jackkuo commited on
Commit
c9f885f
·
verified ·
1 Parent(s): 267c778

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. -NE2T4oBgHgl3EQfmAfb/content/tmp_files/2301.03995v1.pdf.txt +591 -0
  2. -NE2T4oBgHgl3EQfmAfb/content/tmp_files/load_file.txt +371 -0
  3. .gitattributes +80 -0
  4. 0dE1T4oBgHgl3EQf4wVz/vector_store/index.faiss +3 -0
  5. 19FIT4oBgHgl3EQf4Su_/vector_store/index.pkl +3 -0
  6. 1NE4T4oBgHgl3EQfaAwh/content/2301.05060v1.pdf +3 -0
  7. 1NE4T4oBgHgl3EQfaAwh/vector_store/index.pkl +3 -0
  8. 2NFQT4oBgHgl3EQf2DZm/vector_store/index.faiss +3 -0
  9. 2dFLT4oBgHgl3EQfqy9t/content/tmp_files/2301.12141v1.pdf.txt +1037 -0
  10. 2dFLT4oBgHgl3EQfqy9t/content/tmp_files/load_file.txt +0 -0
  11. 2tFQT4oBgHgl3EQf2jaP/content/tmp_files/2301.13424v1.pdf.txt +1616 -0
  12. 2tFQT4oBgHgl3EQf2jaP/content/tmp_files/load_file.txt +0 -0
  13. 3dE1T4oBgHgl3EQfSQOU/content/tmp_files/2301.03064v1.pdf.txt +2226 -0
  14. 3dE1T4oBgHgl3EQfSQOU/content/tmp_files/load_file.txt +0 -0
  15. 3dFAT4oBgHgl3EQfERwH/content/2301.08420v1.pdf +3 -0
  16. 3dFAT4oBgHgl3EQfERwH/vector_store/index.pkl +3 -0
  17. 3tAyT4oBgHgl3EQfo_h3/vector_store/index.faiss +3 -0
  18. 3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf +3 -0
  19. 3tFLT4oBgHgl3EQfsC9L/vector_store/index.faiss +3 -0
  20. 3tFLT4oBgHgl3EQfsC9L/vector_store/index.pkl +3 -0
  21. 4NFST4oBgHgl3EQfZjjS/content/2301.13792v1.pdf +3 -0
  22. 4NFST4oBgHgl3EQfZjjS/vector_store/index.pkl +3 -0
  23. 5dE5T4oBgHgl3EQfPA60/vector_store/index.faiss +3 -0
  24. 5dFIT4oBgHgl3EQf7yth/content/2301.11399v1.pdf +3 -0
  25. 5tA0T4oBgHgl3EQfN_8L/content/2301.02153v1.pdf +3 -0
  26. 5tA0T4oBgHgl3EQfN_8L/vector_store/index.faiss +3 -0
  27. 5tA0T4oBgHgl3EQfN_8L/vector_store/index.pkl +3 -0
  28. 5tE4T4oBgHgl3EQfbwzK/content/2301.05078v1.pdf +3 -0
  29. 5tE4T4oBgHgl3EQfbwzK/vector_store/index.pkl +3 -0
  30. 79E1T4oBgHgl3EQfBwKM/content/2301.02856v1.pdf +3 -0
  31. 79E1T4oBgHgl3EQfBwKM/vector_store/index.faiss +3 -0
  32. 7NE0T4oBgHgl3EQfwAHH/content/tmp_files/2301.02627v1.pdf.txt +950 -0
  33. 7NE0T4oBgHgl3EQfwAHH/content/tmp_files/load_file.txt +0 -0
  34. 89FAT4oBgHgl3EQfpR2f/content/2301.08639v1.pdf +3 -0
  35. 8NE2T4oBgHgl3EQfPgby/content/2301.03761v1.pdf +3 -0
  36. 8NE3T4oBgHgl3EQfRwmH/content/2301.04425v1.pdf +3 -0
  37. 8NE3T4oBgHgl3EQfRwmH/vector_store/index.faiss +3 -0
  38. 8NE3T4oBgHgl3EQfRwmH/vector_store/index.pkl +3 -0
  39. 8NE5T4oBgHgl3EQfQg5R/content/2301.05513v1.pdf +3 -0
  40. 99E1T4oBgHgl3EQfoAS_/content/tmp_files/2301.03316v1.pdf.txt +0 -0
  41. 99E1T4oBgHgl3EQfoAS_/content/tmp_files/load_file.txt +0 -0
  42. A9E5T4oBgHgl3EQfSw_w/content/tmp_files/2301.05532v1.pdf.txt +0 -0
  43. A9E5T4oBgHgl3EQfSw_w/content/tmp_files/load_file.txt +0 -0
  44. ANE0T4oBgHgl3EQfxgKB/content/2301.02647v1.pdf +3 -0
  45. ANE0T4oBgHgl3EQfxgKB/vector_store/index.faiss +3 -0
  46. AdFKT4oBgHgl3EQfVy5o/content/tmp_files/2301.11789v1.pdf.txt +2462 -0
  47. AdFKT4oBgHgl3EQfVy5o/content/tmp_files/load_file.txt +0 -0
  48. AtE1T4oBgHgl3EQfVQTf/content/2301.03101v1.pdf +3 -0
  49. AtE1T4oBgHgl3EQfVQTf/vector_store/index.faiss +3 -0
  50. AtE1T4oBgHgl3EQfVQTf/vector_store/index.pkl +3 -0
-NE2T4oBgHgl3EQfmAfb/content/tmp_files/2301.03995v1.pdf.txt ADDED
@@ -0,0 +1,591 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Efficiently unquenching QCD+QED at O(𝜶)
2
+ Tim Harris,𝑎,∗ Vera Gülpers,𝑎 Antonin Portelli𝑎 and James Richings𝑎,𝑏
3
+ 𝑎School of Physics and Astronomy, University of Edinburgh,
4
+ Edinburgh EH9 3FD, United Kingdom
5
+ 𝑏EPCC, University of Edinburgh,
6
+ EH8 9BT, Edinburgh, United Kingdom
7
+ E-mail: tharris@ed.ac.uk
8
+ We outline a strategy to efficiently include the electromagnetic interactions of the sea quarks
9
+ in QCD+QED. When computing iso-spin breaking corrections to hadronic quantities at leading
10
+ order in the electromagnetic coupling, the sea-quark charges result in quark-line disconnected
11
+ diagrams which are challenging to compute precisely. An analysis of the variance of stochastic
12
+ estimators for the relevant traces of quark propagators helps us to improve the situation for certain
13
+ flavour combinations and space-time decompositions. We present preliminary numerical results
14
+ for the variances of the corresponding contributions using an ensemble of 𝑁f = 2 + 1 domain-wall
15
+ fermions generated by the RBC/UKQCD collaboration.
16
+ The 39th International Symposium on Lattice Field Theory (Lattice2022),
17
+ 8-13 August, 2022
18
+ Bonn, Germany
19
+ ∗Speaker
20
+ © Copyright owned by the author(s) under the terms of the Creative Commons
21
+ Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).
22
+ https://pos.sissa.it/
23
+ arXiv:2301.03995v1 [hep-lat] 10 Jan 2023
24
+
25
+ Efficiently unquenching QCD+QED at O(𝛼)
26
+ Tim Harris
27
+ 1.
28
+ Introduction
29
+ Several lattice QCD predictions which form important input for precision tests of the Standard
30
+ Model have uncertainties at or below the 1% level, for example the HVP contribution to (𝑔 − 2)𝜇,
31
+ 𝑓𝐾/ 𝑓𝜋, 𝑔A or the Wilson flow scale √𝑡0 to name a few [1, 2].
32
+ However, to further improve
33
+ such predictions, QCD with iso-spin symmetry is not a sufficiently accurate effective description
34
+ of the low-energy dynamics and QED, which contributes one source of iso-spin breaking due to
35
+ the different up- and down-quark electric charges, must be included. Recent efforts have been
36
+ successful at including iso-spin breaking corrections, and some of which fully account for the
37
+ effects of the sea-quark electric charges [3, 4, 5, 6, 7].
38
+ Nevertheless, many computations of
39
+ iso-spin breaking effects still neglect to incorporate these dynamical effects in an approximation
40
+ known as electroquenching. As the FLAG report notes in Section 3.1.2 [2], computations using the
41
+ electroquenched approximation might feature an uncontrolled systematic error.
42
+ In this work we aim to include the effects of the electric charge of the sea quarks in the
43
+ perturbative method known as the RM123 approach. This amounts to computing at least two
44
+ additional Wick contractions.
45
+ In order to sum the vertices in the resulting diagrams over the
46
+ lattice volume, some approximations must be used which often introduce additional fluctuations,
47
+ for example due to the auxiliary fields of a stochastic estimator. Here we investigate some simple
48
+ decompositions which may avoid large contributions to the variance, so that sufficiently precise
49
+ results can be obtained to systematically include all sources of iso-spin breaking without incurring
50
+ a large computational cost.
51
+ 2.
52
+ Sea-quark effects in the RM123 method
53
+ Due to the smallness of the fine-structure constant 𝛼 ∼ 1/137 and the renormalized light-
54
+ quark mass difference (𝑚R
55
+ u − 𝑚R
56
+ d )/Λ ∼ 1%, it is natural to expand physical observables (i.e. in
57
+ QCD+QED) in these parameters to compute iso-spin breaking corrections, as was first outlined in
58
+ Refs. [8, 9]. In the resulting expansion of an observable 𝑂
59
+ ⟨𝑂⟩ = ⟨𝑂⟩
60
+ ���
61
+ 𝑒=0 + 1
62
+ 2𝑒2� 𝜕
63
+ 𝜕𝑒
64
+ 𝜕
65
+ 𝜕𝑒 ⟨𝑂⟩
66
+
67
+ 𝑒=0 + . . .
68
+ (1)
69
+ the leading corrections in the electric charge 𝑒 =
70
+
71
+ 4𝜋𝛼 are parameterized in terms of the correlation
72
+ function
73
+ 𝜕
74
+ 𝜕𝑒
75
+ 𝜕
76
+ 𝜕𝑒 ⟨𝑂⟩ = (−i)2
77
+
78
+ d4𝑥
79
+
80
+ d4𝑦 ⟨𝐽𝜇(𝑥)𝐴𝜇(𝑥)𝐽𝜈(𝑦)𝐴𝜈(𝑦)𝑂⟩c
81
+ (2)
82
+ where the electromagnetic current for u, d, s quark flavours is defined
83
+ 𝐽𝜇 =
84
+ ∑︁
85
+ 𝑓 =u,d,s
86
+ 𝑄 𝑓 ¯𝜓 𝑓 𝛾𝜇𝜓 𝑓 ,
87
+ 𝑄u = 2
88
+ 3,
89
+ 𝑄d = 𝑄s = −1
90
+ 3.
91
+ (3)
92
+ By choosing the expansion point to be a theory with 𝛼 = 0 and iso-spin symmetry 𝑚u = 𝑚d,
93
+ only correlation functions in the 𝑁f = 2 + 1 theory need to be evaluated, which we denote with
94
+ 𝑒 = 0 in Eq. (1). The precise definition of such a theory using an additional set of renormalization
95
+ conditions is necessary to fix the meaning of the leading-order term on the right-hand side (and
96
+ 2
97
+
98
+ Efficiently unquenching QCD+QED at O(𝛼)
99
+ Tim Harris
100
+ 𝑊1
101
+ 𝑂
102
+ 𝑊2
103
+ 𝑂
104
+ 𝑊3
105
+ 𝑂
106
+ 𝑊4
107
+ 𝑂
108
+ Figure 1: Wick contractions which appear at leading order in the expansion of a hadronic observable 𝑂
109
+ in the electromagnetic coupling. Each closed fermion line has contributions from all of the quark flavours
110
+ u, d, s, . . . with the appropriate charge factors.
111
+ conversely the iso-spin breaking corrections themselves). Otherwise the predictions of QCD+QED
112
+ are unambiguously defined, up to its intrinsic accuracy, by fixing 𝑁f quark masses and the QCD
113
+ coupling as the electric coupling does not renormalize at this order. In the above, the ellipsis stands
114
+ for the mass counterterms which are needed to make physical predictions due to the contribution to
115
+ the quark self-energy induced by QED.
116
+ After integrating out the fermion and photon fields, the resulting Wick contractions 𝑊𝑖 are
117
+ shown in Fig. 1, which contribute to the derivative with respect to the electric charge through the
118
+ connected correlation function
119
+ 𝜕
120
+ 𝜕𝑒
121
+ 𝜕
122
+ 𝜕𝑒 ⟨𝑂⟩ =
123
+ 4
124
+ ∑︁
125
+ 𝑖=1
126
+ ⟨𝑂𝑊𝑖⟩c.
127
+ (4)
128
+ The first two subdiagrams, which arise soley from the electric charges of the sea quarks, can be
129
+ expressed in terms of a convolution with the photon propagator (in some fixed gauge) 𝐺 𝜇𝜈(𝑥) =
130
+ ⟨𝐴𝜇(𝑥)𝐴𝜈(0)⟩
131
+ 𝑊1,2 = −𝑎8 ∑︁
132
+ 𝑥,𝑦
133
+ 𝐻𝜇𝜈
134
+ 1,2(𝑥, 𝑦)𝐺 𝜇𝜈(𝑥 − 𝑦),
135
+ (5)
136
+ where 𝐻1,2 are the traces of quark propagators 𝑆 𝑓 (𝑥, 𝑦) = ⟨𝜓 𝑓 (𝑥) ¯𝜓 𝑓 (𝑦)⟩
137
+ 𝐻𝜇𝜈
138
+ 1 (𝑥, 𝑦) =
139
+ ∑︁
140
+ 𝑓 ,𝑔
141
+ 𝑄 𝑓 𝑄𝑔 tr{𝛾𝜇𝑆 𝑓 (𝑥, 𝑥)} tr{𝛾𝜈𝑆𝑔(𝑦, 𝑦)},
142
+ (6)
143
+ 𝐻𝜇𝜈
144
+ 2 (𝑥, 𝑦) = −
145
+ ∑︁
146
+ 𝑓
147
+ 𝑄2
148
+ 𝑓 tr{𝛾𝜇𝑆 𝑓 (𝑥, 𝑦)𝛾𝜈𝑆 𝑓 (𝑦, 𝑥)}.
149
+ (7)
150
+ These two diagrams are the main subject of these proceedings, and the techniques advocated for
151
+ the first can be effectively reused for the third diagram, 𝑊3. In the following sections we introduce
152
+ stochastic estimators only for the quark lines and compute the subdiagrams by convoluting with the
153
+ exact photon propagator which avoids introducing additional stochastic fields for the U(1) gauge
154
+ potential. The final diagram 𝑊4, which only contributes if the observable 𝑂 depends explicitly
155
+ on the (charged) fermion fields, is the only one surviving the electroquenched approximation, and,
156
+ can in most cases be computed efficiently provided that the leading-order diagram is already under
157
+ control.
158
+ 3
159
+
160
+ Efficiently unquenching QCD+QED at O(𝛼)
161
+ Tim Harris
162
+ We note that the variance of the contributions to the connected correlation functions on the
163
+ r.h.s. of Eq. (4) crudely factorizes
164
+ 𝜎2
165
+ 𝑂𝑊1,2 ≈ ⟨𝑂⟩2
166
+ c ⟨𝑊1,2⟩2
167
+ c + ⟨𝑂𝑊1,2⟩c
168
+ (8)
169
+ ≈ 𝜎2
170
+ 𝑂𝜎2
171
+ 𝑊1,2,
172
+ (9)
173
+ where in the first line we have made the Gaussian approximation, and in the second line we have
174
+ assumed that the fluctuations are much larger than the signal ⟨𝑂𝑊1,2⟩c. Thus, in the following
175
+ sections we will analyse the variance of individual subdiagrams 𝑊1,2 in order to gain a rough
176
+ insight into the fluctuations of the total correction, in a similar fashion to the analysis of Ref. [10].
177
+ In that case, however, the correction to the factorization of the variance is exponentially suppressed
178
+ in the separation between the vertices of the subdiagrams.
179
+ 3.
180
+ Quark-line disconnected subdiagram 𝑊1
181
+ We begin by noting that the hadronic part of the diagram factorizes into two traces,
182
+ 𝐻𝜇𝜈
183
+ 1 (𝑥, 𝑦) = 𝑇𝜇(𝑥)𝑇𝜈(𝑦),
184
+ (10)
185
+ each of which, with the current defined in Eq. (3) and in the 𝑁f = 2 + 1 theory with iso-spin
186
+ symmetry, is the difference of the light- and strange-quark propagators
187
+ 𝑇𝜇(𝑥) = 1
188
+ 3 tr{𝛾𝜇[𝑆ud(𝑥, 𝑥) − 𝑆s(𝑥, 𝑥)]}.
189
+ (11)
190
+ It is convenient to rewrite this difference as a product [10]
191
+ 𝑆ud − 𝑆s = (𝑚s − 𝑚ud)𝑆ud𝑆s
192
+ (12)
193
+ which makes the explicit suppression of 𝑇𝜇 in the SU(3)-symmetry breaking parameter 𝑚s − 𝑚ud
194
+ explicit. This additionally results in a suppression of the variance of 𝑊1 by (𝑚s − 𝑚ud)4. This
195
+ suppression results in a cancellation of a quartic short-distance divergence in the variance of the
196
+ contribution of each individual flavour to 𝑊1, explaining this favourable flavour combination.
197
+ While the identity in Eq. (12) is easily derived for Wilson-type fermions, here we sketch that
198
+ it holds exactly for the domain-wall fermion valence propagator 𝑆 𝑓 = ˜𝐷−1
199
+ 𝑓 which (approximately)
200
+ satisfies the Ginsparg-Wilson relation [11]. Recalling the definition of ˜𝐷 𝑓 in terms of the 5D
201
+ Wilson matrix 𝐷5, 𝑓 (see Ref. [12] for unexplained notation)
202
+ ˜𝐷−1
203
+ 𝑓 = (P−1𝐷−1
204
+ 5, 𝑓 𝑅5P)11,
205
+ (13)
206
+ where the matrix indices indicate the coordinate in the fifth dimension, the result is obtained
207
+ immediately from
208
+ ˜𝐷−1
209
+ ud − ˜𝐷−1
210
+ s
211
+ = (𝑚s − 𝑚ud)(P𝐷−1
212
+ 5,ud𝑅5𝐷−1
213
+ 5,s𝑅5)11
214
+ (14)
215
+ by noting that the following matrix projects on the physical boundary
216
+ (𝑅5)·· = (𝑅5P)·1(P−1)1·.
217
+ (15)
218
+ 4
219
+
220
+ Efficiently unquenching QCD+QED at O(𝛼)
221
+ Tim Harris
222
+ 𝐿/𝑎
223
+ 𝑇/𝑎
224
+ 𝑚 𝜋
225
+ 𝑚 𝜋𝐿
226
+ 𝑎
227
+ 𝑁cfg
228
+ 24
229
+ 64
230
+ 340 MeV
231
+ 4.9
232
+ 0.12 fm
233
+ 50
234
+ Table 1: The parameters of the C1 ensemble of 𝑁f = 2 + 1 Shamir domain-wall fermions used in the
235
+ numerical experiments in this work, see Ref. [17] for details.
236
+ The preceding identity is easily demonstrated using the explicit representations
237
+ 𝑅5 =
238
+ ���
239
+
240
+ 𝑃+
241
+ 𝑃−
242
+ ���
243
+
244
+ ,
245
+ P−1 =
246
+ ������
247
+
248
+ 𝑃−
249
+ 𝑃+
250
+ 𝑃+
251
+ ...
252
+ ...
253
+ 𝑃+
254
+ 𝑃−
255
+ ������
256
+
257
+ ,
258
+ (16)
259
+ where 𝑃± = 1 ± 𝛾5.
260
+ Using the identity for the difference, there are two independent estimators for the trace
261
+ Θ𝜇(𝑥) = 1
262
+ 3 (𝑚s − 𝑚ud) 1
263
+ 𝑁s
264
+ 𝑁s
265
+ ∑︁
266
+ 𝑖=1
267
+ 𝜂†
268
+ 𝑖 (𝑥)𝛾𝜇{𝑆ud𝑆s𝜂𝑖}(𝑥),
269
+ (17)
270
+ T𝜇(𝑥) = 1
271
+ 3 (𝑚s − 𝑚ud) 1
272
+ 𝑁s
273
+ 𝑁s
274
+ ∑︁
275
+ 𝑖=1
276
+ {𝜂†
277
+ 𝑖 𝑆s}(𝑥)𝛾𝜇{𝑆ud𝜂𝑖}(𝑥),
278
+ (18)
279
+ where the auxiliary quark fields 𝜂𝑖(𝑥) have zero mean and finite variance.
280
+ The properties of
281
+ both estimators were investigated in detail in Ref. [10], where it was shown that the contribution
282
+ to the variance from the auxiliary fields for the second split-even estimator was in the region of
283
+ a factor O(100) smaller than the first standard estimator, which translates into the same factor
284
+ reduction in the cost. The split-even estimator has since been used extensively for disconnected
285
+ current correlators [13, 14, 15], while in the context of the twisted-mass Wilson formulation similar
286
+ one-end trick estimators have often been employed for differences of twisted-mass propagators [16].
287
+ In this work we propose an estimator for the first diagram 𝑊1 using
288
+ W1 ≈
289
+
290
+ 𝑎4 ∑︁
291
+ 𝑥
292
+ T𝜇(𝑥)
293
+ � �
294
+ 𝑎4 ∑︁
295
+ 𝑦
296
+ T𝜈(𝑦)𝐺 𝜇𝜈(𝑥 − 𝑦)
297
+
298
+ (19)
299
+ where independent estimators are used for the two traces to avoid incurring a bias with a finite
300
+ sample size. The convolution in the second parentheses can be efficiently computed using the
301
+ Fast Fourier Transform (FFT). With a minor modification, an estimator using all possible unbiased
302
+ combinations of samples can be written at the cost of performing O(𝑁s) FFTs.
303
+ The standard
304
+ estimator is obtained by replacing both occurances of T𝜇 with Θ𝜇 in Eq. (19).
305
+ We performed an analysis of the variance for the standard and split-even estimators for W1
306
+ using the domain-wall ensemble generated by the RBC/UKQCD collaboration whose parameters
307
+ are listed in Tab. 1. The photon propagator is computed in the QED𝐿 formulation [18] in the
308
+ Feynman gauge. The results for the variances, which are dimensionless numbers, are shown in
309
+ Fig. 2. In addition, we plot the variance for the contribution of a single flavour Wu
310
+ 1 using the
311
+ 5
312
+
313
+ Efficiently unquenching QCD+QED at O(𝛼)
314
+ Tim Harris
315
+ 10−4
316
+ 10−3
317
+ 10−2
318
+ 10−1
319
+ 100
320
+ 101
321
+ 102
322
+ 103
323
+ 104
324
+ 105
325
+ 106
326
+ 107
327
+ 108
328
+ 109
329
+ 1
330
+ 10
331
+ 100
332
+ 1000
333
+ σ2
334
+ Ns
335
+ Wu
336
+ 1
337
+ Wuds
338
+ 1
339
+ (standard)
340
+ Wuds
341
+ 1
342
+ (split-even)
343
+ 1/N 2
344
+ s
345
+ Figure 2: Left: Comparison of the variance versus the number of sources for the 𝑊1 quark-line disconnected
346
+ diagram, using a single flavour (red squares), the standard estimator for u, d, s flavours (blue circles) and the
347
+ split-even estimator (green triangles). The dashed line shows 1/𝑁2
348
+ s scaling. In this figure, the (local) currents
349
+ are not renormalized and the charge factors are not included.
350
+ standard estimators for the traces. We note that all the variances are dominated by the fluctuations
351
+ of the auxiliary fields for small 𝑁s, and in particular scale like 1/𝑁2
352
+ s in that region.
353
+ As expected, the standard estimator including the light-quark and strange-quark contributions
354
+ (blue circles) is suppressed with respect to the contribution of a single flavour (red squares).
355
+ Furthermore, the variance of the split-even estimator (green triangles) is reduced by a factor of 104
356
+ with respect to the standard one (blue circles). This reduction is commensurate with the reduction
357
+ in the variance observed for the disconnected contribution to the current correlator [10], which
358
+ suggests the same mechanisms are present here. For 𝑁s ∼ 100, the variance is independent of
359
+ the number of auxiliary field samples which indicates that it is dominated by the fluctuations of
360
+ the gauge field. In this case no further variance reduction is possible for a fixed number of gauge
361
+ configurations. Finally we note that the convolution of the second parentheses of Eq. (19) can be
362
+ simply inserted sequentially in any of the diagrams of type 𝑊3.
363
+ 4.
364
+ Quark-line connected subdiagram 𝑊2
365
+ In contrast to the quark-line disconnected subdiagram, there is no cancellation in the variance
366
+ in the connected subdiagram 𝑊2 between the light and strange-quark contributions. In this case,
367
+ power counting suggests that the variance diverges with the lattice spacing like 𝑎−4 as 𝑎 → 0 and is
368
+ expected to be dominated by short-distance contributions. Translation averaging should therefore
369
+ be very effective and one way to implement it is to use an all-to-all estimator [19] for the quark
370
+ propagator
371
+ S 𝑓 (𝑥, 𝑥 + 𝑟) = 1
372
+ 𝑁s
373
+ 𝑁s
374
+ ∑︁
375
+ 𝑖=1
376
+ {𝑆 𝑓 𝜂𝑖}(𝑥)𝜂†
377
+ 𝑖 (𝑥 + 𝑟),
378
+ (20)
379
+ 6
380
+
381
+ Efficiently unquenching QCD+QED at O(𝛼)
382
+ Tim Harris
383
+ 10−7
384
+ 10−6
385
+ 10−5
386
+ 10−4
387
+ 10−3
388
+ 10−2
389
+ 10−1
390
+ 100
391
+ 101
392
+ 102
393
+ 103
394
+ 104
395
+ 105
396
+ 106
397
+ 107
398
+ 108
399
+ 109
400
+ 0
401
+ 2
402
+ 4
403
+ 6
404
+ 8
405
+ 10
406
+ 12
407
+ σ2
408
+ |r|/a
409
+ H2(r)G(r)
410
+ H2, Ns = 1
411
+ ¯H2, NX = 1
412
+ H2, Ns = ∞
413
+ 10−2
414
+ 10−1
415
+ 100
416
+ 101
417
+ 102
418
+ 103
419
+ 104
420
+ 105
421
+ 106
422
+ 1
423
+ 10
424
+ 100
425
+ 1000
426
+ σ2
427
+ Ninv
428
+ W2, R/a = 4
429
+
430
+ r≤R H2G
431
+
432
+ r>R ¯H2G
433
+ R = 0, Ns = ∞
434
+ Figure 3: Left: the variance for the stochastic estimator (red squares) and point source estimator (blue
435
+ circles) for the minimum number of inversions required, for the contribution with fixed separation between
436
+ the currents |𝑟|. The green triangle indicates the gauge variance for the point 𝑟 = 0. Right: the variance for
437
+ the short-distance (red squares) and long-distance (blue circles) for the choice 𝑅/𝑎 = 4, versus the number
438
+ of inversions. The green band indicates the gauge variance for the contribution from 𝑟 = 0 only. The dashed
439
+ lines indicate the expected leading 𝑁−2
440
+ inv and 𝑁−1
441
+ inv scaling for the short- and long-distance components.
442
+ using independent fields for each propagator in the trace
443
+ H 𝜇𝜈
444
+ 2
445
+ (𝑟) = 𝑎4 ∑︁
446
+ 𝑥
447
+ ∑︁
448
+ 𝑓
449
+ 𝑄2
450
+ 𝑓 tr{𝛾𝜇S 𝑓 (𝑥, 𝑥 + 𝑟)𝛾𝜈S 𝑓 (𝑥 + 𝑟, 𝑥)}.
451
+ (21)
452
+ As written, the estimator is feasible to compute for a small number of separations 𝑟 between the
453
+ vertices and, although it introduces a (mild) signal-to-noise ratio problem at large 𝑟, should be
454
+ efficient at small |𝑟| ≤ 𝑅 given the leading extra contribution vanishes like 𝑁−2
455
+ s , c.f. Sec. 3.
456
+ For the remainder |𝑟| > 𝑅, we propose using 𝑁𝑋 randomly selected point sources 𝑋𝑛 [20]
457
+ ¯𝐻𝜇𝜈
458
+ 2 (𝑟) = 𝐿3𝑇
459
+ 𝑁𝑋
460
+ 𝑁𝑋
461
+ ∑︁
462
+ 𝑛=1
463
+ 𝐻𝜇𝜈
464
+ 2 (𝑋𝑛, 𝑋𝑛 + 𝑟)
465
+ (22)
466
+ so that the total is split between short- and long-distance contributions
467
+ W2 = 𝑎4 ∑︁
468
+ |𝑟 |≤𝑅
469
+ H2(𝑟)𝐺 𝜇𝜈(𝑟) + 𝑎4 ∑︁
470
+ 𝑟>𝑅
471
+ ¯𝐻𝜇𝜈
472
+ 2 (𝑟)𝐺 𝜇𝜈(𝑟),
473
+ (23)
474
+ using the efficient stochastic estimator for the noisy short-distance contribution. Ref. [21] introduced
475
+ an importance sampling based on current separations for higher-point correlation functions, whereas
476
+ in this case we make the separation based on the expected contributions to the variance. This
477
+ approach avoids completely factorizing the trace which would require either O(𝑉) contractions or
478
+ O(𝑁2
479
+ s ) FFTs to include the photon line which we deemed unfeasible.
480
+ In Fig. 3 (left) we illustrate the variance of each of the terms in Eq. (23) for the sum over a
481
+ fixed separation |𝑟| between the currents, for the case 𝑁s = 𝑁𝑋 = 1. As expected, the variance
482
+ from the contribution around |𝑟| ∼ 0 dominates both the stochastic (red squares) and point source
483
+ estimator (blue circles), and we observe the mild signal-to-noise ratio problem in the stochastic
484
+ 7
485
+
486
+ Efficiently unquenching QCD+QED at O(𝛼)
487
+ Tim Harris
488
+ estimator. The green triangle denotes the gauge variance for the case 𝑟 = 0, which is approximately
489
+ suppressed by (𝐿3𝑇)/𝑎4 compared to 𝑁𝑋 = 1 indicating translation averaging is very effective for
490
+ the short-distance contribution. In the right-hand panel, we see variance of the short- and long-
491
+ distance contributions with the choice 𝑅/𝑎 = 4 as a function of the number of inversions (where
492
+ 𝑁𝑋 = 1 corresponds to 12 inversions). The variance is dominated by the short-distance contribution
493
+ (red squares) which however scales favourably like 𝑁−2
494
+ inv, while the long-distance contribution (blue
495
+ circles) which scales only like 𝑁−1
496
+ inv is much suppressed. Deviations from the former scaling indicate
497
+ that the gauge variance may be reached with just 𝑁inv ∼ 1000, which although is larger than required
498
+ for 𝑊1 is still achievable with modern computational resources, and universal for all observables.
499
+ 5.
500
+ Conclusions
501
+ In this work we have examined the Wick contractions which arise due to the charge of the
502
+ sea quarks in the RM123 method. Such diagrams contribute, in principle, even to observables
503
+ constructed from neutral fields and are therefore ubiquitous in the computation of iso-spin breaking
504
+ corrections. We have proposed stochastic estimators for the quark lines in such diagrams which
505
+ completely avoids the need to sample the Maxwell action stochastically, thus eliminating one
506
+ additional source of variance. As for the case of disconnected contributions to current correlators,
507
+ we have shown it is beneficial to consider certain flavour combinations which have greatly suppressed
508
+ fluctuations. We have shown that the split-even estimators generalize also to domain-wall fermions
509
+ and perform well compared with naïve estimators. Thus the frequency-splitting strategy of Ref. [10]
510
+ should generalize appropriately for this fermion formulation. In the second topology, however, there
511
+ is no cancellation of the short-distance effects in the variance by considering multiple flavours.
512
+ In this case, we propose decomposing the diagram into a short-distance part to be estimated
513
+ stochastically and a long-distance part estimated using position-space sampling. The variance is
514
+ reduced sufficiently so that the gauge variance can be reached with a reasonable computational cost.
515
+ Given their short-distance nature, these estimators should also succeed with smaller quark masses,
516
+ and furthermore as the diagrams are universal to all iso-spin breaking corrections we anticipate
517
+ that these simple decompositions ought to be beneficial in large-scale simulations. In particular we
518
+ are developing these methods for refinements of our computations of iso-spin breaking corrections
519
+ within the RBC/UKQCD collaboration, for example to meson (leptonic) decay rates [22, 23].
520
+ Acknowledgments
521
+ We use the open-source and free software Grid as the data parallel C++ library
522
+ for the lattice computations [24]. The authors warmly thank the members of the RBC/UKQCD
523
+ collaboration for valuable discussions and the use of ensembles of gauge configurations. T.H., A.P.
524
+ and V.G. are supported in part by UK STFC 1039 grant ST/P000630/1. A.P. and V.G. received
525
+ funding from the European Research Council (ERC) under the European Union’s Horizon 2020
526
+ research and innovation programme under grant agreement No 757646 and A.P. additionally under
527
+ grant agreement No 813942. This work used the DiRAC Extreme Scaling service at the University
528
+ of Edinburgh, operated by the Edinburgh Parallel Computing Centre on behalf of the STFC DiRAC
529
+ HPC Facility (www.dirac.ac.uk). This equipment was funded by BEIS capital funding via STFC
530
+ capital grant ST/R00238X/1 and STFC DiRAC Operations grant ST/R001006/1. DiRAC is part of
531
+ the National e-Infrastructure.
532
+ 8
533
+
534
+ Efficiently unquenching QCD+QED at O(𝛼)
535
+ Tim Harris
536
+ References
537
+ [1]
538
+ T. Aoyama et al. In: Phys. Rept. 887 (2020), pp. 1–166. arXiv: 2006.04822 [hep-ph].
539
+ [2]
540
+ Y. Aoki et al. In: Eur. Phys. J. C 82.10 (2022), p. 869. arXiv: 2111.09849 [hep-lat].
541
+ [3]
542
+ S. Aoki et al. In: Phys. Rev. D 86 (2012), p. 034507. arXiv: 1205.2961 [hep-lat].
543
+ [4]
544
+ T. Ishikawa et al. In: Phys. Rev. Lett. 109 (7 Aug. 2012), p. 072002.
545
+ [5]
546
+ R. Horsley et al. In: J. Phys. G 46 (2019), p. 115004. arXiv: 1904.02304 [hep-lat].
547
+ [6]
548
+ L. Bushnaq et al. In: (Sept. 2022). arXiv: 2209.13183 [hep-lat].
549
+ [7]
550
+ S. Borsanyi et al. In: Nature 593.7857 (2021), pp. 51–55. arXiv: 2002.12347 [hep-lat].
551
+ [8]
552
+ G. M. de Divitiis et al. In: JHEP 04 (2012), p. 124. arXiv: 1110.6294 [hep-lat].
553
+ [9]
554
+ G. M. de Divitiis et al. In: Phys. Rev. D 87.11 (2013), p. 114505. arXiv: 1303.4896
555
+ [hep-lat].
556
+ [10]
557
+ L. Giusti et al. In: Eur. Phys. J. C 79.7 (2019), p. 586. arXiv: 1903.10447 [hep-lat].
558
+ [11]
559
+ S. Capitani et al. In: Nucl. Phys. B 593 (2001), pp. 183–228. arXiv: hep-lat/0007004.
560
+ [12]
561
+ T. Blum et al. In: Phys. Rev. D 93.7 (2016), p. 074505. arXiv: 1411.7017 [hep-lat].
562
+ [13]
563
+ T. San José et al. In: JHEP 08 (2022), p. 220. arXiv: 2203.08676 [hep-lat].
564
+ [14]
565
+ E.-H. Chao et al. In: Eur. Phys. J. C 81.7 (2021), p. 651. arXiv: 2104.02632 [hep-lat].
566
+ [15]
567
+ M. Salg et al. In: 39th International Symposium on Lattice Field Theory. Nov. 2022. arXiv:
568
+ 2211.17049 [hep-lat].
569
+ [16]
570
+ P. Boucaud et al. In: Comput. Phys. Commun. 179 (2008), pp. 695–715. arXiv: 0803.0224
571
+ [hep-lat].
572
+ [17]
573
+ C. Allton et al. In: Phys. Rev. D 78 (2008), p. 114509. arXiv: 0804.0473 [hep-lat].
574
+ [18]
575
+ M. Hayakawa and S. Uno. In: Prog. Theor. Phys. 120 (2008), pp. 413–441. arXiv: 0804.2044
576
+ [hep-ph].
577
+ [19]
578
+ G. M. de Divitiis et al. In: Phys. Lett. B 382 (1996), pp. 393–397. arXiv: hep-lat/9603020.
579
+ [20]
580
+ Y. Li et al. In: Phys. Rev. D 103.1 (2021), p. 014514. arXiv: 2009.01029 [hep-lat].
581
+ [21]
582
+ T. Blum et al. In: Phys. Rev. Lett. 124.13 (2020), p. 132002. arXiv: 1911.08123 [hep-lat].
583
+ [22]
584
+ P. Boyle et al. In: (Nov. 2022). arXiv: 2211.12865 [hep-lat].
585
+ [23]
586
+ P. Boyle et al. In: 39th International Symposium on Lattice Field Theory. Dec. 2022. arXiv:
587
+ 2212.04709 [hep-lat].
588
+ [24]
589
+ P. A. Boyle et al. In: PoS LATTICE2015 (2016), p. 023.
590
+ 9
591
+
-NE2T4oBgHgl3EQfmAfb/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,371 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf,len=370
2
+ page_content='Efficiently unquenching QCD+QED at O(𝜶) Tim Harris,𝑎,∗ Vera Gülpers,𝑎 Antonin Portelli𝑎 and James Richings𝑎,𝑏 𝑎School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom 𝑏EPCC, University of Edinburgh, EH8 9BT, Edinburgh, United Kingdom E-mail: tharris@ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
3
+ page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
4
+ page_content='uk We outline a strategy to efficiently include the electromagnetic interactions of the sea quarks in QCD+QED.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
5
+ page_content=' When computing iso-spin breaking corrections to hadronic quantities at leading order in the electromagnetic coupling, the sea-quark charges result in quark-line disconnected diagrams which are challenging to compute precisely.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
6
+ page_content=' An analysis of the variance of stochastic estimators for the relevant traces of quark propagators helps us to improve the situation for certain flavour combinations and space-time decompositions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
7
+ page_content=' We present preliminary numerical results for the variances of the corresponding contributions using an ensemble of 𝑁f = 2 + 1 domain-wall fermions generated by the RBC/UKQCD collaboration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
8
+ page_content=' The 39th International Symposium on Lattice Field Theory (Lattice2022), 8-13 August, 2022 Bonn, Germany ∗Speaker © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
9
+ page_content='0 International License (CC BY-NC-ND 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
10
+ page_content='0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
11
+ page_content=' https://pos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
12
+ page_content='sissa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
13
+ page_content='it/ arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
14
+ page_content='03995v1 [hep-lat] 10 Jan 2023 Efficiently unquenching QCD+QED at O(𝛼) Tim Harris 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
15
+ page_content=' Introduction Several lattice QCD predictions which form important input for precision tests of the Standard Model have uncertainties at or below the 1% level, for example the HVP contribution to (𝑔 − 2)𝜇, 𝑓𝐾/ 𝑓𝜋, 𝑔A or the Wilson flow scale √𝑡0 to name a few [1, 2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
16
+ page_content=' However, to further improve such predictions, QCD with iso-spin symmetry is not a sufficiently accurate effective description of the low-energy dynamics and QED, which contributes one source of iso-spin breaking due to the different up- and down-quark electric charges, must be included.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
17
+ page_content=' Recent efforts have been successful at including iso-spin breaking corrections, and some of which fully account for the effects of the sea-quark electric charges [3, 4, 5, 6, 7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
18
+ page_content=' Nevertheless, many computations of iso-spin breaking effects still neglect to incorporate these dynamical effects in an approximation known as electroquenching.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
19
+ page_content=' As the FLAG report notes in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
20
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
21
+ page_content='2 [2], computations using the electroquenched approximation might feature an uncontrolled systematic error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
22
+ page_content=' In this work we aim to include the effects of the electric charge of the sea quarks in the perturbative method known as the RM123 approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
23
+ page_content=' This amounts to computing at least two additional Wick contractions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
24
+ page_content=' In order to sum the vertices in the resulting diagrams over the lattice volume, some approximations must be used which often introduce additional fluctuations, for example due to the auxiliary fields of a stochastic estimator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
25
+ page_content=' Here we investigate some simple decompositions which may avoid large contributions to the variance, so that sufficiently precise results can be obtained to systematically include all sources of iso-spin breaking without incurring a large computational cost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
26
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
27
+ page_content=' Sea-quark effects in the RM123 method Due to the smallness of the fine-structure constant 𝛼 ∼ 1/137 and the renormalized light- quark mass difference (𝑚R u − 𝑚R d )/Λ ∼ 1%, it is natural to expand physical observables (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
28
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
29
+ page_content=' in QCD+QED) in these parameters to compute iso-spin breaking corrections, as was first outlined in Refs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
30
+ page_content=' [8, 9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
31
+ page_content=' In the resulting expansion of an observable 𝑂 ⟨𝑂⟩ = ⟨𝑂⟩ ��� 𝑒=0 + 1 2𝑒2� 𝜕 𝜕𝑒 𝜕 𝜕𝑒 ⟨𝑂⟩ � 𝑒=0 + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
32
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
33
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
34
+ page_content=' (1) the leading corrections in the electric charge 𝑒 = √ 4𝜋𝛼 are parameterized in terms of the correlation function 𝜕 𝜕𝑒 𝜕 𝜕𝑒 ⟨𝑂⟩ = (−i)2 ∫ d4𝑥 ∫ d4𝑦 ⟨𝐽𝜇(𝑥)𝐴𝜇(𝑥)𝐽𝜈(𝑦)𝐴𝜈(𝑦)𝑂⟩c (2) where the electromagnetic current for u, d, s quark flavours is defined 𝐽𝜇 = ∑︁ 𝑓 =u,d,s 𝑄 𝑓 ¯𝜓 𝑓 𝛾𝜇𝜓 𝑓 , 𝑄u = 2 3, 𝑄d = 𝑄s = −1 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
35
+ page_content=' (3) By choosing the expansion point to be a theory with 𝛼 = 0 and iso-spin symmetry 𝑚u = 𝑚d, only correlation functions in the 𝑁f = 2 + 1 theory need to be evaluated, which we denote with 𝑒 = 0 in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
36
+ page_content=' (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
37
+ page_content=' The precise definition of such a theory using an additional set of renormalization conditions is necessary to fix the meaning of the leading-order term on the right-hand side (and 2 Efficiently unquenching QCD+QED at O(𝛼) Tim Harris 𝑊1 𝑂 𝑊2 𝑂 𝑊3 𝑂 𝑊4 𝑂 Figure 1: Wick contractions which appear at leading order in the expansion of a hadronic observable 𝑂 in the electromagnetic coupling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
38
+ page_content=' Each closed fermion line has contributions from all of the quark flavours u, d, s, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
39
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
40
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
41
+ page_content=' with the appropriate charge factors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
42
+ page_content=' conversely the iso-spin breaking corrections themselves).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
43
+ page_content=' Otherwise the predictions of QCD+QED are unambiguously defined, up to its intrinsic accuracy, by fixing 𝑁f quark masses and the QCD coupling as the electric coupling does not renormalize at this order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
44
+ page_content=' In the above, the ellipsis stands for the mass counterterms which are needed to make physical predictions due to the contribution to the quark self-energy induced by QED.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
45
+ page_content=' After integrating out the fermion and photon fields, the resulting Wick contractions 𝑊𝑖 are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
46
+ page_content=' 1, which contribute to the derivative with respect to the electric charge through the connected correlation function 𝜕 𝜕𝑒 𝜕 𝜕𝑒 ⟨𝑂⟩ = 4 ∑︁ 𝑖=1 ⟨𝑂𝑊𝑖⟩c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
47
+ page_content=' (4) The first two subdiagrams, which arise soley from the electric charges of the sea quarks, can be expressed in terms of a convolution with the photon propagator (in some fixed gauge) 𝐺 𝜇𝜈(𝑥) = ⟨𝐴𝜇(𝑥)𝐴𝜈(0)⟩ 𝑊1,2 = −𝑎8 ∑︁ 𝑥,𝑦 𝐻𝜇𝜈 1,2(𝑥, 𝑦)𝐺 𝜇𝜈(𝑥 − 𝑦), (5) where 𝐻1,2 are the traces of quark propagators 𝑆 𝑓 (𝑥, 𝑦) = ⟨𝜓 𝑓 (𝑥) ¯𝜓 𝑓 (𝑦)⟩ 𝐻𝜇𝜈 1 (𝑥, 𝑦) = ∑︁ 𝑓 ,𝑔 𝑄 𝑓 𝑄𝑔 tr{𝛾𝜇𝑆 𝑓 (𝑥, 𝑥)} tr{𝛾𝜈𝑆𝑔(𝑦, 𝑦)}, (6) 𝐻𝜇𝜈 2 (𝑥, 𝑦) = − ∑︁ 𝑓 𝑄2 𝑓 tr{𝛾𝜇𝑆 𝑓 (𝑥, 𝑦)𝛾𝜈𝑆 𝑓 (𝑦, 𝑥)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
48
+ page_content=' (7) These two diagrams are the main subject of these proceedings, and the techniques advocated for the first can be effectively reused for the third diagram, 𝑊3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
49
+ page_content=' In the following sections we introduce stochastic estimators only for the quark lines and compute the subdiagrams by convoluting with the exact photon propagator which avoids introducing additional stochastic fields for the U(1) gauge potential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
50
+ page_content=' The final diagram 𝑊4, which only contributes if the observable 𝑂 depends explicitly on the (charged) fermion fields, is the only one surviving the electroquenched approximation, and, can in most cases be computed efficiently provided that the leading-order diagram is already under control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
51
+ page_content=' 3 Efficiently unquenching QCD+QED at O(𝛼) Tim Harris We note that the variance of the contributions to the connected correlation functions on the r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
52
+ page_content='h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
53
+ page_content='s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
54
+ page_content=' of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
55
+ page_content=' (4) crudely factorizes 𝜎2 𝑂𝑊1,2 ≈ ⟨𝑂⟩2 c ⟨𝑊1,2⟩2 c + ⟨𝑂𝑊1,2⟩c (8) ≈ 𝜎2 𝑂𝜎2 𝑊1,2, (9) where in the first line we have made the Gaussian approximation, and in the second line we have assumed that the fluctuations are much larger than the signal ⟨𝑂𝑊1,2⟩c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
56
+ page_content=' Thus, in the following sections we will analyse the variance of individual subdiagrams 𝑊1,2 in order to gain a rough insight into the fluctuations of the total correction, in a similar fashion to the analysis of Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
57
+ page_content=' [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
58
+ page_content=' In that case, however, the correction to the factorization of the variance is exponentially suppressed in the separation between the vertices of the subdiagrams.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
59
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
60
+ page_content=' Quark-line disconnected subdiagram 𝑊1 We begin by noting that the hadronic part of the diagram factorizes into two traces, 𝐻𝜇𝜈 1 (𝑥, 𝑦) = 𝑇𝜇(𝑥)𝑇𝜈(𝑦), (10) each of which, with the current defined in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
61
+ page_content=' (3) and in the 𝑁f = 2 + 1 theory with iso-spin symmetry, is the difference of the light- and strange-quark propagators 𝑇𝜇(𝑥) = 1 3 tr{𝛾𝜇[𝑆ud(𝑥, 𝑥) − 𝑆s(𝑥, 𝑥)]}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
62
+ page_content=' (11) It is convenient to rewrite this difference as a product [10] 𝑆ud − 𝑆s = (𝑚s − 𝑚ud)𝑆ud𝑆s (12) which makes the explicit suppression of 𝑇𝜇 in the SU(3)-symmetry breaking parameter 𝑚s − 𝑚ud explicit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
63
+ page_content=' This additionally results in a suppression of the variance of 𝑊1 by (𝑚s − 𝑚ud)4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
64
+ page_content=' This suppression results in a cancellation of a quartic short-distance divergence in the variance of the contribution of each individual flavour to 𝑊1, explaining this favourable flavour combination.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
65
+ page_content=' While the identity in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
66
+ page_content=' (12) is easily derived for Wilson-type fermions, here we sketch that it holds exactly for the domain-wall fermion valence propagator 𝑆 𝑓 = ˜𝐷−1 𝑓 which (approximately) satisfies the Ginsparg-Wilson relation [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
67
+ page_content=' Recalling the definition of ˜𝐷 𝑓 in terms of the 5D Wilson matrix 𝐷5, 𝑓 (see Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
68
+ page_content=' [12] for unexplained notation) ˜𝐷−1 𝑓 = (P−1𝐷−1 5, 𝑓 𝑅5P)11, (13) where the matrix indices indicate the coordinate in the fifth dimension, the result is obtained immediately from ˜𝐷−1 ud − ˜𝐷−1 s = (𝑚s − 𝑚ud)(P𝐷−1 5,ud𝑅5𝐷−1 5,s𝑅5)11 (14) by noting that the following matrix projects on the physical boundary (𝑅5)·· = (𝑅5P)·1(P−1)1·.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
69
+ page_content=' (15) 4 Efficiently unquenching QCD+QED at O(𝛼) Tim Harris 𝐿/𝑎 𝑇/𝑎 𝑚 𝜋 𝑚 𝜋𝐿 𝑎 𝑁cfg 24 64 340 MeV 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
70
+ page_content='9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
71
+ page_content='12 fm 50 Table 1: The parameters of the C1 ensemble of 𝑁f = 2 + 1 Shamir domain-wall fermions used in the numerical experiments in this work, see Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
72
+ page_content=' [17] for details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
73
+ page_content=' The preceding identity is easily demonstrated using the explicit representations 𝑅5 = ��� � 𝑃+ 𝑃− ��� � , P−1 = ������ � 𝑃− 𝑃+ 𝑃+ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
74
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
75
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
76
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
77
+ page_content=' 𝑃+ 𝑃− ������ � , (16) where 𝑃± = 1 ± 𝛾5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
78
+ page_content=' Using the identity for the difference, there are two independent estimators for the trace Θ𝜇(𝑥) = 1 3 (𝑚s − 𝑚ud) 1 𝑁s 𝑁s ∑︁ 𝑖=1 𝜂† 𝑖 (𝑥)𝛾𝜇{𝑆ud𝑆s𝜂𝑖}(𝑥), (17) T𝜇(𝑥) = 1 3 (𝑚s − 𝑚ud) 1 𝑁s 𝑁s ∑︁ 𝑖=1 {𝜂† 𝑖 𝑆s}(𝑥)𝛾𝜇{𝑆ud𝜂𝑖}(𝑥), (18) where the auxiliary quark fields 𝜂𝑖(𝑥) have zero mean and finite variance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
79
+ page_content=' The properties of both estimators were investigated in detail in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
80
+ page_content=' [10], where it was shown that the contribution to the variance from the auxiliary fields for the second split-even estimator was in the region of a factor O(100) smaller than the first standard estimator, which translates into the same factor reduction in the cost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
81
+ page_content=' The split-even estimator has since been used extensively for disconnected current correlators [13, 14, 15], while in the context of the twisted-mass Wilson formulation similar one-end trick estimators have often been employed for differences of twisted-mass propagators [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
82
+ page_content=' In this work we propose an estimator for the first diagram 𝑊1 using W1 ≈ � 𝑎4 ∑︁ 𝑥 T𝜇(𝑥) � � 𝑎4 ∑︁ 𝑦 T𝜈(𝑦)𝐺 𝜇𝜈(𝑥 − 𝑦) � (19) where independent estimators are used for the two traces to avoid incurring a bias with a finite sample size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
83
+ page_content=' The convolution in the second parentheses can be efficiently computed using the Fast Fourier Transform (FFT).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
84
+ page_content=' With a minor modification, an estimator using all possible unbiased combinations of samples can be written at the cost of performing O(𝑁s) FFTs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
85
+ page_content=' The standard estimator is obtained by replacing both occurances of T𝜇 with Θ𝜇 in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
86
+ page_content=' (19).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
87
+ page_content=' We performed an analysis of the variance for the standard and split-even estimators for W1 using the domain-wall ensemble generated by the RBC/UKQCD collaboration whose parameters are listed in Tab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
88
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
89
+ page_content=' The photon propagator is computed in the QED𝐿 formulation [18] in the Feynman gauge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
90
+ page_content=' The results for the variances, which are dimensionless numbers, are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
91
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
92
+ page_content=' In addition,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
93
+ page_content=' we plot the variance for the contribution of a single flavour Wu 1 using the 5 Efficiently unquenching QCD+QED at O(𝛼) Tim Harris 10−4 10−3 10−2 10−1 100 101 102 103 104 105 106 107 108 109 1 10 100 1000 σ2 Ns Wu 1 Wuds 1 (standard) Wuds 1 (split-even) 1/N 2 s Figure 2: Left: Comparison of the variance versus the number of sources for the 𝑊1 quark-line disconnected diagram,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
94
+ page_content=' using a single flavour (red squares),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
95
+ page_content=' the standard estimator for u,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
96
+ page_content=' d,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
97
+ page_content=' s flavours (blue circles) and the split-even estimator (green triangles).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
98
+ page_content=' The dashed line shows 1/𝑁2 s scaling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
99
+ page_content=' In this figure, the (local) currents are not renormalized and the charge factors are not included.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
100
+ page_content=' standard estimators for the traces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
101
+ page_content=' We note that all the variances are dominated by the fluctuations of the auxiliary fields for small 𝑁s, and in particular scale like 1/𝑁2 s in that region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
102
+ page_content=' As expected, the standard estimator including the light-quark and strange-quark contributions (blue circles) is suppressed with respect to the contribution of a single flavour (red squares).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
103
+ page_content=' Furthermore, the variance of the split-even estimator (green triangles) is reduced by a factor of 104 with respect to the standard one (blue circles).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
104
+ page_content=' This reduction is commensurate with the reduction in the variance observed for the disconnected contribution to the current correlator [10], which suggests the same mechanisms are present here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
105
+ page_content=' For 𝑁s ∼ 100, the variance is independent of the number of auxiliary field samples which indicates that it is dominated by the fluctuations of the gauge field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
106
+ page_content=' In this case no further variance reduction is possible for a fixed number of gauge configurations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
107
+ page_content=' Finally we note that the convolution of the second parentheses of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
108
+ page_content=' (19) can be simply inserted sequentially in any of the diagrams of type 𝑊3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
109
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
110
+ page_content=' Quark-line connected subdiagram 𝑊2 In contrast to the quark-line disconnected subdiagram, there is no cancellation in the variance in the connected subdiagram 𝑊2 between the light and strange-quark contributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
111
+ page_content=' In this case, power counting suggests that the variance diverges with the lattice spacing like 𝑎−4 as 𝑎 → 0 and is expected to be dominated by short-distance contributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
112
+ page_content=' Translation averaging should therefore be very effective and one way to implement it is to use an all-to-all estimator [19] for the quark propagator S 𝑓 (𝑥,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
113
+ page_content=' 𝑥 + 𝑟) = 1 𝑁s 𝑁s ∑︁ 𝑖=1 {𝑆 𝑓 𝜂𝑖}(𝑥)𝜂† 𝑖 (𝑥 + 𝑟),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
114
+ page_content=' (20) 6 Efficiently unquenching QCD+QED at O(𝛼) Tim Harris 10−7 10−6 10−5 10−4 10−3 10−2 10−1 100 101 102 103 104 105 106 107 108 109 0 2 4 6 8 10 12 σ2 |r|/a H2(r)G(r) H2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
115
+ page_content=' Ns = 1 ¯H2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
116
+ page_content=' NX = 1 H2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
117
+ page_content=' Ns = ∞ 10−2 10−1 100 101 102 103 104 105 106 1 10 100 1000 σ2 Ninv W2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
118
+ page_content=' R/a = 4 � r≤R H2G � r>R ¯H2G R = 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
119
+ page_content=' Ns = ∞ Figure 3: Left: the variance for the stochastic estimator (red squares) and point source estimator (blue circles) for the minimum number of inversions required,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
120
+ page_content=' for the contribution with fixed separation between the currents |𝑟|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
121
+ page_content=' The green triangle indicates the gauge variance for the point 𝑟 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
122
+ page_content=' Right: the variance for the short-distance (red squares) and long-distance (blue circles) for the choice 𝑅/𝑎 = 4, versus the number of inversions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
123
+ page_content=' The green band indicates the gauge variance for the contribution from 𝑟 = 0 only.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
124
+ page_content=' The dashed lines indicate the expected leading 𝑁−2 inv and 𝑁−1 inv scaling for the short- and long-distance components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
125
+ page_content=' using independent fields for each propagator in the trace H 𝜇𝜈 2 (𝑟) = 𝑎4 ∑︁ 𝑥 ∑︁ 𝑓 𝑄2 𝑓 tr{𝛾𝜇S 𝑓 (𝑥, 𝑥 + 𝑟)𝛾𝜈S 𝑓 (𝑥 + 𝑟, 𝑥)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
126
+ page_content=' (21) As written, the estimator is feasible to compute for a small number of separations 𝑟 between the vertices and, although it introduces a (mild) signal-to-noise ratio problem at large 𝑟, should be efficient at small |𝑟| ≤ 𝑅 given the leading extra contribution vanishes like 𝑁−2 s , c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
127
+ page_content='f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
128
+ page_content=' Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
129
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
130
+ page_content=' For the remainder |𝑟| > 𝑅, we propose using 𝑁𝑋 randomly selected point sources 𝑋𝑛 [20] ¯𝐻𝜇𝜈 2 (𝑟) = 𝐿3𝑇 𝑁𝑋 𝑁𝑋 ∑︁ 𝑛=1 𝐻𝜇𝜈 2 (𝑋𝑛, 𝑋𝑛 + 𝑟) (22) so that the total is split between short- and long-distance contributions W2 = 𝑎4 ∑︁ |𝑟 |≤𝑅 H2(𝑟)𝐺 𝜇𝜈(𝑟) + 𝑎4 ∑︁ 𝑟>𝑅 ¯𝐻𝜇𝜈 2 (𝑟)𝐺 𝜇𝜈(𝑟), (23) using the efficient stochastic estimator for the noisy short-distance contribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
131
+ page_content=' Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
132
+ page_content=' [21] introduced an importance sampling based on current separations for higher-point correlation functions, whereas in this case we make the separation based on the expected contributions to the variance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
133
+ page_content=' This approach avoids completely factorizing the trace which would require either O(𝑉) contractions or O(𝑁2 s ) FFTs to include the photon line which we deemed unfeasible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
134
+ page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
135
+ page_content=' 3 (left) we illustrate the variance of each of the terms in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
136
+ page_content=' (23) for the sum over a fixed separation |𝑟| between the currents, for the case 𝑁s = 𝑁𝑋 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
137
+ page_content=' As expected, the variance from the contribution around |𝑟| ∼ 0 dominates both the stochastic (red squares) and point source estimator (blue circles), and we observe the mild signal-to-noise ratio problem in the stochastic 7 Efficiently unquenching QCD+QED at O(𝛼) Tim Harris estimator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
138
+ page_content=' The green triangle denotes the gauge variance for the case 𝑟 = 0, which is approximately suppressed by (𝐿3𝑇)/𝑎4 compared to 𝑁𝑋 = 1 indicating translation averaging is very effective for the short-distance contribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
139
+ page_content=' In the right-hand panel, we see variance of the short- and long- distance contributions with the choice 𝑅/𝑎 = 4 as a function of the number of inversions (where 𝑁𝑋 = 1 corresponds to 12 inversions).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
140
+ page_content=' The variance is dominated by the short-distance contribution (red squares) which however scales favourably like 𝑁−2 inv, while the long-distance contribution (blue circles) which scales only like 𝑁−1 inv is much suppressed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
141
+ page_content=' Deviations from the former scaling indicate that the gauge variance may be reached with just 𝑁inv ∼ 1000, which although is larger than required for 𝑊1 is still achievable with modern computational resources, and universal for all observables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
142
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
143
+ page_content=' Conclusions In this work we have examined the Wick contractions which arise due to the charge of the sea quarks in the RM123 method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
144
+ page_content=' Such diagrams contribute, in principle, even to observables constructed from neutral fields and are therefore ubiquitous in the computation of iso-spin breaking corrections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
145
+ page_content=' We have proposed stochastic estimators for the quark lines in such diagrams which completely avoids the need to sample the Maxwell action stochastically, thus eliminating one additional source of variance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
146
+ page_content=' As for the case of disconnected contributions to current correlators, we have shown it is beneficial to consider certain flavour combinations which have greatly suppressed fluctuations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
147
+ page_content=' We have shown that the split-even estimators generalize also to domain-wall fermions and perform well compared with naïve estimators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
148
+ page_content=' Thus the frequency-splitting strategy of Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
149
+ page_content=' [10] should generalize appropriately for this fermion formulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
150
+ page_content=' In the second topology, however, there is no cancellation of the short-distance effects in the variance by considering multiple flavours.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
151
+ page_content=' In this case, we propose decomposing the diagram into a short-distance part to be estimated stochastically and a long-distance part estimated using position-space sampling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
152
+ page_content=' The variance is reduced sufficiently so that the gauge variance can be reached with a reasonable computational cost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
153
+ page_content=' Given their short-distance nature, these estimators should also succeed with smaller quark masses, and furthermore as the diagrams are universal to all iso-spin breaking corrections we anticipate that these simple decompositions ought to be beneficial in large-scale simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
154
+ page_content=' In particular we are developing these methods for refinements of our computations of iso-spin breaking corrections within the RBC/UKQCD collaboration, for example to meson (leptonic) decay rates [22, 23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
155
+ page_content=' Acknowledgments We use the open-source and free software Grid as the data parallel C++ library for the lattice computations [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
156
+ page_content=' The authors warmly thank the members of the RBC/UKQCD collaboration for valuable discussions and the use of ensembles of gauge configurations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
157
+ page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
158
+ page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
159
+ page_content=', A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
160
+ page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
161
+ page_content=' and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
162
+ page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
163
+ page_content=' are supported in part by UK STFC 1039 grant ST/P000630/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
164
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
165
+ page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
166
+ page_content=' and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
167
+ page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
168
+ page_content=' received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under grant agreement No 757646 and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
169
+ page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
170
+ page_content=' additionally under grant agreement No 813942.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
171
+ page_content=' This work used the DiRAC Extreme Scaling service at the University of Edinburgh, operated by the Edinburgh Parallel Computing Centre on behalf of the STFC DiRAC HPC Facility (www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
172
+ page_content='dirac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
173
+ page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
174
+ page_content='uk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
175
+ page_content=' This equipment was funded by BEIS capital funding via STFC capital grant ST/R00238X/1 and STFC DiRAC Operations grant ST/R001006/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
176
+ page_content=' DiRAC is part of the National e-Infrastructure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
177
+ page_content=' 8 Efficiently unquenching QCD+QED at O(𝛼) Tim Harris References [1] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
178
+ page_content=' Aoyama et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
179
+ page_content=' In: Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
180
+ page_content=' Rept.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
181
+ page_content=' 887 (2020), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
182
+ page_content=' 1–166.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
