the slopes as marked in the top panels, with
525
+ different colors used to represent different gaps. These gap labels are defined generically for any θ value that defines the
526
+ band gap, and are related to the truncation resonances as described in the following section.
527
+ 3.2. Topological edge states and their control by phasons
528
+ The non-zero Chern gap labels indicate the presence of in-gap edge states existing for structures with truncated
529
+ boundaries, i.e., the truncation resonances. Their properties are illustrated in Figs. 4 and 5 for the CM-PnC and SM-PnC
530
+ configurations, respectively. The figures display the frequencies of a finite structure of fixed length L = 15 ¯a as a function
531
+ of modulation wavenumber θ and phase φ, for different BCs such as free-free and pinned-pinned. The frequencies are
532
+ color-coded according to a localization factor p to identify modes localized at the boundaries, which is defined as
533
+ p =
534
+
535
+ Lr |w|dx −
536
+
537
+ Ll |w|dx
538
+
539
+ L |w|dx
540
+ ,
541
+ (6)
542
+ where L denotes the domain of the beam, and Lr and Ll correspond to a smaller portion of length 0.15L at the right and
543
+ left boundaries, respectively. With this definition, positive (red) and negative (blue) p values indicate modes localized at
544
+ the right and left boundary, respectively, while values that are close to zero (black) indicate non-localized bulk modes.
545
+ The left panels in Figs. 4 and 5 display the eigenfrequencies of the finite beam as a function of θ, for different BCs
546
+ as illustrated by the schematics. The spectra are overall similar to the bulk spectra exhibited in Fig. 3, with black regions
547
+ also defining the bulk bands, but with additional modes appearing inside the band gaps. These modes are the topological
548
+ edge states, corresponding to the truncation resonances which are localized at one of the boundaries of the beam. The
549
+ modes localized at the right boundary (red) traverse the band gaps multiple times as they migrate from the band above
550
+ to the band below their respective gaps. Although not the focus of the present investigation, this behavior stems from the
551
+ positive gap labels Cg > 0 and can be explained by density of states arguments [73]. Furthermore, the modes localized at
552
+ the left boundary (blue) do not migrate between bands and instead remain inside the gap for the considered range of θ.
553
+ The different behavior between left- and right-localized modes occur due to the way the finite structure is constructed,
554
+ where the change in θ produces a qualitative change at the right boundary (the modulation is truncated at different places
555
+ for different θ), but not of the left boundary (the modulation is always truncated at the same place).
556
+ The gap label Cg dictates the number of left- and right-localized edge modes that span the band gap as the phason
557
+ φ varies within an interval of 2π, for a fixed θ value. This is illustrated for selected θ values (marked as vertical dashed
558
+ green lines) in the middle and right panels of Figs. 4 and 5, which display the variation of the eigenfrequencies with the
559
+ phason φ. As previously mentioned, variations of φ do not affect the frequencies of the dispersion bands, and therefore
560
+ the boundaries of the band gaps (material property) remain unchanged with φ. However, the phason influences how
561
+ both boundaries of a finite structure are truncated (Fig. 1), and its variation causes the eigenfrequency branches of the
562
+ truncation resonances to traverse the gaps. The first selected value θ1 = 1/ ¯a corresponds to the modulation wavelength
563
+ for the reference unit-cell size ¯a. In the CS-PnC case (Figs. 4(b,e)), this unit-cell size produces two small gaps with Chern
564
+ labels Cg = 1 and Cg = 2, which were extracted from the procedure in Fig. 3. For both types of BCs (free-free in (b) and
565
+ pinned-pinned in (e)), one left- and one right-localized edge state traverse the first gap, and two edge states traverse the
566
+ second gap, as the phason φ varies from 0 to 2π. In the SM-PnC case (Figs. 5(b,e)), the choice θ1 = 1/ ¯a corresponds to
567
+ the case investigated in the experimental section of this paper (see Section 4), which produces three band-gaps with Cg
568
+ values ranging from 1 to 3. Regardless of the type of boundary condition, the number of left- and right-localized edge
569
+ modes spanning the band gaps is equal to the corresponding Chern gap label. In addition, the gap label sign is related
570
+ to the direction the edge modes cross the gap [89]. A positive Cg > 0 indicates that |Cg | left-localized branches will cross
571
+ the gap from the lower band to the upper band, and an equal number of right-localized states will cross from the upper
572
+ band to the lower band. Although no examples are found in this paper, a negative sign |Cg | < 0 produces transitions in
573
+ opposite directions [70]. Also note that the eigenfrequencies have a periodic behavior with φ, and are actually continuous
574
+ at φ = 0 = 2π. Therefore a few branches of the truncation resonances traverse the gap through that point; for example, see
575
+ the second right-localized mode in the second gap of Fig. 5(e). Indeed, the phason variable φ defines a continuous ring,
576
+ with no start or ending point, with the beginning and end at φ = 0 and φ = 2π, respectively, being arbitrary choices for the
577
+ plots.
578
+ 8
579
+
580
+ Other examples are shown to demonstrate the generality of the approach and give more insights into the behavior
581
+ of the edge states. The case of θ2 = 2.5/ ¯a (panels (c,f) in Figs. 4 and 5) corresponds to a unit-cell size 2.5 times smaller
582
+ than the reference ¯a, and therefore the finite length L = 15 ¯a now comprises 37.5 unit cells. Even without an integer
583
+ number of unit cells, the number of edge sates inside each gap matches the corresponding gap labels, for both CS-PnC
584
+ and SM-PnC, and both types of BCs considered. In fact, this behavior is general and holds for any arbitrary θ value. The
585
+ last row in Fig. 5 focuses on the lower θ range, where the SM-PnC features additional gaps with higher Chern gap labels.
586
+ The examples θ3 = 2 m−1 and θ4 = 3 m−1 correspond to unit cell sizes of 0.5m and 0.33m respectively, and form finite
587
+ structures with 6.09 and 9.135 unit cells for the fixed length L = 15 ¯a. They feature gap labels as high as Cg = 8, and the
588
+ behavior of the edge states spanning the gaps with φ is in agreement with the extracted gap labels, again even without
589
+ an integer number of unit cells. Among many edge states, two transitions experienced by the modes as a function of φ
590
+ are highlighted by thicker lines and dots in Fig. 4(f) and in Fig. 5(h), and have their mode shape variation displayed in
591
+ Figs. 6(a,b) respectively. These examples illustrate a transition between a right- and left-localized mode that occurs as
592
+ a function of φ, with an intermediate state as a non-localized bulk mode when the eigenfrequency branch tangentially
593
+ approaches the boundary of the gap. This type of transitions have been exploited for topological pumping applications,
594
+ where the phason φ is varied along an additional spatial [70, 80] or temporal [77–79] dimension to induce a migration of
595
+ localized modes between two boundaries.
596
+ These results reveal that the truncation resonances are in fact topological edge states that traverse the band gaps for
597
+ variations of the phason φ. The number of truncation resonances that traverse a gap is equal to the corresponding gap
598
+ label Cg . This holds true for any set of BCs, although the particular shape of the branches of the edge states as they traverse
599
+ the gap may be different. In addition, while the number of in-gap resonances can be predicted, one cannot guarantee the
600
+ existence of truncation resonances for a particular phason value φ, but only that |Cg | branches will traverse the gap when
601
+ φ varies in an interval of 2π. For example, the finite structure considered in Fig. 2(a) correspond to a phason value φ = 0.2π,
602
+ which intersects both the right- and left-localized edge state branches of Fig. 4(b), and therefore one resonance localized
603
+ at each boundary is found in this case. In contrast, for a phason value φ = π, the same gap in Fig. 4(b) does not exhibit
604
+ any edge states, and therefore no truncation resonances would be found. Similarly, the modes I and II in Fig. 2(b) are
605
+ intersections of the left- and right-localized edge state branches in the first and third gap of Fig. 5(b), respectively, for
606
+ 0
607
+ 2
608
+ 4
609
+ 6
610
+ 8
611
+ Frequency, f (kHz)
612
+ (a)
613
+ ��
614
+ ��
615
+ 0
616
+ 5
617
+ 10
618
+ 15
619
+ 20
620
+ 0
621
+ 2
622
+ 4
623
+ 6
624
+ 8
625
+ Frequency, f (kHz)
626
+ Modulation wavenumber, ��(m-1)
627
+ (d)
628
+ ��
629
+ ��= 1/ā
630
+ (b)
631
+ -0.4
632
+ 0.4
633
+ 0
634
+ p
635
+ (c)
636
+ ����2.5/ā
637
+ ��
638
+ 0
639
+ 0.5
640
+ 1
641
+ 1.5
642
+ 2
643
+ Phason,����
644
+ (e)
645
+ 0
646
+ 0.5
647
+ 1
648
+ 1.5
649
+ 2
650
+ -0.4
651
+ 0.4
652
+ 0
653
+ p
654
+ (f)
655
+ Free-Free
656
+ Pinned-Pinned
657
+ Cg=1
658
+ Cg=2
659
+ Cg=1
660
+ Cg=1
661
+ Cg=2
662
+ Cg=2
663
+ Cg=1
664
+ Cg=2
665
+ Phason,����
666
+ ��= 1/ā
667
+ ����2.5/ā
668
+ (right)
669
+ (left)
670
+ (right)
671
+ (left)
672
+ Figure 4: Eigenfrequencies of finite CM-PnC structure with length L = 15 ¯a and free-free (top) or pinned-pinned (bottom) BCs. The left panels (a,d)
673
+ display the variation of the eigenfrequencies with θ, while the middle (b,e) and right (c,f) panels display the variation with φ for the selected θ values
674
+ highlighted as vertical dashed green lines in (a,d). The frequencies are color-coded according to the polarization p, and the gap labels Cg are added for
675
+ reference.
676
+ 9
677
+
678
+ 0
679
+ 2
680
+ 4
681
+ 6
682
+ 8
683
+ Frequency, f (kHz)
684
+ (a)
685
+ ��
686
+ ��
687
+ 0
688
+ 5
689
+ 10
690
+ 15
691
+ 20
692
+ 0
693
+ 2
694
+ 4
695
+ 6
696
+ 8
697
+ Frequency, f (kHz)
698
+ Modulation wavenumber, ��(m-1)
699
+ (d)
700
+ ��
701
+ (b)
702
+ -0.4
703
+ 0.4
704
+ 0
705
+ p
706
+ (c)
707
+ ��
708
+ (e)
709
+ -0.4
710
+ 0.4
711
+ 0
712
+ p
713
+ (f)
714
+ (g)
715
+ ��
716
+ ��
717
+ 0
718
+ 0.5
719
+ 1
720
+ 1.5
721
+ 2
722
+ Phason, ���
723
+ ��= 2m-1
724
+ (h)
725
+ 0
726
+ 0.5
727
+ 1
728
+ 1.5
729
+ 2
730
+ -0.4
731
+ 0.4
732
+ 0
733
+ p
734
+ ��= 3m-1
735
+ (i)
736
+ 0
737
+ 2
738
+ 4
739
+ 6
740
+ 8
741
+ Frequency, f (kHz)
742
+ 0
743
+ 2.5
744
+ 5
745
+ Free-Free
746
+ Pinned-Pinned
747
+ Zoom
748
+ Cg=1
749
+ Cg=1
750
+ Cg=1
751
+ Cg=1
752
+ Cg=2
753
+ Cg=2
754
+ Cg=8
755
+ Cg=3
756
+ Cg=3
757
+ Cg=3
758
+ Cg=3
759
+ Cg=4
760
+ Cg=4
761
+ Cg=5
762
+ Cg=5
763
+ Cg=6
764
+ Phason, ���
765
+ Modulation wavenumber, ��(m-1)
766
+ ��= 1/ā
767
+ ����2.5/ā
768
+ ��= 1/ā
769
+ ����2.5/ā
770
+ (right)
771
+ (left)
772
+ (right)
773
+ (left)
774
+ (right)
775
+ (left)
776
+ Pinned-Pinned
777
+ Figure 5: Eigenfrequencies of the finite SM-PnC structure with length L = 15 ¯a and free-free (top row) or pinned-pinned (middle row) BCs. The left panels
778
+ (a,d) display the variation of the eigenfrequencies with θ, while (g) displays a zoom of (d) in the low θ range. The middle (b,e,h) and right (c,f,i) panels
779
+ display the variation with φ for the selected θ values highlighted as vertical dashed green lines in (a,d,g). The frequencies are color-coded according to
780
+ the polarization p, and the gap labels Cg are added for reference.
781
+ φ = 0.4π, while other phason choices would define different truncation resonances or the their absence. Therefore, to
782
+ better understand the behavior of the truncation resonances one needs to consider the entire family of structures defined
783
+ for variations of φ, instead of separately considering particular cases.
784
+ 3.2.1. Boundary phasons
785
+ As described, the phason φ simultaneously modifies the properties of both boundaries of a finite structure (Fig. 1), and
786
+ therefore influence the truncation resonances localized at both boundaries. A higher degree of control over the truncation
787
+ resonances is achieved by using the right- and left-boundary phasons introduced in Fig. 1, which modify only one bound-
788
+ ary at a time. This is equivalent to adding a tuning layer at one end of the structure as done in Refs. [42, 48]. The effect of
789
+ boundary phasons is demonstrated in Fig. 7, which repeats the eigenfrequency variation with φ of Fig. 3(f) and Fig. 4(d)
790
+ in the left panels, and compares them to the the variation as a function of right-boundary phason φr and left-boundary
791
+ phason φl displayed in the middle and right panels, respectively. The plots clearly show evidence of how the boundary
792
+ phason only causes the edge states localized at the corresponding boundary to traverse the gap, while the superimposed
793
+ effect of both boundary phasons lead to the effect caused by the phason φ. Indeed, as φr varies (Figs. 7(b,e)), only the
794
+ 10
795
+
796
+ 0.4
797
+ 0.6
798
+ 0.8
799
+ 1
800
+ ���
801
+ 0
802
+ 0
803
+ -1
804
+ 1
805
+ 1
806
+ 2
807
+ 3
808
+ x (m)
809
+ w
810
+ f
811
+ 0
812
+ 1
813
+ 2
814
+ 3
815
+ x (m)
816
+ 0
817
+ -1
818
+ 1
819
+ w
820
+ 0.4
821
+ 0.6
822
+ 0.8
823
+ ���
824
+ 0.2
825
+ f
826
+ (a)
827
+ (b)
828
+ Pinned-Pinned
829
+ ���2.5/ā
830
+ �= 2m-1
831
+ Pinned-Pinned
832
+ Figure 6: Examples of mode shape transitions as a function of phason φ for the (a) CM-PnC and (b) SM-PnC structures, corresponding to the branches
833
+ highlighted in Fig. 4(f) and Fig. 5(h), respectively.
834
+ right-localized modes traverse the gaps, producing the same branches as the ones in Figs. 7(a,d). Any left-localized modes
835
+ that were defined for φ = 0 (the starting point) appear as roughly flat bands inside the gap, since the left boundary is not
836
+ changing with φr . A similar effect is observed for the variation with φl in Figs. 7(c,f). For a structure that has a sufficient
837
+ number of unit cells (i.e., has reached convergence as described Section 3.3 to follow), the right- and left-localized edge
838
+ states form a set of decoupled chiral bands [89], the number of which corresponds to the gap label magnitude |Cg | and
839
+ whose slopes are associated with the gap label sign.
840
+ 3.3. Effect of number of unit cells on frequency convergence of topological truncation resonances
841
+ Next, we investigate the effect of the number of unit cells on the behavior of the truncation resonances. As shown
842
+ earlier, truncation modes exhibit an exponential decay away from the boundary since their frequency lies inside a band
843
+ gap, and therefore correspond to a complex wave number. For structures with a large number of unit cells, the in-gap
844
+ truncation modes are only mildly affected by further addition of unit cells since their displacement tend to zero away
845
+ from the boundary. In that scenario, a further increase in number of unit cells will produce a larger number of bulk
846
+ modes, while the branches of the edge states spanning the band gaps with φ will remain the same. However, for structures
847
+ with a small number of unit cells, the truncation resonances are more likely to be influenced by the opposing edge and by
848
+ other effects such as mode coupling and veering with bulk modes or another edge state.
849
+ This behavior and the convergence with the number of unit cells is elucidated by the results of Fig. 8. The SM-PnC
850
+ structure with θ1 = 1/ ¯a is chosen to exemplify these features, with the first and second row corresponding to free-free and
851
+ pinned-pinned BCs, respectively. The panels (a,d) display the variation of the eigenfrequencies with φ for a structure with
852
+ 5 unit cells, while the right panels (c,f) correspond to a larger structure comprising 15 cells. In the middle panels (b,e), the
853
+ variation of the frequencies with the number of unit cells is displayed for the fixed phason value highlighted by the vertical
854
+ dashed-line intersections in the other panels. Overall, the number of bulk modes increase with the number of unit cells as
855
+ expected, and the edge state branches traversing the gaps are similar but exhibit small differences. These differences are
856
+ amplified for phason values that are close to mode couplings as illustrated in the top row. At the selected phason value,
857
+ there is a strongly coupled avoided crossing between the right- and left-localized edge states for the case with 5 unit cells
858
+ shown in (a), and therefore the eigenfrequencies defined for that phason value are more separated when compared to the
859
+ structure shown in (c) with 15 cells and without the avoided crossing. Therefore, the frequencies of the edge states for
860
+ this phason value vary as a function of the number of unit cells and converge to a fixed value at approximately 10 unit
861
+ cells as illustrated in Fig. 8(b). In contrast, in the case of the bottom row with pinned-pinned BCs, the chosen phason
862
+ value intersects the edge state mode and an adjacent mode that is well isolated, and therefore the truncation frequency
863
+ converges quicker at around four unit cells. These results illustrate that while convergence is always achieved, the required
864
+ number of unit cells may vary between different structures depending on the BCs and the presence of coupling effects at
865
+ the phason value of interest.
866
+ 11
867
+
868
+ 0
869
+ 2
870
+ 4
871
+ 6
872
+ 8
873
+ Frequency, f (kHz)
874
+ (a)
875
+ (b)
876
+ -0.4
877
+ 0.4
878
+ 0
879
+ p
880
+ (c)
881
+ 0
882
+ 2
883
+ 4
884
+ 6
885
+ 8
886
+ Frequency, f (kHz)
887
+ 0
888
+ 0.5
889
+ 1
890
+ 1.5
891
+ 2
892
+ Phason, ���
893
+ (d)
894
+ 0
895
+ 0.5
896
+ 1
897
+ 1.5
898
+ 2
899
+ (e)
900
+ 0
901
+ 0.5
902
+ 1
903
+ 1.5
904
+ 2
905
+ -0.4
906
+ 0.4
907
+ 0
908
+ p
909
+ (f)
910
+ Right boundary phason, �r��
911
+ Left boundary phason, �l��
912
+ Pinned-Pinned
913
+ Pinned-Pinned
914
+ Cg=1
915
+ Cg=2
916
+ Cg=1
917
+ Cg=2
918
+ Cg=1
919
+ Cg=2
920
+ Cg=8
921
+ Cg=3
922
+ Cg=4
923
+ Cg=5
924
+ Cg=6
925
+ Cg=8
926
+ Cg=3
927
+ Cg=4
928
+ Cg=5
929
+ Cg=6
930
+ Cg=8
931
+ Cg=3
932
+ Cg=4
933
+ Cg=5
934
+ Cg=6
935
+ (right)
936
+ (left)
937
+ (right)
938
+ (left)
939
+ ����2.5/ā
940
+ ��= 2m-1
941
+ Figure 7: Eigenfrequency variation as a function of phason φ (a,d), right-boundary phason φr (b,e) and left-boundary phason φl (c,f) for finite beam
942
+ with L = 15 ¯a and pinned-pinned BCs. The top row consists of a CM-PnC structure with θ2 = 2.5/ ¯a while the bottom row consists of a SM-PnC structure
943
+ with θ3 = 2 m−1.
944
+ 3.4. Topological truncation resonance versus non-topological defect resonance
945
+ Truncation resonances, with their topological character, are not the only type of resonances that appear due to trun-
946
+ cation or breakage of symmetry in a periodic medium. Another type of resonance, that is also of localized nature, is that
947
+ associated with defect modes [90–92]. Under the developed framework, the band gaps characterized by non-zero Chern
948
+ labels are guaranteed to support |Cg | truncation resonances spanning the gaps as a function of phason or boundary pha-
949
+ son parameters. Although we do not present an example in this paper, in some cases a band gap may be characterized
950
+ by Cg = 0, which is referred to as a topologically trivial band gap. In this case, the presence of in-gap resonances is not
951
+ guaranteed, although they may appear. Since there is no topological explanation or origin to their appearance, these trun-
952
+ cation resonances are usually categorized as defect modes. One example can be found in reference [75], where a central
953
+ trivial gap with Cg = 0 does not exhibit in-gap resonances under pinned-pinned BCs (Fig. 2a), but exhibits truncation
954
+ resonances under clamped-free BCs (Fig. 3a). Note that the truncation resonances in this second case do not traverse the
955
+ band gap, which is a key feature expected from topological modes as we highlight in this work.
956
+ We here illustrate another important scenario where a physical defect is introduced to a finite structure in order to
957
+ create an in-gap resonance, although in this case a non-topological resonance as we will show. As an example, we con-
958
+ sider a finite SM-PnC structure comprising 15 unit cells with θ1 = 1/ ¯a, and introduce a defect initially located at the 8th
959
+ unit cell by "skipping" the ABS portion within this unit cell, making it entirely out of aluminum. The results displayed in
960
+ Fig. 9 show the variation of the eigenfrequencies with φ, with the defect unit cell highlighted in the schematics at the top
961
+ and identified by the larger white segment, which represents aluminum. As the phason varies, material is added to the left
962
+ boundary and removed from the right boundary (Fig. 1), which causes the defect to continuously drift towards the right
963
+ boundary. The defect moves by one unit cell with every change in 2π; these increments are marked by the vertical dashed
964
+ lines in the figure. After a change in phason of 14π, the defect is at the last unit cell, and finally for 16π it exists the structure
965
+ and a perfect periodic domain is restored. In a defect-free structure, the variation of the eigenfrequencies with φ is trivially
966
+ periodic in intervals of 2π. With the inclusion of the defect, additional modes are found inside the gaps and co-exist with
967
+ the truncation resonances. The interplay between the in-gap defect mode and the truncation resonances is highlighted
968
+ by the selected mode shapes displayed in the bottom panels. In the initial configuration, the in-gap defect resonance
969
+ is localized at the center (8th unit cell) of the structure and is completely decoupled from the truncation resonances, as
970
+ evidenced by the plots in stage I. As the phason varies, the trajectory of the defect modes remain almost flat inside the
971
+ 12
972
+
973
+ gaps, in sharp contrast to the behavior of the topological states which transverse the gaps. Indeed, the truncation reso-
974
+ nances exhibit the expected periodic behavior as their branches traverse the gaps in a pattern that repeats periodically in
975
+ intervals of 2π. However, as the defect physical position approaches the right boundary, the in-gap defect modes progres-
976
+ sively couple with the truncation resonances localized at the right boundary, this is seen in all three gaps viewed in the
977
+ figure. Focusing on the third band gap as an example, the frequency curves in stage II exhibit a weak coupling, while in
978
+ stage III a larger coupling is observed causing an avoided crossing with relatively strong repulsion between the defect and
979
+ truncation resonances. As the defect moves within the last unit cells (13th-15th), it slowly transforms to capture, itself, the
980
+ characteristics of a truncation resonance localized at the right boundary, with a mode shape example displayed for stage
981
+ IV. At this last stage, the branches of the right-localized truncation resonances are very different from the periodic pattern
982
+ of the perfect periodic structure, since they are created by a truncation near a defect.
983
+ These results highlight key differences between the truncation resonances and defect modes. The defect mode defines
984
+ a flat branch inside the gap as a function of φ, until it starts to couple with the topological truncation resonances−which
985
+ happens as the position of the defects nears the boundary. It is interesting to note that when the coupling takes place, the
986
+ shape of the coupled truncation resonance branch changes as it traverses the gap. However, the counting principle given
987
+ by the gap Chern labels is still valid. This can be verified as in every interval of φ = 2π, there is a net number of 1, 2 and
988
+ 3 right-localized modes transversing the first, second, and third gap, respectively. Therefore, the truncation resonances
989
+ retain this key topological property even with the interference of a defect at the boundary. We should also stress that the
990
+ topological classification of an in-gap mode is always relative to a given set of parameters. The defect mode introduced
991
+ here is non-topological in the context of the phason degree of freedom, which causes it to remain confinded inside the
992
+ gap as a flat band. However in some cases this type of defect mode might find a topological classification under a different
993
+ set of parameters and analysis framework [93].
994
+ 4. Experimental investigation of modulated phononic crystal beams
995
+ 4.1. Experimental set-up and measurements
996
+ For the experimental investigation, we focus on the SM-PnC beam structure, again composed of alternating layers
997
+ of Al and ABS with a ratio of layer lengths of 4:1 (Al:ABS) for the baseline unit-cell configuration. The unit-cell length
998
+ 0
999
+ 2
1000
+ 3
1001
+ 4
1002
+ 5
1003
+ Frequency, f (kHz)
1004
+ (d)
1005
+ 1
1006
+ 0
1007
+ 0.5
1008
+ 1
1009
+ 1.5
1010
+ 2
1011
+ Phason, ���
1012
+ (e)1
1013
+ 5
1014
+ 10
1015
+ 15
1016
+ 20
1017
+ Number of unit cells
1018
+ (f)0
1019
+ 0.5
1020
+ 1
1021
+ 1.5
1022
+ 2
1023
+ Phason, ���
1024
+ 0
1025
+ 2
1026
+ 3
1027
+ 4
1028
+ 5
1029
+ Frequency, f (kHz)
1030
+ (a)
1031
+ 1
1032
+ -0.4
1033
+ 0.4
1034
+ 0
1035
+ p
1036
+ -0.4
1037
+ 0.4
1038
+ 0
1039
+ p
1040
+ (b)
1041
+ (c)
1042
+ 15 unit cells
1043
+ 15 unit cells
1044
+ 5 unit cells
1045
+ 5 unit cells
1046
+ Free-Free
1047
+ Pinned-Pinned
1048
+ (right)
1049
+ (left)
1050
+ (right)
1051
+ (left)
1052
+ Figure 8: Eigenfrequency variation with φ for structure with θ1 = 1/ ¯a comprising 5 cells (a,d) and 15 cells (c,f). The middle panels (b,e) show the variation
1053
+ with the number of unit cells for the fixed phason values highlighted as vertical dashed lines in the other panels. Top and bottom rows correspond to
1054
+ free-free and pinned-pinned BCs, respectively. Band-gap frequency ranges are shaded grey.
1055
+ 13
1056
+
1057
+ .
1058
+ .
1059
+ .
1060
+ .
1061
+ .
1062
+ .
1063
+ .
1064
+ .
1065
+ .
1066
+ .
1067
+ .
1068
+ .
1069
+ .
1070
+ .
1071
+ ...
1072
+ .
1073
+ .
1074
+ ..
1075
+ 0000
1076
+ .
1077
+ .
1078
+ .
1079
+ .
1080
+ .
1081
+ ..
1082
+ ..
1083
+ ....
1084
+ .
1085
+ .
1086
+ .
1087
+ .
1088
+ .
1089
+ .
1090
+ .
1091
+ 0......
1092
+ .
1093
+ .
1094
+ .
1095
+ 000000
1096
+ ......
1097
+ .
1098
+ ...00
1099
+ ..
1100
+ .
1101
+ .
1102
+ 000000
1103
+ 000000
1104
+ 000000
1105
+ 000000....
1106
+ ....
1107
+ ....
1108
+ .--
1109
+ ....--
1110
+ ---.
1111
+ .
1112
+ ....
1113
+ ..
1114
+ .
1115
+ .
1116
+ ..
1117
+ ..
1118
+ ....
1119
+ .
1120
+ .
1121
+ .
1122
+ .
1123
+ .
1124
+ ...
1125
+ ...
1126
+ 0000
1127
+ .
1128
+ .
1129
+ ..00
1130
+ 00000
1131
+ 00000
1132
+ 00000
1133
+ 90000
1134
+ 00000
1135
+ 2
1136
+ 4
1137
+ 6
1138
+ 8
1139
+ Frequency, f (kHz)
1140
+ 0
1141
+ 16
1142
+ 14
1143
+ 12
1144
+ 10
1145
+ 8
1146
+ 6
1147
+ 4
1148
+ 2
1149
+ Phason,����
1150
+ -0.4
1151
+ 0.4
1152
+ 0
1153
+ (right)
1154
+ (left)
1155
+ p
1156
+ 8th cell
1157
+ 10th cell
1158
+ 13th cell
1159
+ 15th cell
1160
+ 0
1161
+ 5
1162
+ 10
1163
+ 15
1164
+ Position, x/ā
1165
+ 0
1166
+ 1
1167
+ -1
1168
+ Displacement, w
1169
+ 0
1170
+ 5
1171
+ 10
1172
+ 15
1173
+ Position, x/ā
1174
+ 0
1175
+ 5
1176
+ 10
1177
+ 15
1178
+ Position, x/ā
1179
+ 0
1180
+ 5
1181
+ 10
1182
+ 15
1183
+ Position, x/ā
1184
+ I
1185
+ I
1186
+ II
1187
+ III
1188
+ IV
1189
+ IV
1190
+ III
1191
+ II
1192
+ Figure 9: Eigenfrequencies as a function of phason φ for a finite SM-PnC structure with θ1 = 1/ ¯a, L = 15 ¯a and a defected unit cell. The location of the
1193
+ defect changes by one unit-cell increments with every change of 2π in φ, as marked by the vertical dashed lines and illustrated in the top schematics.
1194
+ Band-gap frequency ranges are shaded grey. Selected mode shapes are displayed in the bottom panels, whose colors correspond to the polarization of
1195
+ the mode, with dashed and solid lines representing the mode with open and closed circle markers, respectively.
1196
+ and cross-sectional area are selected as ¯a = 203 mm and A = 645 mm2, except in Section 4.3 where the unit-cell length
1197
+ is varied. The values of these geometric parameters are chosen to allow for the generation of several band gaps below
1198
+ 9 kHz for practical reasons; however, all conclusions are scale invariant and hence applicable to periodic structures that
1199
+ are orders of magnitude smaller in size (with the limit that they are appropriately represented by continuous models). In
1200
+ this section, we show additional FE results for direct comparison with the experiments, where we use the same FE model
1201
+ details as in Section 3 with specifically 100 finite elements being used per unit-cell. For our experimental set-up, a set of
1202
+ Al and ABS solid blocks were fabricated and connected to each other by an adhesive to form the periodic structure. The
1203
+ test articles were suspended using thin nylon wires to simulate free-free BCs as depicted in Fig. 10(a).
1204
+ First we show the complex band structure of the unit cell, which is shown in Fig. 10(b)−the real part of which is identical
1205
+ to Fig. 2(b). This calculation shows that three relatively large band gaps exist between 0 and 9 kHz. Figure. 10(c) shows
1206
+ a corresponding FRF obtained theoretically (solid line) and experimentally (dashed line) for a 5-unit-cell version of the
1207
+ structure, in which the “input” force excitation and the “output” displacement evaluation are at the extreme ends. For
1208
+ the experimental results, the test article was excited at the tip of the structure using a force hammer. The impulse forcing
1209
+ data F from the force hammer was used in conjunction with the response data U obtained by a sensing accelerometer
1210
+ connected at the other end of the structure, to generate the receptance U/F over the frequency range 0-9 KHz. The
1211
+ amplitude of the experimental response was calibrated to match the average of all theoretical data points over the 0-9
1212
+ KHz frequency range. An excellent correlation is observed between the theoretical and experimental FRF curves. It can be
1213
+ seen, however, that the correlation generally degrades at higher frequencies along with an increasing level of noise. This
1214
+ is due to the difficulty of stimulating high frequencies with a force hammer as well as the reduced resolution when using a
1215
+ constant sampling rate over all frequencies.
1216
+ 4.2. Effects of modulation wavenumber, boundary phasons, and number of unit cells by experiment
1217
+ In Fig. 5(a), we have shown the effect of the modulation wavenumber (i.e., unit-cell length) on the locations of the
1218
+ truncation resonances. Here we repeat our computational investigation focusing on the range 0.18 ≤ a ≤ 0.22 m and over-
1219
+ lay the data of the experimental case of a = 0.2 m (θ = 5). The results, which are shown in the inset of Fig. 10(c), indicate
1220
+ very good agreement between theory and experiments. Another approach that keeps the unit-cell geometric configura-
1221
+ tion intact is the addition of a single tuning layer (or a partial unit-cell) at the end of the finite periodic structure [42, 48],
1222
+ as demonstrated in Section3.2.1. As illustrated in Fig. 1, the addition of a tuning layer corresponds to the application of a
1223
+ 14
1224
+
1225
+ boundary phason φl. The material and geometrical configuration of the tuning layer should be chosen such that it would
1226
+ generally form a physically cropped unit-cell, i.e., it would form a partial unit-cell when its length is less than a and a full
1227
+ unit-cell when its length is a. Figure 10(d) displays a plot of the resonant frequencies as a function of the length of the
1228
+ tuning layer, denoted by lTL and ranging from lTL = 0 (φl = 0, 5 unit-cells) to lTL = a (φl = 2π, 6 unit-cells) for the same
1229
+ baseline design of Fig.10(a)−this corresponds partially to the results shown in Fig. 5(b) but now with the addition of exper-
1230
+ imental data points. With the addition of a tuning layer, band-gap resonances rapidly traverse the band gaps. However,
1231
+ once they reach the band-gap boundaries they behave like regular structural resonances (bulk modes) with slower levels
1232
+ of variation as a function of lTL.
1233
+ Given the localization nature of truncation resonances, the measured amplitude at the far end of the SM-PnC structure
1234
+ is expected to be less than at the edge where the mode is localized and where the excitation is applied. In Fig. 11, we show
1235
+ using both theory and experiment an FRF comparison between 5- and 6-unit-cell structures in (a) and 5- and 15-unit-
1236
+ cell structures in (b). A truncation resonance peak clearly exists inside the second band gap. We also observe a stronger
1237
+ (b)
1238
+ -80
1239
+ -60
1240
+ -40
1241
+ -20
1242
+ Response, w/F (dB)
1243
+ Wavenumber, � (m-1)
1244
+ 0
1245
+ -π/a
1246
+ π/a
1247
+ 0
1248
+ 0.5
1249
+ 1
1250
+ 1.5
1251
+ 2
1252
+ Left boundary phason, �l��
1253
+ -0.4
1254
+ 0.4
1255
+ 0
1256
+ p
1257
+ �l=0
1258
+ Cg=1
1259
+ Cg=2
1260
+ Cg=3
1261
+ Theory
1262
+ Experiment
1263
+ 0
1264
+ 2
1265
+ 4
1266
+ 6
1267
+ 8
1268
+ Frequency, f (kHz)
1269
+ (right)
1270
+ (left)
1271
+ 0.18
1272
+ 0.20
1273
+ 0.22
1274
+ 1
1275
+ 2
1276
+ 3
1277
+ 4
1278
+ 5
1279
+ a (m)
1280
+ Frequency, f (kHz)
1281
+ aABS/a = 0.2
1282
+ Experiment
1283
+ (c)
1284
+ (d)
1285
+ (a)
1286
+ Figure 10: Experimental validation: (a) Photograph of the experimental setup showing a 5-unit-cell SM-PnC beam structure consisting of layers of
1287
+ Aluminum and ABS polymer with a ABS volume fraction of 20% and ¯a = 203 mm. The structure was excited on the far left side (on the first ABS polymer
1288
+ layer) with a force hammer and measured with an accelerometer on the other far end. (b) Frequency band diagram of the infinite (material) constituent
1289
+ of the SM-PnC beam and (c) corresponding FRF response of the finite structure. Inset: Resonance frequency (thin solid lines, theory; dots, experiment)
1290
+ versus unit-cell length a for the 5-unit-cell periodic beam structure. (d) Corresponding resonance frequency (solid lines, theory; dots, experiment)
1291
+ versus left boundary phase (i.e., length of a tuning layer attached at the far left end). At φl = 0.4π, the tuning layer transitions from ABS to Al. At φl = 2π,
1292
+ the tuning layer is a full regular unit cell and the total structure is rendered a 6-unit-cell structure. In (a), the solid lines represent propagation modes,
1293
+ and the dashed lines represent attenuation modes. Band-gap frequency ranges are shaded grey.
1294
+ 15
1295
+
1296
+ Not addedT-100
1297
+ -80
1298
+ -60
1299
+ -40
1300
+ -20
1301
+ 0
1302
+ Response, w/F (dB)
1303
+ 5 Unit cells
1304
+ 6 Unit cells
1305
+ 2
1306
+ 3
1307
+ 4
1308
+ 5
1309
+ -80
1310
+ -60
1311
+ -40
1312
+ -20
1313
+ Experiment
1314
+ Frequency, f (kHz)
1315
+ Response, w/F (dB)
1316
+ Theory
1317
+ 0
1318
+ 2
1319
+ 4
1320
+ 6
1321
+ 8
1322
+ Frequency, f (kHz)
1323
+ 5 Unit cells
1324
+ 15 Unit cells
1325
+ 2
1326
+ 3
1327
+ 4
1328
+ 5
1329
+ -80
1330
+ -60
1331
+ -40
1332
+ -20
1333
+ Experiment
1334
+ Frequency, f (kHz)
1335
+ Response, w/F (dB)
1336
+ Theory
1337
+ 0
1338
+ 2
1339
+ 4
1340
+ 6
1341
+ 8
1342
+ Frequency, f (kHz)
1343
+ (a)
1344
+ (b)
1345
+ Figure 11: Frequency response function comparison for the finite SM-PnC beam structure with different number of unit cells. The results show a
1346
+ truncation resonance in the second band gap. Compared to the baseline case of 5 unit cells, the tructioan resonance is observed to experience negligible
1347
+ shift in frequency for (a) a 6 unit-cell structure and (b) a 15 unit-cell structure. Strong spatial attenuation in displacement amplitude across the structure
1348
+ is observed as the number of unit cells is increased. These results are for the same unit-cell configuration considered in Fig. 10. Band-gap frequency
1349
+ ranges are shaded grey.
1350
+ 0
1351
+ 0.2
1352
+ 0.4
1353
+ 0.6
1354
+ 0.8
1355
+ 1
1356
+ 0
1357
+ 2
1358
+ 4
1359
+ 6
1360
+ 8
1361
+ ABS length-fraction, aABS/a
1362
+ Frequency, f (kHz)
1363
+ Theory
1364
+ Experiment
1365
+ Figure 12: Experimental validation: Resonance frequency (thin solid lines, theory; dots, experiment) versus ABS length-fraction for the 5-unit-cell SM-
1366
+ PnC beam structure with ¯a = 203 mm. The experimental data points correspond to an ABS length-fraction of 0.1, 0.15, 0.2, 0.25 and 0.3, respectively. The
1367
+ thick solid lines represent the band-gap boundaries for the corresponding infinite periodic materials.
1368
+ attenuation from edge-to-edge as the number of unit cells (and total structure length) increases. As for the effect of the
1369
+ number of unit cells on the frequency of the truncation resonance, we note that there is a negligible shift from 5 to 15 unit
1370
+ cells. These results are to be compared with the eigenfrequency versus phason plot shown in Fig. 8(b) for free-free BCs. It is
1371
+ shown in that figure that beyond 5 unit cells, the change in the frequency of the truncation resonances become negligible.
1372
+ In contrast, the frequencies of the conventional resonances demonstrate substantial shifts, as shown in both Fig. 8(b) and
1373
+ Fig. 11. We also observe in Fig. 11(b) that while the amplitude of the truncation resonance peak drops significantly as the
1374
+ number of unit cells is increased from 5 to 15, the amplitudes of all the conventional resonances do not experience any
1375
+ noticeable drops.
1376
+ 4.3. Effect of unit-cell material volume fraction by experiment
1377
+ In addition to property modulation wavenumber and phasons, an alternative approach for controlling the frequency
1378
+ locations of truncation resonances is alternation of the unit-cell design, e.g., by changing its material composition and/or
1379
+ 16
1380
+
1381
+ spatial distribution or its geometry. This can result in achieving a total exit of a truncation resoance from a band-gap
1382
+ frequency range, as illustrated in Fig. 12 for a 5-unit-cell SM-PnC structure, which shows that when aABS/a is set to 0.25
1383
+ or higher, no in-gap resonances appear in any of the three gaps covered by both computation and experiment. In this
1384
+ figure, we consider the full range aABS/a, which at one extreme (aABS/a = 0) represents a homogenous Al beam, and at
1385
+ the other extreme (aABS/a = 1) represents a beam composed of only ABS polymer. This figure also allows us to examine
1386
+ the sensitivity of the truncation resonances’ frequencies to smooth variations in the material volume fraction. It can
1387
+ be seen that the truncation resonances are noticeably more sensitive to varying the unit-cell layer dimensions than the
1388
+ conventional resonances. Once they exit the band gaps however, these unique resonances become less sensitive to varying
1389
+ aABS/a, and their sensitivity becomes similar to that of the conventional resonances.
1390
+ 5. Further reflection on the material vs. structure theme
1391
+ The distinction and interconnection between a material and a structure may be examined and classified at various
1392
+ levels. A basic distinction is that of intrinsic versus extrinsic properties or characteristics, e.g., the Young’s modulus and
1393
+ density being intrinsic material properties in contrast to the stiffness and total mass as extrinsic structural characteristics.
1394
+ The distinction may also be made based on physical response. In this context, an elementary classification may be based
1395
+ on the behavior of static deformation, such as the length scale of deformation or spatial span of tangible force interactions.
1396
+ For example, consider a lattice configuration of beams forming a truss that lies at the core of a larger structural frame. If the
1397
+ length scale of deformation at, say, the center of the core is much larger than the individual beam elements and negligible
1398
+ force interaction occurs with the boundaries formed by the frame, then this deformation may be viewed as a form of
1399
+ material behavior. On the other hand, if the length scale of the deformation is on the order of the beam elements, and
1400
+ non-negligible interaction occurs with the boundaries, then the “periodic network of beams behaves as a structure, such
1401
+ as a frame in a building or a truss in a bridge [94]."
1402
+ In this work, we have addressed the material-versus-structure correlation problem at a more fundamental level; that is,
1403
+ by examining the characteristics pertaining to finite size in comparison to the properties associated with idealized infinite
1404
+ size, and doing so from a topological elastodynamics perspective. Here, the dispersion curves represent material proper-
1405
+ ties and the natural frequencies represent structural characteristics. In this context, finite size along the direction where
1406
+ the physical phenomenon of interest takes effect (in this case, wave propagation) is what distinguishes the material versus
1407
+ structure character. Finite dimensions in other lateral dimensions (such as the thickness of a beam, for exmaple) may play
1408
+ a significant role in altering the material properties or structural characteristics, but not in altering the classification of ma-
1409
+ terial versus structure. As a periodic material is truncated, and rendered a structure, both bulk and truncation resonances
1410
+ emerge; the latter being intimately connected to the nature of the truncation. This investigation focuses specifically on
1411
+ this aspect.
1412
+ 6. Conclusions
1413
+ In this paper, we have investigated using theory and experiments the fundamental question of the relation and inter-
1414
+ play between material and structure. We provided a formal connection between topological physics and truncation reso-
1415
+ nances in finite periodic structures. Periodic structures can be understood and topologically characterized using property
1416
+ modulation parameters such as the modulation wavelength θ and phason φ. These parameters expand the physical space
1417
+ and allow for a rigorous study of the nature of truncation resonances.
1418
+ The Chern number is a material property obtained from unit-cell analysis, considering a large number of unit cells
1419
+ with periodic boundary conditions applied. It allows us to predict the behavior of a periodic medium through the bulk-
1420
+ boundary correspondence principle, which in fact is itself a manifestation of the interconnection between the notion of
1421
+ a material and a structure, originated in the quantum realm−which we bring here to elastic media. In the QHE theory,
1422
+ for example, the Chern number is a material invariant that predicts the existence of edge currents propagating along the
1423
+ edges of truncated finite samples. Similarly, for our elastic structures, the gap labels predict the number of truncation
1424
+ resonances that span a band gap as φ is varied for a finite structure with any prescribed BCs.
1425
+ We have shown that the existence of in-gap truncation resonances cannot be guaranteed for any φ and that the topo-
1426
+ logical character is understood only when sweeping through φ. This brings a more comprehensive perspective rather
1427
+ than analysing particular truncation cases, and provides a methodology for designing for truncation resonances or their
1428
+ absence. The boundary phasons, which is a concept we introduce in this work, provide an additional tool to control trun-
1429
+ cation resonances, albeit at different boundaries independently. We have also investigated the effect of the number of
1430
+ unit cells in a finite structure, elucidating that the left- and right-boundary phasons become independent only when a
1431
+ sufficient number of unit cells is present. We similarly demonstrated that the frequency location of truncation resonances
1432
+ converge only when the structure is comprised of a sufficiently large number of unit cells, at least five cells in most cases.
1433
+ 17
1434
+
1435
+ Mode couplings—whose locations are influenced by the boundary conditions among other factors—impact the rate of
1436
+ convergence of the truncation resonances. The impact of the unit-cell constituent material composition was also stud-
1437
+ ied, showing that a truncation resonance may be forced to exit a band gap with an appropriate choice of material volume
1438
+ fraction.
1439
+ We have also examined another important type of localized mode in finite structures, the defect mode. We have shown
1440
+ it to be non-topological, since it remains flat with change of φ inside the band gap unless it couples with a truncation
1441
+ resonance. In a perfect “undefected" periodic structure, there can only be one mode localized at each boundary for any
1442
+ given phason value. By coupling with a defect, it is possible to have two modes localized at the same boundary for a given
1443
+ structure, living inside a band gap, with different frequencies.
1444
+ This study, we expect, will inspire future work on multiple fronts. For example, similar principles may be extended
1445
+ to 2D and 3D periodic structures and their truncation resonances, which may manifest as localized modes at points,
1446
+ edges, and surfaces, having connections to topological physics and possibly to higher-order Chern numbers and higher-
1447
+ order topological modes (such as corner modes). Another domain of potential applicability is coiled phononic crystals
1448
+ for space saving [95]. A further angle to be explored in the question of material versus structure is the static regime,
1449
+ where similar connections may be established for topological floppy modes [96]. Other areas to be investigated are the
1450
+ interplay with nonlinearities [97], the applicability to damage mechanics such as the effect of number of unit cells on the
1451
+ fracture toughness [98], and the role of size effects in nanoscience where small finite dimensions have profound impact
1452
+ on thermal transport [25] and other physical properties. Implications to quasiperiodic media [73–76, 99] or nonperiodic
1453
+ media described statistically by representative volume elements may also be explored. Finally, the framework presented
1454
+ for connecting between topology and truncation may potentially be applied to finite systems in other branches of physics,
1455
+ such as photonics [49] and quantum mechanics [41].
1456
+ Acknowledgement
1457
+ The authors acknowledge the students Andrew S. Tomchek and Edgar A. Flores for their assistance in conducting the
1458
+ experiments.
1459
+ References
1460
+ [1] J. W. S. Rayleigh, Xvii. on the maintenance of vibrations by forces of double frequency, and on the propagation of
1461
+ waves through a medium endowed with a periodic structure, Philos. Mag. 24 (1887) 145–159.
1462
+ [2] S. M. Rytov, Acoustical properties of a thinly laminated medium, Sov. Phys.-Acoust. 2 (1956) 68–80.
1463
+ [3] C. T. Sun, J. D. Achenbach, G. Herrmann, Continuum theory for a laminated medium, ASME J. Appl. Mech. 35 (1968)
1464
+ 467–475.
1465
+ [4] M. Heckl, Investigations on the vibrations of grillages and other simple beam structures, J. Acoust. Soc. Am. 36 (1964)
1466
+ 1335–1343.
1467
+ [5] D. J. Mead, Free wave propagation in periodically supported, infinite beams, J. Sound Vib. 11 (1970) 181–197.
1468
+ [6] S. Nemat-Nasser, F. C. L. Fu, S. Minagawa, Continuum theory for a laminated medium, Int. J. Solids Struct. 11 (1975)
1469
+ 617–642.
1470
+ [7] M. Sigalas, E. N. Economou, Band structure of elastic waves in two dimensional systems, Solid State Commun. 86
1471
+ (1993) 141–143.
1472
+ [8] M. S. Kushwaha, P. Halevi, L. Dobrzynski, B. Djafari-Rouhani, Acoustic band structure of periodic elastic composites,
1473
+ Phys. Rev. Lett. 71 (1993) 2022–2025.
1474
+ [9] A. A. Maradudin, Lattice Dynamics, W. A. Benjamin, California, 1969.
1475
+ [10] Z. Liu, X. Zhang, Y. Mao, Y.-Y. Zhu, Z. Yang, C. T. Chan, P. Sheng, Locally resonant sonic materials, Science 289 (2000)
1476
+ 1734–1736.
1477
+ [11] C. Kittel, Introduction to Solid State Physics, Wiley, New York, 1976.
1478
+ [12] F. Bloch, Sur les equations différentielles linéaries à coefficients périodiques, Ann. Sci. Ecole Norm. S. 12 (1883) 47–88.
1479
+ [13] F. Bloch, Über die quantenmechanik der elektronen in kristallgittern, Z. Phys. 52 (1929) 555–600.
1480
+ 18
1481
+
1482
+ [14] D. J. Mead, Wave propagation and natural modes in periodic systems: I. mono-coupled systems, J. Sound Vib. 40
1483
+ (1975) 1–18.
1484
+ [15] D. J. Mead, Wave propagation and natural modes in periodic systems: Ii. multi-coupled systems, with and without
1485
+ damping, J. Sound Vib. 40 (1975) 19–39.
1486
+ [16] Y. Xiao, B. R. Mace, J. Wen, X. Wen, Formation and coupling of band gaps in a locally resonant elastic system com-
1487
+ prising a string with attached resonators, Phys. Lett. A 375 (2011) 1485–1491.
1488
+ [17] L. Raghavan, A. S. Phani, Local resonance bandgaps in periodic media: Theory and experiment, Journal of the
1489
+ Acoustical Society of America 134 (2013) 1950–1959.
1490
+ [18] J. Callaway, Model for lattice thermal conductivity at low temperatures, Phys. Rev. 113 (1959) 1046–1051.
1491
+ [19] M. G. Holland, Analysis of lattice thermal conductivity, Phys. Rev. 132 (1963) 2461–2471.
1492
+ [20] S. Nemat-Nasser, J. R. Willis, A. Srivastava, A. V. Amirkhizi, Homogenization of periodic elastic composites and locally
1493
+ resonant sonic materials, Phys. Rev. B 83 (2011) 104103.
1494
+ [21] J. V. Sánchez-Pérez, D. Caballero, R. Mártinez-Sala, C. Rubio, J. Sánchez-Dehesa, F. Meseguer, J. Llinares, F. Gálvez,
1495
+ Sound attenuation by a two-dimensional array of rigid cylinders, Phys. Rev. Lett. 80 (1998) 5325.
1496
+ [22] J. O. Vasseur, P. A. Deymier, B. Chenni, B. Djafari-Rouhani, L. Dobrzynski, D. Prevost, Experimental and theoretical
1497
+ evidence for the existence of absolute acoustic band gaps in two-dimensional solid phononic crystals, Phys. Rev.
1498
+ Lett. 86 (2001) 3012.
1499
+ [23] M. I. Hussein, M. J. Leamy, M. Ruzzene, Dynamics of phononic materials and structures: Historical origins, recent
1500
+ progress, and future outlook, Appl. Mech. Rev 66 (2014) 040802.
1501
+ [24] Y. Jin, Y. Pennec, B. Bonello, H. Honarvar, L. Dobrzynski, B. Djafari-Rouhani, M. I. Hussein, Physics of surface vibra-
1502
+ tional resonances: pillared phononic crystals, metamaterials, and metasurfaces, Reports on Progress in Physics 84
1503
+ (2021) 086502.
1504
+ [25] S. Maruyama, A molecular dynamics simulation of heat conduction in finite length swnts, Physica B: Condensed
1505
+ Matter 323 (2002) 193–195.
1506
+ [26] M. I. Hussein, G. M. Hulbert, R. A. Scott, Dispersive elastodynamics of 1D banded materials and structures: analysis,
1507
+ J. Sound Vib. 289 (2006) 779–806.
1508
+ [27] M. I. Hussein, S. Biringen, O. R. Bilal, A. Kucala, Flow stabilization by subsurface phonons, Proc. R. Soc. A 471 (2015)
1509
+ 20140928.
1510
+ [28] H. Al Ba’ba’a, M. Nouh, T. Singh, Dispersion and topological characteristics of permutative polyatomic phononic
1511
+ crystals, Proc. R. Soc. A 475 (2019) 20190022.
1512
+ [29] R. F. Wallis, Effect of free ends on the vibration frequencies of one-dimensional lattices, Phys. Rev. 105 (1957) 540.
1513
+ [30] R. E. Camley, B. Djafari-Rouhani, L. Dobrzynski, A. A. Maradudin, Transverse elastic waves in periodically layered
1514
+ infinite and semi-infinite media, Phys. Rev. B 27 (1983) 7318.
1515
+ [31] B. Djafari-Rouhani, L. Dobrzynski, O. H. Duparc, R. Camley, A. Maradudin, Sagittal elastic waves in infinite and
1516
+ semi-infinite superlattices, Phys. Rev. B 28 (1983) 1711–1720.
1517
+ [32] E. H. El Boudouti, B. Djafari-Rouhani, E. M. Khourdifi, L. Dobrzynski, Surface and interface elastic waves in super-
1518
+ lattices: Transverse localized and resonant modes, Phys. Rev. B 48 (1993) 10987.
1519
+ [33] E. H. El Boudouti, B. Djafari-Rouhani, A. Nougaoui, Surface elastic waves in superlattices: Sagittal localized and
1520
+ resonant modes, Phys. Rev. B 51 (1995) 13801.
1521
+ [34] E. H. El Boudouti, B. Djafari-Rouhani, A. Akjouj, L. Dobrzynski, Theory of surface and interface transverse elastic
1522
+ waves in N-layer superlattices, Phys. Rev. B 54 (1996) 14728.
1523
+ [35] A.-C. Hladky-Hennion, G. Allan, M. de Billy,
1524
+ Localized modes in a one-dimensional diatomic chain of coupled
1525
+ spheres, J. Appl. Phys. 98 (2005) 054909.
1526
+ 19
1527
+
1528
+ [36] S. Y. Ren, Y.-C. Chang, Theory of confinement effects in finite one-dimensional phononic crystals, Phys. Rev. B 75
1529
+ (2007) 212301.
1530
+ [37] A. N. Darinskii, A. L. Shuvalov, Surface acoustic waves on one-dimensional phononic crystals of general anisotropy:
1531
+ Existence considerations, Phys. Rev. B 98 (2018) 024309.
1532
+ [38] M. Born, Lattice dynamics and x-ray scattering, P. R. Soc. London 54 (1942) 362–376.
1533
+ [39] H. Al Ba’ba’a, M. Nouh, T. Singh, Pole distribution in finite phononic crystals: Understanding Bragg-effects through
1534
+ closed-form system dynamics, J. Acoust. Soc. Am 142 (2017) 1399–1412.
1535
+ [40] M. V. Bastawrous, M. I. Hussein, Closed-form existence conditions for bandgap resonances in a finite periodic chain
1536
+ under general boundary conditions, J. Acoust. Soc. Am. 151 (2022) 286–298.
1537
+ [41] S. Y. Ren, Y.-C. Chang, Surface states/modes in one-dimensional semi-infinite crystals, Ann. Phys. (N. Y). 325 (2010)
1538
+ 937–947.
1539
+ [42] B. L. Davis, A. S. Tomchek, E. A. Flores, L. Liu, M. I. Hussein, Analysis of periodicity termination in phononic crystals,
1540
+ Proceedings of ASME 2011 International Mechanical Engineering Congress and Exposition; Paper No. IMECE2011-
1541
+ 65666 8 (2011) 973–977.
1542
+ [43] A. Hvatov, S. Sorokin, Free vibrations of finite periodic structures in pass-and stop-bands of the counterpart infinite
1543
+ waveguides, J. Sound Vib. 347 (2015) 200–217.
1544
+ [44] Y. Xiao, J. Wen, D. Yu, X. Wen, Flexural wave propagation in beams with periodically attached vibration absorbers:
1545
+ band-gap behavior and band formation mechanisms, J. Sound Vib. 332 (2013) 867–893.
1546
+ [45] L. Sangiuliano, C. Claeys, E. Deckers, W. Desmet, Influence of boundary conditions on the stop band effect in finite
1547
+ locally resonant metamaterial beams, J. Sound Vib. 473 (2020) 115225.
1548
+ [46] J. Carneiro Jr, M. Brennan, P. Gonçalves, V. Cleante, D. Bueno, R. Santos, On the attenuation of vibration using a finite
1549
+ periodic array of rods comprised of either symmetrical or asymmetrical cells, J. Sound Vib. 511 (2021) 116217.
1550
+ [47] H. Al Ba’ba’a, C. L. Willey, V. W. Chen, A. T. Juhl, M. Nouh, Theory of truncation resonances in continuum rod-based
1551
+ phononic crystals with generally asymmetric unit cells, arXiv:2211.01423v1 (2022).
1552
+ [48] M. I. Hussein, G. M. Hulbert, R. A. Scott, Dispersive elastodynamics of 1D banded materials and structures: Design,
1553
+ J. Sound Vib. 307 (2007) 865–893.
1554
+ [49] P. Yeh, A. Yariv, A. Y. Cho, Optical surface waves in periodic layered media, Appl. Phys. Lett. 32 (1978) 104–105.
1555
+ [50] M. Z. Hasan, C. L. Kane, Colloquium: topological insulators, Reviews of Modern Physics 82 (2010) 3045.
1556
+ [51] T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg,
1557
+ et al., Topological photonics, Reviews of Modern Physics 91 (2019) 015006.
1558
+ [52] M. Miniaci, R. Pal, Design of topological elastic waveguides, Journal of Applied Physics 130 (2021) 141101.
1559
+ [53] R. K. Pal, M. Ruzzene, Edge waves in plates with resonators: an elastic analogue of the quantum valley Hall effect,
1560
+ New Journal of Physics 19 (2017) 025001.
1561
+ [54] R. Chaunsali, E. Kim, A. Thakkar, P. G. Kevrekidis, J. Yang, Demonstrating an in situ topological band transition in
1562
+ cylindrical granular chains, Physical Review Letters 119 (2017) 024301.
1563
+ [55] W. Wang, Y. Jin, W. Wang, B. Bonello, B. Djafari-Rouhani, R. Fleury, Robust fano resonance in a topological mechanical
1564
+ beam, Physical Review B 101 (2020) 024101.
1565
+ [56] J. Yin, M. Ruzzene, J. Wen, D. Yu, L. Cai, L. Yue, Band transition and topological interface modes in 1D elastic phononic
1566
+ crystals, Scientific reports 8 (2018) 1–10.
1567
+ [57] W. Su, J. Schrieffer, A. J. Heeger, Solitons in polyacetylene, Physical Review Letters 42 (1979) 1698.
1568
+ [58] R. Süsstrunk, S. D. Huber, Observation of phononic helical edge states in a mechanical topological insulator, Science
1569
+ 349 (2015) 47–50.
1570
+ 20
1571
+
1572
+ [59] M. Miniaci, R. Pal, B. Morvan, M. Ruzzene, Experimental observation of topologically protected helical edge modes
1573
+ in patterned elastic plates, Physical Review X 8 (2018) 031074.
1574
+ [60] D. Torrent, D. Mayou, J. Sánchez-Dehesa, Elastic analog of graphene: Dirac cones and edge states for flexural waves
1575
+ in thin plates, Physical Review B 87 (2013) 115143.
1576
+ [61] J. Vila, R. K. Pal, M. Ruzzene, Observation of topological valley modes in an elastic hexagonal lattice, Physical Review
1577
+ B 96 (2017) 134307.
1578
+ [62] D. J. Thouless, M. Kohmoto, M. P. Nightingale, M. den Nijs, Quantized Hall conductance in a two-dimensional peri-
1579
+ odic potential, Physical Review Letters 49 (1982) 405.
1580
+ [63] K. v. Klitzing, G. Dorda, M. Pepper, New method for high-accuracy determination of the fine-structure constant based
1581
+ on quantized Hall resistance, Physical Review Letters 45 (1980) 494.
1582
+ [64] Y.-T. Wang, P.-G. Luan, S. Zhang, Coriolis force induced topological order for classical mechanical vibrations, New
1583
+ Journal of Physics 17 (2015) 073031.
1584
+ [65] P. Wang, L. Lu, K. Bertoldi, Topological phononic crystals with one-way elastic edge waves, Physical Review Letters
1585
+ 115 (2015) 104302.
1586
+ [66] L. M. Nash, D. Kleckner, A. Read, V. Vitelli, A. M. Turner, W. T. Irvine, Topological mechanics of gyroscopic metamate-
1587
+ rials, Proceedings of the National Academy of Sciences 112 (2015) 14495–14500.
1588
+ [67] Y. E. Kraus, O. Zilberberg, Quasiperiodicity and topology transcend dimensions, Nature Physics 12 (2016) 624.
1589
+ [68] E. Prodan, Virtual topological insulators with real quantized physics, Physical Review B 91 (2015) 245104.
1590
+ [69] D. J. Apigo, K. Qian, C. Prodan, E. Prodan, Topological edge modes by smart patterning, Physical Review Materials 2
1591
+ (2018) 124203.
1592
+ [70] M. I. Rosa, R. K. Pal, J. R. Arruda, M. Ruzzene, Edge states and topological pumping in spatially modulated elastic
1593
+ lattices, Physical Review Letters 123 (2019) 034301.
1594
+ [71] D. J. Apigo, W. Cheng, K. F. Dobiszewski, E. Prodan, C. Prodan, Observation of topological edge modes in a quasiperi-
1595
+ odic acoustic waveguide, Physical Review Letters 122 (2019) 095501.
1596
+ [72] X. Ni, K. Chen, M. Weiner, D. J. Apigo, C. Prodan, A. Alù, E. Prodan, A. B. Khanikaev, Observation of hofstadter butterfly
1597
+ and topological edge states in reconfigurable quasi-periodic acoustic crystals, Communications Physics 2 (2019) 55.
1598
+ [73] R. K. Pal, M. I. Rosa, M. Ruzzene, Topological bands and localized vibration modes in quasiperiodic beams, New
1599
+ Journal of Physics 21 (2019) 093017.
1600
+ [74] M. Gupta, M. Ruzzene, Dynamics of quasiperiodic beams, Crystals 10 (2020) 1144.
1601
+ [75] Y. Xia, A. Erturk, M. Ruzzene, Topological edge states in quasiperiodic locally resonant metastructures, Physical
1602
+ Review Applied 13 (2020) 014023.
1603
+ [76] M. I. Rosa, Y. Guo, M. Ruzzene, Exploring topology of 1D quasiperiodic metastructures through modulated lego
1604
+ resonators, Applied Physics Letters 118 (2021) 131901.
1605
+ [77] I. H. Grinberg, M. Lin, C. Harris, W. A. Benalcazar, C. W. Peterson, T. L. Hughes, G. Bahl, Robust temporal pumping in
1606
+ a magneto-mechanical topological insulator, Nature communications 11 (2020) 1–9.