183
+ page_content=' arXiv: 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
184
+ page_content='04822 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
185
+ page_content=' [2] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
186
+ page_content=' Aoki et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
187
+ page_content=' In: Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
188
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
189
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
190
+ page_content=' C 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
191
+ page_content='10 (2022), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
192
+ page_content=' 869.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
193
+ page_content=' arXiv: 2111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
194
+ page_content='09849 [hep-lat].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
195
+ page_content=' [3] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
196
+ page_content=' Aoki et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
197
+ page_content=' In: Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
198
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
199
+ page_content=' D 86 (2012), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
200
+ page_content=' 034507.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
201
+ page_content=' arXiv: 1205.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
202
+ page_content='2961 [hep-lat].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
203
+ page_content=' [4] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
204
+ page_content=' Ishikawa et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
205
+ page_content=' In: Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
206
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
207
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
208
+ page_content=' 109 (7 Aug.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
209
+ page_content=' 2012), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
210
+ page_content=' 072002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
211
+ page_content=' [5] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
212
+ page_content=' Horsley et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
213
+ page_content=' In: J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
214
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
215
+ page_content=' G 46 (2019), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
216
+ page_content=' 115004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
217
+ page_content=' arXiv: 1904.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
218
+ page_content='02304 [hep-lat].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
219
+ page_content=' [6] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
220
+ page_content=' Bushnaq et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
221
+ page_content=' In: (Sept.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
222
+ page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
223
+ page_content=' arXiv: 2209.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
224
+ page_content='13183 [hep-lat].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
225
+ page_content=' [7] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
226
+ page_content=' Borsanyi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
227
+ page_content=' In: Nature 593.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
228
+ page_content='7857 (2021), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
229
+ page_content=' 51–55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
230
+ page_content=' arXiv: 2002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
231
+ page_content='12347 [hep-lat].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
232
+ page_content=' [8] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
233
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
234
+ page_content=' de Divitiis et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
235
+ page_content=' In: JHEP 04 (2012), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
236
+ page_content=' 124.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
237
+ page_content=' arXiv: 1110.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
238
+ page_content='6294 [hep-lat].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
239
+ page_content=' [9] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
240
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
241
+ page_content=' de Divitiis et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
242
+ page_content=' In: Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
243
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
244
+ page_content=' D 87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
245
+ page_content='11 (2013), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
246
+ page_content=' 114505.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
247
+ page_content=' arXiv: 1303.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
248
+ page_content='4896 [hep-lat].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
249
+ page_content=' [10] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
250
+ page_content=' Giusti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
251
+ page_content=' In: Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
252
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
253
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
254
+ page_content=' C 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
255
+ page_content='7 (2019), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
256
+ page_content=' 586.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
257
+ page_content=' arXiv: 1903.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
258
+ page_content='10447 [hep-lat].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
259
+ page_content=' [11] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
260
+ page_content=' Capitani et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
261
+ page_content=' In: Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
262
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
263
+ page_content=' B 593 (2001), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
264
+ page_content=' 183–228.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
265
+ page_content=' arXiv: hep-lat/0007004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
266
+ page_content=' [12] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
267
+ page_content=' Blum et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
268
+ page_content=' In: Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
269
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
270
+ page_content=' D 93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
271
+ page_content='7 (2016), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
272
+ page_content=' 074505.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
273
+ page_content=' arXiv: 1411.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
274
+ page_content='7017 [hep-lat].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
275
+ page_content=' [13] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
276
+ page_content=' San José et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
277
+ page_content=' In: JHEP 08 (2022), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
278
+ page_content=' 220.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
279
+ page_content=' arXiv: 2203.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
280
+ page_content='08676 [hep-lat].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
281
+ page_content=' [14] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
282
+ page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
283
+ page_content=' Chao et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
284
+ page_content=' In: Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
285
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
286
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
287
+ page_content=' C 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
288
+ page_content='7 (2021), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
289
+ page_content=' 651.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
290
+ page_content=' arXiv: 2104.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
291
+ page_content='02632 [hep-lat].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
292
+ page_content=' [15] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
293
+ page_content=' Salg et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
294
+ page_content=' In: 39th International Symposium on Lattice Field Theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
295
+ page_content=' Nov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
296
+ page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
297
+ page_content=' arXiv: 2211.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
298
+ page_content='17049 [hep-lat].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
299
+ page_content=' [16] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
300
+ page_content=' Boucaud et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
301
+ page_content=' In: Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
302
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
303
+ page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
304
+ page_content=' 179 (2008), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
305
+ page_content=' 695–715.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
306
+ page_content=' arXiv: 0803.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
307
+ page_content='0224 [hep-lat].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
308
+ page_content=' [17] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
309
+ page_content=' Allton et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
310
+ page_content=' In: Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
311
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
312
+ page_content=' D 78 (2008), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
313
+ page_content=' 114509.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
314
+ page_content=' arXiv: 0804.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
315
+ page_content='0473 [hep-lat].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
316
+ page_content=' [18] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
317
+ page_content=' Hayakawa and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
318
+ page_content=' Uno.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
319
+ page_content=' In: Prog.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
320
+ page_content=' Theor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
321
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
322
+ page_content=' 120 (2008), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
323
+ page_content=' 413–441.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
324
+ page_content=' arXiv: 0804.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
325
+ page_content='2044 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
326
+ page_content=' [19] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
327
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
328
+ page_content=' de Divitiis et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
329
+ page_content=' In: Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
330
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
331
+ page_content=' B 382 (1996), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
332
+ page_content=' 393–397.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
333
+ page_content=' arXiv: hep-lat/9603020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
334
+ page_content=' [20] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
335
+ page_content=' Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
336
+ page_content=' In: Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
337
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
338
+ page_content=' D 103.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
339
+ page_content='1 (2021), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
340
+ page_content=' 014514.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
341
+ page_content=' arXiv: 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
342
+ page_content='01029 [hep-lat].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
343
+ page_content=' [21] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
344
+ page_content=' Blum et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
345
+ page_content=' In: Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
346
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
347
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
348
+ page_content=' 124.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
349
+ page_content='13 (2020), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
350
+ page_content=' 132002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
351
+ page_content=' arXiv: 1911.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
352
+ page_content='08123 [hep-lat].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
353
+ page_content=' [22] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
354
+ page_content=' Boyle et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
355
+ page_content=' In: (Nov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
356
+ page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
357
+ page_content=' arXiv: 2211.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
358
+ page_content='12865 [hep-lat].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
359
+ page_content=' [23] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
360
+ page_content=' Boyle et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
361
+ page_content=' In: 39th International Symposium on Lattice Field Theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
362
+ page_content=' Dec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
363
+ page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
364
+ page_content=' arXiv: 2212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
365
+ page_content='04709 [hep-lat].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
366
+ page_content=' [24] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
367
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
368
+ page_content=' Boyle et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
369
+ page_content=' In: PoS LATTICE2015 (2016), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
370
+ page_content=' 023.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
371
+ page_content=' 9' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE2T4oBgHgl3EQfmAfb/content/2301.03995v1.pdf'}
.gitattributes CHANGED
@@ -8320,3 +8320,83 @@ cdFQT4oBgHgl3EQfiTZ3/content/2301.13349v1.pdf filter=lfs diff=lfs merge=lfs -tex
8320
  2NFQT4oBgHgl3EQf2DZm/content/2301.13422v1.pdf filter=lfs diff=lfs merge=lfs -text
8321
  kdE1T4oBgHgl3EQf0gUD/content/2301.03455v1.pdf filter=lfs diff=lfs merge=lfs -text
8322
  q9AyT4oBgHgl3EQfZfeI/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8320
  2NFQT4oBgHgl3EQf2DZm/content/2301.13422v1.pdf filter=lfs diff=lfs merge=lfs -text
8321
  kdE1T4oBgHgl3EQf0gUD/content/2301.03455v1.pdf filter=lfs diff=lfs merge=lfs -text
8322
  q9AyT4oBgHgl3EQfZfeI/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8323
+ DtAzT4oBgHgl3EQfif1c/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8324
+ 5dE5T4oBgHgl3EQfPA60/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8325
+ C9FQT4oBgHgl3EQfPDYj/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8326
+ ztAzT4oBgHgl3EQftf2q/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8327
+ iNE4T4oBgHgl3EQfrw2W/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8328
+ R9E5T4oBgHgl3EQfaA9_/content/2301.05585v1.pdf filter=lfs diff=lfs merge=lfs -text
8329
+ etFQT4oBgHgl3EQfkjYE/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8330
+ u9E0T4oBgHgl3EQfbgDu/content/2301.02351v1.pdf filter=lfs diff=lfs merge=lfs -text
8331
+ XdFIT4oBgHgl3EQfiyst/content/2301.11293v1.pdf filter=lfs diff=lfs merge=lfs -text
8332
+ ddFPT4oBgHgl3EQfDDRR/content/2301.12991v1.pdf filter=lfs diff=lfs merge=lfs -text
8333
+ TNE5T4oBgHgl3EQfaw8F/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8334
+ XdFIT4oBgHgl3EQfiyst/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8335
+ 5dFIT4oBgHgl3EQf7yth/content/2301.11399v1.pdf filter=lfs diff=lfs merge=lfs -text
8336
+ kdAzT4oBgHgl3EQfNftb/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8337
+ d9AyT4oBgHgl3EQfwvm8/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8338
+ zdFKT4oBgHgl3EQfMy2q/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8339
+ u9E0T4oBgHgl3EQfbgDu/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8340
+ 0dE1T4oBgHgl3EQf4wVz/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8341
+ YNAyT4oBgHgl3EQfvfmK/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8342
+ 2NFQT4oBgHgl3EQf2DZm/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8343
+ jdAzT4oBgHgl3EQfbfxY/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8344
+ odFQT4oBgHgl3EQfrDYd/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8345
+ kdE1T4oBgHgl3EQf0gUD/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8346
+ DdFKT4oBgHgl3EQfZC4_/content/2301.11801v1.pdf filter=lfs diff=lfs merge=lfs -text
8347
+ etFQT4oBgHgl3EQfkjYE/content/2301.13358v1.pdf filter=lfs diff=lfs merge=lfs -text
8348
+ 79E1T4oBgHgl3EQfBwKM/content/2301.02856v1.pdf filter=lfs diff=lfs merge=lfs -text
8349
+ 8NE2T4oBgHgl3EQfPgby/content/2301.03761v1.pdf filter=lfs diff=lfs merge=lfs -text
8350
+ 8NE3T4oBgHgl3EQfRwmH/content/2301.04425v1.pdf filter=lfs diff=lfs merge=lfs -text
8351
+ ytFLT4oBgHgl3EQfnC-z/content/2301.12126v1.pdf filter=lfs diff=lfs merge=lfs -text
8352
+ zNE1T4oBgHgl3EQfRAN4/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8353
+ aNFST4oBgHgl3EQfBTj3/content/2301.13702v1.pdf filter=lfs diff=lfs merge=lfs -text
8354
+ R9E5T4oBgHgl3EQfaA9_/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8355
+ ANE0T4oBgHgl3EQfxgKB/content/2301.02647v1.pdf filter=lfs diff=lfs merge=lfs -text
8356
+ CdE4T4oBgHgl3EQfFgzX/content/2301.04887v1.pdf filter=lfs diff=lfs merge=lfs -text
8357
+ UNFJT4oBgHgl3EQfNCyL/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8358
+ bdAyT4oBgHgl3EQfwPlq/content/2301.00645v1.pdf filter=lfs diff=lfs merge=lfs -text
8359
+ tNE5T4oBgHgl3EQfmg9S/content/2301.05679v1.pdf filter=lfs diff=lfs merge=lfs -text
8360
+ bNFIT4oBgHgl3EQfmCv-/content/2301.11308v1.pdf filter=lfs diff=lfs merge=lfs -text
8361
+ VdFKT4oBgHgl3EQfmi5y/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8362
+ aNFST4oBgHgl3EQfBTj3/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8363
+ GdAzT4oBgHgl3EQfHfsT/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8364
+ iNE3T4oBgHgl3EQfggp5/content/2301.04562v1.pdf filter=lfs diff=lfs merge=lfs -text
8365
+ 3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf filter=lfs diff=lfs merge=lfs -text
8366
+ 8NE5T4oBgHgl3EQfQg5R/content/2301.05513v1.pdf filter=lfs diff=lfs merge=lfs -text
8367
+ mdAzT4oBgHgl3EQfN_tE/content/2301.01157v1.pdf filter=lfs diff=lfs merge=lfs -text
8368
+ zNAzT4oBgHgl3EQfePy_/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8369
+ 5tE4T4oBgHgl3EQfbwzK/content/2301.05078v1.pdf filter=lfs diff=lfs merge=lfs -text
8370
+ 5tA0T4oBgHgl3EQfN_8L/content/2301.02153v1.pdf filter=lfs diff=lfs merge=lfs -text
8371
+ 5tA0T4oBgHgl3EQfN_8L/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8372
+ kdFJT4oBgHgl3EQfYiwU/content/2301.11526v1.pdf filter=lfs diff=lfs merge=lfs -text
8373
+ AtE1T4oBgHgl3EQfVQTf/content/2301.03101v1.pdf filter=lfs diff=lfs merge=lfs -text
8374
+ WNE1T4oBgHgl3EQfvQWu/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8375
+ KNE1T4oBgHgl3EQfsQX7/content/2301.03365v1.pdf filter=lfs diff=lfs merge=lfs -text
8376
+ HtAzT4oBgHgl3EQfxv41/content/2301.01742v1.pdf filter=lfs diff=lfs merge=lfs -text
8377
+ XdAzT4oBgHgl3EQfmf14/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8378
+ V9A0T4oBgHgl3EQfE_8w/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8379
+ XdAzT4oBgHgl3EQfmf14/content/2301.01564v1.pdf filter=lfs diff=lfs merge=lfs -text
8380
+ DdFKT4oBgHgl3EQfZC4_/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8381
+ iNE3T4oBgHgl3EQfggp5/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8382
+ bdAyT4oBgHgl3EQfwPlq/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8383
+ 3tFLT4oBgHgl3EQfsC9L/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8384
+ test_0/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8385
+ XdE3T4oBgHgl3EQfbwqk/content/2301.04519v1.pdf filter=lfs diff=lfs merge=lfs -text
8386
+ test_0/content/98e2f027-c8ee-45d3-9b9f-9bfd2d232293-01-2018-A%2520metagenomics%2520roadmap%2520to%2520the%2520uncultured%2520genome%2520diversity%2520in%2520hypersaline%2520soda%2520lake%2520sediments.pdf filter=lfs diff=lfs merge=lfs -text
8387
+ D9FQT4oBgHgl3EQfQDZ4/content/2301.13281v1.pdf filter=lfs diff=lfs merge=lfs -text
8388
+ ItE4T4oBgHgl3EQfhQ0t/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8389
+ 1NE4T4oBgHgl3EQfaAwh/content/2301.05060v1.pdf filter=lfs diff=lfs merge=lfs -text
8390
+ 4NFST4oBgHgl3EQfZjjS/content/2301.13792v1.pdf filter=lfs diff=lfs merge=lfs -text
8391
+ tNE5T4oBgHgl3EQfmg9S/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8392
+ j9AzT4oBgHgl3EQfNPvf/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8393
+ 8NE3T4oBgHgl3EQfRwmH/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8394
+ AtE1T4oBgHgl3EQfVQTf/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8395
+ WNE1T4oBgHgl3EQfvQWu/content/2301.03398v1.pdf filter=lfs diff=lfs merge=lfs -text
8396
+ 89FAT4oBgHgl3EQfpR2f/content/2301.08639v1.pdf filter=lfs diff=lfs merge=lfs -text
8397
+ 3tAyT4oBgHgl3EQfo_h3/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8398
+ 3dFAT4oBgHgl3EQfERwH/content/2301.08420v1.pdf filter=lfs diff=lfs merge=lfs -text
8399
+ ytFLT4oBgHgl3EQfnC-z/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8400
+ 79E1T4oBgHgl3EQfBwKM/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8401
+ ANE0T4oBgHgl3EQfxgKB/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8402
+ ztAzT4oBgHgl3EQftf2q/content/2301.01677v1.pdf filter=lfs diff=lfs merge=lfs -text
0dE1T4oBgHgl3EQf4wVz/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3395bbbb9cd333d3c91695a91fb18374af2a7cafc731179a38914c5f1a63f855
3
+ size 5636141
19FIT4oBgHgl3EQf4Su_/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8b7550c1ade58407db66d58c46587d5c3b7859ecd2f7e284420d6fce52525f36
3
+ size 80775
1NE4T4oBgHgl3EQfaAwh/content/2301.05060v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:63c0434d765d84bf653f5bb8374d7791957eb5782434926a7297c5088ac3ce48
3
+ size 207078
1NE4T4oBgHgl3EQfaAwh/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:68670f959eb62bc9d368b2e5398685f03b6810a316f97e982a88558ac49c17ab
3
+ size 51878
2NFQT4oBgHgl3EQf2DZm/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6af5ee33b3411086f17f5c9f37c078cf50af60470172eca3320fb888b8e8e52
3
+ size 4653101
2dFLT4oBgHgl3EQfqy9t/content/tmp_files/2301.12141v1.pdf.txt ADDED
@@ -0,0 +1,1037 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ What Decreases Editing Capability?
2
+ Domain-Specific Hybrid Refinement for Improved GAN Inversion
3
+ Pu Cao1,2
4
+ Lu Yang1
5
+ Dongxu Liu1
6
+ Zhiwei Liu3
7
+ Shan Li1
8
+ Qing Song1*
9
+ 1Beijing University of Posts and Telecommunications
10
+ 2Metavatar
11
+ 3Institute of Automation Chinese Academy of Sciences
12
+ {caopu, soeaver, ldx, ls1995, priv}@bupt.edu.cn zhiwei.liu@nlpr.ia.ac.cn
13
+ Abstract
14
+ Recently, inversion methods have focused on additional
15
+ high-rate information in the generator (e.g., weights or
16
+ intermediate features) to refine inversion and editing results
17
+ from embedded latent codes.
18
+ Although these techniques
19
+ gain reasonable improvement in reconstruction,
20
+ they
21
+ decrease editing capability, especially on complex images
22
+ (e.g., containing occlusions, detailed backgrounds, and
23
+ artifacts). A vital crux is refining inversion results, avoiding
24
+ editing capability degradation.
25
+ To tackle this problem,
26
+ we introduce Domain-Specific Hybrid Refinement (DHR),
27
+ which draws on the advantages and disadvantages of two
28
+ mainstream refinement techniques to maintain editing
29
+ ability with fidelity improvement.
30
+ Specifically, we first
31
+ propose Domain-Specific Segmentation to segment images
32
+ into two parts: in-domain and out-of-domain parts. The
33
+ refinement process aims to maintain the editability for
34
+ in-domain areas and improve two domains’ fidelity.
35
+ We
36
+ refine these two parts by weight modulation and feature
37
+ modulation, which we call Hybrid Modulation Refinement.
38
+ Our proposed method is compatible with all latent code
39
+ embedding methods.
40
+ Extension experiments demonstrate
41
+ that our approach achieves state-of-the-art in real image
42
+ inversion and editing.
43
+ Code is available at https:
44
+ //github.com/caopulan/Domain-Specific_
45
+ Hybrid_Refinement_Inversion.
46
+ 1. Introduction
47
+ Generative Adversarial Networks (GANs) have shown
48
+ promising results in image generation. Synthetic images
49
+ are photorealistic with high resolution and are difficult to
50
+ distinguish from real images [24, 27, 28, 26, 61]. Mean-
51
+ while, image manipulation and controllable generation are
52
+ deeply explored thanks to their highly semantic latent space.
53
+ Moreover, GANs can represent a high-quality image prior
54
+ *corresponding author.
55
+ Figure 1. Inversion and editing results of our method. We pre-
56
+ serve image details, including background and occlusion, in both
57
+ inversion and manipulation processes.
58
+ to improving various tasks, such as face parsing [59, 58,
59
+ 62, 60, 57, 56], style transfer [33, 63], face super-resolution
60
+ [53].
61
+ Inversion is built to convert real images into GANs’ la-
62
+ tent space. The inverted latent codes are required to recon-
63
+ struct given images by pretrained generator, which also em-
64
+ arXiv:2301.12141v1 [cs.CV] 28 Jan 2023
65
+
66
+ TO
67
+ indul
68
+ Inversion
69
+ ASA
70
+ TO
71
+ Smile
72
+ SAANN
73
+ LUTO
74
+ Young
75
+ TO
76
+ Exposure
77
+ LTO
78
+ Lipstick
79
+ SAANNbeds semantic information to edit or apply in other GAN-
80
+ based tasks. Two types of methods generally reach image
81
+ embedding. One is training an image encoder to convert
82
+ given images to latent codes [49, 41], while another is min-
83
+ imizing the discrepancy between given images and recon-
84
+ structed images to optimize initial latent codes iteratively
85
+ [28]. This process attains the corresponding latent codes
86
+ to reconstruct or edit the images. However, latent codes are
87
+ low bit-rate [52], and high-rate details of images may not be
88
+ reconstructed faithfully. Hence, many works focus more on
89
+ refining results by additional high-rate information, e.g., in-
90
+ termediate features [36], generator weight [44, 5], recently.
91
+ As reconstruction performance increases by refinement
92
+ with high-rate information, editing capability is inevitably
93
+ decreased, especially on images containing complex parts.
94
+ This phenomenon is due to the destruction of pretrained
95
+ GAN prior.
96
+ High-rate information needs drastic change
97
+ to reconstruct complex parts.
98
+ We demonstrate this phe-
99
+ nomenon in Figure 3. Meanwhile, complex images pre-
100
+ vail in the natural world. For example, face accessories,
101
+ hats, occlusions, and complex backgrounds usually appear
102
+ in face photos.
103
+ As there are two mainstream refinement methods, they
104
+ show different manipulation impacts. One is weight modu-
105
+ lation, in which the generator’s weight is tuned [44, 12] or
106
+ predicted [5] by given images. Another is feature modula-
107
+ tion [52, 36], in which the input image would also invert to
108
+ feature space by encoder or optimization. Generally, weight
109
+ modulation can maintain editing capacity better, while fea-
110
+ ture modulation breaks it since high-rate level editing is re-
111
+ quired [38].
112
+ Based on the above illustration, we further explore the
113
+ idea of ”divide and conquer.” Specifically, we divide the
114
+ image into in-domain and out-of-domain parts. In-domain
115
+ parts imply areas close to generators’ output distribution
116
+ and are desired to perform well on both inversion and edit-
117
+ ing.
118
+ Correspondingly, out-of-domain parts are segments
119
+ challenging to inverse or edit and desired to reconstruct
120
+ faithfully. Hence, we introduce a hybrid method to han-
121
+ dle them. We refine in-domain parts by tuning generator
122
+ weight since it can maintain editing capability. For out-of-
123
+ domain parts, we straightforwardly invert them by interme-
124
+ diate features to keep spatial image details. Notably, our
125
+ hybrid refinement method first analyzes and combines fea-
126
+ ture and weight modulation for improved GAN inversion,
127
+ and achieves extraordinary results as shown in Figure 1.
128
+ Extensive experiments are presented to demonstrate the
129
+ effects of our Domain-Specific Hybrid Refinement.
130
+ We
131
+ achieve state-of-the-art and gain significant improvement in
132
+ both fidelity and editability. The key contributions of this
133
+ work are summarized as follows:
134
+ • We analyze the reasons for editing capability degrada-
135
+ tion in the refinement process. Based on our analysis,
136
+ we introduce in-domain and out-of-domain and pro-
137
+ pose Domain-Specific Segmentation to segment im-
138
+ ages into these two parts for better inversion.
139
+ • We propose Hybrid Modulation Refinement to im-
140
+ prove inversion results of in-domain and out-of-
141
+ domain parts. We conduct weight modulation on in-
142
+ domain part and feature modulation on out-of-domain
143
+ part, which can preserve editing capability when refin-
144
+ ing the image details.
145
+ • We conduct extensive experiments and user studies to
146
+ demonstrate the effects of our method. We reach ex-
147
+ traordinary performance on real-world image inversion
148
+ and editing and achieve state-of-the-art.
149
+ 2. Related Work
150
+ 2.1. GAN Inversion
151
+ GAN inversion aims to embed real-world images into a
152
+ pretrained generator’s latent space, which can be used to
153
+ reconstruct and edit input images. Generally, methods can
154
+ be divided into two stages.
155
+ The first stage aims to attain low-rate latent codes, usu-
156
+ ally in Z/W/W + spaces. The latent codes are gained by
157
+ an encoder or optimization process. Training an encoder
158
+ [49, 43, 54, 17, 8, 41] to predict latent codes is efficient for
159
+ inference and is easier to get better trade-offs between fi-
160
+ delity and manipulation [49, 41]. Optimizing initial latent
161
+ codes by reconstruction discrepancy gains better fidelity.
162
+ However, it may cost several minutes per image [28, 8, 1, 2]
163
+ and decreases editability during per-image tuning. Due to
164
+ low-rate characteristics, latent codes can only reconstruct
165
+ coarse information and drop the details from original im-
166
+ ages. Meanwhile, there is a trade-off between fidelity and
167
+ editability, and many methods introduce additional regular-
168
+ ization modules (e.g., latent code discriminator [49] and la-
169
+ tent space alignment [41]) to address it.
170
+ In the second stage, reconstruction and manipulation re-
171
+ sults from latent codes are refined by high-rate information.
172
+ Refinement methods are mainly divided into weight mod-
173
+ ulation and feature modulation. Weight modulation meth-
174
+ ods predict or finetune generator weight to improve fidelity.
175
+ Some methods use hypernet [18] to predict weight offsets.
176
+ The others tune generator by given images, which attain bet-
177
+ ter fidelity but cost much time. Another branch further in-
178
+ vert images to latent feature, which we call feature modula-
179
+ tion. HFGI [52] proposes a distortion consultation approach
180
+ for high-fidelity reconstruction. SAM [36] segments images
181
+ into various parts and inverts them into different intermedi-
182
+ ate layers by predicting ”invertibility.” All of them only use
183
+ one of feature and weight modulation to refine results and
184
+ suffer editing capability degradation. In this work, we com-
185
+
186
+ generator
187
+ manifold
188
+ latent space
189
+ weight
190
+ modulation
191
+ 𝐺(𝑤; 𝜃∗)
192
+ 𝐺(𝑤)
193
+ 𝑤
194
+ generator
195
+ manifold
196
+ latent space
197
+ 𝐺(𝑤, 𝑓)
198
+ 𝐺(𝑤)
199
+ 𝑤
200
+ image space
201
+ image space
202
+ feature
203
+ modulation
204
+ generator
205
+ manifold
206
+ latent space
207
+ feature
208
+ modulation
209
+ 𝐺(𝑤, 𝑓; 𝜃∗)
210
+ 𝐺(𝑤)
211
+ 𝑤
212
+ image space
213
+ weight
214
+ modulation
215
+ 𝐺(𝑤)
216
+ 𝐺(𝑤; 𝜃∗)
217
+ 𝐺(𝑤; 𝜃∗)
218
+ 𝐺(𝑤, 𝑓; 𝜃∗)
219
+ (a) Weight Modulation
220
+ (b) Feature Modulation
221
+ (c) Hybrid Modulation
222
+ Figure 2. Comparison of different refinement mechanisms. We suppose that the refinement results are similar to the given images in
223
+ all pipelines. The first row shows two previous mainstream refinement mechanisms, weight, and feature modulation. Weight modulation
224
+ changes the generator manifold and feature modulation introduces spatial high-rate information to recover image details. The bottom
225
+ part demonstrates our hybrid refinement method, combining these two modulation mechanisms to retain editing capability. We tune the
226
+ generator on invertible and editable areas, which causes lower manifold deviation, and the result is shown on G(w; θ∗). To reconstruct
227
+ faithfully, we use feature modulation on the other area and attain G(w, f; θ∗).
228
+ bine these two aspects by their pros and cons to reach more
229
+ promising results.
230
+ 2.2. GAN-based Manipulation
231
+ GANs’ latent spaces encode highly rich semantic infor-
232
+ mation, which develop the GAN-based manipulation task.
233
+ It aims to edit given images by changing latent codes in
234
+ certain directions.
235
+ Many works propose multiple meth-
236
+ ods to find semantic editing directions in latent spaces.
237
+ Some methods obtain the edit vectors of the correspond-
238
+ ing attributes by means of supervision with the help of
239
+ attribute-labeled datasets [10, 15, 47, 45]. And others ex-
240
+ plore the latent space by unsupervised [19, 46, 50, 51] or
241
+ self-supervised ways [23, 39] to find more semantic direc-
242
+ tions way.
243
+ 3. Method
244
+ 3.1. Preliminaries
245
+ Inversion is built to bridge real-world images and GANs’
246
+ latent space.
247
+ As latent codes are low-rate, which limits
248
+ their reconstruction performance, much research has re-
249
+ cently focused on additional high-rate information in gen-
250
+ eration process, which we call refinement methods. They
251
+ can be mainly divided into two categories: weight modula-
252
+ tion and feature modulation. We first formulate them and
253
+ analyze the causes of editing capacity degradation.
254
+ Formulation.
255
+ We denote the original generation process
256
+ as X = G(w), where G is the generator, w is latent code
257
+ which can represent each latent space (e.g., Z/W/W +).
258
+ We use encoded latent codes as w in the refinement process.
259
+ Weight modulation methods predict [5] or optimize [28]
260
+ θ by minimizing reconstruction error, and are denoted as
261
+ X
262
+ = G(w; θ∗).
263
+ And feature modulation methods in-
264
+ vert images into the intermediate feature, which follows
265
+ X = G(w, f). Defining L as the distance of images, we
266
+ can illustrate these two refinement processes as follow:
267
+ θ∗ = arg min
268
+ θ
269
+ L(x, G(w; θ))
270
+ (1)
271
+ f ∗ = arg min
272
+ f
273
+ L(x, G(w, f))
274
+ (2)
275
+ Impacts on editing capability. Weight and feature modu-
276
+ lation impacts image manipulation in different aspects. The
277
+
278
+ Easy Sample
279
+ Easy Sample
280
+ Hard Sample, Occlusion
281
+ Hard Sample, Artifact
282
+ Figure 3. Impacts on editing capability of weight modulation.
283
+ We show the input images, inversion results, and two editing re-
284
+ sults (smile and age) from PTI [44]. For those easy samples, edit-
285
+ ing results are reasonable. However, editing capability degrades
286
+ significantly on hard samples.
287
+ schematics are shown in Figure 2. Since the feature modu-
288
+ lation mechanism fixes the intermediate feature distribution
289
+ at one of layers, the effects of edit vectors applied to previ-
290
+ ous layers cannot edit the features of latter layers. Although
291
+ many existing works make efforts to maintain the editing ef-
292
+ fects, including training with adaptive distortion alignment
293
+ [25, 52], their solutions still sacrifice fidelity or editing re-
294
+ sults [36].
295
+ Meanwhile, weight modulation shows promising editing
296
+ performance but also gains unreasonable results on com-
297
+ plex images, as shown in Figure 3. Editing results are more
298
+ reasonable on easy samples than on hard samples.
299
+ The
300
+ main reason for editing capacity degradation is the signif-
301
+ icant weight deviation caused by refining complex images,
302
+ which we show in Figure 2(a). To reconstruct given images,
303
+ the weight modulation mechanism may change the genera-
304
+ tor manifold much. Therefore, the highly semantic charac-
305
+ teristic of the pretrained generator is broken, which would
306
+ decrease the editing capability.
307
+ In conclusion, the critical problem of refinement meth-
308
+ ods is how to decrease weight deviation with reconstruc-
309
+ tion improvement. We next propose our method to answer
310
+ this question.
311
+ 3.2. Overview
312
+ In this work, we conduct Domain-Specific Hybrid
313
+ Refinement (DHR) to deal with real-world image inversion
314
+ and the pipline is shown in Figure 4. Based on the above
315
+ analysis, we explore the idea of ”divide and conquer.”
316
+ We first propose the concepts of in-domain and out-of-
317
+ domain. In-domain implies areas that have a similar distri-
318
+ bution with the generator’s output space and are easy to in-
319
+ vert, while out-of-domain areas misalign with output space
320
+ and are difficult to invert. For example, in face domain,
321
+ in-domain areas mainly consist of face and hair, while out-
322
+ of-domain areas consist of occlusions, backgrounds, and ar-
323
+ tifacts. Meanwhile, in-domain areas are more editable, e.g.,
324
+ smile, lipstick, and eyes openness.
325
+ Hence, we propose a hybrid refinement method, which
326
+ segments images into in-domain and out-of-domain areas
327
+ and applies weight and feature modulation to improve fi-
328
+ delity and preserve editing capability. Our framework is
329
+ shown in Figure 4, which consists of three components.
330
+ The image Embedding module aims to embed images
331
+ into latent codes, which we use an off-the-shelf encoder
332
+ (i.e., e4e [49] and LSAP [41]). Given input images X, the
333
+ encoder predicts its W + space latent codes, which we de-
334
+ note as w = E(X), where E is an encoder.
335
+ Domain-Specific Segmentation predicts a binary mask
336
+ which indicates in-domain and out-of-domain areas:
337
+ m = S(X)
338
+ where m ∈ {0, 1}h×w. It segments images into two parts,
339
+ which will be used for refinement.
340
+ In Hybrid Modulation Refinement, weight modulation is
341
+ applied to in-domain areas to recover image details in both
342
+ inversion and editing results. Thanks to the low reconstruc-
343
+ tion discrepancy of in-domain part, weight deviation would
344
+ not be large, and editing capacity would be preserved. For
345
+ out-of-domain parts, we use feature modulation to refine
346
+ them spatially and not to edit them. Hence, those hard-to-
347
+ invert parts would not influence editing ability. We mod-
348
+ ulate weight θ and feature f by minimizing reconstruction
349
+ error in in-domain and out-of-domain part, respectively:
350
+ Xrec = G(w, f, m; θ)
351
+ (3)
352
+ The difference with vanilla weight and feature modula-
353
+ tion can be seen in Figure 2. Based on hybrid ways, genera-
354
+ tor manifold would not change a lot, which highly maintains
355
+ the editing capability of the original GAN.
356
+ 3.3. Domain-specific Segmentation
357
+ The first challenge is segmenting images into in-domain
358
+ and out-of-domain at the pixel-level.
359
+ An end-to-end
360
+ domain-specific segmentation model is required for a large,
361
+ manually annotated dataset. Although previous work [36]
362
+
363
+ omFEOTURUUSH
364
+ FEATORLNSTPTOAIKO
365
+ 2,2
366
+ OTomHybrid Modulation Refinement
367
+ Domain-Specific Segmentation
368
+ θ∗
369
+ Segmentation
370
+ 𝒘"
371
+ 𝒇∗
372
+ Input
373
+ Encoder
374
+ Image Embedding
375
+ Figure 4. Overview of our Domain-Specific Hybrid Refinement framework. We use an off-the-shelf image encoding mechanism and
376
+ introduce Domain-Specific Segmentation and Hybrid Modulation Refinement. The former segments the input images with two domains:
377
+ in-domain and out-of-domain. They are refined by weight modulation and feature modulation in the latter method.
378
+ Figure 5. Illustration of Domain-Specific Segmentation module. We use a parsing model and superpixel algorithm with coarse opti-
379
+ mization to segment input images into in-domain (white areas) and out-of-domain (black areas) parts.
380
+ trains an invertibility prediction model by self-supervision,
381
+ results are inaccurate in some complex areas, which we il-
382
+ lustrate in our ablation study. In this work, we propose a
383
+ Domain-Specific Segmentation module, combining parsing
384
+ and superpixel modules to generate domain segments. Our
385
+ module is robust for real images and does not require data
386
+ annotation. The pipeline is shown in Figure 5.
387
+ The parsing model categorizes face components [69] like
388
+ eye, mouth, and background. For parsing results mp, we
389
+ manually set some categories as out-of-domain and the oth-
390
+ ers as in-domain. However, it is not robust on some complex
391
+ images, as shown in Figure 5. The parsing result represents
392
+ a coarse mask, where complicated paradigms are not seg-
393
+ mented well. Therefore, we introduce a superpixel module
394
+ with coarse optimization to improve the segmentation re-
395
+ sults.
396
+ We use a superpixel algorithm [3] for image partition-
397
+ ing, shown in the middle route of Figure 5. This step finely
398
+ segments images to distinguish each area. We denote each
399
+ partition as {mi
400
+ s}S
401
+ i=1. Categorizing each partition into in-
402
+ domain and out-of-domain without manual annotation is a
403
+ crucial challenge. We first apply a coarse optimization in W
404
+ space, where latent codes initialed by mean values are only
405
+ optimized by a few steps. Since in-domain are those easy-
406
+ to-invert areas, the coarse inversion result Xcoarse could
407
+ reconstruct in-domain areas. We calculate the perceptual
408
+ loss L between the coarse reconstruction image and the in-
409
+ put image, as shown at the bottom of Figure 5. White area
410
+
411
+ Parsing Result
412
+ Domain Segment
413
+ om:
414
+ Face
415
+ Parsing
416
+ loma
417
+ ome
418
+ om
419
+ Superpixel
420
+ K
421
+ Input X
422
+ Superpixel Result
423
+ om
424
+ out-of-domain
425
+ Coarse
426
+ Optimization
427
+ in-domain
428
+ Xcoarse
429
+ LPIPS(X, Xcoarse)m
430
+ KPTOAIKO
431
+ 2,2
432
+ OTmeans higher loss value, while black area means lower loss
433
+ value. As can be seen, the loss of the occlusion area is sig-
434
+ nificantly higher than the face area. We calculate the aver-
435
+ age loss of each partition as follows:
436
+ vi = L ⊙ mi
437
+ s
438
+ ||mis||
439
+ and the result {mi
440
+ s, vi}S
441
+ i=1 is visualized. Then we binarize
442
+ superpixel results by adaptive threshold τ and attain ms.
443
+ Finally, domain-specific segmentation results are com-
444
+ bined by parsing results and superpixel results:
445
+ m = mp × ms
446
+ Our Domain-Specific Segmentation module can gain fine
447
+ segmentation results without data annotation.
448
+ 3.4. Hybrid Modulation Refinement
449
+ Figure 6. Illustration of Hybrid Modulation Refinement mod-
450
+ ule. We refine in-domain areas and out-of-domain areas by weight
451
+ and feature modulation, respectively. Black lines indicate forward
452
+ flow, and orange and blue lines represent gradients.
453
+ To faithfully recover image details and maintain editing
454
+ capability from original GAN, we introduce a Hybrid Mod-
455
+ ulation Refinement module. It consists of two mainstream
456
+ refinement aspects: weight modulation and feature modu-
457
+ lation. Weight modulation aims to minimize in-domain re-
458
+ construction error by tuning the generator’s parameters. In
459
+ contrast, feature modulation is applied to out-of-domain ar-
460
+ eas by optimizing an intermediate feature of the generator.
461
+ The forward and backward processes are shown in Figure 6.
462
+ For lth layer of total k stages in generator, the original
463
+ generator’s feature is denoted as fl = Gl(w; θ), and an ad-
464
+ ditional modulated feature is marked as f, which is initialed
465
+ by fl. Fixing the latent codes, the original feature fl is only
466
+ relevant to θ. Given segmentation result m, we formulate
467
+ the forward process as follows:
468
+ f ′ = fl ⊙ m + f ⊙ (1 − m)
469
+ (4)
470
+ Then f ′ represents the output of the first l layers and gener-
471
+ ates the final images, which follow Eq 3.
472
+ For backward, we use mean square error L2 and percep-
473
+ tual loss Llpips as objectives in the refinement process. To
474
+ make weight and feature focus on the corresponding areas,
475
+ we update them in a parallel optimization process. Calcu-
476
+ lating the reconstruction errors, we backward loss with seg-
477
+ mentation result m:
478
+ L = L2 + λLlpips
479
+ (5)
480
+ ∇f = ∂
481
+ ∂f [L ⊙ (1 − m)
482
+ ||1 − m||
483
+ ]
484
+ (6)
485
+ ∇θ = ∂
486
+ ∂θ[L ⊙ (m)
487
+ ||m||
488
+ ]
489
+ (7)
490
+ where λ is a hyper-parameter. The parallel optimization
491
+ mechanism constrains the impact from different domains.
492
+ Based on Domain-Specific Segmentation and Hybrid
493
+ Modulation Refinement, we segment images into in-domain
494
+ and out-of-domain areas and refine them by weight and fea-
495
+ ture modulation, which significantly improve fidelity with
496
+ editing capability remaining.
497
+ 4. Experiments
498
+ 4.1. Experimental Settings
499
+ Datasets.
500
+ We evaluate all methods on the CelebA-HQ
501
+ [24, 35] test set (2,824 images). Encoders and the generator
502
+ are trained on FFHQ [27] (70,000 images).
503
+ Baselines. We compare our model with previous state-of-
504
+ the-art refinement methods, i.e., ReStyle [4], HFGI [52],
505
+ SAM [36], and PTI [44].
506
+ We use pSp [43], e4e [49]
507
+ and LSAP [41] as encoders. Moreover, the performance
508
+ of encoder-based methods is also reported. All of model
509
+ weights of encoders and generators come from their official
510
+ release.
511
+ Metrics.
512
+ We evaluate all methods in two respects: inver-
513
+ sion and editing. For inversion ability, we conduct MSE,
514
+ LPIPS [67], and identity similarity calculated by a face
515
+ recognition model [22]. MSE straightforwardly measures
516
+ the image distortion, and LPIPS evalutaes the visual dis-
517
+ crepancy. Identity similarity further compares the identity
518
+ consistency during inversion. Moreover, we perform user
519
+ studies to evaluate the perceptual performance of inversion
520
+ and editing.
521
+ 4.2. Main Results
522
+ Quantitative results. We first evaluate the reconstruction
523
+ ability. Qualitative results are reported in Table 1. We com-
524
+ pare our method with four previous refinement methods and
525
+ employ two encoders. We conduct experiments with en-
526
+ coders and original Wpivot for PTI. As one can see, DHR
527
+ achieves the best performance on all metrics. Employed
528
+ with e4e, it gains 0.0036 MSE, which is 7.5% e4e, 8.3%
529
+
530
+ om
531
+ Loss
532
+ gradient of weight modulation
533
+ gradient of feature modulationFigure 7. Inversion and editing results. The second column is the segmentation results of in-domain and out-of-domain areas. Our method
534
+ restores almost all image details.
535
+ ReStyle, 17% HFGI, 25% SAM, and 48% PTI. For LPIPS
536
+ and identity similarity, it demonstrates similar superiority
537
+ and surpasses other methods by a large margin. DHR with
538
+ LSAP achieves the best performance of all metrics.
539
+ Qualitative results.
540
+ We illustrate the inversion and edit-
541
+ ing results of DHR in Figure 7.
542
+ The second column is
543
+ the results from the Domain-Specific Segmentation module,
544
+ and the third is our inversion results. Some dedicated ar-
545
+ eas are categorized into out-of-domain domain (black area).
546
+ We edit them by InterFaceGAN and GANSpace, using four
547
+ editing directions, i.e., smile, young, exposure, and lipstick.
548
+ All image details are preserved in both inversion and editing
549
+ results, such as hairstyle (the first row), earrings (the fifth
550
+ row), and hats. Our results are faithful and photorealistic.
551
+ We further conduct a qualitative comparison with other
552
+ methods, shown in Figure 8. Although inversion results are
553
+
554
+ Input
555
+ Inversion
556
+ Smile
557
+ Young
558
+ Exposure
559
+ LipstickFigure 8. Comparisons with previous methods. We compare the inversion and editing results with PTI [4], HFGI [52], and SAM [36].
560
+ Although HFGI and SAM reach reasonable inversion results, image distortion and details loss occur in editing results. Our method attains
561
+ the best fidelity and editing performance. Image details are reserved in both phases, and our results are the most natural.
562
+ Method
563
+ Encoder
564
+ MSE ↓
565
+ LPIPS ↓
566
+ Similarity ↑
567
+ ReStyle [4]
568
+ pSp
569
+ 0.0276
570
+ 0.1298
571
+ 0.5816
572
+ e4e
573
+ 0.0429
574
+ 0.1904
575
+ 0.5062
576
+ HFGI [52]
577
+ e4e
578
+ 0.0210
579
+ 0.1172
580
+ 0.6816
581
+ LSAP
582
+ 0.0210
583
+ 0.0945
584
+ 0.7405
585
+ SAM [36]
586
+ e4e
587
+ 0.0143
588
+ 0.1104
589
+ 0.5568
590
+ LSAP
591
+ 0.0117
592
+ 0.0939
593
+ 0.6184
594
+ PTI [44]
595
+ e4e
596
+ 0.0074
597
+ 0.0750
598
+ 0.8633
599
+ LSAP
600
+ 0.0067
601
+ 0.0666
602
+ 0.8696
603
+ Wpivot
604
+ 0.0084
605
+ 0.0845
606
+ 0.8402
607
+ DHR (ours)
608
+ e4e
609
+ 0.0036
610
+ 0.0455
611
+ 0.8704
612
+ LSAP
613
+ 0.0035
614
+ 0.0436
615
+ 0.8780
616
+ Encoder-Only
617
+ pSp [43]
618
+ 0.0351
619
+ 0.1628
620
+ 0.5591
621
+ e4e [49]
622
+ 0.0475
623
+ 0.1991
624
+ 0.4966
625
+ LSAP [41]
626
+ 0.0397
627
+ 0.1766
628
+ 0.5305
629
+ Table 1. Fidelity results on face domain. We compare DHR to
630
+ three previous refinement methods with two powerful encoders.
631
+ The results of these encoders are also presented at the bottom.
632
+ reasonable, editing capability degradation occurs in base-
633
+ lines, e.g., decorations and occlusion blur.
634
+ 4.3. User Study
635
+ We conduct user studies to demonstrate the performance
636
+ of inversion and editing.
637
+ Results are shown in Table 2.
638
+ We randomly select 50 different images and invert and edit
639
+ them by HFGI [52], SAM [36], PTI [44], and our method.
640
+ We then ask three users to make a preference for each pair of
641
+ images. A higher value implies users prefer our results. As
642
+ can be seen, our results are highly preferred by users, which
643
+ Method
644
+ Inversion
645
+ Editing
646
+ Smile
647
+ Young
648
+ Exposure
649
+ Lipstick
650
+ ReStyle [4]
651
+ 94%
652
+ 100%
653
+ 100%
654
+ 90%
655
+ 94%
656
+ HFGI [52]
657
+ 94%
658
+ 84%
659
+ 86%
660
+ 100%
661
+ 96%
662
+ SAM [36]
663
+ 100%
664
+ 92%
665
+ 94%
666
+ 100%
667
+ 100%
668
+ PTI [44]
669
+ 96%
670
+ 100%
671
+ 100%
672
+ 84%
673
+ 88%
674
+ Table 2. User Study. We conduct user studies on inversion and
675
+ editing tasks. The values in the table indicate the percentage of
676
+ images where users prefer our results. Results show our method is
677
+ more faithful and photorealistic.
678
+ are most all above 90%, compared to previous state-of-the-
679
+ art methods. It illustrates that our method decreases image
680
+ distortion and attains better photorealism of reconstruction
681
+ and manipulation results.
682
+ 5. Conclusion
683
+ In this work, we propose Domain-Specific Hybrid Re-
684
+ finement to improve GAN inversion and editing capabil-
685
+ ity. Specifically, we analyze the causes of editing ability
686
+ degradation in refinement process and introduce ”divide and
687
+ conquer” to address it. Our method consists of Domain-
688
+ Specific Segmentation and Hybrid Modulation Refinement,
689
+ which segments images into in-domain and out-of-domain
690
+ parts and refines them by weight and feature modulation,
691
+ respectively. Our method attains promising results in both
692
+ inversion and editing with considerable improvement.
693
+
694
+ Young
695
+ Lipstick
696
+ Exposure
697
+ 50
698
+ Smile
699
+ Input
700
+ Inversion
701
+ Inversion
702
+ edit
703
+ Inversion
704
+ edit
705
+ Inversion
706
+ edit
707
+ PTI
708
+ HFGI
709
+ SAM
710
+ DHR (ours)References
711
+ [1] Rameen Abdal, Yipeng Qin, and Peter Wonka.
712
+ Im-
713
+ age2stylegan: How to embed images into the stylegan latent
714
+ space? In Proceedings of the IEEE/CVF International Con-
715
+ ference on Computer Vision, pages 4432–4441, 2019.
716
+ [2] Rameen Abdal, Yipeng Qin, and Peter Wonka.
717
+ Im-
718
+ age2stylegan++: How to edit the embedded images?
719
+ In
720
+ Proceedings of the IEEE/CVF conference on computer vi-
721
+ sion and pattern recognition, pages 8296–8305, 2020.
722
+ [3] Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien
723
+ Lucchi, Pascal Fua, and Sabine S¨usstrunk. Slic superpix-
724
+ els compared to state-of-the-art superpixel methods. IEEE
725
+ transactions on pattern analysis and machine intelligence,
726
+ 34(11):2274–2282, 2012.
727
+ [4] Yuval Alaluf, Or Patashnik, and Daniel Cohen-Or. Restyle:
728
+ A residual-based stylegan encoder via iterative refinement.
729
+ In Proceedings of the IEEE/CVF International Conference
730
+ on Computer Vision, pages 6711–6720, 2021.
731
+ [5] Yuval Alaluf, Omer Tov, Ron Mokady, Rinon Gal, and
732
+ Amit Bermano.
733
+ Hyperstyle: Stylegan inversion with hy-
734
+ pernetworks for real image editing.
735
+ In Proceedings of
736
+ the IEEE/CVF Conference on Computer Vision and Pattern
737
+ Recognition, pages 18511–18521, 2022.
738
+ [6] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He.
739
+ Improved baselines with momentum contrastive learning.
740
+ arXiv preprint arXiv:2003.04297, 2020.
741
+ [7] Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha.
742
+ Stargan v2: Diverse image synthesis for multiple domains.
743
+ In Proceedings of the IEEE/CVF conference on computer vi-
744
+ sion and pattern recognition, pages 8188–8197, 2020.
745
+ [8] Antonia Creswell and Anil Anthony Bharath. Inverting the
746
+ generator of a generative adversarial network. IEEE transac-
747
+ tions on neural networks and learning systems, 30(7):1967–
748
+ 1974, 2018.
749
+ [9] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos
750
+ Zafeiriou. Arcface: Additive angular margin loss for deep
751
+ face recognition.
752
+ In Proceedings of the IEEE/CVF con-
753
+ ference on computer vision and pattern recognition, pages
754
+ 4690–4699, 2019.
755
+ [10] Emily Denton, Ben Hutchinson, Margaret Mitchell, and
756
+ Timnit Gebru. Detecting bias with generative counterfactual
757
+ face attribute augmentation. 2019.
758
+ [11] Tan M Dinh, Anh Tuan Tran, Rang Nguyen, and Binh-Son
759
+ Hua. Hyperinverter: Improving stylegan inversion via hy-
760
+ pernetwork. In Proceedings of the IEEE/CVF Conference
761
+ on Computer Vision and Pattern Recognition, pages 11389–
762
+ 11398, 2022.
763
+ [12] Qianli Feng, Viraj Shah, Raghudeep Gadde, Pietro Perona,
764
+ and Aleix Martinez.
765
+ Near perfect gan inversion.
766
+ arXiv
767
+ preprint arXiv:2202.11833, 2022.
768
+ [13] Anna Fr¨uhst¨uck, Krishna Kumar Singh, Eli Shechtman,
769
+ Niloy J Mitra, Peter Wonka, and Jingwan Lu. Insetgan for
770
+ full-body image generation. In Proceedings of the IEEE/CVF
771
+ Conference on Computer Vision and Pattern Recognition,
772
+ pages 7723–7732, 2022.
773
+ [14] Jianglin Fu, Shikai Li, Yuming Jiang, Kwan-Yee Lin, Chen
774
+ Qian, Chen Change Loy, Wayne Wu, and Ziwei Liu.
775
+ Stylegan-human: A data-centric odyssey of human genera-
776
+ tion. arXiv preprint arXiv:2204.11823, 2022.
777
+ [15] Lore Goetschalckx, Alex Andonian, Aude Oliva, and Phillip
778
+ Isola. Ganalyze: Toward visual definitions of cognitive im-
779
+ age properties. In Proceedings of the IEEE/CVF Interna-
780
+ tional Conference on Computer Vision, pages 5744–5753,
781
+ 2019.
782
+ [16] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
783
+ Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
784
+ Yoshua Bengio. Generative adversarial nets. Advances in
785
+ neural information processing systems, 27, 2014.
786
+ [17] Shanyan Guan, Ying Tai, Bingbing Ni, Feida Zhu, Feiyue
787
+ Huang, and Xiaokang Yang. Collaborative learning for faster
788
+ stylegan embedding.
789
+ arXiv preprint arXiv:2007.01758,
790
+ 2020.
791
+ [18] David Ha, Andrew Dai, and Quoc V Le. Hypernetworks.
792
+ arXiv preprint arXiv:1609.09106, 2016.
793
+ [19] Erik H¨ark¨onen, Aaron Hertzmann, Jaakko Lehtinen, and
794
+ Sylvain Paris. Ganspace: Discovering interpretable gan con-
795
+ trols. Advances in Neural Information Processing Systems,
796
+ 33:9841–9850, 2020.
797
+ [20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
798
+ Deep residual learning for image recognition. In Proceed-
799
+ ings of the IEEE conference on computer vision and pattern
800
+ recognition, pages 770–778, 2016.
801
+ [21] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
802
+ Bernhard Nessler, and Sepp Hochreiter. Gans trained by a
803
+ two time-scale update rule converge to a local nash equilib-
804
+ rium. Advances in neural information processing systems,
805
+ 30, 2017.
806
+ [22] Yuge Huang, Yuhan Wang, Ying Tai, Xiaoming Liu,
807
+ Pengcheng Shen, Shaoxin Li, Jilin Li, and Feiyue Huang.
808
+ Curricularface: adaptive curriculum learning loss for deep
809
+ face recognition.
810
+ In proceedings of the IEEE/CVF con-
811
+ ference on computer vision and pattern recognition, pages
812
+ 5901–5910, 2020.
813
+ [23] Ali Jahanian, Lucy Chai, and Phillip Isola. On the” steer-
814
+ ability” of generative adversarial networks. arXiv preprint
815
+ arXiv:1907.07171, 2019.
816
+ [24] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.
817
+ Progressive growing of gans for improved quality, stability,
818
+ and variation. arXiv preprint arXiv:1710.10196, 2017.
819
+ [25] Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine,
820
+ Jaakko Lehtinen, and Timo Aila. Training generative adver-
821
+ sarial networks with limited data. In Proc. NeurIPS, 2020.
822
+ [26] Tero Karras, Miika Aittala, Samuli Laine, Erik H¨ark¨onen,
823
+ Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Alias-free
824
+ generative adversarial networks. Advances in Neural Infor-
825
+ mation Processing Systems, 34:852–863, 2021.
826
+ [27] Tero Karras, Samuli Laine, and Timo Aila. A style-based
827
+ generator architecture for generative adversarial networks.
828
+ In Proceedings of the IEEE/CVF conference on computer vi-
829
+ sion and pattern recognition, pages 4401–4410, 2019.
830
+
831
+ [28] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,
832
+ Jaakko Lehtinen, and Timo Aila.
833
+ Analyzing and improv-
834
+ ing the image quality of stylegan.
835
+ In Proceedings of
836
+ the IEEE/CVF conference on computer vision and pattern
837
+ recognition, pages 8110–8119, 2020.
838
+ [29] Taewoo Kim, Chaeyeon Chung, Yoonseo Kim, Sunghyun
839
+ Park, Kangyeol Kim, and Jaegul Choo.
840
+ Style your
841
+ hair: Latent optimization for pose-invariant hairstyle trans-
842
+ fer via local-style-aware hair alignment.
843
+ arXiv preprint
844
+ arXiv:2208.07765, 2022.
845
+ [30] Diederik P Kingma and Jimmy Ba. Adam: A method for
846
+ stochastic optimization.
847
+ arXiv preprint arXiv:1412.6980,
848
+ 2014.
849
+ [31] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei.
850
+ 3d object representations for fine-grained categorization. In
851
+ Proceedings of the IEEE international conference on com-
852
+ puter vision workshops, pages 554–561, 2013.
853
+ [32] Christian Ledig, Lucas Theis, Ferenc Husz´ar, Jose Caballero,
854
+ Andrew Cunningham, Alejandro Acosta, Andrew Aitken,
855
+ Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-
856
+ realistic single image super-resolution using a generative ad-
857
+ versarial network. In Proceedings of the IEEE conference on
858
+ computer vision and pattern recognition, pages 4681–4690,
859
+ 2017.
860
+ [33] Zuoxin Li, Fuqiang Zhou, Lu Yang, Xiaojie Li, and Juan
861
+ Li.
862
+ Accelerate neural style transfer with super-resolution.
863
+ Multimedia Tools and Applications, 79(7):4347–4364, 2020.
864
+ [34] Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen,
865
+ Xiaodong Liu, Jianfeng Gao, and Jiawei Han. On the vari-
866
+ ance of the adaptive learning rate and beyond. arXiv preprint
867
+ arXiv:1908.03265, 2019.
868
+ [35] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang.
869
+ Deep learning face attributes in the wild. In Proceedings of
870
+ the IEEE international conference on computer vision, pages
871
+ 3730–3738, 2015.
872
+ [36] Gaurav Parmar, Yijun Li, Jingwan Lu, Richard Zhang, Jun-
873
+ Yan Zhu, and Krishna Kumar Singh. Spatially-adaptive mul-
874
+ tilayer selection for gan inversion and editing. In Proceed-
875
+ ings of the IEEE/CVF Conference on Computer Vision and
876
+ Pattern Recognition, pages 11399–11409, 2022.
877
+ [37] Or Patashnik, Zongze Wu, Eli Shechtman, Daniel Cohen-Or,
878
+ and Dani Lischinski. Styleclip: Text-driven manipulation of
879
+ stylegan imagery. In Proceedings of the IEEE/CVF Inter-
880
+ national Conference on Computer Vision, pages 2085–2094,
881
+ 2021.
882
+ [38] Hamza Pehlivan,
883
+ Yusuf Dalva,
884
+ and Aysegul Dundar.
885
+ Styleres: Transforming the residuals for real image editing
886
+ with stylegan. arXiv preprint arXiv:2212.14359, 2022.
887
+ [39] Antoine Plumerault, Herv´e Le Borgne, and C´eline Hude-
888
+ lot. Controlling generative models with continuous factors
889
+ of variations. arXiv preprint arXiv:2001.10238, 2020.
890
+ [40] KR Prajwal, Rudrabha Mukhopadhyay, Vinay P Nambood-
891
+ iri, and CV Jawahar. A lip sync expert is all you need for
892
+ speech to lip generation in the wild. In Proceedings of the
893
+ 28th ACM International Conference on Multimedia, pages
894
+ 484–492, 2020.
895
+ [41] Cao Pu, Lu Yang, Dongxv Liu, Zhiwei Liu, Wenguan Wang,
896
+ Shan Li, and Qing Song. Lsap: Rethinking inversion fidelity,
897
+ perception and editability in gan latent space. arXiv preprint
898
+ arXiv:2209.12746, 2022.
899
+ [42] Julien Rabin, Gabriel Peyr´e, Julie Delon, and Marc Bernot.
900
+ Wasserstein barycenter and its application to texture mixing.
901
+ In International Conference on Scale Space and Variational
902
+ Methods in Computer Vision, pages 435–446. Springer,
903
+ 2011.
904
+ [43] Elad Richardson, Yuval Alaluf, Or Patashnik, Yotam Nitzan,
905
+ Yaniv Azar, Stav Shapiro, and Daniel Cohen-Or. Encoding
906
+ in style: a stylegan encoder for image-to-image translation.
907
+ In Proceedings of the IEEE/CVF conference on computer vi-
908
+ sion and pattern recognition, pages 2287–2296, 2021.
909
+ [44] Daniel Roich, Ron Mokady, Amit H Bermano, and Daniel
910
+ Cohen-Or. Pivotal tuning for latent-based editing of real im-
911
+ ages. ACM Trans. Graph., 2021.
912
+ [45] Yujun Shen, Ceyuan Yang, Xiaoou Tang, and Bolei Zhou.
913
+ Interfacegan: Interpreting the disentangled face representa-
914
+ tion learned by gans. IEEE transactions on pattern analysis
915
+ and machine intelligence, 2020.
916
+ [46] Yujun Shen and Bolei Zhou. Closed-form factorization of
917
+ latent semantics in gans. In Proceedings of the IEEE/CVF
918
+ Conference on Computer Vision and Pattern Recognition,
919
+ pages 1532–1540, 2021.
920
+ [47] Nurit Spingarn-Eliezer, Ron Banner, and Tomer Michaeli.
921
+ Gan” steerability” without optimization.
922
+ arXiv preprint
923
+ arXiv:2012.05328, 2020.
924
+ [48] Jiaze Sun, Binod Bhattarai, Zhixiang Chen, and Tae-Kyun
925
+ Kim.
926
+ Secgan: Parallel conditional generative adversarial
927
+ networks for face editing via semantic consistency. arXiv
928
+ preprint arXiv:2111.09298, 2021.
929
+ [49] Omer Tov, Yuval Alaluf, Yotam Nitzan, Or Patashnik, and
930
+ Daniel Cohen-Or.
931
+ Designing an encoder for stylegan im-
932
+ age manipulation. ACM Transactions on Graphics (TOG),
933
+ 40(4):1–14, 2021.
934
+ [50] Andrey Voynov and Artem Babenko. Unsupervised discov-
935
+ ery of interpretable directions in the gan latent space.
936
+ In
937
+ International conference on machine learning, pages 9786–
938
+ 9796. PMLR, 2020.
939
+ [51] Binxu Wang and Carlos R Ponce.
940
+ The geometry of deep
941
+ generative image models and its applications. arXiv preprint
942
+ arXiv:2101.06006, 2021.
943
+ [52] Tengfei Wang, Yong Zhang, Yanbo Fan, Jue Wang, and
944
+ Qifeng Chen. High-fidelity gan inversion for image attribute
945
+ editing.
946
+ In Proceedings of the IEEE/CVF Conference on
947
+ Computer Vision and Pattern Recognition, pages 11379–
948
+ 11388, 2022.
949
+ [53] Xintao Wang, Yu Li, Honglun Zhang, and Ying Shan. To-
950
+ wards real-world blind face restoration with generative fa-
951
+ cial prior.
952
+ In Proceedings of the IEEE/CVF Conference
953
+ on Computer Vision and Pattern Recognition, pages 9168–
954
+ 9178, 2021.
955
+
956
+ [54] Tianyi Wei, Dongdong Chen, Wenbo Zhou, Jing Liao,
957
+ Weiming Zhang, Lu Yuan, Gang Hua, and Nenghai Yu.
958
+ E2style: Improve the efficiency and effectiveness of style-
959
+ gan inversion.
960
+ IEEE Transactions on Image Processing,
961
+ 31:3267–3280, 2022.
962
+ [55] Weihao Xia, Yulun Zhang, Yujiu Yang, Jing-Hao Xue, Bolei
963
+ Zhou, and Ming-Hsuan Yang.
964
+ Gan inversion: A survey.
965
+ IEEE Transactions on Pattern Analysis and Machine Intel-
966
+ ligence, 2022.
967
+ [56] Lu Yang, Wenhe Jia, Shan Li, and Qing Song. Deep learning
968
+ technique for human parsing: A survey and outlook. arXiv
969
+ preprint arXiv:2301.00394, 2023.
970
+ [57] Lu Yang, Zhiwei Liu, Tianfei Zhou, and Qing Song. Part
971
+ decomposition and refinement network for human parsing.
972
+ IEEE/CAA Journal of Automatica Sinica, 9(6):1111–1114,
973
+ 2022.
974
+ [58] Lu Yang, Qing Song, Zhihui Wang, Mengjie Hu, Chun Liu,
975
+ Xueshi Xin, Wenhe Jia, and Songcen Xu. Renovating pars-
976
+ ing r-cnn for accurate multiple human parsing. In European
977
+ Conference on Computer Vision, pages 421–437. Springer,
978
+ 2020.
979
+ [59] Lu Yang, Qing Song, Zhihui Wang, and Ming Jiang. Parsing
980
+ r-cnn for instance-level human analysis. In Proceedings of
981
+ the IEEE/CVF Conference on Computer Vision and Pattern
982
+ Recognition, pages 364–373, 2019.
983
+ [60] Lu Yang, Qing Song, Zhihui Wang, Zhiwei Liu, Songcen Xu,
984
+ and Zhihao Li. Quality-aware network for human parsing.
985
+ IEEE Transactions on Multimedia, 2022.
986
+ [61] Lu Yang, Qing Song, and Yingqi Wu.
987
+ Attacks on state-
988
+ of-the-art face recognition using attentional adversarial at-
989
+ tack generative network. Multimedia tools and applications,
990
+ 80(1):855–875, 2021.
991
+ [62] Lu Yang,
992
+ Qing Song,
993
+ Xueshi Xin,
994
+ and Zhiwei Liu.
995
+ Quality-aware network for face parsing.
996
+ arXiv preprint
997
+ arXiv:2106.07368, 2021.
998
+ [63] Shuai Yang, Liming Jiang, Ziwei Liu, and Chen Change
999
+ Loy. Pastiche master: Exemplar-based high-resolution por-
1000
+ trait style transfer. In Proceedings of the IEEE/CVF Con-
1001
+ ference on Computer Vision and Pattern Recognition, pages
1002
+ 7693–7702, 2022.
1003
+ [64] Fei Yin, Yong Zhang, Xiaodong Cun, Mingdeng Cao, Yanbo
1004
+ Fan, Xuan Wang, Qingyan Bai, Baoyuan Wu, Jue Wang,
1005
+ and Yujiu Yang.
1006
+ Styleheat: One-shot high-resolution ed-
1007
+ itable talking face generation via pretrained stylegan. arXiv
1008
+ preprint arXiv:2203.04036, 2022.
1009
+ [65] Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas
1010
+ Funkhouser, and Jianxiong Xiao. Lsun: Construction of a
1011
+ large-scale image dataset using deep learning with humans
1012
+ in the loop. arXiv preprint arXiv:1506.03365, 2015.
1013
+ [66] Michael Zhang, James Lucas, Jimmy Ba, and Geoffrey E
1014
+ Hinton.
1015
+ Lookahead optimizer:
1016
+ k steps forward, 1 step
1017
+ back. Advances in neural information processing systems,
1018
+ 32, 2019.
1019
+ [67] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shecht-
1020
+ man, and Oliver Wang. The unreasonable effectiveness of
1021
+ deep features as a perceptual metric. In Proceedings of the
1022
+ IEEE conference on computer vision and pattern recogni-
1023
+ tion, pages 586–595, 2018.
1024
+ [68] Yuxuan Zhang, Huan Ling, Jun Gao, Kangxue Yin, Jean-
1025
+ Francois Lafleche, Adela Barriuso, Antonio Torralba, and
1026
+ Sanja Fidler. Datasetgan: Efficient labeled data factory with
1027
+ minimal human effort.
1028
+ In Proceedings of the IEEE/CVF
1029
+ Conference on Computer Vision and Pattern Recognition,
1030
+ pages 10145–10155, 2021.
1031
+ [69] Yinglin Zheng, Hao Yang, Ting Zhang, Jianmin Bao,
1032
+ Dongdong Chen, Yangyu Huang, Lu Yuan, Dong Chen,
1033
+ Ming Zeng, and Fang Wen.
1034
+ General facial representa-
1035
+ tion learning in a visual-linguistic manner. arXiv preprint
1036
+ arXiv:2112.03109, 2021.
1037
+
2dFLT4oBgHgl3EQfqy9t/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
2tFQT4oBgHgl3EQf2jaP/content/tmp_files/2301.13424v1.pdf.txt ADDED
@@ -0,0 +1,1616 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ INRADIUS OF RANDOM LEMNISCATES
2
+ MANJUNATH KRISHNAPUR, ERIK LUNDBERG, AND KOUSHIK RAMACHANDRAN
3
+ ABSTRACT. A classically studied geometric property associated to a complex polynomial p is the
4
+ inradius (the radius of the largest inscribed disk) of its (filled) lemniscate Λ := {z ∈ C : |p(z)| < 1}.
5
+ In this paper, we study the lemniscate inradius when the defining polynomial p is random, namely,
6
+ with the zeros of p sampled independently from a compactly supported probability measure µ. If
7
+ the negative set of the logarithmic potential Uµ generated by µ is non-empty, then the inradius is
8
+ bounded from below by a positive constant with overwhelming probability. Moreover, the inradius
9
+ has a determinstic limit if the negative set of Uµ additionally contains the support of µ.
10
+ On the other hand, when the zeros are sampled independently and uniformly from the unit circle,
11
+ then the inradius converges in distribution to a random variable taking values in (0, 1/2).
12
+ We also consider the characteristic polynomial of a Ginibre random matrix whose lemniscate we
13
+ show is close to the unit disk with overwhelming probability.
14
+ 1. INTRODUCTION
15
+ Let p(z) be a polynomial of degree n and Λ be its (filled) lemniscate defined by Λ = {z : |p(z)| <
16
+ 1}. Denote by ρ(Λ) the inradius of Λ. By definition, this is the radius of the largest disk that is
17
+ completely contained in Λ. In this paper, we study the inradius of random lemniscates for various
18
+ models of random polynomials.
19
+ The lemniscate {z : |zn − 1| < 1} has an inradius asymptotically proportional to 1/n. In 1958, P.
20
+ Erd¨os, F. Herzog, and G. Piranian posed a number of problems [10] on geometric properties of
21
+ polynomial lemniscates. Concerning the inradius, they asked [10, Problem 3] whether the rate of
22
+ decay in the example {|zn − 1| = 1} is extremal, that is, whether there exists a positive constant C
23
+ such that for any monic polynomial of degree n, all of whose roots lie in the closed unit disk, the
24
+ inradius ρ of its lemniscate Λ satisfies ρ ≥ C
25
+ n . This question remains open. C. Pommerenke [33]
26
+ showed in this context that the inradius satisfies the lower bound ρ ≥
27
+ 1
28
+ 2e n2 .
29
+ Our results, which we state below in Sec. 1.4 of the Introduction, show within probabilistic set-
30
+ tings that the typical lemniscate admits a much better lower bound on its inradius. Namely, if the
31
+ zeros of p are sampled independently from a compactly supported measure µ whose logarithmic
32
+ potential has non-empty negative set, then the inradius of Λ is bounded below by a positive con-
33
+ stant with overwhelming probability, see Theorem 1.1 below. Let us provide some insight on this
34
+ result and explain why the logarithmic potential of µ plays an important role. First, the lemniscate
35
+ Λ can alternatively be described as the sublevel set { 1
36
+ n log |p(z)| < 0} of the discrete logarith-
37
+ mic potential 1
38
+ n log |p(z)| =
39
+ 1
40
+ n
41
+ � log |z − zk| where zk are the zeros of p(z). For fixed z the sum
42
+ 1
43
+ n
44
+ � log |z − zk| is a Monte-Carlo approximation for the integral defining the logarithmic potential
45
+ Uµ(z) of µ, and, in particular, it converges pointwise, by the law of large numbers, to Uµ(z). With
46
+ the use of large deviation estimates, we can further conclude that each z in the negative set Ω− of
47
+ Uµ is in Λ with overwhelming probability. The property of holding with overwhelming probabil-
48
+ ity survives (by way of a union bound) when taking an intersection of polynomially many such
49
+ events. This fact, together with a suitable uniform estimate for the derivative p′(z) (for which we
50
+ can use a Bernstein-type inequality), allows for a standard epsilon-net argument showing that an
51
+ 1
52
+ arXiv:2301.13424v1 [math.PR] 31 Jan 2023
53
+
54
+ 2
55
+ MANJUNATH KRISHNAPUR, ERIK LUNDBERG, AND KOUSHIK RAMACHANDRAN
56
+ arbitrary compact subset of Ω− is contained in Λ with overwhelming probability. Since Ω− is as-
57
+ sumed nonempty, this leads to the desired lower bound on the inradius, see the proof of Theorem
58
+ 1.1 in Section 3 for details.
59
+ Under an additional assumption that the negative set Ω− of the logarithmic potential of µ contains
60
+ the support of µ, the inradius converges to the inradius of Ω− almost surely, see Corollary 1.2; in
61
+ particular, the inradius has a deterministic limit.
62
+ On the other hand, for certain measures µ, the inradius does not have a deterministic limit and
63
+ rather converges in distribution to a nondegenerate random variable, see Theorem 1.5 addressing
64
+ the case when µ is uniform measure on the unit circle. We also consider the lemniscate associated
65
+ to the characteristic polynomial of a random matrix sampled from the Ginibre ensemble, and we
66
+ show that the inradius is close to unity (in fact the whole lemniscate is close to the unit disk) with
67
+ overwhelming probability, see Theorem 1.6.
68
+ See Section 1.4 below for precise statements of these results along with some additional results
69
+ giving further insight on the geometry of Λ.
70
+ 1.1. Previous results on random lemniscates. The current paper fits into a series of recent stud-
71
+ ies investigating the geometry and topology of random lemniscates. Let us summarize previous
72
+ results in this direction. We note that the lemniscates studied in the results cited below, in contrast
73
+ to the filled lemniscates of the current paper, are level sets (as opposed to sublevel sets).
74
+ Partly motivated to provide a probabilistic counterpart to the Erd¨os lemniscate problem on the
75
+ extremal length of lemniscates [10], [5], [11], [12], the second and third authors in [23] studied the
76
+ arclength and topology of a random polynomial lemniscate in the plane. When the polynomial has
77
+ i.i.d. Gaussian coefficients, it is shown in [23] that the average length of its lemniscate approaches
78
+ a constant. They also showed that with high probability the length is bounded by a function with
79
+ arbitrarily slow rate of growth, which means that the length of a lemniscate typically satisfies a
80
+ much better estimate than the extremal case. It is also shown in [23] that the number of connected
81
+ components of the lemniscate is asymptotically n (the degree of the defining polynomial) with
82
+ high probability, and there is at least some fixed positive probability of the existence of a “giant
83
+ component”, that is, a component having at least some fixed positive length. Of relevance to the
84
+ focus of the current paper, we note that the proof of the existence of the giant component in [23]
85
+ shows that for a fixed 0 < r < 1, there is a positive probability that the inradius ρ of the lemniscate
86
+ satisfies the lower bound ρ > r.
87
+ Inspired by Catanese and Paluszny’s topological classification [7] of generic polynomials (in terms
88
+ of the graph of the modulus of the polynomial with equivalence up to diffeomorphism of the do-
89
+ main and range), in [9] the second author with M. Epstein and B. Hanin studied the so-called
90
+ lemniscate tree associated to a random polynomial of degree n. The lemniscate tree of a poly-
91
+ nomial p is a labelled, increasing, binary, nonplane tree that encodes the nesting structure of the
92
+ singular components of the level sets of the modulus |p(z)|. When the zeros of p are i.i.d. sam-
93
+ pled uniformly at random according to a probability density that is bounded with respect to Haar
94
+ measure on the Riemann sphere, it is shown in [9] that the number of branches (nodes with two
95
+ children) in the induced lemniscate tree is o(n) with high probability, whereas a lemniscate tree
96
+ sampled uniformly at random from the combinatorial class has asymptotically
97
+
98
+ 1 − 2
99
+ π
100
+
101
+ n many
102
+ branches on average.
103
+ In [21], partly motivated by a known result [11], [43]) stating that the maximal length of a rational
104
+ lemniscate on the Riemann sphere is 2πn, the second author with A. Lerario studied the geometry
105
+ of a random rational lemniscate and showed that the average length on the Riemann sphere is
106
+
107
+ INRADIUS OF RANDOM LEMNISCATES
108
+ 3
109
+ asymptotically π2
110
+ 2
111
+ √n. Topological properties (the number of components and their nesting struc-
112
+ ture) were also considered in [21], where the number of connected components was shown to
113
+ be asymptotically bounded above and below by positive constants times n. Z. Kabluchko and I.
114
+ Wigman subsequently established an asymptotic limit law for the number of connected compo-
115
+ nents in [16] by adapting a method of F. Nazarov and M. Sodin [28] using an integral geometry
116
+ sandwich and ergodic theory applied to a translation-invariant ensemble of planar meromorphic
117
+ lemniscates obtained as a scaling limit of the rational lemniscate ensemble.
118
+ 1.2. Motivation for the study of lemniscates. The study of lemniscates has a long and rich history
119
+ with a wide variety of applications. The problem of computing the length of Bernoulli’s lemnis-
120
+ cate played a role in the early study of elliptic integrals [1]. Hilbert’s lemniscate theorem and its
121
+ generalizations [26] show that lemniscates can be used to approximate rather arbitrary domains,
122
+ and this density property contributes to the importance of lemniscates in many of the applications
123
+ mentioned below. In some settings, sequences of approximating lemniscates arise naturally for ex-
124
+ ample in holomorphic dynamics [25, p. 159], where it is simple to construct a nested sequence of
125
+ “Mandelbrot lemniscates” that converges to the Madelbrot set. In the classical inverse problem of
126
+ logarithmic potential theory—to recover the shape of a two-dimensional object with uniform mass
127
+ density from the logarithmic potential it generates outside itself—uniqueness has been shown to
128
+ hold for lemniscate domains [37]. This is perhaps surprising in light of Hilbert’s lemniscate the-
129
+ orem and the fact that the inverse potential problem generally suffers from non-uniqueness [40].
130
+ Since lemniscates are real algebraic curves with useful connections to complex analysis, they have
131
+ frequently received special attention in studies of real algebraic curves, for instance in the study of
132
+ the topology of real algebraic curves [7], [2]. Leminscates such as the Arnoldi lemniscate appear
133
+ in applications in numerical analysis [39]. Lemniscates have seen applications in two-dimensional
134
+ shape compression, where the “fingerprint” of a shape constructed from conformal welding sim-
135
+ plifies to a particularly convenient form—namely the nth root of a Blaschke product—in the case
136
+ the two-dimensional shape is assumed to be a degree-n lemniscate [8], [44], [35]. Lemniscates have
137
+ appeared in studies of moving boundary problems of fluid dynamics [18], [24], [19]. In the study
138
+ of planar harmonic mappings, rational lemniscates arise as the critical sets of harmonic polyno-
139
+ mials [17], [22] as well as critical sets of lensing maps arising in the theory of gravitational lensing
140
+ [30, Sec. 15.2.2]. Lemniscates also have appeared prominently in the theory and application of
141
+ conformal mapping [3], [15], [13]. See also the recent survey [36] which elaborates on some of the
142
+ more recent of the above mentioned lines of research.
143
+ 1.3. Definitions and Notation. Throughout the paper, µ will denote a Borel probability measure
144
+ with compact support S ⊂ C. The logarithmic potential of µ is defined by
145
+ Uµ(z) =
146
+
147
+ S
148
+ log |z − w|dµ(w).
149
+ It is well known that Uµ is a subharmonic function in the plane, and harmonic in C \ S. For such
150
+ µ, we denote the associated negative and positive sets of its potential by
151
+ Ω− = {z ∈ C : Uµ(z) < 0}, Ω+ = {z ∈ C : Uµ(z) > 0}.
152
+ It is easy to see that Ω− is a (possibly empty) bounded open set.
153
+ Assumptions on the measure. Let µ be a Borel probability measure with compact support S ⊂ C.
154
+ We define the following progressively stronger conditions on µ.
155
+ (A) For each compact K ⊂ C,
156
+ C(K) = sup
157
+ z∈K
158
+
159
+ S
160
+ (log |z − w|)2 dµ(w) < ∞.
161
+
162
+ 4
163
+ MANJUNATH KRISHNAPUR, ERIK LUNDBERG, AND KOUSHIK RAMACHANDRAN
164
+ (B) There is some C < ∞ and ε > 0 such that for all z ∈ C and all r ≤ 1, we have
165
+ µ (B(z, r)) ≤
166
+ C
167
+ (log(1/r))2+ε .
168
+ (C) There exists δ > 0 such that
169
+ sup
170
+ z∈C
171
+
172
+ S
173
+ dµ(w)
174
+ |z − w|δ < ∞.
175
+ (D) There is some C < ∞ and ε > 0 such that for all z ∈ C and all r > 0, we have
176
+ µ (B(z, r)) ≤ Crε.
177
+ 1.4. Main results. In all theorems (except Theorem 1.6), we have the following setting:
178
+ Setting: µ is a compactly supported probability measure on C with support S. The random
179
+ variables Xi are i.i.d. from the distribution µ. We consider the random polynomial pn(z) :=
180
+ (z − X1) . . . (z − Xn) and its lemniscate Λn := {z
181
+ : |pn(z)| < 1}. We write ρn = ρ(Λn) for the
182
+ inradius of Λn.
183
+ Throughout the paper, w.o.p. means with overwhelming probability, i.e., with probability at least
184
+ 1 − e−cn for some c > 0.
185
+ The theorems below concern the random lemniscate Λn. Observe that Λn consists of all z for which
186
+ log |pn(z)| < 0, or what is the same,
187
+ 1
188
+ n
189
+ n
190
+
191
+ k=1
192
+ log |z − Xk| < 0.
193
+ By the law of large numbers, the quantity on the left converges to Uµ(z) pointwise. Hence we
194
+ may expect the asymptotic behaviour of Λn to be described in terms of Uµ and its positive and
195
+ negative sets Ω+, Ω−. The first three theorems make this precise under different conditions on the
196
+ underlying measure µ.
197
+ Theorem 1.1. Assume that µ satisfies assumption (A). Suppose that Ω− ̸= ∅ and let ρ = ρ(Ω−). Fix
198
+ compact sets K ⊂ Ω−, and L ⊂ Ω+ \ S. Then for all large n,
199
+ K ⊂ Λn,
200
+ w.o.p.,
201
+ and
202
+ L ⊂ Λc
203
+ n
204
+ w.o.p.
205
+ In particular, if ρn denotes the inradius of Λn, then
206
+ ρn ≥ a
207
+ w.o.p.,
208
+ ∀a ∈ (0, ρ)
209
+ Corollary 1.2. In the setting of Theorem 1.1, lim inf ρn ≥ ρ a.s. Further, if S ⊆ Ω−, then ρn → ρ a.s.
210
+ Ideally, we would have liked to say that a compact set L ⊆ Ω+ is contained inside Λc
211
+ n w.o.p.
212
+ However, this is clearly not true if some of the roots fall inside L. Making the stronger assumption
213
+ (D) on the measure and further assuming that Uµ is bounded below by a positive number on L,
214
+ we show that L is almost entirely contained in Λc
215
+ n.
216
+ Theorem 1.3. Let µ satisfy assumption (D). Let L be a compact subset of {Uµ ≥ m} for some m > 0.
217
+ Then there exists c0 > 0 such that
218
+ Λn ∩ L ⊂
219
+ n�
220
+ k=1
221
+ B(Xk, e−c0n),
222
+ w.o.p.
223
+
224
+ INRADIUS OF RANDOM LEMNISCATES
225
+ 5
226
+ In particular, if Uµ ≥ m everywhere, then the whole lemniscate is small. It suffices to assume that
227
+ Uµ ≥ m on the support of µ, by the minimum principle for potentials (Theorem 3.1.4 in [34]).
228
+ Corollary 1.4. Suppose µ satisfies assumption (D) and Uµ ≥ m on S. Then there is a c0 > 0 such that
229
+ Λn ⊂ �n
230
+ k=1 B(Xk, e−c0n) and ρn ≤ ne−c0n w.o.p.
231
+ A class of examples illustrating Theorem 1.1 and Theorem 1.3 is given at the end of the section.
232
+ What happens when the potential Uµ vanishes on a non-empty open set? In this case log |pn| has
233
+ zero mean, and is (approximately) equally likely to be positive or negative. Because of this, one
234
+ may expect that the randomness in Λn and ρn persists in the limit and we can at best hope for a
235
+ convergence in distribution. The particular case when µ is uniform on the unit circle is dealt with
236
+ in the following theorem.
237
+ Theorem 1.5. Let µ be the uniform probability measure on S1, the unit circle in the complex plane. Then,
238
+ ρn
239
+ d→ ρ for some random variable ρ taking values in (0, 1
240
+ 2). Further, P{ρ < ε} > 0 and P{ρ > 1
241
+ 2 − ε} > 0
242
+ for every ε > 0.
243
+ As shown in the proof of Theorem 1.5, the random function log |pn(z)| converges, after appropri-
244
+ ate normalization, almost surely to a nondegenerate Gaussian random function on D, and this
245
+ convergence underlies the limiting random inradius ρ. We note that similar methods can be used
246
+ to study other measures µ for which Uµ vanishes on non-empty open set (such as other instances
247
+ where µ is the equilibrium measure of a region with unit capacity), however the case of the uni-
248
+ form measure on the circle is rather special, as the resulting random function log |pn(z)| as well as
249
+ its limiting Gaussian random function has a deterministic zero at the origin (which is responsible
250
+ for the limiting inradius taking values only up to half the radius of D.
251
+ Another setting where one can rely on convergence of the defining function log |pn(z)| is in the
252
+ case when the polynomial pn has i.i.d. Gaussian coefficients. Actually, the convergence in this
253
+ case is more transparent (and does not require additional tools such as Skorokhod’s Theorem) as
254
+ pn can already be viewed as the truncation of a power series with i.i.d. coefficients. This case has
255
+ a similar outcome as in Theorem 1.5, except the value 1/2 is replaced by 1 due to the absence of a
256
+ deterministic zero.
257
+ One can ask for results analogous to Theorems 1.1 and 1.3 when the zeros are dependent random
258
+ variables. A natural class of examples are determinantal point processes. We consider one special
259
+ case here.
260
+ The Ginibre ensemble is a random set of n points in C with joint density proportional to
261
+ e− �n
262
+ k=1 |λk|2 �
263
+ j<k
264
+ |λj − λk|2.
265
+ (1)
266
+ This arises in random matrix theory, as the distribution of eigenvalues of an n × n random matrix
267
+ whose entries are i.i.d. standard complex Gaussian. After scaling by √n, the empirical distribu-
268
+ tions
269
+ (2)
270
+ µn = 1
271
+ n
272
+ n
273
+
274
+ j=1
275
+ δ λj
276
+ √n
277
+ converge to the uniform measure on D. Hence, we may expect the lemniscate of the corresponding
278
+ polynomial to be similar to the case when the roots are sampled independently and uniformly
279
+ from D.
280
+
281
+ 6
282
+ MANJUNATH KRISHNAPUR, ERIK LUNDBERG, AND KOUSHIK RAMACHANDRAN
283
+ Theorem 1.6. Let λ1, . . . , λn have joint density given by (1) and let Xj =
284
+ λj
285
+ √n. Let Λn be the unit
286
+ lemniscate of the random polynomial pn(z) = �n
287
+ k=1(z − Xk). Given r ∈ (0, 1) and s ∈ (1, ∞), we have
288
+ for large n,
289
+ Dr ⊆ Λn ⊆ Ds,
290
+ w.o.p.
291
+ Example 1.7. Let µr be the normalized area measure on the disk rD and suppose the roots are
292
+ sampled from µr. It is easy to check that µr satisfies assumptions (A) − (D). We claim that
293
+ (3)
294
+ Uµr(z) =
295
+
296
+ |z|2−r2
297
+ 2r2
298
+ + log r
299
+ if |z| < r,
300
+ log |z|
301
+ if |z| ≥ r.
302
+ Therefore, Ω− = rcD where
303
+ rc =
304
+
305
+
306
+
307
+
308
+
309
+ 1
310
+ if r ≤ 1,
311
+ r√1 − 2 log r
312
+ if 1 ≤ r ≤ √e,
313
+ 0
314
+ if r ≥ √e.
315
+ Hence Theorem 1.1 implies that when r < √e, any disk Ds with radius s < rc is contained in Λn
316
+ with overwhelming probability as n → ∞. When r ≤ 1, Corollary 1.2 implies that Λn is almost
317
+ the same as Ω− = D. For r > √e, Theorem 1.3 applies to show that Λn is contained in a union of
318
+ very small disks.
319
+ Let us carry out the computations to verify (3). By rescaling, it is clear that Uµr(z) = log r +
320
+ Uµ1(z/r), hence it suffices to consider r = 1.
321
+ Uµ1(z) = 1
322
+ π
323
+
324
+ D
325
+ log |z − w|dA(w).
326
+ For |z| ≥ 1, the integrand is harmonic with respect to w ∈ D, hence Uµ(z) = log |z| by the mean-
327
+ value theorem. For |z| < 1, we separate the integral over the two regions where |w| < |z| and
328
+ |w| > |z|. Harmonicity of w �→ log |z − w| on {|w| < |z|} and the mean-value property gives
329
+
330
+ |w|<|z|
331
+ log |z − w|dA(w) = π|z|2 log |z|.
332
+ We switch to polar coordinates w = reiθ for the second integral.
333
+ � 1
334
+ |z|
335
+ � 2π
336
+ 0
337
+ log |z − reiθ|rdθdr =
338
+ � 1
339
+ |z|
340
+ � 2π
341
+ 0
342
+ log |ze−iθ − r|dθ
343
+
344
+ ��
345
+
346
+ 2π log r
347
+ rdr
348
+ =
349
+ � 1
350
+ |z|
351
+ 2πr log rdr
352
+ = 2π
353
+ �1
354
+ 4 − |z|2
355
+ 2 log |z| + |z|2
356
+ 4
357
+
358
+ ,
359
+ where we have again used the mean value property (this time over a circle) for harmonic functions
360
+ to compute the inside integral in the first line above. Combining these integrals over the two
361
+ regions and dividing by π we arrive at (3).
362
+
363
+ INRADIUS OF RANDOM LEMNISCATES
364
+ 7
365
+ FIGURE 1. Lemniscates of degree n = 30, 40, 400, 15 with zeros sampled uniformly
366
+ from the disks of radii 0.5, 1, 1.5, 1.7 (order: from top-left to bottom-right). The
367
+ dotted circle has radius rc.
368
+ -1.5
369
+ -1.0
370
+ -0.5
371
+ 0.0
372
+ 0.5
373
+ 1.0
374
+ 1.5
375
+ -1.5
376
+ -1.0
377
+ -0.5
378
+ 0.0
379
+ 0.5
380
+ 1.0
381
+ 1.5
382
+ -1.5
383
+ -1.0
384
+ -0.5
385
+ 0.0
386
+ 0.5
387
+ 1.0
388
+ 1.5
389
+ -1.5
390
+ -1.0
391
+ -0.5
392
+ 0.0
393
+ 0.5
394
+ 1.0
395
+ 1.5
396
+ -1.5
397
+ -1.0
398
+ -0.5
399
+ 0.0
400
+ 0.5
401
+ 1.0
402
+ 1.5
403
+ -1.5
404
+ -1.0
405
+ -0.5
406
+ 0.0
407
+ 0.5
408
+ 1.0
409
+ 1.5
410
+ FIGURE 2. Lemniscates of degree n = 20, 30, 40 with zeros sampled uniformly
411
+ from the unit circle. A unit circle is also plotted for reference in each case.
412
+ Outline of the paper. We review some preliminary results in Section 2 that serve as tools in the
413
+ proofs the results stated above. We prove Theorem 1.1 and Corollary 1.2 in Section 3, and we
414
+ prove Theorem 1.3 and Corollary 1.4 in Section 4. The proof of Theorem 1.5, concerning uniform
415
+ measure on the circle, is presented in Section 5, and Theorem 1.6, related to the Ginibre ensemble,
416
+ is proved in Section 6.
417
+ 2. PRELIMINARY RESULTS
418
+ We start with two preparatory lemmas which we use repeatedly in the proofs of our theorems.
419
+ Lemma 2.1. Let µ be a Borel probability measure with compact support S ⊂ C satisfying Assumption
420
+ (A). Whenever K is a non-empty compact subset of Ω− or a compact subset of Ω+ with K ∩ S = ∅, there
421
+
422
+ 1.0
423
+ 1.0
424
+ 0.5
425
+ 0.5
426
+ 0.0
427
+ 0.0
428
+ -0.5
429
+ 0.5
430
+ -1.0
431
+ 1.0
432
+ 1.0
433
+ 0.5
434
+ 0.0
435
+ 0.5
436
+ 1.0
437
+ 1.0
438
+ 0.5
439
+ 0.0
440
+ 0.5
441
+ 1.0
442
+ 1.0
443
+ 1.0F
444
+ 0.5
445
+ 0.5
446
+ 0.0
447
+ 0.0F
448
+ -0.5
449
+ 0.5
450
+ ..
451
+ 1.0
452
+ 1.0
453
+ 1.0
454
+ 0.5
455
+ 0.0
456
+ 0.5
457
+ 1.0
458
+ 1.0
459
+ 0.5
460
+ 0.0
461
+ 0.5
462
+ 1.08
463
+ MANJUNATH KRISHNAPUR, ERIK LUNDBERG, AND KOUSHIK RAMACHANDRAN
464
+ -1.0
465
+ -0.5
466
+ 0.0
467
+ 0.5
468
+ 1.0
469
+ -1.0
470
+ -0.5
471
+ 0.0
472
+ 0.5
473
+ 1.0
474
+ -1.0
475
+ -0.5
476
+ 0.0
477
+ 0.5
478
+ 1.0
479
+ -1.0
480
+ -0.5
481
+ 0.0
482
+ 0.5
483
+ 1.0
484
+ -1.0
485
+ -0.5
486
+ 0.0
487
+ 0.5
488
+ 1.0
489
+ -1.0
490
+ -0.5
491
+ 0.0
492
+ 0.5
493
+ 1.0
494
+ FIGURE 3. Lemniscates of degree n = 20, 30, 40 with i.i.d. Gaussian coefficients
495
+ plotted together with a unit circle for reference.
496
+ -1.5
497
+ -1.0
498
+ -0.5
499
+ 0.0
500
+ 0.5
501
+ 1.0
502
+ 1.5
503
+ -1.5
504
+ -1.0
505
+ -0.5
506
+ 0.0
507
+ 0.5
508
+ 1.0
509
+ 1.5
510
+ -1.5
511
+ -1.0
512
+ -0.5
513
+ 0.0
514
+ 0.5
515
+ 1.0
516
+ 1.5
517
+ -1.5
518
+ -1.0
519
+ -0.5
520
+ 0.0
521
+ 0.5
522
+ 1.0
523
+ 1.5
524
+ -1.5
525
+ -1.0
526
+ -0.5
527
+ 0.0
528
+ 0.5
529
+ 1.0
530
+ 1.5
531
+ -1.5
532
+ -1.0
533
+ -0.5
534
+ 0.0
535
+ 0.5
536
+ 1.0
537
+ 1.5
538
+ FIGURE 4. Lemniscates of degree n = 20, 30, 40 generated by the characteristic
539
+ polynomial of a Ginibre matrix together with a unit circle plotted for reference.
540
+ exists a constant c(K) > 0 such that
541
+ inf
542
+ z∈K
543
+
544
+ S
545
+ (log |z − w|)2 dµ(w) ≥ c(K).
546
+ Proof. Let µ satisfy assumption (A), and let K ̸= ∅ be compact. Then, by the Cauchy-Schwarz
547
+ inequality we have for all z ∈ K
548
+
549
+ S
550
+ (log |z − w|)2 dµ(w) ≥
551
+ ��
552
+ S
553
+ |log |z − w|| dµ(w)
554
+ �2
555
+ ≥ |Uµ(z)|2
556
+ Thus in order to prove the lemma, it suffices to show that |Uµ(z)|2 is bounded away from zero for
557
+ z ∈ K, whenever K ⊂ Ω−, or K ⊂ Ω+ and K ∩ S = ∅.
558
+ Suppose first that K ⊂ Ω− is compact. Since subharmonic functions are upper semi-continuous
559
+ and hence attain a maximum on any compact set, there exists c1(K) > 0 such that Uµ(z) ≤
560
+ −c1(K), for all z ∈ K. Hence |Uµ(z)|2 ≥ c1(K)2, for z ∈ K. In the other case, let K ⊂ Ω+ be
561
+ compact and disjoint from the support S of µ. Notice then that Uµ(z) is positive and harmonic
562
+ on K. An application of Harnack’s inequality now gives the existence of the required constant
563
+ (depending only on K). This concludes the proof of the lemma.
564
+
565
+ The second lemma is based on a net argument which allows us to control the size of the modulus
566
+ of a polynomial by its values at the points of the net.
567
+
568
+ INRADIUS OF RANDOM LEMNISCATES
569
+ 9
570
+ Lemma 2.2. Let G be a bounded Jordan domain with rectifiable boundary. Let p(z) be a polynomial of
571
+ degree n. Then, there exists a constant C = C(G) > 0, and points w1, w2...wCn2 ∈ ∂G such that
572
+ (4)
573
+ ∥p∥∂G ≤ 2
574
+ max
575
+ 1≤k≤Cn2 |p(wk)|
576
+ Proof. The key to the proof is a Bernstein-type inequality (see [32, Thm. 1])
577
+ (5)
578
+ |p′(z)| ≤ C1n2M,
579
+ where M := ∥p∥∂G, and C1 is a constant that depends only on G. With this estimate in hand, the
580
+ proof reduces to the following argument that is well-known but which we nevertheless present in
581
+ detail for the reader’s convenience. Let ℓ = ℓ(∂G) denote the length of ∂G. Let N be a positive
582
+ integer to be specified later. Divide ∂G into N pieces of equal length, with w0, w1..., wN denoting
583
+ the points of subdivision. Let z0 ∈ ∂G be such that M = ∥p∥∂G = |p(z0)|. If z0 is one of the wj,
584
+ then the estimate (4) clearly holds. If that is not the case, then z0 lies |z0 −wj| ≤ ℓ
585
+ N , for some j with
586
+ 0 ≤ j ≤ N. We can now write
587
+ (6)
588
+ M − |p(wj)| ≤ |p(z0) − p(wj)| =
589
+ �����
590
+ � z0
591
+ wj
592
+ p′(t)dt
593
+ ����� ≤ C1n2M ℓ
594
+ N .
595
+ Here we have used the Bernstein-type inequality (5) to estimate the size of |p′|. If we now choose
596
+ N = 2ℓC1n2, then the estimate (6) becomes
597
+ M − |p(wj)| ≤ M
598
+ 2
599
+ which concludes the proof of the lemma.
600
+
601
+ We will also need the following concentration inequality (see Section 2.7 of [6]). This result, re-
602
+ ferred to as “Bennett’s inequality”, is similar to the well-known Hoeffding inequality, but note
603
+ that, instead of being bounded, the random variables are merely assumed to be bounded from
604
+ above.
605
+ Theorem 2.3 (Bennett’s inequality). Let X1, X2, ..., Xn be independent random variables with finite
606
+ variance such that Xi ≤ b for some b > 0 almost surely for all i ≤ n. Let
607
+ S =
608
+ n
609
+
610
+ i=1
611
+ (Xi − E(Xi))
612
+ and ν = �n
613
+ i=1 E(X2
614
+ i ). Then for any t > 0,
615
+ P(S > t) ≤ exp
616
+ �−ν
617
+ b2 h
618
+ �bt
619
+ ν
620
+ ��
621
+ ,
622
+ where h(u) = (1 + u) log(1 + u) − u for u > 0.
623
+ 3. PROOFS OF THEOREM 1.1 AND COROLLARY 1.2
624
+ Proof of Theorem 1.1. We divide the proof into two steps.
625
+ Step 1: Compact subsets of Ω− lie in Λn
626
+ By our hypothesis Ω− ̸= ∅. Let K ⊂ Ω− be compact. We wish to show that K ⊂ Λn w.o.p. We
627
+ may assume without loss of generality that K = G for some bounded Jordan domain G with
628
+
629
+ 10
630
+ MANJUNATH KRISHNAPUR, ERIK LUNDBERG, AND KOUSHIK RAMACHANDRAN
631
+ rectifiable boundary, since any connected compact is contained such a domain. Recall that Λn =
632
+ {z : log |pn(z)| < 0}. Writing
633
+ log |pn(z)| =
634
+ n
635
+
636
+ k=1
637
+ log |z − Xk|
638
+ as a sum of i.i.d. random variables, for z ∈ Ω− we will use a concentration inequality to show that
639
+ log |pn(z)| is negative with overwhelming probability. We then use lemma 2.2 to get a uniform
640
+ estimate on K and finish the proof.
641
+ Fix z0 ∈ K. For k = 1, 2, ..., n, define Yk = log |z0 − Xk|, and let
642
+ Z :=
643
+ n
644
+
645
+ k=1
646
+ (Yk − EYk).
647
+ Notice since z0 ∈ Ω−
648
+ EYk = Uµ(z0) < 0
649
+ and by the assumption in the statement of the theorem, we also have
650
+ σ2
651
+ z0 := EY 2
652
+ k =
653
+
654
+ S
655
+ (log |z0 − u|)2dµ(u) < ∞
656
+ Now applying Theorem 2.3 to our problem with b ≥ supz∈K,w∈S log(|z|+|w|), ν = nσ2
657
+ z0, we obtain
658
+ P{log |pn(z0)| > − log(2)} = P{log |pn(z0)| − nUµ(z0) > −nUµ(z0) − log(2)}
659
+ = P{Z > −nUµ(z0) − log(2)}
660
+ ≤ exp
661
+
662
+ −nσ2
663
+ z0
664
+ b2 h
665
+ � −b
666
+ σ2z0
667
+ Uµ(z0) − b log(2)
668
+ nσ2z0
669
+ ��
670
+ .
671
+ Since subharmonic functions are upper semi-continuous and hence attain a maximum on any
672
+ compact set, we have, Uµ(z) ≤ −M for all z ∈ K and some M > 0. Also, by Lemma 2.1, 0 <
673
+ c1(K) ≤ σ2
674
+ z ≤ c2(K) < ∞, for all z ∈ K. This bound together with the fact that h is an increasing
675
+ function can now be used in the above estimate to get
676
+ (7)
677
+ P{log |pn(z0)| > − log(2)} ≤ exp
678
+
679
+ −nσ2
680
+ z0
681
+ b
682
+ h
683
+ � −b
684
+ σ2z0
685
+ Uµ(z0) − b log(2)
686
+ nσ2z0
687
+ ��
688
+ ≤ exp (−cn)
689
+ for some constant c = c(K) > 0 depending only on K. Using lemma 2.2 in combination with a
690
+ union bound and the estimate (7), we obtain
691
+ P{log ∥pn∥K < 0} ≥ P{
692
+ max
693
+ 1≤k≤Cn2 log |pn(wk,n)| + log(2) < 0}
694
+ = 1 − P{
695
+ max
696
+ 1≤k≤Cn2 log |pn(wk,n)| > − log(2)}
697
+ = 1 − P
698
+
699
+
700
+ Cn2
701
+
702
+ k=1
703
+ {log |pn(wk,n)| > − log(2)}
704
+
705
+
706
+ ≥ 1 − Cn2 exp (−cn)
707
+ where in the last inequality we used (7). This proves that K ⊂ Λn w.o.p. and concludes the proof
708
+ of the first part.
709
+
710
+ INRADIUS OF RANDOM LEMNISCATES
711
+ 11
712
+ Step 2: Compact subsets L of Ω+ \ S are in Λc
713
+ n.
714
+ Without loss of generality, we may assume that L is a closed disc in Ω+ \ S. Since S is a compact
715
+ set disjoint from L, there exists δ > 0 such that the distance d(L, S) = δ. Notice that for all z ∈ L,
716
+ we have − log |z − Xi| ≤ − log δ. Now fix z0 ∈ L. An application of Bennett’s inequality to the
717
+ random variables − log |z0 − Xi| yields,
718
+ (8)
719
+ P (− log |pn(z0)| + nUµ(z0) ≥ nUµ(z0) − 1) ≤ exp
720
+
721
+ −nσ2
722
+ z0
723
+ b
724
+ h
725
+ � b
726
+ σ2z0
727
+ Uµ(z0) −
728
+ b
729
+ nσ2z0
730
+ )
731
+ ��
732
+ .
733
+ The quantities b, h have an analogous meaning as in Step 1. By Lemma 2.1, σ2
734
+ z is bounded below,
735
+ and by assumption it is also bounded above, by some positive constants depending only on L.
736
+ Furthermore, Lemma 2.1 shows that Uµ(z) ≥ c(L) > 0 for all z ∈ L. Making use of all this in (8),
737
+ we can now estimate
738
+ P (log |pn(z0)| > 1) = P (log |pn(z0)| − nUµ(z0) > −nUµ(z0) + 1)
739
+ = 1 − P (log |pn(z0)| − nUµ(z0) ≤ −nUµ(z0) + 1)
740
+ = 1 − P (− log |pn(z0)| + nUµ(z0) ≥ nUµ(z0) − 1)
741
+ ≥ 1 − exp
742
+
743
+ −nσ2
744
+ z0
745
+ b
746
+ h
747
+ �bUµ(z0)
748
+ σ2z0
749
+
750
+ b
751
+ nσ2z0
752
+ ��
753
+ ≥ 1 − exp (−C0(L)n) .
754
+ (9)
755
+ This estimate shows that individual points of L are in Λc
756
+ n with overwhelming probability. To finish
757
+ the proof, we once again use a net argument to show that L ⊂ Λc
758
+ n w.o.p. We first observe that if
759
+ z, w ∈ L, and X is one of the Xk’s, the mean value theorem gives
760
+ | log |z − X| − log |w − X|| ≤ |z − w|
761
+ δ
762
+ ,
763
+ where we have used that d(L, S) = δ > 0 (and that L is a disk). The triangle inequality then yields
764
+ (10)
765
+ | log |pn(z)| − log |pn(w)|| ≤ n|z − w|
766
+ δ
767
+ ,
768
+ for z, w ∈ L.
769
+ Choose a net of n2 equally spaced points w1, w2, ...wn2 on ∂L, and note that any point on ∂L is
770
+ within C1/n2 of some point in the net, where C1 is a constant depending on the radius of L. From
771
+ (10) we have that
772
+ (11)
773
+ | log |pn(z)| − log |pn(w)|| ≤ C2
774
+ n ,
775
+ for z, w ∈ L with |z − w| ≤ C1
776
+ n2 ,
777
+ where C2 = C1/δ is a constant.
778
+ We are now ready to show that for large n, infz∈L log |pn(z)| > 0 w.o.p. Indeed, note that the point
779
+ on ∂L where the infimum of log |pn| is attained must be within C1/n2 of some point in the net
780
+ {w1, w2..., wn2}. Then by (11),
781
+ P
782
+
783
+ inf
784
+ L log |pn(z)| > 0
785
+
786
+ ≥ P
787
+
788
+
789
+ n2
790
+
791
+ k=1
792
+ {log |pn(wk)| > 1}
793
+
794
+ � .
795
+
796
+ 12
797
+ MANJUNATH KRISHNAPUR, ERIK LUNDBERG, AND KOUSHIK RAMACHANDRAN
798
+ Therefore, we obtain
799
+ P
800
+
801
+ inf
802
+ L log |pn(z)| > 0
803
+
804
+ ≥ P
805
+
806
+
807
+ n2
808
+
809
+ k=1
810
+ {log |pn(wk)| > 1}
811
+
812
+
813
+ = 1 −
814
+ n2
815
+
816
+ k=1
817
+ P (log |pn(wk)| ≤ 1)
818
+ ≥ 1 − n2 exp(−C0 n).
819
+ by the pointwise estimate (9). This concludes the proof of the theorem.
820
+
821
+ Proof of Corollary 1.2. We assume that the measure µ is as in Theorem 1.1. Let ρn = ρ(Λn) be the
822
+ inradius of the lemniscate of pn and let ρ = ρ(Ω−) be the inradius of Ω−. By Theorem 1.1, we
823
+ immediately get lim inf ρn ≥ ρ.
824
+ Let S be the support of µ. As S ∩ Ω+ = ∅, Theorem 1.3 shows that if m > 0 then Λn ∩ {Uµ ≥ m} is
825
+ contained in a union of at most n circles each of radius e−cn. Writing ρn(m) for ρ(Λn ∩ {Uµ < m})
826
+ and ρ(m) for ρ({Uµ < m}), it is then clear that ρn ≤ ρn(m)+2ne−cn ≤ ρ(m)+2ne−cn and therefore,
827
+ first letting n → ∞ and then letting m ↓ 0 we see that
828
+ lim sup
829
+ n→∞ ρn ≤ lim
830
+ m↓0 ρ(m).
831
+ As Uµ is continuous on C\S, it follows that for any ε > 0 there is m > 0 such that {Uµ < m} ⊆ Ω−
832
+ ε ,
833
+ the ε enlargement of Ω−. Hence, with ρ′(ε) := ρ(Ω−
834
+ ε ), we have
835
+ lim sup
836
+ n→∞ ρn ≤ lim
837
+ ε↓0 ρ′(ε).
838
+ Under the additional assumption that S ⊆ Ω−, we show that ρ′(ε) ↓ ρ as ε ↓ 0 and that completes
839
+ the proof that lim sup ρn ≤ ρ. That ρ′(ε) ↓ ρ requires a proof as inradius is not continuous under
840
+ decreasing limits of sets. For example, the inradius of the slit disk D \ [0, 1) is 1/2 but any ε-
841
+ enlargement of it has inradius 1.
842
+ As Uµ is harmonic on C \ S and S ⊆ Ω− and Uµ(z) ∼ log |z| near ∞, the level set {Uµ = 0} is
843
+ a compact set comprised of curves that are real analytic except for a discrete set of points (the
844
+ critical points of Uµ are zeros of locally defined analytic functions). It also separates S from ∞.
845
+ Thus, {Uµ < 0} can be written as a union of Jordan domains, and there are at most finitely many
846
+ components that have inradius more than any given number.
847
+ Pick a component V of Ω− that attains the inradius ρ. The boundary of V can have a finite number
848
+ of critical points of Uµ. Locally around any such critical point, Uµ is the real part of a holomorphic
849
+ function that looks like czp for some p, and hence Uµ = 0 is like a system of equi-angular lines
850
+ with angle π/p between successive rays. In particular, there are no cusps. What this shows is that
851
+ V satisfies the following “external ball condition”: There is a δ0 > 0 and B < ∞, such that for any
852
+ δ < δ0 and each w ∈ ∂V , there is a
853
+ (12)
854
+ w′ ∈ C \ V such that |w′ − w| = δ and |w′ − z| ≥ δ/B for all z ∈ Ω−.
855
+ Now suppose D(z, r) ⊆ Ω−
856
+ ε . If ε < δ0/B, we claim that D(z, r−2Bε) ⊆ Ω−, which of course proves
857
+ that ρ ≥ ρ′(ε) − Bε, completing the proof. If the claim was not true, then we could find w ∈ ∂V
858
+ such that |w − z| ≤ r − 2Bε. Find w′ as in (12) with δ = Bε. Then w′ ̸∈ Ωδ/B = Ωε but
859
+ |w′ − z| ≤ |w′ − w| + |w − z| ≤ δ
860
+ B + r − 2Bε < r.
861
+ This is a contradiction as w′ ∈ D(z, r) ⊆ Ωε.
862
+
863
+
864
+ INRADIUS OF RANDOM LEMNISCATES
865
+ 13
866
+ 4. PROOF OF THEOREM 1.3 AND COROLLARY 1.4
867
+ A standard net argument can be used to prove the theorem. But we would like to first present a
868
+ proof of Corollary 1.4 by a different method, which may be of independent interest. At the end of
869
+ the section, we outline the net argument to prove Theorem 1.3.
870
+ We will need the following lemma in the proof of Corollary 1.4.
871
+ Lemma 4.1. Under the assumptions of Corollary 1.4, there exists c1 > 0 such that
872
+ P
873
+
874
+ log |p′
875
+ n(X1)| ≤ m
876
+ 2 (n − 1)
877
+
878
+ ≤ e−c1n.
879
+ First we prove the corollary assuming the above Lemma.
880
+ Proof of Corollary 1.4. Let Gi be the connected component of Λn containing Xi. Then by Bernstein’s
881
+ inequality we have
882
+ (13)
883
+ |p′
884
+ n(Xi)| ≤ C
885
+ n2
886
+ diam(Gi)∥pn∥∂Gi = C
887
+ n2
888
+ diam(Gi).
889
+ By Lemma 4.1 we have
890
+ |p′
891
+ n(Xi)| ≥ exp
892
+ �m
893
+ 2 (n − 1)
894
+
895
+ ,
896
+ w.o.p.
897
+ and we conclude from (13) that
898
+ (14)
899
+ diam(Gi) ≤ Cn2 exp
900
+
901
+ −m
902
+ 2 (n − 1)
903
+
904
+ ,
905
+ w.o.p.
906
+ The event Λn ⊂ �n
907
+ k=1 Drn(Xk) occurs if diam(Gi) < rn for each i = 1, 2, ..., n. Using (14) and a
908
+ union bound, all these events occur with overwhelming probability if we choose rn = exp{−c0n}
909
+ for a suitable c0.
910
+
911
+ It remains to prove Lemma 4.1.
912
+ Proof of Lemma 4.1. We have
913
+ P
914
+
915
+ log |p′
916
+ n(X1)| ≤ m
917
+ 2 (n − 1)
918
+
919
+ =
920
+
921
+ S
922
+ P
923
+
924
+ log |p′
925
+ n(X1)| ≤ m
926
+ 2 (n − 1)
927
+ ��X1 = z
928
+
929
+ dµ(z)
930
+ (15)
931
+ =
932
+
933
+ S
934
+ P
935
+ � n
936
+
937
+ k=2
938
+ log |z − Xk| ≤ m
939
+ 2 (n − 1)
940
+
941
+
942
+ ��
943
+
944
+ (∗)
945
+ dµ(z).
946
+ Let us rewrite the integrand (∗) as
947
+ (∗) = P
948
+
949
+ Z ≥
950
+
951
+ Uµ(z) − m
952
+ 2
953
+
954
+ (n − 1)
955
+
956
+ ,
957
+ Z = (n − 1)Uµ(z) −
958
+ n
959
+
960
+ k=2
961
+ log |z − Xk|.
962
+ Then we have (with θ to be chosen below)
963
+ (∗) = P
964
+
965
+ eθZ ≥ eθ(n−1)(Uµ−m/2)�
966
+ (since Uµ ≥ m)
967
+ ≤ P
968
+
969
+ eθZ ≥ eθ(n−1)(m/2)�
970
+ ≤ e−θ(n−1)(m/2)EeθZ.
971
+
972
+ 14
973
+ MANJUNATH KRISHNAPUR, ERIK LUNDBERG, AND KOUSHIK RAMACHANDRAN
974
+ Let Zk = − log |z − Xk| + Uµ(z) so that Z = Z2 + . . . + Zn. As Xi are i.i.d., so are Zi and we have
975
+ EeθZ =
976
+
977
+ EeθZ2�n−1
978
+ .
979
+ We claim that there exist τ < ∞ and θ0 > 0 (not depending on z ∈ S) such that
980
+ E[eθZ2] ≤ eτθ2
981
+ for |θ| < θ0.
982
+ (16)
983
+ Assuming this, the proof can be completed as follows:
984
+ (∗) ≤ e−θ(n−1)m/2e(n−1)τθ2
985
+ = e− 1
986
+ 4 mθ(n−1)
987
+ (17)
988
+ provided we choose θ < m
989
+ 4τ . Using this in (15) we obtain
990
+ P
991
+
992
+ log |p′
993
+ n(X1)| ≤ m
994
+ 2 (n − 1)
995
+
996
+ ≤ e− 1
997
+ 4 mθ(n−1),
998
+ which implies the statement in the lemma.