1607
+ [78] H. Chen, L. Yao, H. Nassar, G. Huang, Mechanical quantum Hall effect in time-modulated elastic materials, Physical
1608
+ Review Applied 11 (2019) 044029.
1609
+ [79] Y. Xia, E. Riva, M. I. Rosa, G. Cazzulani, A. Erturk, F. Braghin, M. Ruzzene, Experimental observation of temporal
1610
+ pumping in electromechanical waveguides, Physical Review Letters 126 (2021) 095501.
1611
+ [80] E. Riva, M. I. Rosa, M. Ruzzene, Edge states and topological pumping in stiffness-modulated elastic plates, Physical
1612
+ Review B 101 (2020) 094307.
1613
+ [81] G. Ma, M. Xiao, C. Chan, Topological phases in acoustic and mechanical systems, Nature Reviews Physics 1 (2019)
1614
+ 281–294.
1615
+ 21
1616
+
1617
+ [82] H. Huang, J. Chen, S. Huo, Recent advances in topological elastic metamaterials, Journal of Physics: Condensed
1618
+ Matter (2021).
1619
+ [83] L. Liu, M. I. Hussein, Wave motion in periodic flexural beams and characterization of the transition between Bragg
1620
+ scattering and local resonance, Journal of Applied Mechanics 79 (2012).
1621
+ [84] A. S. Phani, J. Woodhouse, N. A. Fleck, Wave propagation in two-dimensional periodic lattices, Journal of the Acous-
1622
+ tical Society of America 119 (2006) 1995–2005.
1623
+ [85] Y. Hatsugai, Topological aspects of the quantum Hall effect, Journal of Physics: Condensed Matter 9 (1997) 2507.
1624
+ [86] Y. Hatsugai, Chern number and edge states in the integer quantum Hall effect, Physical Review Letters 71 (1993)
1625
+ 3697.
1626
+ [87] T. Fukui, Y. Hatsugai, H. Suzuki, Chern numbers in discretized Brillouin zone: efficient method of computing (spin)
1627
+ Hall conductances, Journal of the Physical Society of Japan 74 (2005) 1674–1677.
1628
+ [88] J. Bellissard, Gap labelling theorems for schrödinger operators, in: From number theory to physics, Springer, 1992,
1629
+ pp. 538–630.
1630
+ [89] E. Prodan, H. Schulz-Baldes, Bulk and boundary invariants for complex topological insulators, K (2016).
1631
+ [90] M. M. Sigalas, Elastic wave band gaps and defect states in two- dimensional composites, Journal of the Acoustical
1632
+ Society of America 101 (1997) 1256–1261.
1633
+ [91] M. Torres, F. R. Montero de Espinosa, D. Garcia-Pablos, N. Garcia, Sonic band gaps in finite elastic media: Surface
1634
+ states and localization phenomena in linear and point defects, Physical Review Letters 82 (1999) 3054–3057.
1635
+ [92] A. Khelif, B. Djafari-Rouhani, J. O. Vasseur, P. A. Deymier, Transmission and dispersion relations of perfect and defect-
1636
+ containing waveguide structures in phononic band gap materials, Physical Review B 68 (2003) 024302.
1637
+ [93] M. Miniaci, F. Allein, R. K. Pal, Spectral flow of a localized mode in elastic media, arXiv preprint arXiv:2111.09021
1638
+ (2021).
1639
+ [94] A. S. Phani, M. I. Hussein, Dynamics of Lattice Materials, John Wiley & Sons, 2017.
1640
+ [95] C. L. Willey, V. W. Chen, D. Roca, A. Kianfar, M. I. Hussein, A. T. Juhl, Coiled phononic crystal with periodic rotational
1641
+ locking: Subwavelength Bragg band gaps, Physical Review Applied 18 (2022) 014035.
1642
+ [96] C. L. Kane, T. C. Lubensky, Topological boundary modes in isostatic lattices, Nature Physics 18 (2014) 39–45.
1643
+ [97] D. Zhou, D. Rocklin, M. Leamy, Y. Yao, Topological invariant and anomalous edge modes of strongly nonlinear sys-
1644
+ tems, Nature Communications 13 (2022) 1–9.
1645
+ [98] A. Shaikeea, H. Cui, M. O’Masta, X. R. Zheng, V. S. Deshpande, The toughness of mechanical metamaterials, Nature
1646
+ Materials 21 (2022) 297–304.
1647
+ [99] G.-T. Liu, T.-Y. Fan, R.-P. Guo, Governing equations and general solutions of plane elasticity of one-dimensional
1648
+ quasicrystals, International Journal of Solids and Structures 41 (2004) 3949–3959.
1649
+ 22
1650
+
INAyT4oBgHgl3EQfTPda/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
J9FIT4oBgHgl3EQfZytY/content/2301.11254v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5cab312d23f8af17f881b92e876d15932ded8ad3ed9dda1adf6ed69a2db6f987
3
+ size 1393528
JNAyT4oBgHgl3EQfsPky/content/tmp_files/2301.00572v1.pdf.txt ADDED
@@ -0,0 +1,1238 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.00572v1 [gr-qc] 2 Jan 2023
2
+ Spacetime singularities and curvature
3
+ blow-ups
4
+ István Rácz ∗
5
+ Wigner RCP
6
+ H-1121 Budapest, Konkoly Thege Miklós út 29-33, Hungary
7
+ January 3, 2023
8
+ Abstract
9
+ The singularity theorems of Penrose, Hawking, and Geroch predict the exis-
10
+ tence of incomplete inextendible causal geodesics in a wide range of physically
11
+ adequate spacetimes modeling the gravitational collapse of stars and the ex-
12
+ panding universe. Here, using results on spacetime extensions, it is shown that
13
+ if a suitable low regular form of the strong cosmic censor hypothesis holds, then
14
+ parallelly propagated blow-up of either the tidal force or frame-drag part of
15
+ the curvature must occur in “generic” timelike geodesically incomplete maximal
16
+ Cauchy developments.
17
+ 1
18
+ Introduction
19
+ During the first five decades of Einstein’s theory of gravity, singular behavior popped
20
+ up in many of the physically relevant exact solutions. Notably, in these spacetimes,
21
+ “singularities” were always signified by unbounded curvature. Nevertheless, the gen-
22
+ eral covariance of the theory made even the determination of spacetime-singularity to
23
+ be one of the most intriguing and challenging issues in general relativity [23]. In the
24
+ 1960s, this yielded a fierce debate concerning the relevance of spacetime singularities
25
+ found in models admitting symmetries [30, 14]. In 1965, by applying methods of
26
+ global differential geometry, Roger Penrose proved that singularities must occur irre-
27
+ spective of symmetries in spacetimes modeling gravitational collapse [33, 34]. More
28
+ precisely, Penrose, in his seminal work, demonstrated that a spacetime cannot be null
29
+ geodesically complete if the following three conditions are satisfied:
30
+ (1) the null convergence condition holds, i.e., Rabkakb ≥ 0 for all null vectors ka ,
31
+ ∗E-mail address: racz.istvan@wigner.hu
32
+ 1
33
+
34
+ (2) the spacetime is globally hyperbolic with a non-compact Cauchy surface Σ ,
35
+ (3) there exists a closed trapped surface T .
36
+ The proof of this theorem is derived by contradiction (see, e.g., [47, 48]). It starts
37
+ by assuming that the spacetime is null geodesically complete. Then, condition (3)
38
+ shows that these geodesics begin to focus, whereas condition (1) guarantees that they
39
+ keep focusing, and focal points must develop. As opposed to this, if the spacetime
40
+ is null geodesically complete, condition (2) can be used to exclude the appearance of
41
+ such focal points. The contradiction is avoided by dropping the indirect assumption,
42
+ verifying that the spacetime cannot be null geodesically complete.
43
+ It formulates the expectation that gravitational interaction is attractive because
44
+ null geodesic congruences inevitably get focused by the curvature. The first half of
45
+ condition (2) is also moderate, as Einstein’s theory of gravity is known to possess a
46
+ well-posed initial value problem.
47
+ Note also that condition (1) is very mild.
48
+ It formulates the expectation that
49
+ gravitational interaction is attractive in the sense that, if it holds, null geodesic con-
50
+ gruences inevitably get focused by the curvature. The first half of condition (2) is also
51
+ moderate as Einstein’s theory of gravity is known to possess a well-posed initial value
52
+ problem [3, 4, 53]. The second half assumes only that the spacetime represents the
53
+ history of an isolated object. Assumption (3) is more demanding. It presumes that
54
+ the gravitational field is so strong in a domain bounded by a two-dimensional spatial
55
+ surface T that the outward-directed null rays, starting at T perpendicularly, have
56
+ already negative expansion. This latter condition was verified to hold if a sufficient
57
+ amount of energy/matter is concentrated in the spatial region bounded by T [46, 11].
58
+ The strength of this theorem is rooted in that all the three conditions above are of
59
+ pure geometrical character. The same assumptions could be imposed in a wide range
60
+ of metric theories of gravity. Notably, by adopting the new technical elements applied
61
+ in Penrose’s theorem, Hawking immediately proved the existence of incomplete causal
62
+ geodesic curves in cosmological models [20]. Soon after, a series of novel singularity
63
+ theorems by Penrose, Hawking, and Geroch concluded that gravitational singularities
64
+ occur in many physically realistic situations [20, 21, 18]. Note, however, that all these
65
+ theorems share a shortcoming.
66
+ Namely, the existence of incomplete, inextendible
67
+ causal geodesics is used as a synonym of spacetime-singularity [23].
68
+ In the following decades considerable efforts had been made to over-bridge the gap
69
+ between physical intuition and the conclusion of the singularity theorems. All these
70
+ aimed to verify that some physically relevant quantities do indeed become infinite
71
+ along the incomplete inextendible causal geodesics predicted by the singularity theo-
72
+ rems. Nevertheless, still, no such satisfactory reasoning exists yet. Our main goal in
73
+ this paper is to bring the intuitive picture of singularities and the predictions of the
74
+ singularity theorems closer to each other.
75
+ 2
76
+
77
+ While making the scope of the discussions a bit wider, recall first that in met-
78
+ ric theories of gravity, such as Einstein’s theory, a spacetime, (M, gab) is supposed
79
+ to be a smooth Hausdorff, paracompact, connected, orientable manifold M. It is
80
+ also assumed that a smooth metric gab of Lorentzian signature is also given on M
81
+ [18, 53]. The base manifold M is also assumed to be chosen sufficiently large to rep-
82
+ resent all the events compatible with the history of the investigated physical system.
83
+ In contrast, the presence of incomplete inextendible causal geodesics —the singular-
84
+ ity theorems predicted these— might be considered as a warning signal indicating
85
+ that some parts of those spacetimes which describe the expanding universe and the
86
+ gravitational collapse of stars are missing [23].
87
+ After getting aware that spacetimes may not be complete, it is natural to ask if
88
+ they can be extended. In answering this question, recall first that the above determi-
89
+ nation of a spacetime refers merely to its essential mathematical structures. In many
90
+ cases, mainly for mathematical conveniences, it is assumed that a spacetime possesses
91
+ a smooth differentiable structure and the other fields are also smooth. Recall that
92
+ in the smooth setting, a seminal result by Choquet-Bruhat and Geroch [2] guaran-
93
+ tees the existence of a unique (up to diffeomorphisms) maximal Cauchy development
94
+ (see also [44]).
95
+ Note also that recently the existence and uniqueness of maximal
96
+ global hyperbolic developments of vacuum general relativistic initial data sets (h, K)
97
+ in Sobolev spaces Hs ⊕ Hs−1 was proven in [6], for s ∈ N with s > n/2 + 1, where
98
+ n (≥ 3) stands for the dimension of the initial data surface. Given these results, at
99
+ least in the case of globally hyperbolic spacetimes, we would expect that it is entirely
100
+ satisfactory to work with the maximal Cauchy development.
101
+ Note, however, that things are much more intricate. Namely, causal geodesically
102
+ incomplete spacetimes exist such that they contain as a part “the maximal” Cauchy
103
+ development of suitable smooth initial data given on an otherwise also “maximal” ini-
104
+ tial data surface. These Cauchy developments can be continued beyond the Cauchy
105
+ horizon such that no curvature blow-up occurs while crossing this horizon. As imme-
106
+ diate examples, think of the maximal analytic extensions of the Kerr and Taub-NUT
107
+ spacetimes (see, e.g., [18]). In both cases, the predictive power of general relativity
108
+ is lost while crossing the Cauchy horizon of the maximal Cauchy development. It
109
+ is also fair noting that this type of behavior has been found to occur exclusively in
110
+ spacetimes with symmetries.
111
+ The strong version of the cosmic censorship conjecture of Penrose emerged from
112
+ these troublesome circumstances [37, 38]. Penrose’s strong cosmic censorship conjec-
113
+ ture claims that the maximal Cauchy development of a “generic” compact or asymp-
114
+ totically flat initial data is never part of a larger spacetime [38]. If true, the corre-
115
+ sponding Cauchy development cannot have a Cauchy horizon, especially no extension
116
+ beyond it could make sense. While investigating issues related to the strong cosmic
117
+ censor hypothesis and the main dilemmas on spacetime singularities, the following
118
+ 3
119
+
120
+ questions arose: How could it be shown that something violent happens “there”.
121
+ Where and what sort? (For detailed discussions on many fundamental issues, see,
122
+ e.g., [18, 35, 23, 53, 47, 48].) In attempting to answer some of these questions, it is
123
+ rewarding to have a glance at the main cornerstones we already have in our hands.
124
+ These are the singularity theorems, the existence of maximal Cauchy development,
125
+ and we may also adopt the strong cosmic censorship conjecture.
126
+ Inspecting these fundamental concepts for some time, the following argument,
127
+ based on contradiction, develops: Consider a causal geodesically incomplete space-
128
+ time. Assume that it is the maximal Cauchy development of some “generic” compact
129
+ or asymptotically flat initial data and that the strong cosmic censor conjecture holds
130
+ for this class of spacetimes. These assumptions guarantee that such spacetime cannot
131
+ be extended within the considered differentiability class. Assume, in addition, that
132
+ nothing violent happens along either of the incomplete inextendible causal geodesics.
133
+ In particular, assume that all the tidal-force and frame-drag parts of the curvature
134
+ tensor remain bounded while approaching the “ideal endpoints” of the incomplete
135
+ inextendible causal geodesics. This regularity of the curvature permits a global ex-
136
+ tension of the otherwise maximal Cauchy development. If the strong cosmic censor
137
+ hypothesis holds, this contradiction allows us to conclude that the causal geodesic
138
+ incompleteness in a maximal Cauchy development must always be accompanied by
139
+ the singular behavior of some of the tidal-force and frame-drag parts of the curvature
140
+ tensor.
141
+ In this paper, attention will be restricted to the timelike case. In other words,
142
+ spacetimes admitting incomplete inextendible timelike geodesics will be considered.
143
+ One of the main results of this paper can be summarized as follows: Consider an
144
+ n-dimensional smooth “generic” globally hyperbolic spacetime (M, gab) and assume
145
+ that γ is an incomplete timelike geodesic that is inextendible in (M, gab). Assume
146
+ also that there exists an (n−1)-parameter congruence of causal geodesics, G, spanning
147
+ an open neighborhood of a final segment of γ, such that the tidal force and frame-
148
+ drag (or the electric and magnetic) 1 parts of the curvature tensor, along with the line
149
+ integral of the first-order transversal covariant derivatives of the tidal (or electric)
150
+ part, —measured with respect to a parallelly propagated synchronized basis field—
151
+ are guaranteed to be uniformly bounded along the members of G. Then (M, gab) is
152
+ extendible within the class of C0 Geroch-Traschen regularity class.
153
+ The paper is organized as follow: In Section 2 basic results concerning the ex-
154
+ tendibility of real function, defined on bounded subsets of Rn, is considered.
155
+ In
156
+ Section 3 the basic notion of spacetime extensions and some of the relevant results
157
+ are recalled. A specific choice for the differentiability class of metric is made and
158
+ 1For the definition of the tidal force and frame-drag (or the electric and magnetic) parts of
159
+ curvature see equation (5.5) in subsection 5.1 below.
160
+ 4
161
+
162
+ the low differentiable version of the strong cosmic censor hypothesis is discussed in
163
+ Section 4. The main results of the present paper are presented in Section 5, while our
164
+ conclusions and the final remarks are given in Section 6.
165
+ 2
166
+ Extensions of real functions
167
+ In demonstrating that a spacetime is part of a larger one, we need results on the
168
+ extendibility of spacetimes. Nevertheless, as a preparation, it is rewarding to glance
169
+ at some of the essential ingredients of this notion.
170
+ Recall first that spacetimes are represented by n-dimensional smooth differentiable
171
+ manifolds on which suitably regular metrics are also given. Note that as a manifold
172
+ locally is Rn, and the components of the metric in the corresponding local coordinates
173
+ are real functions, it is advantageous to know if real functions, given on a subset of
174
+ Rn, can be extended. Exactly this problem was studied by Whitney in the early
175
+ 30’s [55, 56] (see also [22]). He considered a real-valued function F, say of class Cm,
176
+ defined on a subset A of Rn, and asked under which conditions exists a function �
177
+ F,
178
+ of class Cℓ, with ℓ ≤ m, on the entire of Rn, such that �F = F on A ?
179
+ In answering the above addressed issues Whitney in [55] introduced the term
180
+ “property P”, to characterize subsets in Rn, defined as follows.2
181
+ Definition 1. A point set A ⊂ Rn is said to possess the property P if there is a
182
+ positive real number ω such that for any two points x and y of A can be joined by a
183
+ curve in A of length L ≤ ω · ρ(x, y), where ρ(x, y) denotes the Euclidean distance of
184
+ the points x, y ∈ Rn.
185
+ The main result by Whitney can be summarized by the following:
186
+ Theorem 1. Assume that A ⊂ Rn has property P, and that F(x1, ..., xn) is of class
187
+ Cm, for some positive integer m ∈ N, in A . Suppose that ℓ ∈ N is so that ℓ ≤ m,
188
+ and also that each of the ℓth order derivatives ∂ℓ1
189
+ x1 · · · ∂ℓn
190
+ xnF, with ℓ1 + · · · + ℓn = ℓ, can
191
+ be defined on the boundary ∂A of A so that they are continuous in A = A ∪ ∂A .
192
+ Then there exists an extension �
193
+ F of F so that �
194
+ F is of class Cℓ throughout Rn.
195
+ Note that it was shown in [55, 56] that �F can be chosen smooth (or, if needed, it
196
+ can be analytic) in Rn \ A .
197
+ To demonstrate that property P plays an essential role in Theorem 1, it is il-
198
+ luminating to recall Example 4.1. of [40]. A smooth real function F on a bounded
199
+ subset A ⊂ R2 is constructed there such that F, along with its partial derivatives up
200
+ 2In the literature, property P is also often termed quasi-convex.
201
+ 5
202
+
203
+ to any fixed order, are uniformly bounded in A , nevertheless, F cannot even have a
204
+ continuous extension to the closure of A .
205
+ Note, finally, that the property P as a concept has nothing to do with the causal
206
+ structure of an underlying spacetime, even if it is applied to characterize coordinate
207
+ patches therein. Nevertheless, it is worth emphasizing that in the case of globally
208
+ hyperbolic spacetimes —these are at the center of the investigations in this paper—
209
+ the coordinate domains applied in our constructions, in Section 5, are guaranteed to
210
+ possess the property P (see Proposition 4.1. in [40]).
211
+ 3
212
+ Spacetime extensions
213
+ Note first that while giving the notion of spacetime extensions, various differentiability
214
+ assumptions on the metric have been applied depending on the context. In addition,
215
+ as we have not yet fixed a preferred differentiability class, for the moment, it is
216
+ advantageous to keep the applied differentiability class as flexible as it is possible.
217
+ Accordingly, in the definition below CX will signify either the class of analytic, C∞,
218
+ Ck, Ck−, Ck,α functions. It may also stand for more involved classes such as the
219
+ differentiability class C0−,α applied in [9]. With this notation, spacetime extensions
220
+ can be defined as follows:
221
+ Definition 2. Let M and �
222
+ M be n-dimensional connected, paracompact, Hausdorff,
223
+ smooth differentiable manifolds, and (M, gab) and (�
224
+ M, �gab) be time oriented spacetimes
225
+ with metrics at least of class CX. Then (�
226
+ M, �gab) is called to be a CX-extension of
227
+ (M, gab) if there exists an embedding Φ : M → �
228
+ M such that Φ[M] is a proper subset
229
+ of �
230
+ M and Φ is a diffeomorphism between M and Φ[M] ⊂ �
231
+ M, and such that Φ carries
232
+ the metric gab into �gab|Φ[M], i.e., Φ∗gab = �gab|Φ[M]. If (M, gab) admits a CX-extension
233
+ it is said to be CX-extendible. If such an extension does not exist (M, gab) is called
234
+ to be CX-inextendible.
235
+ Note that the involved manifolds cannot be rougher than C1 to permit (at least)
236
+ continuous tangent spaces and also to be able to host a continuous metric. Neverthe-
237
+ less, as it is argued in Theorem 2.9 in [19] if a Cr-differentiability structure, r ≥ 1 is
238
+ given on M, then for every s, r < s ≤ ∞ there exists a compatible Cs-differentiability
239
+ structure on M such that it is unique up to Cs-diffeomorphisms, and such that it is
240
+ Cr-diffeomorphic to the original one. Therefore, without loss of generality, we as-
241
+ sumed above that both of the manifolds, M and �
242
+ M, admit smooth differentiable
243
+ structure. Note also that the differentiability class of gab need not to be exactly CX,
244
+ i.e., gab may belong to some higher differentiability class.
245
+ We close this section by briefly recalling some of the most important results on
246
+ spacetime extensions.
247
+ In doing so, note that the first systematic investigation of
248
+ 6
249
+
250
+ spacetime extensions was carried out by Clarke [7, 8, 9, 10]. His main result is that
251
+ for a “generic” globally hyperbolic C0− causal geodesically incomplete spacetime, there
252
+ is a C0−,α extension provided that the Riemann tensor is also Hölder-continuous. (A
253
+ spacetime, in [7][9], was considered generic if its b-completion was not D-specialized at
254
+ any of the b-boundary points attached to it to represent singularities.) Besides the in-
255
+ disputable importance of these pioneering investigations, there are some drawbacks to
256
+ the above-recalled result. Firstly, Clarke’s results are based on an extensive use of the
257
+ b-boundary construction, which is known to have severe defects even for the simplest
258
+ Friedman-Robertson-Walker cosmological model (for more details, see section 5.2 of
259
+ [9]). Secondly, it may happen that a given spacetime cannot be extended within the
260
+ C0−,α class; in contrast that the curvature remains finite everywhere, simply because
261
+ it fails to be Hölder-continuous at the points of the b-boundary.
262
+ Given the indicated drawbacks, it became of obvious interest to construct space-
263
+ time extensions using the regular geometrical structures of the spacetime to be ex-
264
+ tended exclusively. In particular, it is preferable to avoid using boundary construc-
265
+ tions.
266
+ Keeping these ideas in the forefront, the present author also conducted a
267
+ systematic study of local and global extensions of causal geodesically incomplete
268
+ spacetimes [39, 40]. The main result in [40] can be summarized as follows: Consider
269
+ an n-dimensional smooth “generic” (i.e., locally algebraically non-special) globally hy-
270
+ perbolic spacetime (M, gab) and assume that γ is an incomplete causal geodesic that
271
+ is inextendible in (M, gab). Assume also that there is an (n−1)-parameter congruence
272
+ of causal geodesics, G, spanning an open neighborhood of a final segment of γ, such
273
+ that the components of the curvature tensor, along with its covariant derivatives up to
274
+ order (k −1), and also the line integrals of the components of the kth-order covariant
275
+ derivatives are finite along the members of G —stipulated with respect to a parallelly
276
+ propagated synchronized basis field— are guaranteed to be uniformly bounded along
277
+ the members of G. Then (M, gab) is Ck−-extendible. Comparing these results with
278
+ those covered by the present paper, it is transparent that much lower differentiability
279
+ requirements suffice to show the extendibility of smooth global hyperbolic spacetimes
280
+ within the class of continuous Geroch-Traschen metrics. Note also that the restric-
281
+ tions on curvature are more optimized here as, on the way of proving our main results
282
+ (see, i.e., Theorems 2 and 3 below), we refer merely to the tidal force and frame-drag
283
+ parts of the curvature.
284
+ 4
285
+ The choice of differentiability class
286
+ In proceeding, we now fix the differentiability class of the metric that suits most of
287
+ the following discussions. In doing so, recall first that general relativity is a physical
288
+ theory; thereby, the field equations and their solvability or the possible breakdown of
289
+ the field equations are of fundamental interest to us. On these grounds, it is desirable
290
+ 7
291
+
292
+ to admit spacetime models with metrics and other fields that are less well behaved
293
+ than smooth. It is also apparent that the wider the differentiability class of involved
294
+ metrics and matter fields is, the wider the class of gravity-matter systems that can
295
+ be studied within the selected framework.
296
+ These observations immediately suggest involving the widest class of spacetime
297
+ models, allowing us to make sense of the Einstein equations at least as distributions.
298
+ Geroch and Traschen investigated this fundamental issue in [24]. They showed that
299
+ the widest possible class of metrics for which the Riemann, Einstein, and Weyl tensors
300
+ make sense as distributions is the space of “regular metrics” or, as we also refer to
301
+ it, the “Geroch-Traschen regular metrics”. In particular, gab is said to be a Geroch-
302
+ Traschen regular metric if
303
+ (1) gab locally bounded with a locally bounded inverse gab, 3
304
+ (2) the “weak derivatives” of gab are locally square-integrable.
305
+ The metric gab and its inverse gab are locally bounded if the scalar densities gabtab
306
+ and gabuab are bounded for all test fields tab and uab. A test field is supposed to be a
307
+ smooth tensor density of compact support. The tensor distributions are continuous
308
+ linear maps from the vector space of test fields to the real numbers. The derivative
309
+ of the locally bounded metric gab, as distribution, is the distribution ∇egab such that
310
+
311
+ M
312
+ (∇egab)teab = −
313
+
314
+ M
315
+ gab(∇eteab)
316
+ (4.1)
317
+ for any test field tabc, where ∇a is a smooth torsion-free covariant derivative operator
318
+ on M. Note that the integrals in (4.1) make sense as test fields are assumed to be
319
+ tensor densities of weight −1 [24]. Then a locally integrable 4 tensor field µabc is called
320
+ the weak-derivative of gab if
321
+
322
+ M
323
+ gab(∇eteab) = −
324
+
325
+ M
326
+ µeab teab
327
+ (4.2)
328
+ holds for all test fields tabc. The weak-derivative µabc of gab is called locally square
329
+ integrable if the scalar density µabc µdef tabcdef is locally integrable for all test fields
330
+ tabcdef.
331
+ 3Here, as in [24], to have a well-defined inverse, it is tacitly assumed that gab is non-degenerate.
332
+ In the present context, this can be guaranteed if, on compact sets, a lower uniform bound exists on
333
+ the determinant [29].
334
+ 4A tensor field νa...bc...d, defined almost everywhere on M, is called locally integrable if for
335
+ every test field ta...bc...d the scalar density νa...bc...d ta...bc...d is Lebesgue measurable and its Lebesgue
336
+ integral converges.
337
+ 8
338
+
339
+ It was proved in [24] that if the metric gab is Geroch-Traschen regular, then the Rie-
340
+ mann, Einstein, and Weyl tensors make sense as distributions. Geroch and Traschen
341
+ also showed that if a regular metric, gab, is not only locally bounded with a locally
342
+ bounded inverse but is continuous, then it can be approximated by sequences of
343
+ smooth metrics {(i)gab} so that the associated curvature tensors {(i)Rabcd} converge
344
+ in L2 to the curvature distribution assigned to the continuous regular metric gab.
345
+ Returning to our main issue, given the results in [24] it is tempting to choose the
346
+ C0 Geroch-Traschen regularity class. This choice is also supported by the fact that
347
+ it is considered the broadest class of metrics such that weak solutions of the Einstein
348
+ equations exist (see, e.g., [18, 24, 4, 13]). It is also frequently claimed (see, e.g., [4, 13])
349
+ that local existence and uniqueness of weak solutions to the initial value problem
350
+ of the vacuum Einstein’s equations are expected to exist in a setting with metrics
351
+ that belong to the C0 Geroch-Traschen regularity class. Note also that regardless
352
+ of the differentiability class, it is an additional requirement that maximal Cauchy
353
+ developments should also exist. If one can extend a maximal Cauchy development of
354
+ the data given on a maximal initial data slice, the extension is inherently ambiguous
355
+ beyond the Cauchy horizon since, even if the vacuum Einstein equations are satisfied
356
+ there, the data on the initial data surface no longer determine the solution beyond
357
+ the Cauchy horizon. To over-bridge the gap between available techniques and firm
358
+ results, we shall adopt the following C0 form of the strong cosmic censor conjecture
359
+ proposed by Chrishtoduolus, Dafermos, Sbierski [4, 13, 45]:
360
+ Condition 1. The maximal globally hyperbolic development of generic compact or
361
+ asymptotically flat initial data is inextendible as a spacetime within the class of con-
362
+ tinuous Geroch-Traschen regular metrics.
363
+ While it appears conceivable that Condition 1 holds, this remains to be seen. As
364
+ there are a lot of missing technical elements yet it is rewarding to have a glance of
365
+ the regularity class of C0,1
366
+ loc metrics. In doing so note first that the Geroch-Traschen
367
+ regular metrics belong to the intersection H1
368
+ loc ∩ L∞
369
+ loc, where the relation H1 = W 1,2,
370
+ valid for the L2-based Sobolev spaces, was used [1]. Taking then into account that
371
+ on any domain C0,1
372
+ loc = W 1,∞
373
+ loc , and that the local Sobolev spaces are nested, i.e.,
374
+ W 1,m
375
+ loc ⊆ W 1,n
376
+ loc for any m ≥ n hold, it follows that C0,1
377
+ loc metrics belong to the Geroch-
378
+ Traschen regularity class and as such they possess a distributional curvature and
379
+ Einstein tensor. Having this on mind, it is also worth mentioning that several recent
380
+ results holds for the regularity class of C0,1
381
+ loc metrics. For instance, it was shown in
382
+ [5] that C0,1
383
+ loc differentiability of the metric suffices for many vital results of the C∞
384
+ causality theory. Analogously, within the C0,1
385
+ loc regularity class global hyperbolicity
386
+ makes sense, allowing to represent Cauchy hypersurfaces as level sets of C∞ time
387
+ functions [6, 41]. It is also worth noting that the global existence and uniqueness of
388
+ solutions to linear wave equations can also be guaranteed if the background metric
389
+ 9
390
+
391
+ belongs to the C0,1
392
+ loc regularity class [6, 43]. In this context, it is also worth mentioning
393
+ that the existence of maximal Cauchy development for the “3 + 1” vacuum Einstein
394
+ equations requires a metric with critical Sobolev exponent s = 2 [26].
395
+ Finally, it is also worth emphasizing that many physically adequate solutions
396
+ belong to the class of spacetimes with C0 Geroch-Traschen regular metric. They in-
397
+ clude, for instance, gravitational shock waves (where the curvature has a δ-function
398
+ behavior on a null three-surface) [36], thin mass shells (where the curvature has a
399
+ δ-function behavior on a timelike three-surface) [25]. Analogously, this class also in-
400
+ volves solutions containing pressure-free matter where the geodesic flow lines have
401
+ two- or three-dimensional caustics and shell-crossing singularities [51].
402
+ These ex-
403
+ amples demonstrate that whenever Condition 1. holds the existence of incomplete
404
+ timelike geodesics, within the class of spacetimes with C0 Geroch-Traschen regular
405
+ metrics, cannot simply be explained by referring to the presence of certain non-smooth
406
+ wavefronts or caustics of flow lines. Instead, they indicate more serious breakdowns
407
+ of physics.
408
+ Indeed, our principal aim in the present paper is to show that given
409
+ a “generic” (i.e., locally algebraically non-special) timelike geodesically incomplete
410
+ globally hyperbolic spacetime with a smooth metric, either the spacetime can be ex-
411
+ tended within the class of C0 Geroch-Traschen regular metrics or some of the tidal
412
+ force or frame-drag parts of the curvature tensor, or the first-order transversal co-
413
+ variant derivatives of the tidal forces —measured by a (n − 1)-parameter family of
414
+ synchronized observers 5 — become unbounded.
415
+ 5
416
+ The main results
417
+ This section is to present our main results. The first one read as:
418
+ Theorem 2. Consider an n-dimensional smooth locally algebraically non-special max-
419
+ imal globally hyperbolic timelike geodesically incomplete spacetime. Assume that Con-
420
+ dition 1 is satisfied, i.e., the C0 form of the strong cosmic censor hypothesis holds.
421
+ Denote by γ one of the incomplete timelike geodesics, and consider a synchronized
422
+ (n − 1)-parameter family of timelike geodesics, G, spanning a neighborhood of a final
423
+ segment of γ. Then, in any arbitrarily small neighborhood of γ, there exists a member
424
+ γ of G such that either one of the tidal force or frame-drag components of the curva-
425
+ ture or one of the first-order transversal covariant derivatives of one of the tidal force
426
+ components blows up along γ.
427
+ Proof: The proof of this theorem is based on contradiction. It starts by assuming
428
+ that the tidal force and frame-drag parts of the curvature, along with the first-order
429
+ 5In Subsection 5.1 below, these type of observers are modeled by applying (n − 1)-parameter
430
+ families of synchronized timelike geodesics and frame fields parallelly propagated along them.
431
+ 10
432
+
433
+ transversal covariant derivatives of the tidal forces, —measured with respect to a
434
+ synchronized basis field defined along the (n − 1)-parameter family of synchronized
435
+ timelike geodesics, G,— remain uniformly bounded along the members of G. This
436
+ allows proving Theorem 3 below claiming that the spacetime can be extended within
437
+ the C0 Geroch-Traschen regularity class. This, however, is incompatible with the as-
438
+ sumptions we made. Namely, a “generic” smooth maximal globally hyperbolic time-
439
+ like geodesically incomplete spacetime cannot be extended when the C0 version of
440
+ the strong cosmic censorship hypothesis is also assumed to hold.
441
+ Accordingly, proving Theorem 3 below, given the above reasoning, completes the
442
+ proof of Theorem 2.
443
+
444
+ Theorem 3. Consider an n-dimensional locally algebraically non-special smooth glob-
445
+ ally hyperbolic timelike geodesically incomplete spacetime (M, gab). Denote by γ one
446
+ of the incomplete timelike geodesics, and consider a synchronized (n − 1)-parameter
447
+ family of timelike geodesics, G, spanning a neighborhood of a final segment of γ. As-
448
+ sume that the tidal force and frame-drag parts of the curvature, along with the line
449
+ integrals of the first-order transversal covariant derivatives of the tidal forces, are
450
+ uniformly bounded along the members of G. Then (M, gab) can globally be extended
451
+ within the C0 Geroch-Traschen regularity class.
452
+ Proof: The proof of this theorem is given by performing the following sequence of
453
+ steps.
454
+ 1. Assume that γ : (t1, t2) → M is a future directed and future incomplete timelike
455
+ geodesic that is inextendible in (M, gab). For definiteness we assume that γ is
456
+ future incomplete, the other case then follows by a time reversal.
457
+ 2. Choose an (n − 1)-parameter family of synchronized future directed timelike
458
+ geodesics, G, such that γ belongs to G.
459
+ 3. Choose U ⊂ M such that U is the union of the images of the members of G,
460
+ and such that a final segment γ|[t0,t2), for some t0 ∈ (t1, t2) is contained in U.
461
+ 4. Show, under the assumption in our theorem, that there exist �U ⊂ Rn and a
462
+ smooth embedding φ : U → �U such that φ ◦ γ is continuously extendible in �U.
463
+ 5. Extend the metric gab from U to �U within the C0 Geroch-Traschen regular-
464
+ ity class, and denote by φ : (U, gab|U) → ( �U, �gab) the intermediate extension
465
+ obtained.
466
+ 6. The desired Φ : (M, gab) → (�
467
+ M, �gab) global extension is defined then by gluing
468
+ (M, gab) and ( �U, �gab) at their “common parts”, i.e., applying a quotient space
469
+ induced by φ, whereas the metric �gab gets to be determined by gab and �gab.
470
+ 11
471
+
472
+ 5.1
473
+ Synchronized Gaussian coordinates and reference frames
474
+ This section is to introduce the synchronized Gaussian coordinates and synchronized
475
+ orthonormal basis fields that play a central role in constructing the desired interme-
476
+ diate and global extensions.
477
+ Consider a future directed and future incomplete timelike geodesic γ : (t1, t2) →
478
+ M. Assume that t is the proper time parameter along γ, and that va is the correspond-
479
+ ing unit tangent field va = (∂/∂t)a along γ. Then synchronized Gaussian coordinates
480
+ can be defined, in a sufficiently small neighborhood of any point p = γ(t0) of γ, with
481
+ t0 ∈ (t1, t2), as follows [39, 40]. Choose first a sufficiently small open neighborhood,
482
+ Q, of the origin in the linear subspace T ⊥
483
+ p (M), spanned by the (n − 1)-dimensional
484
+ subspace of spacelike vectors orthogonal to va, such that the exponential map6 is
485
+ guaranteed to be a local diffeomorphism between Q and exp[Q] ⊂ M. Denote by
486
+ Σ the image of Q under the action of the exponential map, i.e., Σ = exp[Q]. Ac-
487
+ cordingly, Σ is generated by spacelike geodesics starting at p = γ(t0) with tangent
488
+ orthogonal to va. Extend then va from p = γ(t0) to a smooth future directed nor-
489
+ malized, gabvavb = −1, timelike vector field on Σ which is also everywhere normal
490
+ to Σ. Chose (x1, . . . , xn−1) to be arbitrary local coordinates on Σ and consider the
491
+ (n − 1)-parameter congruence of timelike geodesics, G, starting at the points of Σ
492
+ with tangent va. Since Σ and va are smooth these geodesics do not intersect in a
493
+ sufficiently small neighborhood V of Σ. Extend the functions x1, . . . , xn−1 to V , by
494
+ keeping their values constant along the geodesics in G, and chose the proper time
495
+ t = xn on V as the nth coordinate that is synchronized such that xn = t0 on Σ. The
496
+ functions (x1, . . . , xn) give rise to local coordinates on V .
497
+ In these synchronized Gaussian coordinates, the spacetime metric can be seen to
498
+ take the form [35, 53]
499
+ ds2 = −dt2 + gαβ dxαdxβ ,
500
+ (5.3)
501
+ where gαβ is a (n − 1) × (n − 1) positive definite matrix the components of which are
502
+ smooth functions of all the coordinates (x1, . . . , xn), and the Greek indices take the
503
+ values 1, 2, . . . , n − 1.
504
+ It is also worth mentioning here that, by construction of the Gaussian coordinates,
505
+ the coordinate basis fields Ea
506
+ α = (∂/∂xα)a, with α = 1, 2, . . . , n − 1 are Jacobi fields
507
+ along the (n − 1)-parameter congruence of timelike geodesics in G. Accordingly, the
508
+ Ea
509
+ α coordinate basis fields are subject to the Jacobi equation
510
+ ve∇e(vf∇fEa
511
+ (α)) = Refg
512
+ aveEf
513
+ (α)vg ,
514
+ (5.4)
515
+ where ∇a denotes the metric compatible covariant derivative operator.
516
+ 6The exponential map exp : Tp(M) → M assigns a point q ∈ M to a vector Xa ∈ Tp(M) such
517
+ that q is in unit affine parameter distance from p along the geodesic starting at p with tangent Xa.
518
+ 12
519
+
520
+ A synchronized basis field, {ea
521
+ (a)}, along the members of an n−1-parameter family
522
+ of timelike geodesics G, can also be chosen as follows. Start with an orthonormal
523
+ basis {ea
524
+ (a)} ⊂ Tp(M), with name index a, taking the values 1, 2, . . . , n, such that
525
+ ea
526
+ (n) = va at p. Extend then {ea
527
+ (a)} from p by parallelly propagating it first along
528
+ the spacelike geodesics generating Σ. If ea
529
+ (n) happens to be different from the already
530
+ defined va vector field on Σ apply the simplest boost transformation point-wise such
531
+ that ea
532
+ (n) = va holds for the yielded smooth 7 basis field {ea
533
+ (a)} on Σ. Finally, extend
534
+ this smooth basis field by parallelly propagating {ea
535
+ (a)} from Σ, along the members of
536
+ the (n − 1)-parameter family of timelike geodesic congruence G. Note also that, by
537
+ construction, the relation ea
538
+ (n) = va holds along the members of G.
539
+ Utilizing the above defined synchronized basis field, {ea
540
+ (a)}, for instance, the tidal
541
+ force and frame-drag (or the electric and magnetic) parts of the Riemann tensor,
542
+ with respect to the observers moving along the members of G with velocity va, can
543
+ be given, see, e.g., [31, 32], as
544
+ Ranbn = Rabcd ea
545
+ (a)vbec
546
+ (b)vd
547
+ and
548
+ Rabcn = Rabcd ea
549
+ (a)eb
550
+ (b)ec
551
+ (c)vd ,
552
+ (5.5)
553
+ respectively, where the indices a, b, c take the values 1, 2, . . . , n − 1. Note that the
554
+ tidal force and frame-drag parts of curvature, as given in (5.5), are related to the
555
+ electric and magnetic parts of the curvature, defined with respect to the unite timelike
556
+ vector field va [31][32]. In the 4-dimensional case, the electric and magnetic parts are
557
+ represented by the symmetric tensors Eab and Bab defined as
558
+ Eab = Ranbn = Rabcd ea
559
+ (a)vbec
560
+ (b)vd
561
+ and
562
+ Bab = 1
563
+ 2 ǫefaRef
564
+ bn = 1
565
+ 2 ǫefaRef
566
+ bc ea
567
+ (a)eb
568
+ (b)vc ,
569
+ (5.6)
570
+ respectively, where ǫabc stands for the contraction ǫabc = ǫabceve of the 4-volume ele-
571
+ ment ǫabce and the unite timelike vector field va.
572
+ 5.2
573
+ The selection of U
574
+ Since our principal aim is to perform spacetime extensions based on a suitable choice
575
+ of synchronized Gaussian coordinates, it is of obvious interest to know how far from
576
+ Σ these coordinates and the synchronized basis field can be applied. Our aim in this
577
+ subsection is to answer this question.
578
+ Start by choosing U ⊂ Rn consisting of those n-tuples, (x1, . . . , xn), to which
579
+ there exists a timelike geodesic γ : (t1, t2) → M in G such that xn ∈ (t1, t2) and
580
+ (x1, . . . , xn−1, t0) are the coordinates of the intersection γ ∩ Σ. Define the map ψ :
581
+ 7The smoothness of the basis field {ea
582
+ (a)} on Σ follows from that of va, the process of parallel
583
+ propagation, along the generators of Σ, and also that of the boost transformations applied point-wise
584
+ on Σ.
585
+ 13
586
+
587
+ U → M such that ψ(x1, . . . , xn) = γ(xn) with assuming that (x1, . . . , xn−1, t0) are
588
+ the coordinates of γ ∩ Σ. Although, ψ, by construction, is smooth, in general, it is
589
+ not necessarily one-to-one. If it is not one-to-one V is a proper subset of ψ[U ].
590
+ Recall also that the choice we have made for Σ guarantees that the second fun-
591
+ damental form χab of Σ vanishes at p = γ(t0). Therefore, by choosing a sufficiently
592
+ small open neighborhood σt0 of p with compact closure in Σ it can be guaranteed
593
+ that there exists a small positive number κ, depending on χab and σt0, such that for
594
+ a suitable norm —for its definition see Section 3. in [40]— ∥χab∥ < κ holds on σt0.
595
+ Our aim is to show that, in suitable circumstances, there exist t0, σt0 ⊂ Σ and
596
+ ε > 0 such that on the subset U[σt0, ε] of U ⊂ Rn, defined as
597
+ U[σt0, ε] := {(x1, . . . , xn) ∈ U | ψ(x1, . . . , xn−1, t0) ∈ σt0 and xn ∈ [t0, t2 + ε)} , (5.7)
598
+ the map ψ : U[σt0, ε] → M is one-to-one. In verifying this claim first we refer to the
599
+ proof of Proposition 3.2.5 of [40] to the individual members γ ∈ G, the boundedness
600
+ of the tidal force (or electric) part of the curvature tensor implies that there exist
601
+ ǫ > 0 such that no conjugate point along γ, in the parameter interval [t0, t2 + ε), can
602
+ occur to σt0. This, with reference to the claims in the proof of Proposition 3.1 of
603
+ [40], implies that to any point q in U[σt0, ε] there must exist an open neighborhood Oq
604
+ such that ψ is a local diffeomorphism between Oq and its image Oq = ψ[Oq]. In other
605
+ words, this guarantees that the Gaussian coordinates are locally well-defined on Oq.
606
+ The goal is now to show that under suitable conditions the Gaussian coordinates
607
+ are only locally well-defined but also globally well-defined throughout ψ[U[σt0, ε]]. To
608
+ understand the difficulties at this point recall that spacetimes with “quasi-regular”
609
+ singularities do also exist (see, e.g., Refs. [7, 15, 16]) which can get in the way of
610
+ getting well-defined Gaussian coordinates on ψ[U[σt0, ε]]. These spacetimes are known
611
+ to have topological defects which prevent the existence of U[σt0, ε] ⊂ Rn on which
612
+ ψ could be one-to-one.
613
+ To separate these cases in [40] the notion of topological
614
+ singularity was introduced which, in the timelike case, reads as:
615
+ Definition 3. A future directed incomplete future inextendible timelike geodesic γ :
616
+ (t1, t2) → M is said to terminate on a topological singularity if there is no choice for
617
+ t0, σt0 ⊂ Σ and ε such that the set ψ[U[σt0, ε]] would be simply connected.
618
+ It is proved then in Section 5 of [40] that the existence of a topological singularity
619
+ in globally hyperbolic spacetimes implies that they are locally algebraically special,
620
+ i.e., these spacetimes cannot be “generic”. It is also proved (see Theorem 3.1. in [40])
621
+ that whenever γ : (t1, t2) → M does not terminate on a topological singularity for a
622
+ suitable choice of U[σt0, ε] the members of G do not intersect in ψ[U[σt0, ε]], i.e., there
623
+ exist t0, σt0 ⊂ Σ and ε > 0 such that ψ is one-to-one on the entire of U[σt0, ε].
624
+ 14
625
+
626
+ Choose U to be the interior, (ψ[U[σt0, ε]])◦, of the image ψ[U[σt0, ε]] of U[σt0, ε], and
627
+ also �U to be the Cartesian product ςt0 × [t0, t2 + ε) ⊂ Rn, where ςt0 = ψ−1[σt0]. Note
628
+ that by construction (U[σt0, ε])◦ is a proper subset of �U, also that ψ is one-to-one on
629
+ U = (ψ[U[σt0, ε]])◦. Denote by φ the restriction of the inverse of ψ to U = (ψ[U[σt0, ε]])◦,
630
+ i.e., φ = ψ−1|(ψ[U[σt0 , ε]])◦. The map φ : U → �U is an embedding that will be used in
631
+ constructing the desired intermediate extension φ : (U, gab|U) → ( �U, �gab).
632
+ Note that, by the above choices made for U and �U, the members of G in U are
633
+ represented by straight coordinate lines in φ[U], and also that for any member γ of
634
+ G, that starts at σt0, and that is future directed incomplete and future inextendible
635
+ in (M, gab), the curve φ◦γ can be continued as a straight line in the region �U \φ[U]. 8
636
+ 5.3
637
+ Extending the metric from U to �U
638
+ We shall need the following proposition in extending the metric from U to �U ⊂ Rn.
639
+ Proposition 1. Assume that φ[U] is defined as above and that it has the property
640
+ P. Consider a smooth function F on φ[U] and assume that its first-order partial
641
+ derivatives, ∂tF and ∂xαF, where α = 1, 2, . . . (n − 1), are uniformly bounded on
642
+ φ[U]. Then, the unique continuous extension �F of F to the closure φ[U] is Lipschitz
643
+ function that can be further extended onto �U \ φ[U] such that �F is also Lipschitz
644
+ throughout �U.
645
+ Proof: First, the uniform boundedness of the first-order partial derivatives, ∂tF and
646
+ ∂xαF, α = 1, 2, . . . (n − 1), can be used to show that F is Lipschitz function on φ[U]
647
+ as it was done in proving Proposition 3.3.1 in [39]. Note that then F is also uniformly
648
+ continuous there.
649
+ The proof of Proposition 4.2 in [40] can be used to verify then that the unique
650
+ continuous extension �F of F onto the closure φ[U] is also Lipschitz function, with the
651
+ same Lipschitz constant.
652
+ Finally, in virtue of Kirszbraun’s theorem [27] �F also extends to �U \ φ[U] as a
653
+ Lipschitz function with the same Lipschitz constant.
654
+
655
+ Note that as �F is Lipschitz everywhere on �U the weak derivatives of �F exist, and
656
+ they are bounded, whence they are also locally square integrable there.
657
+ 8Note that in our ultimate argument, in proving Theorem 3, (M, gab) is assumed to be a Cauchy
658
+ development. Whence, if there exists a non-empty boundary to M, it has to be part of a Cauchy
659
+ horizon H of (M, gab). In particular, the union of the future endpoints of the images of the members
660
+ of G in �U, denote it by H+, is a subset H+ = H+|U of the (non-empty) future Cauchy horizon H+
661
+ of (M, gab). Recall then that, in virtue of Proposition 6.3.1, along with the arguments in Section
662
+ 6.5, of [18], H+ ⊂ ∂(φ[U]) is a closed, embedded, achronal three-dimensional C1− submanifold in �U.
663
+ 15
664
+
665
+ In proceeding recall first that the (n − 1) × (n − 1) matrix elements gαβ in (5.3)
666
+ are given by the contractions
667
+ gαβ = gabEa
668
+ (α)Eb
669
+ (β) ,
670
+ (5.8)
671
+ where Ea
672
+ (α) stand for the coordinate basis elements (∂/∂xα)a, with α = 1, . . . , n − 1.
673
+ In virtue of Proposition 1, the components of gαβ, that are smooth functions on φ[U],
674
+ extend as Lipschitz functions onto φ[U] if the time- and spatial-derivatives,
675
+ ∂tgαβ = gab
676
+ ��
677
+ ve∇eEa
678
+ (α)
679
+
680
+ Eb
681
+ (β) + Ea
682
+ (α)
683
+
684
+ ve∇eEb
685
+ (β)
686
+ ��
687
+ (5.9)
688
+ ∂xνgαβ = gab
689
+ ��
690
+ Ee
691
+ (ν)∇eEa
692
+ (α)
693
+
694
+ Eb
695
+ (β) + Ea
696
+ (α)
697
+
698
+ Ee
699
+ (ν)∇eEb
700
+ (β)
701
+ ��
702
+ ,
703
+ (5.10)
704
+ can be guaranteed to be uniformly bounded along the members of G.
705
+ Inspecting the individual terms on the right hand sides in (5.9) and (5.10) it
706
+ appears that it is completely satisfactory to show that the norms ∥Ea
707
+ (α)∥, ∥ve∇eEa
708
+ (α)∥
709
+ and ∥Ee
710
+ (ν)∇eEa
711
+ (α)∥ of the vector fields Ea
712
+ (α), ve∇eEa
713
+ (α) and Ee
714
+ (ν)∇eEa
715
+ (α) are uniformly
716
+ bounded with respect to the synchronized orthonormal basis fields {ea
717
+ (a)} defined along
718
+ the members of G in U. Here the norm ∥Xa∥ of a vector field Xa, with respect to the
719
+ synchronized basis field {ea
720
+ (a)} and the Lorentzian metric gab on U, is defined as
721
+ ∥Xa∥ :=
722
+
723
+
724
+
725
+
726
+ 4
727
+
728
+ b=1
729
+
730
+ gabXaeb
731
+ (b)
732
+ �2
733
+ .
734
+ (5.11)
735
+ Note that, by applying a straightforward adaptation of Corollary 3.3.5. of [39], the
736
+ norm ∥Ea
737
+ (α)∥ can be guaranteed to be bounded on U provided that the tidal force
738
+ components of the curvature tensor, Rabcd ea
739
+ (a)vbec
740
+ (b)vd, —measured with respect to
741
+ a parallelly propagated synchronized orthonormal frame field along the members of
742
+ G— are uniformly bounded along the members of G. Recall also that in a Gaussian
743
+ coordinate system the coordinate basis fields Ea
744
+ (α) = (∂/∂xα)a, by construction, are
745
+ subject to the the Jacobi equation (5.4). Applying then Lemma 3.3.6. of [39], to the
746
+ individual members of G, we get
747
+ ∥ve∇eEa
748
+ (α)∥γ(t) ≤ ∥ve∇eEa
749
+ (α)∥γ(t0) +
750
+ � t
751
+ t0
752
+ ∥Rbcd
753
+ avbEc
754
+ (α)vd∥γ(t′) dt′ .
755
+ (5.12)
756
+ Combining this with the linearity of the integrand in Ea
757
+ (α), we get that both of the
758
+ terms ∥Ea
759
+ (α)∥ and ∥ve∇eEa
760
+ (α)∥ are uniformly bounded along the members of G when-
761
+ ever the tidal force components of the Riemann tensor —defined with respect to
762
+ a synchronized orthonormal basis field— are also guaranteed to remain uniformly
763
+ bounded along the members of G.
764
+ 16
765
+
766
+ The characterization of the norm ∥Ee
767
+ (ν)∇eEa
768
+ (α)∥ of the vector field Ee
769
+ (ν)∇eEa
770
+ (α)
771
+ requires a bit more care.
772
+ Using the linearity of the curvature terms, along with the Leibniz rule, and the
773
+ vanishing of the commutator of the coordinate basis fields Ea
774
+ (α) and va, we get 9
775
+ ve∇e(vf∇f[Eh
776
+ (ν)∇hEa
777
+ (α)]) = − Ek
778
+ (ν)∇k[Refh
779
+ aveEf
780
+ (α)vh] + Refh
781
+ aEe
782
+ (ν)vf[vk∇kEh
783
+ (α)]
784
+ + vk∇k[Refh
785
+ aEe
786
+ (ν)vfEh
787
+ (α)] .
788
+ (5.13)
789
+ This, along with
790
+ Ea
791
+ (α) =
792
+ n−1
793
+
794
+ i=1
795
+
796
+ gklEk
797
+ (α) el
798
+ (i)
799
+
800
+ ea
801
+ (i) ,
802
+ (5.14)
803
+ (which follows from the orthogonality of Ea
804
+ (α) and va), yields
805
+ d2
806
+ dt2
807
+
808
+ gklEk
809
+ (α) el
810
+ (i)
811
+
812
+ = −
813
+ n−1
814
+
815
+ j=1
816
+
817
+ Rabcd va eb
818
+ (j)vc ed
819
+ (i)
820
+ � �
821
+ gklEk
822
+ (α) el
823
+ (j)
824
+
825
+ +
826
+ n−1
827
+
828
+ j=1
829
+ Aj
830
+
831
+ Rabcd va eb
832
+ (j)vc ed
833
+ (i)
834
+
835
+ +
836
+ n−1
837
+
838
+ j,h=1
839
+
840
+ Bjh
841
+
842
+ Rabcd ea
843
+ (i) eb
844
+ (h) ec
845
+ (j)vd�
846
+ + Cjh
847
+ d
848
+ dt
849
+
850
+ Rabcd ea
851
+ (i) eb
852
+ (h) ec
853
+ (j)vd�
854
+ + Djh ek
855
+ (h)∇k
856
+
857
+ Rabcd va eb
858
+ (j)vc ed
859
+ (i)
860
+ ��
861
+ ,
862
+ (5.15)
863
+ where the coefficients Ai, Bij, Cij and Dij depend exclusively on the fields Ea
864
+ (α),
865
+ vf∇fEa
866
+ (α) and Ef
867
+ (α)∇f ea
868
+ (i). Note that the uniform boundedness of ∥Ea
869
+ (α)∥ and ∥vf∇fEa
870
+ (α)∥
871
+ has already been guaranteed by uniform boundedness of the tidal forces. The uniform
872
+ boundedness of ∥Ef
873
+ (α)∇f ea
874
+ (i)∥, however, requires the uniform boundedness of the line
875
+ integral of the frame-drag part of the curvature. To see this, note that because of the
876
+ commutation of the coordinate basis fields Ea
877
+ (α) and va, also as the basis fields ea
878
+ (i),
879
+ i = 1, 2, . . . (n − 1), are parallelly propagated with respect to va,
880
+ ve∇e(Ef
881
+ (α)∇f ea
882
+ (i)) = −Refh
883
+ aveEf
884
+ (α)eh
885
+ (i)
886
+ (5.16)
887
+ holds, which implies
888
+ d
889
+ dt
890
+
891
+ gkl(Ef
892
+ (α)∇f ek
893
+ (i)) el
894
+ (j)
895
+
896
+ =
897
+ n−1
898
+
899
+ h=1
900
+ [ gklEk
901
+ (α) el
902
+ (h) ] [ Rabcdea
903
+ (i)eb
904
+ (j)ec
905
+ (h)vd ] .
906
+ (5.17)
907
+ 9Equation (5.13) is a compact form of the generalized Jacobi equation that was introduced in
908
+ [39] (see also [40]) to characterize the propagation of various order of covariant derivatives of the
909
+ coordinate basis fields along members of causal geodesic congruences.
910
+ 17
911
+
912
+ Accordingly, the norm of the ∥Ee
913
+ (ν)∇eEa
914
+ (α)∥ of the vector field Ee
915
+ (ν)∇eEa
916
+ (α) will be
917
+ uniformly bounded along the members of G in U whenever the the tidal force and
918
+ frame-drag parts of the curvature 10 and the line integrals of the first-order transversal
919
+ covariant derivatives of the tidal forces
920
+ � t
921
+ t0
922
+
923
+ ek
924
+ (c)∇k[Rabcd ea
925
+ (a)vbec
926
+ (b)vd]
927
+
928
+ |γ(t′) dt′ ,
929
+ (5.18)
930
+ are all guaranteed to be uniformly bounded along the members of G in U, where the
931
+ indices a, b, c take the values 1, 2, . . . , n − 1.
932
+ The critical point here is that it suffices to restrict merely the line integrals of the
933
+ first-order transversal covariant derivatives of the tidal forces which follow from the
934
+ discussion in [40], starting below (4.15), including (4.16) and the paragraph below
935
+ there. 11
936
+ Note also that the finiteness of these line integrals does not require the
937
+ integrands’ boundedness. They can be uniformly bounded if the integrands do not
938
+ blow up faster than (tp − t)−1+ǫ, for some ǫ > 0, where tp stands for the supremum
939
+ of the affine parameter value along γ ∈ G.
940
+ Utilizing all the above observations, we get that both the time- and spatial-partial
941
+ derivatives, ∂tgαβ and ∂xνgαβ of the metric will be uniformly bounded along the mem-
942
+ bers of G whenever the tidal force and frame-drag parts of the curvature, along with
943
+ the line integrals of the first-order transversal covariant derivatives of the tidal forces,
944
+ are guaranteed to be uniformly bounded along the members of G.
945
+ If this happens, combining all the above observations, it follows then that the
946
+ gαβ components of the metric gab, in Gaussian coordinates, are Lipschitz functions
947
+ throughout φ[U]. Proposition 1 also implies that the metric tensor components gαβ, in
948
+ (5.3), extend from φ[U] onto the entire of �U = ςt0 ×[t0, t2+ε) such that the extensions
949
+ �gαβ are guaranteed to be Lipschitz functions throughout �U.
950
+ Note also that the extended metric �gαβ is C0 Geroch-Traschen regular metric on
951
+ �U. Firstly, since the components �gαβ are guaranteed to be Lipschitz functions in �U the
952
+ boundedness (not merely the local boundedness) of �gαβ and that of �gαβ immediately
953
+ follows.
954
+ For the same reason, as the components �gαβ of the metric are Lipschitz
955
+ functions on �U each of the weak derivatives of �gαβ are well-defined and bounded,
956
+ thereby, they are also square integrable. This completes the proof of the following:
957
+ 10The frame-drag part of the curvature gets involved via the line integral of various terms on the
958
+ right-hand side in (5.15). However, in the fourth term, the first order t-derivative of the frame-drag
959
+ part is involved, which, in turn, leads to an algebraic restriction on this part of the curvature.
960
+ 11One has to consider here the line integrals of the last four terms on the right-hand side in (5.15).
961
+ Nevertheless, as discussed in footnote 5.3, the line integral of the second, third and fourth terms
962
+ leads to an algebraic restriction on the frame-drag part of the curvature. Indeed, it is the fifth term
963
+ that yields restrictions on the line integrals of the first-order transversal covariant derivatives of the
964
+ tidal forces.
965
+ 18
966
+
967
+ Proposition 2. Consider the embedding φ : U → �U defined as above. Assume that
968
+ the tidal force and frame-drag parts of the curvature tensor —measured with respect
969
+ to a parallelly propagated synchronized orthonormal frame field along the members of
970
+ G— , along with the line integrals of the first-order transversal covariant derivatives
971
+ of the tidal forces, are uniformly bounded along the members of G. Then there exist
972
+ an extension φ : (U, gab|U) → ( �U, �gab) such that �gab belongs to the C0 Geroch-Traschen
973
+ regularity class.
974
+ Applying the auxiliary extension φ : (U, gab|U) → ( �U, �gab), the desired global
975
+ extension can then be given as follows: Chose U′ to be a compact subset of U in
976
+ M. The differentiable structure of U induces a manifold with boundary on U′. Let,
977
+ furthermore, �
978
+ O ⊂ �U be comprised by the union of φ[U′] and a sufficiently small
979
+ neighborhood of the endpoint of φ ◦ γ in �U ⊂ Rn. Define then �
980
+ M to be the factor
981
+ space
982
+
983
+ M = (M ∪ �O)/φ ,
984
+ (5.19)
985
+ i.e., �
986
+ M is yielded by identifying x ∈ U′ and y ∈ �O if φ(x) = y. Then �
987
+ M has the
988
+ structure of a (Hausdorff) manifold without boundary while the spacetime (�
989
+ M, �gab)
990
+ is a C0 extension of (M, gab), where the metric �gab is determined on �
991
+ M by gab and
992
+ �gab, and, thereby, it belongs to the C0 Geroch-Traschen regularity class.
993
+ Combining all the partial results outlined above verifies then that in the case
994
+ of a smooth geodesically incomplete generic globally hyperbolic spacetime can be
995
+ extended within the class of C0 Geroch-Traschen regular metrics if the tidal force
996
+ and frame-drag parts of the curvature tensor, along with the line integrals of the first-
997
+ order transversal covariant derivatives of the tidal forces —defined for a synchronized
998
+ basis field— are guaranteed to be uniformly bounded along the members of G, which
999
+ completes the proof of Theorem 3.
1000
+
1001
+ 6
1002
+ Final remarks
1003
+ The two main results of this paper are intimately related. First, “generic” (locally
1004
+ algebraically non-special) smooth globally hyperbolic timelike geodesically incomplete
1005
+ spacetime (M, gab) were considered. We showed then that such a spacetime could
1006
+ (globally) be extended within the C0 Geroch-Traschen regularity class if the tidal
1007
+ force and frame-drag parts of the curvature tensor, along with the line integrals of the
1008
+ first-order transversal covariant derivatives of the tidal forces, are uniformly bounded
1009
+ along the world-lines of an (n − 1)-parameter family of synchronized observers.
1010
+ The second result essentially aims to over-bridging the gap between the intuitive
1011
+ picture of spacetime singularities and the predictions of the singularity theorems. This
1012
+ is made by considering the “generic” smooth globally hyperbolic timelike geodesically
1013
+ 19
1014
+
1015
+ incomplete spacetime that is a maximal Cauchy development, and assuming that the
1016
+ C0 form of the strong cosmic censor hypothesis holds. Combining this with the first
1017
+ result’s conclusion immediately drives to a contradiction, which allows to conclude
1018
+ that there must exist worldlines of observers in arbitrarily small neighborhoods of the
1019
+ one represented by γ, such that either some of the tidal force or frame-drag compo-
1020
+ nents of the curvature, or some of the first-order transversal covariant derivatives of
1021
+ the tidal force components blow up, at least at the order (tp − t)−ǫ, for some ǫ > 0,
1022
+ or (tp − t)−1, respectively, along the corresponding worldlines of observers.
1023
+ It is worth emphasizing that tidal force and frame-drag parts of the curvature
1024
+ tensor are among the physically most adequate quantities in characterizing spacetime
1025
+ singularities. To see this, note first that the applied (n−1)-parameter family timelike
1026
+ geodesics do represent the history of a free-falling small body. Whenever tidal force
1027
+ part of the curvature become unbounded along a member of such a congruence, the
1028
+ small body may undergo an infinite pull-apart in one direction, whereas compression
1029
+ in another. Similarly, one would expect that the blowing up of the integrand in (5.18)
1030
+ involving first-order transversal covariant derivatives of the tidal forces, implies that
1031
+ significant shears will be exerted on the internal structure of the aforementioned small
1032
+ body. The frame-drag (or magnetic) part of the curvature tensor is also of physical
1033
+ interest as it is directly related to the frame-dragging angular velocity at some event
1034
+ ¯p ∈ γ, with respect to the inertial directions at a nearby spatially separated event
1035
+ p ∈ γ. Consider a small body composed of densely arranged tiny gyroscopes. Then,
1036
+ the frame-drag part of the curvature measure the relative precession of the nearby
1037
+ gyroscopes [32]. Accordingly, the frame-drag part is related to the relative twisting
1038
+ exerted on nearby parts of such a small body, which must undergo infinite wringing
1039
+ if the frame-drag part blows up.
1040
+ Note that mainly for simplicity in this paper, considerations were restricted to
1041
+ the case of timelike geodesics. Nevertheless, the results summarized above general-
1042
+ ize straightforwardly (for details, see Refs. [39, 40]) to the case when geodesically
1043
+ incomplete lightlike geodesics are involved.
1044
+ It is worth mentioning that in addition to the geodesic congruence-based ap-
1045
+ proach applied in this paper, there are attempts to give alternative characterizations
1046
+ of spacetime singularities. For instance, there is an approach aiming to characterize
1047
+ spacetime singularities by studying obstructions to the evolution of test fields. The
1048
+ primary motivation behind this approach was that determination of geodesics may
1049
+ become vague in the case of metrics of low regularity [12, 42, 54, 52]. Note, however,
1050
+ that even the applied low regularity case the method proposed by Clark in [12] (see
1051
+ also [54, 42]) required the construction of congruences of timelike geodesics, whose
1052
+ tangent vectors admit bounded weak derivatives. This vector field was applied to
1053
+ define a suitable energy inequality from which the uniqueness and existence of test
1054
+ fields could be deduced.
1055
+ 20
1056
+
1057
+ The last remark immediately raises the following question: Would it be possible
1058
+ to replace the smoothness of the primary metric in Theorems 3 and 2 by allowing
1059
+ metrics belonging to the class of C0 Geroch-Traschen regular metrics? In answering
1060
+ this question, recall, first, that if a Geroch-Traschen regular metric is continuous, 12
1061
+ then it can be approximated by sequences of smooth metrics {(i)gab} such that the
1062
+ associated curvature tensors {(i)Rabcd} converge in L2 to the curvature distribution
1063
+ assigned to the C0 Geroch-Traschen regular metric gab. To recover the main conclusion
1064
+ in Theorems 3 and 2, one has to find a way to represent geodesics with respect to
1065
+ C0 Geroch-Traschen regular metrics as an accumulation of sequences of smooth (i)gab-
1066
+ geodesics, as well as, it has to be shown that weak solutions to the Jacobi equation
1067
+ make sense (almost everywhere) along congruences of timelike geodesics. 13 Notably,
1068
+ many of the needed techniques had already been developed and applied in working
1069
+ out the above-mentioned test fields based characterization of spacetime singularities
1070
+ (for details, see [9], in particular, the appendix of [42]).
1071
+ It is also an appealing issue whether the estimates we applied in proving Theorem
1072
+ 3 were optimal. For instance, it is important to know whether the construction of the
1073
+ intermediate extension could be carried out requiring only the boundedness of the
1074
+ integral
1075
+ Iγ(t) =
1076
+ � t
1077
+ t0
1078
+ ∥Rbcd
1079
+ avbEc
1080
+ (α)vd∥γ(t) dt .
1081
+ (6.20)
1082
+ One of the main obstacles in doing so is that when metrics belonging to the C0
1083
+ Geroch-Traschen regularity class are used, the term Rbcd
1084
+ avbEc
1085
+ (α)vd make sense only as
1086
+ distribution. It is conceivable that this can be done, but it remains to be seen.
1087
+ Acknowledgments
1088
+ This project was partly supported by the NKFIH grants K-115434 and K-142423.
1089
+ The author is also indebted to the unknown referees for helpful comments on the
1090
+ previous version of this paper.
1091
+ 12It is worth pointing out that even if a Geroch-Traschen regular metric would not continuous,
1092
+ it could still be approximated by sequences of smooth metrics provided that a specific stability
1093
+ condition, c.f., Section 4 in [50], holds on it.
1094
+ 13Note that approximating geodesics of merely continuous or Lipschitz metrics is a subtler matter,
1095
+ since there is no standard way to solve the geodesic equation in these cases. To overcome these
1096
+ difficulties interesting attempts were made by using Fillipov-solutions in case of C0,1 regular metrics
1097
+ in [28][49]. Strong results on approximating geodesics of globally hyperbolic C1-metrics were also
1098
+ proved in [17].
1099
+ 21
1100
+
1101
+ Data Availability
1102
+ Data sharing not applicable to this article as no datasets were generated or analyzed
1103
+ during the current study.
1104
+ Conflict of Interest Statement
1105
+ The author declares no conflicts of interest.
1106
+ References
1107
+ [1] R.A. Adams and J.F. Fournier: Sobolev spaces, Academic Press, Amsterdam (2003)
1108
+ [2] Y. Choquet-Bruhat and R. Geroch: Global aspects of the Cauchy problem in general
1109
+ relativity, Comm. Math. Phys. 14 329-335 (1969)
1110
+ [3] Y. Choquet-Bruhat, General Relativity and the Einstein Equations, Oxford Mathe-
1111
+ matical Monographs, Oxford University Press, Oxford, (2009)
1112
+ [4] D. Christodoulou: The formation of black holes in general relativity, European Math-
1113
+ ematical Society (2009)
1114
+ [5] P. Chruściel and J. Grant: On Lorentzian causality with continuous metrics, Class.
1115
+ Quantum Grav. 29 (2012)
1116
+ [6] P. Chruściel: On maximal globally hyperbolic vacuum space-times, J. Fixed Point The-
1117
+ ory Appl. 14, 325-353 (2013)
1118
+ [7] C.J.S. Clarke: Singularities in globally hyperbolic space-time, Commun. Math. Phys.
1119
+ 41, 65-78 (1975)
1120
+ [8] C.J.S. Clarke: Local extensions in singular space-times II, Commun. Math. Phys. 84,
1121
+ 329-331 (1982)
1122
+ [9] C.J.S. Clarke: Space-times of low differentiability and singularities, J. Math. Anal.
1123
+ Appl. 88, 270-305 (1982)
1124
+ [10] C.J.S. Clarke: The analysis of space-time singularities, (Cambridge lecture notes in
1125
+ physics, 1), Cambridge, Univ. Press (1993)
1126
+ [11] C.J.S. Clarke: A condition for forming trapped surfaces, Class. Quantum Grav. 5 1029-
1127
+ 1032 (1988)
1128
+ [12] C.J.S. Clarke: Generalised hyperbolicity in singular space-times, Class. Quantum Grav.
1129
+ 15, 975-984 (1998)
1130
+ [13] M. Dafermos and J. Luk: The interior of dynamical vacuum black holes I: The C0-
1131
+ stability of the Kerr Cauchy horizon. https://doi.org/10.48550/arXiv.1710.01722 (2017)
1132
+ 22
1133
+
1134
+ [14] A.G. Doroshkevich, Ya.B. Zel’dovich and I.D.Novikov: Gravitational collapse of non-
1135
+ symmetric and rotating masses, Sov. Phys. J.E.T.P. 22, 122-130 (1966)
1136
+ [15] G.F.R. Ellis and B.G.Schmidt: Singular space-times, Gen. Rel. Grav. 8, 915-953 (1977)
1137
+ [16] G.F.R. Ellis and B.G.Schmidt: Classification of singular space-times, Gen. Rel. Grav.
1138
+ 10, 989-997 (1979)
1139
+ [17] M. Graf: Singularity theorems for C1-Lorentzian metrics, Commun. Math. Phys. 378,
1140
+ 1417-1450 (2020)
1141
+ [18] S.W. Hawking and G.R.F. Ellis: The large scale structure of spacetime, Cambridge
1142
+ University Press, Cambridge, 1973)
1143
+ [19] M.W. Hirsch: Differential topology, Springer (1997)
1144
+ [20] S.W. Hawking: The occurrence of singularities in cosmology. III. Causality and singu-
1145
+ larities, Proc. Roy. Soc. Lond. Ser. A 300, 182-2001 (1967)
1146
+ [21] S.W. Hawking and R. Penrose: The singularities of gravitational collapse and cosmol-
1147
+ ogy, Proc. Roy. Soc. Lond. Ser. A 314, 529-548 (1970)
1148
+ [22] C. Fefferman Whitney’s Extension Problems and Interpolation of Data, Bulletin of the
1149
+ American Mathematical Society 46, 207-220 (2009)
1150
+ [23] R. Geroch: What is a singularity in General Relativity?, Ann.Phys. 48, 526-540 (1968)
1151
+ [24] R. Geroch and J. Traschen: Strings and other distributional sources in general relativity,
1152
+ Phys. Rev. D. 36, 1017-1031 (1987)
1153
+ [25] W. Israel: Singular hypersurfaces and thin shells in general relativity, Nuovo Cimento
1154
+ B (1965-1970) 44, 1-14 (1966)
1155
+ [26] S. Klainerman and I. Rodnianski: Rough solutions of the Einstein-vacuum equations,
1156
+ Ann. of Math. 161, 1143-1193 (2005)
1157
+ [27] M.
1158
+ Kirszbraun:
1159
+ Über
1160
+ die
1161
+ zusammenziehende
1162
+ und
1163
+ Lipschitzsche
1164
+ Trans-
1165
+ formationen,
1166
+ Fundamenta
1167
+ Mathematicae
1168
+ 22
1169
+ 77-108
1170
+ (1934),
1171
+ (see
1172
+ also
1173
+ https://www1.essex.ac.uk/maths/people/fremlin/n11706.pdf)
1174
+ [28] C. Lange, A. Lytchak, C. Sämann: Lorentz meets Lipschitz, Adv. Theor. Math. Phys.
1175
+ 25, 2141-2170, (2021)
1176
+ [29] P.G. LeFloch and C. Madare: Definition and stability of Lorentzian manifolds with
1177
+ distributional curvature, Port. Math. (N.S.) 64, 535-573 (2007)
1178
+ [30] E.M. Lifschitz and J.M. Khalatnikov: Investigations in relativistic cosmology, Adv. in
1179
+ Phys. (Phil. Mag. Suppl.) 12, 185-249 (1963)
1180
+ [31] R. Maartens, G.F.R. Ellis and S.T.C. Siklos: Local freedom in the gravitational field,
1181
+ Class. Quantum Grav. 14 1927 (1997)
1182
+ [32] D.A. Nichols, R. Owen, F. Zhang, A. Zimmerman, J. Brink, Y. Chen, J.D. Kaplan,
1183
+ G. Lovelace, K.D. Matthews, M.A. Scheel, K.S. Thorne: Visualizing spacetime curva-
1184
+ ture via frame-drag vortexes and tidal tendexes: General theory and weak-gravity ap-
1185
+ plications, Phys. Rev. D 84 124014 (2011)
1186
+ 23
1187
+
1188
+ [33] R. Penrose: Gravitational collapse and space-time singularities, Phys. Rev. Lett. 14
1189
+ 54-59 (1965)
1190
+ [34] R. Penrose: Gravitational collapse: The role of general relativity, Riv. del Nuovo Ci-
1191
+ mento 1 (Numero Spec.) 256-275 (1969)
1192
+ [35] R. Penrose: Techniques of differential topology in relativity, SIAM, No. 7., Philadelphia
1193
+ (1972)
1194
+ [36] R. Penrose, The geometry of impulsive gravitational waves, in General Relativity, edited
1195
+ by L. O’Raifeartaigh, Clarendon Press, (1972), pp. 101–115
1196
+ [37] R. Penrose: Singularities and time-asymmetry, In: Hawking, S.W., Israel, W. (eds.)
1197
+ General Relativity: An Einstein Centenary Survey, pp. 581–638. Cambridge University
1198
+ Press, Cambridge (1979)
1199
+ [38] R. Penrose: The question of cosmic censorship, J. Astrophys. Astron. 20, 233-248
1200
+ (1999)
1201
+ [39] I. Rácz: Space-time extensions I, J. Math. Phys. 34, 2448-2464 (1993)
1202
+ [40] I. Rácz: Space-time extensions II, Class. and Quantum Grav. 27, 155007 (2010)
1203
+ [41] C. Sämann: Global Hyperbolicity for Spacetimes, Ann. Henri Poincaré 17, 1429-1455
1204
+ (2016)
1205
+ [42] Y. Sanchez Sanchez: Regularity of curve integrable spacetimes, Gen. Rel. Grav. 47 80
1206
+ (2015)
1207
+ [43] Y. Sanchez Sanchez and J. A. Vickers: Generalised hyperbolicity in spacetimes with
1208
+ Lipschitz regularity, J. Math. Phys. 58, 022502 (2017)
1209
+ [44] J. Sbierski: On the Existence of a Maximal Cauchy Development for the Einstein Equa-
1210
+ tions: a Dezornification, Ann. Henri Poincaré 17, 301–329 (2016)
1211
+ [45] J. Sbierski: On holonomy singularities in general relativity & the C0,1
1212
+ loc -inextendibility
1213
+ of spacetimes, https://doi.org/10.48550/arXiv.2007.12049
1214
+ [46] R. Schoen and S-T. Yau: The existence of a black hole due to condensation of matter,
1215
+ Commun. Math. Phys. 90 575-579 (1983)
1216
+ [47] J.M.M. Senovilla: Singularity theorems and their consequences, Gen.Rel.Grav. 30 701-
1217
+ 848 (1998)
1218
+ [48] J.M.M. Senovilla: A critical appraisal of the singularity theorems, Phil.Trans.R.Soc.A
1219
+ 380 20210174 (2022)
1220
+ [49] R. Steinbauer: Every Lipschitz metric has C1-geodesics, Class. Quantum Grav. 31
1221
+ 057001 (2014)
1222
+ [50] R. Steinbauer and J.A. Vickers: On the Geroch-Traschen class of metrics, Class. Quan-
1223
+ tum Grav. 26 065001 (2009)
1224
+ [51] P. Szekeres and A. Lun: What is a shell-crossing singularity?, The ANZIAM Journal,
1225
+ 41, 167-179 (1999)
1226
+ 24
1227
+
1228
+ [52] J.A. Vickers and J.P. Wilson: Generalized hyperbolicity in conical spacetimes, Class.
1229
+ Quantum Grav. 17 1333-1360 (2000)
1230
+ [53] R.M. Wald: General relativity, University of Chicago Press, Chicago (1984)
1231
+ [54] J.P. Wilson: Generalized hyperbolicity in spacetimes with conical singularities, Class.
1232
+ Quantum Grav. 17 3199-3209 (2000)
1233
+ [55] H. Whitney: Functions differentiable on the boundaries of regions, Ann. Math. 35,
1234
+ 482-485 (1934)
1235
+ [56] H. Whitney: Analytic extensions of differentiable functions defined in closed sets, Trans.
1236
+ Am. Math. Soc. 36, 63-89 (1934)
1237
+ 25
1238
+
JNAyT4oBgHgl3EQfsPky/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
JNE1T4oBgHgl3EQfsAWQ/content/tmp_files/2301.03361v1.pdf.txt ADDED
@@ -0,0 +1,3397 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.03361v1 [math.QA] 9 Jan 2023
2
+ FINITE-DIMENSIONAL POINTED HOPF ALGEBRAS
3
+ OVER FINITE SIMPLE GROUPS OF LIE TYPE VII.
4
+ SEMISIMPLE CLASSES IN PSLn(q) AND PSp2n(q)
5
+ NICOL´AS ANDRUSKIEWITSCH, GIOVANNA CARNOVALE AND
6
+ GAST´ON ANDR´ES GARC´IA
7
+ Abstract. We show that the Nichols algebra of a simple Yetter-Drin-
8
+ feld module over a projective special linear group over a finite field
9
+ whose support is a semisimple orbit has infinite dimension, provided
10
+ that the elements of the orbit are reducible; we obtain a similar result
11
+ for all semisimple orbits in a finite symplectic group except in low rank.
12
+ We prove that orbits of irreducible elements in the projective special
13
+ linear groups could not be treated with our methods. We conclude that
14
+ any finite-dimensional pointed Hopf algebra H with group of group-
15
+ like elements isomorphic to PSLn(q) (n ≥ 4), PSL3(q) (q > 2), or
16
+ PSp2n(q) (n ≥ 3), is isomorphic to a group algebra, completing work
17
+ in arXiv:1506.06794.
18
+ Contents
19
+ 1.
20
+ Introduction
21
+ 1
22
+ Acknowledgements
23
+ 5
24
+ 2.
25
+ Racks
26
+ 5
27
+ 3.
28
+ Algebraic groups
29
+ 8
30
+ 4.
31
+ Split conjugacy classes
32
+ 15
33
+ 5.
34
+ The special linear groups
35
+ 18
36
+ 6.
37
+ Semisimple conjugacy classes represented in K
38
+ 29
39
+ 7.
40
+ The symplectic groups
41
+ 37
42
+ References
43
+ 41
44
+ 1. Introduction
45
+ 1.1. The problem. Let G be a finite group. The conjugacy class of x ∈ G
46
+ is denoted by OG
47
+ x or Ox. The subgroup of G generated by I ⊂ G is denoted
48
+ by ⟨I⟩. Consider the following properties of a conjugacy class O of G:
49
+ 2010 Mathematics Subject Classification: 16T05, 20D06.
50
+ Keywords: Nichols algebra; Hopf algebra; rack; finite group of Lie type; conjugacy class.
51
+ 1
52
+
53
+ 2
54
+ N. ANDRUSKIEWITSCH, G. CARNOVALE, G. A. GARC´IA
55
+ (C) There are H < G and r, s ∈ H ∩ O such that rs ̸= sr, H = ⟨OH
56
+ r , OH
57
+ s ⟩,
58
+ OH
59
+ r ̸= OH
60
+ s and min{|OH
61
+ r |, |OH
62
+ s |} > 2 or max{|OH
63
+ r |, |OH
64
+ s |} > 4.
65
+ (D) There exist r, s ∈ O such that O⟨r,s⟩
66
+ r
67
+ ̸= O⟨r,s⟩
68
+ s
69
+ and (rs)2 ̸= (sr)2.
70
+ (F) There are ra ∈ O, a ∈ I4 = {1, 2, 3, 4}, such that O⟨ra:a∈I4⟩
71
+ ra
72
+ ̸= O⟨ra:a∈I4⟩
73
+ rb
74
+ and rarb ̸= rbra for a ̸= b ∈ I4.
75
+ We say that O is of type C, D, F when the corresponding property holds.
76
+ As explained in the Introduction to [5], the next question has profound im-
77
+ plications for the classification of finite-dimensional pointed Hopf algebras.
78
+ Question 1. Determine which conjugacy classes of a given finite (non-
79
+ abelian) group G are of type C, D or F.
80
+ Indeed, if a conjugacy class O is type C, D or F, then any Nichols algebra
81
+ of group type with support isomorphic to O has infinite dimension; for
82
+ brevity we say in this case that O collapses. For the purposes of this paper
83
+ further precision on Nichols algebras is not needed.
84
+ If O is neither of type C, D nor F then we say that it is kthulhu. It follows
85
+ at once from the previous definitions that if O ∩ H is either abelian or a
86
+ single conjugacy class of H for any H ≤ G, then O is kthulhu.
87
+ Intuitively, the criteria of types C, D and F are inductive arguments that
88
+ are more flexible in the language of racks, see Section 2. Conjugacy classes
89
+ are the prototypical examples of racks. One may wonder whether there are
90
+ other inductive arguments that force the collapse of a conjugacy class. In
91
+ this respect we say that a rack is sober if every subrack is either abelian
92
+ or indecomposable [1, §1.5]; and austere if every subrack generated by two
93
+ elements is either abelian or indecomposable [3, 2.11]. Clearly, sober implies
94
+ austere and austere implies kthulhu. Subsidiary to Question 1, we propose:
95
+ Question 2. Determine which conjugacy classes of a given finite (non-
96
+ abelian) group G are sober or austere, or kthulhu.
97
+ 1.2. Simple groups of Lie type. It is natural, and convenient, to start
98
+ addressing Questions 1 and 2 by assuming that G is simple non-abelian, see
99
+ [9] for the importance of this reduction. When G is alternating or sporadic,
100
+ this was addressed in [7, 8, 14, 15]. The series of papers [1, 2, 3, 4, 5, 12] treat
101
+ the case when G is simple of Lie type. In the first five papers, Questions 1
102
+ and 2 were answered for non-semisimple conjugacy classes in Chevalley or
103
+ Steinberg groups. The sixth is devoted to Suzuki and Ree groups.
104
+ In the present paper we deal with semisimple conjugacy classes in the
105
+ classical Chevalley groups. The main difficulty is due to the deeper influence
106
+ of arithmetics, as opposed to the unipotent classes and the mixed classes,
107
+ which can be reduced in most of the cases to a unipotent one in a smaller
108
+ group. We summarize our main results and then discuss the proofs.
109
+
110
+ NICHOLS ALGEBRAS OVER SEMISIMPLE CLASSES
111
+ 3
112
+ Theorem I. Let O ̸= {e} be a semisimple conjugacy class in a group G.
113
+ (i) If G = PSLn(q), then any O not listed in Table 1 collapses.
114
+ (ii) If G = PSpn(q), then any O collapses with the possible exception of
115
+ the orbit of non-trivial involutions if n = 2 and q ∈ {3, 5, 7}.
116
+ Part (i) is proved in Theorem 5.4; see Remark 5.3 for the cases with small
117
+ q excluded in the statement. Part (ii) is proved in Theorem 7.1. For other
118
+ Chevalley groups, there is substantial information in Theorems 4.1 and 6.2.
119
+ Roughly the proofs of these results go as follows: pick a simple group G,
120
+ a surjective morphism of groups π : G → G and conjugacy classes O and O
121
+ in G and G respectively, such that π(O) = O. Then look at the subgroups
122
+ H intersecting O. If H ∩ O splits as more than one conjugacy class of H
123
+ for one H ≤ G, then work out the details to have that O is of type C or D
124
+ and that this is preserved by the projection π : O → O. When G is of Lie
125
+ type, the subgroup H is usually found by looking in one way or another at
126
+ the structure of the algebraic group behind G.
127
+ But if π(H)∩O is either abelian or one conjugacy class of π(H) for every
128
+ H ≤ G, then O is kthulhu. When this happens, usually G is ‘small’ and
129
+ has few subgroups.
130
+ In the present paper, we found that it also happens to any conjugacy class
131
+ O of an irreducible element in PSLn(q) where n is an odd prime. To show
132
+ this we used the main result of [17] to get the list of the H ≤ G intersect-
133
+ ing O together with some arithmetic manipulations. This outcome differs
134
+ significantly with the results of the previous of the series and underlines the
135
+ connection of semisimple classes with arithmetical aspects.
136
+ Table 1. Kthulhu semisimple classes in PSLn(q).
137
+ n
138
+ q
139
+ class
140
+ Remark
141
+ 2, PSL2(2) ≃ S3
142
+ (3)
143
+ abelian
144
+ 3, PSL2(3) ≃ A4
145
+ (22)
146
+ abelian
147
+ 4, PSL2(4) ≃ A5
148
+ (5)
149
+ sober
150
+ 2
151
+ 5, PSL2(5) ≃ A5
152
+ (1, 22)
153
+ sober
154
+ 9, PSL2(9) ≃ A6
155
+ (1, 5)
156
+ kthulhu
157
+ even and not a square
158
+ irreducible, order 3
159
+ sober
160
+ all
161
+ irreducible, order > 3
162
+ sober
163
+ odd prime
164
+ all
165
+ irreducible
166
+ kthulhu
167
+ 1.3. Applications to Hopf algebras. As in previous papers, we say that
168
+ a finite group G collapses if every finite-dimensional pointed Hopf algebra
169
+ H with G(H) ≃ G is necessarily isomorphic to CG.
170
+ As a corollary of
171
+ our main Theorem and results from previous papers in the series, we obtain
172
+ new families of groups that collapse, see Theorem III, extending [3, Theorem
173
+
174
+ 4
175
+ N. ANDRUSKIEWITSCH, G. CARNOVALE, G. A. GARC´IA
176
+ 1.2]. For this, we first draw the complete list of kthulhu classes in the simple
177
+ groups PSLn(q) and PSp2n(q) for n ≥ 2, any q. This information combines
178
+ the main result of this paper with a corrected version of [1, Table 1], [3,
179
+ Table 3] and [5, Theorem 1.1] and a careful analysis of the cases of the
180
+ groups PSL2(q) for q = 2, 3, 4, 5, 7, 9, where some exceptions occur. We
181
+ point out that the classes labeled (1r1, 2) in Sp2n(9), occurring in [3, Tables
182
+ 3,5] are in fact not kthulhu: they are of type C, as each of them includes a
183
+ non-trivial unipotent class of type (2) in PSL2(9) ≃ A6 which is of type C,
184
+ cf. Example 2.7. Also, the classes of involutions in PSL2(7) in [3, Table 1]
185
+ are not not kthulhu: since PSL3(2) ≃ PSL2(7), they are of type C by [3,
186
+ Lemma 2.12].
187
+ Theorem II. Let G be either PSLn(q) or PSp2n(q), n ≥ 2 and let O be a
188
+ non-trivial conjugacy class in G different from the class of a split involution
189
+ in PSp4(7). Then O is kthulhu if and only if it occurs in Table 2.
190
+ Table 2. Kthulhu classes, G = PSLn(q) or PSp2n(q), n ≥ 2.
191
+ G
192
+ n
193
+ q
194
+ type of class
195
+ description/label
196
+ even or else
197
+ odd and not
198
+ a square
199
+ unipotent
200
+ (2)
201
+ 5
202
+ semisimple
203
+ involution
204
+ PSLn(q)
205
+ 2
206
+ all
207
+ semisimple
208
+ irreducible, |x| > 3
209
+ even
210
+ and
211
+ not
212
+ a
213
+ square
214
+ semisimple
215
+ irreducible |x| = 3
216
+ 3
217
+ 2
218
+ unipotent
219
+ (3)
220
+ odd prime
221
+ all
222
+ semisimple
223
+ irreducible
224
+ even
225
+ unipotent
226
+ W(1)a ⊕ V (2)
227
+ PSp2n(q)
228
+ ≥ 2
229
+ odd and not
230
+ a square
231
+ unipotent
232
+ (1r1, 2)
233
+ even
234
+ unipotent
235
+ W(2)
236
+ 2
237
+ 3,5
238
+ semisimple
239
+ split involution
240
+ It remains open to determine whether the conjugacy class of split involu-
241
+ tions in PSp4(7) is kthulhu.
242
+ The next result combines [1, Theorem 1.4], [3, Theorem 1.2] and [5, The-
243
+ orem 1.2] with Theorem I.
244
+ Theorem III. The groups PSLn(q) with n ≥ 4, PSL3(q) with q > 2, and
245
+ PSp2n(q), n ≥ 3, collapse.
246
+
247
+ In the group PSL3(2), there is just one class that could not be treated,
248
+ namely the regular unipotent class O, which is sober. Actually PSL3(2) ≃
249
+ PSL2(7) and for this group, O is semisimple.
250
+
251
+ NICHOLS ALGEBRAS OVER SEMISIMPLE CLASSES
252
+ 5
253
+ 1.4. Conventions. If a ≤ b ∈ N0, then Ia,b denotes {a, a + 1, . . . , b}; also
254
+ Ia = I1,a for simplicity.
255
+ Let G be a group. The centraliser of X ⊂ G is denoted by CG(X). If
256
+ x, y ∈ G, then x ⊲ y := xyx−1. We write X ≥ Y , or Y ≤ X, to express that
257
+ Y is a subrack of X (or a subgroup, or more generally a subobject in a given
258
+ category). The normality of a subgroup is expressed by N ⊳ G.
259
+ Let q = pm, p a prime and m ∈ N. Let Fq be the field with q elements
260
+ and k the algebraic closure of Fq. We denote by Gn(k) the group of n-th
261
+ roots of unity in a field k.
262
+ Acknowledgements
263
+ We thank Gunter Malle for very helpful email exchanges and Andrea
264
+ Lucchini for pointing out several references.
265
+ N. A. was partially supported by CONICET (PIP 11220200102916CO),
266
+ FONCyT-ANPCyT (PICT-2019-03660) and Secyt (UNC). G. A. G. was
267
+ partially supported by CONICET (PIP 11220200100423CO), Secyt (UNLP)
268
+ and FONCyT-ANPCyT (PICT-2018-00858). G. C. was partially supported
269
+ by Projects BIRD179758/17, DOR2207212/22, and BIRD203834 of the Uni-
270
+ versity of Padova. The results were obtained during visits of N. A. to the
271
+ University of Padova, and of G. C. to the University of C´ordoba, partially
272
+ supported by the bilateral agreement between these Universities and the
273
+ INdAM-GNSAGA Visiting Professor program.
274
+ 2.
275
+ Racks
276
+ 2.1. Racks. As in previous papers we use the language of racks; see [9] for
277
+ more information. A rack is a pair (O, ⊲) where O is a non-empty set and
278
+ ⊲ : O×O → O is a self distributive operation such that ϕx := x⊲
279
+ is bijective
280
+ for any x ∈ O. A subset O′ ⊂ O is a subrack if O′ ⊲ O′ ⊂ O′. Let InnO
281
+ be the group generated by the image of the map ϕ : O → SO. The main
282
+ examples of racks considered in this paper are (unions of) conjugacy classes
283
+ of a finite group with ⊲ being the conjugation. A rack (O, ⊲) is abelian if
284
+ x ⊲ y = y for any x, y ∈ O. Also, a rack is indecomposable if it can not be
285
+ presented as the disjoint union of two subracks and decomposable otherwise.
286
+ The following observation will be useful, especially when dealing with
287
+ orthogonal groups.
288
+ Remark 2.1. Let G be a finite group, N ⊳ G, g ∈ G − N and ON
289
+ g the orbit
290
+ of g under the conjugation action of N. Then ON
291
+ g is a subrack of OG
292
+ g .
293
+ This is a special case of [13, Remark 3.2] that can be verified directly.
294
+ Notice that if N ≤ G is not normal, then ON
295
+ g
296
+ may fail to be a subrack
297
+ of OG
298
+ g . For instance, take G = S4, g = (123) and N = ⟨(12)(34)⟩; then
299
+ ON
300
+ g = {(123), (142)} is not closed under the rack operation.
301
+
302
+ 6
303
+ N. ANDRUSKIEWITSCH, G. CARNOVALE, G. A. GARC´IA
304
+ 2.2. Racks of type C. The following notion was introduced in [3, Defini-
305
+ tion 2.3] motivated by [18, Theorem 2.1].
306
+ Definition 2.2. A rack X is of type C if there are a decomposable subrack
307
+ Y = R � S ≤ X, r ∈ R and s ∈ S such that r ⊲ s ̸= s,
308
+ R = OInn Y
309
+ r
310
+ ,
311
+ S = OInn Y
312
+ s
313
+ ,
314
+ min{|R|, |S|} > 2 or max{|R|, |S|} > 4.
315
+ The group-theoretical reformulation (C) of the definition of type C is [3,
316
+ Lemma 2.8]. We need a variation of [3, Lemma 2.8] in order to encompass
317
+ the situation in Remark 2.1. The proof can be repeated verbatim: we recall
318
+ it here for completeness.
319
+ Lemma 2.3. Let G be a finite group, g ∈ G and N ⊳G. The orbit O = ON
320
+ g
321
+ is of type C if and only if there are H ≤ ⟨O⟩, r, s ∈ O ∩ H such that
322
+ OH
323
+ r ̸= OH
324
+ s ;
325
+ (2.1)
326
+ rs ̸= sr;
327
+ (2.2)
328
+ H = ⟨OH
329
+ r , OH
330
+ s ⟩;
331
+ (2.3)
332
+ min{|OH
333
+ r |, |OH
334
+ s |} > 2
335
+ or
336
+ max{|OH
337
+ r |, |OH
338
+ s |} > 4.
339
+ (2.4)
340
+ Proof. Assume that r, s and H are as above and set R := OH
341
+ r and S := OH
342
+ s .
343
+ If r′ = h ⊲ r ∈ OH
344
+ r = R for some h ∈ H, then there exist x1, · · · , xk ∈ O
345
+ such that h = x1 · · · xk. Hence
346
+ r′ = x1 ⊲ (x2 ⊲ (· · · (xk ⊲ r)) ∈ O(⊲O(⊲ · · · O ⊲ O))) ⊂ O,
347
+ so R ⊂ O∩H and similarly S ⊂ O∩H. By (2.1) the subset Y := R � S ⊂ O
348
+ is a decomposable subrack, and r ⊲ s ̸= s is (2.2). In addition,
349
+ OInn Y
350
+ r
351
+ = O⟨R,S⟩
352
+ r
353
+ = OH
354
+ r = R,
355
+ where the second equality follows from (2.3), and similarly, OInn Y
356
+ s
357
+ = S. The
358
+ estimate on R and S is (2.4). Hence O is of type C.
359
+ Conversely, let X = O and r, s, R, S, Y be as in Definition 2.2. Setting
360
+ H := ⟨R, S⟩, we immediately have (2.3), H ≤ ⟨O⟩, R = OH
361
+ r , S = OH
362
+ s and
363
+ r, s ∈ O ∩ H. Finally (2.2), (2.1) and (2.4) are straightforward.
364
+
365
+ Remark 2.4. Let G, N and O be as in Lemma 2.3.
366
+ (a) If there exist r, s ∈ O satisfying (2.2), O⟨r,s⟩
367
+ r
368
+ ̸= O⟨r,s⟩
369
+ s
370
+ and:
371
+ min{|O⟨r,s⟩
372
+ r
373
+ |, |O⟨r,s⟩
374
+ s
375
+ |} > 2
376
+ or
377
+ max{|O⟨r,s⟩
378
+ r
379
+ |, |O⟨r,s⟩
380
+ s
381
+ |} > 4,
382
+ then O is of type C by Lemma 2.3 applied to H := ⟨r, s⟩.
383
+
384
+ NICHOLS ALGEBRAS OVER SEMISIMPLE CLASSES
385
+ 7
386
+ (b) If |g| is odd and r, s ∈ O, then for any H ≤ G containing r and s
387
+ the estimate (2.4) follows from (2.2), since then |s| = |r| = |g| is odd,
388
+ whence |OH
389
+ r | ≥ |O⟨s⟩
390
+ r | ≥ 3, and similarly for OH
391
+ s . This generalizes [3,
392
+ Lemma 2.7 (b)] to the situation of Remark 2.1.
393
+ Example 2.5. Let n ≥ 5 be odd. Then the conjugacy class O of n-cycles
394
+ in Sn is of type C. Indeed, O splits into two classes O′ and O′′ in An and
395
+ |O′| = |O′′| = (n−1)!
396
+ 2
397
+ > n elements. Therefore, if r ∈ O′, there exists s ∈ O′′
398
+ such that s ̸∈ CAn(r) = ⟨r⟩ and the result follows from Remark 2.4.
399
+ Example 2.6. The class O corresponding to the partition (12, 22) in A6 is
400
+ of type C. Indeed, H := CA6(56) ≃ S4 and H ∩ O contains all involutions
401
+ of the form (ab)(cd) for a, b, c, d /∈ {5, 6} and those of the form (ab)(56)
402
+ for a, b /∈ {5, 6}. Therefore, |O′ ∩ H| = 12 and O′ contains all involutions
403
+ in H. Now, the involutions in S4 are parted into two classes of size 6, and
404
+ S4 contains non-commuting non-conjugate involutions. Hence, we can find
405
+ r, s ∈ H ∩ O′ such that r ⊲ s ̸= s and OH
406
+ r ̸= OH
407
+ s , with |OH
408
+ r | = |OH
409
+ s | = 6.
410
+ Finally, ⟨OH
411
+ s , OH
412
+ r ⟩ = H because S4 is generated by its involutions.
413
+ We
414
+ conclude by Lemma 2.3.
415
+ Example 2.7. The class of 3-cycles in G = A3 or A4 is kthulhu because its
416
+ intersection with any subgroup of G is either abelian or a conjugacy class.
417
+ The class O of 3-cycles in An for n ≥ 5 and the class O′ labeled (32) in
418
+ A6 are of type C. Indeed, O ∩ A4 splits into the classes O(123) and O(124).
419
+ Since the representatives do not commute, O is of type C by Remark 2.4.
420
+ Any non-inner automorphism of S6 interchanges O and O′ in A6, so O′ is of
421
+ type C as well.
422
+ Here is an easy but useful application of the previous Lemma.
423
+ Lemma 2.8. Let G be a finite group, H ≤ G, x ∈ H. Assume that
424
+ H is not abelian;
425
+ (2.5)
426
+ H = ⟨OH
427
+ x ⟩;
428
+ (2.6)
429
+ there exists s ∈ OG
430
+ x ∩ H : s /∈ OH
431
+ x , |OH
432
+ s | > 2.
433
+ (2.7)
434
+ Then OG
435
+ x is of type C.
436
+ Proof. There is r ∈ OH
437
+ x such that rs ̸= sr; otherwise s ∈ Z(H) by (2.6),
438
+ hence |OH
439
+ s | = 1. Thus (2.2) holds and (2.1) and (2.3) are clear by construc-
440
+ tion. Finally, |OH
441
+ r | > 2 by (2.5), thus (2.4) holds.
442
+
443
+ Here is another way to detect racks of type C.
444
+
445
+ 8
446
+ N. ANDRUSKIEWITSCH, G. CARNOVALE, G. A. GARC´IA
447
+ Lemma 2.9. Let G1 and G2 be finite groups, a1 ̸= b1 ∈ G1, a2, b2 ∈ G2.
448
+ Set r = (a1, a2), s = (b1, b2) ∈ G := G1 × G2. Assume that
449
+ a1b1 = b1a1,
450
+ a2b2 ̸= b2a2;
451
+ (2.8)
452
+ OG1
453
+ a1 = OG1
454
+ b1 ,
455
+ OG2
456
+ a2 = OG2
457
+ b2 ;
458
+ (2.9)
459
+ G2 = ⟨OG2
460
+ a2 ⟩.
461
+ (2.10)
462
+ Then OG
463
+ r = OG1
464
+ a1 × OG2
465
+ a2 is of type C.
466
+ Proof. Let H = ⟨{a1} × OG2
467
+ a2 , {b1} × OG2
468
+ a2 ⟩ ∋ r, s; (2.2) is evident. We claim
469
+ that OH
470
+ r = {a1} × OG2
471
+ a2 . Indeed, ⊆ follows from (2.8), and ⊇ from (2.10):
472
+ y ∈ G2 =⇒ ∃x1, . . . , xt ∈ OG2
473
+ a2 : y = x1 . . . xt
474
+ =⇒ (a1, y ⊲ a2) = (a1, x1) ⊲ ((a1, x2) ⊲ . . . (a1, a2)) ∈ OH
475
+ r .
476
+ Similarly, OH
477
+ s
478
+ = {b1} × OG2
479
+ b2 .
480
+ Hence (2.1) and (2.3) follow.
481
+ Finally, if
482
+ |OH
483
+ r | = |OH
484
+ s | = |OG2
485
+ a2 | ≤ 2, then a2 and b2 commute, contradicting (2.8).
486
+
487
+ Remark 2.10. Let G1 and G2 be finite groups, a1 ̸= b1 ∈ G1. The hypotheses
488
+ of Lemma 2.9 on G2 hold when G2/Z(G2) is a non-abelian simple group and
489
+ a2 ∈ G2 is not central. Namely, ⟨OG2
490
+ a2 ⟩⊳G2, hence it is all of G2 giving (2.10).
491
+ Furthermore there is b2 ∈ OG2
492
+ a2 that does not commute with a2, because G2
493
+ is not abelian, as needed in (2.8).
494
+ 2.3. Racks of type D. A rack X is of type D if it has a decomposable
495
+ subrack Y = R � S with elements r ∈ R, s ∈ S such that r ⊲(s ⊲(r ⊲s)) ̸= s
496
+ [7, Definition 3.5]. If O is a conjugacy class in a finite group G, then the
497
+ rack O is of type D if and only if (D) holds, see [7].
498
+ 3. Algebraic groups
499
+ Let G be a connected reductive algebraic group defined over k = Fq and let
500
+ F : G → G be a Frobenius map, that is a Fq-split Steinberg endomorphism
501
+ [22, Chapter 21]. Thus there exists an F-stable torus T such that F(t) = tq
502
+ for t ∈ T, and GF = G(Fq) is the finite group of Fq-points. We make more
503
+ precise assumptions on G in each Subsection below. The main objectives of
504
+ the paper are encompassed in the following situations:
505
+ ⋄ The group G is either SLn(k) or Sp2n(k) (n ≥ 2) and
506
+ G := GF /Z(GF) = [GF, GF ]/Z([GF , GF ])
507
+ is a finite simple group.
508
+ ⋄ The group G is either SO2n+1(k) (n ≥ 2, p is odd) or SO2n(k) (n ≥ 4)
509
+ and G := [GF , GF ]/Z(GF ) is a finite simple group.
510
+
511
+ NICHOLS ALGEBRAS OVER SEMISIMPLE CLASSES
512
+ 9
513
+ In both situations we say that G is a (classical) Chevalley group. We
514
+ allow SO5(k) whose simply connected cover is Sp6(k), and SL2(3), SL2(4),
515
+ SL2(5), SL2(9) for flexibility in some recursive arguments.
516
+ Let Φ be the root system of G and fix a subset ∆ of simple roots. Let Q,
517
+ respectively Λ, be the root, respectively weight, lattice. Then Λ = ⊕i∈IZωi;
518
+ here θ is the rank of G, I = Iθ and (ωi)i∈I are the fundamental weights. Let
519
+ W be the Weyl group of Φ and let sα ∈ W be the reflection corresponding
520
+ to α ∈ Φ. Also, α∨
521
+ i : k× → T, i ∈ I, are the simple coroots. Then
522
+ ωi(α∨
523
+ j (ξ)) = ξδij,
524
+ ξ ∈ k×, i, j ∈ I.
525
+ If α ∈ Φ, then there is a monomorphism xα : k → G of abelian groups; let
526
+ Uα = Im xα (a root subgroup) and let U, respectively U−, be the subgroup
527
+ of G generated by the Uα’s with α ∈ ∆, respectively −α ∈ ∆.
528
+ 3.1. The classical groups. In this section we fix notation for the classical
529
+ groups we will deal with. For m ≥ 1 we set Jm =
530
+
531
+ 1
532
+ ...
533
+ 1
534
+
535
+ . We denote
536
+ by Frq the Frobenius map GLm(k) → GLm(k) given by (aij) �→ (aq
537
+ ij), and
538
+ similarly the restriction to any suitable subgroup.
539
+ We will often use the automorphism φ: GLm(k) → GLm(k) given by:
540
+ φ(A) := Jm tA−1Jm.
541
+ (3.1)
542
+ The symplectic group Sp2n(k). The symplectic group Sp2n(k) is the
543
+ subgroup of GL2n(k) leaving invariant the bilinear form
544
+
545
+ 0
546
+ Jn
547
+ −Jn 0
548
+
549
+ . Thus
550
+ Sp2n(k) consists of the invertible matrices
551
+ � A B
552
+ C D
553
+
554
+ such that
555
+ tCJnA = tAJnC,
556
+ tBJnD = tDJnB,
557
+ −tCJnB + tAJnD = Jn.
558
+ (3.2)
559
+ In this case, F = Frq and G = Sp2n(q)/Z(Sp2n(q)) = PSp2n(q).
560
+ The orthogonal group SO2n+1(k). Let p be odd. The orthogonal group
561
+ SO2n+1(k) is the subgroup of SL2n+1(k) leaving invariant the bilinear form
562
+ J2n+1. Thus SO2n+1(k) consists of the invertible matrices
563
+ X =
564
+ � A e B
565
+ f k g
566
+ C h D
567
+
568
+ ,
569
+ A, B, C, D ∈ kn×n,
570
+ e, tf, tg, h ∈ kn×1,
571
+ k ∈ k
572
+ such that det X = 1 and
573
+ tCJnA + tff + tAJnC = 0,
574
+ tCJne + tfk + tAJnh = 0,
575
+ tCJnB + tfg + tAJnD = Jn,
576
+ thJne + k2 + teJnh = 1,
577
+ thJnB + kg + teJnD = 0,
578
+ tDJnB + tgg + tBJnD = 0.
579
+ (3.3)
580
+ In this case F = Frq and G = [SO2n+1(q), SO2n+1(q)] = PΩ2n+1(q).
581
+
582
+ 10
583
+ N. ANDRUSKIEWITSCH, G. CARNOVALE, G. A. GARC´IA
584
+ The orthogonal group SO2n(k). Let n ≥ 4.
585
+ The orthogonal group
586
+ SO2n(k) is the subgroup of matrices in SL2n(k) preserving the quadratic
587
+ form �n
588
+ i=1 xix2n−i+1. If p is odd, such elements automatically preserve the
589
+ bilinear form with associated matrix J2n. Thus SO2n(k) consists of those
590
+ matrices
591
+ � A B
592
+ C D
593
+
594
+ ∈ SL2n(k) with A, B, C, D ∈ kn×n, such that
595
+ tCJnA + tAJnC = 0, tCJnB + tAJnD = Jn,
596
+ tDJnB + tBJnD = 0.
597
+ (3.4)
598
+ If p = 2, then SO2n(k) consists of those matrices
599
+ � A B
600
+ C D
601
+
602
+ ∈ SL2n(k) satisfying
603
+ (3.4) and such that the diagonal terms in tCJnA and tBJnD are 0. In this
604
+ case F = Frq and
605
+ G = [SO2n(q), SO2n(q)]/Z([SO2n(q), SO2n(q)]) = PΩ+
606
+ 2n(q).
607
+ 3.2. On normalizers. In Subsection 5.3 we shall need the finite unitary
608
+ groups SUn(q) and GUn(q), and the following folklore fact. We consider:
609
+ ◦ G = SLn(k), q0 = pm0 with m0|m so that q is a power of q0 ;
610
+ ◦ F0 : GLn(k) → GLn(k) is defined either by F0(A) := Frq0(A) or by
611
+ F0(A) := Frq1/2
612
+ 0 (φ(A)), for A ∈ GLn(k), φ as in (3.1), the latter occurring
613
+ only for m0 even, in which case, we denote as usual SUn(q1/2
614
+ 0
615
+ ) = GF0 and
616
+ GUn(q1/2
617
+ 0
618
+ ) = GLn(k)F0.
619
+ Proposition 3.1. NGLn(q)(GF0) = Z(GLn(q))GLn(k)F0.
620
+ Proof. We prove that NGLn(q)(GF0) ≤ Z(GLn(q))GLn(k)F0, the other in-
621
+ clusion being immediate. Let g ∈ NGLn(q)(GF0). For any y ∈ GF0 there
622
+ holds F0(gyg−1) = gyg−1, that is z := g−1F0(g) ∈ CGLn(q)(GF0). Now, GF0
623
+ contains regular unipotent elements in U and U−, so it follows from [26,
624
+ Lemma 5.3] that CGLn(q)(GF0) = Z(GLn(q)). In addition, F0 restricts to a
625
+ Steinberg endomorphism on the connected group Z(GLn(k)) ≃ k×, hence
626
+ Lang-Steinberg theorem [22, Theorem 21.7] is in force and there exists ζ id ∈
627
+ Z(GLn(k)) such that ζ−1F0(ζ) id = z. Hence, ζ−1g ∈ GLn(k)F0 ≤ GLn(q)
628
+ and so ζ id ∈ Z(GLn(k)) ∩ GLn(q) = Z(GLn(q)). The claim follows.
629
+
630
+ 3.3. The subgroup K. We introduce a subgroup K of G that will be useful
631
+ in Sections 4 and 6. In this Subsection G is one of the groups
632
+ Sp2n(k), n ≥ 2;
633
+ SO2n(k), n ≥ 3,
634
+ or
635
+ SO2n+1(k), n ≥ 3,
636
+ where p ̸= 2 when G = SO2n+1(k). We set n′ = 2n if G = SO2n(k) or
637
+ G = Sp2n(k) and n′ = 2n + 1 if G = SO2n+1(k), so that G ≤ GLn′(k).
638
+ Recall φ from (3.1). Then K is the image of the injective group morphism
639
+ j : GLn(q) → GF,
640
+ A �→
641
+
642
+
643
+
644
+
645
+ A
646
+ 0
647
+ 0 φ(A)
648
+
649
+ ,
650
+ if G = SO2n(k), or Sp2n(k),
651
+ � A 0
652
+ 0
653
+ 0 1
654
+ 0
655
+ 0 0 φ(A)
656
+
657
+ ,
658
+ if G = SO2n+1(k).
659
+
660
+ NICHOLS ALGEBRAS OVER SEMISIMPLE CLASSES
661
+ 11
662
+ 3.4. Cuspidal classes in the Weyl group. Let S = {sα : α ∈ ∆}, so
663
+ that (W, S) is a Coxeter group. Given J ⊂ ∆, we set
664
+ ◦ WJ = ⟨sα : α ∈ J⟩;
665
+ ◦ PJ = the standard parabolic subgroup of G determined by J;
666
+ ◦ LJ = the standard (reductive) Levi subgroup of PJ.
667
+ Definition 3.2. [16, 3.1.1] A conjugacy class C in W is called cuspidal if
668
+ C ∩ WJ = ∅ for all proper subsets J of S; an element is cuspidal if its
669
+ conjugacy class is so.
670
+ A decomposition of w ∈ W is a family Γ = (γj)j∈Il in Φ, such that
671
+ w = sγ1 · · · sγl,
672
+ (3.5)
673
+ where sγj is the corresponding reflection and l is minimal (with this prop-
674
+ erty). Then l is denoted by ℓa(w) and is called the absolute length of w. By
675
+ a result of Kostant, see [24], Γ is then a linearly independent family and
676
+ ℓa(w) = rk(id −w)
677
+ (3.6)
678
+ in the natural representation of W. By [16, Exercise 3.16], we have
679
+ w is cuspidal
680
+ ⇐⇒ ℓa(w) = rk G.
681
+ (3.7)
682
+ Notice that ℓa(w) = rk G means that w has no fixed points.
683
+ Given a decomposition Γ of w, we set
684
+ ΨΓ = Φ ∩ (Zγ1 ⊕ · · · ⊕ Zγl) ,
685
+ (3.8)
686
+ GΓ = ⟨T, Uβ : β ∈ ΨΓ⟩.
687
+ (3.9)
688
+ Clearly, ΨΓ is a root subsystem of Φ and GΓ is a connected reductive sub-
689
+ group of G. If Γ and Γ ′ are different decompositions of the same w, then the
690
+ subsystems ΨΓ and ΨΓ ′, and the subgroups GΓ and GΓ ′, might be different.
691
+ Remark 3.3. If w ∈ W is cuspidal, then GΓ is semisimple for any decompo-
692
+ sition Γ of w, by (3.7).
693
+ Remark 3.4. If w ∈ WJ for some J ⊂ S, then there is a decomposition Γ
694
+ such that GΓ ≤ LJ.
695
+ Indeed, any decomposition of w in WJ is necessarily a decomposition in
696
+ W, by (3.6). For, w acts trivially in (RJ)⊥, hence rk(id −w) = rk(id −w)|RJ.
697
+ 3.5. F-stable tori. Here we assume that G is connected reductive and F
698
+ is a Frobenius map. By [22, Proposition 25.1], there is a bijection from the
699
+ set of GF-conjugacy classes of F-stable maximal tori to the set of conjugacy
700
+ classes in W, described as follows. Let T′ be an F-stable torus in G. Then
701
+ T′ = gTg−1 for some g ∈ G such that g−1F(g) ∈ N(T). Let
702
+ w = class of g−1F(g) ∈ N(T)/T ≃ W.
703
+ (3.10)
704
+
705
+ 12
706
+ N. ANDRUSKIEWITSCH, G. CARNOVALE, G. A. GARC´IA
707
+ The assignment T′ �→ w gives rise to the mentioned bijection. We set
708
+ Tw := gTg−1.
709
+ (3.11)
710
+ Remark 3.5. Let T′ be an F-stable maximal torus in G such that T′ �→ w
711
+ in the correspondence above and let G′ be the derived group of G. Then
712
+ T′ ∩ G′ is an F-stable maximal torus in G′ and T′ ∩ G′ �→ w.
713
+ Indeed, T ∩ G′ is a split torus of G′.
714
+ The element g ∈ G such that
715
+ T′ = gTg−1 and g−1F(g) ∈ NG(T) is a representative of w can be written
716
+ as g = g′z where g′ ∈ G′ and z is central. Then T′ ∩ G′ = g′(T ∩ G′)(g′)−1
717
+ and (g′)−1F(g′) ∈ NG′(T ∩ G′) is a representative of w.
718
+ Definition 3.6. An F-stable maximal torus is cuspidal if the corresponding
719
+ conjugacy class in W as above is cuspidal.
720
+ Example 3.7. Let w ∈ W be a Coxeter element, i.e. a product
721
+ w = s1 . . . sθ,
722
+ (3.12)
723
+ where (si)i∈Iθ is a numeration of S; this provides a decomposition Γ of w.
724
+ Then the class of w is cuspidal and GΓ = G. If W = Sn, the conjugacy class
725
+ of w is the only cuspidal class in W, [16, §3.1.2].
726
+ Definition 3.8. A Coxeter torus is an F-stable maximal torus that corre-
727
+ sponds to the conjugacy class containing a Coxeter element.
728
+ By abuse of terminology the intersection of a Coxeter torus of G with GF
729
+ will be called a Coxeter torus of GF.
730
+ 3.6. Semisimple classes. Here G is connected and reductive, unless oth-
731
+ erwise stated, F is a Frobenius map and T is an F-stable torus such that
732
+ F(t) = tq for t ∈ T.
733
+ Let x ∈ G = GF/Z(GF ) be semisimple non-trivial and pick x ∈ GF a
734
+ representative of x, thus x is semisimple but not central. Let O = OG
735
+ x and
736
+ O = OGF
737
+ x
738
+ ; there is an epimorphism of racks O ։ O.
739
+ Let y ∈ GF be semisimple. By [22, Proposition 26.6], there exists an
740
+ F-stable maximal torus T′ containing y; however, not all F-stable maximal
741
+ tori intersecting OGF
742
+ y
743
+ are necessarily GF-conjugated to T′. Consequently we
744
+ assign to OGF
745
+ y
746
+ the set SOGF
747
+ y
748
+ of all conjugacy classes C in W corresponding
749
+ to F-stable maximal tori T′ that intersect OGF
750
+ y
751
+ .
752
+ Remark 3.9. Assume that G is simple and that we are not in the cases
753
+ excluded in [22, Theorem 24.17].
754
+ If C ∈ SOGF
755
+ y
756
+ , then O[GF ,GF ]
757
+ y
758
+ intersects
759
+ an F-stable maximal torus T′′ in GF corresponding to an element in C.
760
+
761
+ NICHOLS ALGEBRAS OVER SEMISIMPLE CLASSES
762
+ 13
763
+ Indeed, let g ∈ GF be such that g−1F(g) ∈ NG(T) represents an element
764
+ in C, and let T′ = gTg−1. Then there exists l ∈ GF such that l ⊲ y ∈ T′.
765
+ Now, GF = TF[GF , GF], [22, Corollary 24.2, Proposition 24.15, Proposition
766
+ 24.21], so l decomposes as l = t1l1 with t1 ∈ TF and l1 ∈ [GF , GF], and
767
+ l1 ⊲ y ∈ t−1
768
+ 1 gTg−1t1 = T′′, where g−1t1F(t−1
769
+ 1 )F(g) = g−1F(g) represents an
770
+ element in C.
771
+ For our aim, it is convenient to introduce the following notion.
772
+ Definition 3.10. A semisimple conjugacy class OGF
773
+ y
774
+ in GF is called cuspidal
775
+ if the set SOGF
776
+ y
777
+ consists of cuspidal conjugacy classes in W. In other words,
778
+ all F-stable maximal tori intersecting OGF
779
+ y
780
+ are cuspidal.
781
+ Also, OGF
782
+ y
783
+ is called a Coxeter class if it only intersects Coxeter tori.
784
+ Necessarily, OGF
785
+ y
786
+ is then cuspidal.
787
+ Remark 3.11. Since Z(GF) = Z(G)F is contained in every torus of GF,
788
+ the class OGF
789
+ y
790
+ is cuspidal, respectively Coxeter, if and only if its projection
791
+ O′ in GF/Z(GF ) intersects only cuspidal tori, respectively Coxeter tori in
792
+ GF/Z(GF ). We will thus call also O′ cuspidal, respectively Coxeter.
793
+ In
794
+ particular, if G is simply-connected and O is cuspidal, O will be called
795
+ cuspidal.
796
+ If G is not simply-connected, Remark 3.9 guarantees that OGF
797
+ y
798
+ is cuspidal,
799
+ respectively Coxeter, if an only if O[GF ,GF ]
800
+ y
801
+ intersects only cuspidal tori,
802
+ respectively Coxeter tori in GF, and we will call also O[GF ,GF ]
803
+ y
804
+ cuspidal,
805
+ respectively Coxeter.
806
+ Proposition 3.12. Assume G is simply-connected. If T′ is a maximal F-
807
+ stable torus that intersects O, C is the conjugacy class in W corresponding to
808
+ T′ and Γ is a decomposition of w ∈ C, then O intersects GF
809
+ Γ . In particular,
810
+ the following are equivalent:
811
+ (a) O is not cuspidal.
812
+ (b) O intersects a proper standard Levi subgroup L.
813
+ Proof. Since F is a Frobenius automorphism, GΓ is F-stable. Pick a rep-
814
+ resentative ˙w of w; by definition, it belongs to GΓ . By the Lang-Steinberg
815
+ Theorem there is h ∈ GΓ such that h−1F(h) = ˙w. The tori T′ and hTh−1
816
+ are GF-conjugate since they both map to w, cf. (3.10). That is, there exists
817
+ y ∈ GF such that y ⊲ x ∈ hTh−1 ≤ GΓ, hence y decomposes as y = y′ for
818
+ some y ⊲ x ∈ GF
819
+ Γ ∩ O.
820
+
821
+ 14
822
+ N. ANDRUSKIEWITSCH, G. CARNOVALE, G. A. GARC´IA
823
+ If O is not cuspidal, then pick C non-cuspidal and apply Remark 3.4.
824
+ Conversely, if y ∈ O ∩ L, then there is an F-stable maximal torus T′ of L
825
+ that contains y. Hence T′ = uTu−1 for some u ∈ L such that σ := u−1F(u) ∈
826
+ NL(T) ≤ NG(T); so that the class of σ belongs to the Weyl group of L.
827
+
828
+ Recall that a semisimple element y is regular if its centraliser CG(y) con-
829
+ sists of semisimple elements, or equivalently, if the irreducible component
830
+ CG(y)◦ of CG(y) containing the identity is a torus, [27, II.11]. This occurs
831
+ if and only if y lives in a unique maximal torus. If our x ∈ GF is regular,
832
+ then CG(x)◦ is the unique F-stable maximal torus containing x.
833
+ Proposition 3.13. If x is a cuspidal element, then it is regular.
834
+ We thank Gunter Malle for suggesting us the following proof.
835
+ Proof. Let T0 be an F-stable maximal torus of G containing x, let g ∈ G
836
+ be such that T0 = gTg−1 and let w be the corresponding Weyl group el-
837
+ ement, i.e., g−1F(g) ∈ wT as in (3.10). The F-stable maximal tori in G
838
+ containing x are also the F-stable maximal tori in the connected reductive
839
+ group C = CG(x)◦.
840
+ Every F-stable maximal torus in C is of the form
841
+ cT0c−1 for some c ∈ C such that c−1F(c) ∈ NC(T0) ≤ gNG(T)g−1. Let
842
+ WC = NC(T0)/T0 be the Weyl group of C.
843
+ We claim that WC is triv-
844
+ ial.
845
+ Assume for a contradiction that WC is non-trivial.
846
+ Let s be a re-
847
+ flection in WC and let c ∈ C be such that c−1F(c) = ˙s, a representative
848
+ of s in NC(T0). Then, ˙s′ := g−1 ˙sg would represent a reflection s′ in W
849
+ and cT0c−1 = cgTg−1c−1 is an F-stable maximal torus of G, containing x
850
+ and corresponding to g−1c−1F(c)F(g) = (g−1c−1F(c)g)(g−1F(g)) ∈ s′wT.
851
+ Therefore, s′w is cuspidal by hypothesis on x. However, the characteristic
852
+ polynomial of a cuspidal element is a product of cyclotomic polynomials
853
+ different from (X − 1), therefore its value at 0 is 1, see (3.6) and (3.7). On
854
+ the other hand, det(s′w) = − det(w). Hence, s′w and w can not be both
855
+ cuspidal elements in W, contradicting our assumption on x. Therefore WC
856
+ has no reflections and C = T0 is the unique maximal torus containing x.
857
+
858
+ The following well-known result is instrumental to apply Lemma 2.9.
859
+ Lemma 3.14. Assume G is simply-connected.
860
+ (a) xq ∈ O. (b) If xq = x, then O ∩ TF ̸= ∅.
861
+ Proof. First, OG
862
+ x is F-stable: if x = hyh−1 for some h ∈ G, then
863
+ F(y) = F(h)−1xF(h) ∈ OG
864
+ x .
865
+
866
+ NICHOLS ALGEBRAS OVER SEMISIMPLE CLASSES
867
+ 15
868
+ Since x is semisimple, there are t ∈ T and g ∈ G such that x = gtg−1. Thus
869
+ tq = F(t) ∈ OG
870
+ x and consequently xq ∈ OG
871
+ x ∩ GF = O; here the last equality
872
+ holds because CG(x) is connected, G being simply connected, cf. [20, §2.11,
873
+ §8.5]. Finally, if xq = x, then tq = t ∈ TF ∩OG
874
+ x ⊂ O by the same reason.