999
+ It remains to prove (16). Assumption (D) in definition A yields that for z ∈ S,
1000
+ P{Z1 > t} = P{|z − X1| ≤ eUµ(z)−t}
1001
+ ≤ Ceε(M−t)
1002
+ where M = supz∈S Uµ(z). On the other hand, P{Z1 < −t} = 0 for large t, hence by choosing a
1003
+ smaller ε if necessary, we have the bound
1004
+ P{|Z1| > t} ≤ 2e−εt.
1005
+ A random variable satisfying the above tail bound is said to be sub-exponential (see Section 2.7
1006
+ in [41]). It is well-known (see the implication (a)
1007
+ =⇒
1008
+ (e) of Proposition 2.7.1 in [41]) that if a
1009
+ sub-exponential random variable has zero mean, then (16) holds.
1010
+
1011
+ Now we outline the argument for the proof of Theorem 1.3
1012
+ Proof of Theorem 1.3. The same argument (basically that − log |z − X1| + Uµ(z) has sub-exponential
1013
+ distribution) that led to (17) shows that there exists θ > 0
1014
+ P{log |pn(z)| < 1
1015
+ 2mn} ≤ e−θn
1016
+ (18)
1017
+ for any z ∈ L. Let rn = e− θ
1018
+ 4 n. Then, if z ∈ L \ �n
1019
+ k=1 B(Xk, rn), we have
1020
+ |∇ log |pn(z)|| =
1021
+ ��
1022
+ n
1023
+
1024
+ k=1
1025
+ 1
1026
+ z − Xk
1027
+ �� ≤
1028
+ n
1029
+ rn
1030
+ .
1031
+ Therefore, if z ∈ L \ �n
1032
+ k=1 B(Xk, (1 + m
1033
+ 4 )rn), then combining the bound on the gradient with (18),
1034
+ we get
1035
+ P
1036
+
1037
+ inf
1038
+ B(z, 1
1039
+ 4 mrn)
1040
+ log |pn| ≥ 1
1041
+ 4mn
1042
+
1043
+ ≥ 1 − e−θn.
1044
+ Assuming without loss of generality that m ≤ 1, we may choose a net of C/r2
1045
+ n points in L such that
1046
+ every of point of L\�n
1047
+ k=1 B(Xk, 2rn) is within distance mrn/4 of one of the points of the net. Then,
1048
+ log |pn| > 1
1049
+ 4mn everywhere on L\�n
1050
+ k=1 B(Xk, 2rn), with probability at least 1− C
1051
+ r2n e−θn ≥ 1−Ce− θ
1052
+ 2 n,
1053
+ by our choice of rn.
1054
+
1055
+
1056
+ INRADIUS OF RANDOM LEMNISCATES
1057
+ 15
1058
+ 5. PROOF OF THEOREM 1.5
1059
+ First we claim that Λn ⊆ (1 + ε)D w.o.p. for any ε > 0. Deterministically, Λn ⊆ 2D, since µ is
1060
+ supported on S1. Further, Uµ(z) = log+ |z|, hence L = {z : 1 + ε ≤ |z| ≤ 2} is a compact subset
1061
+ of Ω+. By Theorem 1.1 or Theorem 1.3, we see that L ∩ Λn = ∅ w.o.p. proving that Λn ⊆ (1 + ε)D
1062
+ w.o.p.
1063
+ Thus, it suffices to consider Λn ∩ D. Consider
1064
+ gn(z) =
1065
+ 1
1066
+ √n
1067
+ n
1068
+
1069
+ k=1
1070
+ log |z − Xk|
1071
+ for z ∈ D. As Xk are uniform on S1, it follows that E[log |z − X1|] = 0. Let
1072
+ K(z, w) = E[(log |z − X1|)(log |w − X1|)] = 1
1073
+
1074
+ � 2π
1075
+ 0
1076
+ log |z − eiθ| log |w − eiθ| dθ.
1077
+ Hence E[gn(z)] = 0 and E[gn(z)gn(w)] = K(z, w).
1078
+ Let g be the (real-valued) Gaussian process on D with expectation E[g(z)] = 0 and covariance
1079
+ function E[g(z)g(w)] = K(z, w). Then by the central limit theorem, it follows that
1080
+ (gn(z1), . . . , gn(zk)) d→ (g(z1), . . . , g(zk))
1081
+ for any z1, . . . , zk ∈ D. We observe that gn(0) = 0 and claim that suprD |∇gn| is tight, for any
1082
+ r < 1. By a well-known criterion for tightness of measures (on the space C(D) endowed with
1083
+ the topology of uniform convergence on compacts), this proves that gn → g in distribution, as
1084
+ processes (see Theorem 7.2 in [4]).
1085
+ To prove the tightness of suprD |∇gn|, fix r < s < 1 and note that ∇gn(z) is essentially the same as
1086
+ Fn(z) =
1087
+ 1
1088
+ √n
1089
+ �n
1090
+ k=1
1091
+ 1
1092
+ z−Xk which is holomorphic on D. By Cauchy’s integral formula, for |z| < r,
1093
+ |Fn(z)|2 =
1094
+ �� 1
1095
+
1096
+ � 2π
1097
+ 0
1098
+ Fn(seiθ)
1099
+ z − seiθ iseiθdθ
1100
+ ��2
1101
+
1102
+ � 1
1103
+
1104
+ � 2π
1105
+ 0
1106
+ |Fn(seiθ)|2dθ
1107
+ � � 1
1108
+
1109
+ � 2π
1110
+ 0
1111
+ 1
1112
+ |z − seiθ|2 dθ
1113
+
1114
+
1115
+ 1
1116
+ (s − r)2
1117
+ 1
1118
+
1119
+ � 2π
1120
+ 0
1121
+ |Fn(seiθ)|2dθ.
1122
+ The bound does not depend on z, hence taking expectations,
1123
+ E[(sup
1124
+ rD
1125
+ |Fn|)2] ≤
1126
+ 1
1127
+ (s − r)2
1128
+ 1
1129
+
1130
+ � 2π
1131
+ 0
1132
+ E
1133
+
1134
+ |Fn(seiθ)|2�
1135
+
1136
+
1137
+ 1
1138
+ (s − r)2
1139
+ 1
1140
+
1141
+ � 2π
1142
+ 0
1143
+ E
1144
+
1145
+ 1
1146
+ |seiθ − X1|2
1147
+
1148
+
1149
+
1150
+ 1
1151
+ (s − r)2(1 − s)2 .
1152
+ The boundedness in L2 implies tightness of the distributions of Fn, as claimed.
1153
+ In order to formulate a precise statement on almost sure convergence it is necessary to construct
1154
+ gn and g on a single probability space. One way to accomplish that is by the Skorokhod represen-
1155
+ tation theorem (see Theorem 6.7 in [4]) from which it follows that gn and g can be constructed on
1156
+ one probability space so that gn → g uniformly on compacta, a.s. Hence, the proof of Theorem 1.5
1157
+ will be complete if we prove the following lemma.
1158
+
1159
+ 16
1160
+ MANJUNATH KRISHNAPUR, ERIK LUNDBERG, AND KOUSHIK RAMACHANDRAN
1161
+ Lemma 5.1. Let fn, f; D → R be smooth functions such that {f = 0} ∩ {∇f = 0} = ∅. Suppose fn → f
1162
+ uniformly on compact sets of D. Then, ρ({fn < 0}) → ρ({f < 0}).
1163
+ Indeed, applying this to gn, g, we see that ρ(Λn ∩ D) → ρ({g < 0}) almost surely. On the other
1164
+ hand, for any ε > 0, Theorem 1.3 shows that Λn ∩ ((1 + ε)D)c is contained in a union of n disks of
1165
+ radius e−cn, w.o.p. Putting these together, ρ(Λn) → ρ({g < 0}) a.s. and hence in distribution. This
1166
+ completes the proof of the convergence claim in Theorem 1.5.
1167
+ Proof of Lemma 5.1. For any U ⊆ D, it is clear that ρ(U) − ε ≤ ρ(U ∩ (1 − ε)D) ≤ ρ(U). Applying
1168
+ this to U = {fn < 0} and U = {f < 0}, we see that to show that ρ({fn < 0}) → ρ({f < 0}), it is
1169
+ sufficient to show that ρ({fn < 0}∩(1−ε)D) → ρ({f < 0}∩(1−ε)D) for every ε > 0. On (1−ε)D,
1170
+ the convergence is uniform, hence for any δ > 0, we have {f < −δ} ⊆ {fn < 0} ⊆ {f < δ} for
1171
+ sufficiently large n. It remains to show that δ �→ ρ({f < δ}) is continuous at δ = 0.
1172
+ First we show that ρ({f < −δ}) ↑ ρ({f < 0}) as δ ↓ 0. If B(z, r) ⊆ {f < 0}, then for any ε > 0,
1173
+ the maximum of f on B(z, r − ε) is some −δ < 0. Hence ρ({f ≤ −δ}) ≥ r − ε proving that
1174
+ ρ({f < −δ}) ↑ ρ({f < 0}).
1175
+ Next we show that ρ({f ≤ δn}) ↓ ρ({f ≤ 0}) for some δn ↓ 0. Let rn = ρ({f ≤
1176
+ 1
1177
+ n}) and find
1178
+ zn such that B(zn, rn) ⊆ {f ≤ 1
1179
+ n}. Let rn ↓ r0 and zn → z0 without loss of generality. Then if
1180
+ w ∈ B(z0, r0), then w ∈ B(zn, rn) for large enough n, hence f(w) ≤ 1
1181
+ n for large n. Thus f ≤ 0 on
1182
+ B(z0, r0) showing that ρ({f ≤ 0}) ≥ lim
1183
+ δ↓0 ρ({f ≤ δ}).
1184
+ From the assumption that {f = 0} ∩ {∇f = 0} = ∅, we claim that ρ({f ≤ 0}) = ρ({f < 0}).
1185
+ Indeed, if B(z, r) ⊆ {f ≤ 0}, then in fact B(z, r) ⊆ {f < 0}. Otherwise, we would get w ∈ B(z, r)
1186
+ with f(w) = 0 which implies that w is a local maximum of f and hence ∇f(w) = 0.
1187
+ This proves the continuity of δ �→ ρ({f < δ}) at δ = 0, and hence the lemma.
1188
+
1189
+ This completes the proof of the first part that ρn = ρ({gn < 0}) converges in distribution to
1190
+ ρ = ρ({g < 0}). To show that P({ρ < ε}) > 0, it suffices to show that g > 0 on (1−ε)D∩{| Im z| > ε}
1191
+ with positive probability. To show that P({ρ >
1192
+ 1
1193
+ 2 − ε}) > 0, it suffices to show that g < 0 in
1194
+ (1 − ε)D ∩ {| Im z| > ε} with positive probability. We do this in two steps.
1195
+ (1) There exist u0 : D → R, harmonic with u0(0) = 0 such that u0 < 0 on (1−ε)D∩{| Im z| > ε}.
1196
+ This is known, see either the proof of Theorem 6.1 of [27] or take log |p| of the polynomial
1197
+ p constructed in Lemma 5 of Wagner [42].
1198
+ (2) For any u : D → R, harmonic with u(0) = 0 and any r < 1 and ε > 0, we claim that
1199
+ ∥g −u∥sup(rD) < ε with positive probability. Applying this to u0 and −u0 from the previous
1200
+ step show that ρ > 1
1201
+ 2 − ε with positive probability and ρ < ε with positive probability.
1202
+ To this end, we observe that the process g can be represented as
1203
+ g(z) = Re
1204
+
1205
+
1206
+ k=1
1207
+ 2
1208
+ kakzk
1209
+ where ak are i.i.d. standard complex Gaussian random variables. The covariance of g
1210
+ defined as above is
1211
+ E[g(z)g(w)] =
1212
+
1213
+ k≥1
1214
+ 1
1215
+ k2 (zk ¯wk + wk¯zk)
1216
+
1217
+ INRADIUS OF RANDOM LEMNISCATES
1218
+ 17
1219
+ which can be checked to match with the integral expression for K(z, w) given earlier. Given
1220
+ any harmonic u : D → R with u(0) = 0, write it as
1221
+ u(z) = Re
1222
+
1223
+ k≥1
1224
+ ckzk
1225
+ and choose N such that
1226
+
1227
+
1228
+ k>N
1229
+ ckzk∥sup(rD) < ε.
1230
+ If both the events
1231
+ AN =
1232
+
1233
+
1234
+
1235
+ k>N
1236
+ ak
1237
+ k zk∥sup(rD) < ε
1238
+
1239
+ ,
1240
+ BN =
1241
+
1242
+ |2ak
1243
+ k
1244
+ − ck| < ε
1245
+ N for 1 ≤ k ≤ N
1246
+
1247
+ occur, then |g − u| < 3ε on rD. As AN and BN are independent and have positive proba-
1248
+ bility, we also have P(AN ∩ BN) > 0.
1249
+ 6. PROOF OF THEOREM 1.6
1250
+ The idea of the proof proceeds along earlier lines: first we fix t > 0 and show that log |pn(z)| is
1251
+ negative w.o.p. for a fixed z lying on |z| = 1 − t. It then follows from a net argument that the
1252
+ whole circle (and hence the disk) is contained in Λn w.o.p.
1253
+ Let t ∈ (0,
1254
+ 1
1255
+ 100) and fix z with |z| = 1 − t. Taking logarithms, we have as before that
1256
+ log |pn(z)| =
1257
+ n
1258
+
1259
+ k=1
1260
+ log |z − Xk|,
1261
+ except now the roots are no longer i.i.d. Define Ft : C → R by
1262
+ Ft(w) =
1263
+
1264
+
1265
+
1266
+
1267
+
1268
+ log 1
1269
+ t ,
1270
+ |z − w| ≥ 1
1271
+ t
1272
+ log |z − w|,
1273
+ t < |z − w| < 1
1274
+ t
1275
+ log t,
1276
+ |z − w| ≤ t.
1277
+ Next, we write
1278
+ log |pn(z)| =
1279
+ n
1280
+
1281
+ k=1
1282
+ Ft(Xk) +
1283
+
1284
+ k:|z−Xk|≥ 1
1285
+ t
1286
+
1287
+ log |z − Xk| − log 1
1288
+ t
1289
+
1290
+ +
1291
+
1292
+ k:|z−Xk|≤t
1293
+ (log |z − Xk| − log t)
1294
+ =: L1 + L2 + L3.
1295
+ Since the term L3 is negative, we have
1296
+ (19)
1297
+ P
1298
+
1299
+ log |pn(z)| ≥ − t
1300
+ 4n
1301
+
1302
+ ≤ P
1303
+
1304
+ L1 + L2 ≥ − t
1305
+ 4n
1306
+
1307
+ We claim that the right hand side of (19) decays exponentially. For that we will need the following
1308
+ Proposition 6.1. Fix t > 0. There exist constants ct, c2 > 0 such that for all large n, we have
1309
+ P
1310
+
1311
+ L1 ≥ − t
1312
+ 2n
1313
+
1314
+ ≤ 5 exp(−ctn),
1315
+ P(L2 ≥ t
1316
+ 4n) ≤ n exp(−c2n).
1317
+
1318
+ 18
1319
+ MANJUNATH KRISHNAPUR, ERIK LUNDBERG, AND KOUSHIK RAMACHANDRAN
1320
+ Assume the Proposition is true for now. Then, it is easy to see that the right hand side of (19) goes
1321
+ to 0 exponentially with n. Indeed,
1322
+ P
1323
+
1324
+ L1 + L2 ≥ − t
1325
+ 4n
1326
+
1327
+ = P
1328
+
1329
+ L1 + L2 ≥ − t
1330
+ 4n, L2 < t
1331
+ 4n
1332
+
1333
+ + P
1334
+
1335
+ L1 + L2 ≥ − t
1336
+ 4n, L2 ≥ t
1337
+ 4n
1338
+
1339
+ ≤ P
1340
+
1341
+ L1 ≥ − t
1342
+ 2n
1343
+
1344
+ + P
1345
+
1346
+ L2 ≥ t
1347
+ 4n
1348
+
1349
+ ≤ 5 exp(−ctn) + n exp(−c2n).
1350
+ which establishes the claim. We now proceed with the proof of Proposition 6.1.
1351
+ Proof of Proposition 6.1. Step 1: Estimate on L2
1352
+ Let Nt = |{k : |z −Xk| ≥ 1
1353
+ t }|. If L2 ≥ t
1354
+ 4n, then we must have Nt ≥ 1, which has probability at most
1355
+ e−cn for some c > 0. To see this, let us recall the following fact about eigenvalues of the Ginibre
1356
+ ensemble.
1357
+ Lemma 6.2 (Kostlan [20], [14]). Let λj be the eigenvalues (indexed in order of increasing modulus) of a
1358
+ Ginbre random matrix (un-normalized). Then,
1359
+ {|λ1|2, |λ2|2, ..., |λn|2} ∼ {Y1, Y2, ..., Yn},
1360
+ where Yj is a sum of j i.i.d. Exp(1) random variables.
1361
+ Now for the proof of the claim. Since |z| < 1 and t ∈ (0,
1362
+ 1
1363
+ 100), |z − Xk| ≥ 1
1364
+ t implies for instance that
1365
+ |Xk| > 99. Therefore, by elementary steps and applying Lemma 6.2, we obtain
1366
+ P(Nt ≥ 1)
1367
+ ≤ P(maxk |Xk| ≥ 99)
1368
+ = P(maxk |Xk|2 ≥ 992)
1369
+ = P(maxk |λk|2 > 992n)
1370
+ = P(maxk Yk > 992n),
1371
+ where we have used Xj = λj
1372
+ √n in going from the second to third line above. Then a union bound
1373
+ and a Cramer-Chernoff estimate gives
1374
+ P(max
1375
+ k
1376
+ Yk > 992n)
1377
+ ≤ nP(Yn > 992n)
1378
+ ≤ n exp(−c2n),
1379
+ and combining this with the above estimate we obtain
1380
+ P(Nt ≥ 1) ≤ n exp(−c2n),
1381
+ as desired.
1382
+ Step 2: Estimate on L1
1383
+ The desired estimate is equivalent to
1384
+ (26)
1385
+ P
1386
+
1387
+ L1 − E(L1) ≥ − t
1388
+ 2n − E(L1)
1389
+
1390
+ ≤ 5 exp(−ctn).
1391
+ As preparation towards this, observe that 1
1392
+ nE(L1) = E
1393
+ ��
1394
+ Ftdµn
1395
+
1396
+ , where µn is the empirical spec-
1397
+ tral measure defined in (2). By the circular law of random matrices [38], almost surely µn and
1398
+
1399
+ INRADIUS OF RANDOM LEMNISCATES
1400
+ 19
1401
+ its expectation both converge to the uniform measure on the unit disk. As a result, taking into
1402
+ account that Ft is a bounded continuous function, we obtain
1403
+ (27)
1404
+ lim
1405
+ n→∞
1406
+ 1
1407
+ nE(L1) = 1
1408
+ π
1409
+
1410
+ D
1411
+ Ftdm = |z|2 − 1
1412
+ 2
1413
+ + t2
1414
+ 2 ,
1415
+ where the second equality in (27) follows from a computation similar to the one in Example 1.7.
1416
+ Using |z| = 1 − t, the quantity on the right reduces to −t + t2. Hence, for large n, we have
1417
+ E(L1) ≤ − 3
1418
+ 4tn and hence, if the event in (26) holds, then
1419
+ L1 − E(L1) ≥ t
1420
+ 4n.
1421
+ Thus, our immediate goal is reduced to showing that the probability of the above event is at
1422
+ most 5 exp(−ctn) for an appropriate constant ct. We invoke the following result of Pemantle and
1423
+ Peres [29, Thm. 3.2].
1424
+ Theorem 6.3. Given a determinantal point process with n < ∞ points and f a Lipschitz-1 function on
1425
+ finite counting measures, for any a > 0 we have
1426
+ P (|f − E(f)| ≥ a) ≤ 5 exp
1427
+
1428
+
1429
+ a2
1430
+ 16(a + 2n)
1431
+
1432
+ .
1433
+ To say that f is Lipschitz-1 on the space of finite counting measures means that
1434
+ ���f
1435
+ �k+1
1436
+
1437
+ i=1
1438
+ δxi
1439
+
1440
+ − f
1441
+ � k
1442
+
1443
+ i=1
1444
+ δxi
1445
+ � ��� ≤ 1
1446
+ for any k ≥ 0 and any points x1, . . . , xk.
1447
+ In our case, as we have recalled, {X1, X2, ..., Xn} is a determinantal point process with exactly n
1448
+ points. Moreover, L1 is Lipschitz with Lipschitz constant ∥Ft∥sup = log 1
1449
+ t . Applying Theorem 6.3
1450
+ to L1/ log(1/t), we see that
1451
+ P
1452
+
1453
+ L1 − E(L1) ≥ t
1454
+ 4n
1455
+
1456
+ = 5 exp
1457
+
1458
+
1459
+ t2n2
1460
+ 256(log(1/t))2(
1461
+ tn
1462
+ 4 log(1/t) + 2n)
1463
+
1464
+ ≤ 5 exp{−ctn}
1465
+ where we may take ct = ct2/ log(1/t)2 for a large constant c. This completes the proof of the
1466
+ proposition.
1467
+
1468
+ Now that we have proved the pointwise estimate, the net argument from Lemma 6 can be used
1469
+ to show that the whole circle |z| = 1 − t lies in the lemniscate w.o.p. The maximum principle then
1470
+ shows that the corresponding disk lies in the lemniscate w.o.p. This concludes the proof that Λn
1471
+ contains Dr w.o.p.
1472
+ We next prove that Λn ⊆ Ds w.o.p. for s > 1. Fix 1 < s′ < s and let δ = s − s′ and ε = 1
1473
+ 2 log s. We
1474
+ present the proof in four steps.
1475
+ (1) |λj|
1476
+ √n < s′ for all j, w.o.p., i.e., with probability at least 1−e−cn. To see this, invoke Lemma 6.2
1477
+ to see that the complementary event has probability less than ne−c(s′)n by the same reason-
1478
+ ing used in (25), noting that 992 may be replaced by any constant greater than 1.
1479
+
1480
+ 20
1481
+ MANJUNATH KRISHNAPUR, ERIK LUNDBERG, AND KOUSHIK RAMACHANDRAN
1482
+ (2) Fix z with |z| = s and let fz,δ(w) = log
1483
+
1484
+ min{max{|z − w|, δ}, 1
1485
+ δ}
1486
+
1487
+ , a bounded continuous
1488
+ function. Then by [31] (Theorem 9),
1489
+ P
1490
+
1491
+
1492
+
1493
+ �� 1
1494
+ n
1495
+ n
1496
+
1497
+ j=1
1498
+ fz,δ(λj/√n) −
1499
+
1500
+ D
1501
+ fz,δ(w)dm(w)
1502
+ π
1503
+ �� > ε
1504
+
1505
+
1506
+ � ≤ e−cε,δn2.
1507
+ (3) On the event in (1), fz,δ(λj/√n) = log |z − |λj
1508
+ √n| for all j and all |z| = s. Also, fz,δ(w) =
1509
+ log |z − w| for all w ∈ D. Hence, w.o.p.
1510
+ P
1511
+ ��� 1
1512
+ n log |pn(z)| − log s
1513
+ �� > ε
1514
+
1515
+ ≤ e−cε,δn2 + e−cn.
1516
+ Hence, 1
1517
+ n log |pn(z)| > 1
1518
+ 2ε w.o.p. by the choice of ε = 1
1519
+ 2 log s.
1520
+ (4) Let m = 100
1521
+ εδ and let z1, . . . , zm be equispaced points on ∂Ds. Then w.o.p. infj≤m 1
1522
+ n log |pn(zj)| >
1523
+ 1
1524
+ 2ε by the previous step. On the event in (1), ∥∇ 1
1525
+ n log |pn(z)|∥ ≤ 1
1526
+ δ, hence
1527
+ inf
1528
+ |z|=s
1529
+ 1
1530
+ n log |pn(z)| > 0
1531
+ w.o.p. On this event Λn ⊆ Ds.
1532
+ This concludes the proof of Theorem 1.6.
1533
+ REFERENCES
1534
+ [1] R. Ayoub. The lemniscate and Fagnano’s contributions to elliptic integrals. Arch. Hist. Exact Sci., 29(2):131–149,
1535
+ 1984.
1536
+ [2] I. Bauer and F. Catanese. Generic lemniscates of algebraic functions. Math. Ann., 307(3):417–444, 1997.
1537
+ [3] S. R. Bell. A Riemann surface attached to domains in the plane and complexity in potential theory. Houston J. Math.,
1538
+ 26(2):277–297, 2000.
1539
+ [4] P. Billingsley. Convergence of probability measures. Wiley Series in Probability and Statistics: Probability and Statistics.
1540
+ John Wiley & Sons, Inc., New York, second edition, 1999. A Wiley-Interscience Publication.
1541
+ [5] P. Borwein. The arc length of the lemniscate {|p(z)| = 1}. Proc. Amer. Math. Soc., 123(3):797–799, 1995.
1542
+ [6] S. Boucheron, G. Lugosi, and P. Massart. Concentration inequalities. Oxford University Press, Oxford, 2013. A
1543
+ nonasymptotic theory of independence, With a foreword by Michel Ledoux.
1544
+ [7] F. Catanese and M. Paluszny. Polynomial-lemniscates, trees and braids. Topology, 30(4):623–640, 1991.
1545
+ [8] P. Ebenfelt, D. Khavinson, and H. S. Shapiro. Two-dimensional shapes and lemniscates. In Complex analysis and
1546
+ dynamical systems IV. Part 1, volume 553 of Contemp. Math., pages 45–59. Amer. Math. Soc., Providence, RI, 2011.
1547
+ [9] M. Epstein, B. Hanin, and E. Lundberg. The lemniscate tree of a random polynomial. Ann. Inst. Fourier (Grenoble),
1548
+ 70(4):1663–1687, 2020.
1549
+ [10] P. Erd˝os, F. Herzog, and G. Piranian. Metric properties of polynomials. J. Analyse Math., 6:125–148, 1958.
1550
+ [11] A. Eremenko and W. Hayman. On the length of lemniscates. Michigan Math. J., 46(2):409–415, 1999.
1551
+ [12] A. Fryntov and F. Nazarov. New estimates for the length of the Erd¨os-Herzog-Piranian lemniscate. In Linear and
1552
+ complex analysis, volume 226 of Amer. Math. Soc. Transl. Ser. 2, pages 49–60. Amer. Math. Soc., Providence, RI, 2009.
1553
+ [13] B. Gustafsson, M. Putinar, E. B. Saff, and N. Stylianopoulos. Bergman polynomials on an archipelago: estimates,
1554
+ zeros and shape reconstruction. Adv. Math., 222(4):1405–1460, 2009.
1555
+ [14] J. B. Hough, M. Krishnapur, Y. Peres, and B. Vir´ag. Zeros of Gaussian analytic functions and determinantal point pro-
1556
+ cesses, volume 51 of University Lecture Series. American Mathematical Society, Providence, RI, 2009.
1557
+ [15] M. Jeong and M. Taniguchi. The coefficient body of Bell representations of finitely connected planar domains. J.
1558
+ Math. Anal. Appl., 295(2):620–632, 2004.
1559
+ [16] Z. Kabluchko and I. Wigman. Asymptotics for the expected number of nodal components for random lemniscates.
1560
+ IMRN, to appear, preprint at: arXiv:1902.08424.
1561
+ [17] D. Khavinson, S.-Y. Lee, and A. Saez. Zeros of harmonic polynomials, critical lemniscates, and caustics. Complex
1562
+ Anal. Synerg., 4(1):Paper No. 2, 20, 2018.
1563
+ [18] D. Khavinson and E. Lundberg. Linear holomorphic partial differential equations and classical potential theory, volume
1564
+ 232 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2018.
1565
+
1566
+ INRADIUS OF RANDOM LEMNISCATES
1567
+ 21
1568
+ [19] D. Khavinson, M. Mineev-Weinstein, M. Putinar, and R. Teodorescu. Lemniscates do not survive Laplacian growth.
1569
+ Math. Res. Lett., 17(2):335–341, 2010.
1570
+ [20] E. Kostlan. On the spectra of Gaussian matrices. In Directions in matrix theory, volume 162/164, pages 385–388.
1571
+ (Auburn, AL, 1990), 1992.
1572
+ [21] A. Lerario and E. Lundberg. On the geometry of random lemniscates. Proc. Lond. Math. Soc. (3), 113(5):649–673,
1573
+ 2016.
1574
+ [22] A. Lerario and E. Lundberg. On the zeros of random harmonic polynomials: the truncated model. J. Math. Anal.
1575
+ Appl., 438(2):1041–1054, 2016.
1576
+ [23] E. Lundberg and K. Ramachandran. The arc length and topology of a random lemniscate. Journal of the London
1577
+ Mathematical Society, 96(3):621–641, 2017.
1578
+ [24] E. Lundberg and V. Totik. Lemniscate growth. Anal. Math. Phys., 3(1):45–62, 2013.
1579
+ [25] J. Milnor. Dynamics in one complex variable, volume 160 of Annals of Mathematics Studies. Princeton University Press,
1580
+ Princeton, NJ, third edition, 2006.
1581
+ [26] B. Nagy and V. Totik. Sharpening of Hilbert’s lemniscate theorem. J. Anal. Math., 96:191–223, 2005.
1582
+ [27] F. Nazarov, L. Polterovich, and M. Sodin. Sign and area in nodal geometry of Laplace eigenfunctions. Amer. J.
1583
+ Math., 127(4):879–910, 2005.
1584
+ [28] F. Nazarov and M. Sodin. Asymptotic laws for the spatial distribution and the number of connected components
1585
+ of zero sets of Gaussian random functions. Zh. Mat. Fiz. Anal. Geom., 12(3):205–278, 2016.
1586
+ [29] R. Pemantle and Y. Peres. Concentration of Lipschitz functionals of determinantal and other strong rayleigh mea-
1587
+ sures. Combinatorics, Probability and Computing, 23:140 –160, 2013.
1588
+ [30] A. O. Petters, H. Levine, and J. Wambsganss. Singularity theory and gravitational lensing, volume 21 of Progress in
1589
+ Mathematical Physics. Birkh¨auser Boston, Inc., Boston, MA, 2001. With a foreword by David Spergel.
1590
+ [31] D. Petz and F. Hiai. Logarithmic energy as an entropy functional. In Advances in differential equations and mathemat-
1591
+ ical physics (Atlanta, GA, 1997), volume 217 of Contemp. Math., pages 205–221. Amer. Math. Soc., Providence, RI,
1592
+ 1998.
1593
+ [32] C. Pommerenke. On the derivative of a polynomial. Michigan Math. J., 6:373–375, 1959.
1594
+ [33] C. Pommerenke. On metric properties of complex polynomials. Michigan Math. J., 8:97–115, 1961.
1595
+ [34] T. Ransford. Potential theory in the complex plane, volume 28 of London Mathematical Society Student Texts. Cambridge
1596
+ University Press, Cambridge, 1995.
1597
+ [35] T. Richards and M. Younsi. Conformal models and fingerprints of pseudo-lemniscates. Constr. Approx., 45(1):129–
1598
+ 141, 2017.
1599
+ [36] T. J. Richards. Some recent results on the geometry of complex polynomials: the Gauss-Lucas theorem, polynomial
1600
+ lemniscates, shape analysis, and conformal equivalence. Complex Anal. Synerg., 7(2):Paper No. 20, 9, 2021.
1601
+ [37] V. N. Strakhov and M. A. Brodsky. On the uniqueness of the inverse logarithmic potential problem. SIAM J. Appl.
1602
+ Math., 46(2):324–344, 1986.
1603
+ [38] T. Tao and V. Vu. Random matrices: universality of local spectral statistics of non-Hermitian matrices. Ann. Probab.,
1604
+ 43(2):782–874, 2015.
1605
+ [39] L. N. Trefethen and D. Bau, III. Numerical linear algebra. Society for Industrial and Applied Mathematics (SIAM),
1606
+ Philadelphia, PA, 1997.
1607
+ [40] A. N. Varchenko and P. I. `Etingof. Why the boundary of a round drop becomes a curve of order four, volume 3 of University
1608
+ Lecture Series. American Mathematical Society, Providence, RI, 1992.
1609
+ [41] R. Vershynin. High-dimensional probability, volume 47 of Cambridge Series in Statistical and Probabilistic Mathematics.
1610
+ Cambridge University Press, Cambridge, 2018. An introduction with applications in data science, With a foreword
1611
+ by Sara van de Geer.
1612
+ [42] G. Wagner. On the area of lemniscate domains. J. Analyse Math., 50:159–167, 1988.
1613
+ [43] E. Wegert and L. N. Trefethen. From the Buffon needle problem to the Kreiss matrix theorem. Amer. Math. Monthly,
1614
+ 101(2):132–139, 1994.
1615
+ [44] M. Younsi. Shapes, fingerprints and rational lemniscates. Proc. Amer. Math. Soc., 144(3):1087–1093, 2016.
1616
+
2tFQT4oBgHgl3EQf2jaP/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
3dE1T4oBgHgl3EQfSQOU/content/tmp_files/2301.03064v1.pdf.txt ADDED
@@ -0,0 +1,2226 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Deepfake CAPTCHA: A Method for Preventing Fake Calls
2
+ Lior Yasur,∗ Guy Frankovits,∗ Fred M. Grabovski, Yisroel Mirsky
3
+ {lioryasu,guyfrank,freddie}@post.bgu.ac.il,yisroel@bgu.ac.il
4
+ Ben-Gurion University of the Negev
5
+ Israel
6
+ ABSTRACT
7
+ Deep learning technology has made it possible to generate realistic
8
+ content of specific individuals. These ‘deepfakes’ can now be gen-
9
+ erated in real-time which enables attackers to impersonate people
10
+ over audio and video calls. Moreover, some methods only need a
11
+ few images or seconds of audio to steal an identity. Existing de-
12
+ fenses perform passive analysis to detect fake content. However,
13
+ with the rapid progress of deepfake quality, this may be a losing
14
+ game.
15
+ In this paper, we propose D-CAPTCHA: an active defense against
16
+ real-time deepfakes. The approach is to force the adversary into
17
+ the spotlight by challenging the deepfake model to generate con-
18
+ tent which exceeds its capabilities. By doing so, passive detection
19
+ becomes easier since the content will be distorted. In contrast to
20
+ existing CAPTCHAs, we challenge the AI’s ability to create content
21
+ as opposed to its ability to classify content. In this work we focus
22
+ on real-time audio deepfakes and present preliminary results on
23
+ video.
24
+ In our evaluation we found that D-CAPTCHA outperforms state-
25
+ of-the-art audio deepfake detectors with an accuracy of 91-100%
26
+ depending on the challenge (compared to 71% without challenges).
27
+ We also performed a study on 41 volunteers to understand how
28
+ threatening current real-time deepfake attacks are. We found that
29
+ the majority of the volunteers could not tell the difference between
30
+ real and fake audio.
31
+ KEYWORDS
32
+ Deepfake, deep fake, voice cloning, impersonation, CAPTCHA,
33
+ deep learning, fake calls, social engineering, security
34
+ ACM Reference Format:
35
+ Lior Yasur,∗ Guy Frankovits,∗ Fred M. Grabovski, Yisroel Mirsky. 2023.
36
+ Deepfake CAPTCHA: A Method for Preventing Fake Calls. In Proceedings
37
+ of ACM Conference (Conference’17). ACM, New York, NY, USA, 15 pages.
38
+ https://doi.org/10.1145/nnnnnnn.nnnnnnn
39
+ 1
40
+ INTRODUCTION
41
+ A deepfake is any media, generated by a deep neural network,
42
+ which is authentic from a human being’s perspective [40]. Since
43
+ the emergence of deepfakes in 2017, the technology has improved
44
+ ∗These authors have equal contribution
45
+ Permission to make digital or hard copies of all or part of this work for personal or
46
+ classroom use is granted without fee provided that copies are not made or distributed
47
+ for profit or commercial advantage and that copies bear this notice and the full citation
48
+ on the first page. Copyrights for components of this work owned by others than ACM
49
+ must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
50
+ to post on servers or to redistribute to lists, requires prior specific permission and/or a
51
+ fee. Request permissions from permissions@acm.org.
52
+ Conference’17, July 2017, Washington, DC, USA
53
+ © 2023 Association for Computing Machinery.
54
+ ACM ISBN 978-1-4503-XXXX-X/18/06...$15.00
55
+ https://doi.org/10.1145/nnnnnnn.nnnnnnn
56
+ Attacker
57
+ Victim
58
+ Deepfake
59
+ real
60
+ fake
61
+ validate
62
+ Figure 1: Overview of the proposed defense: the victim re-
63
+ quests the caller to perform a task which is challenging for
64
+ a deepfake model to perform. If the response is distorted or
65
+ does not contain the task, then the caller is likely a deepfake.
66
+ in terms of quality and has been adopted in a variety of applications.
67
+ For example, deepfake technology is used to enhance productiv-
68
+ ity [47], education [33] and provide entertainment [10]. However,
69
+ the same technology has been used for unethical and malicious
70
+ purposes as well. For example, with a deepfake, anyone can imper-
71
+ sonate a target identity by reenacting the target’s face and/or voice.
72
+ This ability has enabled threat actors to perform defamation, black-
73
+ mail, misinformation, and social engineering attacks on companies
74
+ and individuals around the world [58]. For example, since 2017,
75
+ the technology has been used to ‘swap’ the identity of individuals
76
+ into explicit videos for unethical [20] and malicious [35] reasons.
77
+ More recently, in March 2022 during the Russian-Ukraine conflict,
78
+ a deepfake video was circulated depicting the prime minister of
79
+ Ukraine telling his troops to give up and stop fighting [60].
80
+ 1.1
81
+ Real-time Deepfakes (RT-DF)
82
+ Deepfake technology has improved over the last few years in terms
83
+ of efficiency. This has enabled attackers to create real-time deep-
84
+ fakes (RT-DF)a
85
+ With an RT-DF, an attacker can impersonate people over voice
86
+ and video calls. The danger of this emerging threat is that (1) the
87
+ attack vector is not expected, (2) familiarity can be mistaken as
88
+ authenticity and (3) the quality of RT-DFs is constantly improving.
89
+ aExamples of RT-DF tools: https://github.com/iperov/DeepFaceLive
90
+ https://github.com/alievk/avatarify-python
91
+ https://samsunglabs.github.io/MegaPortraits/
92
+ https://www.respeecher.com/
93
+ arXiv:2301.03064v1 [cs.CR] 8 Jan 2023
94
+
95
+ Conference’17, July 2017, Washington, DC, USA
96
+ Yasur et al.
97
+ To conceptualize this threat, let’s perform the following thought
98
+ experiment. Imagine someone receives a call from their mother
99
+ who is in trouble and urgently needs a money transfer. The caller
100
+ sounds exactly like her, but the situation seems a bit out of place.
101
+ Under stress and frustration, she hands the phone over to someone
102
+ who sounds like the victim’s father, who confirms the situation.
103
+ Without hesitation, many would transfer the money even though
104
+ they’re technically talking to a stranger. Now consider state-actors
105
+ with considerable amounts of time and resources. They could target
106
+ workers at power plants and other critical infrastructure by posing
107
+ as their administrators. Over a phone call, they could convince the
108
+ worker to change a configuration or reveal confidential informa-
109
+ tion which would lead to a cyber breach or a catastrophic failure.
110
+ Attackers could even pose as military officials or politicians leading
111
+ to a breach of national security.
112
+ These scenarios are plausible because some existing real-time
113
+ frameworks can impersonate an individual’s face or voice using
114
+ very little information. For example, some real-time methods can
115
+ reenact a face with one sample image [16, 50] and some can clone
116
+ a voice with just a few seconds of audio [15, 37]. Using these tech-
117
+ nologies, an attacker would only need to call the source voice for
118
+ a few seconds or scrape the source’s image from the internet to
119
+ perform the attack.
120
+ 1.2
121
+ The Emerging Threat of RT-DFs
122
+ Threat actors already understand the utility of RT-DFs. This is
123
+ evident in recent events where RT-DFs have been used to perform
124
+ criminal acts. The first case was discovered in 2019 when a CEO
125
+ was tricked into transferring $243k due to an RT-DF phone call
126
+ [51]. In 2021, senior European MPs participated in Zoom meetings
127
+ with someone masquerading as Russian opposition figures [48]. In
128
+ the same year, cyber criminals pulled off a $35 million bank heist
129
+ involving RT-DF audio calls to a company director, tricking him
130
+ to perform money transfers [12]. In June 2022, the FBI released a
131
+ warning that cyber criminals are using RT-DFs in job interviews in
132
+ order to secure remote work positions and gain insider information.
133
+ Then in August that year, cyber criminals attended Zoom meetings
134
+ masquerading as the CEO of Binance [59].
135
+ 1.3
136
+ The Gap in Current Defenses
137
+ Many methods have been proposed for detecting deepfakes [4,
138
+ 40]. These methods typically use deep learning models to either
139
+ (1) detect mistakes or artifacts in generated media, or (2) search
140
+ for forensic evidence such as a latent noise patterns (examples of
141
+ these works can be found in section 4). However, there are two
142
+ fundamental problems with existing defenses:
143
+ Longevity. Methods which identify semantic errors or artifacts
144
+ have the assumption that the quality of deepfakes will not
145
+ significantly improve. However, it is clearly evident that the
146
+ quality of deepfakes is improving and at a fast rate [39]. There-
147
+ fore, artifact-based methods have a high potential of becoming
148
+ obsolete within a short time-frame.
149
+ Evasion. Methods which rely on latent noise patterns can be
150
+ evaded by applying a post-processor. For example a deepfake
151
+ can be passed through a low pass filter, undergo compression or
152
+ be given additive noise. Moreover, these processes are common
153
+ in audio and video calls. Therefore, the attacker may not need
154
+ to do anything to remove the forensic evidence in the call.
155
+ 1.4
156
+ Real-Time CAPTCHA
157
+ In this paper, we propose Deepfake-CAPTCHA (D-CAPTCHA): a
158
+ system for automatically detecting deepfake calls through challenge
159
+ response analysis. Instead of passively observing call content, we
160
+ actively interact with the caller by requesting that he or she to
161
+ perform a task (the challenge). The task is easy for a human to
162
+ perform but extremely hard for a deepfake model to recreate due to
163
+ limitations in attack practicality and technology. When a deepfake
164
+ tries to perform the task, the resulting content (the response) will
165
+ be severely distorted –making it easier for an anomaly detector,
166
+ classifier, or even the victim to detect. In addition, we propose using
167
+ an identity model and task detection model to mitigate evasion
168
+ tactics. The identity model compares the identity of the caller before
169
+ and during the response to ensure that the caller cannot turn off
170
+ the RT-DF during the task or splice in content from other identities.
171
+ Similarly, the task detection model ensures that the caller has indeed
172
+ performed the task as opposed to doing nothing.
173
+ Existing CAPTCHA systems, such as reCAPTHCA,b challenge
174
+ AI to interpret content. In contrast, we propose a system which chal-
175
+ lenges AI to create content, with additional constraints on realism,
176
+ identity, task (complexity), and time.
177
+ In this work, we focus on audio-based RT-DF attacks (voice
178
+ cloning). We consider audio RT-DFs a more significant threat over
179
+ video RT-DFs because it is easier for an attacker to make a phone
180
+ call than setup a video call with the victim. Also, their occurrences
181
+ in the wild are increasing [5]. Therefore, RT-DF audio calls are
182
+ arguably a bigger threat at this time. However, we note that the
183
+ same D-CAPTCHA system proposed in this paper can be applied
184
+ to video calls as well. In section 9 we present initial results in this
185
+ domain.
186
+ In our evaluation, we collected five state-of-the-art audio RT-DF
187
+ technologies. We performed a panel survey to see what the public
188
+ thinks about their quality and we evaluated the top two models
189
+ on our defense and on others as well. We found that our method
190
+ can significantly enhance the performance of state-of-the-art audio-
191
+ based deepfake detectors.
192
+ 1.5
193
+ Contributions
194
+ In summary, our work has the following contributions:
195
+ • We propose the first active defense against RT-DFs. Com-
196
+ pared to existing artifact-base methods, our approach (1)
197
+ provides stronger guarantees of detection than using only
198
+ passive detection and (2) has better longevity because the
199
+ challenges are extensible.
200
+ • We define what a D-CAPTCHA is and what constitutes a
201
+ strong deepfake CAPTCHA: We identify the limitations of
202
+ existing RT-DF systems and propose four constraints a chal-
203
+ lenge must present to a caller. We also present how these
204
+ constraints can be verified in a response both manually and
205
+ automatically. We also provide an initial set of CAPTCHAs
206
+ and analyze their security and usability.
207
+ bhttps://developers.google.com/recaptcha/
208
+
209
+ Deepfake CAPTCHA: A Method for Preventing Fake Calls
210
+ Conference’17, July 2017, Washington, DC, USA
211
+ • We evaluated the quality of five state-of-the-art RT-DF voice
212
+ cloning models with 41 volunteers. Doing so enables us to
213
+ better understand the current threat which this technology
214
+ poses.
215
+ • We provide thorough evaluations on (1) how well the CAPTCHA
216
+ system performs and (2) how robust it is against an evasive
217
+ adversary.
218
+ 2
219
+ BACKGROUND
220
+ In this work, we focus on mitigating the threat of real-time voice
221
+ cloning. Furthermore, we focus on methods that perform speech-
222
+ to-speech voice conversion (VC) [19, 23, 30, 36, 37, 44] as opposed
223
+ to text-to-speech (TTS) methods such as [22].
224
+ Let 𝑡 be a target identity which we’d like to clone, and 𝑎𝑠 be an
225
+ audio clip of identity 𝑠 speaking. Content is the part of speech that
226
+ is independent of a speaker’s vocal anatomy (e.g., words, accent,
227
+ enunciation, and so on). The objective of voice cloning is to perform
228
+ 𝑓𝑡 (𝑎𝑠) = 𝑎𝑔 where 𝑎𝑔 is generated audio containing the content of
229
+ 𝑎𝑠 in the style of 𝑡. In an attack, 𝑡 is an individual who is familiar
230
+ to the victim, and 𝑠 is the attacker (or a voice actor hired by the
231
+ attacker).
232
+ To convert unbounded audio streams in real-time, audio is pro-
233
+ cessed as a sequence of short audio frames (approximately 10-
234
+ 1000ms each). In this way, the 𝑖-th input frame 𝑎(𝑖)
235
+ 𝑡
236
+ is converted
237
+ into 𝑎(𝑖)
238
+ 𝑔
239
+ within one second. We consider 𝑓𝑡 to be an RT-DF if the
240
+ pipeline can be executed with no more than a 1 second delay from
241
+ the microphone to speaker. In other words, the time it takes for an
242
+ utterance to be recorded, converted, and played back is no longer
243
+ than 1 second. Longer delays may raise the victim’s suspicion. Meth-
244
+ ods which process entire recordings all at once form non-casual
245
+ systems. Therefore, we do not consider them as RT-DF systems
246
+ (e.g., [46]).
247
+ There are various levels of flexibility when it comes to prior
248
+ knowledge of 𝑠 and 𝑡. For instance, not every model can drive 𝑎𝑔
249
+ with content from 𝑠 without prior training on 𝑠. Many of the audio
250
+ RT-DF models can be categorized as follows:
251
+ many-to-many. Are models which require both the source voice
252
+ 𝑠 (used in 𝑐) and the target voice 𝑡 to be in 𝑓 ’s training set. Since
253
+ 𝑠 is the attacker, the only challenge is collecting samples of 𝑡.
254
+ any-to-many. Are models which can use any source voice to drive
255
+ the content in 𝑥𝑔 without retraining the model.
256
+ any-to-any. Are models which do not need to see the source 𝑠
257
+ or target 𝑡 during training to perform 𝑓𝑡 (𝑐𝑠) = 𝑥𝑔. This makes
258
+ any-to-any models the flexible solution for attackers.
259
+ 3
260
+ THREAT MODEL
261
+ There are two ways an adversary can use the RT-DF 𝑓𝑡 maliciously:
262
+ the adversary can (1) call a victim while impersonating 𝑡 or (2) call
263
+ a target and threaten to impersonate him. The call may take place
264
+ over the phone through a virtual meeting (such as over Zoom). We
265
+ refer to these calls as “fake calls”.
266
+ 3.1
267
+ Attack Goals
268
+ There are several attack goals which an adversary can achieve using
269
+ a fake call:
270
+ Cyber attacks. Fake calls can be used in social engineering attacks
271
+ (SE). For example, instead of sending spear phishing emails to
272
+ get employees to install malware, the attacker can call a victims
273
+ up as their manager and ask them to do it directly. These SE
274
+ attacks can also be used during an adversary’s reconnaissance
275
+ on an organization to obtain system information and credentials.
276
+ For example, the attacker can call a victim posing as a colleague,
277
+ asking for help to login or claiming that he has "forgotten" some
278
+ information.
279
+ Sabotage. An attacker can impersonate a victim’s supervisor in
280
+ an attempt to have the victim change some settings or config-
281
+ urations in a system. For example, in a chemical processing
282
+ plant, an adversary can use a manager’s voice to tell a worker
283
+ to urgently alter the balance of some process –leading to cata-
284
+ strophic results.
285
+ Espionage. Fake calls can also be used by state agents as a means
286
+ for extracting sensitive and confidential information. For exam-
287
+ ple, an adversary can gain a political advantage by posing as
288
+ a politician’s assistant and a military advantage by posing as
289
+ a military official. Moreover, sensitive documents and source
290
+ code can be leaked in a similar manner if the adversary imper-
291
+ sonates a leading figure who directly asks employees for this
292
+ material. Finally, by impersonating professionals with LinkedIn
293
+ profiles, an adversary can obtain remote job interviews which
294
+ may lead to remote work with a company –ultimately placing
295
+ an insider within the organization [17].
296
+ Scams. An attacker can prey upon people and trick them into giv-
297
+ ing them money. For example, the adversary can impersonate
298
+ a family member of the victim to convince the victim that his
299
+ family is in danger and needs an urgent money transfer. Similar
300
+ schemes can be done on business and banks where the attacker
301
+ convinces the victim to make a money transfer under false
302
+ pretexts [12, 51].
303
+ Blackmail. To coerce a victim to perform an action (pay money,
304
+ reveal information, ...) an attacker can blackmail the victim
305
+ using RT-DF technology. For example, the attacker can speak
306
+ to the victim using the victim’s voice and threaten the victim
307
+ that calls will be made to reporters, friends, colleagues, or a
308
+ spouse as the victim if the blackmail terms are not met (similar
309
+ to a case that happened in Singapore [26]).
310
+ Defamation. An adversary can defame the victim by perform-
311
+ ing embarrassing or unethical acts over calls to the victim’s
312
+ colleagues or reporters while masquerading as the victim.
313
+ Misinformation. An attacker can call reporters and do interviews
314
+ as politicians and other public figures to spread misinformation
315
+ in the media.
316
+ 3.2
317
+ Attack Setup
318
+ The flexibility of the attacker depends on the flexibility of the RT-
319
+ DF model. To train the model 𝑓𝑡, the attacker can use one of two
320
+ common approaches:
321
+ Batch Learning. If the attacker uses conventional learning mod-
322
+ els such as [23, 30, 36, 44], then the attacker will need to collect
323
+ a large audio training set of 𝑡 (typically around 20-30 minutes)
324
+ and train 𝑓 on this data. This dataset can be obtained from
325
+ the Internet if 𝑡 is a celebrity (e.g., interviews on YouTube). If
326
+
327
+ Conference’17, July 2017, Washington, DC, USA
328
+ Yasur et al.
329
+ 𝑡 doesn’t have an internet presence, then the dataset may be
330
+ obtained via long phone calls, wiretaps, and secret recordings
331
+ (bugs). These models are usually many-to-many or any-to-
332
+ many.
333
+ Few/Zero-shot Learning. When using methods such as [15, 19,
334
+ 37, 55], the attacker only needs a few seconds of 𝑡’s audio. In
335
+ this case, the attacker can make a short phone call to 𝑡 and
336
+ record his/her voice. The adversary may also find short video
337
+ clips on social media or resort to wiretaps and bugs as well.
338
+ These types of models are usually any-to-any.
339
+ We note that most modern RT-DF technologies do not require
340
+ labeled data since they are trained in a self-supervised manner
341
+ [40]. Regarding quality, batch model training methods are typically
342
+ preferred over few-shot or zero-shot methods.
343
+ 4
344
+ RELATED WORKS
345
+ Most audio deepfake detection systems (ADDS) use a common
346
+ pipeline to detect deepfake audio: given an audio clip 𝑎, the pipeline
347
+ (1) converts 𝑎 into a stream of one or more audio frames 𝑎(1), ...𝑎(𝑛),
348
+ (2) extracts a feature representation from each frame which sum-
349
+ marizes the frames’ waveforms 𝑥 (1), ...𝑥 (𝑛), and then (3) passes
350
+ the frame(s) through a detector which predicts the likelihood of
351
+ 𝑎 being real or fake. The audio features in 𝑥 (𝑖) are either a Short
352
+ Time Fourier Transform (STFT) [6, 61], spectrogram, Mel Frequency
353
+ Cepstral Coefficients (MFCC) [27, 52], or the Constant Q Cepstral
354
+ Coefficients (CQCC) [31, 34] of 𝑎(𝑖). Some methods simply use the
355
+ actual waveform of 𝑎(𝑖) [53, 54].
356
+ With this representation, an ADDS can either use a classifier
357
+ [25, 29, 54] or anomaly detector [3, 28] to identify generated audio.
358
+ A good summary of modern ADDS can be found in [4]. In gen-
359
+ eral, classifiers are trained on labeled audio data consisting of two
360
+ classes: real and deepfake. By providing labeled data, the model
361
+ can automatically identify the relevant features (semantic or latent)
362
+ during training. An intuitive example is the case where a deep-
363
+ fake voice cannot accurately pronounce the letter ‘B’ [1]. In this
364
+ scenario, the model will consider this pattern as a distinguishing
365
+ feature for that deepfake. A disadvantage of classifiers is that they
366
+ follow a closed-world assumption; that all examples of the deepfake
367
+ class are in the training set. This assumption requires that detectors
368
+ be retrained whenever new technologies are released. As for the
369
+ model, some works use classical machine learning models such as
370
+ SVMs and decision trees [11, 27, 32] while the majority use deep
371
+ learning architectures such as DNNs [61, 63], CNNs [13, 38], and
372
+ RNNs [7, 49]. To improve generalization to new deepfakes, some ap-
373
+ proaches try to train on a diverse set of deepfake datasets (e.g., [24]).
374
+ However, even with this strategy, ADDS systems still generalize
375
+ poorly to new audio distributions recorded in new environments
376
+ and to novel deepfake new technologies [42].
377
+ In contrast to classifiers, anomaly detectors are trained on real
378
+ voice data only and flag audio that has abnormal patterns within it.
379
+ One approach for anomaly detection is to use the embeddings from
380
+ a voice recognition model to compare the similarity between real
381
+ and authentic voices [43]. Other approaches use one-class machine
382
+ learning models such as OC-SVMs and statistical models such as
383
+ Gaussian Mixture Models (GMM) [3, 28, 56, 63].
384
+ What’s common with the above defenses is that they are all
385
+ passive defenses. This means that they analyze 𝑎 but they do not
386
+ interact with the caller to reveal the true nature of 𝑎. In contrast,
387
+ our proposed method is active in that it can force 𝑓 to try and create
388
+ content it is not capable of doing. By ‘pressing’ on the limitations
389
+ of 𝑓 , we are causing 𝑓 to generate audio with significantly larger
390
+ artifacts, making it easier for us to detect using classifiers and
391
+ anomaly detection. Our approach also ensures some longevity since
392
+ the attacker cannot easily overcome the limitations our challenges
393
+ pose (further discussed in section 5.1).
394
+ Another advantage of our system compared to others is that we
395
+ know exactly where the anomaly should be in the media stream
396
+ (due to the challenge response nature of the CAPTCHA protocol).
397
+ This means that our system is more efficient since it only needs to
398
+ execute its models over specific segments and not entire streams
399
+ (e.g., in contrast to [9]).
400
+ The work most similar to ours is rtCAPTCHA [57]. In this work
401
+ the authors perform liveliness detection by (1: challenge) asking
402
+ the caller to read out a text CAPTCHA, (2: response) verifying
403
+ that the CAPTCHA was read back correctly, and (3: robustness)
404
+ verifying that the face and voice match an existing user in a database.
405
+ The concept of rtCAPTCHA is that the system assumes that the
406
+ attacker will not be able to generate a response with the target’s
407
+ face and voice in real-time. However, with the advent of RT-DFs,
408
+ this rtCAPTCHA can easily be bypassed since the human attacker
409
+ can read the text CAPTCHA back through 𝑓𝑡. Moreover, our D-
410
+ CAPTCHA defense does not require users to register in advance,
411
+ making the solution widely applicable to many users and scenarios.
412
+ 5
413
+ DEEPFAKE CAPTCHAS
414
+ In this section we discuss the limitations of RT-DFs and then use
415
+ these limitations to define how D-CAPTCHAs work.
416
+ 5.1
417
+ RT-DF Limitations
418
+ Current RT-DF models can only generate content within the scope
419
+ of the task they were trained on. For example, a model trained
420
+ to reenact 𝑡’s face in a somewhat frontal position or generate 𝑡’s
421
+ voice in a calm speaking tone will not be able to generate other
422
+ content. This is evident in facial reenactment models such as [50]
423
+ and DeepFaceLive. These models have excellent performance in
424
+ creating faces with frontal poses, but they cannot generate the back
425
+ of the target’s head. Similarly, for audio-based RT-DFs, it is hard
426
+ for the model to identify and then produce certain sounds if the
427
+ training data, loss functions, and overall pipeline focuses on the
428
+ perfection of normal speech.
429
+ An ideal RT-DF model would be able to create content of 𝑡
430
+ performing an arbitrary task, where the content is both realistic
431
+ and authentic to 𝑡’s identity. However, RT-DF models are not ideal
432
+ because they are scoped to specific tasks during training. This is
433
+ because doing so enables the model to perfect the identity and
434
+ realism in 𝑥𝑔 when driven by 𝑥𝑠. Therefore, even if out of domain
435
+ tasks can be anticipated, 𝑓𝑡 cannot be trained recreate them all. This
436
+ is due to limitations in technology and practicality:
437
+ 5.1.1
438
+ Technology. This set of limitations relates to the fact that
439
+ current technology is not yet capable of creating the ideal RT-DF.
440
+
441
+ Deepfake CAPTCHA: A Method for Preventing Fake Calls
442
+ Conference’17, July 2017, Washington, DC, USA
443
+ Inference Speed. The rate at which audio frames can be gener-
444
+ ated depends on the efficiency of deepfake generation pipeline
445
+ and the complexity of the model’s architecture. However, in or-
446
+ der to handle a wide variety of different tasks, a model requires
447
+ significantly more parametersc and possibly more complex fea-
448
+ ture extractors in its pipeline. For example, existing RT-DF
449
+ models would need higher resolution STFTs and MFCCs to
450
+ capture a wider band of frequencies.
451
+ Feature Representation. In order to capture certain patterns in
452
+ the input 𝑎���, a model must extract appropriate feature repre-
453
+ sentations from the input waveform. Voice tends to use lower
454
+ frequencies and has a rather consistent spectral envelope com-
455
+ pared to other sounds such as singing and clapping. Existing
456
+ pipelines use compressed features such as MFCCs or STFTs
457
+ with lower sample rates (e.g., 16-24 KHz [4]). To capture a more
458
+ dynamic range of frequencies, higher resolution is needed. How-
459
+ ever, increasing input resolution generally makes it harder for
460
+ a model to converge and increases model complexity.
461
+ Training. To train a model, a loss function must be provided to
462
+ guide the optimization process. Modern RT-DF systems use at
463
+ least two loss functions: one for the realism (adversarial loss)
464
+ and one for preserving the identity of 𝑡 in 𝑎𝑔 (e.g., perceptual
465
+ loss) [40]. If additional tasks are considered, then the model will
466
+ likely need additional loss functions to cover each aspect. How-
467
+ ever, loss functions compete during optimization and therefore
468
+ some aspects will suffer. Furthermore, adding loss functions can
469
+ make it harder for the model to converge. Finally, it’s possible
470
+ that 𝑎𝑠 may contain a mix of voice and other audio (e.g., music
471
+ or some other voice). To work on this audio, the model would
472
+ have to convert the voice component and not the other audio,
473
+ and then mix the two components back together in 𝑥𝑔. To the
474
+ best of our knowledge this is an open problem.
475
+ 5.1.2
476
+ Resources. This set of limitations relates to cases where the
477
+ desired result is achievable with existing technology, however it
478
+ may be prohibitively expensive or impractical to obtain it.
479
+ Data Collection. To make a high quality RT-DF of 𝑡, a significant
480
+ amount of audio samples of 𝑡 are required (e.g., [36] requires
481
+ 20-30 minutes). However, it is impractical for an attacker to
482
+ obtain audio of 𝑡 performing specific tasks other than talking.
483
+ If quality can be sacrificed, then zero-shot learning could be
484
+ used. However, there is still the challenge of (1) gathering an
485
+ extensive dataset of all possible tasks and (2) training a model
486
+ that can generalize the samples to new identities.
487
+ Knowledge. Creating a system that can handle even a subset of
488
+ arbitrary tasks requires some in-depth knowledge on making
489
+ generative deep learning models. This raises the difficulty bar
490
+ for casual attackers, but not for advanced adversaries.
491
+ Labeling. The process of annotating and labeling large datasets is
492
+ expensive and time consuming. This becomes more apparent
493
+ as the number of classes (tasks) increases.
494
+ cAs a point of reference, StarGAN [36] is a state-of-the-art audio-based RT-DF
495
+ models which has about 53 million parameters. In contrast, models that produce arbi-
496
+ trary content (such as DALL-E 2 and Imagen) use 3.5-4.6 billion parameters. Moreover,
497
+ methods such as stable-diffusion requires multiple passes.
498
+ Assets. The ideal RT-DF model would likely be a complex model
499
+ to handle the arbitrary tasks. Executing such a model in real-
500
+ time would require a powerful GPU. Depending on the model’s
501
+ complexity, the GPU may either be prohibitively expensive or
502
+ simply non-existent.
503
+ 5.1.3
504
+ Outlook on RT-DF Limitations. We note that the limitations
505
+ described in this section apply to existing RT-DF systems. Although
506
+ these limitations are hard to overcome, there is no guarantee that
507
+ future RT-DF technologies will have the same limitations. However,
508
+ we expect that some of the limitations, such as data collection and
509
+ training, will still apply to novel systems in the near future.
510
+ Therefore, to gain advantage over the adversary, we suggest
511
+ that defenses should exploit the limitations of RT-DFs whenever
512
+ possible.
513
+ 5.2
514
+ D-CAPTCHA
515
+ According to [2], a CAPTCHA is “a cryptographic protocol whose
516
+ underlying hardness assumption is based on an AI problem.” The pro-
517
+ tocol follows the form of a challenge-response procedure between
518
+ server 𝐴 (the server/victim) and client 𝐵 (the client/caller), where
519
+ (1) 𝐴 sends challenge 𝑐 to 𝐵, (2) 𝐵 sends response 𝑟𝑐 on 𝑐 back to 𝐴,
520
+ and (3) 𝐴 verifies whether 𝑟𝑐 resolves challenge 𝑐:
521
+ (1) 𝐴 → 𝐵 : 𝑐
522
+ (2) 𝐵 → 𝐴 : 𝑟𝑐
523
+ (3) 𝐴 : 𝑉 (𝑟𝑐) ∈ {𝑝𝑎𝑠𝑠, 𝑓 𝑎𝑖𝑙}
524
+ For example, the popular reCAPTCHA prevents bots from perform-
525
+ ing automated activities on the web by challenging the client to
526
+ perform a human skill which is hard for software but easy for hu-
527
+ mans (e.g., decoding distorted letters). In contrast, a D-CAPTCHA
528
+ challenges a client by requiring the client to create content with
529
+ the following constraints:
530
+ (1) Realism: The content must be realistic to a human or a
531
+ machine learning model
532
+ (2) Identity: The content must reflect the identity 𝑡
533
+ (3) Task: The content must have 𝑡 performing an arbitrary task
534
+ which is hard to generate
535
+ (4) Time: The content must be generated in real-time
536
+ Creating a response to this challenge where 𝑉 (𝑟𝑐) = 𝑝𝑎𝑠𝑠 is hard
537
+ for existing RT-DF technologies but easy for humans. In our system
538
+ the ‘hardness��� of the CAPTCHA directly relates to the limitations of
539
+ existing RT-DF technology (section 5.1). Moreover, just like modern
540
+ CAPTCHA systems, a D-CAPTCHA system can be easily extended
541
+ to new limitations of RT-DFs over time. This gives our system
542
+ flexibility to defend against future threats.
543
+ 5.2.1
544
+ Creating a Challenge. A challenge demonstrates whether
545
+ a caller can or cannot create content with realism, identity, task
546
+ and time constraints. Realism constraints are necessary to ensure
547
+ there are no latent or semantic anomalies in the response. Iden-
548
+ tity constraints are needed to ensure that the attacker isn’t just
549
+ recording him/herself during the challenge. Task constraints are
550
+ required to ensure that the deepfake model tries to operate outside
551
+ the bounds of its abilities. Finally, Time constraints are involved
552
+ to guarantee that the caller is using an RT-DF model since (1) we
553
+ don’t want the caller to switch to an offline model and (2) real-time
554
+
555
+ Conference’17, July 2017, Washington, DC, USA
556
+ Yasur et al.
557
+ Table 1: Examples of audio-based tasks which can be used as challenges in a D-CAPTCHA. Strong challenges are hard for
558
+ the adversary on all four constraints: realism, identity, complexity and time. The measures in this list are based on existing
559
+ RT-DFs methods. Playback is where the caller must play some provided audio from his/her phone into the microphone.
560
+ Hardness
561
+ Weakness
562
+ Effectiveness
563
+ Task (𝑇)
564
+ Acronym
565
+ Usability
566
+ Realism
567
+ Identity
568
+ Task
569
+ Time
570
+ Evasions
571
+ Naive Attacker
572
+ Advanced Attacker
573
+ Clear Throat
574
+ CT
575
+
576
+
577
+
578
+
579
+
580
+
581
+
582
+ Hold Musical Note
583
+ HN
584
+
585
+
586
+
587
+
588
+
589
+
590
+
591
+ Hum Tune
592
+ HT
593
+
594
+
595
+
596
+
597
+
598
+
599
+
600
+ Laugh
601
+ L
602
+
603
+
604
+
605
+
606
+
607
+
608
+
609
+ Mimic Speaking Style
610
+ MS
611
+
612
+
613
+
614
+
615
+
616
+
617
+
618
+ Repeat Accent
619
+ R
620
+
621
+
622
+
623
+
624
+
625
+
626
+
627
+ Sing
628
+ S
629
+
630
+
631
+
632
+
633
+
634
+
635
+
636
+ Speak with Emotion
637
+ SE
638
+
639
+
640
+
641
+
642
+
643
+
644
+
645
+ Yawn
646
+ Y
647
+
648
+
649
+
650
+
651
+
652
+
653
+
654
+ Blow Noises
655
+ BN
656
+
657
+
658
+
659
+
660
+
661
+ bypass
662
+
663
+
664
+ Blow on Mic
665
+ BM
666
+
667
+
668
+
669
+
670
+
671
+ bypass
672
+
673
+
674
+ Clap
675
+ Cl
676
+
677
+
678
+
679
+
680
+
681
+ bypass
682
+
683
+
684
+ Click Tongue
685
+ Clk
686
+
687
+
688
+
689
+
690
+
691
+ bypass
692
+
693
+
694
+ Cough
695
+ Co
696
+
697
+
698
+
699
+
700
+
701
+ bypass
702
+
703
+
704
+ Horse Lips
705
+ HL
706
+
707
+
708
+
709
+
710
+
711
+ bypass
712
+
713
+
714
+ Knock
715
+ K
716
+
717
+
718
+
719
+
720
+
721
+ bypass
722
+
723
+
724
+ Playback Audio
725
+ PA
726
+
727
+
728
+
729
+
730
+
731
+ bypass
732
+
733
+
734
+ Raspberry
735
+ R
736
+
737
+
738
+
739
+
740
+
741
+ bypass
742
+
743
+
744
+ Sound Effect
745
+ SFX
746
+
747
+
748
+
749
+
750
+
751
+ bypass
752
+
753
+
754
+ Touch Mic
755
+ TM
756
+
757
+
758
+
759
+
760
+
761
+ bypass
762
+
763
+
764
+ Type
765
+ T
766
+
767
+
768
+
769
+
770
+
771
+ bypass
772
+
773
+
774
+ Whistle
775
+ W
776
+
777
+
778
+
779
+
780
+
781
+ bypass
782
+
783
+
784
+ Talk & Clap
785
+ T&C
786
+
787
+
788
+
789
+
790
+
791
+ mix
792
+
793
+
794
+ Talk & Knock
795
+ T&K
796
+
797
+
798
+
799
+
800
+
801
+ mix
802
+
803
+
804
+ Talk & Playback
805
+ P
806
+
807
+
808
+
809
+
810
+
811
+ mix
812
+
813
+
814
+ Talk with Tones
815
+ TT
816
+
817
+
818
+
819
+
820
+
821
+ mix
822
+
823
+
824
+ Vary Speed
825
+ VS
826
+
827
+
828
+
829
+
830
+
831
+ mix
832
+
833
+
834
+ Vary Volume
835
+ V
836
+
837
+
838
+
839
+
840
+
841
+ mix
842
+
843
+
844
+ •: high, ◦: medium, −: low
845
+ models are more limited since they can only process frames and
846
+ not entire audio clips.
847
+ The core component of a challenge in our system is the task
848
+ which the caller must perform. Let 𝑇 denote a specific task, such
849
+ that 𝑇 = ℎ𝑢𝑚 might be “hum a specific song.” We define the set of
850
+ all possible challenges for task 𝑇 as 𝐶𝑇 . For example, 𝐶ℎ𝑢𝑚 would
851
+ be all possible requests for different songs to be hummed. To select
852
+ a challenge, (1) random seeds 𝑧0,𝑧1 are generated, (2) 𝑧0 is used
853
+ to select a random task 𝑇 and (3) 𝑧1 is used to select a random
854
+ challenge 𝑐 ∈ 𝐶𝑇 .
855
+ In Table 1 we present some example tasks which can be used in
856
+ D-CAPTCHA challenges. In the table, we assume that the RT-DF
857
+ under test has been trained to have the best performance on one
858
+ task; regular talking. Using observations over five state-of-the-art
859
+ RT-DF models we assess the hardness, weakness, and effectiveness
860
+ of each task as a challenge (see 7.1.1 for details on these five models).
861
+ Under hardness, we express the difficulty of a modern RT-DF in
862
+ successfully creating a deepfake of𝑡 given the respective constraints.
863
+ For weakness, we state how an adversary can evade detection if the
864
+ respective task is chosen. For instance, bypass is where the RT-DF
865
+ is turned off and the attacker speaks directly to our system. The
866
+ other case is mix is where the attacker can mix other audio sources
867
+ into 𝑎𝑔. For example, to evade ‘talk & clap’ the attacker creates
868
+ 𝑎′𝑔 = 𝑎𝑔 + 𝑎𝑐𝑙𝑎𝑝 where 𝑎𝑐𝑙𝑎𝑝 is taken from another microphone so
869
+ as not to disrupt the RT-DF (i.e., execute 𝑓𝑡 (𝑎𝑠 +𝑎𝑚)). Finally, in the
870
+ table under effectiveness we consider how effective the challenge is
871
+ given two levels of attackers: naive and advanced. A naive attacker
872
+ is one which (1) will use existing datasets and only a limited number
873
+ of samples of 𝑡 to train 𝑓𝑡 and (2) forwards all audio through 𝑓𝑡
874
+ (e.g., if a library is used as-is from GitHub). An advanced attacker
875
+ is one which will collect a practical number of samples on 𝑡 (e.g.,
876
+ 20 minutes) and is able to mix other audio sources into 𝑎𝑔.
877
+ Overall, a strong challenge is a random 𝑐 drawn from a random𝑇
878
+ which is hard for the adversary to perform given all four constraints.
879
+ 5.2.2
880
+ Verifying a Challenge. To determine whether𝑉 (𝑟𝑐) = 𝑝𝑎𝑠𝑠 or
881
+ 𝑓 𝑎𝑖𝑙, we must verify whether 𝑟𝑐 adheres to the realism, identity,
882
+ Task, and time constraints. All four constraints can be verified
883
+ by a human (a moderator or the victim him/herself). For exam-
884
+ ple, if 𝑐 =“say ’I’m hungry’ with anger” but (1) the audio sounds
885
+ strange/distorted, (2) the voice does not sound like 𝑡, (3) the task
886
+ is not completed, or (4) it takes too long for the caller to respond,
887
+ then this would raise suspicion. However, many users may not trust
888
+ themselves enough or they may give in to social pretexts and ig-
889
+ nore the signs –to avoid rejecting a peer. Therefore, we propose an
890
+ automated way to verify each constraint without prior knowledge
891
+ of 𝑡.
892
+ To verify 𝑟𝑐, we validate each constraint separately:
893
+ Realism Verification (R). If an RT-DF attempts to perform𝑐 then
894
+ 𝑟𝑐 will likely contain distortions and artifacts. This is because
895
+ (1) the RT-DF is operating outside of its capabilities or (2) be-
896
+ cause the caller simply is using a poor-quality RT-DF. These
897
+ distortions will make it easier for existing anomaly detectors
898
+ and existing deepfake classifiers to identify the RT-DF. The
899
+ output of R is a score on the range [0, ∞) or [0, 1] indicating
900
+ how unrealistic the content of 𝑟𝑐 is.
901
+ Identity Verification (I). To determine if 𝑟𝑐 has the identity 𝑡,
902
+ we can do as follows: (1) collect a short audio sample 𝑎𝑡 of the
903
+
904
+ Deepfake CAPTCHA: A Method for Preventing Fake Calls
905
+ Conference’17, July 2017, Washington, DC, USA
906
+ suspicious?
907
+ no
908
+ yes
909
+ challenge 𝑐
910
+ + instructions
911
+ response 𝑟𝑐
912
+ drop call
913
+ evidence (𝑐, 𝑟𝑐)
914
+ RT-DF Call
915
+ (3) Response Verification 𝑉 𝑟𝑐
916
+ Victim
917
+ Attacker
918
+ Deepfake
919
+ Realism
920
+ Time
921
+ Task
922
+ 𝒯 𝑑 < 𝜙1
923
+ Get voice
924
+ sample 𝑎𝑡
925
+ from caller
926
+ Select
927
+ challenge
928
+ seed 𝑧1
929
+ (2) Challenge Creation c ∈ 𝐶𝑇
930
+ ℛ 𝑟𝑐 < 𝜙2
931
+ 𝒞 𝑟𝑐, 𝑐 < 𝜙4
932
+ true
933
+ true
934
+ true
935
+ (1) Call
936
+ Forwarding
937
+ Select task
938
+ 𝑇
939
+ 𝑎𝑡
940
+ acknowledged?
941
+ true
942
+ true
943
+ Ask victim if
944
+ accept call from 𝑡
945
+ given 𝑎𝑡?
946
+ Call connected/resumed
947
+ seed 𝑧0
948
+ Identity
949
+ ℐ 𝑟𝑐, 𝑎𝑡 < 𝜙3
950
+ Figure 2: An overview of the proposed D-CAPTCHA system: (1) Calls are forwarded to the system using a blacklist, whitelist,
951
+ policy or the victim’s intuition, (2) a random D-CAPTCHA 𝑐 with accompanying instructions is generated and send to the
952
+ caller as a challenge, (3) the response 𝑟𝑐 is verified against the four constraints (time, realism, identity, task) and if all four pass
953
+ then the call is connected/resumed. Otherwise, the call is dropped and evidence is provided to the victim.
954
+ caller prior to the challenge and have the victim acknowledge
955
+ the identity, and (2) use zero-shot voice recognition model to
956
+ verify that the identity in 𝑎𝑡 and 𝑟𝑐 are the same. The reason we
957
+ have the victim acknowledged 𝑡 in 𝑎𝑡 is to prevent the attacker
958
+ from switching the identity after the challenge. Alternatively,
959
+ interaction with the victim can be avoided if continuous voice
960
+ verification is used on the caller. However, doing so would be
961
+ expensive. The output of I is a similarity score between 𝑎𝑡 and
962
+ 𝑟𝑐.
963
+ Task Verification (C). There are two cases where 𝑟𝑐 would not
964
+ contain the requested task: (1) the model failed to generate
965
+ the content and (2) the attacker is trying to evade generating
966
+ artifacts by performing another task or nothing at all. To en-
967
+ sure that 𝑟𝑐 contains the task, we can use a machine learning
968
+ classifier. The output of C is the probability that 𝑟𝑐 does not
969
+ contain the task.
970
+ Time Verification (T). The time constraint can be verified by en-
971
+ suring that the first frame of 𝑟𝑐 is received within roughly 1
972
+ second after of the challenge’s start time (i.e., after the instruc-
973
+ tions for 𝑐 are given). The output of T is the measured time
974
+ delay denoted 𝑑.
975
+ Altogether, we validate𝑟𝑐 if none of the four algorithms (T, R, I, C)
976
+ exceed their respective thresholds (𝜙1,𝜙2,𝜙3,𝜙4) where each thresh-
977
+ old has been tuned accordingly. We invalidate 𝑟𝑐 if any model ex-
978
+ ceeds its respective threshold. The false reject rate can be tuned
979
+ by weighing the contribution of each constraint, however doing so
980
+ will compromise the security of the system.
981
+ In summary, validation is performed as follows:
982
+ 𝑉 (𝑟𝑐) =
983
+ 
984
+ 
985
+ 𝑝𝑎𝑠𝑠,
986
+ T (𝑑) < 𝜙1, R(𝑟𝑐) < 𝜙2,
987
+ I(𝑟𝑐,𝑎𝑡) < 𝜙3, C(𝑟𝑐,𝑐) < 𝜙4
988
+ 𝑓 𝑎𝑖𝑙,
989
+ else
990
+ (1)
991
+ We note that a combination of validation methods for each con-
992
+ straint can be used to increase performance, security and usability.
993
+ For example, some verifications can be done with humans, some
994
+ with algorithms and some with both.
995
+ 6
996
+ DETECTION FRAMEWORK
997
+ In this section we present the D-CAPTCHA framework which can
998
+ be used to protect users (victims) from fake callers. A summary of
999
+ the D-CAPTCHA framework can be found in Fig. 2.
1000
+ 6.1
1001
+ 1: Call Forwarding
1002
+ The very first step is to decide which calls should be forwarded to
1003
+ the system. In high risk settings, a D-CAPTCHA may be used to
1004
+ verify every caller. However, this is not practical in most settings.
1005
+ Instead, calls can be forwarded to the system using blacklists (e.g.,
1006
+ known offenders) or policies. An example policy is to forward all
1007
+ callers who are not in the victim’s address book, or to screen all
1008
+ calls during working hours.
1009
+ Alternatively, call screening can be activated by the user. For
1010
+ example, if a call arrives from an unknown number, the user can
1011
+ choose to forward it to the D-CAPTCHA system if the call is unex-
1012
+ pected. Another option is to let users forward ongoing calls if (1)
1013
+ the caller’s audio sounds strange, (2) the conversation is suspicious,
1014
+ or (3) a sensitive discussion needs to be made. For example, consider
1015
+ the scenario where a user receives a call from a friend under an
1016
+ odd pretext such as “I’m stuck in Brazil and need money to get
1017
+ out.” Here, the user can increase his/her confidence in the caller’s
1018
+ authenticity after forwarding the call through the D-CAPTCHA
1019
+ system.
1020
+ 6.2
1021
+ 2: Challenge Creation
1022
+ A random challenge 𝑐 is generated using the approach described
1023
+ in section 5.2.2. In addition to 𝑐, instructions for the caller are
1024
+ generated. Instructions include a list of actions to perform and a
1025
+ start indicator. For example, an instruction might be “at the tone,
1026
+
1027
+ 1Conference’17, July 2017, Washington, DC, USA
1028
+ Yasur et al.
1029
+ knock three times while introducing yourself.” The instruction is
1030
+ then converted into an audio message using TTS.
1031
+ At the start of the challenge, the caller is asked to state his/her
1032
+ name. This recording is saved as 𝑎𝑡 and shared with the victim
1033
+ for acknowledgment and with I for identity verification.d Next,
1034
+ the audio instructions are played to the caller. After playing the
1035
+ instructions, a tone is sounded. The time between the tone and the
1036
+ first audible sounds from the caller is measured and included as part
1037
+ of 𝑟𝑐 for T. After a set number of seconds, the caller’s recording is
1038
+ saved as 𝑟𝑐 and passed along for verification.
1039
+ 6.3
1040
+ 3: Response Verification
1041
+ The recorded response 𝑟𝑐 and its timing data are sent to T, R, C,
1042
+ and I for constraint verification. If all the algorithms yield scores
1043
+ below their respective thresholds, then 𝑎𝑡 is played to the user. If
1044
+ the user accepts the call with 𝑡 then the D-CAPTCHA is 𝑣𝑎𝑙𝑖𝑑 and
1045
+ the call is connected / resumed.
1046
+ If any of the algorithms produce a score above their threshold,
1047
+ then the call is dropped, and evidence is provided to the user. Evi-
1048
+ dence consists of an explanation of why the call was not trusted
1049
+ (e.g., information on which constraint(s) failed and to what degree)
1050
+ and playback recordings of 𝑎𝑡, 𝑐, and 𝑟𝑐 accordingly. Although the
1051
+ order which the models are executed does not matter, we can avoid
1052
+ executing redundant models if one model detects the deepfake.
1053
+ Therefore, we suggest the order T → R → C → I to potentially
1054
+ save execution time when detecting a deepfake. We also note that
1055
+ if higher security is required, then multiple D-CAPTCHAs can be
1056
+ sent out and subsequently verified to reduce the false negative rate.
1057
+ 6.3.1
1058
+ Deployment. In general, the framework can be deployed
1059
+ as an app on the victim’s phone or as a service in the cloud. For
1060
+ example, onsite technicians, bankers, and the elderly can have the
1061
+ system screen calls directly on their phones. Call centers and online
1062
+ meeting rooms can use cloud resources to screen callers in waiting
1063
+ rooms (e.g., before connecting to a confidential Zoom meeting
1064
+ [48, 59]).
1065
+ 6.4
1066
+ Limitations
1067
+ The main limitations of this system are its applicability and usabil-
1068
+ ity. In terms of deployment, the system must be able to interact
1069
+ with the deepfake so it can only protect against RT-DFs. More-
1070
+ over, since it is an active defense, the CAPTCHA protocol runs
1071
+ the risk of becoming a hindrance to users if not tuned correctly.
1072
+ Regardless, it’s a great solution for screening callers entering high
1073
+ security conversations and meetings in an age where calls cannot
1074
+ be trusted. Finally, the system uses deep learning models in R, I,
1075
+ and C. Just like other deep learning-based defenses, an attacker
1076
+ can potentially evade these models using adversarial examples [14].
1077
+ However, when trying to evade our system, the attacker must over-
1078
+ come a number of challenges: (1) most calls are made over noisy
1079
+ and compressed channels reducing the impact of the perturbations,
1080
+ (2) performing this attack would require real-time generation of
1081
+ adversarial examples, and (3) R, I, and C would most likely be a
1082
+ dRecall, this is done to prevent attackers from simply turning off the RT-DF during
1083
+ the challenge and using their actual voice.
1084
+ black box to the attacker, although not impervious, it cannot be
1085
+ easily queried.
1086
+ 7
1087
+ THREAT ANALYSIS
1088
+ In this section, we assess the threat posed by RT-DFs by evaluating
1089
+ the quality of five state-of-the-art RT-DF models in the perspective
1090
+ of 41 volunteers.
1091
+ 7.1
1092
+ Experiment Setup
1093
+ 7.1.1
1094
+ RT-DF Models. We surveyed 25 voice cloning papers pub-
1095
+ lished over the last three years which can process audio in real-time
1096
+ as a sequence of frames. Of the 25 papers we selected the four recent
1097
+ works which published their source code: AdaIN-VC [15], MediumVC
1098
+ [19], FragmentVC [37] and StarGANv2-VC [36]. We also selected
1099
+ ASSEM-VC [30] which is a non-casual model as an additional com-
1100
+ parison. All works are from 2021 except AdaIN-VC which is from
1101
+ 2019.
1102
+ any-to-many. StarGANv2-VC is many-to-many model which also
1103
+ works as an any-to-many model. The audio 𝑎𝑔 is created by
1104
+ passing the spectrogram of 𝑎𝑠 through an encoder-decoder
1105
+ network. To disentangle content from identity, the decoder also
1106
+ receives an encoding of 𝑎𝑠 taken from a pretrained network
1107
+ which extracts the fundamental frequencies. Finally, the decoder
1108
+ receives reference information on 𝑡 via a style encoder using
1109
+ sample 𝑎𝑡. ASSEM-VC works in a similar manner except 𝑎𝑠 and a
1110
+ TTS transcript of 𝑎𝑠 are used to generate a speaker independent
1111
+ representation before being passed to the decoder, and the
1112
+ decoder receives reference information on 𝑡 from an identify
1113
+ encoder.
1114
+ any-to-any. In AdaIN-VC, 𝑎𝑔 is created by disentangling identity
1115
+ from content. The model (1) passes a sample 𝑎𝑡 through an iden-
1116
+ tity encoder, (2) passes a source frame 𝑎(𝑖)
1117
+ 𝑠
1118
+ through a content
1119
+ encoder with instance-normalization, and then (3) passes both
1120
+ outputs through a final decoder. In MediumVC, 𝑎𝑠 first normal-
1121
+ izes the voice by converting it to a common identity with an
1122
+ any-to-one VC model. The result is then encoded and passed to
1123
+ a decoder along with an identity encoding (similar to AdaIN-VC).
1124
+ FragmentVC, extracts the content of 𝑎𝑠 using a Wav2Vec 2.0
1125
+ model [8] and extracts fragments of 𝑎𝑡 using an encoder. A de-
1126
+ coder then uses attention layers to fuse the identity fragments
1127
+ into the content to produce 𝑎𝑔.
1128
+ All audio clips in this experiment were generated using the pre-
1129
+ trained models provided by the original authors. To simulate a
1130
+ realistic setting, the clips were passed through a phone filter (a
1131
+ band pass filter on the 0.3-3KHz voice range).
1132
+ 7.1.2
1133
+ Experiments. To help quantify the threat of RT-DFs, we per-
1134
+ formed two experiments on a group of 41 volunteers:
1135
+ EXP1a - Quality. The goal of the first experiment was to see how
1136
+ easy it is to identify an RT-DF in the best-case scenario (when
1137
+ the victim is expecting a deepfake).
1138
+ EXP1b - Identity. The goal of this experiment was to understand
1139
+ how well RT-DF models are able to clone identities.
1140
+ In EXP1a, volunteers were asked to rate audio clips on a scale of
1141
+ 1-5 (1: fake, 5: real). There were 90 audio clips presented in random
1142
+
1143
+ Deepfake CAPTCHA: A Method for Preventing Fake Calls
1144
+ Conference’17, July 2017, Washington, DC, USA
1145
+ order: 30 real and 60 fake (12 from each of the five models). The
1146
+ clips were about 4-7 seconds long each.
1147
+ In EXP1b, we selected the top 2 models that performed the best
1148
+ in EXP1. For each model, we repeated the following trial 8 times: We
1149
+ first let the volunteer listen to two real samples of the target identity
1150
+ as a baseline. Then we played two real and two fake samples in
1151
+ random order and asked the volunteer to rate how similar their
1152
+ speakers sound compared to the speaker in the baseline.
1153
+ If a model has a positive mean opinion score (MOS) in both EXP1
1154
+ and EXP2 then it is a considerable threat. This is because it can (1)
1155
+ synthesize high quality speech (2) that sounds like the target (3) all
1156
+ in real-time.
1157
+ 7.2
1158
+ Experiment Results
1159
+ EXP1a. To analyze the quality (realism) of the models, we com-
1160
+ pared the MOS scores of the deepfake audio to the MOS of the real
1161
+ audio (both scored blindly). In Fig. 3 we plot the distribution of
1162
+ each model’s MOS compared to real audio. Roughly 20-50% of the
1163
+ volunteers gave the RT-DF audio positive score with StarGANv2-VC
1164
+ having the highest quality.
1165
+ However, opinion scores are subjective. Therefore, we need to
1166
+ normalize the MOS to count how many times volunteers were
1167
+ fooled by an RT-DF. In principle, the range of scores a volunteer 𝑘
1168
+ has given to real audio captures that volunteer’s ‘trust’ range. Let
1169
+ 𝜇𝑘
1170
+ 𝑟𝑒𝑎𝑙 and 𝜎𝑘
1171
+ 𝑟𝑒𝑎𝑙 be the mean and standard deviation on 𝑘’s scores for
1172
+ real clips. We estimate that a volunteer would likely be fooled by a
1173
+ clip if he or she scores a clip with a value greater than 𝜇𝑘
1174
+ 𝑟𝑒𝑎𝑙 −𝜎𝑘
1175
+ 𝑟𝑒𝑎𝑙.
1176
+ Using this measure, in Fig. 4 we present the attack success rate
1177
+ for each of the RT-DF models. We found that StarGANv2-VC has the
1178
+ highest success rate of 46% percent rate. This means that although
1179
+ current RT-DF models are not perfect, they can indeed fool people.
1180
+ We note that these results cannot be interpreted as the likelihood of
1181
+ a true RT-DF attack succeeding. This is because our volunteers were
1182
+ expecting to hear deepfakes and were therefore carefully listening
1183
+ for artifacts. A true victim would likely overlook some artifacts
1184
+ especially when put under pressure by the attacker.
1185
+ EXP1b. To analyze the ability of the models to copy identities,
1186
+ we normalized volunteer 𝑘’s scores on fake audio by computing
1187
+ 𝑠𝑐𝑜𝑟𝑒−𝜇𝑘
1188
+ 𝑟𝑒𝑎𝑙
1189
+ 𝜎𝑘
1190
+ 𝑟𝑒𝑎𝑙
1191
+ . Fig. 5 plots the distribution of the normalized scores on
1192
+ fake audio. We can see that the volunteers were mostly indecisive,
1193
+ rating some fake clips as more authentic and some as less. For the
1194
+ majority of cases (𝑠𝑐𝑜𝑟𝑒 > −1) volunteers felt that the identity was
1195
+ captured well by the top two models.
1196
+ In summary, there is a chronological trend given that the worst
1197
+ performing model AdaIN-VC is from 2019 and the best StarGANv2-VC
1198
+ is from 2021. This may indicate that the quality of RT-DF is rapidly
1199
+ improving. This raises concern, especially since the volunteers were
1200
+ expecting the attack yet could not accurately tell which clips were
1201
+ real or fake. Another insight we have is that the presence of artifacts
1202
+ can help victims identify RT-DFs. However, as quality improves,
1203
+ we expect that only way to induce significant artifacts will be by
1204
+ challenging the model.
1205
+ 100
1206
+ 90
1207
+ 80
1208
+ 70
1209
+ 60
1210
+ 50
1211
+ 40
1212
+ 30
1213
+ 20
1214
+ 10
1215
+ 0
1216
+ Ada
1217
+ Medium
1218
+ Assem
1219
+ Fragment
1220
+ StarGan
1221
+ Real
1222
+ 0
1223
+ 10
1224
+ 20
1225
+ 30
1226
+ 40
1227
+ 50
1228
+ 60
1229
+ 70
1230
+ 80
1231
+ 90
1232
+ 100
1233
+ Model
1234
+ 1
1235
+ 2
1236
+ 3
1237
+ 4
1238
+ 5
1239
+ Figure 3: RT-DF Quality - The distribution of ratings which
1240
+ the volunteers gave to each of the RT-DF models and real
1241
+ voice recordings (1: fake, 5: real).
1242
+ Ada
1243
+ Medium
1244
+ Assem
1245
+ Fragment
1246
+ StarGan
1247
+ 0
1248
+ 10
1249
+ 20
1250
+ 30
1251
+ 40
1252
+ Success %
1253
+ Model
1254
+ Model
1255
+ Ada
1256
+ Medium
1257
+ Assem
1258
+ Fragment
1259
+ StarGan
1260
+ Per model, on participants who are aware of deepfake possibility
1261
+ Attack Success Rate
1262
+ Figure 4: RT-DF Quality - The percent of volunteers fooled
1263
+ by each RT-DF model, even though they were expecting a
1264
+ deepfake.
1265
+ Fragment
1266
+ Stargan
1267
+ −2
1268
+ 0
1269
+ 2
1270
+ 0
1271
+ 20
1272
+ 40
1273
+ 60
1274
+ 80
1275
+ 0
1276
+ 20
1277
+ 40
1278
+ 60
1279
+ 80
1280
+ Normalized value
1281
+ Count
1282
+ Figure 5: RT-DF Identity - A histogram of the normalized
1283
+ MOS scores for how similar RT-DF audio sounds like the
1284
+ target identity 𝑡. Positive scores are cases where volunteers
1285
+ thought a fake audio sounded more like 𝑡 than an authentic
1286
+ recording of 𝑡.
1287
+ 8
1288
+ D-CAPTCHA EVALUATION
1289
+ In this section, we evaluate the benefit of using a D-CAPTCHA as
1290
+ opposed to using passive defenses alone.
1291
+ 8.1
1292
+ Experiment Setup
1293
+ 8.1.1
1294
+ Datasets. To evaluate our system, we recorded 20 English
1295
+ speaking volunteers to create both speech and challenge-response
1296
+ datasets, summarized in Table 2:
1297
+ (D𝑟𝑒𝑎𝑙) 2498 samples of real speech (100-250 random sentences
1298
+ spoken by each of the 20 volunteers).
1299
+ (D𝑓 𝑎𝑘𝑒) 1821 samples of RT-DF voice conversion. To create this
1300
+ dataset we used StarGANv2-VC which was the top performing
1301
+ model from EXP1a. The model was trained to impersonate
1302
+
1303
+ Conference’17, July 2017, Washington, DC, USA
1304
+ Yasur et al.
1305
+ 6 of the 20 volunteers from D𝑟𝑒𝑎𝑙, and an additional 14 ran-
1306
+ dom voice actors from the VCTK dataset. The additional 14
1307
+ were added to help the model generalize better, and only the 6
1308
+ volunteers’ voices were used to make RT-DFs.
1309
+ (D𝑟𝑒𝑎𝑙,𝑟) 3317 samples of real responses (attempts at challenges).
1310
+ A sample of nine tasks were evaluated in total. The following
1311
+ tasks were performed 30 times per volunteer: sing (S), hum tune
1312
+ (HT), coughing (Co), vary volume (V), and talk & playback (P),
1313
+ and the following tasks were performed 5 times per volunteer:
1314
+ repeat accent (R), clap (Cl), speak with emotion (SE), and vary
1315
+ speed (VS).
1316
+ (D𝑓 𝑎𝑘𝑒,𝑟) 16,123 deepfake samples of RT-DF voice conversion ap-
1317
+ plied to the responses D𝑟𝑒𝑎𝑙,𝑟 using StarGANv2-VC. We did not
1318
+ convert samples from the same identity (i.e., where 𝑠 = 𝑡)
1319
+ It took each volunteer over an hour to record their data. The volun-
1320
+ teers were compensated for their time. For all train-test splits used
1321
+ in our evaluations, we made sure not to use the same identities in
1322
+ both the train and test sets.
1323
+ In addition, we also used public deepfake datasets to train the
1324
+ realism models R. These datasets were the ASVspoof-DF dataset
1325
+ [62] with 22,617 real and 15,000 fake samples, and the RITW dataset
1326
+ [42] with 19,963 real and 11,816 fake samples.
1327
+ 8.1.2
1328
+ Models. Our system, when fully automated, consists of 3
1329
+ models: R, C and I. The algorithm T does not use a machine
1330
+ learning model to verify the time constraint.
1331
+ For the realism model R, we evaluated five different deepfake
1332
+ detection models: SpecRNet [25] which is a novel neural network
1333
+ architecture, inspired by RawNet2 [54], which get results compa-
1334
+ rable to state–of–the-art models despite a significant decrease in
1335
+ computational requirements. One-Class [63] is a method adapted
1336
+ from [41] based on a deep residual network ResNet-18 [21]. They
1337
+ improve and generalize the network performance using One-Class
1338
+ Softmax activations. GMM-ASVspoof [62] is a Gaussian mixture
1339
+ model (GMM) which operates on LFCCs features. This model was
1340
+ a baseline for the in ASVspoof 2021 competition. PC-DARTS [18]
1341
+ is a convolutional neural network (CNN) that tries to automati-
1342
+ cally learn the network’s architecture. This work also showed good
1343
+ results in generalizing to unseen attacks. Finally, we used Local
1344
+ Outlier Factor (LOF) which is a density-based anomaly detection
1345
+ model.
1346
+ We took the union of ASVspoof-DF and RITW and selected 80%
1347
+ at random for training the models and 10% for validation (early
1348
+ stopping). The models were tested on the baseline scenario (D𝑟𝑒𝑎𝑙
1349
+ and D𝑓 𝑎𝑘𝑒) and our proposed D-CAPTCHA scenario (D𝑟𝑒𝑎𝑙,𝑟 and
1350
+ D𝑓 𝑎𝑘𝑒,𝑟).
1351
+ For the task model C, we trained a GMM classifier on the MFCC
1352
+ features using the baseline model from [62]. One model was trained
1353
+ per task: to classify between real responses from that task and all
1354
+ other tasks as well as speech. A 70-30 train-test split was used.
1355
+ For the identity model I, we used a pre-trained voice recogni-
1356
+ tion model from the SpeechBrain toolkit [45]. The model uses the
1357
+ ECAPA-TDNN architecture to classify a speaker. Since we do not
1358
+ want I to have prior knowledge of 𝑡, we converted the model into
1359
+ an anomaly detector. Recall that we obtain a voice sample 𝑎𝑡 from
1360
+ the caller prior to the challenge. This sample is used as a reference
1361
+ to ensure that the RT-DF is not turned off during the challenge. To
1362
+ Table 2: The number of samples in each of our datasets
1363
+ Real: D𝑟𝑒𝑎𝑙
1364
+ Fake: D𝑓 𝑎𝑘𝑒
1365
+ Speech
1366
+ 2498
1367
+ 1821
1368
+ Real: D𝑟𝑒𝑎𝑙,𝑟
1369
+ Fake: D𝑓 𝑎𝑘𝑒,𝑟
1370
+ Repeat Accent (R)
1371
+ 98
1372
+ 570
1373
+ Clap (Cl)
1374
+ 99
1375
+ 551
1376
+ Cough (Co)
1377
+ 537
1378
+ 3,401
1379
+ Speak with Emotion (SE)
1380
+ 98
1381
+ 532
1382
+ Hum Tune (HT)
1383
+ 593
1384
+ 3,325
1385
+ Playback Audio (P)
1386
+ 601
1387
+ 3,420
1388
+ Sing (S)
1389
+ 595
1390
+ 334
1391
+ Vary Speed (VS)
1392
+ 98
1393
+ 570
1394
+ Vary Volume (V)
1395
+ 598
1396
+ 3,420
1397
+ Real
1398
+ Fake
1399
+ ASVspoof-DF
1400
+ 22,617
1401
+ 15,000
1402
+ RITW
1403
+ 19,963
1404
+ 11,816
1405
+ detect whether the identity of the caller has changed during the
1406
+ challenge, we compute
1407
+ I(𝑎𝑡,𝑟𝑐) = ||𝑓 ∗(𝑎𝑡) − 𝑓 ∗(𝑟𝑠)||2
1408
+ (2)
1409
+ where 𝑓 ∗ is the speaker encoding, taken from an inner layer of
1410
+ the speech recognition model. Smaller scores indicate similarity
1411
+ between the voice before the challenge and during the challenge.
1412
+ This technique of comparing speaker encodings has been done in
1413
+ the past (e.g., [40, 43]). To evaluate I, we create negative pairings
1414
+ as samples from the same identity (𝑎𝑖,𝑟𝑐,𝑖) and positive pairings as
1415
+ samples from different identities (𝑎𝑖,𝑟𝑐,𝑗), where
1416
+ 𝑎𝑖,𝑎𝑗 ∈ D𝑟𝑒𝑎𝑙,
1417
+ 𝑟𝑐,𝑖,𝑟𝑐,𝑗 ∈ D𝑟𝑒𝑎𝑙,𝑟
1418
+ and 𝑖 ≠ 𝑗.
1419
+ 8.1.3
1420
+ Experiments. We performed four experiments:
1421
+ EXP2a R: A baseline comparison between existing solutions (pas-
1422
+ sive) and our solution (active) in detecting RT-DFs.
1423
+ EXP2b C: An evaluation of the task detection model which ensures
1424
+ that the caller indeed performed the challenge.
1425
+ EXP2c I: An evaluation of the identity model which ensures that
1426
+ the caller didn’t just turn off the RT-DF for the challenge.
1427
+ EXP2d R, C, I: An evaluation of the system end-to-end to evaluate
1428
+ the performance of the system as a whole.
1429
+ We do not evaluate T because it is just a restriction that the first
1430
+ frame of the response 𝑟𝑐 be received within approximately one
1431
+ second from the start time of the challenge.
1432
+ To measure the performance of the models, we use the area
1433
+ under the curve (AUC) and equal error rate (EER) metrics. AUC
1434
+ measures the general trade-off between the true positive rate (TPR)
1435
+ and the false positive rate (FPR). An AUC of 1.0 indicates a perfect
1436
+ classifier while an AUC of 0.5 indicates random guessing. The EER
1437
+ captures the trade-off between the FPR and the false negate rate
1438
+ (FNR). A lower EER is better.
1439
+ 8.2
1440
+ Experiment Results
1441
+ 8.2.1
1442
+ EXP2a (R). The goal of EXP2a was to see if our system can
1443
+ improve the detection of RT-DFs if the adversary is forced to per-
1444
+ form a task that is outside of the deepfake model’s capabilities. In
1445
+ Table 3, we compare the performance of the five deepfake detec-
1446
+ tors on (1) detecting regular deepfake speech (baseline) and on (2)
1447
+
1448
+ Deepfake CAPTCHA: A Method for Preventing Fake Calls
1449
+ Conference’17, July 2017, Washington, DC, USA
1450
+ 0.0
1451
+ 0.2
1452
+ 0.4
1453
+ 0.6
1454
+ 0.8
1455
+ 1.0
1456
+ False Positive Rate
1457
+ 0.0
1458
+ 0.2
1459
+ 0.4
1460
+ 0.6
1461
+ 0.8
1462
+ 1.0
1463
+ True Positive Rate
1464
+ R auc: 0.864
1465
+ T&C auc: 0.985
1466
+ Co auc: 1.0
1467
+ SE auc: 0.938
1468
+ HT auc: 0.999
1469
+ P auc: 0.998
1470
+ S auc: 0.993
1471
+ VS auc: 0.963
1472
+ V auc: 0.974
1473
+ Figure 6: The performance of the task detection model C.
1474
+ 0.0
1475
+ 0.2
1476
+ 0.4
1477
+ 0.6
1478
+ 0.8
1479
+ 1.0
1480
+ False Positive Rate
1481
+ 0.0
1482
+ 0.2
1483
+ 0.4
1484
+ 0.6
1485
+ 0.8
1486
+ 1.0
1487
+ True Positive Rate
1488
+ Co auc: 0.574
1489
+ HT auc: 0.688
1490
+ P auc: 0.831
1491
+ SE auc: 0.846
1492
+ S auc: 0.878
1493
+ R auc: 0.89
1494
+ T&C auc: 0.904
1495
+ VS auc: 0.926
1496
+ V auc: 0.942
1497
+ Figure 7: The performance of the unsupervised identity de-
1498
+ tection model I for different tasks.
1499
+ detecting deepfake challenges. The bold values indicate challenges
1500
+ which improved the performance of the corresponding model. We
1501
+ see that with the exception of SpecRNet, all of the detectors benefit
1502
+ from examining challenges. Overall, the best performing model was
1503
+ GMM-ASVspoof with the challenges. This means that the challenges
1504
+ provide a better way to detect RT-DFs.
1505
+ 8.2.2
1506
+ EXP2b (C). If an attacker is evasive, he may try to do nothing
1507
+ instead of the challenge. It’s also possible that the attacker will try
1508
+ the challenge, but the model will output nothing because it can’t
1509
+ generate the data. Fig. 6 shows that either way, the task detector C
1510
+ can tell whether the task was performed or not with high certainty.
1511
+ 8.2.3
1512
+ EXP2c (I). Another evasive strategy is where the attacker
1513
+ turns off the RT-DF while performing the challenge. In this scenario,
1514
+ we compare the identity of the caller before (𝑎𝑡) and during (𝑟𝑐) the
1515
+ challenge. In Fig. 7 we present the results of the identity detector I.
1516
+ Here we can see that the model does quite well, with the exception
1517
+ of the tasks ‘hum’ and ‘cough’ which do not carry much of the
1518
+ speaker’s identity.
1519
+ 8.2.4
1520
+ EXP2d (R, I, C): D-CAPTCHA. Finally, when executing all
1521
+ three models, we must consider how the successes and failures of
1522
+ each model compound together. We set the threshold for each model
1523
+ (R, I, C) so that the FPR=0.01. We then passed through 3,317 real
1524
+ responses and 8,758 deepfake responses. Fig. 8 presents the results.
1525
+ 91.9%
1526
+ 93.9%
1527
+ 99.4%
1528
+ 91%
1529
+ 99.6%
1530
+ 93.2%
1531
+ 99.3% 100%
1532
+ 91.7%
1533
+ 90%
1534
+ 92.4%
1535
+ 100%
1536
+ 88.8%
1537
+ 100%
1538
+ 91.3%
1539
+ 99.6% 100%
1540
+ 89.2%
1541
+ Accuracy
1542
+ TPR
1543
+ 0.80
1544
+ 0.85
1545
+ 0.90
1546
+ 0.95
1547
+ 1.00
1548
+ Value
1549
+ 100% 100% 99.2% 100% 99.4% 99% 99.3% 100% 98.9%
1550
+ 0%
1551
+ 0%
1552
+ 2%
1553
+ 0%
1554
+ 1.3%
1555
+ 2.2%
1556
+ 1.7%
1557
+ 0%
1558
+ 2.3%
1559
+ Precision
1560
+ FPR
1561
+ Accent
1562
+ Clap
1563
+ Cough
1564
+ Emotion
1565
+ Hum
1566
+ Playback
1567
+ Sing
1568
+ Speed
1569
+ Volume
1570
+ Accent
1571
+ Clap
1572
+ Cough
1573
+ Emotion
1574
+ Hum
1575
+ Playback
1576
+ Sing
1577
+ Speed
1578
+ Volume
1579
+ 0.0
1580
+ 0.3
1581
+ 0.6
1582
+ 0.9
1583
+ Task
1584
+ Value
1585
+ Figure 8: The performance of the ensure D-CAPTCHA sys-
1586
+ tem (end-to-end).
1587
+ We found that we were able to achieve a TPR of 0.89-1.00. FPR of
1588
+ 0.0-2.3 and accuracy of 91-100% depending on the selected task. In
1589
+ contrast, the model which performed the best on deepfake speech
1590
+ detection (baseline) was SpecRNet with a TPR of 0.66 and accuracy
1591
+ of 71% when the FPR=0.01. Therefore, D-CAPTCHA significantly
1592
+ outperforms the baseline and provides a good defense against RT-
1593
+ DFs audio calls.
1594
+ 9
1595
+ FUTURE WORK: VIDEO D-CAPTCHA
1596
+ As mentioned in the introduction, the same D-CAPTCHA system
1597
+ outlined in this paper can be applied to video-based RT-DFs as well.
1598
+ For example, to prevent imposters from joining online meetings
1599
+ (such as the cases in [48, 59]) we can forward suspicious calls to
1600
+ a D-CAPTCHA system. There are a wide variety of tasks which
1601
+ existing models and pipelines cannot handle for similar reasons
1602
+ to those listed in section 5.1. For example, the caller can be asked
1603
+ to drop/bounce objects, fold shirt, stroke hair, interact with back-
1604
+ ground, spill water, pick up objects, perform hand expressions, press
1605
+ on face, remove glasses, turn around, and so on. These tasks can
1606
+ easily be turned into challenges to detect video-based RT-DFs.
1607
+ To demonstrate the potential, we have performed some initial
1608
+ experiments and will now present some preliminary results. In
1609
+ our experiment we used a popular zero-shot RT-DF model called
1610
+ Avatarifye based on the work of [50] to reenact (puppet) a single
1611
+ photo. We were able to achieve a realistic RT-DF video at 35 fps with
1612
+ negligible distortions if the face stayed in a frontal position. How-
1613
+ ever, when we performed some of the mentioned challenges, the
1614
+ model failed and large distortions appeared. Fig., 9 in the appendix
1615
+ presents some screenshots of the video during the challenges.
1616
+ These preliminary results indicate that D-CAPTCHAs can be a
1617
+ good solution for both RT-DF audio and video calls.
1618
+ ehttps://github.com/alievk/avatarify-python
1619
+
1620
+ Conference’17, July 2017, Washington, DC, USA
1621
+ Yasur et al.
1622
+ Table 3: The AUC and EER of deepfake detectors when used as regular deepfake detectors (baseline) and when used as R with
1623
+ the challenges.
1624
+ AUC
1625
+ Baseline
1626
+ R
1627
+ T&C
1628
+ SE
1629
+ P
1630
+ VS
1631
+ V
1632
+ S
1633
+ HT
1634
+ Co
1635
+ SpecRNet
1636
+ 0.952
1637
+ 0.914
1638
+ 0.538
1639
+ 0.796
1640
+ 0.825
1641
+ 0.922
1642
+ 0.92
1643
+ 0.834
1644
+ 0.701
1645
+ 0.789
1646
+ One-Class
1647
+ 0.939
1648
+ 0.952
1649
+ 0.967
1650
+ 0.941
1651
+ 0.954
1652
+ 0.958
1653
+ 0.957
1654
+ 0.948
1655
+ 0.896
1656
+ 0.832
1657
+ GMM-AsvSpoof
1658
+ 0.949
1659
+ 0.951
1660
+ 0.978
1661
+ 0.953
1662
+ 0.97
1663
+ 0.957
1664
+ 0.949
1665
+ 0.928
1666
+ 0.949
1667
+ 0.833
1668
+ PC-DARTS
1669
+ 0.551
1670
+ 0.568
1671
+ 0.557
1672
+ 0.611
1673
+ 0.507
1674
+ 0.586
1675
+ 0.579
1676
+ 0.655
1677
+ 0.675
1678
+ 0.635
1679
+ LOF
1680
+ 0.678
1681
+ 0.614
1682
+ 0.93
1683
+ 0.635
1684
+ 0.756
1685
+ 0.771
1686
+ 0.824
1687
+ 0.593
1688
+ 0.681
1689
+ 0.982
1690
+ EER
1691
+ Baseline
1692
+ R
1693
+ T&C
1694
+ SE
1695
+ P
1696
+ VS
1697
+ V
1698
+ S
1699
+ HT
1700
+ Co
1701
+ SpecRNet
1702
+ 0.116
1703
+ 0.163
1704
+ 0.475
1705
+ 0.285
1706
+ 0.261
1707
+ 0.155
1708
+ 0.154
1709
+ 0.245
1710
+ 0.354
1711
+ 0.281
1712
+ One-Class
1713
+ 0.128
1714
+ 0.123
1715
+ 0.099
1716
+ 0.133
1717
+ 0.118
1718
+ 0.112
1719
+ 0.104
1720
+ 0.128
1721
+ 0.187
1722
+ 0.259
1723
+ GMM-AsvSpoof
1724
+ 0.122
1725
+ 0.1
1726
+ 0.071
1727
+ 0.099
1728
+ 0.09
1729
+ 0.092
1730
+ 0.115
1731
+ 0.143
1732
+ 0.131
1733
+ 0.255
1734
+ PC-DARTS
1735
+ 0.449
1736
+ 0.418
1737
+ 0.494
1738
+ 0.386
1739
+ 0.494
1740
+ 0.43
1741
+ 0.437
1742
+ 0.366
1743
+ 0.334
1744
+ 0.415
1745
+ LOF
1746
+ 0.326
1747
+ 0.419
1748
+ 0.122
1749
+ 0.412
1750
+ 0.262
1751
+ 0.301
1752
+ 0.26
1753
+ 0.38
1754
+ 0.382
1755
+ 0.051
1756
+ Figure 9: Preliminary results showing how the D-CAPTCHA system can help prevent RT-DF video calls. Here a zero-shot
1757
+ reenactment model called Avatarify breaks the moment the caller performs an action other than basic expressions and talking.
1758
+ 10
1759
+ CONCLUSION
1760
+ Deepfakes are rapidly improving in terms of quality and speed. This
1761
+ poses a significant threat as attackers are already using real-time
1762
+ deepfakes to impersonate people over calls. Current defenses use
1763
+ passive methods to identify deepfakes via their flaws. However, this
1764
+ approach may have limits as the quality of deepfakes continues
1765
+ to advance. Instead, in this work we proposed an active defense
1766
+ strategy: D-CAPTCHA. By challenging the attacker to create con-
1767
+ tent under four constraints based on practical and technological
1768
+ limitations, we can force the deepfake model to expose itself. By pro-
1769
+ tecting calls and meetings from deepfake imposters, we believe that
1770
+ this system can significantly improve the security of organizations
1771
+ and individuals.
1772
+ ACKNOWLEDGMENTS
1773
+ This work was supported by the U.S.-Israel Energy Center managed
1774
+ by the Israel-U.S. Binational Industrial Research and Development
1775
+ (BIRD) Foundation and the Zuckerman STEM Leadership Program.
1776
+ REFERENCES
1777
+ [1] Shruti Agarwal, Hany Farid, Ohad Fried, and Maneesh Agrawala. 2020. De-
1778
+ tecting deep-fake videos from phoneme-viseme mismatches. In Proceedings of
1779
+ the IEEE/CVF conference on computer vision and pattern recognition workshops.
1780
+ 660–661.
1781
+ [2] Luis von Ahn, Manuel Blum, Nicholas J Hopper, and John Langford. 2003.
1782
+ CAPTCHA: Using hard AI problems for security. In International conference
1783
+ on the theory and applications of cryptographic techniques. Springer, 294–311.
1784
+ [3] Federico Alegre, Asmaa Amehraye, and Nicholas Evans. 2013. A one-class classi-
1785
+ fication approach to generalised speaker verification spoofing countermeasures
1786
+ using local binary patterns. In 2013 IEEE Sixth International Conference on Bio-
1787
+ metrics: Theory, Applications and Systems (BTAS). IEEE, 1–8.
1788
+ [4] Zaynab Almutairi and Hebah Elgibreen. 2022. A Review of Modern Audio
1789
+ Deepfake Detection Methods: Challenges and Future Directions. Algorithms 15,
1790
+
1791
+ Deepfake CAPTCHA: A Method for Preventing Fake Calls
1792
+ Conference’17, July 2017, Washington, DC, USA
1793
+ 5 (2022).
1794
+ [5] Kyle Alspach. 2022. AI-generated voice deepfakes see growing use in cyberattacks
1795
+ - Protocol. https://www.protocol.com/enterprise/deepfake-voice-cyberattack-ai-
1796
+ audio. (Accessed on 12/15/2022).
1797
+ [6] Moustafa Alzantot, Ziqi Wang, and Mani B Srivastava. 2019. Deep residual neural
1798
+ networks for audio spoofing detection. arXiv preprint arXiv:1907.00501 (2019).
1799
+ [7] Tuba Arif, Ali Javed, Mohammed Alhameed, Fathe Jeribi, and Ali Tahir. 2021.
1800
+ Voice spoofing countermeasure for logical access attacks detection. IEEE Access
1801
+ 9 (2021).
1802
+ [8] Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, and Michael Auli. 2020.
1803
+ wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representa-
1804
+ tions. CoRR abs/2006.11477 (2020). arXiv:2006.11477 https://arxiv.org/abs/2006.
1805
+ 11477
1806
+ [9] Emily R Bartusiak and Edward J Delp. 2021. Frequency domain-based detection
1807
+ of generated audio. Electronic Imaging 2021, 4 (2021), 273–1.
1808
+ [10] BBC. 2021. Shamook: Star Wars effects company ILM hires Mandalorian deep-
1809
+ faker - BBC News. https://www.bbc.com/news/entertainment-arts-57996094.
1810
+ (Accessed on 12/15/2022).
1811
+ [11] Clara Borrelli, Paolo Bestagini, Fabio Antonacci, Augusto Sarti, and Stefano
1812
+ Tubaro. 2021. Synthetic speech detection through short-term and long-term
1813
+ prediction traces. EURASIP Journal on Information Security 2021, 1 (2021), 1–14.
1814
+ [12] Thomas Brewster. 2021.
1815
+ Fraudsters Cloned Company Director’s Voice
1816
+ In $35 Million Bank Heist, Police Find.
1817
+ https://www.forbes.com/sites/
1818
+ thomasbrewster/2021/10/14/huge-bank-fraud-uses-deep-fake-voice-tech-to-
1819
+ steal-millions/?sh=5bbb848d7559. (Accessed on 11/27/2022).
1820
+ [13] Steven Camacho, Dora Maria Ballesteros, and Diego Renza. 2021. Fake speech
1821
+ recognition using deep learning. In Workshop on Engineering Applications.
1822
+ Springer.
1823
+ [14] Nicholas Carlini and Hany Farid. 2020. Evading deepfake-image detectors with
1824
+ white-and black-box attacks. In Proceedings of the IEEE/CVF conference on com-
1825
+ puter vision and pattern recognition workshops. 658–659.
1826
+ [15] Ju-chieh Chou, Cheng-chieh Yeh, and Hung-yi Lee. 2019. One-shot Voice Con-
1827
+ version by Separating Speaker and Content Representations with Instance Nor-
1828
+ malization. https://doi.org/10.48550/ARXIV.1904.05742
1829
+ [16] Nikita Drobyshev, Jenya Chelishev, Taras Khakhulin, Aleksei Ivakhnenko, Victor
1830
+ Lempitsky, and Egor Zakharov. 2022. Megaportraits: One-shot megapixel neural
1831
+ head avatars. arXiv preprint arXiv:2207.07621 (2022).
1832
+ [17] FBI. 2022. Internet Crime Complaint Center (IC3) | Deepfakes and Stolen PII
1833
+ Utilized to Apply for Remote Work Positions. https://www.ic3.gov/Media/Y2022/
1834
+ PSA220628. (Accessed on 11/30/2022).
1835
+ [18] Wanying Ge, Jose Patino, Massimiliano Todisco, and Nicholas Evans. 2021. Raw
1836
+ differentiable architecture search for speech deepfake and spoofing detection.
1837
+ arXiv preprint arXiv:2107.12212 (2021).