875
+
876
+ 4. Split conjugacy classes
877
+ We keep the notation from §3.6, namely G is simple and simply connected,
878
+ but not of type A. Also F is a Frobenius map; T is an F-stable torus such
879
+ that F(t) = tq for t ∈ T; e ̸= x ∈ G = GF/Z(GF ) is semisimple; x ∈ GF a
880
+ representative of x; O = OG
881
+ x and O = OGF
882
+ x
883
+ . Thus there is an epimorphism
884
+ of racks O ։ O.
885
+ We assume additionally that O ∩ TF ̸= ∅. Without loss of generality, we
886
+ suppose that x ∈ TF, i.e., x is split. Adapting the proof of [3, Lemma 3.9]
887
+ for type A, but with more work, we deal with such classes.
888
+ We will need to consider separately the following particular situation:
889
+ G is of type Bθ, q is odd, x satisfies sαj(x) =
890
+
891
+ x
892
+ if j < θ,
893
+ α∨
894
+ θ (−1)x
895
+ if j = θ.
896
+ (4.1)
897
+ Here θ ≥ 2 (as B2 = C2). When this is the case, then x has the form
898
+ x =
899
+ � �
900
+ i∈Iθ−1
901
+ α∨
902
+ i ((−1)i)
903
+
904
+ α∨
905
+ θ (η),
906
+ where η2 = (−1)θ.
907
+ (4.2)
908
+ Notice that if θ is odd, then such a x belongs to GF iff q ≡ 1 mod 4.
909
+ Here is the main result of this Section:
910
+ Theorem 4.1. Assume that q > 2; G is not of type Aθ; q /∈ {3, 5, 7} if we
911
+ are in (4.1); and OGF
912
+ x
913
+ intersects the split torus TF. Then O collapses.
914
+ When q = 2, TF is trivial and the class of x could not intersect it.
915
+ 4.1. Proof of Theorem 4.1. This follows from Lemmata 4.2 and 4.3.
916
+ Lemma 4.2. Assume that q > 2 and that we are not in the situation (4.1).
917
+ Then O is of type C.
918
+ Proof. Recall that x ∈ TF. We will rely on the proof of [5, Lemmata 4.1,
919
+ 4.2]. It is shown there that, for any simple root α such that sα(x) ̸= x, the
920
+ subrack Y = xUF
921
+ α
922
+ � sα(x)UF
923
+ α of OGF
924
+ x
925
+ is of type C. We claim that we can
926
+ choose α such that the restriction of the projection π : Y → O is injective. If
927
+ G is of type E8, F4, G2, then Z(G) is trivial and G = GF. Let u ̸= v ∈ Y such
928
+ that π(u) = π(v), i.e. there is z ∈ Z(GF ), z ̸= 1, such u = zv. Hence either
929
+ u = xxα(a) and v = sα(x)xα(a), or vice versa. In any case, x
930
+ ⋆= zsα(x).
931
+
932
+ 16
933
+ N. ANDRUSKIEWITSCH, G. CARNOVALE, G. A. GARC´IA
934
+ Table 3. Center of some G, q odd; ζ ∈ F×
935
+ q has order 4
936
+ type
937
+ q
938
+ Z(G)
939
+
940
+ ⟨α∨
941
+ θ (−1)⟩
942
+ Cθ, θ > 2
943
+ � �
944
+ i odd
945
+ α∨
946
+ i (−1)
947
+
948
+ Dθ,
949
+ q ≡ 1 mod 4
950
+
951
+
952
+ i odd,i≤θ−2
953
+ α∨
954
+ i (−1)α∨
955
+ θ−1(ζ)α∨
956
+ θ (ζ3)
957
+
958
+ θ ∈ 2Z + 1
959
+ q ≡ 3 mod 4
960
+
961
+ α∨
962
+ θ−1(−1)α∨
963
+ θ (−1)
964
+
965
+ Dθ, θ ∈ 2Z
966
+ � �
967
+ i odd
968
+ α∨
969
+ i (−1), α∨
970
+ θ−1(−1)α∨
971
+ θ (−1)
972
+
973
+ E7
974
+ ⟨α∨
975
+ 2 (−1)α∨
976
+ 5 (−1)α∨
977
+ 7 (−1)⟩
978
+ Applying sα, we get z2 = 1. Thus G is not of type E6 (here Z(G) ≃ Z/3);
979
+ and q should be odd. By ⋆, we have
980
+ ωi(x) = ωi(zsα(x)) = ωi(z)sα(ωi)(x),
981
+ i ∈ Iθ.
982
+ (4.3)
983
+ Say α = αj, j ∈ Iθ. Then sα(ωi) = ωi when i ̸= j, hence ωi(z) = 1. Now
984
+ such z exists only in the situation (4.1), see the shape of Z(G) in Table
985
+ 3.
986
+
987
+ Lemma 4.3. If we are in situation (4.1) with q = 9, then O is of type C.
988
+ If we are in situation (4.1) with q > 9, then O is of type D.
989
+ Proof. We deal first with θ = 2; now B2 = C2 and G = Sp4(k).
990
+ Let
991
+ K ≃ GL2(q) be the subgroup of GF which is the image of j as in §3.3. Thus
992
+ we have a monomorphism of groups GL2(q)/{±1} → G = PSp4(q).
993
+ Let y =
994
+ � 1 0
995
+ 0 −1
996
+
997
+ ∈ GL2(q); by our assumption on x, we know that either
998
+ x
999
+ ⋆= j(y) or x = −j(y).
1000
+ Let ̟ : GL2(q) → PGL2(q) be the canonical
1001
+ projection and y = ̟(y). Then we have a surjective map of racks
1002
+ O ∩ K/{±1} → OPGL2(q)
1003
+ y
1004
+ .
1005
+ Therefore it is enough to prove that OPGL2(q)
1006
+ y
1007
+ is of type C if q = 9 and of
1008
+ type D for q > 9.
1009
+ Let q = 9. Then PGL2(9) ≃ A6, and through this isomorphism the class
1010
+ OPGL2(q)
1011
+ y
1012
+ corresponds to the class labeled by (12, 22), which is of type C by
1013
+ Example 2.6.
1014
+
1015
+ NICHOLS ALGEBRAS OVER SEMISIMPLE CLASSES
1016
+ 17
1017
+ Let now q > 9.
1018
+ If q ≡ 3 mod 4, then [6, Corollary 5.4 (b)] applies1.
1019
+ Assume then that q ≡ 1 mod 4. Let ζ ∈ F×
1020
+ q be a primitive 4-th root of 1
1021
+ and let u ∈ PGL2(q) be the class of
1022
+
1023
+ ζ
1024
+ 0
1025
+ 0 −ζ
1026
+
1027
+ . Then
1028
+ OPGL2(q)
1029
+ y
1030
+ = OPGL2(q)
1031
+ u
1032
+ = OPSL2(q)
1033
+ u
1034
+ which is of type D by [6, Corollary 5.4 (a)].
1035
+ Assume next that θ > 2. Here
1036
+ G = PΩ2θ+1(q) = GF/Z(GF ) ≃ [SO2θ+1(q), SO2θ+1(q)].
1037
+ We identify PΩ5(q) with a subgroup of PΩ2θ+1(q) via the inclusion
1038
+ SO5(q) ֒→ SO2θ+1(q),
1039
+
1040
+
1041
+
1042
+ A
1043
+ e
1044
+ B
1045
+ f
1046
+ k
1047
+ g
1048
+ C
1049
+ h
1050
+ D
1051
+
1052
+
1053
+  �→
1054
+
1055
+
1056
+
1057
+
1058
+
1059
+
1060
+
1061
+
1062
+ A
1063
+ 0
1064
+ e
1065
+ 0
1066
+ B
1067
+ 0
1068
+ idθ−2
1069
+ 0
1070
+ 0
1071
+ 0
1072
+ f
1073
+ 0
1074
+ k
1075
+ 0
1076
+ g
1077
+ 0
1078
+ 0
1079
+ 0
1080
+ idθ−2
1081
+ 0
1082
+ C
1083
+ 0
1084
+ h
1085
+ 0
1086
+ D
1087
+
1088
+
1089
+
1090
+
1091
+
1092
+
1093
+
1094
+
1095
+ ,
1096
+ k ∈ Fq, A, B, C, D ∈ F2×2
1097
+ q
1098
+ , etc. Fix tθ ∈ T of the shape (4.2) and analogously
1099
+ t2 of the shape (4.2) but for type B2. If π : GF → G is the projection, then
1100
+ π(tθ) = diag (− idθ, 1, − idθ) = π(t2)γ,
1101
+ where
1102
+ γ = diag (id2, − idθ−2, 1, − idθ−2, id2) .
1103
+ Here diag refers to a diagonal of blocks. Then
1104
+ O = OG
1105
+ π(tθ) ≥ OPΩ5(q)×⟨γ⟩
1106
+ π(tθ)
1107
+ ≃ OPΩ5(q)
1108
+ π(t2)
1109
+ which is of type D by the preceding argument. Hence O is of type D.
1110
+
1111
+ Lemma 4.4. If we are in situation (4.1) with n = 2 and q = 3, then O is
1112
+ austere, hence kthulhu.
1113
+ Proof. Indeed, PSp4(3) ≃ PSU4(2) and the semisimple class we are dealing
1114
+ with in the former group corresponds to the unipotent class of type (2, 12)
1115
+ in the latter one, which is austere by [4, Lemma 5.2].
1116
+
1117
+ Remark 4.5. Assume that n = 2. If we are in the situation (4.1) with q = 5,
1118
+ then calculations with GAP show that O is austere, hence kthulhu. The
1119
+ evidence obtained by performing different computations seems to indicate
1120
+ that in the case q = 7, the class is also kthulhu.
1121
+ 1Notice that Corollary 5.4 (b) in loc. cit. refers implicitly to the class of involutions in
1122
+ PGL2(q) not in PSL2(q), as is transparent from the proof.
1123
+
1124
+ 18
1125
+ N. ANDRUSKIEWITSCH, G. CARNOVALE, G. A. GARC´IA
1126
+ 4.2. Split classes in orthogonal groups. Theorem 4.1 was proved by as-
1127
+ suming that G is simply connected. For recursive arguments on the orthog-
1128
+ onal groups we need an analogous statement for the orbits of split elements
1129
+ in GF = SOn′(q) for the action of [GF, GF ] for n′ = 2n or 2n+1. Let T ≤ G
1130
+ be the subgroup of diagonal matrices
1131
+ diag(t1, . . . , tn, t−1
1132
+ n , . . . , t−1
1133
+ 1 ),
1134
+ if n′ = 2n,
1135
+ diag(t1, . . . , tn, 1, t−1
1136
+ n , . . . , t−1
1137
+ 1 ),
1138
+ if n′ = 2n + 1.
1139
+ Recall Remark 2.1.
1140
+ Lemma 4.6. If y ∈ TF − Z(SOn′(q)), then O[SOn′(q),SOn′(q)]
1141
+ y
1142
+ collapses,
1143
+ except in the situation (4.1), i.e., when n′ = 2n + 1 and ti = −1 for i ∈ In.
1144
+ Proof. There is always a simple root α so that the proof of [5, Lemma 4.2]
1145
+ carries over. If ti ̸= ti+1 for some i < n, then take α = αi = εi − εi+1; if,
1146
+ instead, ti = ti+1 for all i < n, then our assumptions imply tn ̸= t−1
1147
+ n
1148
+ and we
1149
+ take α = αn, i.e., εn when n′ = 2n + 1 and εn−1 + εn when n′ = 2n. The
1150
+ argument works also in types B2 and D3.
1151
+
1152
+ 5. The special linear groups
1153
+ In this Section G = SLn(k), that is, we deal with semisimple classes in
1154
+ G = PSLn(q). As in §3.6, e ̸= x ∈ G is semisimple, x ∈ GF − Z(GF) is
1155
+ a representative of x, O = OG
1156
+ x and O = OGF
1157
+ x
1158
+ . There is an epimorphism of
1159
+ racks O ։ O.
1160
+ For inductive arguments, we will also consider classes of elements in
1161
+ GLn(q). As observed in [1, Remark 4.1], for any semisimple element y ∈
1162
+ GLn(q), we have OGLn(q)
1163
+ y
1164
+ = OSLn(q)
1165
+ y
1166
+ .
1167
+ Definition 5.1. We say that A ∈ GLn(q) is irreducible if its characteristic
1168
+ polynomial pA is irreducible; necessarily A is regular semisimple.
1169
+ From our previous work, we know:
1170
+ Remark 5.2. (i) [3, Theorem 1.1] If n = 2, and q ̸∈ {2, 3, 4, 5, 9}, then any
1171
+ O not listed in Table 1 collapses.
1172
+ (ii) [3, Props. 5.4, 5.5] If n = 3 and x is irreducible, then O is kthulhu.
1173
+ (iii) [3, Theorem 1.1] If n ≥ 3 and x is not irreducible, then O collapses.
1174
+ Remark 5.3. Let n = 2. We record information on the semisimple classes
1175
+ with q ∈ {2, 3, 4, 5, 9} for recursive arguments. Recall that PSL2(q) has two
1176
+ conjugacy classes of maximal tori: the split one, of order q − 1/(2, q − 1)
1177
+ and the Coxeter torus, of order q +1/(2, q +1), that contains the irreducible
1178
+ elements.
1179
+
1180
+ NICHOLS ALGEBRAS OVER SEMISIMPLE CLASSES
1181
+ 19
1182
+ ◦ If q = 2, then PSL2(2) ≃ S3 and the semisimple elements are the 3-
1183
+ cycles that form an abelian rack; if q = 3, then PSL2(3) ≃ A4 and the
1184
+ semisimple elements have order 2 and form an abelian rack.
1185
+ ◦ If q = 4, then PSL2(4) ≃ A5. The irreducible elements have order 5 and
1186
+ form two conjugacy classes that are sober by [14, Remark 3.2 (b) and (c)].
1187
+ The split semisimple elements form the conjugacy class of 3-cycles which
1188
+ is of type C by Example 2.7.
1189
+ ◦ If q = 5, then PSL2(5) ≃ A5. The irreducible elements form the con-
1190
+ jugacy class of 3-cycles which is of type C by Example 2.7.
1191
+ The split
1192
+ semisimple elements are the involutions in the class (1, 22) which is sober
1193
+ because its intersection with any subgroup of A5 is either trivial, abelian
1194
+ or indecomposable.
1195
+ ◦ If q = 9, then PSL2(9) ≃ A6. The irreducible elements have order 5 and
1196
+ form two conjugacy classes that are sober by [14, Remark 3.2 (b) and
1197
+ (c)]. The split semisimple elements are the involutions in the class (12, 22)
1198
+ which is of type C by Example 2.6.
1199
+ Our main result in this Section is:
1200
+ Theorem 5.4. Let O ̸= {e} be a semisimple conjugacy class in PSLn(q).
1201
+ Then any O not listed in Table 1 collapses.
1202
+ By Remark 5.2, we will consider conjugacy classes of irreducible elements
1203
+ assuming n > 3. We will see that if n is prime, then such classes are kthulhu
1204
+ by Proposition 5.15, otherwise, they are of type C by Proposition 5.9.
1205
+ We start by a classical result whose proof we include for completeness.
1206
+ Lemma 5.5. Let n ≥ 2 and ǫ = ±1.
1207
+ If P(X) = Xn + ǫ ∈ Fp[X] is
1208
+ irreducible over Fq, then n = 2, ǫ = 1 and q ≡ 3 mod 4.
1209
+ Proof. First, ǫ = 1 and q is odd, otherwise P(1) = 0; and n = 2m is even,
1210
+ otherwise P(−1) = 0. Also, q ≡ 3 mod 4, otherwise −1 = ξ2 for some
1211
+ ξ ∈ Fq and P(X) = (Xm +ξ)(Xm −ξ) would be reducible. Let now n = 2ha
1212
+ where a is odd, and let Φd(X) be the d-th cyclotomic polynomial. We have
1213
+ the factorization over Z, hence over Fp,
1214
+ (Xn − 1)P(X) = X2n − 1 =
1215
+
1216
+ d|2n
1217
+ Φd(X) =⇒ P(X) =
1218
+
1219
+ d|2n, d∤n
1220
+ Φd(X)
1221
+ Thus Φ2h+1|P(X), hence they are equal and n = 2h. Finally, if X2h + 1 is
1222
+ irreducible over Fq for q ≡ 3 mod 4, then h = 1 by [23, Theorem 1].
1223
+
1224
+
1225
+ 20
1226
+ N. ANDRUSKIEWITSCH, G. CARNOVALE, G. A. GARC´IA
1227
+ 5.1. Coxeter tori. We assume in the rest of this Section that n > 3 and
1228
+ that x is irreducible.
1229
+ In this case W = Sn and by Proposition 3.12 and
1230
+ Example 3.7 every irreducible class intersects every Coxeter torus. We fix
1231
+ the n-cycle
1232
+ w = (1, 2, . . . , n).
1233
+ By technical reasons, we fix a Coxeter torus Tw in GLn(k); then Tw∩SLn(k)
1234
+ is a Coxeter torus in SLn(k) by Remark 3.5. By [22, Example 25.4], we have
1235
+ |TF
1236
+ w| = qn − 1 = (n)q(q − 1),
1237
+ |TF
1238
+ w ∩ SLn(q)| = (n)q.
1239
+ (5.1)
1240
+ The group TF
1241
+ w is isomorphic to F×
1242
+ qn, hence it is cyclic; further, any cyclic
1243
+ subgroup of GLn(q) of order qn − 1 is conjugated to TF
1244
+ w [19, Example 1.13].
1245
+ Remark 5.6. ([21, Satz II.7.3] and [25, Theorem 2.3.5 and below]). We have
1246
+ NGLn(q)(Tw) = NGLn(q)(TF
1247
+ w) ≃ TF
1248
+ w ⋊ CW (w),
1249
+ NSLn(q)(TF
1250
+ w ∩ SLn(q)) = NGLn(q)(TF
1251
+ w) ∩ SLn(q),
1252
+ with CW(w) ≃ Z/n. Let σ be a generator of CW (w) identified as a subgroup
1253
+ of NGLn(q)(TF
1254
+ w); σ can be chosen so that σ ⊲ y = yq for any y ∈ TF
1255
+ w.
1256
+ Lemma 5.7. Let y ∈ TF
1257
+ w be irreducible in GLn(q). Then
1258
+ OGLn(q)
1259
+ y
1260
+ ∩ TF
1261
+ w = O
1262
+ NGLn(q)(TF
1263
+ w)
1264
+ y
1265
+ = ⟨σ⟩ ⊲ y = {y, yq, . . . , yqj, . . . , yqn−1},
1266
+ (5.2)
1267
+ O
1268
+ NGLn(q)(TF
1269
+ w)
1270
+ y
1271
+ = OSLn(q)
1272
+ y
1273
+ ∩ TF
1274
+ w = O
1275
+ NSLn(q)(TF
1276
+ w)
1277
+ y
1278
+ (5.3)
1279
+ Proof. If z ∈ TF
1280
+ w ∩ OGLn(q)
1281
+ y
1282
+ , then there is g ∈ GLn(q) such that gyg−1 = z,
1283
+ so gCGLn(q)(y)g−1 = CGLn(q)(z), that is, g ∈ NGLn(q)(Tw) since clearly z is
1284
+ also irreducible. This and Remark 5.6 imply (5.2). Since OSLn(q)
1285
+ y
1286
+ = OGLn(q)
1287
+ y
1288
+ ,
1289
+ the centraliser argument as above gives (5.3).
1290
+
1291
+ We investigate when two elements in an irreducible class have the same
1292
+ image through the natural projection π: SLn(q) → PSLn(q). Recall that
1293
+ Gn(Fq) is the group of n-th roots of unity in Fq.
1294
+ Lemma 5.8. (Just for this Lemma, n ≥ 3). Let y, z ∈ O such that π(y) =
1295
+ π(z), i.e., y = λz for some 1 ̸= λ ∈ Gn(Fq). Then
1296
+ (i) There exists j ∈ In−1 such that λz = zqj.
1297
+ (ii) Let j ∈ In−1 be minimal satisfying zqj = λz for some 1 ̸= λ ∈ Gn(Fq).
1298
+ Then j|n and λ is a primitive n
1299
+ j -th root of 1.
1300
+ (iii) Let j ∈ In−1 be minimal satisfying zqj = λz for some 1 ̸= λ ∈ Gn(Fq)
1301
+ and let a := n
1302
+ j . Then the characteristic polynomial pz ∈ Fq[Xa]. This
1303
+ observation rectifies [3, Remark 3.1 (d)].
1304
+
1305
+ NICHOLS ALGEBRAS OVER SEMISIMPLE CLASSES
1306
+ 21
1307
+ (iv) Let j ∈ In be minimal satisfying π
1308
+
1309
+ zqj�
1310
+ = π(z). Then j ̸= 1.
1311
+ Proof. (i): The elements y and z lie in the same (unique) maximal torus,
1312
+ so y = zqj for some j ∈ I1,n by Lemma 5.7. Therefore, λz = zqj and λ ̸= 1
1313
+ implies j < n.
1314
+ (ii): If n = aj + b, with a ≥ 1 and 0 ≤ b < j, then
1315
+ z = zqn = zqaj+b = (zqaj)qb = (λaz)qb = λazqb
1316
+ that is, zqb = λ−ax. Hence b = 0 by minimality and λa = 1. Now, if λc = 1
1317
+ with c ∈ N, then zqcj = λcz = z, hence c ≥ a = n
1318
+ j .
1319
+ (iii): By assumption pz = pzqj = pλz. If pz(X) = Xn+cn−1Xn−1+· · ·+c0,
1320
+ then pλz(X) = Xn + λcn−1Xn−1 + · · · + λnc0. Thus pz(X) = pλz(X) if and
1321
+ only if ch = 0 for all h ̸∈ n
1322
+ j Z.
1323
+ (iv): If j = 1 then pz would be Xn+(−1)n by (iii). By Lemma 5.5, n = 2,
1324
+ a contradiction.
1325
+
1326
+ 5.2. Irreducible elements of SLn(q), n not a prime. In this Subsection
1327
+ we assume that n = cd, for some c, d ∈ N≥2. Given S ∈ SLd(q) irreducible,
1328
+ we consider y = diag(S, . . . , S) ∈ SLn(q). Then CGLn(q)(y) ≃ GLc(qd).
1329
+ We claim that a Coxeter torus �T of CGLn(q)(y) remains a Coxeter torus
1330
+ in GLn(q) hence T := �T ∩ SLn(q) is a Coxeter torus in SLn(q).
1331
+ Indeed, by (5.1), we have | �T| = ((qc)d − 1) = (qn − 1). Since �T is cyclic,
1332
+ it is conjugated to TF
1333
+ w as claimed after (5.1). Thus, |T| = (n)q.
1334
+ In this subsection we will assume that x lies in a Coxeter torus T of GF
1335
+ arising from some y as above.
1336
+ Proposition 5.9. If x is irreducible, then O = OPSLn(q)
1337
+ x
1338
+ is of type C.
1339
+ Proof. Let n = cd with c prime and d ≥ 2. We set:
1340
+
1341
+ M := CGLn(q)(y) ≃ GLc(qd);
1342
+ M := CSLn(q)(y) = �
1343
+ M ∩ SLn(q);
1344
+ M1 := [�
1345
+ M, �
1346
+ M] ≃ SLc(qd).
1347
+ Thus M1 ≤ M ≤ �
1348
+ M. Lemma 5.7 gives
1349
+ OGLn(q)
1350
+ x
1351
+ ∩ T = OSLn(q)
1352
+ x
1353
+ ∩ T = {x, xq, . . . , xqj, . . . , xqn−1}
1354
+ OM
1355
+ x ∩ T = OM1
1356
+ x
1357
+ ∩ T = O
1358
+
1359
+ M
1360
+ x ∩ T = {x, xqd, . . . , xqd(c−1)}.
1361
+ Hence xq ∈ O ∩ T but xq /∈ OM
1362
+ x . We claim that OM
1363
+ xq ̸⊂ N�
1364
+ M(T). Suppose
1365
+ the contrary.
1366
+ Then, ⟨OM
1367
+ xq ⟩ would be a non-central, normal subgroup of
1368
+
1369
+ 22
1370
+ N. ANDRUSKIEWITSCH, G. CARNOVALE, G. A. GARC´IA
1371
+
1372
+ M ≃ GLc(qd). Then SLc(qd) ≃ M1 ≤ ⟨OM
1373
+ xq ⟩ ≤ N�
1374
+ M(T), and so T ∩ M1
1375
+ would be normal in M1, a contradiction.
1376
+ We pick s ∈ OM
1377
+ xq \ N�
1378
+ M(T) and set
1379
+ s := π(s) ∈ O;
1380
+ r := π(x) ∈ O;
1381
+ H := ⟨r, s, π(M1)⟩.
1382
+ We claim that r, s and H satisfy the assumptions of Lemma 2.3. First,
1383
+ s ̸∈ N�
1384
+ M(T) implies s ⊲ r ̸= r, i.e., (2.2) holds. Indeed, s ⊲ r = r would give
1385
+ s ⊲ x ∈ Z(GF)x that combined with T = CGLn(q)(x) would force s ⊲ T = T.
1386
+ In addition, ⟨OM1
1387
+ x
1388
+ , OM1
1389
+ s
1390
+ ⟩ = ⟨O �
1391
+ M
1392
+ x , O �
1393
+ M
1394
+ s ⟩ is a non-central, normal subgroup
1395
+ of �
1396
+ M ≃ GLc(qd), hence ⟨M1, x, s⟩ ≤ ⟨OM1
1397
+ x
1398
+ , OM1
1399
+ s
1400
+ ⟩ and therefore
1401
+ H = ⟨π(M1), r, s⟩ ≤ ⟨Oπ(M1)
1402
+ r
1403
+ , Oπ(M1)
1404
+ s
1405
+ ⟩ ≤ ⟨OH
1406
+ r , OH
1407
+ s ⟩ ≤ H.
1408
+ That is, (2.3) holds and H ≤ ⟨O⟩.
1409
+ Observe that π(M) ≃ M/Z(SLn(q)) ∩ M onto PGLc(qd), so the orbits
1410
+ Oπ(M)
1411
+ x
1412
+ and Oπ(M)
1413
+ xq
1414
+ project onto non-trivial orbits in PGLc(qd), and therefore
1415
+ |OH
1416
+ r | ≥ |Oπ(M)
1417
+ r
1418
+ | > 2 and |OH
1419
+ s | ≥ |Oπ(M)
1420
+ s
1421
+ | > 2, i.e., (2.4) holds.
1422
+ We finally analyse OH
1423
+ r ∩ OH
1424
+ s .
1425
+ First of all, π(M1) ≤ H ≤ π(M) and
1426
+ OM1
1427
+ x
1428
+ = OM
1429
+ x
1430
+ imply that OH
1431
+ r = Oπ(M)
1432
+ r
1433
+ . Similarly, OH
1434
+ s = Oπ(M)
1435
+ s
1436
+ .
1437
+ If Oπ(M)
1438
+ r
1439
+ ∩ Oπ(M)
1440
+ s
1441
+ = ∅, then we are done. Otherwise,
1442
+ x ∈ Oπ(M)
1443
+ s
1444
+ ∩ π(T) = Oπ(M)
1445
+ xq
1446
+ ∩ π(T) = {xq, (xq)qd, . . . , (xq)qd(c−1)}.
1447
+ Therefore there exists l ∈ I0,c−1 such that xqdl+1 ∈ Gn(Fq)x. Lemma 5.8
1448
+ (iv) gives l ̸= 0. Let j ∈ In−1 be minimal satisfying xqj ∈ Gn(Fq)x. Then
1449
+ j|n by Lemma 5.8 (ii) whose argument shows that j divides also dl + 1.
1450
+ Hence, (j, d) = 1. Since j > 1 by Lemma 5.8 (iv) again, this can occur only
1451
+ if j = c and (c, d) = 1. In this case, d has a prime factor c′ different from c
1452
+ and we may repeat the whole construction replacing c by c′ and d by n
1453
+ c′ . As
1454
+ j = c ̸= c′, we get that Oπ(M)
1455
+ r
1456
+ ∩ Oπ(M)
1457
+ s
1458
+ = ∅. The hypotheses of Lemma 2.3
1459
+ were verified, hence O is of type C.
1460
+
1461
+ 5.3. Irreducible elements of SLn(q), n > 3 prime. Here n > 3 is prime.
1462
+ Recall that e ̸= x ∈ G = PSLn(q), x ∈ GF − Z(GF ) is a representative of
1463
+ x which is irreducible and belongs to the Coxeter torus T := TF
1464
+ w ∩ SLn(q);
1465
+ we set O = OG
1466
+ x and O = OGF
1467
+ x
1468
+ . There is an epimorphism of racks O ։ O.
1469
+ We will analyse all possible subgroups of GLn(q) intersecting O. We start
1470
+ by a few well-known arithmetic results instrumental for our analysis.
1471
+ Lemma 5.10. Let n be an odd prime number.
1472
+
1473
+ NICHOLS ALGEBRAS OVER SEMISIMPLE CLASSES
1474
+ 23
1475
+ (i) If (n, q − 1) = 1, then (n, qn − 1) = (n, (n)q) = 1.
1476
+ (ii) If (n, q − 1) = n, then (n2, (n)q) = (n, (n)q) = n.
1477
+ (iii) (q − 1, (n)q) = (n, q − 1).
1478
+ (iv) (n(q − 1), (n)q) = (n, q − 1).
1479
+ Proof. (i) and (ii) are [25, Lemma 4.1.1], whilst (iii) follows from the Eu-
1480
+ clidean algorithm. We prove (iv). Combining (i), (ii) and (iii) we obtain
1481
+ (n, (n)q) = (n, q − 1) = (q − 1, (n)q),
1482
+ hence (n(q − 1), (n)q) = 1 if (n, q − 1) = 1, and n ≤ (n(q − 1), (n)q) ≤ n2 if
1483
+ (n, q − 1) = n. In this case, we discard (n(q − 1), (n)q) = n2 using (ii).
1484
+
1485
+ Recall σ ∈ NGLn(q)(Tw) from Remark 5.6.
1486
+ Lemma 5.11. Let n be a prime.
1487
+ (i) Let g ∈ NGLn(q)(TF
1488
+ w) \ TF
1489
+ w. Then |g| divides n(q − 1).
1490
+ (ii) O ∩ NGF (Tw) ⊂ TF
1491
+ w.
1492
+ Proof. (i) By Remark 5.6, there are k ∈ I1,n−1 and t ∈ TF
1493
+ w such that g = σkt.
1494
+ Then
1495
+ (σkt)n =
1496
+
1497
+  �
1498
+ τ∈⟨σk⟩
1499
+ τ ⊲ t
1500
+
1501
+  σnk =
1502
+
1503
+ τ∈⟨σ⟩
1504
+ τ ⊲ t =
1505
+ � n
1506
+
1507
+ i=1
1508
+ tqi
1509
+
1510
+ = t(n)q
1511
+ by a direct computation. Hence |g| divides n(q − 1).
1512
+ (ii) Let g ∈ O ∩ NGLn(q)(TF
1513
+ w) = O ∩ NGF (TF
1514
+ w). Recall that |x| divides
1515
+ (n)q. If g /∈ TF
1516
+ w, then |g| divides (n(q − 1), (n)q) by (i). By Lemma 5.10 (iv)
1517
+ |g| divides (n, q − 1), so g is central, contradicting its irreducibility.
1518
+
1519
+ We recall that a primitive prime divisor of qn − 1 is a prime number ℓ
1520
+ such that ℓ|qn − 1 and ℓ ̸ |qe − 1 for every e ∈ In−1
1521
+ Lemma 5.12. (Here n is any odd prime). Let y be an irreducible semisimple
1522
+ element in GLn(q). Then,
1523
+ (i) Either there exists a primitive prime divisor ℓ of qn − 1 dividing |y| or
1524
+ else |y| divides n(q − 1), it does not divide (q − 1) and n|q − 1.
1525
+ (ii) If y ∈ SLn(q), then there always exists a primitive prime divisor ℓ of
1526
+ qn − 1 dividing |y|.
1527
+ Proof. (i) If for every prime divisor ℓ of |y| there is an e ∈ In−1 such that
1528
+ ℓ divides qe − 1 = (q − 1)(e)q then, any such ℓ divides (q − 1)((n)q, (e)q)
1529
+ for some e < n. The latter equals (q − 1)(e, n)q = q − 1 by the Euclidean
1530
+ algorithm, so ℓ|q − 1 for any prime divisor ℓ of |y|.
1531
+
1532
+ 24
1533
+ N. ANDRUSKIEWITSCH, G. CARNOVALE, G. A. GARC´IA
1534
+ Since y is irreducible, |y| cannot divide q − 1, so there is a prime divisor
1535
+ ℓ0 of |y| dividing q − 1 and (n)q. By Lemma 5.10 (iii) this is possible only
1536
+ if n|q − 1 and in this case ℓ0 = n. Then, Lemma 5.10 (ii) implies that |y|
1537
+ divides n(q − 1).
1538
+ (ii) If y ∈ SLn(q) then |y| divides (n)q. Assume, for a contradiction, that
1539
+ no primitive prime divisors of qn − 1 divides |y|. Then, |y| would divide
1540
+ (n(q − 1), (n)q) = (n, q − 1) by (i) and Lemma 5.10 (iii). Thus, y cannot be
1541
+ irreducible.
1542
+
1543
+ In the terminology of [17, Definition 1.2], Lemma 5.12 says that if n is an
1544
+ odd prime, then all irreducible elements in SLn(q) are ppd(n, q; n)-elements.
1545
+ The following result is a consequence of [17].
1546
+ Lemma 5.13. Let ℓ be a primitive prime divisor of qn − 1 dividing |x| and
1547
+ let H ≤ GLn(q) be such that x ∈ H. Then H occurs in the following list.
1548
+ (a) SLn(q0) ≤ H ≤ NGLn(q)(SLn(q0)) where q0 = pm0 with m = m0d,
1549
+ d ∈ N and (d, n) = 1.
1550
+ (b) SUn(q1/2
1551
+ 0
1552
+ ) ≤ H ≤ NGLn(q)(SUn(q0)) where q0 = pm0 a square with
1553
+ m = m0d, d ∈ N and (d, n) = 1.
1554
+ (c) H ≤ NGLn(q)(TF
1555
+ w) = NGLn(q)(T), and ℓ divides |H|.
1556
+ (d) H/(H ∩ Z(GLn(q)) ≃ M11, n = 5, ℓ = 11, and q5 ≡ 1 mod 11.
1557
+ (e) H/(H ∩ Z(GLn(q)) ≃ M23, or M24, n = 11, ℓ = 23, q11 ≡ 1 mod 23.
1558
+ (f) PSL2(ℓ) ≤ H/(H ∩ Z(GLn(q))) ≤ PGL2(ℓ), for ℓ ≥ 7, n = 1
1559
+ 2(ℓ − 1)
1560
+ and qn ≡ 1 mod ℓ.
1561
+ Proof. The main result in [17] states that the subgroups of GLd(q) contain-
1562
+ ing a ppd(d, q; e)-element, for some 1
1563
+ 2d < e ≤ d are precisely those occurring
1564
+ in the Examples 2.1, . . . , 2.9 listed therein. We extract the cases satisfying
1565
+ d = e = n an odd prime > 3.
1566
+ ◦ Example 2.1 (b) and (d) and Example 2.5 are discarded because they
1567
+ occur for either d or e even.
1568
+ ◦ Examples 2.1 (a) and (c) are (a) and (b) in our list.
1569
+ ◦ Example 2.2 does not occur because it requires an H-stable subspace of
1570
+ the natural representation of GLn(q) and x ∈ H is irreducible.
1571
+ ◦ Examples 2.3 and Examples 2.4 (a) are discarded as they require e ̸= d.
1572
+ ◦ Example 2.4 (b) is the case (c) in our list.
1573
+ ◦ Example 2.6 (a) is discarded because it requires the prime ℓ = n+1, which
1574
+ is impossible because n > 2.
1575
+ ◦ Examples 2.6 (b) and (c) are collected in [17, Tables 2,3,4]. In Table 2, d
1576
+ is even. In Tables 3 and 4 the number e is never odd > 3.
1577
+
1578
+ NICHOLS ALGEBRAS OVER SEMISIMPLE CLASSES
1579
+ 25
1580
+ ◦ Examples 2.7 are listed in [17, Table 5]. The column with ℓ = e + 1, is
1581
+ immediately discarded, just as all rows for which d is not a prime number.
1582
+ We are left with the three possible choices for H′ ≃ H/H ∩ Z(GLn(q))
1583
+ listed in (d) and (e).
1584
+ ◦ Examples 2.8 are listed in [17, Table 6] and are discarded because e ̸= d.
1585
+ ◦ Examples 2.9 are listed in [17, Tables 7,8] and if d is a prime, then e is
1586
+ even. In Table 8, we discard all cases for which ℓ = e + 1 and we are left
1587
+ with the case (f) in our list.
1588
+
1589
+ Lemma 5.14. Let G = SLn(k), m = m0d with (d, n) = 1 and q0 = pm0.
1590
+ (i) If (n, q0 − 1) = n, then Z(GLn(q))GLn(q0) ∩ SLn(q) = SLn(q0).
1591
+ (ii) If m0 is even and (n, q1/2
1592
+ 0
1593
+ + 1) = n, then
1594
+ Z(GLn(q))GUn(q1/2
1595
+ 0
1596
+ ) ∩ SLn(q) = SUn(q1/2
1597
+ 0
1598
+ ).
1599
+ Proof. (i) We prove ⊂. Let ζ idn ∈ Z(GLn(q)) and g ∈ GLn(q0) be such
1600
+ that ζg ∈ SLn(q). Now, |ζ| divides n(q0 − 1) because ζ−n = det(g) ∈ F×
1601
+ q0.
1602
+ It also divides q − 1 because ζ ∈ F×
1603
+ q . Hence it divides
1604
+ (n(q0 − 1), q − 1) = (q0 − 1) (n, (d)q0) .
1605
+ Hence, (d)q0 ≡ d mod n; since (d, n) = 1, then |ζ| divides q0 − 1, i.e.,
1606
+ ζ ∈ F×
1607
+ q0 and ζg ∈ SLn(q0).
1608
+ (ii) We prove ⊂. Let ζ idn ∈ Z(GLn(q)) and g ∈ GUn(q1/2
1609
+ 0
1610
+ ) be such
1611
+ that (ζ idn)g ∈ SLn(q). Now, as g = Frq1/2
1612
+ 0
1613
+ φ(g), we have (det g)q1/2
1614
+ 0
1615
+ +1 = 1.
1616
+ Hence |ζ| divides n(q1/2
1617
+ 0
1618
+ +1) and also q −1 because ζ ∈ F×
1619
+ q , and so it divides
1620
+ (n(q1/2
1621
+ 0
1622
+ + 1), q − 1) = (q1/2
1623
+ 0
1624
+ + 1)
1625
+
1626
+ n, (q1/2
1627
+ 0
1628
+ − 1)(d)q1/2
1629
+ 0
1630
+
1631
+ .
1632
+ However, n is an odd prime dividing q1/2
1633
+ 0
1634
+ + 1 so it does not divide q1/2
1635
+ 0
1636
+ − 1;
1637
+ also, (n, (d)q1/2
1638
+ 0
1639
+ ) = 1 by the argument in (i) applied to q1/2
1640
+ 0
1641
+ . Thus, |ζ| divides
1642
+ q1/2
1643
+ 0
1644
+ + 1, that is, ζ idn ∈ Z(GUn(q1/2
1645
+ 0
1646
+ )), so ζg ∈ SLn(q) ∩ GUn(q1/2
1647
+ 0
1648
+ ) =
1649
+ SUn(q1/2
1650
+ 0
1651
+ ).
1652
+
1653
+ In this Subsection �π: GLn(q) → PGLn(q) is the natural projection,
1654
+ whose restriction to SLn(q) is π.
1655
+ Proposition 5.15. Let x be an irreducible element in the Coxeter torus
1656
+ T = TF
1657
+ w. Then O is kthulhu.
1658
+ Proof.
1659
+ We consider all possible intersections O ∩ M for every M ≤ G
1660
+ containing x. All such groups have the form M = π(H ∩ SLn(q)) for some
1661
+ H ≤ GLn(q) containing x. We will show that either O ∩ M = OM
1662
+ x
1663
+ or else
1664
+ O ∩ M is an abelian subrack. This implies that O is kthulhu.
1665
+
1666
+ 26
1667
+ N. ANDRUSKIEWITSCH, G. CARNOVALE, G. A. GARC´IA
1668
+ For our analysis, we will make use of the following auxiliary facts:
1669
+ Claim 1. CPSLn(x) ∩ O = {x, xq, . . . , xqn−1}.
1670
+ Indeed, Lemma 5.7 gives
1671
+ CSLn(q)(x) ∩ O = {x, xq, . . . , xqn−1}.
1672
+ We describe CPSLn(q)(x). If z ∈ SLn(q) satisfies zxz−1 ∈ Gm(Fq)x∩O, then
1673
+ by primality of n and Lemma 5.8 (ii) and (iv) we conclude that zxz−1 = x,
1674
+ and so CPSLn(q)(x) = π(CSLn(q)(x)) = π(T), whence the claim.
1675
+ Claim 2. If �π(H) is simple, then �π(H) ≤ PSLn(q). In particular, we may
1676
+ assume H ≤ SLn(q).
1677
+ Indeed, if �π(H) is simple, then
1678
+ �π(H) = [�π(H), �π(H)] = �π([H, H]) ≤ �π([GLn(q), GLn(q)]) = π(SLn(q)).
1679
+ We set from now on H1 := H∩SLn(q) and inspect all possible M = π(H1)
1680
+ where H runs through the list of subgroups from Lemma 5.13 containing x,
1681
+ with ℓ a primitive prime divisor of qn − 1 dividing |x|. The numbering of
1682
+ items is as in Lemma 5.13.
1683
+ Case (a). Here q = pm, q0 = pm0 where m = m0d, d ∈ N and (n, d) = 1.
1684
+ Proposition 3.1 gives NGLn(q)(SLn(q0)) = Z(GLn(q))GLn(q0) so
1685
+ SLn(q0) ≤ H1 ≤ Z(GLn(q))GLn(q0) ∩ SLn(q).
1686
+ (5.4)
1687
+ We will first show that
1688
+ O ∩ Z(GLn(q))GLn(q0) ∩ SLn(q) = OSLn(q0)
1689
+ x
1690
+ .
1691
+ (5.5)
1692
+ If (n, q0 − 1) = n, then the inclusions in (5.4) are all equalities by Lemma
1693
+ 5.14 (i). In this case
1694
+ O ∩ Z(GLn(q))GLn(q0) ∩ SLn(q) = O ∩ SLn(q0)
1695
+ = OSLn(k)
1696
+ x
1697
+ ∩ SLn(q0) = OSLn(q0)
1698
+ x
1699
+ where the last two equalities follow from [22, Theorem 21.11] and [20, §2.11].
1700
+ Assume now that (n, q0 −1) = 1. Since x ∈ H1 ≤ Z(GLn(q))GLn(q0), there
1701
+ are z = ζ idn ∈ Z(GLn(q)) and y ∈ GLn(q0) such that
1702
+ x = zy.
1703
+ Consider x1 ∈ O ∩ Z(GLn(q))GLn(q0). Let z1 = ζ1 idn ∈ Z(GLn(q)) and
1704
+ y1 ∈ GLn(q0) be such that x1 = z1y1. By construction, |ζ| and |ζ1| divide
1705
+ n(q0 − 1) because x, x1 ∈ SLn(q).
1706
+ Since x is irreducible, y and y1 are
1707
+ again irreducible in GLn(q), whence in GLn(q0), because they are regular
1708
+ and lie in a Coxeter torus of GLn(q). Let {ηqj : j ∈ I0,n−1} ⊂ Fqn
1709
+ 0 and
1710
+ {ηqj
1711
+ 1 : j ∈ I0,n−1} ⊂ Fqn
1712
+ 0 be the sets of eigenvalues of y and y1, respectively,
1713
+
1714
+ NICHOLS ALGEBRAS OVER SEMISIMPLE CLASSES
1715
+ 27
1716
+ so {ζηqj : j ∈ I0,n−1} and {ζ1ηqj
1717
+ 1 : j ∈ I0,n−1} are the sets of eigenvalues of
1718
+ x and x1, respectively. Then
1719
+ {ζηqj : j ∈ I0,n−1} = {ζ1ηqj
1720
+ 1 : j ∈ I0,n−1}
1721
+ and so ζη = ζ1ηqj0
1722
+ 1
1723
+ for some j0.
1724
+ Therefore |ζ1ζ−1| = |ηη−qj0
1725
+ 1
1726
+ | divides
1727
+ (n(q0 − 1), qn
1728
+ 0 − 1) = (q0 − 1)(n, (n)q0) = q0 − 1, where the last equality
1729
+ follows from Lemma 5.10 (i). In other words, ζ1 ∈ ζF×
1730
+ q0, and z−1x1 is a
1731
+ regular semisimple matrix in GLn(q0) with the same eigenvalues as y, and
1732
+ it is therefore SLn(q0)-conjugate to y. Hence,
1733
+ O ∩ Z(GLn(q))GLn(q0) ⊂ zOSLn(q0)
1734
+ y
1735
+ = OSLn(q0)
1736
+ x
1737
+ .
1738
+ Let now x′ = π(x′) ∈ O ∩ M. Then, z′x′ ∈ O for some z′ ∈ Z(SLn(q))
1739
+ and x′ ∈ Z(SLn(q))H1, that is,
1740
+ z′x′ ∈ O ∩ Z(SLn(q))H1 ⊂ O ∩ Z(GLn(q))GLn(q0) ∩ SLn(q) = OH1
1741
+ x .
1742
+ where the equality follows from (5.4) and (5.5). Thus, x′ ∈ Z(SLn(q))OH1
1743
+ x
1744
+ and x′ ∈ Oπ(H1)
1745
+ x
1746
+ = OM
1747
+ x , showing that O ∩ M = OM
1748
+ x .
1749
+ Case (b). Here q = pm, q0 = pm0 where m0|m, m0 is even and (n, d) = 1.
1750
+ We use the same strategy as in case (a).
1751
+ Proposition 3.1 gives NGLn(q)(SUn(q1/2
1752
+ 0
1753
+ )) = Z(GLn(q))GUn(q1/2
1754
+ 0
1755
+ ) so
1756
+ SUn(q1/2
1757
+ 0
1758
+ ) ≤ H1 ≤ Z(GLn(q))GUn(q1/2
1759
+ 0
1760
+ ) ∩ SLn(q).
1761
+ (5.6)
1762
+ We will first show that
1763
+ O ∩ Z(GLn(q))GUn(q1/2
1764
+ 0
1765
+ ) ∩ SLn(q) = OSUn(q1/2
1766
+ 0
1767
+ )
1768
+ x
1769
+ .
1770
+ (5.7)
1771
+ If (n, q1/2
1772
+ 0
1773
+ +1) = n, then the inclusions in (5.6) are all equalities by Lemma
1774
+ 5.14 (ii). In this case
1775
+ O ∩ Z(GLn(q))GUn(q1/2
1776
+ 0
1777
+ ) ∩ SLn(q) = O ∩ SUn(q1/2
1778
+ 0
1779
+ )
1780
+ = OSLn(k)
1781
+ x
1782
+ ∩ SUn(q1/2
1783
+ 0
1784
+ ) = OSUn(q1/2
1785
+ 0
1786
+ )
1787
+ x
1788
+ where the last two equalities follow from [22, Theorem 21.11] and [20, §2.11].
1789
+ Assume now that (n, q1/2
1790
+ 0
1791
+ +1) = 1. Since x ∈ H1 ≤ Z(GLn(q))GUn(q1/2
1792
+ 0
1793
+ ),
1794
+ there are z = ζ idn ∈ Z(GLn(q)) and y ∈ GUn(q0) ≤ GLn(q0) such that
1795
+ x = zy.
1796
+ Consider x1 ∈ O∩Z(GLn(q))GUn(q1/2
1797
+ 0
1798
+ ). Let z1 = ζ1 idn ∈ Z(GLn(q)) and
1799
+ y1 ∈ GUn(q0) ≤ GLn(q0) be such that x1 = z1y1. By construction, |ζ| and
1800
+ |ζ1| divide n(q1/2
1801
+ 0
1802
+ + 1) because x, x1 ∈ SLn(q) and det(g)q1/2
1803
+ 0
1804
+ +1 = 1 for any
1805
+ g ∈ GUn(q1/2
1806
+ 0
1807
+ ).
1808
+ Since x is irreducible, y and y1 are again irreducible in GLn(q), whence
1809
+ in GLn(q0). We show that |y| cannot divide n(q0 − 1). Indeed, if this were
1810
+
1811
+ 28
1812
+ N. ANDRUSKIEWITSCH, G. CARNOVALE, G. A. GARC´IA
1813
+ the case, then we would have yq0−1 = ξ idn for some ξ ∈ Gn(F×
1814
+ q ), with
1815
+ ξ ̸= 1.
1816
+ Since yq0 ∈ OGLn(q0)
1817
+ y
1818
+ , the characteristic polynomial py would be
1819
+ Xn − det(y) = Xn − ξ−n, which is not irreducible. Hence, by Lemma 5.12
1820
+ (i) there is a primitive prime divisor ℓ of |y| dividing qn
1821
+ 0 − 1.
1822
+ Let F0 : GLn(k) → GLn(k) be given by F0(A) := Frq1/2
1823
+ 0
1824
+ φ(A), for A ∈
1825
+ GLn(k), cf. Subsection 3.2. By [22, Proposition 26.6] there exists an F0-
1826
+ stable torus T′ in GLn(k) containing y. Let T = T′ ∩ GUn(q1/2
1827
+ 0
1828
+ ). By [22,
1829
+ Proposition 25.3 (c)] and an analysis of φ-classes in the symmetric group,
1830
+ there is a partition λ of n such that
1831
+ |T | =
1832
+
1833
+ λi even
1834
+ (qλi/2
1835
+ 0
1836
+ − 1)
1837
+
1838
+ λi odd
1839
+ (qλi/2
1840
+ 0
1841
+ + 1).
1842
+ The latter divides �
1843
+ λi even (qλi/2
1844
+ 0
1845
+ − 1) �
1846
+ λi odd (qλi
1847
+ 0 − 1) and is divisible by
1848
+ the primitive prime divisor ℓ of qn
1849
+ 0 − 1. Hence, λ = (n) and |T | = (qn/2
1850
+ 0
1851
+ + 1).
1852
+ Now we proceed as in case (a): considering the set of eigenvalues for x
1853
+ and x1 and of y and y1, we deduce that |ζ1ζ−1| divides
1854
+
1855
+ n(q1/2
1856
+ 0
1857
+ + 1), qn/2
1858
+ 0
1859
+ + 1
1860
+
1861
+ = (q1/2
1862
+ 0
1863
+ + 1)(n, (n)−q1/2
1864
+ 0
1865
+ ) = (q1/2
1866
+ 0
1867
+ + 1)
1868
+ where (n, (n)−q1/2
1869
+ 0 ) = 1 because (n)−q1/2
1870
+ 0
1871
+ divides qn/2
1872
+ 0
1873
+ + 1 and q1/2
1874
+ 0
1875
+ is not a
1876
+ root of Xn + 1 = (X + 1)n in Fn by our assumption on q0 and n.
1877
+ Hence, z1 ∈ zZ(GUn(q1/2
1878
+ 0
1879
+ )), and z−1x1 is a regular semisimple matrix
1880
+ in GUn(q1/2
1881
+ 0
1882
+ ) with the same eigenvalues as y, and it is therefore SUn(q0)-
1883
+ conjugate to y by [20, §2.11, §8.5]. Hence,
1884
+ O ∩ Z(GLn(q))GUn(q1/2
1885
+ 0
1886
+ ) ⊂ zOSUn(q1/2
1887
+ 0
1888
+ )
1889
+ y
1890
+ = OSUn(q1/2
1891
+ 0
1892
+ )
1893
+ x
1894
+ .
1895
+ Let now x′ = π(x′) ∈ O ∩ M. Then, z′x′ ∈ O for some z′ ∈ Z(SLn(q))
1896
+ and x′ ∈ Z(SLn(q))H1, that is,
1897
+ z′x′ ∈ O ∩ Z(SLn(q))H1 ⊂ O ∩ Z(GLn(q))GUn(q1/2
1898
+ 0
1899
+ ) ∩ SLn(q) = OH1
1900
+ x .
1901
+ where the equality follows from (5.6) and (5.7). Thus, x′ ∈ Z(SLn(q))OH1
1902
+ x
1903
+ and x′ ∈ Oπ(H1)
1904
+ x
1905
+ = OM
1906
+ x , showing that O ∩ M = OM
1907
+ x .
1908
+ Case (c) In this case, M ≤ π(NSLn(q)(T)) = NG(π(T)), where the second
1909
+ equality follows because Z(SLn(q)) ≤ T. If y = π(y) ∈ O ∩ M then there
1910
+ is z ∈ Z(SLn(q)) such that y ∈ OSLn(q)
1911
+ zx
1912
+ ∩ NSLn(q)(T), and zx is again
1913
+ irreducible. By Lemma 5.11 we see that y ∈ T, so O ∩ M ⊂ π(T) is abelian.
1914
+ Case (d) In this case n = 5 and ℓ = 11 and �π(H) = M11 = π(H1). We
1915
+ show that O ∩ M11 = OM11
1916
+ x
1917
+ . The only elements whose order is divisible
1918
+ by ℓ in M11 are of order 11, so |x| = 11. There are two classes of such
1919
+ elements in M11, say OM11
1920
+ x
1921
+ and OM11
1922
+ y
1923
+ . If O ∩ M11 = OM11
1924
+ x
1925
+ ∪ OM11
1926
+ y
1927
+ , then
1928
+ ⟨x⟩ − 1 ⊂ O ∩ M11 ∩ CPSLn(q)(x) = {x, xq, xq2, xq3, xq4}, a contradiction.
1929
+
1930
+ NICHOLS ALGEBRAS OVER SEMISIMPLE CLASSES
1931
+ 29
1932
+ Case (e) In this case n = 11 and ℓ = 23. The only elements of order divisible
1933
+ by ℓ in M = M23 or M24 have order 23 and there are 2 conjugacy classes of
1934
+ such elements. We proceed as in case (c).
1935
+ Case (f) In this case ℓ|qn − 1 and M = π(H1) ≃ H1/H1 ∩ Z(SLn(q)), and
1936
+ PSL2(ℓ) ≤ H1/H1 ∩ Z(SLn(q)) ≤ PGL2(ℓ).
1937
+ As [PGL2(ℓ) : PSL2(ℓ)] ≤ 2, we have M ≃ PGL2(ℓ) or M ≃ PSL2(ℓ).
1938
+ In both cases, |x| = ℓ and we claim that O ∩ M = OM
1939
+ x .
1940
+ In PGL2(ℓ)
1941
+ all non-trivial unipotent elements are conjugate and the claim follows. Let
1942
+ y ∈ O ∩ PSL2(ℓ). By replacing y with a representative lying in the same
1943
+ Borel subgroup of PSL2(ℓ) as x, we can ensure that
1944
+ y ∈ CPSL2(ℓ)(x) ∩ O ⊂ CPSLn(q)(x) ∩ O = {x, xq, . . . , xqn−1}.
1945
+ Without loss of generality we may assume that x is the class of
1946
+ � 1 ξ
1947
+ 0 1
1948
+
1949
+ , for
1950
+ some ξ ∈ F×
1951
+ ℓ so y is the class of
1952
+ � 1 ξ
1953
+ 0 1
1954
+ �qj
1955
+ =
1956
+
1957
+ 1 qjξ
1958
+ 0
1959
+ 1
1960
+
1961
+ for some j ∈ In−1. By
1962
+ assumption q ≡ qn+1 mod ℓ hence q is a square modulo ℓ. Therefore x and
1963
+ y are conjugate in PSL2(ℓ), whence the claim.
1964
+
1965
+ Remark 5.16. Consider either g ∈ M11, |g| = 11, or g ∈ M23 or M24,
1966
+ |g| = 23.
1967
+ Then the classes OM11
1968
+ g
1969
+ , OM23
1970
+ g
1971
+ or OM24
1972
+ g
1973
+ are contained either in
1974
+ OPSL5(q)
1975
+ g
1976
+ for some q, or in OPSL11(q′)
1977
+ g
1978
+ for some q′, respectively, according
1979
+ to [17] and Claim 2, see Cases (d) and (e). By Proposition 5.15, since g
1980
+ is irreducible in all cases, OG
1981
+ g
1982
+ is kthulhu, where G is either PSL5(q) or
1983
+ PSL11(q′). Hence so are OM11
1984
+ g
1985
+ , OM23
1986
+ g
1987
+ and OM24
1988
+ g
1989
+ , as was previously proved
1990
+ in [10, Teorema 3.26].
1991
+ 6. Semisimple conjugacy classes represented in K
1992
+ In this section we deal with semisimple conjugacy classes intersecting the
1993
+ subgroup K which is the image of the map j : GLn(q) → GF introduced in
1994
+ §3.3. We give parallel proofs for two classes of simple groups:
1995
+ ◦ G = Sp2n(k) with n ≥ 2; here G := GF /Z(GF) and π: GF → G denotes
1996
+ the standard projection.
1997
+ ◦ G = SOn′(k) with n′ = 2n and n ≥ 4, or n′ = 2n + 1 and n ≥ 3; here
1998
+ G := [GF, GF ]/Z(GF ) and π: [GF , GF] → G is the standard projection.
1999
+ In the symplectic case, GF = [GF , GF ] so for brevity of the exposition we
2000
+ write [GF , GF] in both cases. We also consider such groups with smaller n
2001
+ sometimes for the sake of recursive arguments.
2002
+ We shall consider a semisimple class O in G, a class O in [GF, GF ] such
2003
+ that π(O) = O and assume that it exists A ∈ GLn(q) such that j(A) ∈ O.
2004
+
2005
+ 30
2006
+ N. ANDRUSKIEWITSCH, G. CARNOVALE, G. A. GARC´IA
2007
+ Here are the main results of this Section:
2008
+ Theorem 6.1. Let G = Sp2n(k), n ≥ 2, and let A ∈ GLn(q) − Z(GLn(q))
2009
+ be a semisimple element, which is not an involution if n = 2 and q ≤ 7.
2010
+ Then O = OG
2011
+ π(j(A)) collapses.
2012
+ Theorem 6.2. Let G = SO2n(k) or SO2n+1(k) with n ≥ 3 in both cases
2013
+ and let A ∈ GLn(q) − Z(GLn(q)) be a semisimple element.
2014
+ Assume in addition that j(A) does not correspond to situation (4.1) if
2015
+ q ∈ {3, 5, 7}. Then O = OG
2016
+ π(j(A)) collapses.
2017
+ These theorems are proved in Subsection 6.2 after we deal in Subsection
2018
+ 6.1 with the case when A is irreducible.
2019
+ In the orthogonal case, we consider the orbit O[GF ,GF ]
2020
+ j(A)
2021
+ for later applica-
2022
+ tions even if j(A) does not necessarily belong to [GF, GF ], as in Remark 2.1.
2023
+ See Lemmata 6.4 and 6.5.
2024
+ We start by some general considerations.
2025
+ Lemma 6.3. Let A ∈ GLn(q) be a semisimple element.
2026
+ (i) Oj(SLn(q))
2027
+ j(A)
2028
+ = O[K,K]
2029
+ j(A)
2030
+ = OK
2031
+ j(A) = Oj(GLn(q))
2032
+ j(A)
2033
+ .
2034
+ (ii) If A is irreducible, then either OGLn(q)
2035
+ A
2036
+ = OGLn(q)
2037
+ A−1
2038
+ or else j(A) is
2039
+ regular in GLn′(q).
2040
+ (iii) If A is irreducible, then either O[GF ,GF ]
2041
+ j(A)
2042
+ = O[GF ,GF ]
2043
+ j(A−1) , or else j(A) is
2044
+ regular.
2045
+ Proof. (i) is a consequence of the inclusions
2046
+ j(SLn(q)) ≃ [K, K] ≤ K ≃ GLn(q).
2047
+ (ii): If ζqh, h ∈ I0,n−1, are the (distinct) eigenvalues of A in k, then ζ±qh
2048
+ for h ∈ I0,n−1 (together with 1 when n′ = 2n + 1) are the eigenvalues of
2049
+ j(A). Assume that j(A) is not regular in GLn′(q); hence A and A−1 have a
2050
+ common eigenvalue. Then the sets of eigenvalues of A and A−1 coincide by
2051
+ irreducibility, that is A and A−1 are conjugate in GLn(k). Since centralisers
2052
+ in GLn(k) are connected, [20, p. 19], OGLn(q)
2053
+ A
2054
+ = OGLn(q)
2055
+ A−1
2056
+ . (iii) follows from
2057
+ (i) and (ii) and the inclusion [K, K] ≤ K ∩ [GF , GF].
2058
+
2059
+ 6.1. A ∈ GLn(q) is irreducible. We first analyze this case.
2060
+ Lemma 6.4. (Here n ≥ 3 when G = SO2n(k) or G = SO2n+1(k)). Let
2061
+ A ∈ GLn(q) be an irreducible element such that
2062
+ ◦ j(A) is not regular in GLn′(q),
2063
+
2064
+ NICHOLS ALGEBRAS OVER SEMISIMPLE CLASSES
2065
+ 31
2066
+ ◦ pA(X) ̸= X2 + 1 when G = Sp4(k) and q ≡ 3 mod 4.
2067
+ Then
2068
+ (i) O := O[GF ,GF ]
2069
+ j(A)
2070
+ collapses.
2071
+ (ii) If j(A) ∈ O ⊆ [GF , GF], then O collapses.
2072
+ Proof.
2073
+ Observe that (ii) follows directly from (i), that we prove.
2074
+ The
2075
+ initial discussion is valid for both orthogonal and symplectic groups. Recall
2076
+ φ from (3.1). The irreduciblity assumption in A ensures that the eigenvalues
2077
+ of A are all distinct, i.e., A is regular semisimple, so we may assume that
2078
+ A is the companion matrix of its characteristic (and minimal) polynomial
2079
+ pA = Xn +an−1Xn−1 +· · · a0. That is, A, φ(A), tA, tA−1, A−1, and φ(A−1)
2080
+ have the following shape:
2081
+ A =
2082
+ � 0
2083
+ 0 ···
2084
+ 0
2085
+ −a0
2086
+ 1
2087
+ 0 ···
2088
+ 0
2089
+ −a1
2090
+ 0
2091
+ 1 ···
2092
+ 0
2093
+ −a2
2094
+ ··· ··· ··· ···
2095
+ ···
2096
+ 0
2097
+ 0 ···
2098
+ 1 −an−1
2099
+
2100
+ ,
2101
+ φ(A) =
2102
+
2103
+ 0
2104
+ 1
2105
+ 0
2106
+ ···
2107
+ 0
2108
+ 0
2109
+ 0
2110
+ 1
2111
+ ···
2112
+ 0
2113
+ ···
2114
+ ···
2115
+ ···
2116
+ ···
2117
+ ···
2118
+ 0
2119
+ ···
2120
+ ···
2121
+ 0
2122
+ 1
2123
+ −1/a0 −an−1/a0 ··· −a2/a0 −a1/a0
2124
+
2125
+ ,
2126
+ tA =
2127
+
2128
+ 0
2129
+ 1
2130
+ 0
2131
+ ···
2132
+ 0
2133
+ 0
2134
+ 0
2135
+ 1
2136
+ ···
2137
+ 0
2138
+ ···
2139
+ ···
2140
+ ···
2141
+ ···
2142
+ ···
2143
+ 0
2144
+ 0
2145
+ 0
2146
+ ···
2147
+ 1
2148
+ −a0 −a1 −a2 ··· −an−1
2149
+
2150
+ ,
2151
+ tA−1 =
2152
+ � −a1/a0 −a2/a0 ··· −an−1/a0 −1/a0
2153
+ 1
2154
+ 0
2155
+ ···
2156
+ 0
2157
+ 0
2158
+ 0
2159
+ 1
2160
+ ···
2161
+ 0
2162
+ 0
2163
+ ···
2164
+ ···
2165
+ ···
2166
+ ···
2167
+ ···
2168
+ 0
2169
+ 0
2170
+ ···
2171
+ 1
2172
+ 0
2173
+
2174
+ ,
2175
+ A−1 =
2176
+
2177
+
2178
+ −a1/a0
2179
+ 1
2180
+ 0 ··· 0
2181
+ −a2/a0
2182
+ 0
2183
+ 1 ··· 0
2184
+ ···
2185
+ ··· ··· ··· ···
2186
+ −an−1/a0 0
2187
+ 0 ··· 1
2188
+ −1/a0
2189
+ 0
2190
+ 0 ··· 0
2191
+
2192
+  ,
2193
+ φ(A−1) =
2194
+ � −an−1 −an−2 ··· ··· −a0
2195
+ 1
2196
+ 0
2197
+ 0 ···
2198
+ 0
2199
+ 0
2200
+ 1
2201
+ 0 ···
2202
+ 0
2203
+ ···
2204
+ ···
2205
+ ··· ···
2206
+ ···
2207
+ 0
2208
+ 0
2209
+ 0
2210
+ 1
2211
+ 0
2212
+
2213
+ .
2214
+ Also A ̸= A−1, otherwise A would have eigenvalues ±1, contradicting irre-
2215
+ ducibility. We consider the disjoint subracks:
2216
+ R1 :=
2217
+ ��
2218
+ A
2219
+ Y
2220
+ 0 φ(A)
2221
+
2222
+ ∈ O
2223
+
2224
+ ,
2225
+ R2 :=
2226
+ ��
2227
+ A−1
2228
+ Y
2229
+ 0
2230
+ φ(A−1)
2231
+
2232
+ ∈ O
2233
+
2234
+ ,
2235
+ if n′ = 2n;
2236
+ R1 :=
2237
+ �� A 0
2238
+ Y
2239
+ 0 1
2240
+ 0
2241
+ 0 0 φ(A)
2242
+
2243
+ ∈ O
2244
+
2245
+ ,
2246
+ R2 :=
2247
+ ��
2248
+ A−1 0
2249
+ Y
2250
+ 0
2251
+ 1
2252
+ 0
2253
+ 0
2254
+ 0 φ(A−1)
2255
+
2256
+ ∈ O
2257
+
2258
+ ,
2259
+ if n′ = 2n + 1.
2260
+ Now R1 ̸= ∅ by construction, and R2 ̸= ∅ by Lemma 6.3 (iii). It is easy to
2261
+ see that Ri ⊲Rj = Rj, 1 ≤ i, j ≤ 2. We continue with each group separately.
2262
+ Case 1. G = Sp2n(k). Let
2263
+ r1 :=
2264
+
2265
+ idn Jn
2266
+ 0
2267
+ idn
2268
+
2269
+ ⊲ j(A) =
2270
+
2271
+ A −AJn+tA−1Jn
2272
+ 0
2273
+ Jn tA−1Jn
2274
+
2275
+ ∈ R1,
2276
+ r2 := j(A−1) ∈ R2.
2277
+ A direct calculation shows that
2278
+ r1r2 :=
2279
+
2280
+ idn −A tAJn+Jn
2281
+ 0
2282
+ idn
2283
+
2284
+ r2r1 :=
2285
+
2286
+ idn −Jn+A−1 tA−1Jn
2287
+ 0
2288
+ idn
2289
+
2290
+ so r1r2 = r2r1 if and only if 2 idn = A−1 tA−1 + A tA. Let us verify that
2291
+ such an equality never holds. Comparing the diagonal entries we obtain
2292
+ a2
2293
+ i = (−1)i+1a2i
2294
+ 0 (1 − a2
2295
+ 0) for i > 0, whereas comparing the entries in the
2296
+
2297
+ 32
2298
+ N. ANDRUSKIEWITSCH, G. CARNOVALE, G. A. GARC´IA
2299
+ first row we obtain a1(a2 + a3
2300
+ 0) = 0 and a1al = −a3
2301
+ 0al−1 for l > 2. The
2302
+ conditions a2 + a3
2303
+ 0 = 0 and a2
2304
+ 2 = −a4
2305
+ 0(1 − a2
2306
+ 0) lead to a contradiction, hence
2307
+ necessarily a1 = 0 and so al = 0 for any l > 0 and a2
2308
+ 0 = 1. In other words,
2309
+ pA(X) = Xn±1. By Lemma 5.5, this is possible only if n = 2, q ≡ 3 mod 4
2310
+ and pA(X) = X2 + 1, which is excluded by hypothesis.
2311
+ Then, r1 ⊲r2 ̸= r2 and, for H := ⟨r1, r2⟩ we have OH
2312
+ r1 ∩ OH
2313
+ r2 ⊂ R1 ∩ R2 = ∅
2314
+ because A2 ̸= id.
2315
+ If p = 2, then |r1| = |r2| is odd and OSp2n(q)
2316
+ j(A)
2317
+ is of
2318
+ type C by Remark 2.4 (b). If, instead, p is odd, then r1r2 ̸= r2r1 implies
2319
+ (r1r2)2 ̸= (r2r1)2 as they are p-elements, so OSp2n(q)
2320
+ j(A)
2321
+ is of type D.
2322
+ We claim that the restriction of the projection π: Sp2n(q) → G to
2323
+ R1
2324
+ � R2 is injective.
2325
+ Indeed, this could fail only if A2 = ±1, but since
2326
+ A is irreducible, we would have A2 = −1 which would give pA(X) = X2 +1,
2327
+ with q ≡ 3 mod 4, i.e., the discarded case. Hence OG
2328
+ π(j(A)) collapses.
2329
+ Case 2. G = SO2n(k) or SO2n+1(k). For n ≥ 3 we consider the matrices:
2330
+ E :=
2331
+
2332
+
2333
+
2334
+ diag(id n
2335
+ 2 , − id n
2336
+ 2 )
2337
+ if n is even,
2338
+ diag(id[ n
2339
+ 2 ], 0, − id[ n
2340
+ 2 ])
2341
+ if n is odd,
2342
+ U :=
2343
+
2344
+
2345
+
2346
+
2347
+ idn E
2348
+ 0
2349
+ idn
2350
+
2351
+ if G = SO2n(k),
2352
+ � idn 0 E
2353
+ 0
2354
+ 1
2355
+ 0
2356
+ 0
2357
+ 0 idn
2358
+
2359
+ if G = SO2n+1(k).
2360
+ Then U ∈ [GF, GF ] by [22, Theorem 24.15, Proposition 24.21] and we con-
2361
+ sider the elements ri ∈ Ri, i = 1, 2:
2362
+ r1 := U ⊲ j(A) ∈ R1 =
2363
+
2364
+
2365
+
2366
+
2367
+
2368
+
2369
+ A −AE+Eφ(A)
2370
+ 0
2371
+ φ(A)
2372
+
2373
+ if G = SO2n(k),
2374
+
2375
+ A 0 −AE+Eφ(A)
2376
+ 0 1
2377
+ 0
2378
+ 0 0
2379
+ φ(A)
2380
+
2381
+ if G = SO2n+1(k),
2382
+ r2 := j(A−1) ∈ R2.
2383
+ A direct calculation shows that r1r2 = r2r1 if and only if
2384
+ 2E = AEφ(A−1) + A−1Eφ(A).
2385
+ (6.1)
2386
+ We verify that this never happens. Assume first that p is odd. By looking
2387
+ at the (1, 1)-entries we see that (6.1) never holds if n ≥ 3. Since r1r2 and
2388
+ r2r1 are p-elements, it follows that π(r1r2)2 ̸= π(r2r1)2. The restriction of
2389
+ π to R1
2390
+ � R2 is injective because A2 = − id with A irreducible would imply
2391
+ n = 2, a discarded case. Hence OG
2392
+ π(j(A)) is of type D.
2393
+
2394
+ NICHOLS ALGEBRAS OVER SEMISIMPLE CLASSES
2395
+ 33
2396
+ Assume that p = 2, so G = SO2n(k). Then (6.1) amounts to A2E
2397
+ ⋆=
2398
+ Eφ(A)2. If n ≥ 4, by looking at the first row we see that ⋆ never holds. If
2399
+ n = 3, then (6.1) holds only when a2 = a−1
2400
+ 0 , a1 = a2
2401
+ 0, but in this case
2402
+ pA(X) = X3 + a−1
2403
+ 0 X2 + a2
2404
+ 0X + a0 = (X + a0)2(X + a−1
2405
+ 0 )
2406
+ is not irreducible. Since |r1| is odd and π is injective, Remark 2.4 (b) applies
2407
+ and so OG
2408
+ π(j(A)) is of type C.
2409
+
2410
+ Lemma 6.5. (Here n ≥ 3 for G = SO2n(k) and n ≥ 2 for G = SO2n+1(k)
2411
+ or Sp2n(k)). Let A ∈ GLn(q) be an irreducible element such that j(A) is
2412
+ regular in GLn′(q). Then
2413
+ (i) O := O[GF ,GF ]
2414
+ j(A)
2415
+ collapses.
2416
+ (ii) If j(A) ∈ O ⊆ [GF , GF], then O collapses.
2417
+ Proof. Since A is irreducible, OGLn(q)
2418
+ A
2419
+ = OGLn(q)
2420
+ Aq
2421
+ . We have O = O[GF ,GF ]
2422
+ j(Aq)
2423
+ by Lemma 6.3 (i) so we can consider the disjoint subracks:
2424
+ R1 :=
2425
+ ��
2426
+ A
2427
+ Y
2428
+ 0 φ(A)
2429
+
2430
+ ∈ O
2431
+
2432
+ ,
2433
+ R2 :=
2434
+ ��
2435
+ Aq
2436
+ Y
2437
+ 0 φ(Aq)
2438
+
2439
+ ∈ O
2440
+
2441
+ ,
2442
+ if n′ = 2n;
2443
+ R1 :=
2444
+ �� A 0
2445
+ Y
2446
+ 0 1
2447
+ 0
2448
+ 0 0 φ(A)
2449
+
2450
+ ∈ O
2451
+
2452
+ ,
2453
+ R2 :=
2454
+ �� Aq 0
2455
+ Y
2456
+ 0 1
2457
+ 0
2458
+ 0 0 φ(Aq)
2459
+
2460
+ ∈ O
2461
+
2462
+ ,
2463
+ if n′ = 2n + 1.
2464
+ Then Ri ⊲ Rj ⊆ Rj for 1 ≤ i, j ≤ 2.
2465
+ Let r1 = j(A) ∈ R1.
2466
+ Since j(Aq) is regular, CGLn′(q)(r1) consists of
2467
+ semisimple elements, there exists u ∈ [GF, GF ] unipotent block upper tri-
2468
+ angular, with identity diagonal blocks of size n, n if n′ = 2n and n, 1, n
2469
+ if n′ = 2n + 1, such that r2 := u ⊲ j(Aq) ∈ R2 \ {j(Aq)}. Observe that
2470
+ r2 = j(Aq)v for some non-trivial block upper triangular unipotent element
2471
+ v. Now, r1j(Aq) = j(Aq)r1 and v /∈ CGLn′(q)(r1) because the latter consists
2472
+ of semisimple elements. Hence, r1r2 ̸= r2r1.
2473
+ If p = 2, then |A| is odd and O[GF ,GF ]
2474
+ j(A)
2475
+ is of type C by Remark 2.4 (b).
2476
+ Let p be odd. Then H := ⟨r1, r2⟩ = ⟨r1, v⟩ = ⟨r2, v⟩, with v a p-element.
2477
+ Thus
2478
+ ��OH
2479
+ ri
2480
+ �� ≥
2481
+ ���O⟨v⟩
2482
+ ri
2483
+ ��� ≥ 3 for i = 1, 2, so O[GF ,GF ]
2484
+ j(A)
2485
+ is of type C by Lemma 2.3.
2486
+ Since A is irreducible, A ̸= Aq, hence the restriction of π to R1
2487
+ � R2 is
2488
+ injective, giving (ii).
2489
+
2490
+ Lemma 6.6. Let G = Sp4(k), let q ≡ 3 mod 4 and let A =
2491
+ � 0 −1
2492
+ 1
2493
+ 0
2494
+
2495
+ . Then
2496
+ O = OG
2497
+ π(j(A)) is of type D, hence it collapses.
2498
+
2499
+ 34
2500
+ N. ANDRUSKIEWITSCH, G. CARNOVALE, G. A. GARC´IA
2501
+ Proof. By assumption, π(j(A)) is an involution. Let sc,d :=
2502
+ � c d
2503
+ d −c
2504
+
2505
+ ∈ F2×2
2506
+ q
2507
+ ,
2508
+ where (c, d) ∈ F2
2509
+ q. A direct calculation shows that
2510
+ Asc,dA−1 = s−c,−d = −sc,d.
2511
+ Thus, if sc,d ∈ GL2(q), then
2512
+ π(j(A)) ⊲ π(j(sc,d)) = π(j(sc,d));
2513
+ also
2514
+ φ(sc,d) =
2515
+ −1
2516
+ c2 + d2 sc,−d.
2517
+ We pick (a, b) ∈ F2
2518
+ q such that a2 + b2 = −1. Since q ≡ 3 mod 4, we have
2519
+ ab ̸= 0. As sa,b is semisimple, with same trace and determinant as A, it lies
2520
+ in OSL2(q)
2521
+ A
2522
+ , so π (j(sa,b)) ∈ OG
2523
+ π(j(A)).
2524
+ Consider the disjoint, non-empty subracks
2525
+ R1 :=
2526
+
2527
+ π
2528
+ � A X
2529
+ 0 −A
2530
+
2531
+ ∈ OG
2532
+ π(j(A))
2533
+
2534
+ ,
2535
+ R2 :=
2536
+
2537
+ π
2538
+ � sa,b
2539
+ X
2540
+ 0
2541
+ sa,−b
2542
+
2543
+ ∈ OG
2544
+ π(j(A))
2545
+
2546
+ of OG
2547
+ π(j(A)). Then Ri ⊲ Rj = Rj for i, j ∈ {1, 2}.
2548
+ We set
2549
+ r := π
2550
+
2551
+ id2 id2
2552
+ 0
2553
+ id2
2554
+
2555
+ ⊲ π(j(A)) = π
2556
+ � A −2A
2557
+ 0 −A
2558
+
2559
+ ∈ R1,
2560
+ s := π(j(sa,b)) ∈ R2.
2561
+ Now ab ̸= 0 implies that sa,bsa,−b is not diagonal, hence
2562
+ (rs)2 = π
2563
+
2564
+ id2 2(id2 +sa,bsa,−b)
2565
+ 0
2566
+ id2
2567
+
2568
+ ̸= π
2569
+
2570
+ id2 −2(id2 +sa,bsa,−b)
2571
+ 0
2572
+ id2
2573
+
2574
+ = (sr)2,
2575
+ so OG
2576
+ π(j(A)) is of type D.
2577
+
2578
+ 6.2. Proofs of Theorems 6.1 and 6.2. We now drop the irreducibility
2579
+ assumption and proceed to prove the main results of this Section.
2580
+ Proof of Theorem 6.1. For A irreducible, this is Lemmata 6.4, 6.5 and 6.6.
2581
+ If A is not irreducible, then we may assume that A is a block diagonal
2582
+ matrix diag(A1, · · · , Af) where the Ai’s are irreducible. If they are all of
2583
+ size 1, then j(A) lies in a Fq-split torus and Proposition 4.1 applies.
2584
+ If,
2585
+ instead, one of the matrices Ai has size ni ≥ 2, then n > 2 and Ai is
2586
+ non-central in GLni(q) because it is irreducible. Lemmata 6.4, 6.5 and 6.6
2587
+ imply that O
2588
+ Sp2ni(q)
2589
+ j(Ai)
2590
+ collapses. The statement follows from injectivity of the
2591
+ composition of rack maps:
2592
+ � i−1
2593
+
2594
+ l=1
2595
+ {j(Al)}
2596
+
2597
+ × O
2598
+ Sp2ni(q)
2599
+ j(Ai)
2600
+ ×
2601
+
2602
+ f�
2603
+ m=i+1
2604
+ {j(Am)}
2605
+
2606
+ → OSp2n(q)
2607
+ j(A)
2608
+ → OG
2609
+ π(j(A)).
2610
+
2611
+ Proof of Theorem 6.2. For A irreducible, this is Lemmata 6.4 and 6.5.
2612
+ If A is not irreducible, then we may assume that A is a block diagonal
2613
+ matrix diag(A1, · · · , Af) where f > 1 and each Ai is an irreducible ni × ni-
2614
+ matrix.
2615
+
2616
+ NICHOLS ALGEBRAS OVER SEMISIMPLE CLASSES
2617
+ 35
2618
+ If q = 2, then A lies in SLn(q) and is not irreducible, so the rack inclusion
2619
+ OSLn(q)
2620
+ A
2621
+ ֒→ O[SOn′(q),SOn′(q)]
2622
+ j(A)
2623
+ combined with [3, Theorem 1.1] gives the claim
2624
+ because PΩ+
2625
+ n′(q) = [SOn′(q), SOn′(q)].
2626
+ If ni = 1 for all i, then j(A) lies in a Fq-split torus and Lemma 4.6 applies.
2627
+ Therefore, we assume from now on that q > 2 and ni ≥ 2 for some i.
2628
+ If ni ≥ 3 for some i, then O
2629
+ [SO2ni(q),SO2ni(q)]
2630
+ j(Ai)
2631
+ collapses by Lemmata 6.4
2632
+ and 6.5. Then the claim follows because of the injectivity of the composition
2633
+ of the rack morphisms
2634
+ �i−1
2635
+
2636
+ l=1
2637
+ {j(Al)}
2638
+
2639
+ × O
2640
+ [SO2ni(q),SO2ni(q)]
2641
+ j(Ai)
2642
+ ×
2643
+
2644
+ f�
2645
+ l=i+1
2646
+ {j(Al)}
2647
+
2648
+ → O[SOn′(q),SOn′(q)]
2649
+ j(A)
2650
+ → OG
2651
+ π(j(A)).
2652
+ From now on we assume that n1 = 2, and ni ≤ 2 for all i.
2653
+ If ni = 1 for some i, say i = 2, then A2 = (c) for some c ∈ F×
2654
+ q . Since
2655
+ A1 is irreducible, it is regular and has no eigenvalues in Fq. Thus the block
2656
+ diagonal matrix ˜A1 = diag(A1, c) has 3 distinct eigenvalues in Fq. The ma-
2657
+ trices
2658
+ � A1 v
2659
+ 0
2660
+ c
2661
+
2662
+ , v ∈ F2
2663
+ q, have the same eigenvalues, hence they lie in OGL3(q)
2664
+ ˜
2665
+ A1
2666
+ =
2667
+ OSL3(q)
2668
+ ˜
2669
+ A1
2670
+ , cf. Remark 2.1. Consider the map j : GL3(q) → SO6(q). We claim
2671
+ that j
2672
+
2673
+ A−1
2674
+ 1
2675
+ 0
2676
+ 0
2677
+ c
2678
+
2679
+ ∈ O := O[SO6(q),SO6(q)]
2680
+ j( ˜
2681
+ A1)
2682
+ .
2683
+ Indeed, there is a representative g of a suitable w ∈ W in the normaliser of
2684
+ the torus of diagonal matrices in [SO6(q), SO6(q)] that satisfies g ⊲ j( ˜
2685
+ A1) =
2686
+ j
2687
+
2688
+ tA−1
2689
+ 1
2690
+ 0
2691
+ 0
2692
+ c
2693
+
2694
+ . Also, tA−1
2695
+ 1
2696
+ ∈ OSL3(q)
2697
+ A−1
2698
+ , hence j
2699
+
2700
+ tA−1
2701
+ 1
2702
+ 0
2703
+ 0
2704
+ c
2705
+
2706
+ ∈ O. Thus
2707
+ R1 =
2708
+
2709
+ j
2710
+ � A1 v
2711
+ 0
2712
+ c
2713
+
2714
+ : v ∈ F2
2715
+ q
2716
+
2717
+ ,
2718
+ R2 =
2719
+
2720
+ j
2721
+
2722
+ A−1
2723
+ 1
2724
+ v
2725
+ 0
2726
+ c
2727
+
2728
+ : v ∈ F2
2729
+ q
2730
+
2731
+ are subracks of O, which are disjoint because A1 is irreducible.
2732
+ Clearly,
2733
+ Ri ⊲ Rj ⊂ Rj, 1 ≤ i, j ≤ 2. Pick 0 ̸= v ∈ F2
2734
+ q and set:
2735
+ r := j
2736
+ � A1 0
2737
+ 0
2738
+ c
2739
+
2740
+ ∈ R1;
2741
+ s := j
2742
+
2743
+ A−1
2744
+ 1
2745
+ v
2746
+ 0
2747
+ c
2748
+
2749
+ ∈ R2.
2750
+ By a direct calculation, rs = sr implies that c is an eigenvalue of A1, a
2751
+ contradiction. Similarly, (rs)2 = (sr)2 iff c2 = −1, which can occur only if
2752
+ q is even or q ≡ 1 mod 4. If q is even, then O is of type C by Remark 2.4
2753
+ (b). If q ≡ 3 mod 4 or q ≡ 1 mod 4 and c2 ̸= −1, then O is of type D.
2754
+ Assume that q ≡ 1 mod 4 and c2 = −1. We claim that
2755
+ 3 = |{s, rsr−1, r2sr−2}| ≤
2756
+ ���O⟨r,s⟩
2757
+ s
2758
+ ��� ,
2759
+ (6.2)
2760
+ 3 = |{r, srs−1, rsrs−1r−1}| ≤
2761
+ ���O⟨r,s⟩
2762
+ r
2763
+ ���
2764
+ (6.3)
2765
+
2766
+ 36
2767
+ N. ANDRUSKIEWITSCH, G. CARNOVALE, G. A. GARC´IA
2768
+ By a direct calculation, r2sr−2 = s iff A2
2769
+ 1v = −v = c2v, that is, hence c
2770
+ or −c is an eigenvalue of A1, a contradiction because they both lie in Fq;
2771
+ (6.2) follows. Similarly, rsrs−1r−1 = srs−1 iff (A1 − c)2v = 0, thus c is an
2772
+ eigenvalue of A1, a contradiction. Now srs−1 ̸= r implies rsrs−1r−1 ̸= r
2773
+ and (6.3) follows. Hence O[SO3(q),SO3(q)]
2774
+ j( ˜
2775
+ A1)
2776
+ is of type C by Lemma 2.3. Since
2777
+ the composition
2778
+ (R1
2779
+
2780
+ R2) ×
2781
+ � f�
2782
+ l=3
2783
+ {j(Al)}
2784
+
2785
+ → O[SO3(q),SO3(q)]
2786
+ j( ˜
2787
+ A1)
2788
+ ×
2789
+ � f�
2790
+ l=3
2791
+ {j(Al)}
2792
+
2793
+ → O[SOn′(q),SOn′(q)]
2794
+ j(A)
2795
+ → O = OG
2796
+ π(j(A))
2797
+ is an injective morphism of racks, the statement is proved in this case.
2798
+ There remains the case ni = 2 for all i. It suffices to assume that f = 2,
2799
+ so G = SO8(q), and that A1 and A2 are the companion matrices of their
2800
+ characteristic polynomials pA1 = X2 + aX + b and pA2 = X2 + cX + d, so
2801
+ A1 :=
2802
+ � 0 −b
2803
+ 1 −a
2804
+
2805
+ ,
2806
+ A2 :=
2807
+ � 0 −d
2808
+ 1 −c
2809
+
2810
+ ,
2811
+ A :=
2812
+
2813
+ A1
2814
+ 0
2815
+ 0 A2
2816
+
2817
+ .
2818
+ As in the previous step, there is an element in [SO8(q), SO8(q)] mapping
2819
+ j(A) to j
2820
+
2821
+ A−1
2822
+ 1
2823
+ 0
2824
+ 0
2825
+ A2
2826
+
2827
+ . We consider the subracks of O[SO8(q),SO8(q)]
2828
+ j(A)
2829
+ given by
2830
+ R1 :=
2831
+
2832
+ j
2833
+
2834
+ A1 M
2835
+ 0 A2
2836
+
2837
+ ∈ O[SO8(q),SO8(q)]
2838
+ j(A)
2839
+
2840
+ ,
2841
+ R2 :=
2842
+
2843
+ j
2844
+
2845
+ A−1
2846
+ 1
2847
+ M
2848
+ 0
2849
+ A2
2850
+
2851
+ ∈ O[SO8(q),SO8(q)]
2852
+ j(A)
2853
+
2854
+ which are disjoint since A1 is irreducible. Clearly, Ri ⊲Rj ⊂ Rj, 1 ≤ i, j ≤ 2.
2855
+ Let u :=
2856
+
2857
+ id2 id2
2858
+ 0
2859
+ id2
2860
+
2861
+ ∈ SL4(q) and consider
2862
+ r := j(u) ⊲ j(A) = j
2863
+
2864
+ A1 A2−A1
2865
+ 0
2866
+ A2
2867
+
2868
+ ∈ R1,
2869
+ s := j
2870
+
2871
+ A−1
2872
+ 1
2873
+ 0
2874
+ 0
2875
+ A2
2876
+
2877
+ ∈ R2.
2878
+ A direct calculation in GL4(q) shows that (rs)2 = (sr)2 if and only if
2879
+ (A2 − A1)A2(id2 +A2
2880
+ 2) = A−1
2881
+ 1 (A2 − A1)(id2 +A2
2882
+ 2).
2883
+ (6.4)
2884
+ Now, det(id2 +A2
2885
+ 2) = 0 implies that there exists 0 ̸= v ∈ F2
2886
+ q such that A2
2887
+ 2v =
2888
+ −v. By the irreducibility of A2, we get pA2 = X2 + 1, i.e., A2 =
2889
+ � 0 −1
2890
+ 1 0
2891
+
2892
+ .
2893
+ Assume that det(id2 +A2
2894
+ 2) ̸= 0. Then (6.4) is equivalent to A2 − A1 =
2895
+ A−1
2896
+ 1
2897
+ − A−1
2898
+ 2 , which is equivalent to A1 = A2. Therefore, if A1 ̸= A2, possibly
2899
+ interchanging the roles of A1 and A2, we can make sure that (6.4) is not
2900
+ satisfied, hence (rs)2 ̸= (sr)2, so OSL4(q)
2901
+ A
2902
+ is of type D. If A1 = A2 ̸=
2903
+ � 0 −1
2904
+ 1 0
2905
+
2906
+ ,
2907
+ then we interchange A1 and A−1
2908
+ 1
2909
+ and argue as above.
2910
+ In all cases, the
2911
+ restriction of π to R1
2912
+ � R2 is injective, so OG
2913
+ π(j(A)) is of type D.
2914
+
2915
+ NICHOLS ALGEBRAS OVER SEMISIMPLE CLASSES
2916
+ 37
2917
+ Finally, if A1 = A2 =
2918
+ � 0 −1
2919
+ 1 0
2920
+
2921
+ , then A ∈ SL4(q) and OPSL4(q)
2922
+ πSL4(q)(A) is of type
2923
+ D by [3, Lemmata 3.15, 3.16, 3.17], and Oπ(K)
2924
+ π(j(A)) projects onto it. Whence
2925
+ Oπ(K)
2926
+ π(j(A)) is also of type D.
2927
+
2928
+ 7. The symplectic groups
2929
+ In this Section, G = Sp2n(k), n ≥ 2. Recall that e ̸= x ∈ G is semisimple,
2930
+ GF ∋ x �→ x, O = OGF
2931
+ x
2932
+ and O = OG
2933
+ x . Here is the main result of this Section:
2934
+ Theorem 7.1. Let x ̸∈ Z(G) be semisimple. Then O collapses unless n = 2,
2935
+ q ∈ {3, 5, 7} and x is an involution.
2936
+ Classes represented in K have been discussed in Section 6. We deal in
2937
+ Subsection 7.1 with cuspidal classes that are not Coxeter, and then with
2938
+ Coxeter classes in Subsection 7.2. Theorem 7.1 is proved in Subsection 7.3.
2939
+ 7.1. Cuspidal classes. Here we discuss the semisimple classes that are
2940
+ cuspidal but not Coxeter. Below we use without further notice that a cus-
2941
+ pidal class could not meet a standard Levi subgroup by Proposition 3.12.
2942
+ We start by the following observation: two semisimple symplectic matrices
2943
+ conjugated in GL2n(q) are then conjugated in Sp2n(q).
2944
+ Lemma 7.2. In either of the following cases, O is not cuspidal: (a) Some
2945
+ eigenvalue of x lies in Fq. (b) |x| ∈ {2, 3, 4}.
2946
+ Proof. (a). Indeed, if λ ∈ Fq is an eigenvalue of x, then so is λ−1, hence
2947
+ O contains an element of the form
2948
+
2949
+ λ
2950
+ A′ B′
2951
+ C′ D′
2952
+ λ−1
2953
+
2954
+ which belongs to a Levi
2955
+ subgroup isomorphic to Sp2(n−1)(k) × k×. Thus O is not cuspidal.
2956
+ (b). By (a), we may assume that x has no eigenvalues in Fq, so ±1 are
2957
+ excluded. If |x| ∈ {2, 3, 4}, then x has at most 2 distinct eigenvalues, namely
2958
+ the two primitive roots of 1, so it is not cuspidal by Proposition 3.13.
2959
+
2960
+ 7.1.1. Cuspidal classes in the Weyl group. As is well-known, the Weyl group
2961
+ is W = (Z/2)n⋊Sn; let (ej)j∈In be the canonical basis of (Z/2)n. We identify
2962
+ W with a subgroup of S2n as in [11]:
2963
+ W ≃ {ς ∈ S2n : ς(2n + 1 − j) = 2n + 1 − ς(j), j ∈ In},
2964
+ Sn ∋ σ �→ σ′,
2965
+ σ′(j) =
2966
+
2967
+ σ(j),
2968
+ if j ∈ In,
2969
+ 2n + 1 − ς(2n + 1 − j),
2970
+ if j ∈ In+1,2n;
2971
+ ej �→ τj = (j
2972
+ 2n + 1 − j),
2973
+ j ∈ In.
2974
+ Given h ≤ k in In, we consider the 2(k − h + 1)-cycle in S2n defined by
2975
+ ch,k = (h
2976
+ h + 1 . . . k
2977
+ 2n + 1 − h
2978
+ 2n − h . . . 2n + 1 − k).
2979
+ (7.1)
2980
+
2981
+ 38
2982
+ N. ANDRUSKIEWITSCH, G. CARNOVALE, G. A. GARC´IA
2983
+ Evidently, ch,k ∈ W. Let now λλλ = (d1, . . . , dt) be a partition of n, denoted
2984
+ λλλ ⊢ n, with d1 ≥ · · · ≥ dt. Set
2985
+ cλλλ = c1,d1cd1+1,d1+d2 . . . cd1+···+dt−1+1,n ∈ W.
2986
+ (7.2)
2987
+ By the identification above, we can rephrase [16, Proposition 3.4.6]:
2988
+ Proposition 7.3. The conjugacy class of such cλλλ is cuspidal. The family
2989
+ cλλλ, λλλ ⊢ n, is a complete set of representatives of the cuspidal conjugacy
2990
+ classes of W.
2991
+
2992
+ For instance, if λλλ = (n), then cλλλ is a Coxeter element.
2993
+ 7.1.2. Cuspidal, but not Coxeter, classes. Let λλλ = (d1, . . . , dt) ⊢ n, with
2994
+ d1 ≥ · · · ≥ dt. Let Gλλλ be the image of the injective morphism of groups
2995
+ Sp2d1(k) × Sp2d2(k) × · · · × Sp2dt(k) −→ Sp2n(k),
2996
+ ��
2997
+ A1
2998
+ B1
2999
+ C1
3000
+ D1
3001
+
3002
+ , . . . ,
3003
+
3004
+ At
3005
+ Bt
3006
+ Ct
3007
+ Dt
3008
+ ��
3009
+ �−→
3010
+
3011
+
3012
+
3013
+
3014
+
3015
+
3016
+
3017
+
3018
+
3019
+ A1
3020
+ B1
3021
+ ...
3022
+ ...
3023
+ At
3024
+ Bt
3025
+ Ct
3026
+ Dt
3027
+ ...
3028
+ ...
3029
+ C1
3030
+ D1
3031
+
3032
+
3033
+
3034
+
3035
+
3036
+
3037
+
3038
+
3039
+
3040
+ .
3041
+ Claim. cλλλ has a decomposition Γ such that GΓ = Gλλλ, cf. (3.9).
3042
+ Proof. First, wj = cd1+d2+···+dj−1+1,d1+d2+···+dj is a Coxeter element of the
3043
+ factor Sp2dj(k) of Gλλλ. Up to appropriate identifications, the union of de-
3044
+ compositions Γ1, . . . , Γt of w1, . . . , wt is a decomposition of cλλλ. This implies
3045
+ the claim.
3046
+
3047
+ Lemma 7.4. If the conjugacy class O in GF is cuspidal but not Coxeter,
3048
+ then it is of type C, hence it collapses.
3049
+ Proof. By Proposition 3.12, there is partition λλλ ̸= (n) such that O intersects
3050
+ GF
3051
+ λλλ = Sp2d1(q) × Sp2d2(q) × · · · × Sp2dt(q). Let x = (x1, . . . , xt) ∈ GF
3052
+ λλλ ∩ O,
3053
+ with xj ∈ Sp2dj(q) for all j, so that
3054
+ O
3055
+ GF
3056
+ λλλ
3057
+ x
3058
+ = O
3059
+ Sp2d1(q)
3060
+ x1
3061
+ × O
3062
+ Sp2d2(q)
3063
+ x2
3064
+ × · · · × O
3065
+ Sp2dt(q)
3066
+ xt
3067
+ ≤ O.
3068
+ We claim that xj /∈ Z(Sp2dj(q)) for all j ∈ It. Indeed, if xj ∈ Z(Sp2dj(q)) for
3069
+ some j, then x belongs to the torus Tci
3070
+ λλλ, cf. (3.11), where cj
3071
+ λλλ ∈ W is defined
3072
+ as cλλλ in (7.2) but omitting cd1+···+dj−1+1,d1+···+dj. This is a contradiction
3073
+ because cj
3074
+ λλλ is not cuspidal proving the claim. Then the lemma follows from
3075
+
3076
+ NICHOLS ALGEBRAS OVER SEMISIMPLE CLASSES
3077
+ 39
3078
+ Lemma 2.9, by Remark 2.10 and Lemma 3.14. Indeed, xj ̸= xq
3079
+ j, otherwise x
3080
+ would lie in a non-cuspidal torus by Lemma 7.2
3081
+
3082
+ Lemma 7.5. If the conjugacy class O in GF is cuspidal but not Coxeter,
3083
+ then the conjugacy class O in G is of type C, hence it collapses.
3084
+ Proof. Let π : Sp2n(q) → PSp2n(q) be the canonical projection. We may
3085
+ assume that q is odd, thus ker π = {± id}. Keep the notation of Lemma 7.4.
3086
+ Claim 1. The Lemma holds for t > 2.
3087
+ Indeed, the Lemma 2.9 provides a subrack of O of type C with the form
3088
+ Y =
3089
+
3090
+ {x1} × O
3091
+ Sp2d2(q)
3092
+ x2
3093
+ × {x3}
3094
+ � � �
3095
+ {xq
3096
+ 1} × O
3097
+ Sp2d2(q)
3098
+ x2
3099
+ × {x3}
3100
+
3101
+ and clearly the restriction of π to Y is injective.
3102
+ Claim 2. The Lemma holds for t = 2.
3103
+ If x1 ̸= −xq
3104
+ 1, then the restriction of π to the subrack of type C
3105
+ Y =
3106
+
3107
+ {x1} × O
3108
+ Sp2d2(q)
3109
+ x2
3110
+ � � �
3111
+ {xq
3112
+ 1} × O
3113
+ Sp2d2(q)
3114
+ x2
3115
+
3116
+ is injective; similarly if x2 ̸= −xq
3117
+ 2. Thus we may assume that x1 = −xq
3118
+ 1
3119
+ and x2 = −xq
3120
+ 2. Now x1 lives in a Coxeter torus TF
3121
+ 1 in Sp2d1(q). By [22,
3122
+ Proposition 25.3] and [16, §3.4.3], we have
3123
+ |TF
3124
+ 1 | = qd1 + 1.
3125
+ Hence |x1| divides (2(q − 1), qd1 + 1) =
3126
+
3127
+
3128
+
3129
+ 2
3130
+ if qd1 ≡ 1 mod 4,
3131
+ 4
3132
+ if qd1 ≡ 3 mod 4.
3133
+ By symmetry, we may assume that the same holds for x2.
3134
+ Hence |x|
3135
+ divides 4; this contradicts Lemma 7.2.
3136
+
3137
+ 7.2. Coxeter classes in Sp2n(q). Let x ∈ T ′ = TF
3138
+ w be a Coxeter element
3139
+ and let O = OGF
3140
+ x
3141
+ .
3142
+ Hence x is regular and its order divides qn + 1, so
3143
+ xqn = x−1. Arguing as in [5, §2.5] we see that O ∩ T ′ = {x±qj, j ∈ I0,n−1},
3144
+ and that the action of w raises x to xq. If ξ ∈ Fq is an eigenvalue of x, then all
3145
+ other eigenvalues of x are of the form {ξqj, j ∈ I0,2n−1} = {ξ±qj, j ∈ I0,n−1},
3146
+ with ξqn = ξ−1 and they are all distinct by Proposition 3.13.
3147
+ Lemma 7.6. Assume q is odd. If x is a Coxeter element, then −x ̸∈ O.
3148
+ Proof. If −x ∈ O, then with notation as above, −ξ is an eigenvalue of x, so
3149
+ −ξ = ξqj or −ξ = ξ−qj for some j < n. In the first case ξq2j = (−ξ)qj = ξ,
3150
+ whilst in the second ξq2j = (−ξ−1)qj = −(ξqj)−1 = ξ, with 2j < 2n in both
3151
+ cases, contradicting regularity of x.
3152
+
3153
+
3154
+ 40
3155
+ N. ANDRUSKIEWITSCH, G. CARNOVALE, G. A. GARC´IA
3156
+ Lemma 7.7. Let x be a Coxeter element in GF. Then O is of type C.
3157
+ Proof. Let H be a subgroup of GF isomorphic to SL2(qn), which exists by
3158
+ [21, II Satz 9.24]. Any non-split torus of T ′ ≤ H has order qn + 1 by (5.1),
3159
+ hence it is a Coxeter torus in GF, [16, 3.4.3]. Therefore
3160
+ |O ∩ T ′| = |{x±qj, j ∈ I0,n−1}| = 2n,
3161
+ |OH
3162
+ x ∩ T ′| ≤ 2,
3163
+ so the intersection O ∩ H is not a single H-conjugacy class. Assume x ∈
3164
+ H. Since H ≃ SL2(qn) with n ≥ 2, the group H/Z(H) is simple, so the
3165
+ non-central normal subgroup ⟨OH
3166
+ x ⟩ coincides with H. In addition, |OH
3167
+ x | =
3168
+ qn(qn − 1) > 4, so O is of type C by Lemma 2.8. The restriction of the
3169
+ projection π: GF → G to O is injective by Lemma 7.6, so π(O) = O is of
3170
+ type C as well.
3171
+
3172
+ 7.3. The general case. Let L be a split F-stable Levi subgroup of G.
3173
+ Then, there exist f > 0, m ≥ 0 and ni for i ∈ If satisfying n = e + �f
3174
+ i=1 ni
3175
+ such that L is isomorphic the image of the injective morphism of groups
3176
+ �j : GLn1(k) × · · · × GLnf (k) × Sp2e(k) → Sp2n(k)
3177
+ (7.3)
3178
+ (A1, · · · , Af, A) �→ diag(A1, . . . , Ar, A, φ(Af), . . . , φ(A1))
3179
+ (7.4)
3180
+ Proof of Theorem 7.1. If n = 2, q = 3 and x is a non-central involution,
3181
+ then O is kthulhu by Lemma 4.4. Assume that q /∈ {5, 7} if n = 2 and
3182
+ x is a non-central involution. If x is cuspidal but not Coxeter, we invoke
3183
+ Lemma 7.5, whilst if x is Coxeter, then the claim follows from Lemma 7.7.
3184
+ If x is not cuspidal, then by Proposition 3.12 we may assume that x ∈ LF
3185
+ for a proper standard Levi subgroup L of G. Let �j be as in (7.3) and let
3186
+ x = �j(x1, . . . , xf, y). Taking ni, for i ∈ If and e to be minimal, and possibly
3187
+ increasing f, we assume that each xi is irreducible in GLni(q) and y is
3188
+ cuspidal in Sp2e(q). Under these assumptions xi ∈ Z(GLni(q)) if and only
3189
+ if ni = 1. If e = 0 the statement follows from Theorem 6.1. If e ≥ 2, then
3190
+ we consider the rack embedding
3191
+ {x1} × · · · × {xf} × OSp2e(q)
3192
+ y
3193
+ → OSp2n(q)
3194
+ x
3195
+ → OPSp2n(q)
3196
+ x
3197
+ (7.5)
3198
+ and invoke either Lemma 7.5 or Lemma 7.7.
3199
+ Assume from now on that e = 1, i.e., y is irreducible in Sp2(q) ≃ SL2(q).
3200
+ If there exists and ni such that ni > 1, then we consider the rack embedding
3201
+ {x1} × · · · × O
3202
+ Sp2ni(q)
3203
+ xi
3204
+ × · · · × {xf} × {y} → OSp2n(q)
3205
+ x
3206
+ → OPSp2n(q)
3207
+ x
3208
+ (7.6)
3209
+ and invoke Theorem 6.1.
3210
+ There remains the case in which ni = 1 for every i. We assume that
3211
+ f = 1, for if f > 1 we can use the rack injection
3212
+ {x1} × · · · × {xf−1} × O
3213
+ Sp2(nf +1)(q)
3214
+ ˜j(xf ,y)
3215
+ → OSp2n(q)
3216
+ x
3217
+ → OPSp2n(q)
3218
+ x
3219
+ .
3220
+
3221
+ NICHOLS ALGEBRAS OVER SEMISIMPLE CLASSES
3222
+ 41
3223
+ Since y is irreducible, it lies in a non-split maximal torus, so its order divides
3224
+ q + 1 and so yq = y−1 ∈ OSL2(q)
3225
+ y
3226
+ . Also, if py = X2 − zX + 1, then z ̸= ±2.
3227
+ We may assume that y =
3228
+ � 0 1
3229
+ −1 z
3230
+
3231
+ so y−1 =
3232
+ � z −1
3233
+ 1 0
3234
+
3235
+ and x = diag(λ, y, λ−1).
3236
+ We consider the following subracks of O = OSp4(q)
3237
+ x
3238
+ :
3239
+ R :=
3240
+
3241
+ x′ =
3242
+
3243
+ λ ∗
3244
+
3245
+ 0 y
3246
+
3247
+ 0 0 λ−1
3248
+
3249
+ : x′ ∈ O
3250
+
3251
+ ,
3252
+ S :=
3253
+
3254
+ x′ =
3255
+
3256
+ λ−1
3257
+
3258
+
3259
+ 0
3260
+ y−1 ∗
3261
+ 0
3262
+ 0
3263
+ λ
3264
+
3265
+ : x′ ∈ O
3266
+
3267
+ .
3268
+ By construction, R ⊲ S ⊂ S and S ⊲ R ⊂ R.
3269
+ Observe that R ∩ S = ∅;
3270
+ otherwise y = y−1 and p = 2, but in this case y would not be semisimple.
3271
+ Let M ∈ SL2(q) be such that M ⊲ y = y−1 and let
3272
+ r :=
3273
+ � 1 1 0 0
3274
+ 0 1 0 0
3275
+ 0 0 1 −1
3276
+ 0 0 0 1
3277
+
3278
+ ⊲ x =
3279
+ � λ −λ 1
3280
+ 1
3281
+ 0
3282
+ 0
3283
+ 1
3284
+ 1
3285
+ 0 −1 z z−λ−1
3286
+ 0
3287
+ 0
3288
+ 0
3289
+ λ−1
3290
+
3291
+ ∈ R,
3292
+ s :=
3293
+ � 0
3294
+ 0 1
3295
+ 0 M 0
3296
+ −1 0 0
3297
+
3298
+ ⊲ x = diag(λ−1, y−1, λ) ∈ S.
3299
+ A direct calculation shows that rs = sr only if λ2 = 1 and z = ±2, a
3300
+ discarded case. Taking H := ⟨r, s⟩, we see that OH
3301
+ r ∩ OH
3302
+ s
3303
+ ⊂ R ∩ S = ∅.
3304
+ Thus, if p = 2, then |x| is odd so OSp4(q)
3305
+ x
3306
+ is of type C by Remark 2.4. If p
3307
+ is odd, then (rs)2 ̸= (sr)2 because rs and sr are upper triangular unipotent
3308
+ matrices by construction, and so OSp4(q)
3309
+ x
3310
+ is of type D. We claim that the
3311
+ restriction of π to R � S is injective: indeed injectivity could fail only for
3312
+ λ2 + 1 = 0 and z = 0 but in this case, λ ∈ Fq would be a root of py which is
3313
+ irreducible, a contradiction.
3314
+
3315
+ References
3316
+ [1] N. Andruskiewitsch, G. Carnovale, G. A. Garc´ıa. Finite-dimensional pointed Hopf
3317
+ algebras over finite simple groups of Lie type I. Unipotent classes in PSLn(q). J.
3318
+ Algebra, 442, 36–65 (2015).
3319
+ [2]
3320
+ Finite-dimensional pointed Hopf algebras over finite simple groups of Lie
3321
+ type II. Unipotent classes in symplectic groups, Commun. Contemp. Math. 18,
3322
+ No. 4, Article ID 1550053, 35 pp. (2016).
3323
+ [3]
3324
+ Finite-dimensional pointed Hopf algebras over finite simple groups of Lie
3325
+ type III. Semisimple classes in PSLn(q), Rev. Mat. Iberoam. 33, 995–1024, (2017).
3326
+ [4]
3327
+ Finite-dimensional pointed Hopf algebras over finite simple groups of Lie
3328
+ type IV. Unipotent classes in Chevalley and Steinberg groups, Algebr. Represent.
3329
+ Theory 23, 621–655(2020).
3330
+ [5]
3331
+ Finite-dimensional pointed Hopf algebras over finite simple groups of Lie
3332
+ type V. Mixed classes in Chevalley and Steinberg groups, Manuscripta Math. 166,
3333
+ 605–647 (2021).
3334
+ [6] N. Andruskiewitsch, F. Fantino, G. A. Garc´ıa, L. Vendramin. On Nichols algebras
3335
+ associated to simple racks, Contemp. Math. 537 (2011), 31–56.
3336
+
3337
+ 42
3338
+ N. ANDRUSKIEWITSCH, G. CARNOVALE, G. A. GARC´IA
3339
+ [7] N. Andruskiewitsch, F. Fantino, M. Gra˜na, L. Vendramin. Finite-dimensional
3340
+ pointed Hopf algebras with alternating groups are trivial, Ann. Mat. Pura Appl.
3341
+ (4), 190 (2011), 225–245.
3342
+ [8]
3343
+ Pointed Hopf algebras over the sporadic simple groups. J. Algebra 325
3344
+ (2011), 305–320.
3345
+ [9] N. Andruskiewitsch, M. Gra˜na. From racks to pointed Hopf algebras, Adv. Math.
3346
+ 178 (2003), 177–243.
3347
+ [10] S. Beltr´an Cubillos. ´Algebras de Nichols sobre grupos diedrales y pecios kthulhu en
3348
+ grupos espor´adicos. Tesis doctoral, Universidad Nacional de C´ordoba (2020).
3349
+ [11] S. Billey, V. Lakshmibai. Singular loci of Schubert varieties. Progr. Math. 182.
3350
+ Birkh¨auser Boston, Inc., Boston, MA, 2000. xii+251
3351
+ [12] G. Carnovale, M. Costantini. Finite-dimensional pointed Hopf algebras over finite
3352
+ simple groups of Lie type VI. Suzuki and Ree groups, J. Pure Appl. Alg. 225,
3353
+ 106568 (2021).
3354
+ [13] G. Carnovale, A. Garc´ıa Iglesias, θ-semisimple twisted conjugacy classes of type D
3355
+ in PSL(n,q), Journal of Lie Theory 26(1), 193–218 (2016).
3356
+ [14] F. Fantino. Conjugacy classes of p-cycles of type D in alternating groups. Commun.
3357
+ Algebra 42 4426–4434 (2014).
3358
+ [15] F. Fantino, L. Vendramin. On twisted conjugacy classes of type D in sporadic simple
3359
+ groups. Contemp. Math. 585 (2013) 247–259.
3360
+ [16] M. Geck, G. Pfeiffer. Characters of finite Coxeter groups and Iwahori-Hecke alge-
3361
+ bras, Oxford: Clarendon Press (2000).
3362
+ [17] R. Guralnick, T. Penttila, C. Praeger, J. Saxl. Linear groups with orders having
3363
+ certain large prime divisors, Proc. London Math. Soc. 78 (1999), 167–214.
3364
+ [18] I. Heckenberger and L. Vendramin. The classification of Nichols algebras with finite
3365
+ root system of rank two, J. Europ. Math. Soc. 19 (2017), 1977–2017.
3366
+ [19] G. Hiss. Finite groups of Lie type and their representations, Lond. Math. Soc. Lect.
3367
+ Note Ser. 387 (2011), 1–40.
3368
+ [20] J. E. Humphreys. Conjugacy classes in semisimple algebraic groups, Amer. Math.
3369
+ Soc., Providence, RI, 1995.
3370
+ [21] B. Huppert. Endliche Gruppen I. Grundlehren der mathematischen Wissen-
3371
+ schaften. 134. Berlin-Heidelberg-New York: Springer-Verlag (1979).
3372
+ [22] G. Malle and D. Testerman. Linear Algebraic Groups and Finite Groups of Lie
3373
+ Type, Cambridge Studies in Advanced Mathematics 133 (2011).
3374
+ [23] H. Meyn. Factorization of the Cyclotomic Polynomial x2n + 1 over Finite Fields,
3375
+ Finite fields and their applications 2, 439–442 (1996).
3376
+ [24] S. Pasiencier, H. -C. Wang. Commutators in a semi-simple Lie group, Proc. Amer.
3377
+ Math. Soc. 13, 907–913 (1962).
3378
+ [25] M. W. Short. The Primitive Soluble Permutation Groups of Degree Less than 256,
3379
+ Lecture Notes in Mathematics 1519, Springer (1992).
3380
+ [26] T. A. Springer. Some arithmetical results on semi-simple Lie algebras., Publications
3381
+ Math´ematiques de l’Institut des Hautes Scientifiques 30, 115–141 (1966).
3382
+ [27] R. Steinberg. Regular elements of semisimple algebraic groups, Inst. Hautes ´Etudes
3383
+ Sci. Publ. Math. 25, 49?-80 (1965).
3384
+
3385
+ NICHOLS ALGEBRAS OVER SEMISIMPLE CLASSES
3386
+ 43
3387
+ N. A.: FaMAF-Universidad Nacional de C´ordoba, CIEM (CONICET), Medina
3388
+ Allende s/n, Ciudad Universitaria, 5000 C´ordoba, Argentina.
3389
+ Email address: nicolas.andruskiewitsch@unc.edu.ar
3390
+ G. C.: Dipartimento di Matematica Tullio Levi-Civita, Universit`a degli Studi
3391
+ di Padova, via Trieste 63, 3512,1 Padova, Italia.
3392
+ Email address: carnoval@math.unipd.it, +39-049-8271354
3393
+ G. A. G.: Departamento de Matem´atica, Facultad de Ciencias Exactas, Uni-
3394
+ versidad Nacional de La Plata. CMaLP-CIC-CONICET. Calle 47 y Calle 115,
3395
+ 1900 La Plata, Argentina.
3396
+ Email address: ggarcia@mate.unlp.edu.ar
3397
+
JNE1T4oBgHgl3EQfsAWQ/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
KNE2T4oBgHgl3EQfAgYc/content/tmp_files/2301.03591v1.pdf.txt ADDED
@@ -0,0 +1,283 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ PatentsView-Evaluation: Evaluation Datasets and
2
+ Tools to Advance Research on Inventor Name
3
+ Disambiguation
4
+ Olivier Binette1,2, Sarvo Madhavan1, Jack Butler1, Beth Anne Card1, Emily Melluso1, and Christina Jones1
5
+ 1Duke University
6
+ 2American Institutes for Research
7
+ Abstract—We present PatentsView-Evaluation, a Python pack-
8
+ age that enables researchers to evaluate the performance of inven-
9
+ tor name disambiguation systems such as PatentsView.org. The
10
+ package includes benchmark datasets and evaluation tools, and
11
+ aims to advance research on inventor name disambiguation by
12
+ providing access to high-quality evaluation data and improving
13
+ evaluation standards.
14
+ Index Terms—Digital libraries, Inventor name disambiguation,
15
+ PatentsView, Statistical Evaluation, Open-source software
16
+ I. INTRODUCTION
17
+ Inventor name disambiguation is the task of identifying
18
+ unique inventors in patent datasets (Li et al., 2014; Toole
19
+ et al., 2021). This requires using contextual information to
20
+ distinguish between different inventors with the same name
21
+ and to resolve name variations. Since there are no unique
22
+ identifiers for inventors on U.S. patents, disambiguation is
23
+ done using statistical algorithms which provide approximate
24
+ solutions. The task is closely related to author name disam-
25
+ biguation in digital libraries (Ferreira et al., 2012; Smalheiser
26
+ et al., 2009; Subramanian et al., 2021) and is a particular case
27
+ of entity resolution (Binette and Steorts, 2022; Christen, 2012;
28
+ Christophides et al., 2021).
29
+ Unfortunately, progress in the field has been hindered
30
+ by misleading evaluation methodology and a lack of repre-
31
+ sentative benchmark datasets (Wang et al., 2022). Naively
32
+ computing performance metrics (i.e., precision and F-score)
33
+ on benchmark datasets leads to biased estimates and flipped
34
+ rankings of competing algorithms in many cases (Binette et al.,
35
+ 2022). This is due to the non-trivial scaling of entity resolution
36
+ performance: while it is easy to disambiguate small benchmark
37
+ datasets, the opportunity for error grows quadratically as
38
+ a function of dataset size. Furthermore, some benchmark
39
+ datasets are outdated or unavailable to the general public.
40
+ To address these challenges, we have released PatentsView-
41
+ Evaluation, a Python package that is available at github.com/
42
+ patentsView/patentsView-Evaluation/ and that can be installed
43
+ from PyPI (PyPI Authors, 2022) using:
44
+ pip install pv-evaluation
45
+ This is an open-source Python package which contains a suite
46
+ of benchmark datasets and evaluation tools for representative
47
+ performance evaluation. The package includes datasets used in
48
+ the U.S. Patents and Trademarks Office (USPTO) 2015 dis-
49
+ ambiguation competition, Azoulay’s Academic Life Sciences
50
+ dataset which was previously unavailable to the general public,
51
+ as well as a novel dataset extending what was developed by
52
+ PatentsView in Binette et al. (2022) specifically for evaluation
53
+ purposes. To facilitate performance evaluation, the package
54
+ also includes representative precision and recall estimators as
55
+ well as a suite of summary statistics and visualizations.
56
+ The rest of the paper is structured as follows. In section II,
57
+ we provide an overview of the package’s modules, including
58
+ the available data and performance estimators. Section III
59
+ summarizes our contributions and outlines our vision for future
60
+ research.
61
+ II. OVERVIEW OF THE PACKAGE
62
+ PatentsView-Evaluation is built on top of the ER-evaluation
63
+ Python package (Binette, 2022) which provides its core entity
64
+ resolution evaluation functionality. It contains two main sub-
65
+ modules. The benchmark module provides data, summary
66
+ statistics, and visualizations. The template module provides
67
+ templated reports that can be compiled to html using the
68
+ Quarto publishing system (quarto.org).
69
+ A. Benchmark Datasets
70
+ Inventor disambiguation associates inventor mentions to
71
+ unique inventor identifiers. Here, an inventor mention is the
72
+ combination of a patent number and an authorship sequence
73
+ number, resulting in a mention ID. For instance, the mention
74
+ ID “US11379060-0” refers to the first inventor listed on U.S.
75
+ patent number 11379060.
76
+ Our benchmark datasets are pandas Series (Wes McKin-
77
+ ney, 2010) indexed by inventor mentions and with values
78
+ corresponding to a unique inventor identifier. Note that, while
79
+ benchmark datasets aim to provide a ground truth disambigua-
80
+ tion of a set of inventors, they may still contain errors resulting
81
+ from the inherent uncertainty and difficulty of disambiguating
82
+ inventors.
83
+ The inventors benchmarks which we provide are listed
84
+ below. These are available in the package through functions
85
+ named load_*_inventors_benchmark().
86
+ 1) The Academic Life Sciences (ALS) dataset from the
87
+ file named “patents 2005 12” was graciously shared by
88
+ arXiv:2301.03591v1 [cs.DL] 9 Jan 2023
89
+
90
+ 2018
91
+ 2019
92
+ 2020
93
+ 2021
94
+ 2022
95
+ 0.4
96
+ 0.6
97
+ 0.8
98
+ 1
99
+ estimator
100
+ pairwise precision
101
+ pairwise recall
102
+ Pairwise precision and Recall
103
+ value
104
+ Fig. 1. Pairwise precision and recall estimates over PatentsView’s disambiguation history.
105
+ Pierre Azoulay (personal communication) with permis-
106
+ sion to release the corresponding clustering of inventor
107
+ mentions. This dataset and variations of it were referred
108
+ to in Azoulay et al. (2007, 2011); Ventura et al. (2015).
109
+ We prepared the data by associating mention IDs to each
110
+ record based on patent numbers and inventor mention
111
+ names.
112
+ 2) The Israeli inventors benchmark from Trajtenberg and
113
+ Shiff (2008).
114
+ 3) Li’s 2011 inventors benchmark from Li et al. (2014).
115
+ 4) The Engineer and Scientist inventors benchmark
116
+ from PatentsView’s 2015 disambiguation competition
117
+ (PatentsView, 2015).
118
+ 5) PatentsView’s
119
+ 2021
120
+ inventors
121
+ benchmark
122
+ from
123
+ Monath et al. (2021), which contains a set of particularly
124
+ ambiguous inventor mentions.
125
+ 6) Binette’s 2022 inventors benchmark which extends
126
+ Binette et al. (2022) and covers U.S. patents granted
127
+ between 1976 and December 31, 2021. This is a random
128
+ sample of inventors with sampling probabilities propor-
129
+ tional to an inventor’s number of patents.
130
+ B. Performance Estimators
131
+ As previously noted, naively computing precision and re-
132
+ call on benchmark datasets results in misleading figures. As
133
+ such, PatentsView-Evaluation borrows from Binette et al.
134
+ (2022) methodology for representative performance estima-
135
+ tion. Given a set of inventor disambiguations for U.S. patents
136
+ granted between 1976 and December 31, 2021, the function
137
+ inventor_estimates_trend_plot() provides a plot
138
+ of estimated precision and recall for each disambiguation
139
+ with uncertainty quantification (± one standard deviation). By
140
+ default, these estimates are based on Binette’s 2022 inventors
141
+ benchmark. Estimates corresponding to the use of other bench-
142
+ mark datasets can be obtained by passing them as additional
143
+ arguments. Figure 1 showcases the resulting plot with default
144
+ arguments.
145
+ C. Summary Statistics and Visualizations
146
+ In addition to performance metric estimators, PatentsView-
147
+ Evaluation provides a suite of summary statistics visual-
148
+ izations based on the ER-Evaluation package. This allows
149
+ monitoring metrics such as the matching rate, the name
150
+ variation rate, name homonymy rate, and the cluster size
151
+ distribution entropy. More information on the definition of
152
+ these metrics is provided in Binette (2022). The function
153
+ inventor_summary_trend_plot() provides one entry
154
+ point to visualizing these metrics for PatentsView’s disam-
155
+ biguation history. Figure 2 showcases its output. Notice how,
156
+ around 2021, the homonymy rate changes from around 0.2 to
157
+ nearly 0.4 before going back down close to 0.05. These are
158
+ major differences to the disambiguation which are not reflected
159
+ in the matching rate.
160
+ D. Templated HTML Reports
161
+ The last component of PatentsView-Evaluation is a tem-
162
+ plated report which can be compiled to HTML using
163
+ Quarto. It allows the comparison of a set of inventor dis-
164
+ ambiguations and through summary statistics, evaluation met-
165
+ rics, and error visualization. The entry point is the func-
166
+ tion render_inventor_disambiguation_report()
167
+ which takes as arguments a set of disambiguation files.
168
+ III. DISCUSSION
169
+ In this paper, we presented PatentsView-Evaluation, a
170
+ Python package with evaluation data and tools to advance
171
+ inventor name disambiguation. We provided an overview of
172
+ the package as well as a few examples of its capabilities.
173
+ PatentsView’s vision for improved inventor name disam-
174
+ biguation builds upon its experience and the success of its ex-
175
+ isting system. We aim to improve the maintainability, modular-
176
+ ity, and performance of PatentsView’s system through separate
177
+ innovation within its three main components: (1) the feature
178
+ engineering component which defines pairwise comparison
179
+ metrics for given patent attributes, (2) the similarity modeling
180
+ component which estimates pairwise match probabilities, and
181
+ (3) the clustering component which resolves transitive inven-
182
+ tor clusters. For (1), we aim to develop additional features
183
+
184
+ 2018
185
+ 2019
186
+ 2020
187
+ 2021
188
+ 2022
189
+ 0
190
+ 0.2
191
+ 0.4
192
+ 0.6
193
+ 0.8
194
+ 1
195
+ metric
196
+ Matching rate
197
+ Homonimy rate
198
+ Name variation rate
199
+ Summary Statistics
200
+ date
201
+ value
202
+ Fig. 2. Evolution of summary statistics over PatentsView’s disambiguation history.
203
+ through the use of modern text analysis and natural language
204
+ processing methods. For (2), we aim to develop flexible
205
+ semi-supervised methods which can account for dependencies
206
+ between features and biases in the benchmark datasets. Finally,
207
+ for (3), we aim to better tune clustering algorithms to opti-
208
+ mize key performance metrics. Through the use of principled
209
+ performance evaluation tools available in the PatentsView-
210
+ Evaluation package, new methodological developments can
211
+ now be rigorously tested.