1838
+ [19] Yewei Gu, Zhenyu Zhang, Xiaowei Yi, and Xianfeng Zhao. 2021. MediumVC:
1839
+ Any-to-any voice conversion using synthetic specific-speaker speeches as inter-
1840
+ medium features. https://doi.org/10.48550/ARXIV.2110.02500
1841
+ [20] Karen Hao. 2021. Deepfake porn is ruining women’s lives. Now the law may fi-
1842
+ nally ban it. | MIT Technology Review. https://www.technologyreview.com/2021/
1843
+ 02/12/1018222/deepfake-revenge-porn-coming-ban/. (Accessed on 12/15/2022).
1844
+ [21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
1845
+ learning for image recognition. In Proceedings of the IEEE conference on computer
1846
+ vision and pattern recognition. 770–778.
1847
+ [22] Ye Jia, Yu Zhang, Ron Weiss, Quan Wang, Jonathan Shen, Fei Ren, Patrick Nguyen,
1848
+ Ruoming Pang, Ignacio Lopez Moreno, Yonghui Wu, et al. 2018. Transfer learning
1849
+ from speaker verification to multispeaker text-to-speech synthesis. Advances in
1850
+ neural information processing systems 31 (2018).
1851
+ [23] Takuhiro Kaneko, Hirokazu Kameoka, Kou Tanaka, and Nobukatsu Hojo. 2020.
1852
+ CycleGAN-VC3: Examining and Improving CycleGAN-VCs for Mel-spectrogram
1853
+ Conversion. https://doi.org/10.48550/ARXIV.2010.11672
1854
+ [24] Piotr Kawa, Marcin Plata, and Piotr Syga. 2022. Attack Agnostic Dataset: Towards
1855
+ Generalization and Stabilization of Audio DeepFake Detection. arXiv preprint
1856
+ (2022).
1857
+ [25] Piotr Kawa, Marcin Plata, and Piotr Syga. 2022. SpecRNet: Towards Faster and
1858
+ More Accessible Audio DeepFake Detection. arXiv preprint (2022).
1859
+ [26] Bryan Ke. 2022. Singaporean man’s face ends up in deepfake porn after he
1860
+ refuses to pay hacker $5,800. https://news.yahoo.com/singaporean-mans-face-
1861
+ ends-deepfake-171743924.html. (Accessed on 11/27/2022).
1862
+ [27] Hasam Khalid, Minha Kim, Shahroz Tariq, and Simon S Woo. 2021. Evaluation
1863
+ of an audio-video multimodal deepfake dataset using unimodal and multimodal
1864
+ detectors. In Proceedings of the 1st workshop on synthetic multimedia-audiovisual
1865
+ deepfake generation and detection. 7–15.
1866
+ [28] Hasam Khalid and Simon S Woo. 2020. OC-FakeDect: Classifying deepfakes
1867
+ using one-class variational autoencoder. In Proceedings of the IEEE/CVF conference
1868
+ on computer vision and pattern recognition workshops. 656–657.
1869
+ [29] Janavi Khochare, Chaitali Joshi, Bakul Yenarkar, Shraddha Suratkar, and Faruk
1870
+ Kazi. 2022. A deep learning framework for audio deepfake detection. Arabian
1871
+ Journal for Science and Engineering 47, 3 (2022), 3447–3458.
1872
+ [30] Kang-wook Kim, Seung-won Park, Junhyeok Lee, and Myun-chul Joe. 2021.
1873
+ Assem-VC: Realistic Voice Conversion by Assembling Modern Speech Synthesis
1874
+ Techniques. https://doi.org/10.48550/ARXIV.2104.00931
1875
+ [31] Cheng-I Lai, Nanxin Chen, Jesús Villalba, and Najim Dehak. 2019. ASSERT:
1876
+ Anti-spoofing with squeeze-excitation and residual networks. arXiv preprint
1877
+ arXiv:1904.01120 (2019).
1878
+ [32] Mohammed Lataifeh, Ashraf Elnagar, Ismail Shahin, and Ali Bou Nassif. 2020.
1879
+ Arabic audio clips: Identification and discrimination of authentic cantillations
1880
+ from imitations. Neurocomputing 418 (2020), 162–177.
1881
+ [33] Dami Lee. 2019. Deepfake Salvador Dalí takes selfies with museum visitors -
1882
+ The Verge. https://www.theverge.com/2019/5/10/18540953/salvador-dali-lives-
1883
+ deepfake-museum. (Accessed on 12/15/2022).
1884
+ [34] Zhenchun Lei, Yingen Yang, Changhong Liu, and Jihua Ye. 2020. Siamese Convo-
1885
+ lutional Neural Network Using Gaussian Probability Feature for Spoofing Speech
1886
+ Detection.. In INTERSPEECH. 1116–1120.
1887
+ [35] Marlene
1888
+ Lenthang.
1889
+ 2021.
1890
+ Cheerleader’s
1891
+ mom
1892
+ created
1893
+ deepfake
1894
+ videos to allegedly harass her daughter’s rivals - ABC News.
1895
+ https:
1896
+ //abcnews.go.com/US/cheerleaders-mom-created-deepfake-videos-allegedly-
1897
+ harass-daughters/story?id=76437596. (Accessed on 12/15/2022).
1898
+ [36] Yinghao Aaron Li, Ali Zare, and Nima Mesgarani. 2021. StarGANv2-VC: A Diverse,
1899
+ Unsupervised, Non-parallel Framework for Natural-Sounding Voice Conversion.
1900
+ CoRR abs/2107.10394 (2021). arXiv:2107.10394 https://arxiv.org/abs/2107.10394
1901
+ [37] Yist Y. Lin, Chung-Ming Chien, Jheng-Hao Lin, Hung-yi Lee, and Lin-shan Lee.
1902
+ 2020. FragmentVC: Any-to-Any Voice Conversion by End-to-End Extracting and
1903
+ Fusing Fine-Grained Voice Fragments With Attention. https://doi.org/10.48550/
1904
+ ARXIV.2010.14150
1905
+ [38] Tianyun Liu, Diqun Yan, Rangding Wang, Nan Yan, and Gang Chen. 2021. Iden-
1906
+ tification of fake stereo audio using SVM and CNN. Information 12, 7 (2021).
1907
+ [39] Momina Masood, Mariam Nawaz, Khalid Mahmood Malik, Ali Javed, Aun Irtaza,
1908
+ and Hafiz Malik. 2022. Deepfakes Generation and Detection: State-of-the-art,
1909
+ open challenges, countermeasures, and way forward. Applied Intelligence (2022),
1910
+ 1–53.
1911
+ [40] Yisroel Mirsky and Wenke Lee. 2021. The creation and detection of deepfakes: A
1912
+ survey. ACM Computing Surveys (CSUR) 54, 1 (2021), 1–41.
1913
+ [41] Joao Monteiro, Jahangir Alam, and Tiago H Falk. 2020. Generalized end-to-end
1914
+ detection of spoofing attacks to automatic speaker recognizers. Computer Speech
1915
+ & Language 63 (2020), 101096.
1916
+ [42] Nicolas M Müller, Pavel Czempin, Franziska Dieckmann, Adam Froghyar, and
1917
+ Konstantin Böttinger. 2022. Does Audio Deepfake Detection Generalize? arXiv
1918
+ preprint arXiv:2203.16263 (2022).
1919
+ [43] Alessandro Pianese, Davide Cozzolino, Giovanni Poggi, and Luisa Verdoliva. 2022.
1920
+ Deepfake audio detection by speaker verification. arXiv preprint (2022).
1921
+ [44] Kaizhi Qian, Zeyu Jin, Mark Hasegawa-Johnson, and Gautham J. Mysore. 2020.
1922
+ F0-Consistent Many-To-Many Non-Parallel Voice Conversion Via Conditional
1923
+ Autoencoder. In ICASSP 2020 - 2020 IEEE International Conference on Acoustics,
1924
+ Speech and Signal Processing (ICASSP). IEEE. https://doi.org/10.1109/icassp40776.
1925
+ 2020.9054734
1926
+ [45] Mirco Ravanelli, Titouan Parcollet, Peter Plantinga, Aku Rouhe, Samuele Cor-
1927
+ nell, Loren Lugosch, Cem Subakan, Nauman Dawalatabad, Abdelwahab Heba,
1928
+ Jianyuan Zhong, et al. 2021. SpeechBrain: A general-purpose speech toolkit.
1929
+ arXiv preprint arXiv:2106.04624 (2021).
1930
+ [46] Yurii Rebryk and Stanislav Beliaev. 2020. Convoice: Real-time zero-shot voice
1931
+ style transfer with convolutional network. arXiv preprint arXiv:2005.07815 (2020).
1932
+ [47] ReSpeecher. 2022. Voice Cloning Software for Content Creators | Respeecher.
1933
+ https://www.respeecher.com/. (Accessed on 12/15/2022).
1934
+ [48] Andrew
1935
+ Roth.
1936
+ 2021.
1937
+ European
1938
+ MPs
1939
+ targeted
1940
+ by
1941
+ deepfake
1942
+ video
1943
+ calls imitating Russian opposition | Russia | The Guardian.
1944
+ https:
1945
+ //www.theguardian.com/world/2021/apr/22/european-mps-targeted-by-
1946
+ deepfake-video-calls-imitating-russian-opposition. (Accessed on 11/27/2022).
1947
+ [49] Mengyi Shan and TJ Tsai. 2020. A Cross-Verification Approach for Protecting
1948
+ World Leaders from Fake and Tampered Audio. arXiv preprint (2020).
1949
+ [50] Aliaksandr Siarohin, Stéphane Lathuilière, Sergey Tulyakov, Elisa Ricci, and Nicu
1950
+ Sebe. 2019. First Order Motion Model for Image Animation. In Advances in Neural
1951
+ Information Processing Systems 32. Curran Associates, Inc., 7135–7145. http://
1952
+ papers.nips.cc/paper/8935-first-order-motion-model-for-image-animation.pdf
1953
+ [51] Catherine Stupp. 2019. Fraudsters Used AI to Mimic CEO’s Voice in Unusual
1954
+ Cybercrime Case - WSJ. https://www.wsj.com/articles/fraudsters-use-ai-to-
1955
+ mimic-ceos-voice-in-unusual-cybercrime-case-11567157402.
1956
+ (Accessed on
1957
+ 11/27/2022).
1958
+ [52] Nishant Subramani and Delip Rao. 2020. Learning efficient representations
1959
+ for fake speech detection. In Proceedings of the AAAI Conference on Artificial
1960
+ Intelligence.
1961
+ [53] Hemlata Tak, Jee-weon Jung, Jose Patino, Madhu Kamble, Massimiliano Todisco,
1962
+ and Nicholas Evans. 2021. End-to-end spectro-temporal graph attention networks
1963
+ for speaker verification anti-spoofing and speech deepfake detection. arXiv
1964
+ preprint arXiv:2107.12710 (2021).
1965
+ [54] Hemlata Tak, Jose Patino, Massimiliano Todisco, Andreas Nautsch, Nicholas
1966
+ Evans, and Anthony Larcher. 2021. End-to-end anti-spoofing with rawnet2. In
1967
+
1968
+ Conference’17, July 2017, Washington, DC, USA
1969
+ Yasur et al.
1970
+ Figure 10: Examples of the Avatarify zero-shot RT-DF model
1971
+ working as expected. Here there are no significant anom-
1972
+ alies because the caller has a frontal pose and is talking nor-
1973
+ mally.
1974
+ ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal
1975
+ Processing (ICASSP). IEEE, 6369–6373.
1976
+ [55] Zhiyuan Tan, Jianguo Wei, Junhai Xu, Yuqing He, and Wenhuan Lu. 2021. Zero-
1977
+ Shot Voice Conversion with Adjusted Speaker Embeddings and Simple Acous-
1978
+ tic Features. In ICASSP 2021 - 2021 IEEE International Conference on Acoustics,
1979
+ Speech and Signal Processing (ICASSP).
1980
+ https://doi.org/10.1109/ICASSP39728.
1981
+ 2021.9414975
1982
+ [56] Massimiliano Todisco, Xin Wang, Ville Vestman, Md Sahidullah, Héctor Del-
1983
+ gado, Andreas Nautsch, Junichi Yamagishi, Nicholas Evans, Tomi Kinnunen, and
1984
+ Kong Aik Lee. 2019. ASVspoof 2019: Future horizons in spoofed and fake audio
1985
+ detection. arXiv preprint arXiv:1904.05441 (2019).
1986
+ [57] Erkam Uzun, Simon Pak Ho Chung, Irfan Essa, and Wenke Lee. 2018. rtCaptcha:
1987
+ A Real-Time CAPTCHA Based Liveness Detection System.. In NDSS.
1988
+ [58] Jai Vijayan. 2022. Reshaping the Threat Landscape: Deepfake Cyberattacks
1989
+ Are Here. https://www.darkreading.com/threat-intelligence/threat-landscape-
1990
+ deepfake-cyberattacks-are-here. (Accessed on 12/15/2022).
1991
+ [59] James Vincent. 2022. Binance executive claims scammers made a deepfake of him
1992
+ - The Verge. https://www.theverge.com/2022/8/23/23318053/binance-comms-
1993
+ crypto-chief-deepfake-scam-claim-patrick-hillmann. (Accessed on 11/27/2022).
1994
+ [60] Jane Wakefield. 2022.
1995
+ Deepfake presidents used in Russia-Ukraine war -
1996
+ BBC News. https://www.bbc.com/news/technology-60780142. (Accessed on
1997
+ 11/27/2022).
1998
+ [61] RLMAPC Wijethunga, DMK Matheesha, Abdullah Al Noman, KHVTA De Silva,
1999
+ Muditha Tissera, and Lakmal Rupasinghe. 2020. Deepfake audio detection: a
2000
+ deep learning based solution for group conversations. In 2020 2nd International
2001
+ Conference on Advancements in Computing (ICAC), Vol. 1. IEEE, 192–197.
2002
+ [62] Junichi Yamagishi, Xin Wang, Massimiliano Todisco, Md Sahidullah, Jose Patino,
2003
+ Andreas Nautsch, Xuechen Liu, Kong Aik Lee, Tomi Kinnunen, Nicholas Evans,
2004
+ et al. 2021. ASVspoof 2021: accelerating progress in spoofed and deepfake speech
2005
+ detection. arXiv preprint arXiv:2109.00537 (2021).
2006
+ [63] You Zhang, Fei Jiang, and Zhiyao Duan. 2021. One-class learning towards syn-
2007
+ thetic voice spoofing detection. IEEE Signal Processing Letters 28 (2021), 937–941.
2008
+ A
2009
+ ETHICAL DISCLOSURES
2010
+ The experiments performed in this study have received our institu-
2011
+ tion’s ethical committee’s approval. All 20 volunteers whose voices
2012
+ were used to create deepfakes permitted the use of their data for
2013
+ this purpose. To protect our volunteers, the trained RT-DF voice
2014
+ models will not be shared.
2015
+ B
2016
+ ADDITIONAL FIGURES
2017
+
2018
+ Deepfake CAPTCHA: A Method for Preventing Fake Calls
2019
+ Conference’17, July 2017, Washington, DC, USA
2020
+ 0.668
2021
+ 0.811
2022
+ 0.834
2023
+ 0.85
2024
+ 0.854
2025
+ 0.856
2026
+ 0.86
2027
+ 0.863
2028
+ 0.864
2029
+ 0.874
2030
+ 0.88
2031
+ 0.889
2032
+ 0.891
2033
+ 0.891
2034
+ 0.895
2035
+ 0.897
2036
+ 0.904
2037
+ 0.905
2038
+ 0.906
2039
+ 0.906
2040
+ 0.91
2041
+ 0.91
2042
+ 0.911
2043
+ 0.92
2044
+ 0.921
2045
+ 0.921
2046
+ 0.922
2047
+ 0.923
2048
+ 0.924
2049
+ 0.924
2050
+ 0.926
2051
+ 0.93
2052
+ 0.935
2053
+ 0.936
2054
+ 0.938
2055
+ 0.944
2056
+ HT + Co
2057
+ SE + Co
2058
+ P + Co
2059
+ Co + T&C
2060
+ S + Co
2061
+ HT + P
2062
+ R + Co
2063
+ SE + HT
2064
+ HT + S
2065
+ HT + R
2066
+ SE + P
2067
+ P + S
2068
+ HT + T&C
2069
+ T&C + P
2070
+ Co + VS
2071
+ R + P
2072
+ S + SE
2073
+ V + Co
2074
+ P + VS
2075
+ T&C + SE
2076
+ SE + R
2077
+ S + R
2078
+ T&C + R
2079
+ T&C + S
2080
+ R + VS
2081
+ VS + HT
2082
+ SE + V
2083
+ P + V
2084
+ SE + VS
2085
+ V + HT
2086
+ V + R
2087
+ VS + T&C
2088
+ T&C + V
2089
+ VS + S
2090
+ V + S
2091
+ VS + V
2092
+ 0.00
2093
+ 0.25
2094
+ 0.50
2095
+ 0.75
2096
+ AUC
2097
+ Pairs of challenges
2098
+ Figure 11: The performance of I when two challenges are requested, measured in AUC.
2099
+ 0.0
2100
+ 0.2
2101
+ 0.4
2102
+ 0.6
2103
+ 0.8
2104
+ 1.0
2105
+ False Positive Rate
2106
+ 0.0
2107
+ 0.2
2108
+ 0.4
2109
+ 0.6
2110
+ 0.8
2111
+ 1.0
2112
+ True Positive Rate
2113
+ Receiver Operating Characteristic of gmm
2114
+ S AUC = 0.9284
2115
+ V AUC = 0.9494
2116
+ VS AUC = 0.9567
2117
+ Co AUC = 0.8328
2118
+ P AUC = 0.9704
2119
+ HT AUC = 0.9491
2120
+ T&C AUC = 0.9784
2121
+ SE AUC = 0.9531
2122
+ R AUC = 0.9510
2123
+ baseline AUC = 0.9489
2124
+ 0.0
2125
+ 0.2
2126
+ 0.4
2127
+ 0.6
2128
+ 0.8
2129
+ 1.0
2130
+ False Positive Rate
2131
+ 0.0
2132
+ 0.2
2133
+ 0.4
2134
+ 0.6
2135
+ 0.8
2136
+ 1.0
2137
+ True Positive Rate
2138
+ Receiver Operating Characteristic of raw-pc
2139
+ S AUC = 0.6551
2140
+ V AUC = 0.5786
2141
+ VS AUC = 0.5859
2142
+ Co AUC = 0.6349
2143
+ P AUC = 0.5070
2144
+ HT AUC = 0.6751
2145
+ T&C AUC = 0.5575
2146
+ SE AUC = 0.6109
2147
+ R AUC = 0.5683
2148
+ baseline AUC = 0.5512
2149
+ 0.0
2150
+ 0.2
2151
+ 0.4
2152
+ 0.6
2153
+ 0.8
2154
+ 1.0
2155
+ False Positive Rate
2156
+ 0.0
2157
+ 0.2
2158
+ 0.4
2159
+ 0.6
2160
+ 0.8
2161
+ 1.0
2162
+ True Positive Rate
2163
+ Receiver Operating Characteristic of SpecRNet
2164
+ S AUC = 0.8335
2165
+ V AUC = 0.9205
2166
+ VS AUC = 0.9221
2167
+ Co AUC = 0.7889
2168
+ P AUC = 0.8255
2169
+ HT AUC = 0.7006
2170
+ T&C AUC = 0.5378
2171
+ SE AUC = 0.7958
2172
+ R AUC = 0.9139
2173
+ baseline AUC = 0.9518
2174
+ 0.0
2175
+ 0.2
2176
+ 0.4
2177
+ 0.6
2178
+ 0.8
2179
+ 1.0
2180
+ False Positive Rate
2181
+ 0.0
2182
+ 0.2
2183
+ 0.4
2184
+ 0.6
2185
+ 0.8
2186
+ 1.0
2187
+ True Positive Rate
2188
+ Receiver Operating Characteristic of oneclass
2189
+ S AUC = 0.9479
2190
+ V AUC = 0.9574
2191
+ VS AUC = 0.9581
2192
+ Co AUC = 0.8324
2193
+ P AUC = 0.9542
2194
+ HT AUC = 0.8957
2195
+ T&C AUC = 0.9668
2196
+ SE AUC = 0.9408
2197
+ R AUC = 0.9523
2198
+ baseline AUC = 0.9393
2199
+ 0.0
2200
+ 0.2
2201
+ 0.4
2202
+ 0.6
2203
+ 0.8
2204
+ 1.0
2205
+ False Positive Rate
2206
+ 0.0
2207
+ 0.2
2208
+ 0.4
2209
+ 0.6
2210
+ 0.8
2211
+ 1.0
2212
+ True Positive Rate
2213
+ Receiver Operating Characteristic of LOF
2214
+ S AUC = 0.5934
2215
+ V AUC = 0.8241
2216
+ VS AUC = 0.7709
2217
+ Co AUC = 0.9823
2218
+ P AUC = 0.7561
2219
+ HT AUC = 0.6810
2220
+ T&C AUC = 0.9302
2221
+ SE AUC = 0.6355
2222
+ R AUC = 0.6139
2223
+ baseline AUC = 0.6784
2224
+ Figure 12: ROC plots for each deepfake detection model from experiment EXP2a. The bold line shows the baseline (regular
2225
+ deepfake detection) and the others show the performance on the given task.
2226
+
3dE1T4oBgHgl3EQfSQOU/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
3dFAT4oBgHgl3EQfERwH/content/2301.08420v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f1dc241e040320742a9ba6adf8b6d86c33ac0ee6f6bdc469a976366eb7b7d642
3
+ size 570829
3dFAT4oBgHgl3EQfERwH/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c5589d81882a387f53660025ddf79e76fc4d52e9ca817c5f2d1972cdf5be3fbe
3
+ size 265724
3tAyT4oBgHgl3EQfo_h3/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f8e455b9ad6fcc751d8bb783d74d45372ce987197dbd771c77ef51c4a0f717bf
3
+ size 4194349
3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8b41aa6dfc4d1e41a4c3c53d8d86a6415a327fc862914b1490081718b8e20325
3
+ size 176504
3tFLT4oBgHgl3EQfsC9L/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b7d7485da658b30751d682f9aaf5eb51d095b5cb1c7c1c09cb1d8ac6a8ad9c1d
3
+ size 1966125
3tFLT4oBgHgl3EQfsC9L/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c63cdc4389860a5975ddd47a171de671786900e098266e1316f0c7a4d806e1a
3
+ size 75543
4NFST4oBgHgl3EQfZjjS/content/2301.13792v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd277c0655579b38f88a1e3c700a199c96f89fa3ee12ad8293e53bb4a663457a
3
+ size 230747
4NFST4oBgHgl3EQfZjjS/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a0f908a7242709c5f016b9d17a72e66b3e5a358305f796f1d1e8d92ea5fd19cb
3
+ size 109794
5dE5T4oBgHgl3EQfPA60/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0f19644c60d04190cc3fedbaf71de297ed8ced15d52e01930a554c87b8f9efad
3
+ size 4456493
5dFIT4oBgHgl3EQf7yth/content/2301.11399v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2af8bb51c4e87847c445c2046c4698306333acb80c7d07f970c910c1fe415f60
3
+ size 1995088
5tA0T4oBgHgl3EQfN_8L/content/2301.02153v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c84589167fe8fa2fe5b6891f8183fb17d7d686f5903162b6e0eb228e376f84d
3
+ size 644273
5tA0T4oBgHgl3EQfN_8L/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8d9e940e10b77aa0b1e8bb0238902dc2d63d709cb5486fd9264ec20a66020af0
3
+ size 4128813
5tA0T4oBgHgl3EQfN_8L/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c678435a3c5163dd48563dd1dbdcbb5f8eefabcf2ee8116b30eb953c3dc8e5d8
3
+ size 140393
5tE4T4oBgHgl3EQfbwzK/content/2301.05078v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b55bd2272b49335b3e3910463b0b2fcc38fe2fd2ddd0d5b20cb1fdd9f4e2fb1b
3
+ size 535042
5tE4T4oBgHgl3EQfbwzK/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd11aa96cd7f8129efa14a56345a13c81c92d1653a033243aabf2cf59ccc9643
3
+ size 254441
79E1T4oBgHgl3EQfBwKM/content/2301.02856v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:22deecc30e4b11d75e934b7cf5d8ea4d9c49820073f372363c79b753f64a7c8f
3
+ size 3646796
79E1T4oBgHgl3EQfBwKM/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6fec20320acf111931a9f583465148d858e558d853ff18619140ba3605650c65
3
+ size 4259885
7NE0T4oBgHgl3EQfwAHH/content/tmp_files/2301.02627v1.pdf.txt ADDED
@@ -0,0 +1,950 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.02627v1 [math.RA] 6 Jan 2023
2
+ Pre-Lie algebras, their multiplicative lattice, and
3
+ idempotent endomorphisms
4
+ Michela Cerqua and Alberto Facchini
5
+ Abstract We introduce the notions of pre-morphism and pre-derivation for arbitrary
6
+ non-associative algebras over a commutative ring 푘 with identity. These notions
7
+ are applied to the study of pre-Lie 푘-algebras and, more generally, Lie-admissible
8
+ 푘-algebras. Associating with any algebra (퐴, ·) its sub-adjacent anticommutative
9
+ algebra (퐴, [−, −]) is a functor from the category of 푘-algebras with pre-morphisms
10
+ to the category of anticommutative 푘-algebras. We describe the commutator of two
11
+ ideals of a pre-Lie algebra, showing that the condition (Huq=Smith) holds for pre-
12
+ Lie algebras. This allows to make use of all the notions concerning multiplicative
13
+ lattices in the study of the multiplicative lattice of ideals of a pre-Lie algebra. We
14
+ study idempotent endomorphisms of a pre-Lie algebra 퐿, i.e., semidirect-product
15
+ decompositions of 퐿 and bimodules over 퐿.
16
+ Introduction
17
+ The aim of this paper is to present pre-Lie algebras from the point of view of their
18
+ multiplicative lattice of ideals, and to study their idempotent endomorphisms. Pre-
19
+ Lie algebras were first introduced and studied in [15] by Vinberg. He applied them
20
+ to the study of convex homogenous cones. He called “left-symmetric algebras” the
21
+ algebras we call pre-Lie algebras in this paper.
22
+ We present a notion of pre-morphism and pre-derivation for arbitrary non-
23
+ associative algebras over a commutative ring 푘 with identity, and apply it to the
24
+ study of pre-Lie 푘-algebras and, more generally, Lie-admissible 푘-algebras. Asso-
25
+ ciating with any pre-Lie algebra (퐴, ·) its sub-adjacent Lie algebra (퐴, [−, −]) is a
26
+ functor from the category PreL푘,푝 of pre-Lie 푘-algebras with pre-morphisms to the
27
+ category of Lie 푘-algebras. We introduce the notion of module 푀 over a pre-Lie
28
+ Michela Cerqua e-mail: michela.cerqua@studenti.unipd.it · Alberto Facchini
29
+ Dipartimento di Matematica "Tullio Levi Civita", Università di Padova, 35121 Padova, Italy e-mail:
30
+ facchini@math.unipd.it
31
+ 1
32
+
33
+ 2
34
+ Michela Cerqua and Alberto Facchini
35
+ algebra 퐿 and, like in the case of associative algebras, it is possible to do it in two
36
+ equivalent ways, via a suitable scalar multiplication 퐿 × 푀 → 푀 or as a 푘-module
37
+ 푀 with a pre-morphism 휆: (퐿, ·) → (End(푘푀), ◦). The category of modules over
38
+ a pre-Lie 푘-algebra (퐿, ·) is isomorphic to the category of modules over its sub-
39
+ adjacent Lie 푘-algebra (퐿, [−, −]). We then consider the commutator of two ideals
40
+ in a pre-Lie algebra. In particular we show that the condition (Huq=Smith) holds
41
+ for pre-Lie algebras. With the notion of commutator at our disposal, the lattice of
42
+ ideals of a pre-Lie algebra becomes a multiplicative lattice [6, 8]. As a consequence
43
+ we immediately get the notions of abelian pre-Lie algebra, prime ideal, prime spec-
44
+ trum of a pre-Lie algebra, solvable and nilpotent pre-Lie algebras, metabelian and
45
+ hyperabelian pre-Lie algebras, centralizer, and center.
46
+ We then consider idempotent endomorphisms of a pre-Lie algebra, because they
47
+ immediately show what semi-direct products of pre-Lie algebras are, what the action
48
+ of a pre-Lie algebra on another pre-Lie algebra is, and lead us to the notion of
49
+ bimodule over a pre-Lie algebra. We study the “Dorroh extensions” of pre-Lie
50
+ algebras. Like in the associative case, we get a category equivalence between the
51
+ category PreL푘 and the category of pre-Lie algebras with identity and with an
52
+ augmentation.
53
+ 1 Preliminary notions on non-associative 풌-algebras
54
+ Let 푘 be a commutative ring with identity. In this article, a 푘-algebra is a 푘-module
55
+ 푘푀 with a further 푘-bilinear operation 푀 × 푀 → 푀, (푥, 푦) ↦→ 푥푦 (equivalently,
56
+ a 푘-module morphism 푀 ⊗푘 푀 → 푀). A subalgebra (an ideal, resp.) of 푀 is a
57
+ 푘-submodule 푁 of 푀 such that 푥푦 ∈ 푁 for every 푥, 푦 ∈ 푁 (푥푛 ∈ 푁 and 푛푥 ∈ 푁
58
+ for every 푥 ∈ 푀 and 푛 ∈ 푁, resp.) As usual, if 푁 is an ideal of 푀, the quotient
59
+ 푘-module 푀/푁 inherits a 푘-algebra structure. There is a one-to-one correspondence
60
+ between the set of all ideals 푁 of 푀 and the set of all congruences on 푀, that is,
61
+ all equivalence relations ∼ on 푀 for which 푥 ∼ 푦 and 푧 ∼ 푤 imply 푥 + 푧 ∼ 푦 + 푤,
62
+ 휆푥 ∼ 휆푦 and 푥푧 ∼ 푦푤 for every 푥, 푦, 푧, 푤 ∈ 푀 and every 휆 ∈ 푘. The opposite 푀op of
63
+ an algebra 푀 is defined taking as multiplication in 푀op the mapping (푥, 푦) ↦→ 푦푥.
64
+ If 푀 and 푀′ are two 푘-algebras, a 푘-linear mapping 휑: 푀 → 푀′ is a 푘-algebra
65
+ homomorphism if 휑(푥푦) = 휑(푥)휑(푦) for every 푥, 푦 ∈ 푀. Clearly, 푘-algebras form a
66
+ variety in the sense of Universal Algebra. Moreover, it is a variety of Ω-groups, that
67
+ is, a variety which is pointed (i.e., it has exactly one constant) and has amongst its
68
+ operations and identities those of the variety of groups. It follows that 푘-algebras form
69
+ a semiabelian category. Other examples of Ω-groups are abelian groups, non-unital
70
+ rings, commutative algebras, modules and Lie algebras.
71
+ If 푀 is any 푘-algebra, its endomorphisms form a monoid, that is, a semigroup
72
+ with a two-sided identity, with respect to composition of mappings ◦. A derivation
73
+ of a 푘-algebra 푀 is any 푘-linear mapping 퐷 : 푀 → 푀 such that 퐷(푥푦) = (퐷(푥))푦+
74
+ 푥(퐷(푦)) for every 푥, 푦 ∈ 푀. For any 푘-algebra 푀, we can construct the 푘-algebra
75
+ of derivations Der푘(푀) of the 푘-algebra 푀. Its elements are all derivations of 푀.
76
+
77
+ Pre-Lie algebras, their multiplicative lattice, and idempotent endomorphisms
78
+ 3
79
+ If 푀 is any 푘-algebra and 퐷, 퐷′ are two derivations of 푀, then the composite
80
+ mapping 퐷퐷′ is not a derivation of 푀 in general, but 퐷퐷′ − 퐷′퐷 is. Thus, for any
81
+ 푘-algebra 푀, we can define the Lie 푘-algebra Der푘 (푀) as the subset of End(푘푀)
82
+ consisting of all derivations of 푀 with multiplication [퐷, 퐷′] := 퐷퐷′ − 퐷′퐷 for
83
+ every 퐷, 퐷′ ∈ Der푘(푀).
84
+ It is known that there is not a general notion of representation (or module)over our
85
+ (non-associative) 푘-algebras. There is a notion of bimodule over a non-associative
86
+ ring due to Eillenberg, and this notion works well for Lie algebras, but is not
87
+ convenient in the study of Jordan algebras and alternative algebras. The situation, as
88
+ far as modules are concerned, is the following.
89
+ 1.1 Modules over an associative 풌-algebra.
90
+ Given any 푘-algebra 푀, we can consider, for every element 푥 ∈ 푀, the map-
91
+ ping 휆푥 : 푀 → 푀, defined by 휆푥(푎) = 푥푎 for every 푎 ∈ 푀. The mapping
92
+ 휆: 푀 → End(푘푀) is defined by 휆: 푥 ↦→ 휆푥 for every 푥 ∈
93
+ 푀. This 휆 is a 푘-
94
+ algebra morphism if and only if 푀 is associative. Thus, for any associative 푘-algebra
95
+ 푀, it is natural to define a left 푀-module as any 푘-module 푘 퐴 with a 푘-algebra
96
+ homomorphism 휆: 푀 → End(푘 퐴). Similarly, we can define right 푀-modules as
97
+ 푘-modules 푘 퐴 with a 푘-algebra antihomomorphism 휌 : 푀 → End(푘 퐴). Here by 푘-
98
+ algebra antihomomorphism 휓 : 푀 → 푀′ between two 푘-algebras 푀, 푀′ we mean
99
+ any 푘-linear mapping 휓 such that 휓(푥푦) = 휓(푦)휓(푥) for every 푥, 푦 ∈ 푀. Clearly, a
100
+ mapping 푀 → 푀′ is a 푘-algebra antihomomorphism if and only if it is a 푘-algebra
101
+ homomorphism 푀op → 푀′. It follows that right 푀-modules coincide with left
102
+ 푀op-modules. More precisely, when we say that right 푀-modules coincide with left
103
+ 푀op-modules, we mean that there is a canonical category isomorphism between the
104
+ category of all right 푀-modules and the category of all left 푀op-modules. Simi-
105
+ larly, left 푀-modules coincide with right 푀op-modules. Also, if 푀 is commutative,
106
+ then left 푀-modules and right 푀-modules coincide. Finally, left modules 퐴 over
107
+ an associative 푘-algebra 푀 can be equivalently defined using, instead of the 푘-
108
+ algebra homomorphism 휆: 푀 → End(푘 퐴), a 푘-bilinear mapping 휇: 푀 × 퐴 → 퐴,
109
+ 휇: (푚, 푎) ↦→ 푚푎, such that (푚푚′)푎 = 푚(푚′푎) for every 푚, 푚′ ∈ 푀 and 푎 ∈ 퐴.
110
+ 1.2 Modules over a Lie 풌-algebra.
111
+ For any 푘-module 퐴 we will denote by 픤픩(퐴) the Lie 푘-algebra End(푘 퐴) of all
112
+ 푘-endomorphisms of 퐴 with the operation [−, −] defined by [ 푓 , 푔] = 푓 푔 − 푔 푓 .
113
+ For any Lie 푘-algebra 푀 and any element 푥 ∈ 푀, the mapping 휆푥 is an element
114
+ of the Lie 푘-algebra Der푘 (푀), usually called the adjoint of 푥, or the inner derivation
115
+ defined by 푥, and usually denoted by ad푀 푥 instead of 휆푥, and the mapping ad: 푀 →
116
+
117
+ 4
118
+ Michela Cerqua and Alberto Facchini
119
+ Der푘(푀) ⊆ 픤픩(푀), defined by ad: 푥 ↦→ ad푀 푥 for every 푥 ∈ 푀, is a Lie 푘-algebra
120
+ homomorphism.
121
+ Left modules over a Lie 푘-algebra 푀 are defined as 푘-modules 퐴 with a Lie
122
+ 푘-algebra homomorphism휆: 푀 → 픤픩(퐴). Similarly, it is possible to define right 푀-
123
+ modules as 푘-modules 퐴 with a 푘-algebra antihomomorphism 휌 : 푀 → 픤픩(퐴). But
124
+ any Lie 푘-algebra 푀 is isomorphic to its opposite algebra 푀op via the isomorphism
125
+ 푀 → 푀op, 푥 ↦→ −푥. It follows that the category of right 푀-modules is canonically
126
+ isomorphic to the category of left 푀-modules for any Lie 푘-algebra 푀. Therefore
127
+ it is useless to introduce both right and left modules, it is sufficient to introduce left
128
+ 푀-modules and call them simply “푀-modules”.
129
+ 2 Pre-Lie 풌-algebras
130
+ A pre-Lie 푘-algebra is a 푘-algebra (푀, ·) satisfying the identity
131
+ (푥 · 푦) · 푧 − 푥 · (푦 · 푧) = (푦 · 푥) · 푧 − 푦 · (푥 · 푧)
132
+ (1)
133
+ for every 푥, 푦, 푧 ∈ 푀.
134
+ For any 푘-algebra (푀, ·), defining the commutator [푥, 푦] = 푥 · 푦 − 푦 · 푥 for every
135
+ 푥, 푦 ∈ 푀, the algebra (푀, [−, −]) is anticommutative. If (푀, ·) is a pre-Lie algebra,
136
+ one gets that (푀, [−, −]) is a Lie algebra, called the Lie algebra sub-adjacent to the
137
+ pre-Lie algebra (푀, ·).
138
+ Pre-Lie algebras are also called Vinberg algebras or left-symmetric algebras.
139
+ This last name refers to the fact that in (1) one exchanges the first two variables on
140
+ the left. A right-symmetric algebra is an algebra in which, for every 푥, 푦, 푧 ∈ 푀,
141
+ (푥 · 푦) · 푧 − 푥 · (푦 · 푧) = (푥 · 푧) · 푦 − 푥 · (푧 · 푦). It is easily seen that the category of
142
+ left-symmetricalgebras and the category of right-symmetricalgebras are isomorphic
143
+ (the categorical isomorphism is given by 푀 ↦→ 푀op).
144
+ Examples 1 (1) Every associative algebra is clearly a pre-Lie algebra.
145
+ (2) Derivations on 푘[푥1, . . . , 푥푛]푛. Let 푘 be a commutative ring with identity,
146
+ 푛 ≥ 1 be an integer, and 푘[푥1, . . . , 푥푛] be the ring of polynomials in the 푛 indeter-
147
+ minates 푥1, . . . , 푥푛 with coefficients in 푘. Let 퐴 be the free 푘[푥1, . . . , 푥푛]-module
148
+ 푘[푥1, . . . , 푥푛]푛 with free set {푒1, . . . , 푒푛} of generators. As a 푘-module, 퐴 is the
149
+ free 푘-module with free set of generators the set { 푥푖1
150
+ 1 . . . 푥푖푛
151
+ 푛 푒 푗 | 푖1, . . . , 푖푛 ≥ 0, 푗 =
152
+ 1, . . . , 푛}. Consider the usual derivations of the ring 푘[푥1, . . . , 푥푛]:
153
+
154
+ 휕푥 푗
155
+ (푥푖1
156
+ 1 . . . 푥푖푛
157
+ 푛 ) =
158
+
159
+ 푥푖1
160
+ 1 . . . 푖 푗푥푖푗−1
161
+
162
+ . . . 푥푖푛
163
+
164
+ for 푖 푗 > 0,
165
+ 0
166
+ for 푖 푗 = 0.
167
+ Defineamultiplication on 퐴 setting,forevery 푢 = (푢1, . . . , 푢푛), 푣 = (푣1, . . . , 푣푛) ∈ 퐴,
168
+
169
+ Pre-Lie algebras, their multiplicative lattice, and idempotent endomorphisms
170
+ 5
171
+ 푣 · 푢 = (
172
+
173
+
174
+ 푗=1
175
+ 푣 푗
176
+ 휕푢1
177
+ 휕푥 푗
178
+ , . . . ,
179
+
180
+
181
+ 푗=1
182
+ 푣 푗
183
+ 휕푢푛
184
+ 휕푥 푗
185
+ ).
186
+ It is then possible to see that 퐴 is a pre-Lie 푘-algebra [2, Section 2.3].
187
+ (3) An example of rank 2. Let 푘 be any commutative ring with identity and
188
+ 퐿 � 푘 ⊕ 푘 a free 푘-module of rank 2 with free set {푒1, 푒2} of generators. Define
189
+ a multiplication on 퐿 setting 푒1푒1 = 2푒1, 푒1푒2 = 푒2, 푒2푒1 = 0, 푒2푒2 = 푒1, and
190
+ extending by 푘-bilinearity. Then 퐿 is a pre-Lie 푘-algebra [13].
191
+ (4) Rooted trees. Recall that a tree is an undirected graph in which any two vertices
192
+ are connected by exactly one path, or equivalently a connected acyclic undirected
193
+ graph. A rooted tree of degree 푛 is a pair (푇, 푟), where 푇 is a tree with 푛 vertices,
194
+ and its root 푟 is a vertex of 푇. In the following we will label the vertices of 푇 with
195
+ the numbers 1, . . . , 푛, and the root 푟 with 1.
196
+ Let 푘 be a commutative ring with identity and T푛 be the free 푘-module with free
197
+ set of generators the set of all isomorphism classes of rooted trees of degree 푛. Set
198
+ T :=
199
+
200
+ 푛≥1
201
+ T푛.
202
+ Define a multiplication on T setting, for every pair 푇1,푇2 of rooted trees,
203
+ 푇1 · 푇2 =
204
+
205
+ 푣 ∈푉 (푇2)
206
+ 푇1 ◦푣 푇2,
207
+ where 푉(푇2) is the set of vertices of 푇2, and 푇1 ◦푣 푇2 is the rooted tree obtained by
208
+ adding to the disjoint union of 푇1 and 푇2 a further new edge joining the root vertex
209
+ of 푇1 with the vertex 푣 of 푇2. The root of 푇1 ◦푣 푇2 is defined to be the same as the
210
+ root of 푇2. To get a multiplication on T, extend this multiplication by 푘-bilinearity.
211
+ Let us give an example. Suppose
212
+ 푇1 =
213
+ 1
214
+ 2
215
+ 3
216
+ and
217
+ 푇2 =
218
+ 1
219
+ 2
220
+ Then
221
+
222
+ 6
223
+ Michela Cerqua and Alberto Facchini
224
+ 푇1 ◦1 푇2 =
225
+ 1
226
+ 2
227
+ 3
228
+ 4
229
+ 5
230
+ and
231
+ 푇1 ◦2 푇2 =
232
+ 1
233
+ 2
234
+ 3
235
+ 4
236
+ 5
237
+ ,
238
+ where we have relabelled the vertices of푇1. (If푇1 has 푛 vertices and푇2 has 푚 vertices,
239
+ it is convenient to relabel in 푇1 ◦푣 푇2 the vertices 1, . . . , 푛 of 푇1 with the numbers
240
+ 푚 + 1, . . . , 푚 + 푛, respectively.) Therefore
241
+ 푇1 · 푇2 =
242
+ 1
243
+ 2
244
+ 3
245
+ 4
246
+ 5
247
+ +
248
+ 1
249
+ 2
250
+ 3
251
+ 4
252
+ 5
253
+ In this way, one gets a pre-Lie 푘-algebra T [4, 2]. It is a graded 푘-algebra because
254
+ T푛 · T푚 ⊆ T푛+푚 for every 푛 and 푚. It can be proved that this is the free pre-Lie
255
+ 푘-algebra on one generator [4]. (The free generator of T is the rooted tree with one
256
+ vertex.)
257
+ (5) Upper triangular matrices. This is an interesting example taken from [13],
258
+ where all the details can be found. Let 푘 be a commutative ring with identity in which
259
+ 2 is invertible, and 푛 be a fixed positive integer. Let 푀 be the 푘-algebra of all 푛 × 푛
260
+ matrices, and 푈 be the its subalgebra of upper triangular matrices. Let 휑: 푀 → 푈
261
+ be the the 푘-linear mapping that associates with any matrix 퐴 = (푎푖 푗) ∈ 푀 the
262
+ matrix 퐵 = (푏푖 푗) ∈ 푈, where 푏푖 푗 = 푎푖 푗 if 푎푖 푗 is above the main diagonal, 푏푖 푗 = 0 if
263
+ 푎푖 푗 is below the main diagonal, and 푏푖푖 = 푎푖푖/2 if 푎푖 푗 = 푎푖푖 is on the main diagonal.
264
+ Also, for every 퐴 ∈ 푀, let 퐴tr be the transpose of the matrix 퐴. Define an operation
265
+ · on 푈 setting, for every 푋,푌 ∈ 푈, 푋 · 푌 := 푋푌 + 휑(푋푌tr + 푌 푋tr). Then (푈, ·) is a
266
+ pre-Lie 푘-algebra.
267
+
268
+ Pre-Lie algebras, their multiplicative lattice, and idempotent endomorphisms
269
+ 7
270
+ As we have defined in Section 1, a 푘-algebra homomorphism 휑: 푀 → 푀′ is
271
+ a 푘-module morphism such that 휑(푥푦) = 휑(푥)휑(푦) for every 푥, 푦 ∈ 푀. But we
272
+ also need another notion. We say that a 푘-module morphism 휑: 푀 → 푀′, where
273
+ 푀, 푀′ are arbitrary (not-necessarily associative) 푘-algebras, is a pre-morphism if
274
+ 휑(푥푦) − 휑(푥)휑(푦) = 휑(푦푥) − 휑(푦)휑(푥) for every 푥, 푦 ∈ 푀.
275
+ Lemma 1. A mapping 휑: 푀 → 푀′, where (푀, ·), (푀′, ·) are arbitrary 푘-algebras,
276
+ is a pre-morphism (푀, ·) → (푀′, ·) if and only if it is a 푘-algebra morphism
277
+ (푀, [−, −]) → (푀′, [−, −]).
278
+ Proof. If (푀, ·), (푀′, ·) are 푘-algebras and 휑: 푀 → 푀′ is a mapping, then
279
+ 휑: (푀, ·) → (푀′, ·)
280
+ is a pre-morphism if and only if 휑(푎푏) − 휑(푎)휑(푏) = 휑(푏푎) − 휑(푏)휑(푎) for every
281
+ 푎, 푏 ∈ 푀. This equality can be re-written as 휑(푎푏)−휑(푏푎) = 휑(푎)휑(푏)−휑(푏)휑(푎),
282
+ that is, 휑([푎, 푏]) = [휑(푎), 휑(푏)].
283
+ From this lemma and the definition of pre-morphism, we immediately get that:
284
+ Lemma 2. (a) Every 푘-algebra morphism is a pre-morphism.
285
+ (b) The composite mapping of two pre-morphisms is a pre-morphism.
286
+ (c) The inverse mapping of a bijective pre-morphism is a pre-morphism.
287
+ In Section 1, we already considered, for any (not-necessarily associative) 푘-
288
+ algebra 푀, the mapping 휆: 푀 → End(푘푀), where 휆: 푥 ↦→ 휆푥, 휆푥 : 푀 → 푀,
289
+ and 휆푥(푎) = 푥푎. Also, we had already remarked that this mapping 휆 is a 푘-algebra
290
+ morphism if and only if 푀 is associative. The mapping 휆 is a pre-morphism if and
291
+ only if 푀 is a pre-Lie algebra.
292
+ There is a category of 푘-algebras with pre-morphisms, i.e., a category in which
293
+ objects are 푘-algebras and the Hom-set of all morphisms 푀 → 푀′ consists of all
294
+ pre-morphisms 푀 → 푀′. This category contains as a full subcategory the category
295
+ PreL푘,푝 of pre-Lie 푘-algebras (with pre-morphisms). The category PreL푘,푝 contains
296
+ as a subcategory the category PreL푘 of pre-Lie algebras with 푘-algebra morphisms,
297
+ hence a fortiori the category of associative algebras with their morphisms.
298
+ From lemma 1, we get
299
+ Theorem 3. Associating with any 푘-algebra (퐴, ·) its sub-adjacent anticommuta-
300
+ tive algebra (퐴, [−, −]) is a functor 푈 from the category of 푘-algebras with pre-
301
+ morphisms to the category of anticommutative 푘-algebras.
302
+ Notice that the functor 푈, viewed as a functor from the category PreL푘,푝 to the
303
+ category of Lie 푘-algebras, is fully faithful. Two pre-Lie algebras 퐴, 퐴′ are iso-
304
+ morphic in PreL푘,푝 if and only if their sub-adjacent Lie algebras are isomorphic Lie
305
+ algebras. Two pre-Lie algebras isomorphic in PreL푘,푝 are not necessarily isomorphic
306
+ as pre-Lie algebras. The simplest example is, over the field R of real numbers, the
307
+ example of the two R-algebras R × R and C. They are non-isomorphic associative
308
+
309
+ 8
310
+ Michela Cerqua and Alberto Facchini
311
+ commutative 2-dimensional R-algebras, so that their sub-adjacent Lie algebras are
312
+ both the 2-dimensional abelian Lie R-algebra. Hence R × R and C are isomorphic
313
+ objects in PreLR,푝. All R-linear mappings R × R → C are pre-morphisms.
314
+ Remark 4. More generally, a 푘-algebra 퐴 is said to be Lie-admissible if, setting
315
+ [푥, 푦] = 푥푦−푦푥, one gets a Lie algebra (퐴, [−, −]). If the associator of a 푘-algebra 퐴
316
+ is defined as (푥, 푦, 푧) = (푥푦)푧 −푥(푦푧) for all 푥, 푦, 푧 in 퐴, then being a pre-Lie algebra
317
+ is equivalent to (푥, 푦, 푧) = (푦, 푥, 푧) for all 푥, 푦, 푧 ∈ 퐴. Being a Lie-admissible algebra
318
+ is equivalent to
319
+ (푥, 푦, 푧) + (푦, 푧, 푥) + (푧, 푥, 푦) = (푦, 푥, 푧) + (푥, 푧, 푦) + (푧, 푦, 푥)
320
+ (2)
321
+ for every 푥, 푦, 푧 ∈ 퐴. Pre-Lie algebras are Lie-admissible algebras. By lemma 1,
322
+ the functor 푈 : (퐴, ·) ↦→ (퐴, [−, −]) is a fully faithful functor from the category of
323
+ Lie-admissible 푘-algebras with pre-morphisms to the category of Lie 푘-algebras.
324
+ Corresponding to the notion of pre-morphism, there is a notion of pre-derivation.
325
+ We say that a 푘-module endomorphism 훿: 푀 → 푀, where 푀 is an arbitrary (not-
326
+ necessarily associative) 푘-algebra, is a pre-derivation if
327
+ 훿(푥푦) − 훿(푥)푦 − 푥훿(푦) = 훿(푦푥) − 훿(푦)푥 − 푦훿(푥)
328
+ for every 푥, 푦 ∈ 푀.
329
+ Lemma 5. Let 푘 be a commutativering with identity, (퐴, ·) a 푘-algebra, and [−, −] :
330
+ 퐴 × 퐴 → 퐴 the operation on 퐴 defined by [푥, 푦] := 푥푦 − 푦푥 for every 푥, 푦 ∈ 퐴. Then
331
+ a 푘-module endomorphism 훿 of 퐴 is a pre-derivation of (퐴, ·) if and only if it is a
332
+ derivation of the 푘-algebra (퐴, [−, −]).
333
+ Proof. The 푘-module endomorphism 훿 of 퐴 is a pre-derivation of (퐴, ·) if and only
334
+ if 훿(푥푦) − 훿(푥)푦 − 푥훿(푦) = 훿(푦푥) − 훿(푦)푥 − 푦훿(푥), that is, 훿([푥, 푦]) = [훿(푥), 푦] +
335
+ [푥, 훿(푦)].
336
+ Proposition 6. (a) Every derivation of a 푘-algebra is a pre-derivation.
337
+ (b) If 훿 and 훿′ are two pre-derivationsof a 푘-algebra 퐴, then [훿, 훿′] := 훿◦훿′−훿′◦훿
338
+ is a pre-derivation.
339
+ Proof. (a) is trivial, and (b) follows from lemma 5.
340
+ Corollary 7. For any 푘-algebra 퐴, the set PreDer푘 (퐴) of all pre-derivations of 퐴
341
+ is a Lie 푘-algebra with the operation [−, −] defined by [훿, 훿′] := 훿 ◦ 훿′ − 훿′ ◦ 훿 for
342
+ every 훿, 훿′ ∈ PreDer푘 (퐴).
343
+ Proof. The 푘-algebra (PreDer푘(퐴), [−, −]) is the Lie algebra of all derivations of
344
+ the 푘-algebra (퐴, [−, −]) (lemma 5).
345
+ Proposition 8. Let (퐴, ·) be any 푘-algebra. For every 푥 ∈ 퐴 define a 푘-module
346
+ morphism 푑푥 : 퐴 → 퐴 setting 푑푥(푦) := 푥푦 − 푦푥 for every 푦 ∈ 퐴. The following
347
+ conditions are equivalent:
348
+
349
+ Pre-Lie algebras, their multiplicative lattice, and idempotent endomorphisms
350
+ 9
351
+ (a) 푑푥 is a pre-derivation for all 푥 ∈ 퐴, that is, the image 푑(퐴) of the mapping
352
+ 푑 : 퐴 → End(푘 퐴) is contained in PreDer푘(퐴).
353
+ (b) The mapping 푑 is a pre-morphism of the 푘-algebra (퐴, ·) into the associative
354
+ 푘-algebra (End(푘 퐴), ◦).
355
+ (c) The 푘-algebra (퐴, ·) is Lie-admissible.
356
+ Proof. (a) ⇔ (c) The mapping 푑푥 : (퐴, ·) → (퐴, ·) is a pre-derivation if and only
357
+ if the mapping 푑푥 : (퐴, [−, −]) → (퐴, [−, −]) is a derivation by lemma 5, i.e., if
358
+ and only if 푑푥([푦, 푧]) = [푑푥(푦), 푧] + [푦, 푑푥(푧)]. Since the mapping 푑푥 is defined by
359
+ 푑푥(푦) = [푥, 푦], this is equivalent to [푥, [푦, 푧]] = [[푥, 푦], 푧] + [푦, [푥, 푧]], for every
360
+ 푥, 푦, 푧 ∈ 퐴. This proves that 푑푥 is a pre-derivation for every 푥 ∈ 퐴 if and only if
361
+ (퐴, [−, −]) is a Lie algebra, that is, if and only if (퐴, ·) is Lie-admissible.
362
+ (b) ⇔ (c) The mapping 푑 is a pre-morphism if and only if 푑푥푦−푑푥◦푑푦 = 푑푦푥−푑푦◦
363
+ 푑푥 for every 푥, 푦 ∈ 퐴, that is, if and only if 푑푥푦(푧) −푑푥(푑푦(푧)) = 푑푦푥(푧) −푑푦(푑푥(푧))
364
+ for every 푥, 푦, 푧 ∈ 퐴. This is equivalent to (푥푦)푧 − 푧(푥푦) − 푑푥(푦푧 − 푧푦) = (푦푥)푧 −
365
+ 푧(푦푥) − 푑푦(푥푧 − 푧푥). An easy calculation shows that this is exactly Condition (2),
366
+ i.e., it is equivalent to the fact that 퐴 is Lie-admissible.
367
+ If 퐴 is a Lie-admissible 푘-algebra, the mapping 푑푥 is the inner pre-derivation of
368
+ 퐴 induced by 푥.
369
+ 3 Pre-Lie algebras are modules over the sub-adjacent Lie algebra
370
+ Now we want to give another presentation of pre-Lie algebras, helpful to understand
371
+ their structure.
372
+ Let 푘 be a commutative ring with identity. Given a pre-Lie 푘-algebra (퐴, ·), we
373
+ have already seen in the paragraph after Lemma 2 that the mapping 휆: (퐴, ·) →
374
+ End(푘 퐴) is a pre-morphism. Apply to it the functor 푈, getting a Lie 푘-algebra
375
+ morphism 퐿 := 푈(휆) : (퐴, [−, −]) → 픤픩(퐴) defined by 퐿 : 푎 ↦→ 휆푎 for every 푎 ∈ 퐴.
376
+ This mapping 퐿 is set-theoretically equal to the mapping 휆. In other words, 퐿 defines
377
+ a module structure on the 푘-module 푘 퐴, giving it the structure of a module over the
378
+ sub-adjacent Lie 푘-algebra (퐴, [−, −]). Moreover, [푥, 푦] = 퐿(푥)(푦) − 퐿(푦)(푥).
379
+ This construction can be inverted. Let (퐴, [−, −]) be a Lie 푘-algebra, and suppose
380
+ that its sub-adjacent 푘-module 푘 퐴 has a module structure over the Lie algebra
381
+ (퐴, [−, −]) via the Lie algebra morphism 퐿 : (퐴, [−, −]) → 픤픩(퐴) and that, for
382
+ every 푥, 푦 ∈ 퐴, the condition 퐿(푥)(푦) − 퐿(푦)(푥) = [푥, 푦] holds. Define a new
383
+ multiplication · on 퐴 setting 푥 · 푦 = 퐿(푥)(푦) for every 푥, 푦 ∈ 퐴. Then (퐴, ·) turns
384
+ out to be a pre-Lie 푘-algebra. These two constructions are one the inverse of the
385
+ other. More precisely, fix a Lie 푘-algebra 퐴. Then there is a category isomorphism
386
+ between the following two categories S퐴 and M퐴, where:
387
+ (1) S퐴 is the category whose objects are all pre-Lie 푘-algebras (퐴, ·) whose
388
+ sub-adjacent Lie algebra is the fixed Lie algebra (퐴, [−, −]). The morphisms are all
389
+ pre-Lie algebra homomorphisms between such pre-Lie algebras.
390
+
391
+ 10
392
+ Michela Cerqua and Alberto Facchini
393
+ (2) M퐴 is the category whose objects are all pre-Lie 푘-algebra morphisms
394
+ 퐿 : (퐴, [−, −]) → 픤픩(퐴) such that 퐿(푥)(푦) − 퐿(푦)(푥) = [푥, 푦] for every 푥, 푦 ∈ 퐴.
395
+ The morphisms 휑 : 퐿 → 퐿′ between two objects 퐿, 퐿′ of M퐴 are the 푘-module
396
+ morphisms 휑: 퐴 → 퐴 for which all diagrams
397
+
398
+
399
+
400
+
401
+
402
+ 퐿(푎)
403
+ 퐿′(휑(푎))
404
+
405
+ commute, for every 푎 ∈ 퐴. See [2, Theorem 1.2.7].
406
+ 3.1 Modules over a pre-Lie 풌-algebra.
407
+ Modules cannot be defined over arbitrary non-associative algebras, but the definition
408
+ of pre-Lie algebra immediately suggests us how it is possible to define modules over
409
+ a pre-Lie algebra.
410
+ A module 푀 over a pre-Lie 푘-algebra 퐴 is any 푘-module 푀 with a 푘-bilinear
411
+ mapping ·: 퐴 × 푀 → 푀 such that
412
+ (푥 · 푦) · 푚 − 푥 · (푦 · 푚) = (푦 · 푥) · 푚 − 푦 · (푥 · 푚)
413
+ (3)
414
+ for every 푥, 푦 ∈ 퐴 and 푚 ∈ 푀.
415
+ Like in the case of associative algebras, it is possible to equivalently define a
416
+ module 푀 over a pre-Lie 푘-algebra (퐴, ·) as any 푘-module 푀 with a pre-morphism
417
+ 휆: (퐴, ·) → (End(푘푀), ◦).
418
+ For instance, if 퐴 is any pre-Lie 푘-algebra and 퐼 is an ideal of 퐼, taking as 푘-
419
+ bilinear mapping ·: 퐴 × 퐼 → 퐼 the restriction of the multiplication on 퐴, one sees
420
+ immediately that 퐼 is a module over 퐴.