212
+ REFERENCES
213
+ Azoulay, P., W. Ding, and T. Stuart (2007). The determinants
214
+ of faculty patenting behavior: Demographics or opportuni-
215
+ ties? Journal of economic behavior & organization 63(4),
216
+ 599–623.
217
+ Azoulay, P., J. S. Graff Zivin, and G. Manso (2011). Incentives
218
+ and creativity: evidence from the academic life sciences.
219
+ The RAND Journal of Economics 42(3), 527–554.
220
+ Binette, O. (2022). ER-Evaluation: An end-to-end evaluation
221
+ framework for entity resolution systems.
222
+ Available on
223
+ GitHub at https://github.com/OlivierBinette/ER-Evaluation.
224
+ Binette, O. and R. C. Steorts (2022). (Almost) all of entity
225
+ resolution. Science Advances 8(12), eabi8021.
226
+ Binette, O., S. A. York, E. Hickerson, Y. Baek, S. Madha-
227
+ van, and C. Jones (2022).
228
+ Estimating the performance
229
+ of entity resolution algorithms: Lessons learned through
230
+ patentsview.org. arXiv e-prints. arXiv:2210.01230.
231
+ Christen, P. (2012).
232
+ Data Matching: Concepts and Tech-
233
+ niques for Record Linkage, Entity Resolution, and Duplicate
234
+ Detection. Data-Centric Systems and Applications. Berlin
235
+ Heidelberg: Springer-Verlag.
236
+ Christophides, V., V. Efthymiou, T. Palpanas, G. Papadakis,
237
+ and K. Stefanidis (2021). An overview of end-to-end entity
238
+ resolution for big data. ACM Computing Surveys 53(6), 1–2.
239
+ Ferreira, A. A., M. A. Gonc¸alves, and A. H. Laender (2012).
240
+ A brief survey of automatic methods for author name
241
+ disambiguation. ACM Sigmod Record 41(2), 15–26.
242
+ Li, G. C., R. Lai, A. D’Amour, D. M. Doolin, Y. Sun, V. I.
243
+ Torvik, A. Z. Yu, and F. Lee (2014). Disambiguation and
244
+ co-authorship networks of the U.S. patent inventor database
245
+ (1975-2010). Research Policy 43(6), 941–955.
246
+ Monath, N., C. Jones, and S. Madhavan (2021). PatentsView:
247
+ Disambiguating Inventors, Assigness, and Locations. Tech-
248
+ nical report, American Institutes for Research, Arlington,
249
+ Virginia.
250
+ PatentsView (2015). Inventor disambiguation workshop sum-
251
+ mary.
252
+ Available online at https://patentsview.org/events/
253
+ workshop-2015.
254
+ PyPI Authors (2022). Python package index - PyPI.
255
+ Smalheiser, N. R., V. I. Torvik, et al. (2009). Author name
256
+ disambiguation. Annual review of information science and
257
+ technology 43(1), 1.
258
+ Subramanian, S., D. King, D. Downey, and S. Feldman (2021).
259
+ S2and: A benchmark and evaluation system for author name
260
+ disambiguation. In 2021 ACM/IEEE Joint Conference on
261
+ Digital Libraries (JCDL), pp. 170–179.
262
+ Toole, A., C. Jones, and S. Madhavan (2021). PatentsView:
263
+ An open data platform to advance science and technology
264
+ policy. Technical report, USPTO Economic Working Paper.
265
+ Trajtenberg, M. and G. Shiff (2008).
266
+ Identification and
267
+ mobility of israeli patenting inventors.
268
+ Technical report,
269
+ Pinhas Sapir.
270
+ Ventura, S. L., R. Nugent, and E. R. Fuchs (2015). Seeing
271
+ the non-stars: (Some) sources of bias in past disambiguation
272
+ approaches and a new public tool leveraging labeled records.
273
+ Research Policy 44(9), 1672–1701.
274
+ Wang, T., H. Lin, C. Fu, X. Han, L. Sun, F. Xiong, H. Chen,
275
+ M. Lu, and X. Zhu (2022). Bridging the gap between reality
276
+ and ideality of entity matching: A revisiting and benchmark
277
+ re-construction. arXiv e-prins. arXiv:2205.05889.
278
+ Wes McKinney (2010). Data Structures for Statistical Com-
279
+ puting in Python.
280
+ In St´efan van der Walt and Jarrod
281
+ Millman (Eds.), Proceedings of the 9th Python in Science
282
+ Conference, pp. 56 – 61.
283
+
KNE2T4oBgHgl3EQfAgYc/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,264 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf,len=263
2
+ page_content='PatentsView-Evaluation: Evaluation Datasets and Tools to Advance Research on Inventor Name Disambiguation Olivier Binette1,2, Sarvo Madhavan1, Jack Butler1, Beth Anne Card1, Emily Melluso1, and Christina Jones1 1Duke University 2American Institutes for Research Abstract—We present PatentsView-Evaluation, a Python pack- age that enables researchers to evaluate the performance of inven- tor name disambiguation systems such as PatentsView.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
3
+ page_content='org.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
4
+ page_content=' The package includes benchmark datasets and evaluation tools, and aims to advance research on inventor name disambiguation by providing access to high-quality evaluation data and improving evaluation standards.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
5
+ page_content=' Index Terms—Digital libraries, Inventor name disambiguation, PatentsView, Statistical Evaluation, Open-source software I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
6
+ page_content=' INTRODUCTION Inventor name disambiguation is the task of identifying unique inventors in patent datasets (Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
7
+ page_content=', 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
8
+ page_content=' Toole et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
9
+ page_content=', 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
10
+ page_content=' This requires using contextual information to distinguish between different inventors with the same name and to resolve name variations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
11
+ page_content=' Since there are no unique identifiers for inventors on U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
12
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
13
+ page_content=' patents, disambiguation is done using statistical algorithms which provide approximate solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
14
+ page_content=' The task is closely related to author name disam- biguation in digital libraries (Ferreira et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
15
+ page_content=', 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
16
+ page_content=' Smalheiser et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
17
+ page_content=', 2009;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
18
+ page_content=' Subramanian et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
19
+ page_content=', 2021) and is a particular case of entity resolution (Binette and Steorts, 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
20
+ page_content=' Christen, 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
21
+ page_content=' Christophides et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
22
+ page_content=', 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
23
+ page_content=' Unfortunately, progress in the field has been hindered by misleading evaluation methodology and a lack of repre- sentative benchmark datasets (Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
24
+ page_content=', 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
25
+ page_content=' Naively computing performance metrics (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
26
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
27
+ page_content=', precision and F-score) on benchmark datasets leads to biased estimates and flipped rankings of competing algorithms in many cases (Binette et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
28
+ page_content=', 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
29
+ page_content=' This is due to the non-trivial scaling of entity resolution performance: while it is easy to disambiguate small benchmark datasets, the opportunity for error grows quadratically as a function of dataset size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
30
+ page_content=' Furthermore, some benchmark datasets are outdated or unavailable to the general public.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
31
+ page_content=' To address these challenges, we have released PatentsView- Evaluation, a Python package that is available at github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
32
+ page_content='com/ patentsView/patentsView-Evaluation/ and that can be installed from PyPI (PyPI Authors, 2022) using: pip install pv-evaluation This is an open-source Python package which contains a suite of benchmark datasets and evaluation tools for representative performance evaluation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
33
+ page_content=' The package includes datasets used in the U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
34
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
35
+ page_content=' Patents and Trademarks Office (USPTO) 2015 dis- ambiguation competition, Azoulay’s Academic Life Sciences dataset which was previously unavailable to the general public, as well as a novel dataset extending what was developed by PatentsView in Binette et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
36
+ page_content=' (2022) specifically for evaluation purposes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
37
+ page_content=' To facilitate performance evaluation, the package also includes representative precision and recall estimators as well as a suite of summary statistics and visualizations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
38
+ page_content=' The rest of the paper is structured as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
39
+ page_content=' In section II, we provide an overview of the package’s modules, including the available data and performance estimators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
40
+ page_content=' Section III summarizes our contributions and outlines our vision for future research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
41
+ page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
42
+ page_content=' OVERVIEW OF THE PACKAGE PatentsView-Evaluation is built on top of the ER-evaluation Python package (Binette, 2022) which provides its core entity resolution evaluation functionality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
43
+ page_content=' It contains two main sub- modules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
44
+ page_content=' The benchmark module provides data, summary statistics, and visualizations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
45
+ page_content=' The template module provides templated reports that can be compiled to html using the Quarto publishing system (quarto.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
46
+ page_content='org).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
47
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
48
+ page_content=' Benchmark Datasets Inventor disambiguation associates inventor mentions to unique inventor identi��ers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
49
+ page_content=' Here, an inventor mention is the combination of a patent number and an authorship sequence number, resulting in a mention ID.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
50
+ page_content=' For instance, the mention ID “US11379060-0” refers to the first inventor listed on U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
51
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
52
+ page_content=' patent number 11379060.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
53
+ page_content=' Our benchmark datasets are pandas Series (Wes McKin- ney, 2010) indexed by inventor mentions and with values corresponding to a unique inventor identifier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
54
+ page_content=' Note that, while benchmark datasets aim to provide a ground truth disambigua- tion of a set of inventors, they may still contain errors resulting from the inherent uncertainty and difficulty of disambiguating inventors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
55
+ page_content=' The inventors benchmarks which we provide are listed below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
56
+ page_content=' These are available in the package through functions named load_*_inventors_benchmark().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
57
+ page_content=' 1) The Academic Life Sciences (ALS) dataset from the file named “patents 2005 12” was graciously shared by arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
58
+ page_content='03591v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
59
+ page_content='DL] 9 Jan 2023 2018 2019 2020 2021 2022 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
60
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
61
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
62
+ page_content='8 1 estimator pairwise precision pairwise recall Pairwise precision and Recall value Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
63
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
64
+ page_content=' Pairwise precision and recall estimates over PatentsView’s disambiguation history.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
65
+ page_content=' Pierre Azoulay (personal communication) with permis- sion to release the corresponding clustering of inventor mentions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
66
+ page_content=' This dataset and variations of it were referred to in Azoulay et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
67
+ page_content=' (2007, 2011);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
68
+ page_content=' Ventura et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
69
+ page_content=' (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
70
+ page_content=' We prepared the data by associating mention IDs to each record based on patent numbers and inventor mention names.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
71
+ page_content=' 2) The Israeli inventors benchmark from Trajtenberg and Shiff (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
72
+ page_content=' 3) Li’s 2011 inventors benchmark from Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
73
+ page_content=' (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
74
+ page_content=' 4) The Engineer and Scientist inventors benchmark from PatentsView’s 2015 disambiguation competition (PatentsView, 2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
75
+ page_content=' 5) PatentsView’s 2021 inventors benchmark from Monath et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
76
+ page_content=' (2021), which contains a set of particularly ambiguous inventor mentions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
77
+ page_content=' 6) Binette’s 2022 inventors benchmark which extends Binette et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
78
+ page_content=' (2022) and covers U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
79
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
80
+ page_content=' patents granted between 1976 and December 31, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
81
+ page_content=' This is a random sample of inventors with sampling probabilities propor- tional to an inventor’s number of patents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
82
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
83
+ page_content=' Performance Estimators As previously noted, naively computing precision and re- call on benchmark datasets results in misleading figures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
84
+ page_content=' As such, PatentsView-Evaluation borrows from Binette et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
85
+ page_content=' (2022) methodology for representative performance estima- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
86
+ page_content=' Given a set of inventor disambiguations for U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
87
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
88
+ page_content=' patents granted between 1976 and December 31, 2021, the function inventor_estimates_trend_plot() provides a plot of estimated precision and recall for each disambiguation with uncertainty quantification (± one standard deviation).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
89
+ page_content=' By default, these estimates are based on Binette’s 2022 inventors benchmark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
90
+ page_content=' Estimates corresponding to the use of other bench- mark datasets can be obtained by passing them as additional arguments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
91
+ page_content=' Figure 1 showcases the resulting plot with default arguments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
92
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
93
+ page_content=' Summary Statistics and Visualizations In addition to performance metric estimators, PatentsView- Evaluation provides a suite of summary statistics visual- izations based on the ER-Evaluation package.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
94
+ page_content=' This allows monitoring metrics such as the matching rate, the name variation rate, name homonymy rate, and the cluster size distribution entropy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
95
+ page_content=' More information on the definition of these metrics is provided in Binette (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
96
+ page_content=' The function inventor_summary_trend_plot() provides one entry point to visualizing these metrics for PatentsView’s disam- biguation history.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
97
+ page_content=' Figure 2 showcases its output.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
98
+ page_content=' Notice how, around 2021, the homonymy rate changes from around 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
99
+ page_content='2 to nearly 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
100
+ page_content='4 before going back down close to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
101
+ page_content='05.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
102
+ page_content=' These are major differences to the disambiguation which are not reflected in the matching rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
103
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
104
+ page_content=' Templated HTML Reports The last component of PatentsView-Evaluation is a tem- plated report which can be compiled to HTML using Quarto.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
105
+ page_content=' It allows the comparison of a set of inventor dis- ambiguations and through summary statistics, evaluation met- rics, and error visualization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
106
+ page_content=' The entry point is the func- tion render_inventor_disambiguation_report() which takes as arguments a set of disambiguation files.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
107
+ page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
108
+ page_content=' DISCUSSION In this paper, we presented PatentsView-Evaluation, a Python package with evaluation data and tools to advance inventor name disambiguation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
109
+ page_content=' We provided an overview of the package as well as a few examples of its capabilities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
110
+ page_content=' PatentsView’s vision for improved inventor name disam- biguation builds upon its experience and the success of its ex- isting system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
111
+ page_content=' We aim to improve the maintainability, modular- ity, and performance of PatentsView’s system through separate innovation within its three main components: (1) the feature engineering component which defines pairwise comparison metrics for given patent attributes, (2) the similarity modeling component which estimates pairwise match probabilities, and (3) the clustering component which resolves transitive inven- tor clusters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
112
+ page_content=' For (1), we aim to develop additional features 2018 2019 2020 2021 2022 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
113
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
114
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
115
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
116
+ page_content='8 1 metric Matching rate Homonimy rate Name variation rate Summary Statistics date value Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
117
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
118
+ page_content=' Evolution of summary statistics over PatentsView’s disambiguation history.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
119
+ page_content=' through the use of modern text analysis and natural language processing methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
120
+ page_content=' For (2), we aim to develop flexible semi-supervised methods which can account for dependencies between features and biases in the benchmark datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
121
+ page_content=' Finally, for (3), we aim to better tune clustering algorithms to opti- mize key performance metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
122
+ page_content=' Through the use of principled performance evaluation tools available in the PatentsView- Evaluation package, new methodological developments can now be rigorously tested.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
123
+ page_content=' REFERENCES Azoulay, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
124
+ page_content=', W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
125
+ page_content=' Ding, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
126
+ page_content=' Stuart (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
127
+ page_content=' The determinants of faculty patenting behavior: Demographics or opportuni- ties?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
128
+ page_content=' Journal of economic behavior & organization 63(4), 599–623.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
129
+ page_content=' Azoulay, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
130
+ page_content=', J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
131
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
132
+ page_content=' Graff Zivin, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
133
+ page_content=' Manso (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
134
+ page_content=' Incentives and creativity: evidence from the academic life sciences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
135
+ page_content=' The RAND Journal of Economics 42(3), 527–554.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
136
+ page_content=' Binette, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
137
+ page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
138
+ page_content=' ER-Evaluation: An end-to-end evaluation framework for entity resolution systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
139
+ page_content=' Available on GitHub at https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
140
+ page_content='com/OlivierBinette/ER-Evaluation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
141
+ page_content=' Binette, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
142
+ page_content=' and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
143
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
144
+ page_content=' Steorts (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
145
+ page_content=' (Almost) all of entity resolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
146
+ page_content=' Science Advances 8(12), eabi8021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
147
+ page_content=' Binette, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
148
+ page_content=', S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
149
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
150
+ page_content=' York, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
151
+ page_content=' Hickerson, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
152
+ page_content=' Baek, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
153
+ page_content=' Madha- van, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
154
+ page_content=' Jones (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
155
+ page_content=' Estimating the performance of entity resolution algorithms: Lessons learned through patentsview.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
156
+ page_content='org.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
157
+ page_content=' arXiv e-prints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
158
+ page_content=' arXiv:2210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
159
+ page_content='01230.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
160
+ page_content=' Christen, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
161
+ page_content=' (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
162
+ page_content=' Data Matching: Concepts and Tech- niques for Record Linkage, Entity Resolution, and Duplicate Detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
163
+ page_content=' Data-Centric Systems and Applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
164
+ page_content=' Berlin Heidelberg: Springer-Verlag.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
165
+ page_content=' Christophides, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
166
+ page_content=', V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
167
+ page_content=' Efthymiou, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
168
+ page_content=' Palpanas, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
169
+ page_content=' Papadakis, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
170
+ page_content=' Stefanidis (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
171
+ page_content=' An overview of end-to-end entity resolution for big data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
172
+ page_content=' ACM Computing Surveys 53(6), 1–2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
173
+ page_content=' Ferreira, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
174
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
175
+ page_content=', M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
176
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
177
+ page_content=' Gonc¸alves, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
178
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
179
+ page_content=' Laender (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
180
+ page_content=' A brief survey of automatic methods for author name disambiguation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
181
+ page_content=' ACM Sigmod Record 41(2), 15–26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
182
+ page_content=' Li, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
183
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
184
+ page_content=', R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
185
+ page_content=' Lai, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
186
+ page_content=' D’Amour, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
187
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
188
+ page_content=' Doolin, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
189
+ page_content=' Sun, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
190
+ page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
191
+ page_content=' Torvik, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
192
+ page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
193
+ page_content=' Yu, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
194
+ page_content=' Lee (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
195
+ page_content=' Disambiguation and co-authorship networks of the U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
196
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
197
+ page_content=' patent inventor database (1975-2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
198
+ page_content=' Research Policy 43(6), 941–955.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
199
+ page_content=' Monath, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
200
+ page_content=', C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
201
+ page_content=' Jones, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
202
+ page_content=' Madhavan (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
203
+ page_content=' PatentsView: Disambiguating Inventors, Assigness, and Locations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
204
+ page_content=' Tech- nical report, American Institutes for Research, Arlington, Virginia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
205
+ page_content=' PatentsView (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
206
+ page_content=' Inventor disambiguation workshop sum- mary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
207
+ page_content=' Available online at https://patentsview.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
208
+ page_content='org/events/ workshop-2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
209
+ page_content=' PyPI Authors (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
210
+ page_content=' Python package index - PyPI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
211
+ page_content=' Smalheiser, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
212
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
213
+ page_content=', V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
214
+ page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
215
+ page_content=' Torvik, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
216
+ page_content=' (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
217
+ page_content=' Author name disambiguation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
218
+ page_content=' Annual review of information science and technology 43(1), 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
219
+ page_content=' Subramanian, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
220
+ page_content=', D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
221
+ page_content=' King, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
222
+ page_content=' Downey, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
223
+ page_content=' Feldman (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
224
+ page_content=' S2and: A benchmark and evaluation system for author name disambiguation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
225
+ page_content=' In 2021 ACM/IEEE Joint Conference on Digital Libraries (JCDL), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
226
+ page_content=' 170–179.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
227
+ page_content=' Toole, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
228
+ page_content=', C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
229
+ page_content=' Jones, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
230
+ page_content=' Madhavan (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
231
+ page_content=' PatentsView: An open data platform to advance science and technology policy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
232
+ page_content=' Technical report, USPTO Economic Working Paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
233
+ page_content=' Trajtenberg, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
234
+ page_content=' and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
235
+ page_content=' Shiff (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
236
+ page_content=' Identification and mobility of israeli patenting inventors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
237
+ page_content=' Technical report, Pinhas Sapir.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
238
+ page_content=' Ventura, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
239
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
240
+ page_content=', R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
241
+ page_content=' Nugent, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
242
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
243
+ page_content=' Fuchs (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
244
+ page_content=' Seeing the non-stars: (Some) sources of bias in past disambiguation approaches and a new public tool leveraging labeled records.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
245
+ page_content=' Research Policy 44(9), 1672–1701.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
246
+ page_content=' Wang, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
247
+ page_content=', H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
248
+ page_content=' Lin, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
249
+ page_content=' Fu, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
250
+ page_content=' Han, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
251
+ page_content=' Sun, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
252
+ page_content=' Xiong, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
253
+ page_content=' Chen, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
254
+ page_content=' Lu, and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
255
+ page_content=' Zhu (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
256
+ page_content=' Bridging the gap between reality and ideality of entity matching: A revisiting and benchmark re-construction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
257
+ page_content=' arXiv e-prins.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
258
+ page_content=' arXiv:2205.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
259
+ page_content='05889.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
260
+ page_content=' Wes McKinney (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
261
+ page_content=' Data Structures for Statistical Com- puting in Python.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
262
+ page_content=' In St´efan van der Walt and Jarrod Millman (Eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
263
+ page_content=' ), Proceedings of the 9th Python in Science Conference, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
264
+ page_content=' 56 – 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KNE2T4oBgHgl3EQfAgYc/content/2301.03591v1.pdf'}
KNE4T4oBgHgl3EQfJAzg/content/tmp_files/2301.04918v1.pdf.txt ADDED
@@ -0,0 +1,1494 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Astronomy & Astrophysics manuscript no. main
2
+ ©ESO 2023
3
+ January 13, 2023
4
+ Merging binary black holes formed through double-core evolution
5
+ Y. Qin1, 2, R.-C. Hu2, G. Meynet3, 4, Y. Z. Wang5, J.-P. Zhu6, H. F. Song7, X. W. Shu1, and S. C. Wu8, 9
6
+ 1 Department of Physics, Anhui Normal University, Wuhu, Anhui, 241000, China
7
+ e-mail: yingqin2013@hotmail.com
8
+ 2 Guangxi Key Laboratory for Relativistic Astrophysics, School of Physical Science and Technology, Guangxi University, Nanning
9
+ 530004, China
10
+ 3 Département d’Astronomie, Université de Genève, Chemin Pegasi 51, CH-1290 Versoix, Switzerland
11
+ 4 Gravitational Wave Science Center (GWSC), Université de Genève, CH-1211 Geneva, Switzerland
12
+ e-mail: Georges.Meynet@unige.ch
13
+ 5 Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing,
14
+ 210033, People’s Republic of China
15
+ 6 Department of Astronomy, School of Physics, Peking University, Beijing 100871, China
16
+ 7 College of Physics, Guizhou University, Guiyang city, Guizhou Province, 550025, P.R. China
17
+ 8 Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), D-30167 Hannover, Germany
18
+ 9 Leibniz Universität Hannover, D-30167 Hannover, Germany
19
+ January 13, 2023
20
+ ABSTRACT
21
+ Context. To date, various formation channels of merging events have been heavily explored with the detection of nearly 100 double
22
+ black hole (BH) merger events reported by the LIGO-Virgo-KAGRA (LVK) Collaboration. We here systematically investigate an
23
+ alternative formation scenario, i.e., binary BHs (BBHs) formed through double helium stars (hereafter double-core evolution channel).
24
+ In this scenario, the two helium stars (He-rich stars) could be the outcome of the classical isolated binary evolution scenario involving
25
+ with and without common-envelope phase (i.e., CE channel and stable mass transfer channel), or alternatively of massive close
26
+ binaries evolving chemically homogeneously (i.e., CHE channel).
27
+ Aims. We study the properties (i.e., the chirp masses and the effective spins) of binary BHs (BBHs) formed through the double-
28
+ core evolution, and investigate the impact of different efficiencies of angular momentum transport within massive He-rich stars on
29
+ double-core evolution.
30
+ Methods. We perform detailed stellar structure and binary evolution calculations that take into account internal differential rotation
31
+ and mass loss of He-rich stars, as well as tidal interactions in binaries. We systematically study the parameter space of initial binary
32
+ He-rich stars, including initial mass and metallicity of He-rich stars, as well as initial orbital periods. Apart from direct core collapse
33
+ with mass and angular momentum conserved, we also follow the framework in Batta & Ramirez-Ruiz (2019) to estimate the mass
34
+ and spin of the resulting BHs.
35
+ Results. We show that the radii of massive He-rich stars decrease as a function of time, which comes mainly from mass loss and
36
+ mixing in high metallicity and from mixing in low metallicity. For double He-rich stars with equal masses in binaries, we find that
37
+ tides start to be at work on the Zero Age Helium Main Sequence (ZAHeMS: the time when a He-rich star starts to burn helium in the
38
+ core, which is analogous to ZAMS for core hydrogen burning) for initial orbital periods not longer than 1.0 day, depending on the
39
+ initial metallicities. Besides the stellar mass loss rate and tidal interactions in binaries, we find that the role of the angular momentum
40
+ transport efficiency in determining the resulting BH spins, becomes stronger when considering BH progenitors originated from a
41
+ higher metal-metallicity environment. We highlight that double-core evolution scenario does not always produce fast-spinning BBHs
42
+ and compare the properties of the BBHs reported from the LVK with our modeling.
43
+ Conclusions. After detailed binary calculations of double-core evolution, we have confirmed that the spin of the BH is not only
44
+ determined by the interplay of the binary’s different initial conditions (metallicity, mass and orbital period), but also dependent on the
45
+ angular momentum transport efficiency within its progenitor. We predict that, with the sensitivity improvements to the LVK’s next
46
+ observing run (O4), the sample of merging BBHs will contain more sources with positive but moderate (even high) χeff and part of
47
+ the events are likely formed through the double-core evolution channel.
48
+ Key words. binaries: close – stars: Wolf-Rayet – stars: black holes – stars: rotation
49
+ 1. Introduction
50
+ The LIGO-Virgo-KAGRA (LVK) Collaboration has released the Gravitational Wave Transient Catalog 3 (GWTC-3, The LIGO
51
+ Scientific Collaboration et al. 2021b), consisting of 69 confident binary black hole (BBH) merger events with the detection threshold
52
+ to count events with false alarm rate (FAR) < 1 yr−1. With the targeted sample of BBHs in GWTC-3, the LVK Collaboration has
53
+ also inferred their intrinsic properties (e.g., merger rates, masses and effective inspiral spins), among which the effective inspiral
54
+ Article number, page 1 of 16
55
+ arXiv:2301.04918v1 [astro-ph.HE] 12 Jan 2023
56
+
57
+ A&A proofs: manuscript no. main
58
+ spin χeff 1 has been widely considered as a probe to distinguish the formation channels of merging BBH events (Abbott et al. 2016b;
59
+ Farr et al. 2017, 2018; The LIGO Scientific Collaboration et al. 2021c; Roulet et al. 2021). The majority of the BBHs reported by the
60
+ LVK Collaboration have low χeff, while several BBH mergers 2 show definitely high positive χeff, e.g., 0.28+0.26
61
+ −0.29, 0.31+0.20
62
+ −0.22, 0.33+0.22
63
+ −0.25,
64
+ 0.37+0.21
65
+ −0.25, 0.52+0.19
66
+ −0.19, for GW190706, GW190519, GW190620, GW170729, GW190517, respectively (Abbott et al. 2021). We also
67
+ note that these high values of χeff are heavily under debate (see e.g., Callister et al. 2022; Vitale et al. 2022, references therein).
68
+ Substantial progress for understanding the origin of BBHs has been made in the field over the last 7 years since the discovery
69
+ of the first GW event GW150914 (Abbott et al. 2016a). However, the formation process of BBH merger events remains an open
70
+ scientific question. Leading models of BBH formation include isolated binary evolution via either common envelope (CE, e.g.,
71
+ Phinney 1991; Tutukov & Yungelson 1973; Belczynski et al. 2007; Ivanova et al. 2013; Postnov & Yungelson 2014; Belczynski
72
+ et al. 2016; Vigna-Gómez et al. 2018; Qin et al. 2018; Bavera et al. 2020; Hu et al. 2022), stable Roche-lobe overflow (RLOF, e.g.,
73
+ van den Heuvel et al. 2017; Inayoshi et al. 2017; Bavera et al. 2021; Olejak et al. 2021; Olejak & Belczynski 2021; Gallegos-Garcia
74
+ et al. 2021; Marchant et al. 2021; Tanikawa et al. 2022; Shao & Li 2022; van Son et al. 2022a,b), or chemical mixing (Marchant
75
+ et al. 2016; Mandel & de Mink 2016; de Mink & Mandel 2016; Song et al. 2016; du Buisson et al. 2020; Riley et al. 2021), as
76
+ well as dynamical assembly in globular clusters and galactic nuclear clusters (e.g., Rodriguez et al. 2015; Antonini et al. 2016;
77
+ Safarzadeh et al. 2020; Mapelli et al. 2021; Fragione et al. 2022), or efficient migration assisted in active galactic nuclei (AGN)
78
+ disks (Secunda et al. 2019; McKernan et al. 2020; Tagawa et al. 2020; Saavik Ford & McKernan 2022). Alternatively, two BHs can
79
+ be the occurrence of hierarchical stellar-mass BH mergers (Doctor et al. 2020; Kimball et al. 2020, 2021; Gerosa & Fishbach 2021).
80
+ Zevin et al. (2021) recently investigated multiple formation pathways (isolated binary evolution channels and dynamical assem-
81
+ bly channels) and found that neither channel can contribute more than ≃ 70% of the BBHs reported in GWTC-2. Moreover, it was
82
+ pointed out in Mandel & Farmer (2022) (also see Mapelli (2020); Mandel & Broekgaarden (2022)) that the merger rates for BBHs
83
+ can vary by orders of magnitude for different formation scenarios. So far, it is still a challenge to quantitatively predict the properties
84
+ of merging BBHs due to uncertain physics involved in single and/or binary evolution (Abadie et al. 2010; Dominik et al. 2015; de
85
+ Mink & Belczynski 2015; Giacobbo & Mapelli 2018; Tang et al. 2020; Broekgaarden et al. 2022; Belczynski et al. 2022; Peng et al.
86
+ 2022).
87
+ Alternatively, merging BBHs could be formed through the double-core evolution. This scenario involving the CE phase has
88
+ been recently investigated, focusing on low-mass He-rich stars leading to form double NSs (Dewi et al. 2006; Hwang et al. 2015;
89
+ Vigna-Gómez et al. 2018). More massive stars with mass-ratio close to one at low metallicities evolving from ZAMS (Zero Age
90
+ Main Sequence) in close binaries can undergo several stable mass transfer phases during core hydrogen burning (Case A mass
91
+ transfer phase) and thus form double He-rich stars as potential progenitors of BBHs (see Figure 3 in Marchant et al. 2016). On the
92
+ other hand, two massive stars could first evolve to form a close binary system of a He-star and a main-sequence companion star after
93
+ the first mass transfer, and subsequently the second mass transfer from MS/giant star to the He-star leads to form massive He-rich
94
+ binary stars in a short orbit.
95
+ For now most BBH systems reported by the LVK Collaboration are still consistent with zero BH spins. Recently, by employing
96
+ a variety of complementary methods to measure the distribution of spin magnitudes and orientations for BBH mergers, Callister
97
+ et al. (2022) found that the existence of a subpopulation of BHs with vanishing spins is not required by current data. The fact at
98
+ the moment no event necessarily requires a high spin does of course not mean that there are not among those already detected any
99
+ that may present a high spin. High BH spins may indicate that the inefficient AM transport mechanism within the BH progenitor is
100
+ preferred (Qin et al. 2019a,b, 2022b). This finding can be reached given the assumption that BBHs are formed through the classical
101
+ isolated binary evolution channel involving CE phase, before which the initially more massive star collapses to form the first-born
102
+ BH. Accordingly, the progenitor of the first-born BH is in a wide orbit in which the tides from its companion are too weak to change
103
+ the spin AM of both components. Therefore, the resultant BH spin, inherited from the AM content of its progenitor, is exclusively
104
+ determined by the AM transport efficiency within the progenitor star during post main sequence expansion. In case of an efficient
105
+ transport, any removal of the outer layers (at the time of CE phase) slows the whole star, even its core. In case of a less efficient
106
+ coupling, the core spins faster than the envelope and removing the envelope will make appear a faster rotating core than in the case
107
+ of the efficient AM transport. Alternatively, it is shown in Olejak & Belczynski (2021) that fast-spinning BHs in merging BBHs can
108
+ be formed by tidal spin-up through either a stable mass transfer phase leading to the mass ratio reversal, or the CE phase forming
109
+ equal-mass BH components. For the case of stable mass transfer (see their Figure 1 in Olejak & Belczynski 2021), the initially more
110
+ massive star evolves first to become a BH, and then its companion obtains enough mass via the first RLOF to become a massive
111
+ He-rich star due to losing its hydrogen envelope onto the first-born BH in the second RLOF. The He-rich star subsequently evolves
112
+ to become a fast-spinning BH by the tides (Qin et al. 2018). As for the other case (see their Figure 2 in Olejak & Belczynski 2021)
113
+ the two stars initially with equal-mass instead form twin-mass He-rich stars following the RLOF mass transfer and subsequent CE
114
+ phase, after which two fast-spinning BHs are formed via Wolf-Rayet tides. More recently, under the assumption of the Eddington-
115
+ limited accretion onto BHs and efficient AM transport within massive stars, Zevin & Bavera (2022) investigated the isolated binary
116
+ evolution regarding forming highly-spinning BHs and concluded that it is difficult to form systems with moderate or high spins in
117
+ the primary BH component. However, the BH can be efficiently spun up by highly super-Eddington accretion (Bavera et al. 2021;
118
+ van Son et al. 2020; Qin et al. 2022a; Shao & Li 2022).
119
+ The Tayler-Spruit dynamo (Spruit 2002), produced by differential rotation in the radiative layers, is considered as one of potential
120
+ mechanisms responsible for the efficient transport of AM between the stellar core and its radiative envelope. In brief, the TS dynamo
121
+ starts for a small radial magnetic field component (its precise initial value has no importance since it is rapidly enhanced by the
122
+ 1 χeff = (M1χ1z + M2χ2z)/(M1 + M2), where M1 and M2 are the component masses of the two BHs, χ1z and χ2z are dimensionless BH spin
123
+ magnitudes aligned to the direction of the orbital angular momentum (AM).
124
+ 2 GW190403 and GW190805 with high χeff were reported from deeper searches in GWTC-2.1 (The LIGO Scientific Collaboration et al. 2021a),
125
+ but a low-significance FAR threshold of 2 per day.
126
+ Article number, page 2 of 16
127
+
128
+ Y. Qin et al.: Merging binary black holes formed through double-core evolution
129
+ dynamo mechanism). This component is wounded up per differential rotation and an azimuthal component field is formed. An
130
+ azimuthal field is unstable by the Tayler instability, i.e., an nonaxisymmetric pinch type instability, which has consequence to
131
+ amplify the azimuthal field and the radial one. The new radial component is wounded up and the instability starts again. This
132
+ amplification mechanism lasts until the growth timescale of the magnetic field is equal to its damping timescale. Assuming that
133
+ stationary situation is reached at every time step and that the length over which the instability can develop is small enough for
134
+ allowing the excess energy in the differential rotation to overcome the stabilizing entropy gradient and large enough for the magnetic
135
+ field to not decay too fast, it is possible to deduce the diffusion and viscosity coeffiecients. The revised TS dynamo (Fuller et al.
136
+ 2019) is based on the fact that the damping timescale can be much longer than the one assumed in the original Tayler-Spruit dynamo.
137
+ In that case larger magnetic fields can be reached and stronger coupling achieved (see the discussion in Eggenberger et al. 2022).
138
+ Stellar models with the original Tayler-Spruit dynamo (TS dynamo) can well reproduce the rotation rates for the Sun (Eggen-
139
+ berger et al. 2005), white dwarfs and NSs (Heger et al. 2005; Suijs et al. 2008). However the TS dynamo is currently challenged
140
+ for explaining the slow rotation rates of cores in red giants (Eggenberger et al. 2012; Cantiello et al. 2014). Recently, the revised
141
+ TS dynamo (Fuller et al. 2019), which was proposed to better match lower core rotation rates for sub-giant and red giant stars in
142
+ better agreement with observed values, faces a challenge to reproduce the observational constraints on asteroseismic data of evolved
143
+ stars (Eggenberger et al. 2019; den Hartogh et al. 2020). Applying the revised TS dynamo to massive He-rich stars in close binary
144
+ systems predicts lower BH spins when compared with the original TS dynamo (Fuller & Lu 2022). More recently, Eggenberger
145
+ et al. (2022) derived a new calibrated version of the original TS dynamo to better account for the evolution of the core rotation rates
146
+ along the red giant branch stars when compared with the revised dynamo version. There was a theoretical debate on the existence
147
+ of the dynamo (Zahn et al. 2007). Ji et al. (2022) recently performed three-dimentional magnetohydrodynamic simulations of the
148
+ Tayler instability in rotating stellar interiors, and claimed to observe dynamo action via the amplification of poloidal magnetic field,
149
+ indicating the TS instability could be important for magnetic field generation and AM transport in the radiative regions of evolving
150
+ stars. The detailed comparisons between different versions of TS dynamo are beyond the scope of this work. Therefore, we are
151
+ focused on the impact of the original TS dynamo within massive He-rich stars on the spin of resultant BH and its comparison when
152
+ the TS dynamo is not included.
153
+ In this paper, we systematically investigate an alternative evolutionary scenario to form BBHs from double He-rich stars, i.e.,
154
+ double-core evolution first proposed by Brown (1995) who studied the formation of double NSss. In Section 2, we introduce the
155
+ main methods used in the stellar and binary evolution models. We present our detailed results in Section 3. The conclusions and
156
+ discussion are summarized in Section 4.
157
+ 2. Methods
158
+ We use release 15140 of MESA stellar evolution code (Paxton et al. 2011, 2013, 2015, 2018, 2019) to perform all of the binary
159
+ evolution calculations in this work. We adopt three different kinds of metallicities, Z = Z⊙, 0.1Z⊙, 0.01Z⊙, where the solar metallicity
160
+ is Z⊙ = 0.0142 (Asplund et al. 2009). We create He-rich stars at zero-age helium main sequence following the same method as in
161
+ Qin et al. (2018); Bavera et al. (2020); Hu et al. (2022); Fragos et al. (2022), and then relax the created He-rich stars to reach the
162
+ thermal equilibrium when the ratio of the He-burning luminosity to the total luminosity ≥ 99%. We model convection using the
163
+ standard mixing-length theory (Böhm-Vitense 1958) with a parameter α = 1.5 and semiconvection according to Langer et al. (1983)
164
+ with an efficiency parameter αsc = 1.0. We adopt Ledoux convection criterion to treat the boundaries of the convective zones and
165
+ consider the step overshooting as an extension given by αp = 0.1Hp, where Hp is the pressure scale height at the Ledoux boundary
166
+ limit. The network of approx12.net is adopted for nucleosynthesis.
167
+ We treat rotational mixing and AM transport as diffusive processes Heger & Langer (2000), including the effects of Eddington-
168
+ Sweet circulations, the Goldreich–Schubert–Fricke instability, as well as secular and dynamical shear mixing. We include diffusive
169
+ element mixing from these processes with an efficiency parameter fc = 1/30 (Chaboyer & Zahn 1992; Heger & Langer 2000). We
170
+ use the standard efficient AM transport mechanism (e.g., Spruit 1999, 2002). Stellar winds of He-rich stars are modeled with the
171
+ standard “Dutch” scheme, multiplied with a scaling factor of 2/3 to match the recently updated modeling of helium stars’ winds
172
+ (Higgins et al. 2021).
173
+ He-rich stars are modeled to reach the carbon exhaustion in the center. The baryonic remnant mass is calculated following
174
+ the “delayed” supernova prescription as in Fryer et al. (2012). In order to calculate the mass and spin of the BH, we follow the
175
+ framework in Batta & Ramirez-Ruiz (2019), which has been recently implemented in recent work (Bavera et al. 2020; Hu et al.
176
+ 2022). We take into account the neutrino loss as in Zevin et al. (2020). We adopt 2.5 M⊙ as the maximum NS mass. As a comparison
177
+ (see appendix A), we also considered BHs formed through direct core collapse without receiving any mass loss or natal kicks (Fryer
178
+ 1999; Belczynski et al. 2008). Very recently, it was reported on VFTS 243 that an X-ray quiet BH was born with a negligible kick
179
+ in a massive binary within the Large Magellanic Cloud (Shenar et al. 2022).
180
+ Tidal interaction in close binary systems plays a critical role in the evolution of the orbit and the internal AM for the two stellar
181
+ components. In this work, we use the dynamical tides model (Zahn 1975; Hut 1981) to calculate the synchronization timescale
182
+ (Tsync), which is dependent on the tidal coefficient E2. The two He-rich stars are assumed to be non-rotating at ZAHeMS. The main
183
+ reason is that He-rich stars can be quickly spun up in close orbits. For both He-rich (also H-rich) stars, Qin et al. (2018) recently
184
+ updated an approximate expression of E2, mainly depending the convective core radius and the star’s radius for a wide range of
185
+ initial masses and evolutionary stages at different metallicities.
186
+ In this study, we are focused on detailed investigations of a parameter space study with various initial conditions of close double
187
+ He-rich stars. We cover the initial masses of He-rich stars from 5 - 65 M⊙, the initial orbital periods in a range of 0.1 - 6 days. We
188
+ evolve two He-rich stars with equal mass at different initial metallicities assuming two different AM transport mechanisms.
189
+ Article number, page 3 of 16
190
+
191
+ A&A proofs: manuscript no. main
192
+ 3. Results
193
+ 3.1. Hertzsprung-Russell diagrams of single He-rich stars
194
+ Here we present the Hertzsprung-Russell (HR) diagram of single He-rich stars from the onset of the core helium burning (i.e.,
195
+ ZAHeMS) to the exhaustion of their central carbon. All of the He-rich stars are assumed to be non-rotating with different metallicities
196
+ (1.0 Z⊙, 0.1 Z⊙ and 1.0 Z⊙), in the mass range of 5 - 60 M⊙ at a step of 5 M⊙. In Fig. 1, the core helium burning phase begins on the
197
+ right ends of the different curves labelled by the core He-mass, evolution then brings the stars to the left (the effective temperature
198
+ increases). The evolution of the luminosity is different depending on the initial metallicity, rapidly decreasing at the beginning at 1.0
199
+ Z⊙ in the high mass range, and increasing at 0.01 Z⊙ in this same mass domain. This is an effect of the different mass loss rates at
200
+ different metallicities. At high metallicities the strong mass loss rate decreases rapidly the luminoisity. At a low metallicity the mass
201
+ is much less decreased and the main effect comes from the fact that the mean molecular weight increases increasing the luminosity,
202
+ overcoming the effect due to the weak mass loss. These stars evolves towards to bluer regions of the HR diagram, which is similar
203
+ to H-rich stars evolving chemically homogeneously on the main sequence. The main difference, however, is that for more massive
204
+ He-rich stars their mass decreases and as a consequence the radius shrinks.
205
+ 5.0
206
+ 5.05
207
+ 5.1
208
+ 5.15
209
+ 5.2
210
+ 5.25
211
+ log[Teff/K]
212
+ 4.5
213
+ 5.0
214
+ 5.5
215
+ 6.0
216
+ 6.5
217
+ log[L/L ]
218
+ 5 M
219
+ 10 M
220
+ 15 M
221
+ 20 M
222
+ 25 M
223
+ 30 M
224
+ 35 M
225
+ 40 M
226
+ 45 M
227
+ 50 M
228
+ 55 M
229
+ 60 M
230
+ 1.0 Z
231
+ 5.0
232
+ 5.05
233
+ 5.1
234
+ 5.15
235
+ 5.2
236
+ log[Teff/K]
237
+ 5 M
238
+ 10 M
239
+ 15 M
240
+ 20 M
241
+ 25 M
242
+ 30 M
243
+ 35 M
244
+ 40 M
245
+ 45 M
246
+ 50 M
247
+ 55 M
248
+ 60 M
249
+ 0.1 Z
250
+ 5.0
251
+ 5.05
252
+ 5.1
253
+ 5.15
254
+ 5.2
255
+ log[Teff/K]
256
+ 5 M
257
+ 10 M
258
+ 15 M
259
+ 20 M
260
+ 25 M
261
+ 30 M
262
+ 35 M
263
+ 40 M
264
+ 45 M
265
+ 50 M
266
+ 55 M
267
+ 60 M
268
+ 0.01 Z
269
+ Fig. 1. Hertzsprung-Russell diagrams of various single non-rotating He-rich stars with different initial metallicities (Left panel: 1.0 Z⊙, middle
270
+ panel: 0.1 Z⊙. bottom panel: 0.01 Z⊙.) evolving from Zero Age Helium Main Sequence (ZAHeMS) to the central helium exhaustion. The blue
271
+ dashed lines refer to contours of constant radii.
272
+ 3.2. Spin of BHs formed from double-core evolution
273
+ 3.2.1. Impact of TS dynamo on BH spins
274
+ Let us first show how different efficiencies of AM transport within He-rich stars change their rotation frequency at different evolu-
275
+ tionary stages and thus the resulting spin parameters of BHs. As a case study, we evolve a binary system of two equal-mass He-rich
276
+ stars, with initial mass MZamsHe = 39.80 M⊙ at the initial orbital period Pinit. = 0.63 days, until the end of their central carbon
277
+ depletion.
278
+ First of all, we show in Fig. 2 that the AM of the star and its core increases rapidly at the beginning due to the tidal interaction
279
+ that spun up the star. Under the assumption that the wind mass lost is carrying the specific AM of the mass-losing star (Jeans mass
280
+ loss), the He-rich star and its inner core will thus be slowed down. This situation, however, can be reversed for He-rich stars in
281
+ a close binary system, in which tides are efficient to spin up the outer layers of the stars and their cores through strong coupling
282
+ within the stars. We present the impact of the TS dynamo on the evolution of the internal rotation frequency of He-rich stars at
283
+ different evolutionary stages, which are shown in the top two panels in Fig. 2. On the top left panel, we present models with the TS
284
+ dynamo included (hereafter, TS on) given the solar metallicity, while we leave the discussion of a lower-metallicity model for the
285
+ next section. First of all, with the TS dynamo the model in top left panel (see blue line) shows for the He-rich star in the middle of
286
+ the core helium burning a flat distribution of a constant rotation frequency. This is because the star evolves with TS on like a solid
287
+ body during core He burning phase. The whole star then gets spun up by the tidal interaction from its companion, as the star evolves
288
+ off its core helium burning phase, from which on the star has rotation frequency of its outer layers slightly decreasing towards
289
+ the surface due to the occurrence of increasing chemical gradient in the late evolutionary stage. The rotation frequency of the star
290
+ continues increasing after the middle of the core helium burning, which is due to the tidal spun-up from its companion. In contrast,
291
+ similar models without including TS dynamo (hereafter, TS off) on the top right panel in Fig. 2, show clear differences. The first
292
+ difference is that the whole star due to less efficient coupling (e.g., TS off) between the outer layers and the stellar core is not a solid
293
+ body from the early evolutionary stage (i.e., middle of core helium burning) to the late stages (see yellow sold line for the model at
294
+ Article number, page 4 of 16
295
+
296
+ Y. Qin et al.: Merging binary black holes formed through double-core evolution
297
+ the central carbon ignition and red line for the central carbon depletion, respectively). Additionally, we also note that the star with
298
+ TS off has a much larger rotational frequency throughout the whole evolutionary phase when compared with TS-on models. This is
299
+ because inefficient coupling (TS off) between the outer layers and the stellar core allows the star to retain more AM and can instead
300
+ be spun up if tides are strong.
301
+ In this section, we present the impact of TS dynamo on the evolution of the AM of the He-rich stars and their inner cores at
302
+ different evolutionary stages. We show in Fig. 3 that two binary evolutionary sequences of the same initial orbital period Pinit. =
303
+ 0.63 days and different initial masses MZamsHe = 10.00 M⊙ (top row) and MZamsHe = 39.80 M⊙ (bottom row), assuming TS on (solid
304
+ lines) and off (dashed lines). Here we only show the solar-metallicity models, and leave the discussion of the rest in the following
305
+ section. In the top left panel, we can see clear differences of the total AM of He-rich stars with TS on (black solid line) and off
306
+ (black dashed line) starting before the middle of core helium (He) burning stage. For the model with TS on, during the core He
307
+ burning phase the total AM of the star slowly decreases and then reaches the lower limit at the central He depletion. Additionally,
308
+ the total AM keeps almost constant during the whole carbon (C) burning phase. Nevertheless, the model with the TS off shows that
309
+ the star’s total AM slightly decreases from the core He burning phase and then keeps constant until the central C depletion. The
310
+ AM of the carbon-oxygen (CO) core of the He-rich star shows a similar trend, but with a shallow decay after igniting its the central
311
+ carbon. The resulting BHs calculated using the prescription in Batta & Ramirez-Ruiz (2019) show the spins 0.08 (TS on) and 0.29
312
+ (TS off), respectively. For more massive He-rich binaries (MZamsHe = 39.80 M⊙), the bottom left panel presents a similar finding,
313
+ but with a much higher difference on the BH spin value, 0.07 (TS on) and 0.49 (TS off). First, He-rich stars in a very close binary
314
+ are synchronised with their orbit due to strong tides, which allows more massive star to carry more AM given the same initial orbit
315
+ when compared to binary systems of less components. On top of that, more massive He-rich stars are expected to have less lifetime
316
+ before the core-collapse, resulting in more AM content within the progenitors and thus high resultant BH spins.
317
+ 3.2.2. Impact of the metallicity on BH spins
318
+ As shown in the previous section, the TS dynamo has a significant impact on the evolution of the AM of the He-rich star and its core
319
+ at later evolutionary stages, which further determines the spin values of the BH at birth. We here describe how the initial metallicity
320
+ of He-rich stars can play a role in determining the spins of the resulting BHs.
321
+ It is well known that the stellar winds are strongly dependent on the metallicity of the mass-losing He-rich stars (Vink et al. 2001;
322
+ Vink & de Koter 2005; Eldridge & Vink 2006; Sander et al. 2020). We can see that the He-rich star at its central carbon depletion
323
+ has a much larger mass (around 37.5 M⊙) at 0.01 Z⊙ when compared with a solar metallicity (around 20 M⊙). We show in the
324
+ two bottom panels of Fig. 2 that, the He-rich star and its inner core have a similar and higher rotation rate at different evolutionary
325
+ stages when compared with corresponding TS-on models at Z⊙. Additionally, the bottom right panel shows that the He-rich star
326
+ evolves deviating from a solid body, slightly decreasing rotation rate from the stellar core to its outer layers. We also see that at
327
+ solar metallicity the TS-off models retain more AM, but the difference is much less marked than at sub-solar metallicity (e.g., 0.01
328
+ Z⊙, see two bottom panels in Fig. 2). This difference is caused by the effect of the metallicity-depend wind mass loss which plays a
329
+ critical in determining the final AM content of the progenitor star.
330
+ In Fig. 3, we can see that at 0.1 Z⊙, both He-rich stars and their cores have a higher AM at different evolutionary stages when
331
+ compared with 1.0 Z⊙ (see the top left panel in Fig. 3). Interestingly, we note that the TS dynamo plays a small role in determining
332
+ the evolution of the AM of He-rich star and its core at a low metallicity (see the top middle and right panel). This is expected as
333
+ the wind carrying the specific AM of the mass-losing He-rich star is weaker at lower metallicities, which weakens the effect of AM
334
+ transport within stars. Therefore, the spin values of resultant BHs formed at lower metallicities are accordingly higher, i.e., 0.1 Z⊙
335
+ and 0.14 at 0.01 Z⊙ for TS on (TS off: 0.43 Z⊙ and 0.49 at 0.01 Z⊙).
336
+ 3.2.3. Parameter space analysis
337
+ First of all, we show in the top left panel of Fig. 4, BH masses as a function of the He-rich initial mass and initial orbital period at
338
+ solar metallicity. First, the binary systems either start to overflow their Roche lobes at the first model for Pinit. ∼ 0.1 days (0.2 days
339
+ for MZamsHe ∼ 30 M⊙) or undergo the second lagrangian point (L2) overflowing for MZamsHe ∼ 38 M⊙ and Pinit. ∼ 0.1 days. Second,
340
+ given the “delayed” supernova prescription (Fryer et al. 2012) the lower mass limit of the He-rich star that can collapse to form a
341
+ BH (given solar metallicity) is around 12 M⊙, below which a NS is formed instead (The study of NS formation is not considered
342
+ in this work). Third, a He-rich star can form a BH with the maximum mass of around 26 M⊙. At 0.1 Z⊙ (see top middle panel), we
343
+ note that ∼ 40 M⊙ BH can be formed. Notably, the initial orbital period starts to have an impact on the mass of the resulting BH
344
+ when its immediate progenitor (He-rich star) has an initial mass ≳ 40 M⊙. This is because He-rich stars tend to lose more masses
345
+ at a higher rotation rate in a closer binary system, which is due to the rotationally-enhanced mass loss (Langer 1997; Maeder &
346
+ Meynet 2000). It is clearly shown at 0.01 Z⊙ that more massive BHs (> 55 M⊙ see top right panel) can be formed. It is worth noting
347
+ that the efficient AM transport within He-rich stars plays a negligible role in determining the BH mass.
348
+ We then present in Fig. 5 the spin parameters a∗ of BHs formed from collapsing He-rich stars in close binaries with various
349
+ conditions and assumed AM transport processes. Let us first show the spins of resultant BHs assuming efficient AM transport
350
+ within He-rich stars. We note that the tides start to play a role when the initial orbital period Pinit. is not longer than 1.0 day for all
351
+ metallicities. As demonstrated in recent studies (Qin et al. 2018; Fuller & Lu 2022), the interplay between the tides and wind mass
352
+ loss of He-rich stars determines the AM of resultant BHs at birth and thus their spin magnitudes. At solar metallicity, the formed
353
+ BHs are found to have low spin values (i.e., a∗ ≲ 0.4, see top left panel). This is because the wind mass loss of He-rich stars at a
354
+ high metallicity is dominant over the tides. The spin magnitudes of BHs formed at lower metal poor environments are shown in the
355
+ middle (0.1 Z⊙) and right panel (0.01 Z⊙). Therefore, at a given initial orbital period (Pinit. ≲ 1.0 day), high BH spins can be reached
356
+ Article number, page 5 of 16
357
+
358
+ A&A proofs: manuscript no. main
359
+ 0
360
+ 5
361
+ 10
362
+ 15
363
+ 20
364
+ 25
365
+ 30
366
+ Enclosed Mass [M ]
367
+ 10 5
368
+ 10 4
369
+ 10 3
370
+ 10 2
371
+ [rad/s]
372
+ Z = 1.0 Z
373
+ TS on
374
+ 0
375
+ 5
376
+ 10
377
+ 15
378
+ 20
379
+ 25
380
+ 30
381
+ Enclosed Mass [M ]
382
+ Z = 1.0 Z
383
+ TS off
384
+ 0
385
+ 5
386
+ 10
387
+ 15
388
+ 20
389
+ 25
390
+ 30
391
+ 35
392
+ 40
393
+ Enclosed Mass [M ]
394
+ 10 4
395
+ 10 3
396
+ 10 2
397
+ [rad/s]
398
+ Z = 0.01 Z
399
+ TS on
400
+ 0
401
+ 5
402
+ 10
403
+ 15
404
+ 20
405
+ 25
406
+ 30
407
+ 35
408
+ 40
409
+ Enclosed Mass [M ]
410
+ Z = 0.01 Z
411
+ TS off
412
+ Middle of Core He burning
413
+ Central C Ignition
414
+ Central C Depletion
415
+ Fig. 2. As a function of mass coordinate, we plot the angular velocity ω of He-rich stars at three evolutionary stages, i.e., middle of core helium
416
+ burning (blue), Central carbon ignition (yellow), and central carbon depletion (red). The initial mass of He-rich star is MZamsHe = 39.80 M⊙ and
417
+ the initial orbital period Pinit. = 0.63 days. Different efficiencies of AM transport mechanism and metallicities are assumed. Left column: TS on,
418
+ right column: TS off. Top row: 1.0 Z⊙, bottom row: 0.01 Z⊙.
419
+ for models at 0.1 and 0.01 Z⊙. At 0.01 Z⊙, we clearly see in the top right panel that, the spin magnitudes continue increasing with
420
+ initial orbital period for all different initial masses of He-rich star. This is because the progenitor of the BH has very weak winds
421
+ at 0.01 Z⊙, and thus loses negligible mass and AM. Furthermore, it is clear to see that the spins of BHs, originated from He-rich
422
+ stars with initial mass ≲ 20 M⊙, slightly increase with initial mass. This is because the wind of low-mass He-rich stars at very
423
+ low metallicity (0.01 Z⊙) is significantly weak. Accordingly, for initially higher mass of He-rich stars, more infalling mass with its
424
+ corresponding AM can be accreted to the newly-formed BHs (Batta & Ramirez-Ruiz 2019), resulting in higher final BH spins.
425
+ Assuming inefficient AM transport within He-rich stars, we show the spins of resultant BHs in the second row of Fig. 5. As
426
+ shown clearly in the bottom left panel, high BH spins (> 0.9) can be reached at solar metallicity. Additionally, the spin covers
427
+ the whole range, i.e., from minimum to maximum. For initial orbital periods Pinit. ≲ 1.0 day, we note that the BH spin gradually
428
+ decreases with increasing initial mass of He-rich stars, which is because massive He-rich stars are prone to be slowed down due to
429
+ their strong winds at high metallicity. This is in contrast to the results of models at very low metallicity (see the top right panel),
430
+ where the wind mass loss of He-rich stars is significantly weak at 0.01 Z⊙. Notably, we can see that He-rich stars tend to form
431
+ higher-spinning BHs at lower metallicities which correspond to weaker wind mass loss (see bottom middle and right panel).
432
+ 3.3. Merging timescales and comparisons with observed merging BBHs
433
+ After two BHs form from the core-collapse of He-rich stars, gravitational wave (GW) emission shrinks the separation by removing
434
+ the orbital AM, and eventually leads to the merger the compact objects. The timescale for two point masses to spiral in through GW
435
+ emission from an initial eccentricity being zero (circular orbit) is given by Peters (1964)
436
+ Tmerger =
437
+ 5
438
+ 512
439
+ c5
440
+ G3M3
441
+ 2q−2
442
+ 1 + q−1 a4,
443
+ (1)
444
+ where M is the BH mass, q the mass ratio of the two BHs (q = 1 for our case) and a is the orbital separation.
445
+ We show the color bar in Fig. 6 corresponding to Tmerger of merging BBHs due to GW emission. First, comparing the two rows
446
+ of different AM transport mechanisms shows negligible impact on the merging timescale. This is because significant differences are
447
+ only expected for the AM content of the BH progenitors, rather than the properties (two component masses and the final separation)
448
+ of the binary system just after the birth of two BHs. Second, the parameter space of systems that are able to merge within a Hubble
449
+ time is extended in lower metallicities. This is because BH progenitors at a higher metallicity tend to lose more mass, and the BBHs
450
+ at birth thus have larger separations (Tmerger ∝ a4). Third, given a specific initial orbital period and metallcity, BBHs with initially
451
+ higher mass have shorter merging timescales (Tmerger ∝ M−3).
452
+ Figure 7 presents the merging timescales Tmerger as a function of the effective inspiral spin χeff and the chirp mass Mchirp. 69
453
+ high-confidence BBH events (false alarm rate < 1 per year) officially reported from the LVK are also shown in grey for comparison
454
+ Article number, page 6 of 16
455
+
456
+ Y. Qin et al.: Merging binary black holes formed through double-core evolution
457
+ 0
458
+ 100
459
+ 200
460
+ 300
461
+ Model number
462
+ 1049
463
+ 1050
464
+ J (cm2 g/s)
465
+ TS on: a ,final = 0.08
466
+ TS off: a ,final = 0.29
467
+ Pinit. = 0.63 days
468
+ Minit. = 10.00 M
469
+ Z = 1.0 Z
470
+ 0
471
+ 50
472
+ 100
473
+ 150
474
+ 200
475
+ 250
476
+ Model number
477
+ TS on: a ,final = 0.10
478
+ TS off: a ,final = 0.43
479
+ Z = 0.1 Z
480
+ 0
481
+ 50
482
+ 100
483
+ 150
484
+ 200
485
+ Model number
486
+ TS on: a ,final = 0.14
487
+ TS off: a ,final = 0.49
488
+ Z = 0.01 Z
489
+ 0
490
+ 200
491
+ 400
492
+ 600
493
+ 800
494
+ Model number
495
+ 1049
496
+ 1050
497
+ 1051
498
+ 1052
499
+ J (cm2 g/s)
500
+ TS on: a ,final = 0.07
501
+ TS off: a ,final = 0.49
502
+ Pinit. = 0.63 days
503
+ Minit. = 39.80 M
504
+ Z = 1.0 Z
505
+ 0
506
+ 100
507
+ 200
508
+ 300
509
+ Model number
510
+ TS on: a ,final = 0.21
511
+ TS off: a ,final = 0.52
512
+ Z = 0.1 Z
513
+ 0
514
+ 50
515
+ 100
516
+ 150
517
+ 200
518
+ Model number
519
+ TS on: a ,final = 0.50
520
+ TS off: a ,final = 0.56
521
+ Z = 0.01 Z
522
+ Jtotal (TS on)
523
+ JCO (TS on)
524
+ Jtotal (TS off)
525
+ JCO (TS off)
526
+ Middle of Core He burning
527
+ Central He Depletion
528
+ Central C ignition
529
+ Fig. 3. AM of the He-rich star and its Carbon-Oxygen (CO) core (black lines: Jtotal, blue lines: JCO) as a function of model number for two binary
530
+ sequences (Top row: two equal-mass He-rich stars with initial helium star mass MZamsHe = 10.0 M⊙, initial orbital period Pinit. = 0.63 days; bottom
531
+ row: MZamsHe = 39.8 M⊙, Pinit. = 0.63 days). Similar to Fig. 2, we assume two different efficiencies of AM transport mechanism, i.e., solid lines:
532
+ TS on, dashed lines: TS off. Left column: 1.0 Z⊙, middle column: 0.1 Z⊙, right column: 0.01 Z⊙. Three evolutionary stages are marked in different
533
+ symbols: square: middle of core helium burning, circle: central helium depletion, filled circle: central carbon ignition. The spin parameters of BHs
534
+ formed from He-rich stars are presented.
535
+ in each panel. We present systems formed from the same initial orbital period in dashed line. We assume that the formed BHs
536
+ have spin components perfectly aligned to the direction of the orbital AM. First of all, we note that the initial metallicity plays an
537
+ important role in forming systems with the observable properties (χeff and Mchirp). i.e., lower metallicities corresponding to formed
538
+ systems with higher χeff and larger Mchirp. More specifically, the Mchirp can be reached around 26 M⊙ at solar metallicity (40 and
539
+ 58 M⊙ at 0.1 and 0.01 Z⊙, respectively). Furthermore, the magnitude of χeff can vary from 0.0 (Pinit. = 1.0 day) and 1.0 (Pinit. = 0.2
540
+ days). We note that so far no BBHs with χeff = 1 has been reported from the LVK collaboration. Third, the AM transport mechanism
541
+ in these observable properties of BBHs starts to play a more important role at higher metallicities (solar metallicity, see the two
542
+ left panels in Fig. 7). Additionally, under the assumption of inefficient AM transport, double He-rich stars can form observable
543
+ BBHs with χeff > 0.80 (< 0.5 with TS on) with initially Pinit. = 0.4 days and χeff > 0.5 (< 0.25 with TS on) with initially Pinit. =
544
+ 0.6 days, respectively. It is also clearly shown in the left panels of Fig. 7 that more BBHs formed from double He-rich stars at
545
+ solar metallicity will not be merged within a Hubble time (see black triangles) when compared with low-metallicity models. We
546
+ note the trend that the observed BBHs with higher values of both χeff and Mchirp, can be better explained in our modeling at lower
547
+ metallicites. In particular, the fraction of the BBHs, which have χeff higher than that of GW190517 (it has the highest χeff reported
548
+ in the LVK), is 8.9% at 1.0 Z⊙, 20.3% at 0.1 Z⊙, and 26.9% at 0.01 Z⊙ (For TS off: 18.1% at 1.0 Z⊙, 23.2% at 0.1 Z⊙, and 28.7%
549
+ at 0.01 Z⊙), respectively. GW190521 was reported from the LVK to have the highest Mchirp (Abbott et al. 2020), which might be a
550
+ straddling binary using a population informed prior (Fishbach & Holz 2020). This event is an outlier in our models, as the upper
551
+ limit of the BH mass in this study is assumed not to be higher than ∼ 65 M⊙ due to (pulsational) pair-instability supernovae (see
552
+ discussion in the next section). Additionally, GW190517−055101 has the largest χeff reported in the second Gravitational-Wave
553
+ Transient Catalog (GWTC-2) (Abbott et al. 2021), which can be explained with our models at lower metallicities (see the second
554
+ and third rows in Fig. 7), regardless of the assumed efficiencies of AM transport. Therefore, the BBH progenitor of this event might
555
+ have gone through the double-core evolution at low metallicities (e.g., Z < 0.1 Z⊙.)
556
+ 4. Conclusions and Discussion
557
+ In this work, we first present the Hertzsprung-Russel diagrams of single non-rotating He-rich stars in a mass range of 5 - 60 M⊙ at
558
+ different metallicities, evolving from ZAHeMS to the central helium exhaustion. We then systematically study an alternative forma-
559
+ tion scenario of BBHs (i.e., the double-core evolution) by modeling double He-rich stars in various parameter spaces (metallicity
560
+ and initial mass of He-rich stars, as well as the orbital period). Furthermore, we also investigate the impact of the different AM
561
+ transport mechanism on the evolution of He-rich stars in different evolutionary stages, the properties of resulting BBHs at birth, as
562
+ well as the merging timescale.
563
+ Article number, page 7 of 16
564
+
565
+ A&A proofs: manuscript no. main
566
+ 101
567
+ MZamsHe[M ]
568
+ 10 1
569
+ 100
570
+ Pinit. [day]
571
+ 1.0 Z
572
+ 101
573
+ MZamsHe[M ]
574
+ 0.1 Z
575
+ 101
576
+ MZamsHe[M ]
577
+ TS on
578
+ 0.01 Z
579
+ 10
580
+ 20
581
+ 40
582
+ MZamsHe[M ]
583
+ 10 1
584
+ 100
585
+ Pinit. [day]
586
+ 10
587
+ 20
588
+ 40
589
+ MZamsHe[M ]
590
+ 10
591
+ 20
592
+ 40
593
+ MZamsHe[M ]
594
+ TS off
595
+ 10
596
+ 20
597
+ 30
598
+ 40
599
+ 50
600
+ 60
601
+ MBH[M ]
602
+ Initial Overflow
603
+ L2 Overflow
604
+ NS
605
+ Fig. 4. BH mass MBH as a function of the He-rich star’s initial mass and orbital period, are marked with the color of the filled circles while gray
606
+ squares represent that the compact objects formed through direct core-collapse of the He-rich star are NSs. Left column: 1.0 Z⊙, middle column:
607
+ 0.1 Z⊙, right column: 0.01 Z⊙. Top row: TS on; bottom row: TS off. The cross symbols represent the systems overflowing their Roche lobes at their
608
+ initial models, while the plus symbols refer to the systems overflowing the second Legrangian point (L2) at the initial models.
609
+ We calculate the baryonic remnant mass following the “delayed” supernova prescription shown in Fryer et al. (2012), and
610
+ taking into account the impact of accretion feedback onto the newly-formed BHs. The upper limit of the BH mass is around 26,
611
+ 40 and 58 M⊙ at 1.0 Z⊙, 0.1 Z⊙ and 0.01 Z⊙, respectively. We find that tides for double He-rich stars can only be important when
612
+ the initial orbital periods are less than 1.0 day, which is similar to previous studies of a He-rich star accompanied by a BH/NS
613
+ (Qin et al. 2018; Bavera et al. 2020; Fuller & Lu 2022). We note that the initial metallicity of He-rich stars should be high for the
614
+ efficient AM transport to play a significant role in determining the spin magnitude of the newly-formed BHs, since their progenitors
615
+ (massive He-rich He-stars) are more inclined to be slowed down by stronger winds mass-loss especially when rotating like a solid
616
+ body. The χeff for BBHs formed through the double-core evolution is not always high, but it can cover the whole range of BH spin,
617
+ i.e., from minimum (0.0) to maximum (1.0), depending on the initial orbital period of the binary systems. The chirp mass Mchirp
618
+ of BBH is strongly dependent on the initial metallicity of He-rich stars (e.g., Belczynski et al. 2010; Stevenson et al. 2017, 2019).
619
+ More specifically, the chirp mass Mchirp of the BBH from double-core evolution at 1.0 Z⊙ can not be larger than 26 M⊙, regardless
620
+ of the efficiency of the AM transport within He-rich stars.
621
+ After detailed investigations of the double-core evolution, we would expect that this channel could predict a certain fraction of
622
+ BBH populations with high χeff and Mchirp. More events with the above features are expected to be captured by the LVK with its
623
+ improving sensitivity in the upcoming fourth observing run. The quantitative merger rate from this channel is beyond the scope of
624
+ the current work. Therefore we plan to investigate the quantitative contribution of this channel to the intrinsic BBH population with
625
+ the population synthesis study and the impact of different physical processes on the outcomes in the near future.
626
+ The formation of massive He-rich binary stars might not involve the CE phase, in which the criteria for its occurrence are
627
+ still under development. Recent investigations suggest that the BBHs merger rate from the CE channel might be overestimated in
628
+ rapid population synthesis studies (e.g., Pavlovskii et al. 2017; Marchant et al. 2021; Klencki et al. 2021; Gallegos-Garcia et al.
629
+ 2021; Olejak et al. 2021). Their studies indicate that stable mass transfer channel could be a dominant channel for the formation
630
+ of merging BBHs (e.g., Shao & Li 2022; Briel et al. 2022). van Son et al. (2022a) recently found that stable mass transfer channel
631
+ preferentially form BBH systems with more massive component BH masses. Furthermore, by varying the metallicity-dependent
632
+ cosmic star formation history, van Son et al. (2022b) found the variations affect the slope of the high mass end of the BBH mass
633
+ distribution, but have a slight impact on the CE channel. In addition, massive He-rich binary stars could be formed through the CHE
634
+ channel. In this channel, the two massive stars initially evolve in a close orbit and thus have strong chemical mixing due to strong
635
+ tides.
636
+ Here we briefly summarise some main uncertainties in our binary modeling. First, stellar wind mass loss is one of key uncertain
637
+ physical processes in the evolution of massive stars, which can have a significant impact on the mass and the spin of resultant BHs.
638
+ Second, it is unclear whether supernova kicks (natal kicks) are imparted onto BHs during the core-collapse process. BHs formed
639
+ from direct core-collapse of massive stars were considered to receive no natal kick (Belczynski et al. 2008). Nevertheless, we note
640
+ Article number, page 8 of 16
641
+
642
+ Y. Qin et al.: Merging binary black holes formed through double-core evolution
643
+ Fig. 5. As in Fig. 4, but the color denotes the BH spin parameter a⋆.
644
+ that a recent work by Farr et al. (2011); Tauris (2022) which argued that, rather than dynamical formation, isolated binary evolution
645
+ can still explain the observed BBHs if BHs have spin-axis tossed due to the supernova kicks during their formation process in the
646
+ core collapse of massive stars. The stellar evolution theory predicts a mass “gap” in the BH birth function caused by the (pulsational)
647
+ pair-instability supernovae (Fowler & Hoyle 1964; Rakavy & Shaviv 1967; Barkat et al. 1967; Fraley 1968; Heger et al. 2003), which
648
+ is still uncertain and thus plays a critical role in determining the upper limit of the BH mass below the “gap” (see Woosley & Heger
649
+ 2021, and references therein). The constraints from current observations of BBHs reported from the LVK are still weak due to a
650
+ statistically small sample. Therefore, we expect the sample of BBH events with higher χeff and Mchirp will be significantly expanded
651
+ in the upcoming fourth run, which will be used to make stronger constraints on the supernova kicks during the formation process of
652
+ BHs from massive stars.
653
+ Acknowledgements. Y.Q. acknowledges the support from the Doctoral research start-up funding of Anhui Normal University and from Key Laboratory for Rel-
654
+ ativistic Astrophysics in Guangxi University. This work was supported by the National Natural Science Foundation of China (Grant Nos. 12003002, 12192220,
655
+ 12192221, 11863003, 12173010) and the Natural Science Foundation of Universities in Anhui Province (Grant No. KJ2021A0106). G.M. has received funding
656
+ from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 833925, project
657
+ STAREX). All figures were made with the free Python module Matplotlib (Hunter 2007).
658
+ References
659
+ Abadie, J., Abbott, B. P., Abbott, R., et al. 2010, Classical and Quantum Gravity, 27, 173001
660
+ Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2016a, Phys. Rev. Lett., 116, 061102
661
+ Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2016b, ApJ, 818, L22
662
+ Abbott, R., Abbott, T. D., Abraham, S., et al. 2021, Physical Review X, 11, 021053
663
+ Abbott, R., Abbott, T. D., Abraham, S., et al. 2020, Phys. Rev. Lett., 125, 101102
664
+ Antonini, F., Chatterjee, S., Rodriguez, C. L., et al. 2016, ApJ, 816, 65
665
+ Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P. 2009, ARA&A, 47, 481
666
+ Barkat, Z., Rakavy, G., & Sack, N. 1967, Phys. Rev. Lett., 18, 379
667
+ Batta, A. & Ramirez-Ruiz, E. 2019, arXiv e-prints, arXiv:1904.04835
668
+ Bavera, S. S., Fragos, T., Qin, Y., et al. 2020, A&A, 635, A97
669
+ Bavera, S. S., Fragos, T., Zevin, M., et al. 2021, A&A, 647, A153
670
+ Belczynski, K., Dominik, M., Bulik, T., et al. 2010, ApJ, 715, L138
671
+ Belczynski, K., Holz, D. E., Bulik, T., & O’Shaughnessy, R. 2016, Nature, 534, 512
672
+ Belczynski, K., Romagnolo, A., Olejak, A., et al. 2022, ApJ, 925, 69
673
+ Belczynski, K., Taam, R. E., Kalogera, V., Rasio, F. A., & Bulik, T. 2007, ApJ, 662, 504
674
+ Belczynski, K., Taam, R. E., Rantsiou, E., & van der Sluys, M. 2008, ApJ, 682, 474
675
+ Böhm-Vitense, E. 1958, ZAp, 46, 108
676
+ Briel, M. M., Stevance, H. F., & Eldridge, J. J. 2022, arXiv e-prints, arXiv:2206.13842
677
+ Broekgaarden, F. S., Berger, E., Stevenson, S., et al. 2022, MNRAS[arXiv:2112.05763]
678
+ Brown, G. E. 1995, ApJ, 440, 270
679
+ Callister, T. A., Miller, S. J., Chatziioannou, K., & Farr, W. M. 2022, ApJ, 937, L13
680
+ Article number, page 9 of 16
681
+
682
+ a*
683
+ 0.0
684
+ 0.2
685
+ 0.4
686
+ 0.6
687
+ 0.8
688
+ 1.0
689
+ ×Initial Overflow+L2 OverflowNS
690
+ 1.0 Z@
691
+ 0.01 Zo
692
+ 0.1 Z@
693
+ day.
694
+ Pinit.
695
+ Pinit. [day]
696
+ 10-×××××××××××××××××++++++×××××××××××××××××××++++
697
+ ×××××××××××××××××××++++
698
+ 10
699
+ 20
700
+ 40
701
+ 10
702
+ 20
703
+ 40
704
+ 10
705
+ 20
706
+ 40
707
+ MzamsHe[Mo]
708
+ MzamsHe [Mo]
709
+ MzamsHe[Mo]A&A proofs: manuscript no. main
710
+ 101
711
+ MZamsHe[M ]
712
+ 10 1
713
+ 100
714
+ Pinit. [day]
715
+ 1.0 Z
716
+ 101
717
+ MZamsHe[M ]
718
+ 0.1 Z
719
+ 101
720
+ MZamsHe[M ]
721
+ TS on
722
+ > Hubble time
723
+ 0.01 Z
724
+ 10
725
+ 20
726
+ 40
727
+ MZamsHe[M ]
728
+ 10 1
729
+ 100
730
+ Pinit. [day]
731
+ 10
732
+ 20
733
+ 40
734
+ MZamsHe[M ]
735
+ 10
736
+ 20
737
+ 40
738
+ MZamsHe[M ]
739
+ TS off
740
+ 6.0
741
+ 6.5
742
+ 7.0
743
+ 7.5
744
+ 8.0
745
+ 8.5
746
+ 9.0
747
+ 9.5
748
+ 10.0
749
+ log(Tmerger[yr])
750
+ Initial Overflow
751
+ L2 Overflow
752
+ NS
753
+ Fig. 6. As in Fig. 5, but the color represents merger time Tmerger. The black dots represent the systems whose merger times are longer than a Hubble
754
+ time
755
+ Cantiello, M., Mankovich, C., Bildsten, L., Christensen-Dalsgaard, J., & Paxton, B. 2014, ApJ, 788, 93
756
+ Chaboyer, B. & Zahn, J. P. 1992, A&A, 253, 173
757
+ de Mink, S. E. & Belczynski, K. 2015, ApJ, 814, 58
758
+ de Mink, S. E. & Mandel, I. 2016, MNRAS, 460, 3545
759
+ den Hartogh, J. W., Eggenberger, P., & Deheuvels, S. 2020, A&A, 634, L16
760
+ Dewi, J. D. M., Podsiadlowski, P., & Sena, A. 2006, MNRAS, 368, 1742
761
+ Doctor, Z., Wysocki, D., O’Shaughnessy, R., Holz, D. E., & Farr, B. 2020, ApJ, 893, 35
762
+ Dominik, M., Berti, E., O’Shaughnessy, R., et al. 2015, ApJ, 806, 263
763
+ du Buisson, L., Marchant, P., Podsiadlowski, P., et al. 2020, MNRAS, 499, 5941
764
+ Eggenberger, P., den Hartogh, J. W., Buldgen, G., et al. 2019, A&A, 631, L6
765
+ Eggenberger, P., Maeder, A., & Meynet, G. 2005, A&A, 440, L9
766
+ Eggenberger, P., Montalbán, J., & Miglio, A. 2012, A&A, 544, L4
767
+ Eggenberger, P., Moyano, F. D., & den Hartogh, J. W. 2022, A&A, 664, L16
768
+ Eldridge, J. J. & Vink, J. S. 2006, A&A, 452, 295
769
+ Farr, B., Holz, D. E., & Farr, W. M. 2018, ApJ, 854, L9
770
+ Farr, W. M., Kremer, K., Lyutikov, M., & Kalogera, V. 2011, ApJ, 742, 81
771
+ Farr, W. M., Stevenson, S., Miller, M. C., et al. 2017, Nature, 548, 426
772
+ Fishbach, M. & Holz, D. E. 2020, ApJ, 904, L26
773
+ Fowler, W. A. & Hoyle, F. 1964, ApJS, 9, 201
774
+ Fragione, G., Kocsis, B., Rasio, F. A., & Silk, J. 2022, ApJ, 927, 231
775
+ Fragos, T., Andrews, J. J., Bavera, S. S., et al. 2022, arXiv e-prints, arXiv:2202.05892
776
+ Fraley, G. S. 1968, Ap&SS, 2, 96
777
+ Fryer, C. L. 1999, ApJ, 522, 413
778
+ Fryer, C. L., Belczynski, K., Wiktorowicz, G., et al. 2012, ApJ, 749, 91
779
+ Fuller, J. & Lu, W. 2022, MNRAS, 511, 3951
780
+ Fuller, J., Piro, A. L., & Jermyn, A. S. 2019, MNRAS, 485, 3661
781
+ Gallegos-Garcia, M., Berry, C. P. L., Marchant, P., & Kalogera, V. 2021, ApJ, 922, 110
782
+ Gerosa, D. & Fishbach, M. 2021, Nature Astronomy, 5, 749
783
+ Giacobbo, N. & Mapelli, M. 2018, MNRAS, 480, 2011
784
+ Heger, A., Fryer, C. L., Woosley, S. E., Langer, N., & Hartmann, D. H. 2003, ApJ, 591, 288
785
+ Heger, A. & Langer, N. 2000, ApJ, 544, 1016
786
+ Heger, A., Woosley, S. E., & Spruit, H. C. 2005, ApJ, 626, 350
787
+ Higgins, E. R., Sander, A. A. C., Vink, J. S., & Hirschi, R. 2021, MNRAS, 505, 4874
788
+ Hu, R.-C., Zhu, J.-P., Qin, Y., et al. 2022, ApJ, 928, 163
789
+ Hunter, J. D. 2007, Computing in Science and Engineering, 9, 90
790
+ Hut, P. 1981, A&A, 99, 126
791
+ Hwang, J., Lombardi, J. C., J., Rasio, F. A., & Kalogera, V. 2015, ApJ, 806, 135
792
+ Inayoshi, K., Hirai, R., Kinugawa, T., & Hotokezaka, K. 2017, MNRAS, 468, 5020
793
+ Ivanova, N., Justham, S., Chen, X., et al. 2013, A&A Rev., 21, 59
794
+ Ji, S., Fuller, J., & Lecoanet, D. 2022, arXiv e-prints, arXiv:2209.08104
795
+ Kimball, C., Talbot, C., Berry, C. P. L., et al. 2020, ApJ, 900, 177
796
+ Kimball, C., Talbot, C., Berry, C. P. L., et al. 2021, ApJ, 915, L35
797
+ Klencki, J., Nelemans, G., Istrate, A. G., & Chruslinska, M. 2021, A&A, 645, A54
798
+ Article number, page 10 of 16
799
+
800
+ Y. Qin et al.: Merging binary black holes formed through double-core evolution
801
+ Mchirp[M ]
802
+ 0.5
803
+ 0.0
804
+ 0.5
805
+ 1.0
806
+ eff
807
+ 0.2
808
+ 0.3
809
+ 0.4
810
+ 0.6
811
+ 1.0
812
+ (1.6)
813
+ (2.5)
814
+ 1.0 Z
815
+ 0
816
+ 20
817
+ 40
818
+ 60
819
+ 80
820
+ Mchirp[M ]
821
+ 0.2
822
+ 0.3
823
+ 0.4
824
+ 0.6
825
+ 1.0
826
+ (1.6)
827
+ (2.5)
828
+ 0.1 Z
829
+ 0
830
+ 20
831
+ 40
832
+ 60
833
+ 80
834
+ Mchirp[M ]
835
+ 0.2
836
+ 0.3
837
+ 0.4
838
+ 0.6
839
+ 1.0
840
+ 1.6
841
+ 2.5
842
+ TS on
843
+ > Hubble time
844
+ 0.01 Z
845
+ 0
846
+ 20
847
+ 40
848
+ 60
849
+ 80
850
+ Mchirp[M ]
851
+ 0.5
852
+ 0.0
853
+ 0.5
854
+ 1.0
855
+ eff
856
+ 0.2
857
+ 0.3
858
+ 0.4
859
+ 0.6
860
+ 1.0
861
+ (1.6)
862
+ (2.5)
863
+ 0
864
+ 20
865
+ 40
866
+ 60
867
+ 80
868
+ Mchirp[M ]
869
+ 0.2
870
+ 0.3
871
+ 0.4
872
+ 0.6
873
+ 1.0
874
+ (1.6)
875
+ (2.5)
876
+ 0
877
+ 20
878
+ 40
879
+ 60
880
+ 80
881
+ Mchirp[M ]
882
+ 0.2
883
+ 0.3
884
+ 0.4
885
+ 0.6
886
+ 1.0
887
+ 1.6
888
+ 2.5
889
+ TS off
890
+ 6.0
891
+ 6.5
892
+ 7.0
893
+ 7.5
894
+ 8.0
895
+ 8.5
896
+ 9.0
897
+ 9.5
898
+ 10.0
899
+ log(Tmerger[yr])
900
+ GW190521
901
+ GW190517
902
+ Fig. 7. Tmerger (colored dots) as a function of χeff and Mchirp. The first row including three panels corresponds to different initial metallicities (left
903
+ panel: 1.0 Z⊙, middle panel: 0.1 Z⊙, right panel: 0.01 Z⊙) of He-rich stars. Similar to the first row, but the second row involves inefficient AM
904
+ transport mechanism, i.e., TS off. The dashed lines refer to the specific initial orbital periods, marked with numbers in unit of “days”. The observed
905
+ high-confidence BBH events (69 BBHs with false alarm rate < 1 per year) reported from the LVK are shown with the error bars at 90% credibility
906
+ in each panel. Black triangles represent BBHs whose Tmerger is longer than a Hubble time. Two BBH events are highlighted, square: GW190517,
907
+ star: GW190521.
908
+ Langer, N. 1997, in Astronomical Society of the Pacific Conference Series, Vol. 120, Luminous Blue Variables: Massive Stars in Transition, ed. A. Nota & H. Lamers,
909
+ 83
910
+ Langer, N., Fricke, K. J., & Sugimoto, D. 1983, A&A, 126, 207
911
+ Maeder, A. & Meynet, G. 2000, A&A, 361, 159
912
+ Mandel, I. & Broekgaarden, F. S. 2022, Living Reviews in Relativity, 25, 1
913
+ Mandel, I. & de Mink, S. E. 2016, MNRAS, 458, 2634
914
+ Mandel, I. & Farmer, A. 2022, Phys. Rep., 955, 1
915
+ Mapelli, M. 2020, Frontiers in Astronomy and Space Sciences, 7, 38
916
+ Mapelli, M., Dall’Amico, M., Bouffanais, Y., et al. 2021, MNRAS, 505, 339
917
+ Marchant, P., Langer, N., Podsiadlowski, P., Tauris, T. M., & Moriya, T. J. 2016, A&A, 588, A50
918
+ Marchant, P., Pappas, K. M. W., Gallegos-Garcia, M., et al. 2021, A&A, 650, A107
919
+ McKernan, B., Ford, K. E. S., & O’Shaughnessy, R. 2020, MNRAS, 498, 4088
920
+ Olejak, A. & Belczynski, K. 2021, ApJ, 921, L2
921
+ Olejak, A., Belczynski, K., & Ivanova, N. 2021, A&A, 651, A100
922
+ Pavlovskii, K., Ivanova, N., Belczynski, K., & Van, K. X. 2017, MNRAS, 465, 2092
923
+ Paxton, B., Bildsten, L., Dotter, A., et al. 2011, ApJS, 192, 3
924
+ Paxton, B., Cantiello, M., Arras, P., et al. 2013, ApJS, 208, 4
925
+ Paxton, B., Marchant, P., Schwab, J., et al. 2015, ApJS, 220, 15
926
+ Paxton, B., Schwab, J., Bauer, E. B., et al. 2018, ApJS, 234, 34
927
+ Paxton, B., Smolec, R., Schwab, J., et al. 2019, ApJS, 243, 10
928
+ Peng, W., Song, H., Meynet, G., et al. 2022, A&A, 657, A116
929
+ Peters, P. C. 1964, Physical Review, 136, 1224
930
+ Phinney, E. S. 1991, ApJ, 380, L17
931
+ Postnov, K. A. & Yungelson, L. R. 2014, Living Reviews in Relativity, 17, 3
932
+ Qin, Y., Fragos, T., Meynet, G., et al. 2018, A&A, 616, A28
933
+ Qin, Y., Fragos, T., Meynet, G., et al. 2019a, IAU Symposium, 346, 426
934
+ Qin, Y., Marchant, P., Fragos, T., Meynet, G., & Kalogera, V. 2019b, ApJ, 870, L18
935
+ Qin, Y., Shu, X., Yi, S., & Wang, Y.-Z. 2022a, Research in Astronomy and Astrophysics, 22, 035023
936
+ Qin, Y., Wang, Y.-Z., Wu, D.-H., Meynet, G., & Song, H. 2022b, ApJ, 924, 129
937
+ Rakavy, G. & Shaviv, G. 1967, ApJ, 148, 803
938
+ Riley, J., Mandel, I., Marchant, P., et al. 2021, MNRAS, 505, 663
939
+ Rodriguez, C. L., Morscher, M., Pattabiraman, B., et al. 2015, Phys. Rev. Lett., 115, 051101
940
+ Roulet, J., Chia, H. S., Olsen, S., et al. 2021, Phys. Rev. D, 104, 083010
941
+ Saavik Ford, K. E. & McKernan, B. 2022, MNRAS[arXiv:2109.03212]
942
+ Safarzadeh, M., Hamers, A. S., Loeb, A., & Berger, E. 2020, ApJ, 888, L3
943
+ Sander, A. A. C., Vink, J. S., & Hamann, W. R. 2020, MNRAS, 491, 4406
944
+ Secunda, A., Bellovary, J., Mac Low, M.-M., et al. 2019, ApJ, 878, 85
945
+ Shao, Y. & Li, X.-D. 2022, ApJ, 930, 26
946
+ Article number, page 11 of 16
947
+
948
+ A&A proofs: manuscript no. main
949
+ Shenar, T., Sana, H., Mahy, L., et al. 2022, Nature Astronomy [arXiv:2207.07675]
950
+ Song, H. F., Meynet, G., Maeder, A., Ekström, S., & Eggenberger, P. 2016, A&A, 585, A120
951
+ Spruit, H. C. 1999, A&A, 349, 189
952
+ Spruit, H. C. 2002, A&A, 381, 923
953
+ Stevenson, S., Sampson, M., Powell, J., et al. 2019, ApJ, 882, 121
954
+ Stevenson, S., Vigna-Gómez, A., Mandel, I., et al. 2017, Nature Communications, 8, 14906
955
+ Suijs, M. P. L., Langer, N., Poelarends, A. J., et al. 2008, A&A, 481, L87
956
+ Tagawa, H., Haiman, Z., & Kocsis, B. 2020, ApJ, 898, 25
957
+ Tang, P. N., Eldridge, J. J., Stanway, E. R., & Bray, J. C. 2020, MNRAS, 493, L6
958
+ Tanikawa, A., Yoshida, T., Kinugawa, T., et al. 2022, ApJ, 926, 83
959
+ Tauris, T. M. 2022, ApJ, 938, 66
960
+ The LIGO Scientific Collaboration, the Virgo Collaboration, Abbott, R., et al. 2021a, arXiv e-prints, arXiv:2108.01045
961
+ The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, et al. 2021b, arXiv e-prints, arXiv:2111.03606
962
+ The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, et al. 2021c, arXiv e-prints, arXiv:2111.03634
963
+ Tutukov, A. & Yungelson, L. 1973, Nauchnye Informatsii, 27, 70
964
+ van den Heuvel, E. P. J., Portegies Zwart, S. F., & de Mink, S. E. 2017, MNRAS, 471, 4256
965
+ van Son, L. A. C., De Mink, S. E., Broekgaarden, F. S., et al. 2020, ApJ, 897, 100
966
+ van Son, L. A. C., de Mink, S. E., Callister, T., et al. 2022a, ApJ, 931, 17
967
+ van Son, L. A. C., de Mink, S. E., Chruslinska, M., et al. 2022b, arXiv e-prints, arXiv:2209.03385
968
+ Vigna-Gómez, A., Neijssel, C. J., Stevenson, S., et al. 2018, MNRAS, 481, 4009
969
+ Vink, J. S. & de Koter, A. 2005, A&A, 442, 587
970
+ Vink, J. S., de Koter, A., & Lamers, H. J. G. L. M. 2001, A&A, 369, 574
971
+ Vitale, S., Biscoveanu, S., & Talbot, C. 2022, arXiv e-prints, arXiv:2209.06978
972
+ Woosley, S. E. & Heger, A. 2021, ApJ, 912, L31
973
+ Zahn, J. P. 1975, A&A, 41, 329
974
+ Zahn, J. P., Brun, A. S., & Mathis, S. 2007, A&A, 474, 145
975
+ Zevin, M. & Bavera, S. S. 2022, ApJ, 933, 86
976
+ Zevin, M., Bavera, S. S., Berry, C. P. L., et al. 2021, ApJ, 910, 152
977
+ Zevin, M., Spera, M., Berry, C. P. L., & Kalogera, V. 2020, ApJ, 899, L1
978
+ Article number, page 12 of 16
979
+
980
+ Y. Qin et al.: Merging binary black holes formed through double-core evolution
981
+ Appendix A: Direct core collapse with mass and angular momentum conserved
982
+ In this section, we present the results of BBH formation through double-core evolution channel, assuming that the mass and AM are
983
+ conserved during the formation process in the core collapse of He-rich stars. As shown earlier, tides can be only important for tidal
984
+ interaction of double He-rich stars if the initial orbital periods are less 1 days. We first show in Fig. A.1 the evolution of three cases
985
+ (MZamsHe = 12, 20, and 40 M⊙ for the same Pinit. = 0.6 days) from the beginning of core helium burning to their carbon depletion in
986
+ the center. We adopt efficient (TS on) and inefficient (TS off) AM transport within He-rich stars and three initial metallicities (1.0
987
+ Z⊙, 0.1 Z⊙ and 0.01 Z⊙).
988
+ We show in the top left panel of Fig. A.1 the evolution of BH spin as a function of the He-rich star mass and its orbital period,
989
+ under the assumption that He-rich stars at any time can directly collapse to form BHs without losing mass and corresponding AM.
990
+ Let us begin with a case of an 40 M⊙ double He-rich stars, it was efficiently spun up and thus formed a fast-spinning BH at the
991
+ beginning of core helium burning (see the star symbol). The orbital separation slightly expands during the core helium burning,
992
+ which however makes BH spin (∼ 0.4 at the middle of core helium burning, see the square symbol) gradually decrease and end
993
+ up with being close to zero at the central helium depletion. We note that there is a negligible discrepancy of BH spin calculated at
994
+ between the central helium depletion (the triangle symbol) and the central carbon depletion (the circle symbol). The other two cases
995
+ could form lower-mass binary BHs being slowly rotating in a closer binaries due to weaker winds mass loss. At lower metallcities,
996
+ the same binaries will form faster-spinning BHs in shorter orbits (see middle left panel for 0.1 Z⊙ and bottom left panel for 0.01
997
+ Z⊙). When the inefficient AM transport (TS off) is adopted, we can clearly see the formed BBHs spinning faster when compared
998
+ with the same metallicity.
999
+ With the same parameter space, we also compute for each binary system the evolution of the BH spin under different metallicities
1000
+ and efficiencies of AM transport. We first present results assuming efficient AM transport. As shown in Fig. A.2, all He-rich stars
1001
+ with an initial mass of less than 12 M⊙, at 1.0 Z⊙, form NSs. He-rich stars with initial orbital period of longer than 1.0 day end up
1002
+ with being non-spinning BHs. We find that BHs can have moderate spin magnitudes with Pinit. in a range of 0.3 - 1.0 days, below
1003
+ which fast-spinning BHs are formed. Similar to Fig. A.2, we can see for lower metallicities (see Fig. A.2 and Fig. A.3) that the
1004
+ formed BHs with spins decreasing as the orbit slowly expands. We then show the results with different metallicities of the inefficient
1005
+ AM transport in Fig. A.5, Fig. A.6 and Fig. A.7. The mass and spin of the newly-formed BHs calculated using direct core-collapse
1006
+ with mass and AM conserved are slightly larger when compared with those by taking into account the accretion feedback during
1007
+ core-collapse modeling (see details in Batta & Ramirez-Ruiz 2019).
1008
+ Fig. A.1. Evolution of the spin parameter a⋆ as a function of the orbital period and mass of He-rich stars at different metallicities and AM transport
1009
+ mechanisms. Top left panel: TS on and 1.0 Z⊙, middle left panel: TS on and 0.1 Z⊙, bottom left panel: TS on and 0.01 Z⊙; Top right panel: TS
1010
+ off and 1.0 Z⊙, middle right panel: TS off and 0.1 Z⊙, bottom right panel: TS off and 0.01 Z⊙. The spin a⋆ at different evolutionary stages are
1011
+ marked with symbols, star: beginning of core He burning, square: middle of core He burning, triangle: central He depletion, circle: central carbon
1012
+ depletion.
1013
+ Article number, page 13 of 16
1014
+
1015
+ a*
1016
+ 0.0
1017
+ 0.2
1018
+ 0.4
1019
+ 0.6
1020
+ 0.8
1021
+ 1.0
1022
+ ☆ Beginning of Core He burning
1023
+ Middle of Core He burning
1024
+ Central He Depletion
1025
+ o Central Carbon Depletion
1026
+ 2
1027
+ TS off, 1.0 Zo
1028
+ TS on, 1.0 Zo
1029
+ 2.0
1030
+ 2.0
1031
+ Porb[day]
1032
+ [day]
1033
+ 1.0
1034
+ 1.0
1035
+ ☆一
1036
+
1037
+ 0.6
1038
+ 0.6
1039
+ 10
1040
+ 20
1041
+ 40
1042
+ 10
1043
+ 20
1044
+ 40
1045
+ TS off, 0.1 Zo
1046
+ TS on, 0.1 Zo
1047
+ 1.0
1048
+ 1.0
1049
+ P
1050
+ P
1051
+ 0.7
1052
+ 0.7
1053
+ 10
1054
+ 20
1055
+ 40
1056
+ 10
1057
+ 20
1058
+ 40
1059
+ 0.7
1060
+ 0.7
1061
+ TS on, 0.01 Zo
1062
+ TS off, 0.01 Zo
1063
+ 0.68
1064
+ 0.68
1065
+ [day]
1066
+ [day]
1067
+ ?
1068
+ 0.66
1069
+ ?
1070
+ 0.66
1071
+ Porbl
1072
+ 0.64
1073
+ 0.64
1074
+ 0★
1075
+
1076
+ 0.62
1077
+ 0.62
1078
+ 10
1079
+ 20
1080
+ 40
1081
+ 10
1082
+ 20
1083
+ 40
1084
+ MHe[Mo]
1085
+ MHe[Mo]A&A proofs: manuscript no. main
1086
+ Fig. A.2. Evolution of the spin parameter a⋆ (the color bar) as a function of the orbital period and mass of He-rich stars with TS included at solar
1087
+ metallicity. The colored lines linking the two symbols show the evolution of the binary. The color along the line gives BH spins a⋆ along the
1088
+ evolution (from the ZAHeMS to the central carbon depletion), assuming that their progenitors (He-rich stars) directly collapse to form
1089
+ BHs with mass and AM conserved.
1090
+ Fig. A.3. As in Fig . A.2, but for the metallicity Z = 0.1 Z⊙.
1091
+ Article number, page 14 of 16
1092
+
1093
+ a*
1094
+ 0.4
1095
+ 0.6
1096
+ 0.2
1097
+ 0.8
1098
+ 1.0
1099
+ TS on, 0.1 Zo
1100
+ X Initial Overflow
1101
+ NS
1102
+ + L2 Overflow
1103
+ 10
1104
+ . [day]
1105
+ Porb.
1106
+ 100
1107
+ C
1108
+ X
1109
+ X
1110
+ +
1111
+ X
1112
+ X
1113
+ X
1114
+ X
1115
+ X
1116
+ X
1117
+ X
1118
+ X
1119
+ X
1120
+ X
1121
+ X
1122
+ X
1123
+ 10-
1124
+ X
1125
+ X
1126
+ X
1127
+ X
1128
+ X
1129
+ X
1130
+ X
1131
+ X
1132
+ X
1133
+ X
1134
+ +
1135
+ X
1136
+ X
1137
+ X
1138
+ X
1139
+ X
1140
+ X
1141
+ X
1142
+ +
1143
+ +
1144
+ +
1145
+ X
1146
+ X
1147
+ 40
1148
+ 5
1149
+ 10
1150
+ 20
1151
+ MHe[Mo]a*
1152
+ 0.4
1153
+ 0.2
1154
+ 0.6
1155
+ 0.8
1156
+ 1.0
1157
+ TS on, 1.0 Zo
1158
+ NS
1159
+ Initial Overflow
1160
+ X
1161
+ + L2 Overflow
1162
+ 101
1163
+ Porb. [day]
1164
+ 100
1165
+ X
1166
+ X
1167
+ G
1168
+ G
1169
+ X
1170
+ X
1171
+ X
1172
+ X
1173
+ X
1174
+ X
1175
+ X
1176
+ X
1177
+ X
1178
+ X
1179
+ X
1180
+ X
1181
+ +
1182
+ X
1183
+ X
1184
+ X
1185
+ X
1186
+ X
1187
+ X
1188
+ X
1189
+ X
1190
+ X
1191
+ X
1192
+ X
1193
+ +
1194
+ +
1195
+ +
1196
+ 10-
1197
+ X
1198
+ X
1199
+ X
1200
+ X
1201
+ +
1202
+ +
1203
+ +
1204
+ X
1205
+ X
1206
+ 5
1207
+ 10
1208
+ 20
1209
+ 40
1210
+ MHe[Mo]Y. Qin et al.: Merging binary black holes formed through double-core evolution
1211
+ Fig. A.4. As in Fig . A.2, but for the metallicity Z = 0.01 Z⊙.
1212
+ Fig. A.5. As in Fig . A.2, but without TS included.
1213
+ Article number, page 15 of 16
1214
+
1215
+ a*
1216
+ 0.4
1217
+ 0.6
1218
+ 0.8
1219
+ 0.2
1220
+ 1.0
1221
+ TS on, 0.01 Zo
1222
+ NS
1223
+ Initial Overflow
1224
+ +
1225
+ L2 Overflow
1226
+ 101
1227
+
1228
+
1229
+
1230
+
1231
+
1232
+
1233
+
1234
+
1235
+ [day]
1236
+ C
1237
+ C
1238
+ C
1239
+ 100
1240
+ Q
1241
+ Porb.
1242
+ G
1243
+ C
1244
+ C
1245
+
1246
+
1247
+ 6
1248
+ 6
1249
+ 6
1250
+
1251
+ X
1252
+ X
1253
+ X
1254
+ 6
1255
+ 6
1256
+
1257
+ G
1258
+ X
1259
+ X
1260
+ X
1261
+ X
1262
+ X
1263
+ 5
1264
+ X
1265
+ X
1266
+ X
1267
+ X
1268
+ 10-1
1269
+ X
1270
+ X
1271
+ X
1272
+ X
1273
+ X
1274
+ X
1275
+ X
1276
+ X
1277
+ X
1278
+ X
1279
+ X
1280
+ X
1281
+ X
1282
+ X
1283
+ X
1284
+ X
1285
+ X
1286
+ +
1287
+ +
1288
+ +
1289
+ +
1290
+ 5
1291
+ 10
1292
+ 20
1293
+ 40
1294
+ MHe[Mo]a*
1295
+ 0.4
1296
+ 0.2
1297
+ 0.6
1298
+ 0.8
1299
+ 1.0
1300
+ TS off, 1.0 Zo
1301
+ NS
1302
+ Initial Overflow
1303
+ X
1304
+ + L2 Overflow
1305
+ 101
1306
+ Porb. [day]
1307
+ 100
1308
+ X
1309
+ X
1310
+ G
1311
+ G
1312
+ X
1313
+ X
1314
+ X
1315
+ X
1316
+ X
1317
+ X
1318
+ X
1319
+ X
1320
+ X
1321
+ X
1322
+ X
1323
+ +
1324
+ X
1325
+ X
1326
+ X
1327
+ X
1328
+ X
1329
+ X
1330
+ X
1331
+ X
1332
+ X
1333
+ X
1334
+ X
1335
+ X
1336
+ X
1337
+ +
1338
+ +
1339
+ +
1340
+ 10-
1341
+ X
1342
+ X
1343
+ X
1344
+ X
1345
+ +
1346
+ +
1347
+ +
1348
+ 5
1349
+ 10
1350
+ 20
1351
+ 40
1352
+ MHe[Mo]A&A proofs: manuscript no. main
1353
+ Fig. A.6. As in Fig . A.5, but for the metallicity Z = 0.1 Z⊙.
1354
+ Fig. A.7. As in Fig . A.5, but for the metallicity Z = 0.01 Z⊙.
1355
+ Article number, page 16 of 16
1356
+
1357
+ a*
1358
+ 0.4
1359
+ 0.6
1360
+ 0.2
1361
+ 0.8
1362
+ 1.0
1363
+ TS off, 0.1 Zo
1364
+ X Initial Overflow
1365
+ NS
1366
+ + L2 Overflow
1367
+ 10
1368
+ . [day]
1369
+ Porb.
1370
+ 100
1371
+ C
1372
+ X
1373
+ =
1374
+ X
1375
+ X
1376
+ X
1377
+ X
1378
+ X
1379
+ X
1380
+ X
1381
+ X
1382
+ X
1383
+ X
1384
+ X
1385
+ X
1386
+ 10-
1387
+ X
1388
+ X
1389
+ X
1390
+ X
1391
+ X
1392
+ X
1393
+ X
1394
+ X
1395
+ X
1396
+ X
1397
+ +
1398
+ X
1399
+ X
1400
+ X
1401
+ X
1402
+ X
1403
+ X
1404
+ X
1405
+ +
1406
+ +
1407
+ +
1408
+ X
1409
+ X
1410
+ 40
1411
+ 5
1412
+ 10
1413
+ 20
1414
+ MHe[Mo]a*
1415
+ 0.4
1416
+ 0.6
1417
+ 0.8
1418
+ 0.2
1419
+ 1.0
1420
+ TS off, 0.01 Zo
1421
+ NS
1422
+ Initial Overflow
1423
+ +
1424
+ L2 Overflow
1425
+ 101
1426
+
1427
+
1428
+
1429
+
1430
+
1431
+
1432
+
1433
+ [day]
1434
+ C
1435
+ C
1436
+ C
1437
+ C
1438
+ 100
1439
+ Porb.
1440
+
1441
+ 6
1442
+ 6
1443
+ 6
1444
+ 6
1445
+ X
1446
+
1447
+ 6
1448
+ 6
1449
+
1450
+ 6
1451
+ 5
1452
+ X
1453
+ X
1454
+ X
1455
+ X
1456
+
1457
+ 6
1458
+ X
1459
+ X
1460
+ X
1461
+ X
1462
+ X
1463
+ 5
1464
+ X
1465
+ X
1466
+ X
1467
+ X
1468
+ 10-1
1469
+ X
1470
+ X
1471
+ X
1472
+ X
1473
+ X
1474
+ X
1475
+ X
1476
+ X
1477
+ X
1478
+ X
1479
+ X
1480
+ X
1481
+ X
1482
+ X
1483
+ X
1484
+ X
1485
+ X
1486
+ +
1487
+ +
1488
+ +
1489
+ +
1490
+ 5
1491
+ 10
1492
+ 20
1493
+ 40
1494
+ MHe[Mo]
KNE4T4oBgHgl3EQfJAzg/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
M9FKT4oBgHgl3EQfeS7D/content/tmp_files/2301.11824v1.pdf.txt ADDED
@@ -0,0 +1,1653 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ PECAN: A Deterministic Certified Defense Against Backdoor Attacks
2
+ Yuhao Zhang 1 Aws Albarghouthi 1 Loris D’Antoni 1
3
+ Abstract
4
+ Neural networks are vulnerable to backdoor poi-
5
+ soning attacks, where the attackers maliciously
6
+ poison the training set and insert triggers into the
7
+ test input to change the prediction of the victim
8
+ model. Existing defenses for backdoor attacks
9
+ either provide no formal guarantees or come with
10
+ expensive-to-compute and ineffective probabilis-
11
+ tic guarantees. We present PECAN, an efficient
12
+ and certified approach for defending against back-
13
+ door attacks. The key insight powering PECAN
14
+ is to apply off-the-shelf test-time evasion certi-
15
+ fication techniques on a set of neural networks
16
+ trained on disjoint partitions of the data. We
17
+ evaluate PECAN on image classification and mal-
18
+ ware detection datasets. Our results demonstrate
19
+ that PECAN can (1) significantly outperform the
20
+ state-of-the-art certified backdoor defense, both
21
+ in defense strength and efficiency, and (2) on real
22
+ backdoor attacks, PECAN can reduce attack suc-
23
+ cess rate by order of magnitude when compared
24
+ to a range of baselines from the literature.
25
+ 1. Introduction
26
+ Deep learning models are vulnerable to backdoor poisoning
27
+ attacks (Saha et al., 2020; Turner et al., 2019), which assume
28
+ that the attackers can maliciously poison a small fragment
29
+ of the training set before model training and add triggers to
30
+ inputs at test time. As a result, the prediction of the victim
31
+ model that was trained on the poisoned training set will
32
+ diverge in the presence of a trigger in the test input.
33
+ Effective backdoor attacks have been proposed for various
34
+ domains, such as image recognition (Gu et al., 2017), senti-
35
+ ment analysis (Qi et al., 2021), and malware detection (Sev-
36
+ eri et al., 2021). For example, Severi et al. (2021) can break
37
+ malware detection models as follows: The attacker poisons
38
+ a small portion of benign software in the training set by
39
+ modifying the values of the most important features so that
40
+ 1Department of Computer Science, University of Wisconsin-
41
+ Madison, Madison, USA. Correspondence to: Yuhao Zhang
42
+ <yuhaoz@cs.wisc.edu>.
43
+ the victim model recognizes these values as evidence of the
44
+ benign prediction. At test time, the attacker inserts a trig-
45
+ ger by changing the corresponding features of malware to
46
+ camouflage it as benign software and thus making it bypass
47
+ the examination of the victim model. Thus, backdoor at-
48
+ tacks are of great concern to the safety and security of deep
49
+ learning models and systems, particularly as training data is
50
+ gathered from different sources, e.g., via web scraping.
51
+ Several works have studied defenses against various types
52
+ of attacks. We identify two limitations with these defenses.
53
+ First, many existing approaches only provide empirical
54
+ defenses that are specific to certain attacks and do not
55
+ generalize to all backdoor attacks. Second, existing cer-
56
+ tified defenses—i.e., approaches that produce robustness
57
+ certificates—are either unable to handle backdoor attacks,
58
+ or are probabilistic (instead of deterministic), and therefore
59
+ expensive and ineffective in practice.
60
+ Why certification?
61
+ A defense against backdoor attacks
62
+ should construct effective certificates (proofs) that the
63
+ learned model can indeed defend against backdoor attacks.
64
+ Empirical defenses (Geiping et al., 2021a; Liu et al., 2018)
65
+ do not provide certificates, can only defend against specific
66
+ attacks, and can be bypassed by new unaccounted-for at-
67
+ tacks (Wang et al., 2020b; Koh et al., 2022). Certification
68
+ has been successful at building models that are provably
69
+ robust to trigger-less poisoning attacks and evasion attacks,
70
+ but models trained to withstand such attacks are still weak
71
+ against backdoor attacks. The trigger-less attack (Zhu et al.,
72
+ 2019; Shafahi et al., 2018; Aghakhani et al., 2021; Geiping
73
+ et al., 2021b) assumes the attacker can poison the training set
74
+ but cannot modify the test inputs, e.g., adding triggers, while
75
+ the evasion attack (Madry et al., 2018) assumes the attacker
76
+ modifies the test inputs but cannot poison the training set.
77
+ Existing certified defenses against trigger-less and evasion
78
+ attacks, e.g., DPA (Levine & Feizi, 2021) and CROWN-
79
+ IBP (Zhang et al., 2020), cannot defend against backdoor
80
+ attacks as they can either defend against the poison in the
81
+ training data or the triggers at test time, but not both. As
82
+ we show in the experiments, we can break these certified
83
+ defenses using a backdoor attack (Section 5.3).
84
+ Why determinism?
85
+ It is desirable for a certified defense
86
+ to be deterministic because probabilistic defenses (Zhang
87
+ et al., 2022b; Weber et al., 2020) typically require one to
88
+ arXiv:2301.11824v1 [cs.CR] 27 Jan 2023
89
+
90
+ PECAN: A Deterministic Certified Defense Against Backdoor Attacks
91
+ D
92
+ D1
93
+ D2
94
+ ...
95
+ Dn
96
+ Step 1: Dataset Partitioning
97
+ AD1
98
+ AD2
99
+ ...
100
+ ADn
101
+ x
102
+ 7
103
+ cert
104
+ 1
105
+ abstain
106
+ ...
107
+ ...
108
+ 7
109
+ cert
110
+ Step 2: Evasion Certification
111
+ Step 3: Aggregation
112
+ y∗: the top label, y′: runner-up label,
113
+ N1: # of certified y∗, N2: # of certified y′,
114
+ N3: # of abstain.
115
+ y∗: prediction of PECAN,
116
+
117
+ N1−N2−N3−1y∗>y′
118
+ 2
119
+ ⌋: certified radius.
120
+ Training
121
+ Testing
122
+ Figure 1. An overview of our approach PECAN.
123
+ retrain thousands of models when performing predictions
124
+ for a single test input. Retraining can be mitigated by Bon-
125
+ ferroni correction, which allows reusing the trained models
126
+ for a fixed number of predictions. However, retraining is
127
+ still necessary after a short period, making it hard to deploy
128
+ these defenses in practice. On the other hand, determin-
129
+ istic defenses (Levine & Feizi, 2021; Wang et al., 2022b)
130
+ can reuse the trained models an arbitrary number of times
131
+ when producing certificates for different test inputs. Fur-
132
+ thermore, probabilistic defenses for backdoor attacks, e.g.,
133
+ BagFlip (Zhang et al., 2022b), need to add noise to the train-
134
+ ing data, resulting in low accuracy for datasets that cannot
135
+ tolerate too much noise when training (Section 5.2).
136
+ PECAN
137
+ In this paper, we propose PECAN (Partitioning
138
+ data and Ensembling of Certified neurAl Networks), a de-
139
+ terministic certified defense against backdoor attacks for
140
+ neural networks. The key insight underlying PECAN is that
141
+ we can take any off-the-shelf technique for evasion certifi-
142
+ cation and use it to construct a certified backdoor defense.
143
+ This insight results in a simple implementation and allows
144
+ us to seamlessly leverage future advances in evasion cer-
145
+ tification algorithms. Specifically, PECAN trains a set of
146
+ neural networks on disjoint partitions of the dataset, and
147
+ then applies evasion certification to the neural networks. By
148
+ partitioning the dataset, we analytically bound the number
149
+ of poisoned data seen per neural network; by employing eva-
150
+ sion certification, we bound the number of neural networks
151
+ that are robust in the face of triggers. Using this information,
152
+ we efficiently derive a backdoor-robustness guarantee.
153
+ Figure 1 illustrates the workflow of PECAN. In Step 1, in-
154
+ spired by deep partition aggregation (Levine & Feizi, 2021),
155
+ PECAN deterministically partitions a dataset into multiple
156
+ disjoint subsets. This step ensures that a poisoned data item
157
+ only affects a single partition. In Step 2, PECAN trains an
158
+ ensemble of neural networks, one on each partition. At test
159
+ time, PECAN performs evasion certification to check which
160
+ neural networks are immune to triggers; those that are not
161
+ immune (or that cannot be proven immune) abstain from
162
+ performing a prediction. Finally, in Step 3, PECAN aggre-
163
+ gates the results of the ensemble and produces a prediction
164
+ together with a robustness certificate: the percentage of the
165
+ poisoned data in the training set that the training process
166
+ can tolerate, the certified radius.
167
+ We evaluate PECAN on two three datasets, MNIST, CI-
168
+ FAR10, and EMBER. First, we show that PECAN outper-
169
+ forms or competes with BagFlip, the state-of-the-art prob-
170
+ abilistic certified defense against backdoor attacks. Fur-
171
+ thermore, BagFlip takes hours to compute the certificate,
172
+ while PECAN only takes a few seconds. Second, when
173
+ we evaluate PECAN against a concrete known backdoor
174
+ attack (Severi et al., 2021), PECAN reduces the attack suc-
175
+ cess rate to 1.85%, while DPA and CROWN-IBP fail to
176
+ defend against the backdoor attack on 18.05% and 15.24%
177
+ of the cases, respectively. The results show that PECAN
178
+ can defend against a known backdoor attack while other
179
+ baselines, such as DPA and CROWN-IBP, cannot.
180
+ 2. Related Work
181
+ Deep learning models are vulnerable to backdoor at-
182
+ tacks (Saha et al., 2020; Turner et al., 2019). Although
183
+ many empirical defenses (Geiping et al., 2021a; Liu et al.,
184
+ 2018) have been proposed, recent works (Wang et al., 2020b;
185
+ Koh et al., 2022) show that new attacks can break these em-
186
+ pirical defenses. Therefore, certified defense is crucial for
187
+ defending against backdoor attacks.
188
+ Certified defenses against backdoor attacks
189
+ Existing
190
+ certification approaches provide probabilistic certificates by
191
+ extending randomized smoothing (Cohen et al., 2019; Dvi-
192
+ jotham et al., 2020; Lee et al., 2019), originally proposed to
193
+ defend against adversarial evasion attacks, to defend against
194
+ backdoor attacks. BagFlip (Zhang et al., 2022b) is the
195
+ state-of-the-art model-agnostic probabilistic defense against
196
+ feature-flipping backdoor attacks. Wang et al. (2020a); We-
197
+ ber et al. (2020) proposed backdoor-attack defenses that
198
+ are also model-agnostic, but are less effective than BagFlip.
199
+ PECAN is deterministic and therefore less expensive and
200
+ more effective than these defenses. Probabilistic defenses
201
+ are model-agnostic; while PECAN is evaluated on neural
202
+ networks, it can work for any machine learning model as
203
+ long as a deterministic evasion certification approach of the
204
+ model is available. Weber et al. (2020) proposed a determin-
205
+
206
+ PECAN: A Deterministic Certified Defense Against Backdoor Attacks
207
+ istic de-randomized smoothing approach for kNN classifiers.
208
+ Their approach computes the certificates using an expen-
209
+ sive dynamic programming algorithm, whereas PECAN’s
210
+ certification algorithm has constant time complexity.
211
+ Certified defenses against trigger-less attacks
212
+ Many
213
+ approaches provide certificates for trigger-less attacks. Jia
214
+ et al. (2021) use bootstrap aggregating (Bagging). Chen
215
+ et al. (2020) extended Bagging with new selection strate-
216
+ gies. Rosenfeld et al. (2020) defend against label-flipping
217
+ attacks on linear classifiers. Differential privacy (Ma et al.,
218
+ 2019) can also provide probabilistic certificates for trigger-
219
+ less attacks. DPA (Levine & Feizi, 2021) is a deterministic
220
+ defense that partitions the training set and ensembles the
221
+ trained classifiers. Wang et al. (2022b) proposed FA, an
222
+ extension of DPA, by introducing a spread stage. A conjec-
223
+ ture proposed by Wang et al. (2022a) implies that DPA and
224
+ FA are asymptotically optimal defenses against trigger-less
225
+ attacks. Chen et al. (2022) proposed to compute collective
226
+ certificates, while PECAN computes sample-wise certifi-
227
+ cates. Jia et al. (2020); Meyer et al. (2021); Drews et al.
228
+ (2020) provide certificates for nearest neighborhood classi-
229
+ fiers and decision trees. The approaches listed above only
230
+ defend against trigger-less attacks, while PECAN is a deter-
231
+ ministic approach for backdoor attacks.
232
+ Certified defenses against evasion attacks
233
+ There are
234
+ two lines of certified defense against evasion attacks: com-
235
+ plete certification (Wang et al., 2021; Zhang et al., 2022a;
236
+ Katz et al., 2019) and incomplete certification (Xu et al.,
237
+ 2020; Zhang et al., 2021; Singh et al., 2019). The com-
238
+ plete certified defenses either find an adversarial example
239
+ or generate proof that all inputs in the given perturbation
240
+ space will be correctly classified. Compared to the complete
241
+ certified defenses, the incomplete ones will abstain from pre-
242
+ dicting if they cannot prove the correctness of the prediction
243
+ because their techniques will introduce over-approximation.
244
+ The complete approaches do not have over-approximation
245
+ issues but require expensive verification algorithms such as
246
+ branch and bound. Our implementation of PECAN uses an
247
+ incomplete certified approach CROWN-IBP (Zhang et al.,
248
+ 2020) because it is the best incomplete approach, trading off
249
+ between efficiency and the degree of over-approximation.
250
+ 3. Problem Definition
251
+ Given a dataset D = {(x1, y1), . . . , (xn, yn)}, a (test) input
252
+ x, and a machine learning algorithm A, we write AD to
253
+ denote the machine learning model learned on dataset D
254
+ by the algorithm A, and AD(x) to denote the output label
255
+ predicted by the model AD on input x. We assume the
256
+ algorithm will behave the same if trained on the same dataset
257
+ across multiple runs. This assumption can be guaranteed by
258
+ fixing the random seeds during training.
259
+ We are interested in certifying that if an attacker has poi-
260
+ soned the dataset, the model we have trained on the dataset
261
+ will still behave “well” on the test input with maliciously
262
+ added triggers. Before describing what “well” means, we
263
+ need to define the perturbation spaces of the dataset and
264
+ the test input, i.e., what possible changes the attacker could
265
+ make to the dataset and the test input.
266
+ Perturbation space of the dataset
267
+ Following Levine &
268
+ Feizi (2021), we define a general perturbation space over
269
+ the dataset, allowing attackers to delete, insert, or modify
270
+ training examples in the dataset. Given a dataset D and a
271
+ radius r ≥ 0, we define the perturbation space as the set of
272
+ datasets that can be obtained by deleting or inserting up to r
273
+ examples in D:
274
+ Sr(D) =
275
+
276
+ �D | |D ⊖ �D| ≤ r
277
+
278
+ ,
279
+ where A ⊖ B is the symmetric difference of sets A and
280
+ B. Intuitively, r quantifies how many examples need to be
281
+ deleted or inserted to transform from D to �D.
282
+ Example 3.1. If the attacker modifies one training example
283
+ x ∈ D to another training example �x to form a poisoned
284
+ dataset �D = (D \ {x}) ∪ {�x}. Then �D ∈ S2(D) but
285
+ �D /∈ S1(D) because Sr(D) considers one modification as
286
+ one deletion and one insertion.
287
+ Note that we assume a more general perturbation space
288
+ of the training set than the one considered by Zhang et al.
289
+ (2022b); Weber et al. (2020); Wang et al. (2020a); our work
290
+ allows inserting and deleting examples instead of just modi-
291
+ fying existing training examples.
292
+ Perturbation space of the test input
293
+ We write π(x) to
294
+ denote the set of perturbed examples that an attacker can
295
+ transform the example x into. Formally, the perturbation
296
+ space π(x) can be defined as the lp norm ball with radius s
297
+ around the test input x,
298
+ π(x) = {�x | ∥x − �x∥p ≤ s}
299
+ Example 3.2. BagFlip (Zhang et al., 2022b) considers the
300
+ l0 feature-flip perturbation Fs(x), which allows the attacker
301
+ to modify up to s features in an input x,
302
+ Fs(x) = {�x | ∥x − �x∥0 ≤ s}
303
+ Threat models
304
+ Next, we define what type of guarantees
305
+ we are interested in our learning algorithm and model. We
306
+ consider backdoor attacks, where the attacker can perturb
307
+ both the training set and the test input. For the training set,
308
+ we assume we are given a perturbation space Sr(D) of the
309
+ training set D with a radius r ≥ 0. For the test input, we
310
+ assume a perturbation space π(x) of the test input x with a
311
+ given lp norm and the radius s.
312
+
313
+ PECAN: A Deterministic Certified Defense Against Backdoor Attacks
314
+ We say that an algorithm A is robust to a backdoor attack
315
+ on a backdoored test input �x if the algorithm trained on any
316
+ perturbed dataset �D would predict the backdoored input �x
317
+ the same as AD(x). Formally,
318
+ ∀ �D ∈ Sr(D), �x ∈ π(x). A �
319
+ D(�x) = AD(x)
320
+ (1)
321
+ Remark 3.1. When r = 0, Eq 1 degenerates to evasion
322
+ robustness, i.e., ∀�x ∈ π(x). AD(�x) = AD(x), because
323
+ S0(D) = {D}.
324
+ Given a large enough radius r, an attacker can always
325
+ change enough inputs and succeed at breaking robustness.
326
+ Therefore, we will typically focus on computing the max-
327
+ imal radius r for which we can prove that Eq 1 for given
328
+ perturbation spaces Sr(D) and π(x). We refer to this quan-
329
+ tity as the certified radius.
330
+ Certified guarantees
331
+ This paper aims to design a cer-
332
+ tifiable algorithm A, which can defend against backdoor
333
+ attacks, and to compute the certified radius of A. In our ex-
334
+ periments (Section 5.2), we suppose a given benign dataset
335
+ D and a benign test input x, and we certifiably quantify the
336
+ robustness of the algorithm A against backdoor attacks by
337
+ computing the certified radius.
338
+ In Section 5.3, we also experiment with how the certifiable
339
+ algorithm A defends the backdoor attacks if a poisoned
340
+ dataset �D and a test input �x with malicious triggers are
341
+ given, but the clean data is unknown. We theoretically show
342
+ that we can still compute the certified radius if the clean
343
+ data D and x are unknown in Section 4.3.
344
+ 4. The PECAN Certification Technique
345
+ Our approach, which we call PECAN (Partitioning data and
346
+ Ensembling of Certified neurAl Networks), is a determin-
347
+ istic certification technique that defends against backdoor
348
+ attacks. Given a learning algorithm A, we show how to
349
+ automatically construct a new learning algorithm ¯A with
350
+ certified backdoor-robustness guarantees (Equation (1)) in
351
+ Section 4.1. In Section 4.2, we prove the certified backdoor-
352
+ robustness guarantees (Equation (1)) provided by ¯A. We
353
+ further discuss how ¯A can defend against a backdoored
354
+ dataset and formally justify our discussion in Section 4.3.
355
+ 4.1. Constructing Certifiable Algorithm ¯A
356
+ The key idea of PECAN is that we can take any off-the-shelf
357
+ technique for evasion certification and use it to construct
358
+ a certified backdoor defense. Intuitively, PECAN uses the
359
+ evasion certification to defend against the possible triggers
360
+ at test time, and it encapsulates the evasion certification in
361
+ deep partition aggregation (DPA) (Levine & Feizi, 2021) to
362
+ defend against training set poisoning.
363
+ Given a dataset D, a test input x, and a machine learning
364
+ algorithm A, PECAN produce a new learning algorithm ¯A
365
+ as described in the following steps (shown in Figure 1),
366
+ Dataset Partitioning
367
+ We partition the dataset D into n
368
+ disjoint sub-datasets, denoted as D1, . . . , Dn, using a hash
369
+ function that deterministically maps each training example
370
+ into a sub-dataset Di. Train n classifiers AD1, . . . , ADn on
371
+ these sub-datasets.