421
+ Theorem 9. The category of modules over a pre-Lie 푘-algebra (퐴, ·) and the cate-
422
+ gory of modules over its sub-adjacent Lie 푘-algebra (퐴, [−, −]) are isomorphic.
423
+ Proof. Modules over the pre-Lie algebra (퐴, ·) are pairs (푘푀, 휆) with 푘 푀 a 푘-
424
+ module and 휆: 퐴 → End(푘푀) a pre-morphism, and modules over the Lie algebra
425
+ (퐴, [−, −]) are pairs (푘 푀, 휆) with 푘푀 a 푘-module and 휆: (퐴, [−, −]) → 픤픩(푀) a
426
+ Lie 푘-algebra morphism. By Lemma 1, they are the same pairs.
427
+ Notice that we could have obtained the results in Section 3 in a different way:
428
+ every pre-Lie algebra is clearly a module over itself, hence, applying Theorem 9, to
429
+ every pre-Lie algebra (퐴, ·) there corresponds a module 퐴푘 over the sub-adjacent
430
+ Lie algebra (퐴, [−, −]), that is, a Lie algebra morphism 퐿 : (퐴, [−, −]) → 픤픩(퐴),
431
+ and [푥, 푦] = 퐿(푥)(푦) − 퐿(푦)(푥) for every 푥, 푦 ∈ 퐴.
432
+
433
+ Pre-Lie algebras, their multiplicative lattice, and idempotent endomorphisms
434
+ 11
435
+ Also notice that the modules we have defined in this section over a pre-Lie algebra
436
+ are left modules. We don’t consider right modules because the definition of pre-Lie
437
+ algebra is not right/left symmetric, that is, the opposite of a pre-Lie algebra is not a
438
+ pre-Lie algebra.
439
+ 4 Commutator of two ideals. (Huq=Smith) for pre-Lie algebras
440
+ The sum of two ideals of a pre-Lie 푘-algebra 퐴, i.e., their sum as 푘-submodules of
441
+ 퐴, is an ideal of 퐴, and any intersection of a family of ideals of 퐴 is an ideal of 퐴.
442
+ It follows that the set I(퐴) of all ideals of a pre-Lie algebra 퐴 is a complete lattice
443
+ with respect to ⊆, and it is a sublattice of the lattice of all 푘-submodules of 퐴푘, hence
444
+ I(퐴) is a modular lattice. Moreover, the ideal of 퐴 generated by a subset 푋 of 퐴 is
445
+ the intersection of all the ideals of 퐴 that contain 푋.
446
+ We now need a notion of commutator of two ideals of a pre-Lie algebra. The
447
+ variety V of pre-Lie 푘-algebras is a Barr-exact category, is a variety of Ω-groups,
448
+ is protomodular and is semi-abelian [12, Example (2)]. More precisely, pre-Lie
449
+ algebras have an underlying group structure with respect to their addition, so that
450
+ they have the Mal’tsev term 푝(푥, 푦, 푧) = 푥 − 푦 + 푧. See [5, Proposition 5.3.1]. Notice
451
+ that 푝(푝(푥, 푦, 0), 푥, 푦)) = 0 for every 푥, 푦 ∈ 퐴, hence the variety V of pre-Lie
452
+ algebras is protomodular by [5, Proposition 3.1.8]. Moreover, 푝 has the property
453
+ that 푝(푝(푥, 푦, 푡), 푡, 푧) = 푝(푥, 푦, 푧) for all 푥, 푦, 푧, 푡 ∈ 퐴 (semi-associativity), so V is
454
+ semi-abelian by [5, Proposition 5.3.3].
455
+ We want to show that the Huq and the Smith commutators of two ideals of a
456
+ pre-Lie 푘-algebra coincide. Recall that in the case of the semi-abelian variety V of
457
+ pre-Lie algebras, the Huq commutator of two ideals 퐼 and 퐽 of a pre-Lie algebra 퐴 is
458
+ the smallest ideal [퐼, 퐽]퐻 of 퐴 for which there is a well-defined canonical morphism
459
+ 퐼 × 퐽 → 퐴/[퐼, 퐽]퐻 such that (푖, 0) ↦→ 푖 + [퐼, 퐽]퐻 and (0, 푗) ↦→ 푗 + [퐼, 퐽]퐻 for every
460
+ 푖 ∈ 퐼 and 푗 ∈ 퐽. That is, [퐼, 퐽]퐻 is the smallest ideal of 퐴 for which the mapping
461
+ 퐼 × 퐽 → 퐴/[퐼, 퐽]퐻, defined by (푖, 푗) ↦→ 푖 + 푗 + [퐼, 퐽]퐻 for every 푖 ∈ 퐼 and 푗 ∈ 퐽, is
462
+ a pre-Lie algebra morphism.
463
+ Proposition 10. The Huq commutator [퐼, 퐽]퐻 of two ideals 퐼 and 퐽 of a pre-Lie
464
+ algebra 퐴 is the ideal of 퐴 generated by the subset { 푖푗, 푗푖 | 푖 ∈ 퐼, 푗 ∈ 퐽 }.
465
+ Proof. The mapping ¯휎 : 퐼 × 퐽 → 퐴/[퐼, 퐽]퐻, defined by (푖, 푗) ↦→ 푖 + 푗 + [퐼, 퐽]퐻,
466
+ is a pre-Lie 푘-algebra morphism if and only if it respects multiplication, that is, if
467
+ and only if ¯휎((푖, 푗) · (푖′, 푗′)) ≡ ¯휎(푖, 푗) ¯휎(푖′, 푗′) for every (푖, 푗), (푖′, 푗′) ∈ 퐼 × 퐽, that
468
+ is, if and only if 푖푖′ + 푗 ��′ ≡ (푖 + 푗)(푖′ + 푗′) modulo [퐼, 퐽]퐻. Hence ¯휎 is a pre-Lie
469
+ algebra morphism if and only if 푖푗′ + 푗푖′ ≡ 0 modulo [퐼, 퐽]퐻, i.e., if and only if
470
+ 푖푗′ + 푗푖′ ∈ [퐼, 퐽]퐻. The conclusion follows immediately.
471
+ The Smith commutator in the Mal’tsev variety V (see [11]) can be defined, for
472
+ a pre-Lie 푘-algebra 퐴 with Mal’tsev term 푝(푥, 푦, 푧) and two ideals 퐼, 퐽 of 퐴, as the
473
+ smallest ideal [퐼, 퐽]푆 of 퐴 for which the function
474
+
475
+ 12
476
+ Michela Cerqua and Alberto Facchini
477
+ 푝 : {(푥, 푦, 푧) | 푥 ≡ 푦
478
+ (mod 퐼), 푦 ≡ 푧
479
+ (mod 퐽)} → 퐴/[퐼, 퐽]푆,
480
+ defined by 푝(푥, 푦, 푧) = 푥 − 푦 + 푧 + [퐼, 퐽]푆 is a pre-Lie algebra morphism.
481
+ Theorem 11. The Smith commutator [퐼, 퐽]푆 of two ideals 퐼 and 퐽 of a pre-Lie
482
+ algebra 퐴 is the ideal of 퐴 generated by the subset { 푖푗, 푗푖 | 푖 ∈ 퐼, 푗 ∈ 퐽 }. Hence
483
+ Huq=Smith for pre-Lie algebras.
484
+ Proof. The mapping 푝 : { (푏 + 푖, 푏, 푏 + 푗) | 푏 ∈ 퐴, 푖 ∈ 퐼, 푗 ∈ 퐽 } → 퐴/[퐼, 퐽]푆 is a
485
+ pre-Lie algebra morphism if and only if for every 푏, 푏′ ∈ 퐴, 푖, 푖′ ∈ 퐼, 푗, 푗′ ∈ 퐽, one
486
+ has
487
+ 푝((푏+푖, 푏, 푏+푗)(푏′+푖′, 푏′, 푏′+푗′)) ≡ 푝(푏+푖, 푏, 푏+푗)푝(푏′+푖′, 푏′, 푏′+푗′)
488
+ (mod [퐼, 퐽]푆),
489
+ that is, 푝((푏 +푖)(푏′ +푖′), 푏푏′, (푏 + 푗)(푏′ + 푗′)) ≡ (푏 +푖 + 푗)(푏′ +푖′ + 푗′) mod[퐼, 퐽]푆.
490
+ Equivalently,if and only if 0 ≡ 푖푗′+ 푗푖′ mod[퐼, 퐽]푆. Thereforethe Smith commutator
491
+ [퐼, 퐽]푆 of the two ideals 퐼 and 퐽 is the ideal of 퐴 generated by the subset { 푖푗, 푗푖 |
492
+ 푖 ∈ 퐼, 푗 ∈ 퐽 }. In particolar, [퐼, 퐽]퐻 = [퐼, 퐽]푆.
493
+ From now on we will not distinguish between the Huq commutator [퐼, 퐽]퐻 and
494
+ the Smith commutator [퐼, 퐽]푆. We will simply call it the commutatorof the two ideals
495
+ 퐼 and 퐽. Notice that the commutator is commutative, in the sense that [퐼, 퐽] = [퐽, 퐼].
496
+ Let us briefly discuss the structure of this ideal [퐼, 퐽]. It is clear that if 푋 is any
497
+ subset of a pre-Lie 푘-algebra 퐴, the ideal ⟨푋⟩ of 퐴 generated by 푋, that is, the
498
+ intersection of all the ideals of 퐴 that contain 푋, can be also described as the union
499
+ ⟨푋⟩ = �
500
+ 푛≥0 푋푛 of the following ascending chain 푋0 ⊆ 푋1 ⊆ . . . of 푘-submodules of
501
+ 퐴: 푋0 is the 푘-submodule of 퐴 generated by 푋; given 푋푛, set 푋푛+1 = 푋푛+퐴푋푛+푋푛퐴,
502
+ where 퐴푋푛 denotes the set of all finite sums of products 푎푥 with 푎 ∈ 퐴 and 푥 ∈ 푋푛,
503
+ and similarly for 푋푛퐴. In the case of the ideal [퐼, 퐽] this specializes as follows:
504
+ Proposition 12. Let 퐼 and 퐽 be ideals of a pre-Lie 푘-algebra 퐴. Then
505
+ [퐼, 퐽] = 퐼퐽 +
506
+
507
+ 푛≥0
508
+ 푆푛,
509
+ where 푆푛 = ((. . . (((퐽퐼)퐴)퐴) . . . )퐴)퐴 and in 푆푛 there are 푛 factors equal to 퐴 on
510
+ the right of the factor J퐼.
511
+ Proof. Step 1: 퐴(퐼퐽) ⊆ 퐼퐽.
512
+ By Property (1), we have that 퐴(퐼퐽) ⊆ (퐴퐼)퐽 + (퐼퐴)퐽 + 퐼(퐴퐽) ⊆ 퐼퐽.
513
+ Step 2: 퐴(퐽퐼) ⊆ 퐽퐼.
514
+ From Step 1, by symmetry.
515
+ Step 3: 퐴푆푛 ⊆ 푆푛 + 푆푛+1 for every 푛 ≥ 0.
516
+ Induction on 푛. Step 2 gives the case 푛 = 0. Suppose that 퐴푆푛 ⊆ 푆푛 + 푆푛+1
517
+ for some 푛 ≥ 0. Then 퐴푆푛+1 = 퐴(푆푛퐴) ⊆ (퐴푆푛)퐴 + (푆푛퐴)퐴 + 푆푛(퐴퐴) ⊆ (푆푛 +
518
+ 푆푛+1)퐴 + 푆푛+2 + 푆푛+1 = 푆푛+1 + 푆푛+2.
519
+
520
+ Pre-Lie algebras, their multiplicative lattice, and idempotent endomorphisms
521
+ 13
522
+ Step 4: 푆푛퐴 = 푆푛+1.
523
+ By definition.
524
+ Step 5: (퐼퐽)퐴 ⊆ 퐼퐽 + 푆0 + 푆1.
525
+ In fact, (퐼퐽)퐴 ⊆ 퐼(퐽퐴) + (퐽퐼)퐴 + 퐽(퐼퐴) ⊆ 퐼퐽 + 푆1 + 푆0.
526
+ Final Step.
527
+ Clearly, 퐼퐽 + �
528
+ 푛≥0 푆푛 is a 푘-submodule of 퐴 that contains 퐼퐽 and 퐽퐼 and is
529
+ contained in the ideal generated by 퐼퐽 ∪퐽퐼. Hence it remains to show that it is closed
530
+ by left and right multiplication by elements of 퐴. This is proved in Steps 1, 3, 4 and
531
+ 5.
532
+ Now that we have a good notion of commutator of two ideals 퐼 and 퐽 of a
533
+ pre-Lie 푘-algebra 퐴, we can introduce the multiplicative lattice of all ideals of
534
+ 퐴: it is the complete modular lattice I(퐴) of all ideals of 퐴 endowed with the
535
+ commutator of ideals. Notice that, trivially, [퐼, 퐽] ⊆ 퐼 ∩ 퐽. As a consequence of
536
+ looking at pre-Lie algebras from the point of view of multiplicative lattices, we
537
+ immediately get the notions of prime ideal of a pre-Lie 푘-algebra 퐴, (Zariski) prime
538
+ spectrum of 퐴, semiprime ideal, abelian pre-Lie algebra, idempotent (=perfect) pre-
539
+ Lie algebra, derived series, solvable pre-Lie algebra, lower central series, nilpotent
540
+ pre-Lie algebra, 푚-system, 푛-system, hyperabelian pre-Lie algebra, metabelian pre-
541
+ Lie algebra, Jacobson radical, centralizer of an ideal, center of a pre-Lie 푘-algebra,
542
+ hypercenter. See the next Section 5 and [8, 9, 6, 7].
543
+ Notice that the monotonicity condition holds for our commutator of ideals of a
544
+ pre-Lie algebra 퐴, in the sense that if 퐼 ≤ 퐼′ and 퐽 ≤ 퐽′ are ideals of 퐴, then
545
+ [퐼, 퐽] ≤ [퐼′, 퐽′].
546
+ Also notice that the description of the commutator in Proposition 12 reduces, in
547
+ the case of 퐼 = 퐽 = 퐴, to the equality [퐴, 퐴] = 퐴2 = 퐴퐴. Here 퐴2 is the image of
548
+ the 푘-module morphism 휇: 퐴 ⊗푘 퐴 → 퐴 induced by the 푘-bilinear multiplication
549
+ of 퐴.
550
+ 5 The commutator is not associative
551
+ In this section we will show that the commutator of ideals in a pre-Lie algebra 퐴 is
552
+ not associative in general, that is, if 퐼, 퐽, 퐾 are ideals of 퐴, it is not necessarily true
553
+ that [퐼, [퐽, 퐾]] = [[퐼, 퐽], 퐾]. In our example, the algebra 퐴 will be factor algebra
554
+ 퐴 := T/푃, where T is the pre-Lie algebra of rooted trees of Example 4 in Section 2,
555
+ and 푃 is the ideal of T generated by all rooted trees with at least 5 vertices. Such 푃
556
+ is the 푘-submodule of T generated by all rooted trees with at least 5 vertices. The
557
+ rooted trees with at most 4 vertices up to isomorphism are
558
+
559
+ 14
560
+ Michela Cerqua and Alberto Facchini
561
+ 푣 =
562
+ 1
563
+ ,
564
+ 푒 =
565
+ 1
566
+ 2
567
+ ,
568
+ 푎 =
569
+ 1
570
+ 2
571
+ 3
572
+ ,
573
+ 푏 =
574
+ 1
575
+ 2
576
+ 3
577
+ ,
578
+ 푐 =
579
+ 1
580
+ 2
581
+ 3
582
+ 4
583
+ ,
584
+ 푑 =
585
+ 1
586
+ 2
587
+ 3
588
+ 4
589
+ ,
590
+ 푓 =
591
+ 1
592
+ 2
593
+ 3
594
+ 4
595
+ ,
596
+ 푔 =
597
+ 1
598
+ 2
599
+ 3
600
+ 4
601
+ .
602
+ Hence our pre-Lie 푘-algebra 퐴 is eight dimensional, and we will denote by 푣, 푒, 푎, 푏,
603
+ 푐, 푑, 푓 , 푔 the images in 퐴 of the corresponding rooted trees. That is, we will say that
604
+ {푣, 푒, 푎, 푏, 푐, 푑, 푓 , 푔} is a free set of generators for the free 푘-module 퐴. From the
605
+ multiplication in T defined in Example 4 of Section 2, we get that the multiplication
606
+ table in 퐴 is
607
+
608
+
609
+
610
+
611
+ 푐 푑 푓 푔
612
+ 푣 푒 푎 + 푏 푐 + 2 푓 푓 + 푑 + 푔 0 0 0 0
613
+ 푒 푏 푓 + 푔
614
+ 0
615
+ 0
616
+ 0 0 0 0
617
+ 푎 푑
618
+ 0
619
+ 0
620
+ 0
621
+ 0 0 0 0
622
+ 푏 푔
623
+ 0
624
+ 0
625
+ 0
626
+ 0 0 0 0
627
+ 푐 0
628
+ 0
629
+ 0
630
+ 0
631
+ 0 0 0 0
632
+ 푑 0
633
+ 0
634
+ 0
635
+ 0
636
+ 0 0 0 0
637
+ 푓 0
638
+ 0
639
+ 0
640
+ 0
641
+ 0 0 0 0
642
+ 푔 0
643
+ 0
644
+ 0
645
+ 0
646
+ 0 0 0 0
647
+
648
+ Pre-Lie algebras, their multiplicative lattice, and idempotent endomorphisms
649
+ 15
650
+ From the multiplication table we see that 퐴2 = 퐴퐴 has {푒, 푏, 푑, 푔, 푎, 푓 , 푐} as a set
651
+ of generators, and is a seven dimensional free 푘-module.
652
+ Now [퐴2, 퐴2] = �
653
+ 푛≥0(. . . ((퐴2 · 퐴2) · 퐴) · · · · · 퐴) · 퐴, where there are 푛 factors
654
+ equal to 퐴 on the right. But, always from the multiplication table, one sees that 퐴2·퐴2
655
+ is generated by 푓 + 푔. Moreover ( 푓 + 푔)퐴 = 0 and 퐴( 푓 + 푔) = 0. Therefore [퐴2, 퐴2]
656
+ is one dimension as a free 푘-module, and its free set of generators is { 푓 + 푔}.
657
+ Similarly, [퐴2, 퐴] = 퐴 · 퐴2 + �
658
+ 푛≥1(. . . ((퐴2 · 퐴) · 퐴) · · · · · 퐴) · 퐴, where there
659
+ are 푛 + 1 factors equal to 퐴 on the right. From the multiplication table, we see that
660
+ 퐴 · 퐴2 is generated by 푎 + 푏, 푓 + 푔, 푐 + 2 푓 , 푓 + 푑 + 푔. Also, 퐴2 · 퐴 is generated by
661
+ {푏, 푑, 푔, 푓 + 푔}, (퐴2 · 퐴) · 퐴 is generated by 푔, and ((퐴2 · 퐴) · 퐴) · 퐴 = 0. Therefore
662
+ [퐴2, 퐴] is the 푘-module generated by 푏, 푑, 푔, 푓 , 푎, 푐 and is six dimensional. It follows
663
+ that [퐴2, 퐴]· 퐴 is generated by {푑, 푔}, 퐴·([퐴2, 퐴]) is generated by {푐+2 푓 , 푓 +푑+푔},
664
+ and ([퐴2, 퐴] · 퐴) · 퐴 = 0. From these equalities we get that [[퐴2, 퐴], 퐴] is generated
665
+ by {푑, 푔, 푐 + 2 푓 , 푓 + 푑 + 푔}. Equivalently, [[퐴2, 퐴], 퐴] is generated by {푑, 푔, 푓 , 푐}
666
+ and is four dimensional. In particular [퐴2, 퐴2] ≠ [[퐴2, 퐴], 퐴].
667
+ Let’s illustrate in detail some of the notions that immediately derive from the
668
+ commutative multiplication [−, −] (the commutator) in the multiplicative lattice
669
+ I(퐴).
670
+ First of all, a pre-Lie 푘-algebra 퐴 is abelian if the commutator of 퐴 and itself is
671
+ zero: [퐴, 퐴] = 0. This is equivalent to saying that 푖푗 = 0 for every 푖, 푗 ∈ 퐴. That
672
+ is, a pre-Lie algebra (퐴, ·) is abelian if and only if 푥 · 푦 = 0 for every 푥, 푦 ∈ 퐴.
673
+ (This is equivalent to requiring that the addition +: 퐴 × 퐴 → 퐴 is a pre-Lie algebra
674
+ morphism.)
675
+ By definition,an ideal 퐼 of a pre-Lie 푘-algebra 퐴 is prime if it is properly contained
676
+ in 퐴 and, for every ideal 퐽, 퐾 of 퐴, [퐽, 퐾] ⊆ 퐼 implies 퐽 ⊆ 퐼 or 퐾 ⊆ 퐼. An ideal 퐼
677
+ of a pre-Lie 푘-algebra 퐴 is semiprime if, for every ideal 퐽 of 퐴, [퐽, 퐽] ⊆ 퐼 implies
678
+ that 퐽 ⊆ 퐼. An ideal of 퐴 is semiprime if and only if it is the intersection of a family
679
+ of prime ideals (if and only if it is the intersection of all the ideals of 퐴 that contain
680
+ it). An ideal 푃 of a pre-Lie 푘-algebra 퐴 is prime if and only if the lattice I(퐴/푃) is
681
+ uniform and 퐴/푃 has no non-zero abelian ideal.
682
+ Remark 13. Instead of the commutator [퐼, 퐽] of two ideals 퐼 and 퐽, we could have
683
+ taken two other “product of ideals” in a pre-Lie 푘-algebra: we could consider the
684
+ product 퐼퐽, i.e., the ���-submodule of 퐴 generated by all products 푖푗, which is a
685
+ 푘-submodule but not an ideal of 퐴 in general, or the ideal ⟨퐼퐽⟩ generated by the
686
+ submodule 퐼퐽. Notice that 퐼퐽 ⊆ ⟨퐼퐽⟩ ⊆ [퐼, 퐽] = ⟨퐼퐽⟩ + ⟨퐽퐼⟩, where the last
687
+ equality follows from Proposition 12. Correspondingly, we would have had three
688
+ different notions of “prime ideal”. In the next proposition (essentially contained in
689
+ [8, Example 3.7]) we prove that these three notions of “prime ideal” coincide:
690
+ Proposition 14. The following conditions are equivalent for an ideal 푃 of a pre-Lie
691
+ algebra 퐴:
692
+ (a) If 퐼, 퐽 are ideals of 퐴 and 퐼퐽 ⊆ 푃, then either 퐼 ⊆ 푃 or 퐽 ⊆ 푃.
693
+ (b) If 퐼, 퐽 are ideals of 퐴 and ⟨퐼퐽⟩ ⊆ 푃, then either 퐼 ⊆ 푃 or 퐽 ⊆ 푃.
694
+ (c) If 퐼, 퐽 are ideals of 퐴 and [퐼, 퐽] ⊆ 푃, then either 퐼 ⊆ 푃 or 퐽 ⊆ 푃.
695
+
696
+ 16
697
+ Michela Cerqua and Alberto Facchini
698
+ Proof. The implications (a) ⇒ (b) ⇒ (c) follow immediately from the fact that
699
+ 퐼퐽 ⊆ ⟨퐼퐽⟩ ⊆ [퐼, 퐽].
700
+ (c) ⇒ (a). Let 푃 satisfy condition (c) and fix two ideals 퐼, 퐽 of 퐴 such that 퐼퐽 ⊆ 푃.
701
+ Since 푃 is an ideal, it follows that ⟨퐼퐽⟩ ⊆ 푃. Also, [⟨퐽퐼⟩, ⟨퐽퐼⟩] = ⟨⟨퐽퐼⟩⟨퐽퐼⟩⟩ ≤
702
+ ⟨퐼퐽⟩ ≤ 푃. From (c), we get that ⟨퐽퐼⟩ ≤ 푃, so that [퐼, 퐽] = ⟨퐼퐽⟩ + ⟨퐽퐼⟩ ≤ 푃. From
703
+ (c) again, we get that either 퐼 ⊆ 푃 or 퐽 ⊆ 푃.
704
+ Proposition 14 shows that if the pre-Lie algebra 퐴 is an associative algebra, then
705
+ this notion of prime ideal coincide with the notion of prime ideal in an associative
706
+ algebra. Proposition 12 shows that, for every pair (퐼, 퐽) of ideals of a pre-Lie algebra
707
+ 퐴, one has [퐼, 퐽] = 퐼퐽 +⟨퐽퐼⟩ = 퐽퐼 +⟨퐼퐽⟩. Also, Step 5 in the proof of that Proposition
708
+ shows that one always has that 퐼퐽 + 퐽퐼 + (퐼퐽)퐴 = 퐼퐽 + 퐽퐼 + (퐽퐼)퐴.
709
+ A pre-Lie 푘-algebra 퐴 is idempotent (or perfect) if [퐴, 퐴] = 퐴, that is, if 퐴2 = 퐴
710
+ (last paragraph of Section 4).
711
+ Given any pre-Lie algebra 퐴, let Spec(퐴) be the set of all its prime ideals. For
712
+ every 퐼 ∈ I(퐴), set 푉(퐼) = { 푃 ∈ Spec(퐴) | 푃 ⊇ 퐼 }. Then the family of all subsets
713
+ 푉(퐼) of Spec(퐴), 퐼 ∈ I(퐴), is the family of all the closed sets for a topology on
714
+ Spec(퐴). With this topology, the topological space Spec(퐴) is the (Zariski) prime
715
+ spectrum of 퐴, and is a sober space [8]. It is not a spectral space in the sense of
716
+ Hochster in general. For instance, if 퐵 is a Boolean ring without identity, then 퐵 is a
717
+ pre-Lie algebra, but its prime spectrum is not compact.
718
+ If the pre-Lie algebra 퐴 is an associative algebra, then this notion of prime
719
+ spectrum coincide with the “standard notion” of prime spectrum of an associative
720
+ algebra 퐴, where the points of the spectrum are the prime ideals of 퐴 and the closed
721
+ sets are the subsets 푉(퐼) of the spectrum. To tell the truth, there is not a “standard
722
+ notion” of prime spectrum of an associative algebra that extends the classical notion
723
+ of prime spectrum for commutative associative algebras with identity. There are
724
+ several such notions as it is shown in [1] and [14]. For instance, the points of the
725
+ spectrum could be the completely prime ideals of 퐴, or the spectrum of 퐴 could be
726
+ defined to be the Zariski spectrum of the commutative ring 퐴/[퐴, 퐴], where [퐴, 퐴]
727
+ now denotes the ideal of 퐴 generated by all elements 푎푏 − 푏푎.
728
+ A pre-Lie 푘-algebra 퐴 is hyperabelian if it has no prime ideal. For instance,
729
+ abelian pre-Lie algebras are hyperabelian.
730
+ Let 퐴 be a pre-Lie 푘-algebra. The lower central series (or descending central
731
+ series) of 퐴 is the descending series
732
+ 퐴 = 퐴1 ≥ 퐴2 ≥ 퐴3 ≥ . . . ,
733
+ where 퐴푛+1 := [퐴푛, 퐴] for every 푛 ≥ 1. If 퐴푛 = 0 for some 푛 ≥ 1, then 퐴 is
734
+ nilpotent. (Notice that it is not necessary to distinguish between left nilpotency and
735
+ rightnilpotency,becausethecommutatoriscommutative,thatis,[퐴푛, 퐴] = [퐴, 퐴푛].)
736
+ The derived series of 퐴 [8, Definition 6.1] is the descending series
737
+ 퐴 := 퐴(0) ≥ 퐴(1) ≥ 퐴(2) ≥ . . . ,
738
+
739
+ Pre-Lie algebras, their multiplicative lattice, and idempotent endomorphisms
740
+ 17
741
+ where 퐴(푛+1) := [퐴(푛), 퐴(푛)] for every 푛 ≥ 0. The pre-Lie algebra 퐴 is solvable if
742
+ 퐴(푛) = 0 for some integer 푛 ≥ 0. It is metabelian if 퐴(2) = 0.
743
+ In a multiplicative lattice an element is semisimple if it is the join of a set of
744
+ minimal idempotent elements. (An element 푚 of a lattice 퐿 is minimal if, for every
745
+ 푥 ∈ 퐿, 푥 ≤ 푚 implies 푥 = 푚 or 푥 = 0, that is, if it is minimal in the partially ordered
746
+ set 퐿 \ {0}. An element 푒 of a multiplicative lattice 퐿 is idempotent if 푒 · 푒 = 푒).
747
+ “Minimal idempotent element” of 퐿 means minimal element of 퐿 \ {0} that is also
748
+ an idempotent element. Notice that for a minimal element 푥 ∈ 퐿 either 푥 · 푥 = 푥 or
749
+ 푥 · 푥 = 0, i.e., minimal elements are either idempotent or abelian.
750
+ The Jacobson radical of 퐿 is the meet of the set of all maximal elements 푎 of
751
+ 퐿 \ {1} with 1 · 1 ̸≤ 푎. The radical is the join of the set of all solvable elements of 퐿.
752
+ 6 Idempotent endomorphisms, semidirect products of pre-Lie
753
+ algebras, and actions
754
+ Let 푒 be an idempotent endomorphism of a pre-Lie 푘-algebra 퐴. Then 퐴 = ker(푒) ⊕
755
+ 푒(퐴) (direct sum as 푘-modules), where the kernel ker(푒) of 푒 is an ideal of 퐴 and its
756
+ image 푒(퐴) is a pre-Lie sub-푘-algebra of 퐴. If there is a direct-sum decomposition
757
+ 퐴 = 퐼 ⊕ 퐵 as 푘-module of a pre-Lie 푘-algebra 퐴, where 퐼 is an ideal of 퐴 and 퐵 is a
758
+ pre-Lie sub-푘-algebra of 퐴, we will say that 퐴is the semidirect product of 퐼 and 퐵. We
759
+ are interested in semidirect products because, for any algebraic structure, idempotent
760
+ endomorphisms are in one-to-one correspondence with semidirect products and are
761
+ related to the notion of action of the structure on another structure, and bimodules.
762
+ The proof of the following proposition is elementary.
763
+ Proposition 15. Let 퐴 be a pre-Lie 푘-algebra, 퐼 an ideal of 퐴 and 퐵 a pre-Lie
764
+ sub-푘-algebra of 퐴. The following conditions are equivalent:
765
+ (1) 퐴 = 퐼 ⊕ 퐵 as a 푘-module.
766
+ (2) For every 푎 ∈ 퐴, there are a unique 푖 ∈ 퐼 and a unique 푏 ∈ 퐵 such that
767
+ 푎 = 푖 + 푏.
768
+ (3) There exists a pre-Lie 푘-algebra morphism 퐴 → 퐵 whose restriction to 퐵 is
769
+ the identity and whose kernel is 퐼.
770
+ (4) There is an idempotent pre-Lie 푘-algebra endomorphism of 퐴 whose image
771
+ is 퐵 and whose kernel is 퐼.
772
+ It is now clear that there is a one-to-one correspondence between the set of all
773
+ idempotent endomorphisms of a pre-Lie 푘-algebra 퐴 and the set of all pairs (퐼, 퐵),
774
+ where 퐼 is an ideal of 퐴, 퐵 is a pre-Lie sub-푘-algebra of 퐴, and 퐴 is the direct sum
775
+ of 퐼 and 퐵 as a 푘-module.
776
+ Let us first consider inner semidirect product. Suppose that (퐴, ·) is a pre-Lie
777
+ 푘-algebra that is a semidirect product of its ideal 퐼 and its pre-Lie sub-푘-algebra 퐵.
778
+ Then there is a pre-morphism 휆: (퐵, ·) → (End(퐼푘), ◦), given by multiplying on the
779
+
780
+ 18
781
+ Michela Cerqua and Alberto Facchini
782
+ left by elements of 퐵 (this follows from the fact that every ideal is a module, as we
783
+ have already remarked in Section 3.1). Also, there is a 푘-module morphism 휌 : 퐵 →
784
+ End(퐼푘), given by multiplying on the right by elements of 퐵, that is, 휌 : 푏 ↦→ 휌푏,
785
+ where 휌푏(푖) = 푖 · 푏 for every 푖 ∈ 퐼. Moreover, Identity (1), applied to elements 푥, 푧
786
+ in 퐵 and 푦 ∈ 퐼, can be re-written as 휌푎(휆푏(푖)) − 휆푏(휌푎(푖)) = (휌푎 ◦ 휌푏 − 휌푏·푎)(푖)
787
+ for every 푎, 푏 ∈ 퐵 and 푖 ∈ 퐼. Identity (1), applied to elements 푥 in 퐵 and 푦, 푧 ∈ 퐼,
788
+ can be re-written as 휆푎(푖) · 푗 − 휆푎(푖 · 푗) = 휌푎(푖) · 푗 − 푖 · 휆푎( 푗) for every 푎 ∈ 퐵 and
789
+ 푖, 푗 ∈ 퐼. Finally, the same identity (1), applied to elements 푧 in 퐵 and 푥, 푦 ∈ 퐼, can
790
+ be re-written as 휌푎(푥 · 푦) − 푥 · 휌푎(푦) = 휌푎(푦 · 푥) − 푦 · 휌푎(푥) for every 푎 ∈ 퐵 and
791
+ 푖, 푗 ∈ 퐼.
792
+ Conversely, for outer semidirect product:
793
+ Theorem 16. Let 퐼 and 퐵 be pre-Lie 푘-algebras and (휆, 휌) a pair of 푘-linear map-
794
+ pings 퐵 → End(퐼푘) such that:
795
+ (a) 휆: (퐵, ·) → (End(퐼푘), ◦) is a pre-morphism.
796
+ (b) 휌푎 ◦ 휆푏 − 휆푏 ◦ 휌푎 = 휌푎 ◦ 휌푏 − 휌푏·푎 for every 푎, 푏 ∈ 퐵.
797
+ (c) 휆푎(푖) · 푗 − 휆푎(푖 · 푗) = 휌푎(푖) · 푗 − 푖 · 휆푎( 푗) for every 푎 ∈ 퐵 and 푖, 푗 ∈ 퐼.
798
+ (d) 휌푎(푖 · 푗) − 푖 · 휌푎( 푗) = 휌푎( 푗 · 푖) − 푗 · 휌푎(푖) for every 푎 ∈ 퐵 and 푖, 푗 ∈ 퐼.
799
+ On the 푘-module direct sum 퐼 ⊕ 퐵 define a multiplication ∗ setting
800
+ (푖, 푏) ∗ ( 푗, 푐) = (푖 · 푗 + 휆푏( 푗) + 휌푐(푖), 푏 · 푐)
801
+ for every (푖, 푏), ( 푗, 푐) ∈ 퐼 ⊕ 퐵. Then (퐼 ⊕ 퐵, ∗) is a pre-Lie 푘-algebra.
802
+ Proof. For every 푎, 푏, 푐 ∈ 퐵 and 푥, 푦, 푧 ∈ 퐼 we have that
803
+ ((푥, 푎) ∗ (푦, 푏)) ∗ (푧, 푐) = (푥 · 푦 + 휆푎(푦) + 휌푏(푥), 푎 · 푏) ∗ (푧, 푐) =
804
+ = ((푥 · 푦) · 푧 + 휆푎(푦) · 푧 + 휌푏(푥) · 푧 + 휆푎·푏(푧)+
805
+ +휌푐(푥 · 푦 + 휆푎(푦) + 휌푏(푥)), (푎 · 푏) · 푐)
806
+ (4)
807
+ and
808
+ (푥, 푎) ∗ ((푦, 푏) ∗ (푧, 푐)) = (푥, 푎) ∗ (푦 · 푧 + 휆푏(푧) + 휌푐(푦), 푏 · 푐) =
809
+ = (푥 · (푦 · 푧) + 푥 · 휆푏(푧) + 푥 · 휌푐(푦)+
810
+ +휆푎(푦 · 푧 + 휆푏(푧) + 휌푐(푦)) + 휌푏·푐(푥), 푎 · (푏 · 푐)).
811
+ (5)
812
+ The difference of (4) and (5) is
813
+ ((푥 · 푦) · 푧 − 푥 · (푦 · 푧) + 휆푎(푦) · 푧 − 휆푎(푦 · 푧)+
814
+ +휌푏(푥) · 푧 − 푥 · 휆푏(푧) + 휆푎·푏(푧) − (휆푎 ◦ 휆푏)(푧)+
815
+ +휌푐(푥 · 푦) − 푥 · 휌푐(푦) + 휌푐(휆푎(푦)) − 휆푎(휌푐(푦)) + 휌푐(휌푏(푥)) − 휌푏·푐(푥)),
816
+ (푎 · 푏) · 푐 − 푎 · (푏 · 푐)).
817
+ Similarly,
818
+ ((푦, 푏) ∗ (푥, 푎)) ∗ (푧, 푐) − (푦, 푏) ∗ ((푥, 푎) ∗ (푧, 푐)) =
819
+ = ((푦 · 푥) · 푧 − 푦 · (푥 · 푧) + 휆푏(푥) · 푧 − 휆푏(푥 · 푧) + 휌푎(푦) · 푧 − 푦 · 휆푎(푧)+
820
+ +휆푏·푎(푧) − (휆푏 ◦ 휆푎)(푧) + 휌푐(푦 · 푥) − 푦 · 휌푐(푥) + 휌푐(휆푏(푥)) − 휆푏(휌푐(푥))+
821
+ +휌푐(휌푎(푦)) − 휌푎·푐(푦)), (푏 · 푎) · 푐 − 푏 · (푎 · 푐)).
822
+
823
+ Pre-Lie algebras, their multiplicative lattice, and idempotent endomorphisms
824
+ 19
825
+ Hence, for the proof, it suffices to show that
826
+ 휆푎(푦) · 푧 − 휆푎(푦 · 푧) + 휌푏(푥) · 푧 − 푥 · 휆푏(푧) + 휆푎·푏(푧) − (휆푎 ◦ 휆푏)(푧)+
827
+ +휌푐(푥 · 푦) − 푥 · 휌푐(푦) + 휌푐(휆푎(푦)) − 휆푎(휌푐(푦)) + 휌푐(휌푏(푥)) − 휌푏·푐(푥)) =
828
+ = 휆푏(푥) · 푧 − 휆푏(푥 · 푧) + 휌푎(푦) · 푧 − 푦 · 휆푎(푧)+
829
+ +휆푏·푎(푧) − (휆푏 ◦ 휆푎)(푧)+
830
+ +휌푐(푦 · 푥) − 푦 · 휌푐(푥) + 휌푐(휆푏(푥)) − 휆푏(휌푐(푥))+
831
+ +휌푐(휌푎(푦)) − 휌푎·푐(푦)).
832
+ (6)
833
+ Now
834
+ 휆푎(푦) · 푧 − 휆푎(푦 · 푧) = 휌푎(푦) · 푧 − 푦 · 휆푎(푧)
835
+ by hypotheses (c);
836
+ 휌푏(푥) · 푧 − 푥 · 휆푏(푧) = 휆푏(푥) · 푧 − 휆푏(푥 · 푧)
837
+ by hypotheses (c);
838
+ 휆푎·푏(푧) − (휆푎 ◦ 휆푏)(푧) = 휆푏·푎(푧) − (휆푏 ◦ 휆푎)(푧) by hypotheses (a);
839
+ 휌푐(푥 · 푦) − 푥 · 휌푐(푦) = 휌푐(푦 · 푥) − 푦 · 휌푐(푥)
840
+ by hypotheses (d);
841
+ 휌푐(휆푎(푦)) − 휆푎(휌푐(푦)) = 휌푐(휌푎(푦)) − 휌푎·푐(푦)) by hypotheses (b);
842
+ 휌푐(휌푏(푥)) − 휌푏·푐(푥)) = 휌푐(휆푏(푥)) − 휆푏(휌푐(푥)) by hypotheses (b).
843
+ Summing up these equalities one gets Equality (6).
844
+ Hence the theorem characterises the four properties that an action (휆, 휌), that
845
+ is, a pair of 푘-linear mappings 퐵 → End(퐼푘), must have in order to construct the
846
+ semidirect product of a pre-Lie 푘-algebra 퐵 acting on a pre-Lie 푘-algebra 퐼.
847
+ 6.1 Bimodules over a pre-Lie algebra
848
+ The most important case of semidirect product is probably when the pre-Lie algebra
849
+ 퐼 is abelian, i.e., the case where the action, that is, the pair (휆, 휌) of 푘-linear mappings
850
+ 퐵 → End(퐼푘), is an action of the pre-Lie 푘-algebra 퐵 on a 푘-module 푀. In other
851
+ words, when 퐼 is a 퐵-bimodule. Let us be more precise, giving the precise definition
852
+ of what a bimodule over a pre-Lie algebra must be:
853
+ Definition 17. Let 퐴 be a pre-Lie 푘-algebra. A bimodule over 퐴 is a 푘-module 푀푘
854
+ with a pair (휆, 휌) of 푘-linear mappings 퐴 → End(푀푘) such that:
855
+ (a) 휆: (퐴, ·) → (End(푀푘), ◦) is a pre-morphism (that is, 푀 is a module over 퐴).
856
+ (b) 휌푎 ◦ 휆푏 − 휆푏 ◦ 휌푎 = 휌푎 ◦ 휌푏 − 휌푏·푎 for every 푎, 푏 ∈ 퐵.
857
+ Notice that Conditions (c) and (d) of Theorem 16 are always trivially satisfied
858
+ because in this case the 푘-module 푀 is viewed as an abelian pre-Lie algebra, that is,
859
+ with null multiplication. This definition already appears, for instance, in [13]. Notice
860
+ the nice interpretation of condition (b) given in that paper: In condition (b) the left
861
+ hand side 휌푎 ◦ 휆푏 − 휆푏 ◦ 휌푎 describes how far the action is from associativity (for
862
+ bimodules over an associative algebra, it is always required to be zero); the right hand
863
+ side 휌푎◦휌푏−휌푏·푎 describes how far 휌 is from being a 푘-algebra antihomomorphism.
864
+
865
+ 20
866
+ Michela Cerqua and Alberto Facchini
867
+ 6.2 Adjoining the identity to a pre-Lie algebra
868
+ The class of pre-Lie algebras contains the class of associative algebras. For asso-
869
+ ciative algebras, it is very natural to consider associative algebras with an identity,
870
+ and when there is not an identity, to adjoin one. This construction is often called
871
+ the “Dorroh extension”. Let’s show that this is possible for pre-Lie algebras as well.
872
+ We will see in fact that a more appropriate name for our class of algebras, instead
873
+ of “pre-Lie algebras”, would have been “pre-associative algebras”. Adjoining an
874
+ identity to a pre-Lie 푘-algebra 퐴 is exactly our semidirect product of the pre-Lie
875
+ 푘-algebra 푘 acting on the pre-Lie 푘-algebra 퐴. Let’s be more precise.
876
+ An identity in a pre-Lie 푘-algebra 퐴 is an element, which we will denote by 1퐴,
877
+ such that 푎 · 1퐴 = 1퐴 · 푎 = 푎 for every 푎 ∈ 퐴. If 퐴 has an identity, we will say that 퐴
878
+ is unital. An element 푒 of 퐴 is idempotent if 푒2 := 푒 · 푒 = 푒. The zero of 퐴 is always
879
+ an idempotent element of 퐴, and the identity, when it exists, is also an idempotent
880
+ element of 퐴.
881
+ Let 퐴 be any fixed pre-Lie 푘-algebra. Then the associative commutative ring 푘 is
882
+ a pre-Lie 푘-algebra, and there is a one-to-one correspondence between the set of all
883
+ the pre-Lie 푘-algebra morphisms 푘 → 퐴 and the set of all idempotent elements of
884
+ 퐴. For any idempotent element 푒 of 퐴 the corresponding morphism 휑푒 : 푘 → 퐴 is
885
+ defined by 휑푒(휆) = 휆푒 for every 휆 ∈ 푘. Conversely, for any morphism 휑: 푘 → 퐴
886
+ the corresponding idempotent element of 퐴 is 휑(1).
887
+ For any fixed pre-Lie 푘-algebra 퐴 it is possible to construct the semidirect product
888
+ of 푘 acting on 퐴 via the pair (휆, 휌) of 푘-module morphisms 푘 → End(퐴푘) for which
889
+ 휆훼 = 휌훼 is multiplication by 훼 for all 훼 ∈ 푘. Then the four conditions (a), (b), (c),
890
+ (d) of Theorem 16 are all automatically satisfied, and the corresponding semidirect
891
+ product is the 푘-module direct sum 퐴 ⊕ 푘 with the multiplication defined by
892
+ (푥, 훼)(푦, 훽) = (푥 · 푦 + 훽푥 + 훼푦, 훼훽)
893
+ for every (푥, 훼), (푦, 훽) ∈ 퐴 ⊕ 푘. Hence 퐴 ⊕ 푘 becomes a pre-Lie 푘-algebra with
894
+ identity (0, 1). The Lie algebra sub-adjacent this pre-Lie algebra 퐴 ⊕ 푘 is the direct
895
+ sum of the Lie algebra (퐴, [−, −]) and the abelian Lie algebra 푘. We will denote this
896
+ semidirect product by 퐴#푘.
897
+ Now let PreL푘,1 be the category of all unital pre-Lie 푘-algebras. Its objects are the
898
+ pre-Lie 푘-algebras 퐴 with an identity. Its morphisms 푓 : 퐴 → 퐵 are the 푘-algebra
899
+ morphisms 푓 such that 푓 (1퐴) = 1퐵. There is also a further category involved.It is the
900
+ category PreL푘,1,푎 of all unital pre-Lie 푘-algebras with an augmentation. Its objects
901
+ are all the pairs (퐴, 휀퐴), where 퐴 is a unital pre-Lie 푘-algebra and 휀퐴: 퐴 → 푘 is a
902
+ morphism in PreL푘,1 that is a left inverse for 휑1퐴:
903
+
904
+ 휑1퐴 � 퐴
905
+ 휀퐴 �푘.
906
+ The morphisms 푓 : (퐴, 휀퐴) → (퐵, 휀퐵) are the morphisms 푓 : 퐴 → 퐵 in PreL푘,1
907
+ such that 휀퐵 푓 = 휀퐴. For instance, the 푘-algebra 퐴#푘 is clearly a unital 푘-algebra with
908
+
909
+ Pre-Lie algebras, their multiplicative lattice, and idempotent endomorphisms
910
+ 21
911
+ augmentation: the augmentation is the canonical projection 휋2 : 퐴#푘 = 퐴 ⊕ 푘 → 푘
912
+ onto the second summand.
913
+ It is easy to see that:
914
+ Theorem 18. There is a category equivalence 퐹: PreL푘 → PreL푘,1,푎 that associates
915
+ with any object 퐴 of PreL푘 the 푘-algebra with augmentation 퐹(퐴) := (퐴#푘, 휋2).
916
+ The quasi-inverse of 퐹 is the functor PreL푘,1,푎 → PreL푘, that associates with
917
+ each unital pre-Lie 푘-algebra with augmentation (퐴, 휀퐴) the kernel ker(휀퐴) of the
918
+ augmentation.
919
+ References
920
+ 1. M. Ben-Zvi, A. Ma and M. Reyes, A Kochen-Specker theorem for integer matrices and
921
+ noncommutative spectrum functors, J. Algebra 491 (2017), 28–313.
922
+ 2. M. Cerqua, “Pre-Lie algebras”, Master Thesis in Math., University of Padua, 2022.
923
+ 3. Chengming Bai, An Introduction to Pre-Lie Algebras, In “Algebra and Applications 1, Non-
924
+ associative algebras and categories”, A. Makhlouf (Ed.), ISTE Ltd, 2020, pp. 245–273.
925
+ 4. F. Chapoton and N. Livernet, Pre-Lie algebras and the rooted trees operad, International
926
+ Mathematics Research Notices 2001 (8) (2001), 395–408.
927
+ 5. F. Borceux and D. Bourn, “Mal’cev, protomodular, homological and semi-abelian categories”,
928
+ Mathematics and Its Applications 566, Kluwer, 2004.
929
+ 6. A. Facchini, Algebraic structures from the point of view of complete multiplicative lattices,
930
+ available at: http://arxiv.org/abs/2201.03295 , accepted for publication in “Rings, Quadratic
931
+ Forms, and their Applications in Coding Theory”, Contemporary Math., 2022.
932
+ 7. A. Facchini and C. A. Finocchiaro, Multiplicative lattices: maximal implies prime, and related
933
+ questions, submitted for publication (2022).
934
+ 8. A. Facchini, C. A. Finocchiaro and G. Janelidze, Abstractly constructed prime spectra, Algebra
935
+ Universalis 83 (2022), no. 1, Paper No. 8, 38 pp.
936
+ 9. A. Facchini, F. de Giovanni and M. Trombetti, Spectra of groups, published online on 5 June
937
+ 2022 in Algebr. Represent. Theory (2022).
938
+ 10. A. Facchini and L. Heidari Zadeh, Algebras with a bilinear form, and Idempotent endomor-
939
+ phisms, submitted for publication, 2022, available at http://arxiv.org/abs/2210.08230
940
+ 11. G. Janelidze, and G. M. Kelly, Central extensions in Mal’tsev varieties, Theory Appl. Categ.
941
+ 7 (2000), 219–226.
942
+ 12. G. Janelidze, L. Márki and W. Tholen, Semi-abelian categories, J. Pure Appl. Algebra 168
943
+ (2002), no. 2–3, 367–386.
944
+ 13. A. Nijenhuis, On a classof common propertiesof some different types of algebras, Nieuw Arch.
945
+ Wisk. (3) 17 (1969), 17–46. French translation in Enseign. Math. (2) 14 (1968), 225–277.
946
+ 14. M. Reyes, Obstructing extensions of the functor Spec to noncommutative rings, Israel
947
+ J. Math. 192 (2012), 667–698.
948
+ 15. E. B. Vinberg, The theory of convex homogeneous cones, Trudy Mosk. Mat. Obshch. 12
949
+ (1963), 303–358. English transl.: Trans. Mosc. Math. Soc. 12 (1963), 340–403.
950
+
7NE0T4oBgHgl3EQfwAHH/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
89FAT4oBgHgl3EQfpR2f/content/2301.08639v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:040b847bf9ea821b1f1cfa2e9d02594b777198712ee654a8e1f396d4185bcf16
3
+ size 413875
8NE2T4oBgHgl3EQfPgby/content/2301.03761v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3049cb652da2fd30ec0ff399ae4d41871de9297858215d0a025766518f226a36
3
+ size 1536004
8NE3T4oBgHgl3EQfRwmH/content/2301.04425v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:88f728f7686ad2d9bc8f3be7a48328270959829b12591761b857b5f8d59169fe
3
+ size 3124998
8NE3T4oBgHgl3EQfRwmH/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b56e146effd03dab67e641269b48d54eec07060525e6498cc0d90fdcbe00f487
3
+ size 10551341
8NE3T4oBgHgl3EQfRwmH/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4ed802f6545052d1efb1939e3bae3182f6274dd9b3ac7a42bc18f2b01efbf371
3
+ size 340937
8NE5T4oBgHgl3EQfQg5R/content/2301.05513v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:709a7db703c08fc8f03d90ea15429da31a06b03aa104bec5563cbfc9eea5ae44
3
+ size 2696616
99E1T4oBgHgl3EQfoAS_/content/tmp_files/2301.03316v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
99E1T4oBgHgl3EQfoAS_/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
A9E5T4oBgHgl3EQfSw_w/content/tmp_files/2301.05532v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
A9E5T4oBgHgl3EQfSw_w/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
ANE0T4oBgHgl3EQfxgKB/content/2301.02647v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:650a5119f863d14d1de5a9f4a0bce170885effb066ed06ab341423bfa410e22b
3
+ size 6695287
ANE0T4oBgHgl3EQfxgKB/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:82cb03291d097f64bb73575b00718cbe56054430ec47b39b9df8e018e9adde21
3
+ size 7012397
AdFKT4oBgHgl3EQfVy5o/content/tmp_files/2301.11789v1.pdf.txt ADDED
@@ -0,0 +1,2462 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.11789v1 [math-ph] 27 Jan 2023
2
+ A radiation and propagation problem for
3
+ a Helmholtz equation with a compactly
4
+ supported nonlinearity
5
+ Lutz Angermann∗
6
+ January 30, 2023
7
+ The present work describes some extensions of an approach, originally devel-
8
+ oped by V.V. Yatsyk and the author, for the theoretical and numerical analysis
9
+ of scattering and radiation effects on infinite plates with cubically polarized lay-
10
+ ers. The new aspects lie on the transition to more generally shaped, two- or
11
+ three-dimensional objects, which no longer necessarily have to be represented in
12
+ terms a Cartesian product of real intervals, to more general nonlinearities (in-
13
+ cluding saturation) and the possibility of an efficient numerical approximation of
14
+ the electromagnetic fields and derived quantities (such as energy, transmission
15
+ coefficient, etc.). The paper advocates an approach that consists in transform-
16
+ ing the original full-space problem for a nonlinear Helmholtz equation (as the
17
+ simplest model) into an equivalent boundary-value problem on a bounded do-
18
+ main by means of a nonlocal Dirichlet-to-Neumann (DtN) operator. It is shown
19
+ that the transformed problem is equivalent to the original one and can be solved
20
+ uniquely under suitable conditions. Morever, the impact of the truncation of the
21
+ DtN operator on the resulting solution is investigated, so that the way to the
22
+ numerical solution by appropriate finite element methods is available.
23
+ Keywords: Scattering, radiation, nonlinear Helmholtz equation, nonlinearly polarizable medium,
24
+ DtN operator, truncation
25
+ AMS Subject Classification (2022): 35 J 05 35 Q 60 78 A 45
26
+ 1 Introduction
27
+ The present work deals with the mathematical modeling of the response of a penetrable two-
28
+ or three-dimensional object (obstacle), represented by a bounded domain, to the excitation
29
+ ∗Dept. of Mathematics, Clausthal University of Technology, Erzstr. 1, D-38678 Clausthal-Zellerfeld, Ger-
30
+ many, lutz.angermann@tu-clausthal.de
31
+ 1
32
+
33
+ Resonant compactly supported nonlinearities
34
+ January 30, 2023
35
+ by an external electromagnetic field. A special aspect of the paper is that, in contrast to
36
+ many other, thematically comparable works, nonlinear constitutive laws of this object are
37
+ in the foreground.
38
+ A standard example are the so-called Kerr nonlinearities. It is physically known, but also
39
+ only little investigated mathematically that sufficiently strong incident fields, under certain
40
+ conditions, cause effects such as frequency multiplication, which cannot occur in the linear
41
+ models frequently considered in the literature. On the other hand, such effects are interest-
42
+ ing in applications, which is why a targeted exploitation, for example from a numerical or
43
+ optimization point of view, first requires thorough theoretical investigation.
44
+ A relatively simple mathematical model for this is a nonlinear Helmholtz equation, which
45
+ results from the transition from the time-space formulation of Maxwell’s equations to the
46
+ frequency-space formulation together with further simplifications. Although some interesting
47
+ nonlinear effects cannot be modeled by means of a single scalar equation alone, its inves-
48
+ tigation is of own importance, for example from the aspect of variable coefficients, and on
49
+ the other hand its understanding is also the basis for further development, for example for
50
+ systems of nonlinear Helmholtz equations, see, e.g., [AY19]. The latter is also the reason
51
+ why we consider a splitted nonlinearity and not concentrate the nonlinearity in one term as
52
+ is obvious.
53
+ The Helmholtz equation with nonlinearities has only recently become the focus of mathe-
54
+ matical investigations. However, problems are mainly dealt with in which the nonlinearities
55
+ are globally smooth, while here a formulation as a transmission problem is used that allows
56
+ less smooth transitions at the object boundary. In addition, we allow more general nonlin-
57
+ earities than the Kerr nonlinearities mentioned, in particular saturation effects can be taken
58
+ into account.
59
+ Starting from a physically oriented problem description as a full-space problem, we derive a
60
+ weak formulation on a bounded domains using the well-known technique of DtN operators,
61
+ and show its equivalence to the weakly formulated original problem. Since the influence
62
+ of the external field only occurs indirectly in the weak formulation, we also give a second
63
+ variant of the weak formulation that better clarifies this influence and which we call the
64
+ input-output formulation.
65
+ Since the DtN operators are non-local, their practical application (numerics) causes prob-
66
+ lems, which is why a well-known truncation technique is used.
67
+ This raises the problem
68
+ of proving the well-posedness of the reduced problem and establishing a connection (error
69
+ estimate) of the solution of the reduced problem to the original problem. Although these
70
+ questions in the linear case have been discussed in the literature for a relatively long time,
71
+ they even for the linear case seemed to have been treated only selectively and sometimes
72
+ only very vaguely. The latter concerns in particular the question of the independence of
73
+ the stability constant from the truncation parameter. In this work, both stability and er-
74
+ ror estimates are given for the two- and three-dimensional case, whereby a formula-based
75
+ relationship between the discrete and the continuous stability constant is established.
76
+ Another difference to many existing, especially older works is that the present paper works
77
+ with variational (weak) formulations but not with integral equations. Unfortunately, the
78
+ complete tracking of the dependence of the occurring parameters on the wave number (so-
79
+ called wavenumber-independent bounds) has not yet been included.
80
+ It has already been mentioned that, for the linear situation, in connection with scattering
81
+ problems or with problems that are formulated from the very beginning in bounded domains
82
+ 2
83
+
84
+ Resonant compactly supported nonlinearities
85
+ January 30, 2023
86
+ (e.g., with impedance boundary conditions), there is an extensive and multi-threaded body
87
+ of literature that is beyond the scope of this article to list. Transmission problems of the
88
+ type considered here are rarely found in the literature.
89
+ Nevertheless, without claiming completeness, a few works should be mentioned here that had
90
+ an influence on the present results and whose bibliographies may be of help. A frequently
91
+ cited work that deals with linear scattering problems in two dimensions and also served
92
+ as the motivation for the present work is [HNPX11], which, however, does not discuss the
93
+ dependence of the stability constant on the truncation parameter. A number of later works
94
+ by other authors quote this work, but sometimes assume results that cannot be found in the
95
+ original.
96
+ The work that comes closest to our intentions is [Koy07], where the exterior Dirichlet
97
+ boundary-value problem for the linear Helmholtz equation is considered.
98
+ In this paper,
99
+ no separate, parameter-uniform stability estimate of the truncated problem is given, but
100
+ the truncation error is included in the error estimate of a finite element approximation. A
101
+ similar work is [Koy09], but in which another boundary condition at the boundary of the
102
+ auxiliary domain is considered, the so-called modified DtN condition.
103
+ Among the more recent papers, works by Mandel [Man19], Chen, Ev´equoz & Weth [CEW21],
104
+ and Maier & Verf¨urth [MV22] should be mentioned, especially because of the cited sources.
105
+ In his cumulative habilitation thesis, which contains further references, Mandel examines ex-
106
+ istence and uniqueness questions for solutions of systems of nonlinear Helmholtz equations
107
+ in the full-space case. Scattering or transmission problems are not considered. Chen et al.
108
+ consider the scattering problem with quite high regularity assumptions to the superlinear
109
+ nonlinearities, but without truncation approaches and not in the context of variational solu-
110
+ tions. Maier & Verf¨urth, who focus mainly on multiscale aspects for a nonlinear Helmholtz
111
+ equation over a bounded domain with impedance boundary conditions, give an instructive
112
+ review of the literature on nonlinear Helmholtz equations.