372
+ Evasion Certification
373
+ We certify whether the prediction
374
+ of each classifier ADi is robust under the perturbation space
375
+ π(x) by any evasion certification approach for the learn-
376
+ ing algorithm, e.g., CROWN-IBP for neural networks (Xu
377
+ et al., 2020). Formally, the certification approach determines
378
+ whether the following equation holds,
379
+ ∀�x ∈ π(x). ADi(x) = ADi(�x)
380
+ (2)
381
+ We denote the output of each certification as Aπ
382
+ Di(x), which
383
+ can either be Aπ
384
+ Di(x) = cert, meaning Eq 2 is certified.
385
+ Otherwise, Aπ
386
+ Di(x) = abstain, meaning the certification
387
+ approach cannot certify Eq 2.
388
+ Aggregation
389
+ We compute the top label y∗ by aggre-
390
+ gating all predictions from ADi(x).
391
+ Concretely, y∗ ≜
392
+ argmax
393
+ y∈C
394
+ �n
395
+ i=1 1ADi(x)=y, where C = {0, 1, . . .} is the set
396
+ of possible labels. Note that if a tie happens when taking
397
+ the argmax, we break ties deterministically by setting the
398
+ smaller label index as y∗. We denote the runner-up label
399
+ as y′ as argmax
400
+ y∈C∧y̸=y∗
401
+ �n
402
+ i=1 1ADi(x)=y. We count the number
403
+ of certified predictions equal to y∗ as N1, the number of
404
+ certified predictions equal to y′ as N2, and the number of
405
+ abstentions as N3,
406
+ N1 =
407
+ n
408
+
409
+ i=1
410
+ 1ADi(x)=y∗∧Aπ
411
+ Di(x)=cert,
412
+ N2 =
413
+ n
414
+
415
+ i=1
416
+ 1ADi(x)=y′∧Aπ
417
+ Di(x)=cert,
418
+ N3 =
419
+ n
420
+
421
+ i=1
422
+ 1Aπ
423
+ Di(x)=abstain.
424
+ We set the prediction ¯AD(x) as y∗. We compute the cer-
425
+ tified radius r in the following two cases. If N1 − N2 −
426
+ N3 − 1y∗>y′ < 0, we set r as ⋄, i.e., a value denoting no
427
+ certification. In this case, PECAN cannot certify that ¯A is
428
+ robust to evasion attacks even if the dataset is not poisoned.
429
+ Otherwise, we compute r as ⌊
430
+ N1−N2−N3−1y∗>y′
431
+ 2
432
+ ⌋. A spe-
433
+ cial case is r = 0, when PECAN can certify ¯A is robust
434
+ to evasion attacks, but cannot certify that it is robust if the
435
+ dataset is poisoned.
436
+ We note that the computation of the certified radius is equiv-
437
+ alent to DPA when no classifier abstains, i.e., N3 = 0,
438
+
439
+ PECAN: A Deterministic Certified Defense Against Backdoor Attacks
440
+ D
441
+
442
+ D
443
+ x
444
+ �x
445
+ D1
446
+ D2
447
+ ...
448
+ ...
449
+ ...
450
+ Dn
451
+
452
+ D1
453
+
454
+ D2
455
+ ...
456
+ ...
457
+ ...
458
+
459
+ Dn
460
+ 7
461
+ abstain
462
+ 5
463
+ abstain
464
+ 7
465
+ cert
466
+ 7
467
+ cert
468
+ 7
469
+ cert
470
+ 1
471
+ cert
472
+ 7 → y′
473
+ 5 → y′
474
+ 7 → y′
475
+ 7 → y′
476
+ 7
477
+ 1
478
+ Dabs
479
+ Attacked by �x
480
+ Dbd
481
+ Attacked by �
482
+ D
483
+ Dsafe
484
+ Clean
485
+ Figure 2. An illustration of the proof of Theorem 4.1. It shows
486
+ the worst case for PECAN, where the attacker can change all
487
+ predictions in Dabs and Dbd to the runner-up label y′. Note
488
+ that we group Dabs, Dbd, and Dsafe together to ease illustration.
489
+ 4.2. Proving the Soundness of PECAN
490
+ In this section, we show that the prediction ¯AD(x) and the
491
+ certified radius r satisfy the certified backdoor-robustness
492
+ guarantees (Equation (1)) by proving the following theorem.
493
+ Theorem 4.1 (Soundness of PECAN). Given a dataset D
494
+ and a test input x, PECAN computes the prediction ¯AD(x)
495
+ and the certified radius as r. Then, either r = ⋄ or
496
+ ∀ �D ∈ Sr(D), �x ∈ π(x). ¯A �
497
+ D(�x) = ¯AD(x)
498
+ (3)
499
+ Proof. For any poisoned dataset �D, we partition �D into
500
+ n sub-datasets { �D1, . . . , �Dn} according to {D1, . . . , Dn}
501
+ from the clean dataset D. Note that we can determine such
502
+ a correspondence between Di and �Di because our hash
503
+ function is deterministic and only depends on each train-
504
+ ing example. We further divide {D1, . . . , Dn} into three
505
+ disjoint parts Dabs, Dbd, and Dsafe in the following way,
506
+ • Dabs = {Di | Aπ
507
+ Di(x) = abstain} are the sub-
508
+ datasets, on which A abstains from making the pre-
509
+ diction on x. From the definition of N3, we have
510
+ |Dabs| = N3.
511
+ Intuitively, Dabs contains the sub-
512
+ datasets that can possibly be attacked by the test input
513
+ �x with malicious triggers.
514
+ • Dbd are the sub-datasets on which A does not abstain
515
+ and are also poisoned, i.e., each of them has at least one
516
+ training example removed or inserted. Even though we
517
+ do not know the exact sub-datasets in Dbd, we know
518
+ |Dbd| ≤ r because �D ∈ Sr(D) constrains that there
519
+ are at most r such poisoned sub-datasets.
520
+ • Dsafe = {Di | Di = �Di ∧ Aπ
521
+ Di(x) = cert} contains
522
+ the clean sub-datasets, on which A does not abstain.
523
+ We denote the numbers of the original top prediction y∗ and
524
+ the original runner-up prediction y′ on the backdoored data
525
+ �D and �x as �
526
+ Ny∗ and �
527
+ Ny′, respectively. Formally,
528
+
529
+ Ny∗ =
530
+ n
531
+
532
+ i=1
533
+ 1A�
534
+ Di(�x)=y∗,
535
+
536
+ Ny′ =
537
+ n
538
+
539
+ i=1
540
+ 1A�
541
+ Di(�x)=y′
542
+ Next, we prove Eq 3 for any backdoored data �D and �x by
543
+ showing that
544
+
545
+ Ny∗ ≥ �
546
+ Ny′ + 1y∗>y′
547
+ (4)
548
+ We prove Eq 4 by showing a lower bound of �
549
+ Ny∗ is N1 − r
550
+ and an upper bound of �
551
+ Ny′ is N2 + r + N3. Together with
552
+ the definition of r, we can prove Eq 4 because we have,
553
+
554
+ Ny∗ − �
555
+ Ny′ − 1y∗>y′
556
+ ≥N1 − r − (N2 + r + N3) − 1y∗>y′
557
+ =N1 − N2 − 2r − N3 − 1y∗>y′
558
+ =N1 − N2 − 2⌊N1 − N2 − N3 − 1y∗>y′
559
+ 2
560
+ ⌋ − N3 − 1y∗>y′
561
+ ≥N1 − N2 − (N1 − N2 − N3 − 1y∗>y′) − N3 − 1y∗>y′
562
+ =0.
563
+ Note that the second last line holds iff N1 − N2 − N3 −
564
+ 1y∗>y′ ≥ 0. Otherwise, we have r = ⋄.
565
+ As shown in Figure 2, the lower bound of �
566
+ Ny∗ can be com-
567
+ puted by noticing that 1) the attacker can change any predic-
568
+ tion in Dbd from y∗ to another label because these datasets
569
+ are poisoned, 2) the attacker can change any prediction in
570
+ Dabs to another label because CROWN-IBP cannot certify
571
+ the prediction under the evasion attacks, and 3) the attacker
572
+ cannot change anything in Dsafe because of the guarantee
573
+ of CROWN-IBP and Dsafe is not poisoned,
574
+ ∀Di ∈ Dsafe, �x ∈ π(x). ADi(x) = ADi(�x) = A �
575
+ Di(�x)
576
+ The upper bound of �
577
+ Ny′ can be computed by noticing that
578
+ 1) the attacker can change any prediction in Dbd to y′, 2)
579
+ the attacker can change any prediction in Dabs to y′, and 3)
580
+ the attacker cannot change anything in Dsafe.
581
+ We complete the proof by showing that the best attack strat-
582
+ egy of the attacker is to change the prediction of ¯A to the
583
+ runner-up label y′. If the attacker chooses to change the
584
+ prediction of ¯A to another label y′′, denoted the counts as
585
+
586
+ Ny′′, then the upper bound of �
587
+ Ny′′ will be always smaller
588
+ or equal to �
589
+ Ny′.
590
+ 4.3. PECAN under the Backdoored Data
591
+ The above algorithm and proof of PECAN assume that a
592
+ clean dataset D and a clean test example x are already given.
593
+ However, we may be interested in another scenario where
594
+ the poisoned dataset �D ∈ Sr(D) and the input example
595
+
596
+ Pattern BackdoorPECAN: A Deterministic Certified Defense Against Backdoor Attacks
597
+ �x ∈ π(x) with malicious triggers are given, and the clean
598
+ data D and x are unknown. In other words, we want to find
599
+ the maximal radius r such that ¯A �
600
+ D(�x) = ¯AD(x) for any D
601
+ and x that can be perturbed to �D and �x by the perturbation
602
+ Sr and π, respectively. Formally,
603
+ ∀D, x. �D ∈ Sr(D) ∧ �x ∈ π(x) =⇒
604
+ ¯A �
605
+ D(�x) = ¯AD(x)
606
+ (5)
607
+ Intuitively, Eq 5 is the symmetrical version of Eq 1. Ow-
608
+ ing to the symmetrical definition of Sr and π, if we apply
609
+ PECAN to the given poisoned data �D, �x, then the predic-
610
+ tion ¯A �
611
+ D(�x) and the certified radius r satisfy the certified
612
+ backdoor-robustness guarantee (Eq 5). The following the-
613
+ orem formally states the soundness of PECAN under the
614
+ backdoored data. We prove Theorem 4.2 in Appendix A.
615
+ Theorem 4.2 (Soundness of PECAN under the backdoored
616
+ data). Given a dataset �D and a test input �x, PECAN com-
617
+ putes the prediction ¯A �
618
+ D(�x) and the certified radius as r.
619
+ Then, either r = ⋄ or Eq 5 holds.
620
+ 5. Experiments
621
+ We implemented PECAN in Python and provided the im-
622
+ plementation in the supplementary materials. In our evalua-
623
+ tion, we use CROWN-IBP, implemented in auto-LiRPA (Xu
624
+ et al., 2020), as the evasion defense approach for neural
625
+ networks. We also use CROWN-IBP to train the classifiers
626
+ in the dataset partitioning step since the classifiers trained
627
+ by CROWN-IBP can improve the certification rate in the
628
+ evasion certification step.
629
+ In Section 5.2, we evaluate the effectiveness and efficiency
630
+ of PECAN by comparing it to BagFlip (Zhang et al., 2022b),
631
+ the state-of-the-art probabilistic certified defense against
632
+ backdoor attacks. In Section 5.3, we evaluate the effective-
633
+ ness of PECAN under the backdoor attack (Severi et al.,
634
+ 2021) for malware detection and compare PECAN to other
635
+ baselines, DPA and CROWN-IBP.
636
+ 5.1. Experimental Setup
637
+ Datasets
638
+ We conduct experiments on MNIST, CIFAR10,
639
+ and EMBER (Anderson & Roth, 2018) datasets. MNIST is
640
+ an image classification dataset containing 60,000 training
641
+ and 10,000 test examples. CIFAR10 is an image classifica-
642
+ tion dataset containing 50,000 training and 10,000 test ex-
643
+ amples. EMBER is a malware detection dataset containing
644
+ 600,000 training and 200,000 test examples. Each example
645
+ is a vector containing 2,351 features of the software.
646
+ Models
647
+ For image classification datasets MNIST and CI-
648
+ FAR10, we train fully-connected neural networks with four
649
+ layers for PECAN, while BagFlip uses CNN and ResNet for
650
+ MNIST and CIFAR10, respectively. We do not use CNN
651
+ and ResNet because CROWN-IBP used in PECAN has a
652
+ higher abstention rate for deeper and more complex neu-
653
+ ral network structures. We use the same fully-connected
654
+ neural network for EMBER as in related works (Zhang
655
+ et al., 2022b; Severi et al., 2021). We use the same data
656
+ augmentation for PECAN and other baselines.
657
+ Metrics
658
+ For each test input xi, yi, the algorithm ¯A will
659
+ predict a label and the certified radius ri. In this section, we
660
+ assume that the attacker had modified R% examples in the
661
+ training set. We denote R as the modification amount. We
662
+ summarize all the metrics used as follows,
663
+ Certified Accuracy denotes the percentage of test examples
664
+ that are correctly classified and whose certified radii are
665
+ no less than R, i.e., 1
666
+ m
667
+ �m
668
+ i=1 1 ¯
669
+ AD(xi)=yi∧ ri
670
+ |D| ≥2R%, where
671
+ m and |D| are the sizes of test set and training set, respec-
672
+ tively. Notice that there is a factor of 2 on the modification
673
+ amount R because Sr(D) considers one modification as one
674
+ insertion and one deletion, as illustrated in Example 3.1.
675
+ Normal Accuracy denotes the percentage of test examples
676
+ that are correctly classified by the algorithm without certifi-
677
+ cation, i.e., 1
678
+ m
679
+ �m
680
+ i=1 1 ¯
681
+ AD(xi)=yi.
682
+ Attack Success Rate (ASR). In Section 5.3, we are interested
683
+ in how many test examples are certified but wrongly clas-
684
+ sified by the classifier, i.e., 1
685
+ m
686
+ �m
687
+ i=1 1 ¯
688
+ AD(xi)̸=yi∧ ri
689
+ |D| ≥2R%.
690
+ We denote the above quantity as the attack success rate. We
691
+ note that a prediction can still be incorrect even if it is cer-
692
+ tified by PECAN because the classifier can have incorrect
693
+ predictions even when the data is clean.
694
+ Abstention Rate is computed as 1
695
+ m
696
+ �m
697
+ i=1 1 ri
698
+ |D| <2R%.
699
+ 5.2. Effectiveness and Efficiency of PECAN
700
+ We evaluate the effectiveness and efficiency of PECAN on
701
+ MNIST, CIFAR10, and EMBER under the backdoor attack
702
+ with the l0 feature-flip perturbation F1, which allows the
703
+ attacker to modify up to one feature in an example. We
704
+ compare PECAN to BagFlip, the state-of-the-art probabilis-
705
+ tic certified defense against l0 feature-flip backdoor attacks.
706
+ Moreover, we note that PECAN needs to construct harder
707
+ proofs than BagFlip because their definitions of perturbation
708
+ space are different, as discussed in Appendix B.1.
709
+ In Appendix B.2, we evaluate the effectiveness of PECAN
710
+ against the perturbation space with the l∞ norm.
711
+ Summary of the results
712
+ PECAN achieves significantly
713
+ higher certified accuracy than BagFlip on CIFAR10 and
714
+ EMBER. PECAN achieves competitive results on MNIST
715
+ compared to BagFlip. PECAN has similar normal accu-
716
+ racy as BagFlip for all datasets. PECAN is more efficient
717
+ than BagFlip at computing the certified radius.
718
+ Setup
719
+ We use the same hyper-parameters for BagFlip as
720
+ reported in their paper for all datasets. For PECAN, we vary
721
+
722
+ PECAN: A Deterministic Certified Defense Against Backdoor Attacks
723
+ 0
724
+ 2
725
+ 4
726
+ ·10−2
727
+ 0
728
+ 20
729
+ 40
730
+ 60
731
+ 80
732
+ 100
733
+ Modification Amount R (%)
734
+ Certifiable Accuracy
735
+ 0
736
+ 0.5
737
+ 1
738
+ 1.5
739
+ 2
740
+ ·10−2
741
+ BagFlip
742
+ PECAN-a
743
+ PECAN-b
744
+ (a) CIFAR10 F1
745
+ (b) EMBER F1
746
+ Figure 3. Comparison to BagFlip on CIFAR10 and EMBER, show-
747
+ ing the normal accuracy (dotted lines) and the certified accuracy
748
+ (solid lines) at different modification amounts R. For CIFAR10:
749
+ a = 50 and b = 100. For EMBER: a = 200 and b = 400.
750
+ 0
751
+ 0.5
752
+ 1
753
+ 1.5
754
+ 0
755
+ 20
756
+ 40
757
+ 60
758
+ 80
759
+ 100
760
+ Modification Amount R (%)
761
+ Certifiable Accuracy
762
+ BagFlip
763
+ PECAN-600
764
+ PECAN-1200
765
+ PECAN-2000
766
+ Figure 4. Comparison to BagFlip on MNIST, showing the normal
767
+ accuracy (dotted lines) and the certified accuracy (solid lines) at
768
+ different modification amounts R.
769
+ n, the number of partitions, to ensure a fair comparison be-
770
+ tween BagFlip. Appendix B.1 presents a detailed discussion
771
+ of hyper-parameter settings for BagFlip and PECAN. We
772
+ denote PECAN with different settings of n as PECAN-n.
773
+ BagFlip achieves meaningful results only on MNIST, where
774
+ we also tune the parameter n of PECAN to 2000 to achieve
775
+ the same certified accuracy of BagFlip at R = 0 and com-
776
+ pare their results following the practice in related works (Jia
777
+ et al., 2021; 2020).
778
+ Results
779
+ Figure 3 shows the comparison between PECAN
780
+ and BagFlip on CIFAR10 and EMBER. PECAN achieves
781
+ significantly higher certified accuracy than BagFlip
782
+ across all modification amounts R and the similar nor-
783
+ mal accuracy as BagFlip for both datasets.
784
+ BagFlip performs poorly on CIFAR10 and EMBER because
785
+ these two datasets cannot tolerate the high level of noise that
786
+ the BagFlip algorithm adds to the training data. Specifically,
787
+ BagFlip can add 20% noise to the training data of MNIST,
788
+ i.e., a feature (pixel) in a training example will be flipped to
789
+ another value with 20% probability. However, for CIFAR10
790
+ and EMBER, this probability has to be decreased to 5% to
791
+ maintain normal accuracy.
792
+ Figure 4 shows the comparison between PECAN and
793
+ BagFlip on MNIST. PECAN achieves competitive results
794
+ compared to BagFlip. We find that two approaches have
795
+ similar normal accuracy.
796
+ Comparing PECAN-600 and
797
+ PECAN-1200 with BagFlip, we find that 1) PECAN-600
798
+ and PECAN-1200 achieves higher certified accuracy than
799
+ BagFlip when R ∈ [0, 0.25] and R ∈ [0, 0.17], respec-
800
+ tively, and 2) BagFlip has non-zero certified accuracy when
801
+ R ∈ [0.5, 1.5], where the certified accuracy of PECAN-600
802
+ and PECAN-1200 is zero. Comparing PECAN-2000 with
803
+ BagFlip, we find that BagFlip outperforms PECAN-2000
804
+ across all modification amounts R.
805
+ We argue that the gap of certified accuracy between PECAN-
806
+ 2000 and BagFlip mainly comes from the different def-
807
+ initions of the perturbation spaces as discussed in Ap-
808
+ pendix B.1. Moreover, the root cause of this difference
809
+ is owing to the probabilistic nature of BagFlip.
810
+ PECAN is more efficient than BagFlip at computing the
811
+ certified radius. PECAN computes the certified radius in a
812
+ constant time complexity via the closed-form solution in the
813
+ aggregation step. However, in our experiment of the MNIST
814
+ dataset, BagFlip requires 8 hours to prepare a lookup table
815
+ because BagFlip does not have a closed-form solution for
816
+ computing the certified radius.
817
+ 5.3. PECAN under the Backdoored Data
818
+ We evaluate the effectiveness of PECAN under the back-
819
+ door attack (Severi et al., 2021) for malware detection on the
820
+ EMBER dataset. We do not compare PECAN to BagFlip
821
+ because BagFlip has poor certified accuracy on EMBER, as
822
+ shown in Figure 3. We also evaluate other baselines, DPA
823
+ and CROWN-IBP, which do not aim to defend against back-
824
+ door attacks. DPA is the certified defense against trigger-less
825
+ attacks, and CROWN-IBP is the certified defense against
826
+ evasion attacks. We also present the results of the victim
827
+ classifiers without any defense. Appendix B.4 shows that
828
+ the empirical defense spectral signatures (Tran et al., 2018)
829
+ cannot defend against the backdoor attack.
830
+ Summary of the results
831
+ PECAN reduces the ASR of
832
+ the victim model on the test set with malicious triggers
833
+ from 41.33% to 1.85%, while the other baselines fail
834
+ to defend against the backdoor attack. Being the most
835
+ conservative, PECAN has the highest abstention rate.
836
+ Setup
837
+ We use Severi et al. (2021) to generate backdoored
838
+ data by modifying 0.1% training examples and adding trig-
839
+ gers into the test inputs that should be labeled as malware to
840
+ fool the victim model to predict the malware with malicious
841
+ triggers as benign software (non-malware). We generate
842
+ three poisoned datasets �D1, �D2, �D3 and their correspond-
843
+ ing test sets with triggers by perturbations F1, F2, and F3,
844
+ which allow the attacker to modify up to one, two, and three
845
+ features in an example, respectively.
846
+ We report the results of all approaches on the malware test
847
+ sets with triggers and the malware test sets without trig-
848
+ gers, i.e., the original malware test set. The results on the
849
+ non-malware test sets without triggers can be found in Ap-
850
+ pendix B.3. ASR on malware is a much more critical metric
851
+
852
+ PECAN: A Deterministic Certified Defense Against Backdoor Attacks
853
+
854
+ D1 �
855
+ D2 �
856
+ D3
857
+
858
+ D1 �
859
+ D2 �
860
+ D3
861
+
862
+ D1 �
863
+ D2 �
864
+ D3
865
+
866
+ D1 �
867
+ D2 �
868
+ D3
869
+ 0
870
+ 20
871
+ 40
872
+ 60
873
+ 80
874
+ 100
875
+ ASR
876
+ Correct
877
+ Abstain
878
+ PECAN
879
+ DPA
880
+ C-IBP
881
+ NoDef
882
+ Figure 5. Results of PECAN, DPA, CROWN-IBP (C-IBP), and
883
+ vanilla model without defense (NoDef) trained on three poisoned
884
+ EMBER datasets when evaluated on the malware test set with
885
+ malicious triggers. We note that NoDef does not have abstention
886
+ rates because it does not use any defense.
887
+
888
+ D1 �
889
+ D2 �
890
+ D3
891
+
892
+ D1 �
893
+ D2 �
894
+ D3
895
+
896
+ D1 �
897
+ D2 �
898
+ D3
899
+
900
+ D1 �
901
+ D2 �
902
+ D3
903
+ 0
904
+ 20
905
+ 40
906
+ 60
907
+ 80
908
+ 100
909
+ ASR
910
+ Correct
911
+ Abstain
912
+ PECAN
913
+ DPA
914
+ C-IBP
915
+ NoDef
916
+ Figure 6. Results of PECAN, DPA, C-IBP, and NoDef when evalu-
917
+ ated on the (original) malware test set without malicious triggers.
918
+ than the ASR on non-malware, because the former shows
919
+ how many pieces of malware can bypass the classifier.
920
+ For PECAN and DPA, we show their results at modification
921
+ amount R = 0.1%. We show CROWN-IBP results against
922
+ the perturbations F1, F2, and F3 regardless of R because
923
+ CROWN-IBP does not consider R.
924
+ Results
925
+ Figures 5 and 6 show the ASR, accuracy, and ab-
926
+ stention rate of all the approaches on the malware test set
927
+ with and without triggers, respectively. Table 1 in the ap-
928
+ pendix shows the detailed numbers. Note that PECAN is
929
+ the only certified approach for backdoor attacks. The
930
+ results of other baselines can be seen as empirical be-
931
+ cause DPA and CROWN-IBP certify a different goal,
932
+ and NoDef has no defense.
933
+ PECAN can defend against the backdoor attack on the
934
+ EMBER dataset. Figures 5 and 6 show that PECAN has
935
+ the lowest ASR 1.85% and 1.03% on both malware test
936
+ sets with and without triggers on average, compared to
937
+ DPA (18.05%, 1.98%), CROWN-IBP (15.24%, 6.82%),
938
+ and NoDef (41.33%, 2.12%).
939
+ 0
940
+ 5 · 10−2
941
+ 0.1
942
+ 0
943
+ 20
944
+ 40
945
+ 60
946
+ 80
947
+ 100
948
+ Modification Amount R (%)
949
+ Test Set Percentage
950
+ 0
951
+ 5 · 10−2
952
+ 0.1
953
+ Correct
954
+ ASR
955
+ Abstain
956
+ (a) PECAN
957
+ (b) DPA
958
+ Figure 7. Comparison between PECAN and DPA trained on �D3
959
+ across all modification amount R when evaluated on the malware
960
+ test set with triggers.
961
+ DPA and CROWN-IBP fail to defend against the back-
962
+ door attack. The average ASR of DPA and CROWN-IBP
963
+ on the malware test set with triggers are 18.05% and 15.24%
964
+ in Figure 5, respectively, meaning that many malware with
965
+ triggers can bypass their defenses. The average ASR of
966
+ DPA on the malware test set without triggers, 1.98%, is
967
+ much lower than its ASR on the one with triggers, 18.05%,
968
+ which shows that DPA successfully defends against trigger-
969
+ less attacks when the test input does not have any trigger.
970
+ CROWN-IBP has high ASR on both the malware test sets
971
+ with and without triggers, as CROWN-IBP cannot defend
972
+ against the poison in the training sets.
973
+ PECAN has higher abstention rates than other ap-
974
+ proaches.
975
+ On average, PECAN abstains from 50.41%
976
+ predictions compared to DPA (34.73%) and CROWN-IBP
977
+ (26.44%). We further compare the accuracy, ASR, and ab-
978
+ stention rate of PECAN and DPA across all modification
979
+ amount R when trained on �D3 in Figure 7. The results on
980
+ �D1 and �D2 are shown in Appendix B.5. We can observe
981
+ that PECAN has a much lower ASR than DPA across all
982
+ modification amounts. Meanwhile, Figure 7 shows that
983
+ the certification of PECAN might be over-conservative be-
984
+ cause the ASR is low (3.17%) even when we regard �D3 as
985
+ non-poisoned (when R = 0), yet �D3 is actually poisoned.
986
+ 6. Conclusion, Limitations, and Future Work
987
+ We presented PECAN, a deterministic certified approach
988
+ to effectively and efficiently defend against backdoor at-
989
+ tacks. We foresee many future improvements to PECAN.
990
+ First, we implemented PECAN as a certified defense special-
991
+ ized for neural networks because the evasion certification
992
+ step, CROWN-IBP, is limited to neural networks. However,
993
+ we can replace CROWN-IBP with an evasion certification
994
+ approach for another machine learning model to get a cor-
995
+ responding backdoor defense for that model. Second, we
996
+ adopt the idea of deep partition aggregation (DPA) to de-
997
+ sign the partition and aggregation steps in PECAN. We can
998
+ improve these steps by using finite aggregation (FA) (Wang
999
+ et al., 2022b), which extends DPA and gives higher certified
1000
+ accuracy. Third, during the certification of evasion attacks,
1001
+ we need to propagate the abstraction of the same test input
1002
+
1003
+ PECAN: A Deterministic Certified Defense Against Backdoor Attacks
1004
+ through thousands of neural networks that have different
1005
+ weights but the same architecture. Sharing the propaga-
1006
+ tion results among different neural networks (Fischer et al.,
1007
+ 2022) can greatly improve the efficiency of PECAN and
1008
+ may enable using complete certification methods.
1009
+
1010
+ PECAN: A Deterministic Certified Defense Against Backdoor Attacks
1011
+ References
1012
+ Aghakhani, H., Meng, D., Wang, Y., Kruegel, C., and Vigna,
1013
+ G. Bullseye polytope: A scalable clean-label poison-
1014
+ ing attack with improved transferability. In IEEE Eu-
1015
+ ropean Symposium on Security and Privacy, EuroS&P
1016
+ 2021, Vienna, Austria, September 6-10, 2021, pp. 159–
1017
+ 178. IEEE, 2021.
1018
+ doi: 10.1109/EuroSP51992.2021.
1019
+ 00021. URL https://doi.org/10.1109/Euro
1020
+ SP51992.2021.00021.
1021
+ Anderson, H. S. and Roth, P. EMBER: an open dataset
1022
+ for training static PE malware machine learning models.
1023
+ CoRR, abs/1804.04637, 2018. URL http://arxiv.
1024
+ org/abs/1804.04637.
1025
+ Chen, R., Li, J., Wu, C., Sheng, B., and Li, P. A framework
1026
+ of randomized selection based certified defenses against
1027
+ data poisoning attacks. CoRR, abs/2009.08739, 2020.
1028
+ URL https://arxiv.org/abs/2009.08739.
1029
+ Chen, R., Li, Z., Li, J., Yan, J., and Wu, C. On collec-
1030
+ tive robustness of bagging against data poisoning. In
1031
+ Chaudhuri, K., Jegelka, S., Song, L., Szepesv´ari, C., Niu,
1032
+ G., and Sabato, S. (eds.), International Conference on
1033
+ Machine Learning, ICML 2022, 17-23 July 2022, Balti-
1034
+ more, Maryland, USA, volume 162 of Proceedings of
1035
+ Machine Learning Research, pp. 3299–3319. PMLR,
1036
+ 2022. URL https://proceedings.mlr.press/
1037
+ v162/chen22k.html.
1038
+ Cohen, J. M., Rosenfeld, E., and Kolter, J. Z. Certified
1039
+ adversarial robustness via randomized smoothing. In
1040
+ Chaudhuri, K. and Salakhutdinov, R. (eds.), Proceedings
1041
+ of the 36th International Conference on Machine Learn-
1042
+ ing, ICML 2019, 9-15 June 2019, Long Beach, California,
1043
+ USA, volume 97 of Proceedings of Machine Learning Re-
1044
+ search, pp. 1310–1320. PMLR, 2019. URL http://pr
1045
+ oceedings.mlr.press/v97/cohen19c.html.
1046
+ Drews, S., Albarghouthi, A., and D’Antoni, L. Proving
1047
+ data-poisoning robustness in decision trees. In Donald-
1048
+ son, A. F. and Torlak, E. (eds.), Proceedings of the 41st
1049
+ ACM SIGPLAN International Conference on Program-
1050
+ ming Language Design and Implementation, PLDI 2020,
1051
+ London, UK, June 15-20, 2020, pp. 1083–1097. ACM,
1052
+ 2020. doi: 10.1145/3385412.3385975. URL https:
1053
+ //doi.org/10.1145/3385412.3385975.
1054
+ Dvijotham, K. D., Hayes, J., Balle, B., Kolter, J. Z., Qin,
1055
+ C., Gy¨orgy, A., Xiao, K., Gowal, S., and Kohli, P. A
1056
+ framework for robustness certification of smoothed clas-
1057
+ sifiers using f-divergences. In 8th International Confer-
1058
+ ence on Learning Representations, ICLR 2020, Addis
1059
+ Ababa, Ethiopia, April 26-30, 2020. OpenReview.net,
1060
+ 2020.
1061
+ URL https://openreview.net/forum
1062
+ ?id=SJlKrkSFPH.
1063
+ Fischer, M., Sprecher, C., Dimitrov, D. I., Singh, G.,
1064
+ and Vechev, M. T. Shared certificates for neural net-
1065
+ work verification. In Shoham, S. and Vizel, Y. (eds.),
1066
+ Computer Aided Verification - 34th International Con-
1067
+ ference, CAV 2022, Haifa, Israel, August 7-10, 2022,
1068
+ Proceedings, Part I, volume 13371 of Lecture Notes in
1069
+ Computer Science, pp. 127–148. Springer, 2022. doi:
1070
+ 10.1007/978-3-031-13185-1\ 7. URL https://doi.
1071
+ org/10.1007/978-3-031-13185-1_7.
1072
+ Geiping, J., Fowl, L., Somepalli, G., Goldblum, M., Moeller,
1073
+ M., and Goldstein, T.
1074
+ What doesn’t kill you makes
1075
+ you robust(er): Adversarial training against poisons
1076
+ and backdoors. CoRR, abs/2102.13624, 2021a. URL
1077
+ https://arxiv.org/abs/2102.13624.
1078
+ Geiping, J., Fowl, L. H., Huang, W. R., Czaja, W., Taylor,
1079
+ G., Moeller, M., and Goldstein, T. Witches’ brew: Indus-
1080
+ trial scale data poisoning via gradient matching. In 9th
1081
+ International Conference on Learning Representations,
1082
+ ICLR 2021, Virtual Event, Austria, May 3-7, 2021. Open-
1083
+ Review.net, 2021b. URL https://openreview.n
1084
+ et/forum?id=01olnfLIbD.
1085
+ Gu, T., Dolan-Gavitt, B., and Garg, S.
1086
+ Badnets: Iden-
1087
+ tifying vulnerabilities in the machine learning model
1088
+ supply chain.
1089
+ CoRR, abs/1708.06733, 2017.
1090
+ URL
1091
+ http://arxiv.org/abs/1708.06733.
1092
+ Jia, J., Cao, X., and Gong, N. Z. Certified robustness of
1093
+ nearest neighbors against data poisoning attacks. CoRR,
1094
+ abs/2012.03765, 2020. URL https://arxiv.org/
1095
+ abs/2012.03765.
1096
+ Jia, J., Cao, X., and Gong, N. Z. Intrinsic certified robustness
1097
+ of bagging against data poisoning attacks. In Thirty-Fifth
1098
+ AAAI Conference on Artificial Intelligence, AAAI 2021,
1099
+ Thirty-Third Conference on Innovative Applications of Ar-
1100
+ tificial Intelligence, IAAI 2021, The Eleventh Symposium
1101
+ on Educational Advances in Artificial Intelligence, EAAI
1102
+ 2021, Virtual Event, February 2-9, 2021, pp. 7961–7969.
1103
+ AAAI Press, 2021. URL https://ojs.aaai.org
1104
+ /index.php/AAAI/article/view/16971.
1105
+ Katz, G., Huang, D. A., Ibeling, D., Julian, K., Lazarus,
1106
+ C., Lim, R., Shah, P., Thakoor, S., Wu, H., Zeljic, A.,
1107
+ Dill, D. L., Kochenderfer, M. J., and Barrett, C. W. The
1108
+ marabou framework for verification and analysis of deep
1109
+ neural networks. In Dillig, I. and Tasiran, S. (eds.), Com-
1110
+ puter Aided Verification - 31st International Conference,
1111
+ CAV 2019, New York City, NY, USA, July 15-18, 2019,
1112
+ Proceedings, Part I, volume 11561 of Lecture Notes in
1113
+ Computer Science, pp. 443–452. Springer, 2019. doi:
1114
+ 10.1007/978-3-030-25540-4\ 26. URL https://do
1115
+ i.org/10.1007/978-3-030-25540-4_26.
1116
+
1117
+ PECAN: A Deterministic Certified Defense Against Backdoor Attacks
1118
+ Koh, P. W., Steinhardt, J., and Liang, P.
1119
+ Stronger
1120
+ data poisoning attacks break data sanitization defenses.
1121
+ Mach. Learn., 111(1):1–47, 2022.
1122
+ doi:
1123
+ 10.1007/
1124
+ s10994-021-06119-y. URL https://doi.org/10.
1125
+ 1007/s10994-021-06119-y.
1126
+ Lee, G., Yuan, Y., Chang, S., and Jaakkola, T. S. Tight
1127
+ certificates of adversarial robustness for randomly
1128
+ smoothed classifiers.
1129
+ In Wallach, H. M., Larochelle,
1130
+ H., Beygelzimer, A., d’Alch´e-Buc, F., Fox, E. B., and
1131
+ Garnett, R. (eds.), Advances in Neural Information
1132
+ Processing Systems 32: Annual Conference on Neural
1133
+ Information Processing Systems 2019, NeurIPS 2019,
1134
+ December 8-14, 2019, Vancouver, BC, Canada, pp. 4911–
1135
+ 4922, 2019. URL https://proceedings.neur
1136
+ ips.cc/paper/2019/hash/fa2e8c4385712f
1137
+ 9a1d24c363a2cbe5b8-Abstract.html.
1138
+ Levine, A. and Feizi, S. Deep partition aggregation: Prov-
1139
+ able defenses against general poisoning attacks. In 9th
1140
+ International Conference on Learning Representations,
1141
+ ICLR 2021, Virtual Event, Austria, May 3-7, 2021. Open-
1142
+ Review.net, 2021. URL https://openreview.n
1143
+ et/forum?id=YUGG2tFuPM.
1144
+ Liu, K., Dolan-Gavitt, B., and Garg, S.
1145
+ Fine-pruning:
1146
+ Defending against backdooring attacks on deep neural
1147
+ networks. In Bailey, M., Holz, T., Stamatogiannakis,
1148
+ M., and Ioannidis, S. (eds.), Research in Attacks, In-
1149
+ trusions, and Defenses - 21st International Symposium,
1150
+ RAID 2018, Heraklion, Crete, Greece, September 10-12,
1151
+ 2018, Proceedings, volume 11050 of Lecture Notes in
1152
+ Computer Science, pp. 273–294. Springer, 2018. doi:
1153
+ 10.1007/978-3-030-00470-5\ 13. URL https://do
1154
+ i.org/10.1007/978-3-030-00470-5_13.
1155
+ Ma, Y., Zhu, X., and Hsu, J.
1156
+ Data poisoning against
1157
+ differentially-private learners: Attacks and defenses. In
1158
+ Kraus, S. (ed.), Proceedings of the Twenty-Eighth Interna-
1159
+ tional Joint Conference on Artificial Intelligence, IJCAI
1160
+ 2019, Macao, China, August 10-16, 2019, pp. 4732–4738.
1161
+ ijcai.org, 2019. doi: 10.24963/ijcai.2019/657. URL ht
1162
+ tps://doi.org/10.24963/ijcai.2019/657.
1163
+ Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and
1164
+ Vladu, A. Towards deep learning models resistant to
1165
+ adversarial attacks. In 6th International Conference on
1166
+ Learning Representations, ICLR 2018, Vancouver, BC,
1167
+ Canada, April 30 - May 3, 2018, Conference Track
1168
+ Proceedings. OpenReview.net, 2018.
1169
+ URL https:
1170
+ //openreview.net/forum?id=rJzIBfZAb.
1171
+ Meyer, A. P., Albarghouthi, A., and D’Antoni, L. Certifying
1172
+ robustness to programmable data bias in decision trees.
1173
+ In Ranzato, M., Beygelzimer, A., Dauphin, Y. N., Liang,
1174
+ P., and Vaughan, J. W. (eds.), Advances in Neural Infor-
1175
+ mation Processing Systems 34: Annual Conference on
1176
+ Neural Information Processing Systems 2021, NeurIPS
1177
+ 2021, December 6-14, 2021, virtual, pp. 26276–26288,
1178
+ 2021.
1179
+ URL https://proceedings.neurips.
1180
+ cc/paper/2021/hash/dcf531edc9b229acf
1181
+ e0f4b87e1e278dd-Abstract.html.
1182
+ Qi, F., Yao, Y., Xu, S., Liu, Z., and Sun, M. Turn the
1183
+ combination lock: Learnable textual backdoor attacks
1184
+ via word substitution. In Zong, C., Xia, F., Li, W., and
1185
+ Navigli, R. (eds.), Proceedings of the 59th Annual Meet-
1186
+ ing of the Association for Computational Linguistics and
1187
+ the 11th International Joint Conference on Natural Lan-
1188
+ guage Processing, ACL/IJCNLP 2021, (Volume 1: Long
1189
+ Papers), Virtual Event, August 1-6, 2021, pp. 4873–4883.
1190
+ Association for Computational Linguistics, 2021. doi:
1191
+ 10.18653/v1/2021.acl-long.377. URL https://doi.
1192
+ org/10.18653/v1/2021.acl-long.377.
1193
+ Rosenfeld, E., Winston, E., Ravikumar, P., and Kolter, J. Z.
1194
+ Certified robustness to label-flipping attacks via random-
1195
+ ized smoothing. In Proceedings of the 37th International
1196
+ Conference on Machine Learning, ICML 2020, 13-18
1197
+ July 2020, Virtual Event, volume 119 of Proceedings
1198
+ of Machine Learning Research, pp. 8230–8241. PMLR,
1199
+ 2020. URL http://proceedings.mlr.press/
1200
+ v119/rosenfeld20b.html.
1201
+ Saha, A., Subramanya, A., and Pirsiavash, H. Hidden trigger
1202
+ backdoor attacks. In The Thirty-Fourth AAAI Conference
1203
+ on Artificial Intelligence, AAAI 2020, The Thirty-Second
1204
+ Innovative Applications of Artificial Intelligence Confer-
1205
+ ence, IAAI 2020, The Tenth AAAI Symposium on Edu-
1206
+ cational Advances in Artificial Intelligence, EAAI 2020,
1207
+ New York, NY, USA, February 7-12, 2020, pp. 11957–
1208
+ 11965. AAAI Press, 2020. URL https://ojs.aaai
1209
+ .org/index.php/AAAI/article/view/6871.
1210
+ Severi,
1211
+ G.,
1212
+ Meyer,
1213
+ J.,
1214
+ Coull,
1215
+ S. E.,
1216
+ and Oprea,
1217
+ A.
1218
+ Explanation-guided
1219
+ backdoor
1220
+ poisoning
1221
+ at-
1222
+ tacks against malware classifiers.
1223
+ In Bailey, M.
1224
+ and Greenstadt, R. (eds.), 30th USENIX Security
1225
+ Symposium, USENIX Security 2021, August 11-13,
1226
+ 2021, pp. 1487–1504. USENIX Association, 2021.
1227
+ URL https://www.usenix.org/conference/
1228
+ usenixsecurity21/presentation/severi.
1229
+ Shafahi, A., Huang, W. R., Najibi, M., Suciu, O., Studer,
1230
+ C., Dumitras, T., and Goldstein, T.
1231
+ Poison frogs!
1232
+ targeted clean-label poisoning attacks on neural net-
1233
+ works.
1234
+ In Bengio, S., Wallach, H. M., Larochelle,
1235
+ H., Grauman, K., Cesa-Bianchi, N., and Garnett, R.
1236
+ (eds.), Advances in Neural Information Processing
1237
+ Systems 31: Annual Conference on Neural Information
1238
+ Processing Systems 2018, NeurIPS 2018, December 3-8,
1239
+ 2018, Montr´eal, Canada, pp. 6106–6116, 2018. URL
1240
+ https://proceedings.neurips.cc/pap
1241
+
1242
+ PECAN: A Deterministic Certified Defense Against Backdoor Attacks
1243
+ er/2018/hash/22722a343513ed45f14905e
1244
+ b07621686-Abstract.html.
1245
+ Singh, G., Gehr, T., P¨uschel, M., and Vechev, M. T.
1246
+ An abstract domain for certifying neural networks.
1247
+ Proc. ACM Program. Lang., 3(POPL):41:1–41:30, 2019.
1248
+ doi: 10.1145/3290354. URL https://doi.org/10.
1249
+ 1145/3290354.
1250
+ Tran, B., Li, J., and Madry, A.
1251
+ Spectral signatures in
1252
+ backdoor attacks.
1253
+ In Bengio, S., Wallach, H. M.,
1254
+ Larochelle, H., Grauman, K., Cesa-Bianchi, N., and
1255
+ Garnett, R. (eds.), Advances in Neural Information
1256
+ Processing Systems 31: Annual Conference on Neural
1257
+ Information Processing Systems 2018, NeurIPS 2018,
1258
+ December 3-8, 2018, Montr´eal, Canada, pp. 8011–8021,
1259
+ 2018.
1260
+ URL https://proceedings.neurips.
1261
+ cc/paper/2018/hash/280cf18baf4311c92a
1262
+ a5a042336587d3-Abstract.html.
1263
+ Turner, A., Tsipras, D., and Madry, A. Label-consistent
1264
+ backdoor attacks. CoRR, abs/1912.02771, 2019. URL
1265
+ http://arxiv.org/abs/1912.02771.
1266
+ Wang, B., Cao, X., Jia, J., and Gong, N. Z.
1267
+ On certi-
1268
+ fying robustness against backdoor attacks via random-
1269
+ ized smoothing. CoRR, abs/2002.11750, 2020a. URL
1270
+ https://arxiv.org/abs/2002.11750.
1271
+ Wang, H., Sreenivasan, K., Rajput, S., Vishwakarma, H.,
1272
+ Agarwal, S., Sohn, J., Lee, K., and Papailiopoulos,
1273
+ D. S. Attack of the tails: Yes, you really can backdoor
1274
+ federated learning.
1275
+ In Larochelle, H., Ranzato, M.,
1276
+ Hadsell, R., Balcan, M., and Lin, H. (eds.), Advances
1277
+ in Neural Information Processing Systems 33: Annual
1278
+ Conference on Neural Information Processing Systems
1279
+ 2020, NeurIPS 2020, December 6-12, 2020, virtual,
1280
+ 2020b.
1281
+ URL https://proceedings.neurips.
1282
+ cc/paper/2020/hash/b8ffa41d4e492f0fad
1283
+ 2f13e29e1762eb-Abstract.html.
1284
+ Wang, S., Zhang, H., Xu, K., Lin, X., Jana, S., Hsieh, C.,
1285
+ and Kolter, J. Z. Beta-crown: Efficient bound propagation
1286
+ with per-neuron split constraints for neural network
1287
+ robustness verification. In Ranzato, M., Beygelzimer,
1288
+ A., Dauphin, Y. N., Liang, P., and Vaughan, J. W.
1289
+ (eds.), Advances in Neural Information Processing
1290
+ Systems 34: Annual Conference on Neural Information
1291
+ Processing Systems 2021, NeurIPS 2021, December
1292
+ 6-14, 2021, virtual, pp. 29909–29921, 2021.
1293
+ URL
1294
+ https://proceedings.neurips.cc/paper
1295
+ /2021/hash/fac7fead96dafceaf80c1daffe
1296
+ ae82a4-Abstract.html.
1297
+ Wang, W., Levine, A., and Feizi, S. Lethal dose conjecture
1298
+ on data poisoning. CoRR, abs/2208.03309, 2022a. doi:
1299
+ 10.48550/arXiv.2208.03309. URL https://doi.or
1300
+ g/10.48550/arXiv.2208.03309.
1301
+ Wang, W., Levine, A., and Feizi, S. Improved certified
1302
+ defenses against data poisoning with (deterministic) finite
1303
+ aggregation. CoRR, abs/2202.02628, 2022b. URL http
1304
+ s://arxiv.org/abs/2202.02628.
1305
+ Weber, M., Xu, X., Karlas, B., Zhang, C., and Li, B. RAB:
1306
+ provable robustness against backdoor attacks. CoRR,
1307
+ abs/2003.08904, 2020. URL https://arxiv.org/
1308
+ abs/2003.08904.
1309
+ Xu, K., Shi, Z., Zhang, H., Wang, Y., Chang, K., Huang,
1310
+ M., Kailkhura, B., Lin, X., and Hsieh, C. Automatic
1311
+ perturbation analysis for scalable certified robustness
1312
+ and beyond. In Larochelle, H., Ranzato, M., Hadsell,
1313
+ R., Balcan, M., and Lin, H. (eds.), Advances in Neural
1314
+ Information Processing Systems 33: Annual Conference
1315
+ on Neural Information Processing Systems 2020,
1316
+ NeurIPS 2020, December 6-12, 2020, virtual, 2020. URL
1317
+ https://proceedings.neurips.cc/paper
1318
+ /2020/hash/0cbc5671ae26f67871cb914d
1319
+ 81ef8fc1-Abstract.html.
1320
+ Zhang, H., Chen, H., Xiao, C., Gowal, S., Stanforth, R.,
1321
+ Li, B., Boning, D. S., and Hsieh, C. Towards stable
1322
+ and efficient training of verifiably robust neural net-
1323
+ works.
1324
+ In 8th International Conference on Learning
1325
+ Representations, ICLR 2020, Addis Ababa, Ethiopia,
1326
+ April 26-30, 2020. OpenReview.net, 2020. URL https:
1327
+ //openreview.net/forum?id=Skxuk1rFwB.
1328
+ Zhang, H., Wang, S., Xu, K., Li, L., Li, B., Jana, S.,
1329
+ Hsieh, C., and Kolter, J. Z.
1330
+ General cutting planes
1331
+ for bound-propagation-based neural network verification.
1332
+ CoRR, abs/2208.05740, 2022a.
1333
+ doi: 10.48550/arXiv.
1334
+ 2208.05740. URL https://doi.org/10.48550/
1335
+ arXiv.2208.05740.
1336
+ Zhang, Y., Albarghouthi, A., and D’Antoni, L.
1337
+ Cer-
1338
+ tified robustness to programmable transformations in
1339
+ lstms. In Moens, M., Huang, X., Specia, L., and Yih,
1340
+ S. W. (eds.), Proceedings of the 2021 Conference on
1341
+ Empirical Methods in Natural Language Processing,
1342
+ EMNLP 2021, Virtual Event / Punta Cana, Domini-
1343
+ can Republic, 7-11 November, 2021, pp. 1068–1083.
1344
+ Association for Computational Linguistics, 2021. doi:
1345
+ 10.18653/v1/2021.emnlp-main.82. URL https://do
1346
+ i.org/10.18653/v1/2021.emnlp-main.82.
1347
+ Zhang, Y., Albarghouthi, A., and D’Antoni, L. Bagflip:
1348
+ A certified defense against data poisoning.
1349
+ CoRR,
1350
+ abs/2205.13634, 2022b.
1351
+ doi:
1352
+ 10.48550/arXiv.2205.
1353
+ 13634. URL https://doi.org/10.48550/arXi
1354
+ v.2205.13634.
1355
+
1356
+ PECAN: A Deterministic Certified Defense Against Backdoor Attacks
1357
+ Zhu, C., Huang, W. R., Li, H., Taylor, G., Studer, C., and
1358
+ Goldstein, T. Transferable clean-label poisoning attacks
1359
+ on deep neural nets. In Chaudhuri, K. and Salakhutdinov,
1360
+ R. (eds.), Proceedings of the 36th International Confer-
1361
+ ence on Machine Learning, ICML 2019, 9-15 June 2019,
1362
+ Long Beach, California, USA, volume 97 of Proceedings
1363
+ of Machine Learning Research, pp. 7614–7623. PMLR,
1364
+ 2019. URL http://proceedings.mlr.press/
1365
+ v97/zhu19a.html.
1366
+
1367
+ PECAN: A Deterministic Certified Defense Against Backdoor Attacks
1368
+ A. Proof of Theorem 4.2
1369
+ Proof. Theorem 4.1 tells that either r = ⋄ or the following
1370
+ equation holds,
1371
+ ∀D′ ∈ Sr( �D), x′ ∈ π(�x). ¯A �
1372
+ D(�x) = ¯AD′(x′)
1373
+ (6)
1374
+ By the symmetrical definition of Sr and π, we have
1375
+ ∀D. �D ∈ Sr(D) =⇒ D ∈ Sr( �D)
1376
+ (7)
1377
+ ∀x. �x ∈ π(x) =⇒ x ∈ π(�x).
1378
+ (8)
1379
+ Then, for all possible clean data D and x, we have
1380
+ �D ∈ Sr(D) ∧ �x ∈ π(x)
1381
+ =⇒ D ∈ Sr( �D) ∧ x ∈ π(�x)
1382
+ (By Eq 7 and Eq 8)
1383
+ =⇒ ¯A �
1384
+ D(�x) = ¯AD(x)
1385
+ (By Eq 6)
1386
+ B. Experiment
1387
+ B.1. Detailed Setup of Section 5.2
1388
+ Following the BagFlip paper (Zhang et al., 2022b), we set k,
1389
+ the number of training examples in a bag used in BagFlip,
1390
+ as 100, 1000, and 3000 for the MNIST, CIFAR10, and
1391
+ EMBER dataset, respectively. For PECAN, we vary n, the
1392
+ number of partitions, according to the value of k in BagFlip
1393
+ by setting n = |D|
1394
+ k .
1395
+ BagFlip defines their perturbation space S′
1396
+ r(D) that is dif-
1397
+ ferent from PECAN,
1398
+ S′
1399
+ r(D) =
1400
+
1401
+ �D | max(|D \ �D|, | �D \ D|) ≤ r
1402
+
1403
+ ,
1404
+ where A \ B is the set difference, i.e., the elements in A
1405
+ but not in B. Notice that with the same radius r, the above
1406
+ definition gives a larger S′
1407
+ r(D) than Sr(D) as the following
1408
+ example shows.
1409
+ Example B.1. If the attacker modifies one training example
1410
+ x ∈ D to another training example �x to form a poisoned
1411
+ dataset �D = D \ {x} ∪ {�x}. Then �D ∈ S2(D) but �D /∈
1412
+ S1(D) because Sr(D) considers one modification as one
1413
+ deletion and one insertion. However, we have �D ∈ S′
1414
+ 1(D).
1415
+ Chen et al. (2022) show that S′
1416
+ r(D) works when the ap-
1417
+ proach uses non-deterministic sub-sampling (Jia et al., 2021;
1418
+ Zhang et al., 2022b). However, the certification of determin-
1419
+ istic approaches only works under the definition of Sr(D).
1420
+ We adjust the computation of certified accuracy for BagFlip
1421
+ as 1
1422
+ m
1423
+ �m
1424
+ i=1 1 ¯
1425
+ AD(xi)=yi∧ ri
1426
+ |D| ≥R% by removing the factor 2
1427
+ on R. Thus, we are also interested in the performance of
1428
+ PECAN when n = |D|
1429
+ 2k to compensate the removed factor
1430
+ 2.
1431
+ 0
1432
+ 0.2
1433
+ 0.4
1434
+ 0
1435
+ 20
1436
+ 40
1437
+ 60
1438
+ 80
1439
+ 100
1440
+ Modification Amount R (%)
1441
+ Certifiable Accuracy
1442
+ 0
1443
+ 2
1444
+ 4
1445
+ ·10−2
1446
+ PECAN-a
1447
+ PECAN-b
1448
+ (a) MNIST s = 0.1
1449
+ (b) CIFAR10 s = 2/255
1450
+ Figure 8. Results of PECAN on CIFAR10 and EMBER, showing
1451
+ the normal accuracy (dotted lines) and the certified accuracy (solid
1452
+ lines) at different modification amounts R. For MNIST: a = 600
1453
+ and b = 1200. For CIFAR10: a = 50 and b = 100.
1454
+ B.2. Evaluation on the l∞ Perturbation Space
1455
+ Setup
1456
+ As the CROWN-IBP used in PECAN can handle
1457
+ π with different lp norms, PECAN can handle different lp
1458
+ norms as well. We evaluate PECAN on the l∞ norm with
1459
+ distance s = 0.1 and s = 2/255 on MNIST and CIFAR10,
1460
+ respectively, because the l∞ norm is widely applied to eval-
1461
+ uate the robustness of image classifiers. In this experimental
1462
+ setting, we use two CNN models for MNIST and CIFAR10
1463
+ because CROWN-IBP works better for CNN on l∞ norm
1464
+ than on l0 norm. For training on MNIST and CIFAR10, we
1465
+ train on s = 0.2 and s = 5/255 but test on s = 0.1 and
1466
+ s = 2/255 to overcome the overfitting issue when s is small,
1467
+ following the practice in the original paper of CROWN-IBP.
1468
+ For the experiments on l0 (Sections 5.2 and 5.3), we set
1469
+ the κstart = 0 and κend = 0 for CROWN-IBP. For the ex-
1470
+ periments on l∞, we set the κstart = 1 and κend = 0 for
1471
+ CROWN-IBP.
1472
+ Results
1473
+ Figure 8 shows the results of PECAN against l∞
1474
+ perturbation space. The results show that PECAN achieves
1475
+ certified accuracy similar to F1 as shown in Figures 3 and 4.
1476
+ B.3. Comparison to DPA, CROWN-IBP, and NoDef on
1477
+ the Non-Malware Test Set without Trigger
1478
+ Figure 9 shows that NoDef has the lowest ASR of 2.70% on
1479
+ the non-malware set without trigger than all three defenses
1480
+ because the backdoor attack does not aim to attack the
1481
+ prediction of non-malware. However, PECAN still achieves
1482
+ the lowest ASR of 5.73% compared to DPA (7.85%) and
1483
+ CROWN-IBP (6.68%).
1484
+ B.4. Comparison to Spectral Signatures
1485
+ We followed the experiment in Severi et al. (2021) to filter
1486
+ out poisoned examples in the training dataset �D3. After
1487
+ removing the top 15% outliers in the non-malware training
1488
+ set, we observe that only 14% (84 out of 600) of the poison
1489
+ is removed. Then we train a new model using the filtered
1490
+ training set. We find the ASR of the new model on the
1491
+
1492
+ PECAN: A Deterministic Certified Defense Against Backdoor Attacks
1493
+ Table 1. Results of PECAN, DPA, CROWN-IBP (C-IBP) and vanilla model without defense (NoDef) trained on three backdoored EMBER
1494
+ datasets. Malware with triggers is the backdoored test data that should be labeled as malware. Malware w/o triggers is the original test
1495
+ data that should be labeled as malware. Non-malware w/o triggers is the original test data that should be labeled as non-malware.
1496
+ Test sets
1497
+ Malware with triggers
1498
+ Malware w/o triggers
1499
+ Non-Malware w/o triggers
1500
+ Approaches
1501
+ PECAN
1502
+ DPA
1503
+ C-IBP
1504
+ NoDef PECAN
1505
+ DPA
1506
+ C-IBP
1507
+ NoDef PECAN
1508
+ DPA
1509
+ C-IBP
1510
+ NoDef
1511
+ �D1
1512
+ ASR. (↓)
1513
+ 2.38%
1514
+ 4.68%
1515
+ 2.72% 21.15%
1516
+ 1.27%
1517
+ 2.00%
1518
+ 2.10%
1519
+ 1.92%
1520
+ 6.48%
1521
+ 7.81%
1522
+ 9.41%
1523
+ 2.94%
1524
+ Correct Pred. (↑) 38.42% 33.57% 67.86% 78.85% 58.01% 64.34% 77.21% 98.08% 73.82% 79.29% 83.66% 97.06%
1525
+ Abstention Rate
1526
+ 59.20% 61.75% 29.42%
1527
+ N/A 40.72% 33.66% 20.69%
1528
+ N/A 19.70% 12.90%
1529
+ 6.93%
1530
+ N/A
1531
+ �D2
1532
+ ASR. (↓)
1533
+ 1.98% 24.61% 28.57% 41.17%
1534
+ 1.12%
1535
+ 1.96%
1536
+ 8.05%
1537
+ 2.16%
1538
+ 5.55%
1539
+ 7.83%
1540
+ 6.11%
1541
+ 2.64%
1542
+ Correct Pred. (↑) 29.33% 20.12% 34.78% 58.83% 44.62% 64.34% 65.01% 97.84% 65.95% 79.03% 90.68% 97.36%
1543
+ Abstention Rate
1544
+ 68.69% 55.27% 36.64%
1545
+ N/A 54.27% 33.70% 26.95%
1546
+ N/A 28.50% 13.14%
1547
+ 3.21%
1548
+ N/A
1549
+ �D3
1550
+ ASR. (↓)
1551
+ 1.19% 24.87% 14.42% 61.67%
1552
+ 0.71%
1553
+ 1.97% 10.32%
1554
+ 2.28%
1555
+ 5.16%
1556
+ 7.91%
1557
+ 4.51%
1558
+ 2.51%
1559
+ Correct Pred. (↑) 21.48% 19.59% 27.59% 38.33% 34.45% 64.58% 41.10% 97.72% 54.40% 78.96% 87.91% 97.49%
1560
+ Abstention Rate
1561
+ 77.33% 55.54% 57.99%
1562
+ N/A 64.84% 33.45% 48.58%
1563
+ N/A 40.44% 13.14%
1564
+ 7.59%
1565
+ N/A
1566
+
1567
+ D1 �
1568
+ D2 �
1569
+ D3
1570
+
1571
+ D1 �
1572
+ D2 �
1573
+ D3
1574
+
1575
+ D1 �
1576
+ D2 �
1577
+ D3
1578
+
1579
+ D1 �
1580
+ D2 �
1581
+ D3
1582
+ 0
1583
+ 20
1584
+ 40
1585
+ 60
1586
+ 80
1587
+ 100
1588
+ ASR
1589
+ Correct
1590
+ Abstain
1591
+ PECAN
1592
+ DPA
1593
+ C-IBP
1594
+ NoDef
1595
+ Figure 9. Results of PECAN, DPA, CROWN-IBP (C-IBP), and
1596
+ vanilla model without defense (NoDef) trained on three poisoned
1597
+ EMBER datasets when evaluated on the (original) non-malware
1598
+ test set without triggers.
1599
+ malware set with triggers, the malware set without triggers,
1600
+ and the non-malware set without triggers are 48.55%, 1.38%,
1601
+ and 8.91%, respectively. These ASRs are all higher than
1602
+ PECAN’s 1.19%, 0.71%, and 5.16% on the three parts of
1603
+ the test set.
1604
+ B.5. Comparison to DPA on �D1 and �D2
1605
+ Figures 10 and 11 show the comparison between PECAN
1606
+ and DPA on �D1 and �D2. We can observe that PECAN
1607
+ has much higher ASRs than DPA across all modification
1608
+ amounts on �D1 and �D2.
1609
+ 0
1610
+ 5 · 10−2
1611
+ 0.1
1612
+ 0
1613
+ 20
1614
+ 40
1615
+ 60
1616
+ 80
1617
+ 100
1618
+ Modification Amount R (%)
1619
+ Test Set Percentage
1620
+ 0
1621
+ 5 · 10−2
1622
+ 0.1
1623
+ Correct
1624
+ ASR
1625
+ Abstain
1626
+ (a) PECAN
1627
+ (b) DPA
1628
+ Figure 10. Comparison between PECAN and DPA trained on �D1
1629
+ across all modification amount R when evaluated on the malware
1630
+ test set with triggers.
1631
+ 0
1632
+ 5 · 10−2
1633
+ 0.1
1634
+ 0
1635
+ 20
1636
+ 40
1637
+ 60
1638
+ 80
1639
+ 100
1640
+ Modification Amount R (%)
1641
+ Test Set Percentage
1642
+ 0
1643
+ 5 · 10−2
1644
+ 0.1
1645
+ Correct
1646
+ ASR
1647
+ Abstain
1648
+ (a) PECAN
1649
+ (b) DPA
1650
+ Figure 11. Comparison between PECAN and DPA trained on �D2
1651
+ across all modification amount R when evaluated on the malware
1652
+ test set with triggers.
1653
+
M9FKT4oBgHgl3EQfeS7D/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
MNE1T4oBgHgl3EQfHAOD/content/2301.02921v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:87c68a1894f0d3674c804eec1ccb884ae23ae88dbb53278fea92135f3aeacf46
3
+ size 330578
MNE1T4oBgHgl3EQfHAOD/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c6f6b974362eadf4c39c5b1d0662a3f5d24492f4f08ee363083c53e60f01ba92
3
+ size 3670061
MNE1T4oBgHgl3EQfHAOD/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d4e5681746e28fb60bbc6f2b9f6d730cbe8ea63cd5e56154d2deadb161add075
3
+ size 147759