113
+ The structure of the present work is based on the program outlined above. After the problem
114
+ formulation in Section 2, the exterior auxiliary problem required for truncation is discussed,
115
+ after which the weak formulation and equivalence statement follow in Section 4. Section 5
116
+ is dedicated to the existence and uniqueness of the weak solution, where in particular the
117
+ assumptions on the nonlinear terms are discussed. The final section then deals with the
118
+ properties of the truncated problem – uniform (with respect to the truncation parameter)
119
+ well-posedness and estimate of the truncation error.
120
+ 2 Problem formulation
121
+ Let Ω ⊂ Rd be a bounded domain with a Lipschitz boundary ∂Ω. It represents a medium
122
+ with a nonlinear behaviour with respect to electromagnetic fields. Since Ω is bounded, we
123
+ can choose an open Euclidean d-ball BR ⊂ Rd of radius R > supx∈Ω |x| with center in the
124
+ origin such that Ω ⊂ BR. The complements of Ω and BR are denoted by Ωc := Rd \ Ω
125
+ Bc
126
+ R := Rd \ BR, resp., the open complement of BR is denoted by B+
127
+ R := Rd \ BR (the overbar
128
+ over sets denotes their closure in Rd), and the boundary of BR, the sphere, by SR := ∂BR
129
+ (cf. Fig. 1). The open complement of Ω is denoted by Ω+ := Rd \ Ω. By ν we denote the
130
+ outward-pointing (w.r.t. either Ω or BR) unit normal vector on ∂Ω or SR, respectively.
131
+ Trace operators will be denoted by one and the same symbol γ; the concrete meaning (e.g.,
132
+ 3
133
+
134
+ Resonant compactly supported nonlinearities
135
+ January 30, 2023
136
+
137
+ SR
138
+ uinc
139
+ Figure 1: The nonlinear medium Ω is excited by an incident field uinc (d = 2)
140
+ traces on the common interface of an interior and exterior domain) will be clear from the
141
+ context.
142
+ The classical direct problem of radiation and propagation of an electromagnetic field – ac-
143
+ tually just one component of it – by/in the penetrable obstacle Ω is governed by a nonlinear
144
+ Helmholtz equation with a variable complex-valued wave coefficient:
145
+ − ∆u(x) − κ2c(x, u) u = f(x, u)
146
+ for (almost) all x ∈ Rd,
147
+ (1)
148
+ where the wavenumber κ > 0 is fixed. The physical properties of the obstacle Ω are described
149
+ by the coefficient c : Rd × C → C (physically the square of the refractive index) and the
150
+ right-hand side f :
151
+ Rd × C → C. In general, both functions are nonlinear and have the
152
+ following properties:
153
+ supp(1 − c(·, w)) = Ω
154
+ and
155
+ supp f(·, w) ⊂ Ω
156
+ for all w ∈ C.
157
+ (2)
158
+ The function 1 − c is often called the contrast function. Basically we assume that c and
159
+ f are Carath´eodory functions, i.e. the mapping x �→ c(x, v) is (Lebesgue-)measurable for
160
+ all v ∈ C, and the mapping v �→ c(x, v) is continuous for almost all x ∈ Rd. These two
161
+ conditions imply that x �→ c(x, v(x)) is measurable for any measurable v. The same applies
162
+ to f.
163
+ The unknown total field u : Rd → C should have the following structure:
164
+ u =
165
+
166
+ urad + uinc
167
+ in Ωc,
168
+ utrans
169
+ in Ω,
170
+ (3)
171
+ where urad : Ωc → C is the unknown radiated/scattered field, utrans : Ω → C denotes the
172
+ unknown transmitted field, and the incident field uinc ∈ H1
173
+ loc(Ω+) is given. The incident
174
+ field is usually a (weak) solution of either the homogeneous or inhomogeneous Helmholtz
175
+ equation (even in the whole space). Typically it is generated either by concentrated sources
176
+ located in a bounded region of Ω+ or by sources at infinity, e.g. travalling waves.
177
+ Example 1 (d = 2). The incident plane wave, whose transmission and scattering is inves-
178
+ tigated, is given by
179
+ uinc(x) := αinc exp(i(Φx1 − Γx2)), x = (x1, x2)⊤ ∈ B+
180
+ R
181
+ 4
182
+
183
+ Resonant compactly supported nonlinearities
184
+ January 30, 2023
185
+ with amplitude αinc and angle of incidence ϕinc, |ϕinc| < π, where Φ := κ sin ϕinc is the
186
+ longitudinal wave number and Γ :=
187
+
188
+ κ2 − Φ2 = κ cos ϕinc the transverse wave number. In
189
+ polar coordinates is then
190
+ uinc(r, ϕ) = αinc exp(i(Φr cos ϕ − Γr sin ϕ))
191
+ = αinc exp(iκr(sin ϕinc cos ϕ − cos ϕinc sin ϕ))
192
+ = αinc exp(iκr sin(ϕinc − ϕ)),
193
+ (r, ϕ) ∈ B+
194
+ R.
195
+ The radiated/scattered field urad should satisfy an additional condition, the so-called Som-
196
+ merfeld radiation condition:
197
+ lim
198
+ |x|→∞ |x|(d−1)/2 �
199
+ ˆx · ∇urad − iκurad�
200
+ = 0
201
+ (4)
202
+ uniformly for all directions ˆx := x/|x|, where ˆx·∇urad denotes the derivative of urad in radial
203
+ direction ˆx, cf. [CK13, eq. (3.7) for d = 3, eq. (3.96) for d = 2]. Physically, the condition (4)
204
+ allows only outgoing waves at infinity; mathematically it guaranties the uniqueness of the
205
+ solution uscat : B+
206
+ R → C of the following exterior Dirichlet problem
207
+ −∆uscat − κ2uscat = 0
208
+ in B+
209
+ R,
210
+ uscat = fSR
211
+ on SR,
212
+ lim
213
+ |x|→∞ |x|(d−1)/2 �
214
+ ˆx · ∇uscat − iκuscat�
215
+ = 0,
216
+ (5)
217
+ where fSR : SR → C is given. We mention that, in the context of classical solutions (i.e.
218
+ uscat ∈ C2(B+
219
+ R)) to problem (5), Rellich [Rel43] has shown that the condition (4) can be
220
+ weakened to the following integral version:
221
+ lim
222
+ |x|→∞
223
+
224
+ SR
225
+ ��ˆx · ∇uscat − iκuscat��2 ds(x) = 0.
226
+ In the context of weak solutions (i.e. uscat ∈ H1
227
+ loc(B+
228
+ R)), an analogous equivalence statement
229
+ can be found in [McL00, Thm. 9.6].
230
+ 3 The exterior problem in Bc
231
+ R
232
+ For a given fSR ∈ C(SR) and d = 3, the unique solvability of problem (5) in C2(B+
233
+ R)∩C(Bc
234
+ R)
235
+ is proved, for example, in [CK13, Thm. 3.21]. In addition, if fSR is smoother, say fSR ∈
236
+ C∞(SR), then the normal derivative of uscat on the boundary SR is a well-defined continuous
237
+ function [CK13, Thm. 3.27]. These assertions remain valid in the case d = 2, see [CK13,
238
+ Sect. 3.10].
239
+ Therefore, by solving (5) for given fSR ∈ C∞(SR), a mapping can be introduced that takes
240
+ the Dirichlet data on SR to the corresponding Neumann data on SR, i.e.
241
+ fSR �→ TκfSR := ˆx · ∇uscat��
242
+ SR ,
243
+ (6)
244
+ see, e.g., [CK19, Sect. 3.2].
245
+ 5
246
+
247
+ Resonant compactly supported nonlinearities
248
+ January 30, 2023
249
+ Furthermore, it is well-known that the mapping Tκ can be extended to a bounded linear
250
+ operator Tκ : Hs+1/2(SR) → Hs−1/2(SR) for any |s| ≤ 1/2 [CWGLS12, Thm. 2.31] (we keep
251
+ the notation already introduced for this continued operator). This operator is called the
252
+ Dirichlet-to-Neumann operator, in short DtN operator, or capacity operator.
253
+ Since the problem (5) is considered in a spherical exterior domain, an explicit series represen-
254
+ tation of the solution is available using standard separation techniques in polar or spherical
255
+ coordinates, respectively. The term-by-term differentiation of this series thus also provides
256
+ a series representation of the image of Tκ.
257
+ The solution of the problem (5) in the two-dimensionsional case (here with uscat replaced by
258
+ u) is given by [Mas87, Proposition 2.1], [KG89, eq. (30)]:
259
+ u(x) = u(rˆx) = u(r, ϕ) =
260
+
261
+ n∈Z
262
+ H(1)
263
+ n (κr)
264
+ H(1)
265
+ n (κR)
266
+ fn(R)Yn(ˆx) =
267
+
268
+ n∈Z
269
+ H(1)
270
+ n (κr)
271
+ H(1)
272
+ n (κR)
273
+ fn(R)Yn(ϕ),
274
+ x = rˆx ∈ Sr, r > R, ϕ ∈ [0, 2π]
275
+ (7)
276
+ (identifying u(x) with u(r, ϕ) and Yn(ˆx) with Yn(ϕ) for x = rˆx = r(cos ϕ, sin ϕ)⊤), where
277
+ (r, ϕ) are the polar coordinates, H(1)
278
+ n
279
+ are the cylindrical Hankel functions of the first kind of
280
+ order n [DLMF22, Sect. 10.2]1, Yn are the circular harmonics defined by
281
+ Yn(ϕ) = einϕ
282
+
283
+
284
+ ,
285
+ n ∈ Z,
286
+ fn(R) are the Fourier coefficients of fSR defined by
287
+ fn(R) := (fSR(R·), Yn)S1 =
288
+
289
+ S1
290
+ fSR(Rˆx)Yn(ˆx)ds(ˆx) =
291
+ � 2π
292
+ 0
293
+ fSR(R, ϕ)Yn(ϕ)dϕ,
294
+ (8)
295
+ and ds(ˆx) is the Lebesgue arc length element.
296
+ Now we formally differentiate the representation (7) with respect to r to obtain the outward
297
+ normal derivative of u:
298
+ ˆx · ∇u(x) = ∂u
299
+ ∂r (rˆx) = κ
300
+
301
+ n∈Z
302
+ H(1)′
303
+ n
304
+ (κr)
305
+ H(1)
306
+ n (κR)
307
+ fn(R)Yn(ˆx),
308
+ x = rˆx ∈ Sr, r > R.
309
+ Setting fR := u|SR and letting x in this representation approach the boundary SR, we can
310
+ formally define the (extended) DtN operator by
311
+ Tκu(x) := 1
312
+ R
313
+
314
+ n∈Z
315
+ Zn(κR)un(R)Yn(ˆx),
316
+ x = Rˆx ∈ SR,
317
+ (9)
318
+ where
319
+ Zn(ξ) := ξ H(1)′
320
+ n
321
+ (ξ)
322
+ H(1)
323
+ n (ξ)
324
+ ,
325
+ 1Instead of (4) [Mas87] considered the ingoing Sommerfeld condition and thus obtained a representation
326
+ in terms of the cylindrical Hankel functions of the second kind. Note that H(2)
327
+ n (−ξ) = −(−1)nH(1)
328
+ n (ξ)
329
+ [DLMF22, (10.11.5)].
330
+ 6
331
+
332
+ Resonant compactly supported nonlinearities
333
+ January 30, 2023
334
+ and un(R) are the Fourier coefficients of u|SR analogously to (8). The admissibility of this
335
+ procedure has been proven in many sources in the classical context, for example [CK19,
336
+ Sect. 3.5]. For the present case, in the paper [Ern96, Thm. 1] it was shown that the operator
337
+ Tκ : Hs+1/2(SR) → Hs−1/2(SR) is bounded for any s ∈ N0. Ernst’s result was extended to
338
+ all s ≥ 0 in [HNPX11, Thm. 3.1].
339
+ In the case d = 3, the solution of the problem (5) is given by [KG89, eq. (33)]:
340
+ u(x) = u(rˆx) = u(r, ϕ, θ) =
341
+
342
+ n∈N0
343
+
344
+ |m|≤n
345
+ h(1)
346
+ n (κr)
347
+ h(1)
348
+ n (κR)
349
+ f m
350
+ n (R)Y m
351
+ n (ˆx)
352
+ =
353
+
354
+ n∈N0
355
+
356
+ |m|≤n
357
+ h(1)
358
+ n (κr)
359
+ h(1)
360
+ n (κR)
361
+ f m
362
+ n (R)Y m
363
+ n (ϕ, θ),
364
+ x ∈ Sr, r > R, (ϕ, θ) ∈ [0, 2π] × [0, π]
365
+ (10)
366
+ (identifying u(x) with u(r, ϕ, θ) and Y m
367
+ n (ˆx) with Y m
368
+ n (ϕ, θ) for x = rˆx = r(cos ϕ sin θ,
369
+ sin ϕ sin θ, cos θ)⊤), where (r, ϕ, θ) are the spherical coordinates, h(1)
370
+ n are the spherical Hankel
371
+ functions of the first kind of order n [DLMF22, Sect. 10.47], Y m
372
+ n are the spherical harmonics
373
+ defined by
374
+ Y m
375
+ n (ϕ, θ) =
376
+
377
+ 2n + 1
378
+
379
+ (n − |m|)!
380
+ (n + |m|)! P |m|
381
+ n (cos θ)eimϕ,
382
+ n ∈ N0, |m| ≤ n,
383
+ (identifying Y m
384
+ n (ˆx) with Y m
385
+ n (ϕ, θ) for ˆx = (cos ϕ sin θ, sin ϕ sin θ, cos θ)⊤), where P m
386
+ n are the
387
+ associated Legendre functions of the first kind [DLMF22, Sect. 14.21], f m
388
+ n (R) are the Fourier
389
+ coefficients defined by
390
+ f m
391
+ n (R) = (fSR(R·), Y m
392
+ n )S1 =
393
+
394
+ S1
395
+ fSR(Rˆx)Y m
396
+ n (ˆx)ds(ˆx)
397
+ =
398
+ � 2π
399
+ 0
400
+ � π
401
+ 0
402
+ fSR(R, ϕ, θ)Y m
403
+ n (ϕ, θ) sin θdθdϕ,
404
+ (11)
405
+ and ds(ˆx) is the Lebesgue surface area element.
406
+ Proceeding as in the two-dimensional case, we get
407
+ ˆx · ∇u(x) = ∂u
408
+ ∂r (rˆx) = κ
409
+
410
+ n∈N0
411
+
412
+ |m|≤n
413
+ h(1)
414
+ n (κr)
415
+ h(1)
416
+ n (κR)
417
+ f m
418
+ n (R)Y m
419
+ n (ˆx),
420
+ x = rˆx ∈ Sr, r > R.
421
+ Setting fR := u|SR and letting r → R, we can define the (extended) DtN operator by
422
+ Tκu(x) = 1
423
+ R
424
+
425
+ n∈N0
426
+
427
+ |m|≤n
428
+ zn(κR)um
429
+ n (R)Y m
430
+ n (ˆx),
431
+ x = Rˆx ∈ SR,
432
+ (12)
433
+ where
434
+ zn(ξ) := ξ h(1)′
435
+ n (ξ)
436
+ h(1)
437
+ n (ξ)
438
+ ,
439
+ 7
440
+
441
+ Resonant compactly supported nonlinearities
442
+ January 30, 2023
443
+ and um
444
+ n (R) are the Fourier coefficients of u|SR analogously to (11). The admissibility of this
445
+ procedure is proved in [CK19, Thm. 2.15] or [N´ed01, Thm. 2.6.2], for example. For the
446
+ present situation there is a boundedness result for d = 3 analogous to [HNPX11, Thm. 3.1]
447
+ in [N´ed01, Thm. 2.6.4]. In summary, the following statement applies to both dimensions.
448
+ Theorem 2. The DtN operator Tκ : Hs+1/2(SR) → Hs−1/2(SR) is bounded for any s ≥ 0.
449
+ Remark 3. A more refined analysis of the DtN operator in the case s = 0 results in a sharp
450
+ estimate of the its norm w.r.t. the wavenumber [BSW16, Thm. 1.4]: Given κ0 > 0, there
451
+ exists a constant C > 0 independent of κ such that
452
+ ∥Tκv∥−1/2,2,SR ≤ Cκ∥v∥1/2,2,SR
453
+ for all v ∈ H1
454
+ loc(B+
455
+ R)
456
+ and
457
+ κ ≥ κ0.
458
+ The result from [BSW16, Thm. 1.4] applies to more general domains, for the present situation
459
+ it already follows from the proof of Lemma 23 (see the estimates (46), (47) for s = 0, where
460
+ the bounds do not depend on N).
461
+ At the end of this section we give a collection of some properties of the coefficient functions
462
+ in the representations (9), (12) which will be used in some of the subsequent proofs.
463
+ Lemma 4. For all ξ > 0, the following holds:
464
+ −n ≤ Re Zn(ξ) ≤ −1
465
+ 2,
466
+ 0 < Im Zn(ξ) < ξ
467
+ for all |n| ∈ N,
468
+ −1
469
+ 2 ≤ Re Z0(ξ) < 0,
470
+ ξ < Im Z0(ξ),
471
+ −(n + 1) ≤ Re zn(ξ) ≤ −1,
472
+ 0 < Im zn(ξ) ≤ ξ
473
+ for all n ∈ N,
474
+ Re z0(ξ) = −1,
475
+ Im z0(ξ) = ξ.
476
+ Proof. For the case d = 2, the estimates can be found in [SW07, eq. (2.34)]. The other
477
+ estimates can be found in [N´ed01, Thm. 2.6.1], see also [SW07, eqs. (2.22), (2.23)]. Although
478
+ only 0 ≤ Im zn(ξ) is specified in the formulation of the cited theorem, the strict positivity
479
+ follows from the positivity of the function qℓ in [N´ed01, eq. (2.6.34)], as has been mentioned
480
+ in [MS10].
481
+ Corollary 5. For all ξ > 0, the following holds:
482
+ |Zn(ξ)|2 ≤ (1 + n2)(1 + |ξ|2)
483
+ for all |n| ∈ N,
484
+ |zn(ξ)|2 ≤ (1 + n2)(2 + |ξ|2)
485
+ for all n ∈ N0.
486
+ Proof. The estimates of the real and imaginary parts of Zn from Lemma 4 immediately
487
+ imlpy that
488
+ 1
489
+ 1 + n2|Zn(ξ)|2 =
490
+ 1
491
+ 1 + n2
492
+
493
+ | Re Zn(ξ)|2 + | Im Zn(ξ)|2�
494
+
495
+ 1
496
+ 1 + n2
497
+
498
+ n2 + |ξ|2�
499
+ ≤ 1 +
500
+ |ξ|2
501
+ 1 + n2 ≤ 1 + |ξ|2,
502
+ n ∈ N.
503
+ Since H(1)
504
+ −n(ξ) = (−1)nH(1)
505
+ n (ξ), n ∈ N [DLMF22, eq. (10.4.2)], the estimate is also valid for n
506
+ such that −n ∈ N.
507
+ 8
508
+
509
+ Resonant compactly supported nonlinearities
510
+ January 30, 2023
511
+ Analogously we obtain from Lemma 4 that
512
+ 1
513
+ 1 + n2|zn(ξ)|2 =
514
+ 1
515
+ 1 + n2
516
+
517
+ | Re zn(ξ)|2 + | Im zn(ξ)|2�
518
+
519
+ 1
520
+ 1 + n2
521
+
522
+ (1 + n)2 + |ξ|2�
523
+ ≤ 2 +
524
+ |ξ|2
525
+ 1 + n2 ≤ 2 + |ξ|2.
526
+ 4 Weak formulations of the interior problem
527
+ Now we turn to the consideration of the problem (1)–(4).
528
+ In the classical setting it can be formulated as follows: Given uinc ∈ H1
529
+ loc(Ω+), determine the
530
+ transmitted field utrans : Ω → C and the radiated/scattered field urad : Ωc → C satisfying
531
+ −∆utrans − κ2c(·, utrans) utrans = f(·, utrans)
532
+ in Ω,
533
+ −∆urad − κ2urad = 0
534
+ in Ω+,
535
+ utrans = urad + uinc
536
+ on ∂Ω,
537
+ ν · ∇utrans = ν · ∇urad + ν · ∇uinc
538
+ on ∂Ω
539
+ (13)
540
+ and the radiation condition (4). Note that the incident field is usually a (weak) solution
541
+ of either the homogeneous or inhomogeneous Helmholtz equation in Ω+, i.e. the second
542
+ equation in (13) can be replaced by
543
+ − ∆u − κ2u = f inc
544
+ in Ω+,
545
+ (14)
546
+ where f inc : Ω+ → C is an eventual source density. For simplicity we do not include the
547
+ case of a nontrivial source density in our investigation, but the subsequent theory can be
548
+ easily extended by adding an appropriate linear functional, say ℓsrc, on the right-hand side
549
+ of the obtained weak formulations (see (15) or (19) later).
550
+ In order to give a weak formulation of (13) with the modification (14) in the case f inc = 0,
551
+ we introduce the (complex) linear function spaces
552
+ H1
553
+ comp(Ω+) :=
554
+
555
+ v ∈ H1(Ω+) : supp v is compact
556
+
557
+ ,
558
+ VRd := {v ∈ L2(Rd) : v|Ω ∈ H1(Ω), v|Ω+ ∈ H1
559
+ loc(Ω+) : γv|Ω = γv|Ω+ on ∂Ω},
560
+ WRd := {v ∈ L2(Rd) : v|Ω ∈ H1(Ω), v|Ω+ ∈ H1
561
+ comp(Ω+) : γv|Ω = γv|Ω+ on ∂Ω}
562
+ (note the comment at the beginning of Section 2 on the notation for trace operators) and
563
+ multiply the first equation of (13) by the restriction v|Ω of an arbitrary element v ∈ VRd and
564
+ (14) by the restriction v|Ω+ of v ∈ VRd, respectively, and integrate py parts:
565
+ (∇utrans, ∇v)Ω − (ν · ∇utrans, ∇v)∂Ω − κ2(c(·, utrans)utrans, v)Ω = (f(·, utrans), v)Ω,
566
+ (∇u, ∇v)Ω − (ν · ∇u, ∇v)∂Ω+ − κ2(u, v)Ω+ = 0.
567
+ 9
568
+
569
+ Resonant compactly supported nonlinearities
570
+ January 30, 2023
571
+ Here we use the notation, for any domain M ⊂ Rd with boundary ∂M and appropriately
572
+ defined functions on M or ∂M,
573
+ (∇w, ∇v)M :=
574
+
575
+ M
576
+ ∇w · ∇vdx,
577
+ (w, v)M :=
578
+
579
+ M
580
+ wvdx,
581
+ (w, v)∂M :=
582
+
583
+ ∂M
584
+ wvds(x)
585
+ (the overbar over functions denotes complex conjugation). Taking into consideration the last
586
+ transmission condition in (13), the relationsship ν|Ω = −ν|Ω+, and the fact that the last but
587
+ one transmission condition in (13) is included in the definition of the space VRd, we define a
588
+ bivariate nonlinear form on VRd × WRd by
589
+ aRd(w, v) := (∇w, ∇v)Ω + (∇w, ∇v)Ω+ − κ2(c(·, w)w, v)Rd,
590
+ cf., e.g., [Wlo87, Example 21.8].
591
+ Definition 6. Given uinc ∈ H1
592
+ loc(Ω+), a weak solution to the problem (1)–(4) is defined as
593
+ an element u ∈ VRd that has the structure (3), satisfies the variational equation
594
+ aRd(u, v) = (f(·, u), v)Rd
595
+ for all v ∈ WRd
596
+ (15)
597
+ and the Sommerfeld radiation condition (4).
598
+ A second weak formulation can be obtained if we do not replace the second Helmholtz
599
+ equation in (13) by (14). Then the first step in the derivation of the weak formulation reads
600
+ as
601
+ (∇utrans, ∇v)Ω − (ν · ∇utrans, ∇v)∂Ω − κ2(c(·, utrans)utrans, v)Ω = (f(·, utrans), v)Ω,
602
+ (∇urad, ∇v)Ω − (ν · ∇urad, ∇v)∂Ω+ − κ2(urad, v)Ω+ = 0.
603
+ The last transmission condition in (13) allows to rewrite the first equation as
604
+ (∇utrans, ∇v)Ω − (ν · ∇urad, ∇v)∂Ω − κ2(c(·, utrans)utrans, v)Ω
605
+ = (f(·, utrans), v)Ω + (ν · ∇uinc, ∇v)∂Ω,
606
+ leading to the weak formulation
607
+ (∇u0, ∇v)Ω+(∇u0, ∇v)Ω+−κ2(c(·, u0)u0, v)Rd = (f(·, u0), v)Rd+(ν·∇uinc, v)∂Ω
608
+ for all v ∈ WRd
609
+ (16)
610
+ with respect to the structure
611
+ u0 :=
612
+
613
+ urad
614
+ in Ωc,
615
+ utrans
616
+ in Ω,
617
+ (17)
618
+ where urad ∈ H1
619
+ loc(Ω+), utrans ∈ H1(Ω).
620
+ The advantage of this formulation is that it clearly separates the unknown and the known
621
+ parts of the fields, so we call this formulation the input-output formulation. The disadvantage
622
+ 10
623
+
624
+ Resonant compactly supported nonlinearities
625
+ January 30, 2023
626
+ is that the natural function space of the solution u0 is not a linear space due to the last but
627
+ one transmission condition in (13).
628
+ Instead of the problem (1)–(4) we want to solve an equivalent problem in the bounded
629
+ domain BR, that is, we define
630
+ V := {v ∈ L2(BR) : v|Ω ∈ H1(Ω), v|BR\Ω ∈ H1(BR \ Ω) : γv|Ω = γv|BR\Ω on ∂Ω}
631
+ and look for an element u ∈ V such that
632
+ −∆utrans − κ2c(·, utrans) u = f(·, utrans)
633
+ in Ω,
634
+ −∆u − κ2u = 0
635
+ in BR \ Ω,
636
+ utrans = urad + uinc
637
+ on ∂Ω,
638
+ ν · ∇utrans = ν · ∇urad + ν · ∇uinc
639
+ on ∂Ω,
640
+ ˆx · ∇urad = Tκurad
641
+ on SR
642
+ (18)
643
+ formally holds. Now the weak formulation of problem (18) reads as follows:
644
+ Find u ∈ V such that
645
+ (∇u, ∇v)Ω + (∇u, ∇v)BR\Ω − κ2(c(·, u)u, v)BR − (Tκu, v)SR
646
+ = (f(·, u), v)BR − (Tκuinc, v)SR + (ˆx · ∇uinc, v)SR
647
+ (19)
648
+ for all v ∈ V holds.
649
+ Lemma 7. The weak formulations (15) and (19) of the problems (1)–(4) and (18), resp.,
650
+ are equivalent.
651
+ Proof. First let u ∈ V (Rd) be a weak solution to (1)–(4), i.e. it satisfies (15). Then its
652
+ restriction to BR belongs to V .
653
+ To demonstrate that this restriction satisfies the weak formulation (19), we construct the
654
+ radiating solution uBc
655
+ R′ of the homogeneous Helmholtz equation outside of a smaller ball BR′
656
+ such that Ω ⊂ BR′ ⊂ BR and uBc
657
+ R′
658
+ ���
659
+ SR′ = (u − uinc)|SR′. This solution can be constructed
660
+ in the form of a series expansion in terms of Hankel functions as explained in the previous
661
+ section.
662
+ By elliptic regularity (see, e.g., [McL00, Thm. 4.16], [Eva15, Sect. 6.3.1]), the
663
+ solution of this problem satisfies the Helmholtz equation in Bc
664
+ R′. Moreover, by uniqueness
665
+ [N´ed01, Thm. 2.6.5], it coincides with u − uinc = urad in Bc
666
+ R′.
667
+ Now we choose a finite partition of unity covering BR, denoted by {ϕj}J [Wlo87, Sect. 1.2],
668
+ such that its index set J can be decomposed into two disjoint subsets J1, J2 as follows:
669
+ BR′ ⊂ int
670
+ � �
671
+ j∈J1
672
+ supp ϕj
673
+
674
+ ,
675
+
676
+ j∈J1
677
+ supp ϕj ⊂ BR,
678
+
679
+ j∈J2
680
+ supp ϕj ⊂ Bc
681
+ R′.
682
+ For example, we can choose {ϕj}J1 to consist of one element, say ϕ1, namely the usual
683
+ mollifier function with support B′, where the open ball B′ (centered at the origin) lies
684
+ between BR′ and BR, i.e. BR′ ⊂ B′ = int (supp ϕ1), supp ϕ1 ⊂ BR. Then the second part
685
+ consists of a finite open covering of the spherical shell BR \ B′.
686
+ 11
687
+
688
+ Resonant compactly supported nonlinearities
689
+ January 30, 2023
690
+ Then we take, for any v ∈ V , the product v1 := v �
691
+ j∈J1 ϕj. This is an element of V , too,
692
+ with support in BR, and it can be continued by zero to an element of W(Rd) (keeping the
693
+ notation). Hence we can take it as a test function in the weak formulation (15) and obtain
694
+ aRd(u, v1) = (f(·, u), v1)Rd.
695
+ This is equal to
696
+ (∇u, ∇v1)Ω + (∇u, ∇v1)BR\Ω − κ2(c(·, u)u, v1)BR − (Tκu, v1)SR
697
+ = (f(·, u), v1)BR − (Tκuinc, v1)SR + (ˆx · ∇uinc, v1)SR
698
+ due to the properties of the support of v1 (in particular, all terms “living” on SR are equal
699
+ to zero).
700
+ Since the homogeneous Helmholtz equation is satisfied in �
701
+ j∈J2 supp ϕj ⊂ Bc
702
+ R′, we can
703
+ proceed as follows. We continue the test function v2 := v �
704
+ j∈J2 ϕj by zero into the complete
705
+ ball BR and have
706
+ (f(·, u), v2)BR\Ω = 0 = (−∆u − κ2u, v2)BR\BR′
707
+ = (∇u, ∇v2)BR\BR′ − κ2(u, v2)BR\BR′ − (ν · ∇u, v2)∂(BR\BR′)
708
+ = (∇u, ∇v2)BR\BR′ − κ2(u, v2)BR\BR′ − (ˆx · ∇u, v2)SR.
709
+ Now, taking into consideration the properties of the support of v2, we easily obtain the
710
+ following relations:
711
+ (∇u, ∇v2)BR\BR′ = (∇u, ∇v2)Ω + (∇u, ∇v2)BR\Ω,
712
+ (u, v2)BR\BR′ = (c(·, u)u, v2)BR,
713
+ (ˆx · ∇u, v2)SR = (ˆx · ∇urad, v2)SR + (ˆx · ∇uinc, v2)SR
714
+ = (Tκurad, v2)SR + (ˆx · ∇uinc, v2)SR
715
+ = (Tκu, v2)SR − (Tκuinc, v2)SR + (ˆx · ∇uinc, v2)SR,
716
+ where the treatment of the last term makes use of the construction of the Dirichlet-to-
717
+ Neumann map Tκ.
718
+ Adding both relations and observing that v = v1+v2, we arrive at the variational formulation
719
+ (19).
720
+ Conversely, let u ∈ V be a solution to (19). To continue it into Bc
721
+ R, similar to the first
722
+ part of the proof we construct the radiating solution uBc
723
+ R of the Helmholtz equation outside
724
+ BR such that uBc
725
+ R
726
+ ��
727
+ SR = (u − uinc)|SR and set u := uBc
728
+ R + uinc in B+
729
+ R. Hence we have that
730
+ Tκu =
731
+ ∂uBc
732
+ R
733
+ ∂ˆx + Tκuinc.
734
+ Now we take an element v ∈ W(Rd). Its restriction to BR is an element of V and thus can
735
+ be taken as a test function in (19):
736
+ (∇u, ∇v)Ω + (∇u, ∇v)BR\Ω − κ2(c(·, u)u, v)BR − (Tκu, v)SR
737
+ = (f(·, u), v)BR − (Tκuinc, v)SR + (ˆx · ∇uinc, v)SR.
738
+ (20)
739
+ 12
740
+
741
+ Resonant compactly supported nonlinearities
742
+ January 30, 2023
743
+ Since v has a compact support, we can choose a ball B ⊂ Rd centered at the origin such
744
+ that BR ∪ supp v ⊂ B. The homogeneous Helmholtz equation is obviously satisfied in the
745
+ spherical shell B \ BR:
746
+ −∆uBc
747
+ R − κ2uBc
748
+ R = 0.
749
+ We multiply this equation by the complex conjugate of the test function v ∈ V , then integrate
750
+ over the shell, and apply the first Green’s formula:
751
+ (∇uBc
752
+ R, ∇v)B\BR − κ2(uBc
753
+ R, v)B\BR − (ν · ∇uBc
754
+ R, v)∂(B\BR) = 0.
755
+ Now we observe that
756
+ (∇uBc
757
+ R, ∇v)B\BR = (∇uBc
758
+ R, ∇v)B+
759
+ R,
760
+ (uBc
761
+ R, v)B\BR = (uBc
762
+ R, v)B+
763
+ R,
764
+ (ν · ∇uBc
765
+ R, v)∂(B\BR) = −(ˆx · ∇uBc
766
+ R, v)SR = −(Tκu − Tκuinc, v)SR
767
+ where the minus sign in the last line results from the change in the orientation of the outer
768
+ normal (once w.r.t. the shell, once w.r.t. BR) and the construction of uBc
769
+ R. So we arrive at
770
+ (∇uBc
771
+ R, ∇v)B+
772
+ R − κ2(uBc
773
+ R, v)B+
774
+ R + (Tκu, v)SR = (Tκuinc, v)SR.
775
+ (21)
776
+ Finally, since the incident field satisfies the homogeneous Helmholtz equation in the spherical
777
+ shell, too, we see by an analogous argument that the variational equation
778
+ (∇uinc, ∇v)B+
779
+ R − κ2(uinc, v)B+
780
+ R = −(ˆx · ∇uinc, v)SR
781
+ (22)
782
+ holds.
783
+ Adding the variational equations (20) – (22), we arrive at the variational formulation (15).
784
+ 5 Existence and uniqueness of a weak solution
785
+ In this section we investigate the existence and uniqueness of the weak solution of the interior
786
+ problem (18). We define the sesquilinear form
787
+ a(w, v) := (∇w, ∇v)Ω + (∇w, ∇v)BR\Ω − κ2(w, v)BR − (Tκw, v)SR
788
+ for all w, v ∈ V,
789
+ (23)
790
+ the nonlinear form
791
+ n(w, v) := κ2(c(·, w) − 1)w, v)BR + (f(·, w), v)BR
792
+ − (Tκuinc, v)SR + (ˆx · ∇uinc, v)SR
793
+ (24)
794
+ and reformulate (19) as follows: Find u ∈ V such that
795
+ a(u, v) = n(u, v)
796
+ for all v ∈ V.
797
+ (25)
798
+ On the space V , we use the standard seminorm and norm:
799
+ |v|V :=
800
+
801
+ ∥∇v∥2
802
+ 0,2,Ω + ∥∇v∥2
803
+ 0,2,BR\Ω
804
+ �1/2
805
+ ,
806
+ ∥v∥V :=
807
+
808
+ |v|2
809
+ V + ∥v∥2
810
+ 0,2,BR
811
+ �1/2 .
812
+ (26)
813
+ 13
814
+
815
+ Resonant compactly supported nonlinearities
816
+ January 30, 2023
817
+ For κ > 0, the following so-called wavenumber dependent norm on V is also common:
818
+ ∥v∥V,κ :=
819
+
820
+ |v|2
821
+ V + κ2∥v∥2
822
+ 0,2,BR
823
+ �1/2 .
824
+ (27)
825
+ It is not difficult to verify that the standard norm and the wavenumber dependent norm are
826
+ equivalent on V , i.e. it holds
827
+ C−∥v∥V ≤ ∥v∥V,κ ≤ C+∥v∥V
828
+ for all v ∈ V,
829
+ (28)
830
+ where the equivalence constants depend on κ in the following way: C− := min{1; κ} and
831
+ C+ := max{1; κ}. We now proceed to examine the linear aspects of the problem (25).
832
+ Lemma 8. The sesquilinear form a is bounded on V .
833
+ Proof. Applying to each addend in the definition of a the appropriate Cauchy-Bunyakovsky-
834
+ Schwarz inequality, we obtain
835
+ |a(w, v)| ≤ |w|V |v|V + κ2∥w∥0,2,BR∥v∥0,2,BR
836
+ + ∥Tκw∥−1/2,2,SR∥v∥1/2,2,SR
837
+ for all w, v ∈ V.
838
+ According to Thm. 2 the DtN operator Tκ is bounded, i.e. there exists a constant CTκ > 0
839
+ such that
840
+ ∥Tκw∥−1/2,2,SR ≤ CTκ∥w∥1/2,2,SR
841
+ for all w ∈ V.
842
+ It remains to apply a trace theorem [McL00, Thm. 3.37]:
843
+ |a(w, v)| ≤ |w|V |v|V + κ2∥w∥0,2,BR∥v∥0,2,BR + CTκC2
844
+ tr∥w∥1,2,BR\Ω∥v∥1,2,BR\Ω
845
+ ≤ |w|V |v|V + κ2∥w∥0,2,BR∥v∥0,2,BR + CTκC2
846
+ tr∥w∥V ∥v∥V
847
+ ≤ min{(max{1, κ2} + CTκC2
848
+ tr)∥w∥V ∥v∥V , (1 + CTκC2
849
+ tr)∥w∥V,κ∥v∥V,κ}
850
+ for all w, v ∈ V.
851
+ Lemma 9. Given κ0 > 0 and R0 > 0, assume that κ ≥ κ0 (cf. Rem. 3) and R ≥ R0. In
852
+ addition, κ0 ≥ 1 is required for d = 2. Then the sesquilinear form a satisfies a G˚arding’s
853
+ inequality of the form
854
+ Re a(v, v) ≥ ∥v∥2
855
+ V,κ − 2κ2∥v∥2
856
+ 0,2,BR
857
+ for all v ∈ V.
858
+ Proof. From the definitions of a and the wavenumber dependent norm it follows immediately
859
+ that
860
+ Re a(v, v) = ∥v∥2
861
+ V,κ − 2κ2∥v∥2
862
+ 0,2,BR − Re (Tκv, v)SR
863
+ ≥ ∥v∥2
864
+ V,κ − 2κ2∥v∥2
865
+ 0,2,BR + CR−1∥v∥2
866
+ 0,2,SR
867
+ ≥ ∥v∥2
868
+ V,κ − 2κ2∥v∥2
869
+ 0,2,BR,
870
+ where the first estimate follows from [MS10, Lemma 3.3] with a constant C > 0 depending
871
+ soleley on κ0 > 0 and R0 > 0.
872
+ 14
873
+
874
+ Resonant compactly supported nonlinearities
875
+ January 30, 2023
876
+ Next we discuss the solvability and stability of the problem (25) for the case that the right-
877
+ hand side is just an antilinear continuous functional ℓ :
878
+ V → C. The linear problem of
879
+ finding u ∈ V such that
880
+ a(u, v) = ℓ(v)
881
+ for all v ∈ V
882
+ (29)
883
+ holds can be formulated equivalently as an operator equation in the dual space V ∗ of V
884
+ consisting of all continuous antilinear functionals from V to C. Namely, if we define the
885
+ linear operator A : V → V ∗ by
886
+ Aw(v) := a(w, v)
887
+ for all w, v ∈ V,
888
+ (30)
889
+ problem (29) is equivalent to solving the operator equation
890
+ Au = ℓ
891
+ (31)
892
+ for u ∈ V .
893
+ Note that A is a bounded operator by Lemma 8.
894
+ Theorem 10. Under the assumptions of Lemma 9, the problem (31) is uniquely solvable for
895
+ any ℓ ∈ V ∗.
896
+ Proof. The basic ideas of the proof are taken from the proof of [MS10, Thm 3.8]. Since the
897
+ embedding of V into L2(BR) is compact by the compactness theorem of Rellich–Kondrachov
898
+ [McL00, Thm. 3.27] together with Tikhonov’s product theorem [KN63, Thm. 4.1], the com-
899
+ pact perturbation theorem [McL00, Thm. 2.34] together with Lemma 9 imply that the
900
+ Fredholm alternative [McL00, Thm. 2.27] holds for the equation (31).
901
+ Hence it is sufficient to demonstrate that the homogeneous adjoint problem (cf. [McL00,
902
+ p. 43]) of finding u ∈ V such that a(v, u) = 0 holds for all v ∈ V only allows for the trivial
903
+ solution.
904
+ So suppose u ∈ V is a solution of the homogeneous adjoint problem. We take v := u and
905
+ consider the imaginary part of the resulting equation:
906
+ 0 = Im a(u, u) = − Im (Tκu, u)SR = Im (Tκu, u)SR.
907
+ Then [MS10, Lemma 3.3] implies u = 0 on SR. Then u satisfies the variational equation
908
+ (∇u, ∇v)Ω + (∇u, ∇v)BR\Ω − κ2(u, v)BR = 0
909
+ for all v ∈ V,
910
+ i.e. it is a weak solution of the homogeneous interior transmission Neumann problem for the
911
+ wave equation on BR. On the other hand, u can be extended to the whole space Rd by
912
+ zero to an element ˜u ∈ V (Rd), and this element can be interpreted as a weak solution of a
913
+ homogeneous full-space transmission problem, for instance in the sense of [TW93, Problem
914
+ (P)]. Then it follows from [TW93, Lemma 7.1] that ˜u = 0 und thus u = 0.
915
+ Since a Fredholm operator has a closed image [McL00, p. 33], it follows from the Open
916
+ Mapping Theorem and Thm. 10 (cf. [McL00, Cor. 2.2]) that the inverse operator A−1 is
917
+ bounded, i.e. there exists a constant C(R, κ) > 0 such that
918
+ ∥u∥V,κ = ∥A−1ℓ∥V,κ ≤ C(R, κ)∥ℓ∥V ∗
919
+ for all ℓ ∈ V ∗.
920
+ 15
921
+
922
+ Resonant compactly supported nonlinearities
923
+ January 30, 2023
924
+ Then it holds
925
+ 1
926
+ C(R, κ) ≤ ∥ℓ∥V ∗
927
+ ∥u∥V,κ
928
+ =
929
+ sup
930
+ v∈V \{0}
931
+ |ℓ(v)|
932
+ ∥u∥V,κ∥v∥V,κ
933
+ =
934
+ sup
935
+ v∈V \{0}
936
+ |a(u, v)|
937
+ ∥u∥V,κ∥v∥V,κ
938
+ .
939
+ This estimate proves the following result.
940
+ Lemma 11. Under the assumptions of Lemma 9, the sesquilinear form a satisfies an inf-sup
941
+ condition:
942
+ β(R, κ) :=
943
+ inf
944
+ w∈V \{0}
945
+ sup
946
+ v∈V \{0}
947
+ |a(w, v)|
948
+ ∥w∥V,κ∥v∥V,κ
949
+ > 0.
950
+ Now we turn to the nonlinear situation and concretize the assumptions regarding the Cara-
951
+ th´eodory functions c and f.
952
+ Lemma 12. Let pf ∈
953
+
954
+ [2, ∞),
955
+ d = 2,
956
+ [2, 6],
957
+ d = 3, and assume there exist nonnegative functions mf, gf ∈
958
+ L∞(Ω) such that
959
+ |f(x, ξ)| ≤ mf(x)|ξ|pf−1 + gf(x)
960
+ for all (x, ξ) ∈ Ω × C.
961
+ Then vf(·, w) ∈ L1(Ω) for all w, v ∈ V .
962
+ Proof. Since f is a Carath´eodory function, the composition f(·, w) is measurable and it
963
+ sufficies to estimate the integral of |vf(·, w)|. Moreover, it suffices to consider the term
964
+ mfv|w|pf−1 in more detail. By H¨older’s inequality for three functions, it holds that
965
+ ∥vf(·, w)∥0,1,Ω ≤ ∥mf∥0,∞,Ω∥v∥0,pf,Ω∥wpf−1∥0,q,Ω
966
+ with 1
967
+ pf
968
+ + 1
969
+ q = 1.
970
+ The Lpf-norm of v is bounded thanks to the embedding V |Ω ⊂ Lpf(Ω) for the allowed values
971
+ of pf [AF03, Thm. 4.12]. Since |wpf−1|q = |w|p
972
+ f, the Lq-norm of wpf−1 is bounded by the
973
+ same reasoning.
974
+ Lemma 13. Let pc ∈
975
+
976
+ [2, ∞),
977
+ d = 2,
978
+ [2, 6],
979
+ d = 3, and assume there exist nonnegative functions mc, gc ∈
980
+ L∞(Ω) such that
981
+ |c(x, ξ) − 1| ≤ mc(x)|ξ|pc−2 + gc(x)
982
+ for all (x, ξ) ∈ Ω × C.
983
+ Then zv(c(·, w) − 1) ∈ L1(Ω) for all z, w, v ∈ V .
984
+ Proof. Similar to the proof of Lemma 12 it is sufficient to consider the term mczv|w|pc−2 in
985
+ more detail. By H¨older’s inequality for four functions, it holds that
986
+ ∥zv(c(·, w) − 1)∥0,1,Ω ≤ ∥mc∥0,∞,Ω∥z∥0,pc,Ω∥v∥0,pc,Ω∥wpc−2∥0,q,Ω
987
+ with 2
988
+ pc
989
+ + 1
990
+ q = 1.
991
+ The Lpc-norms of z, v are bounded thanks to the embedding theorem [AF03, Thm. 4.12].
992
+ Since |wpc−2|q = |w|p
993
+ c, the Lq-norm of wpc−2 is bounded by the same reasoning.
994
+ 16
995
+
996
+ Resonant compactly supported nonlinearities
997
+ January 30, 2023
998
+ Corollary 14. Under the assumptions of Lemma 12 and Lemma 13, resp., the following
999
+ estimates hold for all z, w, v ∈ V :
1000
+ |(f(·, w), v)Ω| ≤ C
1001
+ pf
1002
+ emb∥mf∥0,∞,Ω∥w∥
1003
+ pf−1
1004
+ 1,2,Ω∥v∥1,2,Ω
1005
+ +
1006
+
1007
+ |Ω|d ∥gf∥0,∞,Ω∥v∥0,2,Ω,
1008
+ (32)
1009
+ |((c(·, w) − 1)z, v)Ω| ≤ Cpc
1010
+ emb∥mc∥0,∞,Ω∥w∥pc−2
1011
+ 1,2,Ω∥z∥1,2,Ω∥v∥1,2,Ω
1012
+ + ∥gc∥0,∞,Ω∥z∥0,2,Ω∥v∥0,2,Ω,
1013
+ (33)
1014
+ where |Ω|d is the d-volume of Ω.
1015
+ Proof. Replace v by v in Lemmata 12, 13 to get the first addend of the bounds. The estimate
1016
+ of the second addend is trivial.
1017
+ Example 15. An important example for the nonlinearities is
1018
+ c(x, ξ) :=
1019
+
1020
+ 1,
1021
+ (x, ξ) ∈ Ω+ × C,
1022
+ ε(L)(x) + α(x)|ξ|2,
1023
+ (x, ξ) ∈ Ω × C,
1024
+ with given ε(L), α ∈ L∞(Ω), and f = 0. Here pc = 4, which is within the range of validity of
1025
+ Lemma 13, and mc = |α|, gc = |ε(L) − 1|.
1026
+ The estimates from Corollary 14 show that the first two terms on the right-hand side of the
1027
+ variational equation (25) can be considered as values of nonlinear mappings from V to V ∗,
1028
+ i.e. we can define
1029
+ ℓcontr : V → V ∗
1030
+ by
1031
+ ⟨ℓcontr(w), v⟩ := κ2(c(·, w) − 1)w, v)Ω,
1032
+ ℓsrc : V → V ∗
1033
+ by
1034
+ ⟨ℓsrc(w), v⟩ := (f(·, w), v)Ω
1035
+ for all w, v ∈ V.
1036
+ Furthermore, if uinc ∈ H1
1037
+ loc(Ω+) is such that additionally ∆uinc belongs to L2,loc(Ω+) (where
1038
+ ∆uinc is understood in the distributional sense), the last two terms on the right-hand side of
1039
+ (24) form an antilinear continuous functional on ℓinc ∈ V ∗:
1040
+ ⟨ℓinc, v⟩ := (ˆx · ∇uinc − Tκuinc, v)SR
1041
+ for all v ∈ V.
1042
+ This is a consequence of Thm. 2 and the estimates before the trace theorem [KA21, Thm. 6.13].
1043
+ Hence
1044
+ ∥ℓinc∥V ∗ ≤ ˜Ctr[∥∆uinc∥0,2,BR\Ω + ∥uinc∥0,2,BR\Ω] + CTκC2
1045
+ tr∥uinc∥1,2,BR\Ω,
1046
+ where ˜Ctr is the norm of the trace operator defined in [KA21, eq. (6.39)].
1047
+ However, it is more intuitive to utilize the estimate
1048
+ ∥ℓinc∥V ∗ ≤ Ctr∥ˆx · ∇uinc − Tκuinc∥−1/2,2,SR.
1049
+ (34)
1050
+ The reason for this is that the bound can be interpreted as a measure of the deviation of the
1051
+ function uinc from a radiating solution of the corresponding Helmholtz equation. In other
1052
+ words: If the function uinc satisfies the boundary value problem (5) with fSR := uinc|SR, then
1053
+ the functional ℓinc is not present.
1054
+ 17
1055
+
1056
+ Resonant compactly supported nonlinearities
1057
+ January 30, 2023
1058
+ Consequently, setting
1059
+ F(w) := ℓcontr(w) + ℓsrc(w) + ℓinc
1060
+ for all w ∈ V,
1061
+ we obtain a nonlinear operator F : V → V ∗, and the problem (25) is then equivalent to the
1062
+ operator equation
1063
+ Au = F(u)
1064
+ in V ∗,
1065
+ and further, by Lemma 11, equivalent to the fixed-point problem
1066
+ u = A−1F(u)
1067
+ in V.
1068
+ (35)
1069
+ In order to prove the subsequent existence and uniqueness theorem, we specify some addi-
1070
+ tional properties of the nonlinearities c and f.
1071
+ Definition 16. The functions c and f are said to generate locally Lipschitz continuous Ne-
1072
+ mycki operators in V if the following holds: For some parameters pc, pf ∈
1073
+
1074
+ [2, ∞),
1075
+ d = 2,
1076
+ [2, 6],
1077
+ d = 3,,
1078
+ there exist Carath´eodory functions Lc : Ω×C×C → (0, ∞) and Lf : Ω×C×C → (0, ∞) such
1079
+ that the composition operators Ω × V × V → Lqc(Ω) : (x, w, v) �→ Lc(x, w, v), Ω × V × V →
1080
+ Lqf(Ω) : (x, w, v) �→ Lf(x, w, v) are bounded for qc, qf > 0 with
1081
+ 3
1082
+ pc + 1
1083
+ qc =
1084
+ 2
1085
+ pf + 1
1086
+ qf = 1, and
1087
+ |c(x, ξ) − c(x, η)| ≤ Lc(x, ξ, η)|ξ − η|,
1088
+ |f(x, ξ) − f(x, η)| ≤ Lf(x, ξ, η)|ξ − η|
1089
+ (36)
1090
+ for all (x, ξ, η) ∈ Ω × C × C.
1091
+ Remark 17. If the nonlinearities c and f generate locally Lipschitz continuous Nemycki
1092
+ operators in the sense of the above Definition 16, the assumptions of Lemmata 12, 13 can
1093
+ be replaced by the requirement that there exist functions wf, wc ∈ V such that f(·, wf) ∈
1094
+ Lpf /(pf −1)(Ω) and c(·, wf) ∈ Lpc/(pc−2)(Ω), respectively.
1095
+ Proof. Indeed, similar to the proofs of the two lemmata mentioned, we have that
1096
+ ∥vf(·, w)∥0,1,Ω ≤ ∥vf(·, wf)∥0,1,Ω + ∥v(f(·, w) − f(·, wf))∥0,1,Ω
1097
+ ≤ ∥vf(·, wf)∥0,1,Ω + ∥vLf(·, w, wf)|w − wf|∥0,1,Ω
1098
+ ≤ ∥v∥0,pf,Ω∥f(·, wf)∥0,˜qf,Ω + ∥v∥0,pf,Ω∥Lf(·, w, wf)∥0,qf,Ω∥w − wf∥0,pf,Ω
1099
+
1100
+
1101
+ ∥f(·, wf)∥0,˜qf,Ω + ∥Lf(·, w, wf)∥0,qf,Ω(∥w∥V + ∥wf∥V )
1102
+
1103
+ ∥v∥V ,
1104
+ ∥zvc(·, w)∥0,1,Ω ≤ ∥zvc(·, wc)∥0,1,Ω + ∥zv(c(·, w) − c(·, wc))∥0,1,Ω
1105
+ ≤ ∥zvc(·, wc)∥0,1,Ω + ∥zvLc(·, w, wc)|w − wc|∥0,1,Ω
1106
+ ≤ ∥z∥0,pc,Ω∥v∥0,pc,Ω∥c(·, wc)∥0,˜qc,Ω
1107
+ + ∥z∥0,pc,Ω∥v∥0,pc,Ω∥Lc(·, w, wc)∥0,qc,Ω∥w − wc∥0,pc,Ω
1108
+ ≤ [∥c(·, wc)∥0,˜qc,Ω + ∥Lc(·, w, wc)∥0,qc,Ω(∥w∥V + ∥wc∥V )] ∥z∥V ∥v∥V
1109
+ with
1110
+ 1
1111
+ pf + 1
1112
+ ˜qf = 1 and
1113
+ 2
1114
+ pc + 1
1115
+ ˜qc = 1.
1116
+ 18
1117
+
1118
+ Resonant compactly supported nonlinearities
1119
+ January 30, 2023
1120
+ Theorem 18. Under the assumptions of Lemma 9, let the functions c and f generate locally
1121
+ Lipschitz continuous Nemycki operators in V and assume that there exist functions wf, wc ∈
1122
+ V such that f(·, wf) ∈ Lpf/(pf −1)(Ω) and c(·, wf) ∈ Lpc/(pc−2)(Ω), respectively.
1123
+ Furthermore let uinc ∈ H1
1124
+ loc(Ω+) be such that additionally ∆uinc ∈ L2,loc(Ω+) holds.
1125
+ If there exist numbers ̺ > 0 and LF ∈ (0, β(R, κ)) such that the following two conditions
1126
+ κ2 [∥c(·, wc) − 1∥0,˜qc,Ω + ∥Lc(·, w, wc)∥0,qc,Ω(̺ + ∥wc∥V )] ̺
1127
+ +
1128
+
1129
+ ∥f(·, wf)∥0,˜qf,Ω + ∥Lf(·, w, wf)∥0,qf,Ω(̺ + ∥wf∥V )
1130
+
1131
+ (37)
1132
+ + Ctr∥ˆx · ∇uinc − Tκuinc∥−1/2,2,SR ≤ ̺β(R, κ),
1133
+ κ2 [∥Lc(·, w, v)∥0,qc,Ω̺ + ∥c(·, wc) − 1∥0,˜qc,Ω + ∥Lc(·, w, wc)∥0,qc,Ω(̺ + ∥wc∥V )]
1134
+ + ∥Lf(·, w, v)∥0,qf,Ω ≤ LF
1135
+ (38)
1136
+ are satisfied for all w, v ∈ Kcl
1137
+ ̺ := {v ∈ V : ∥v∥V ≤ ̺}, then the problem (35) has a unique
1138
+ solution u ∈ Kcl
1139
+ ̺ .
1140
+ Proof. First we mention that Kcl
1141
+ ̺ is a closed nonempty subset of V .
1142
+ Next we show that A−1F(Kcl
1143
+ ̺ ) ⊂ Kcl
1144
+ ̺ . To this end we make use of the estimates given in
1145
+ the proof of Remark 17 and obtain
1146
+ ∥F(w)∥V ∗ ≤ ∥ℓcontr(w)∥V ∗ + ∥ℓsrc(w)∥V ∗ + ∥ℓinc∥V ∗
1147
+ ≤ κ2 [∥c(·, wc) − 1∥0,˜qc,Ω + ∥Lc(·, w, wc)∥0,qc,Ω(∥w∥V + ∥wc∥V )] ∥w∥V
1148
+ +
1149
+
1150
+ ∥f(·, wf)∥0,˜qf,Ω + ∥Lf(·, w, wf)∥0,qf,Ω(∥w∥V + ∥wf∥V )
1151
+
1152
+ + ∥ℓinc∥V ∗
1153
+ ≤ κ2 [∥c(·, wc) − 1∥0,˜qc,Ω + ∥Lc(·, w, wc)∥0,qc,Ω(̺ + ∥wc∥V )] ̺
1154
+ +
1155
+
1156
+ ∥f(·, wf)∥0,˜qf,Ω + ∥Lf(·, w, wf)∥0,qf,Ω(̺ + ∥wf∥V )
1157
+
1158
+ + Ctr∥ˆx · ∇uinc − Tκuinc∥−1/2,2,SR .
1159
+ Hence the assumption (37) implies ∥A−1F(w)∥V ≤ ̺.
1160
+ It remains to show that the mapping A−1F is a contraction.
1161
+ We start with the consideration of the contrast term. From the elementary decomposition
1162
+ (c(·, w) − 1)w − (c(·, v) − 1)v = (c(·, w) − c(·, v))w + (c(·, v) − 1)(w − v)
1163
+ we see that
1164
+ ∥ℓcontr(w) − ℓcontr(v)∥V ∗
1165
+ ≤ κ2∥Lc(·, w, v)∥0,qc,Ω∥w − v∥V ∥w∥V
1166
+ + κ2 [∥c(·, wc) − 1∥0,˜qc,Ω + ∥Lc(·, w, wc)∥0,qc,Ω∥w − wc∥V ] ∥w − v∥V
1167
+ ≤ κ2∥Lc(·, w, v)∥0,qc,Ω∥w − v∥V ̺
1168
+ + κ2 [∥c(·, wc) − 1∥0,˜qc,Ω + ∥Lc(·, w, wc)∥0,qc,Ω(̺ + ∥wc∥V )] ∥w − v∥V
1169
+ ≤ κ2 [∥Lc(·, w, v)∥0,qc,Ω̺ + ∥c(·, wc) − 1∥0,˜qc,Ω + ∥Lc(·, w, wc)∥0,qc,Ω(̺ + ∥wc∥V )] ∥w − v∥V .
1170
+ The estimate of the source term follows immediately from the properties of f:
1171
+ ∥ℓsrc(w) − ℓsrc(v)∥V ∗ ≤ ∥Lf(·, w, v)∥0,qf,Ω∥w − v∥V .
1172
+ 19
1173
+
1174
+ Resonant compactly supported nonlinearities
1175
+ January 30, 2023
1176
+ From
1177
+ ∥F(w) − F(v)∥V ∗ ≤ ∥ℓcontr(w) − ℓcontr(v)∥V ∗ + ∥ℓsrc(w) − ℓsrc(v)∥V ∗
1178
+ and assumption (38) we thus obtain
1179
+ ∥F(w) − F(v)∥V ∗ ≤ LF∥w − v∥V .
1180
+ In summary, Banach’s fixed point theorem can be applied (see e.g. [Eva15, Sect. 9.2.1]) and
1181
+ we conclude that the problem (35) has a unique solution u ∈ Kcl
1182
+ ̺ .
1183
+ If we introduce the function space
1184
+ ˜V := {v ∈ L2(BR) : v|Ω ∈ H1(Ω), v|BR\Ω ∈ H1(BR \ Ω)}
1185
+ equipped with the norm
1186
+ ∥v∥ ˜V :=
1187
+
1188
+ ∥v∥2
1189
+ 1,2,Ω + ∥v∥2
1190
+ 1,2,BR\Ω
1191
+ �1/2
1192
+ for all v ∈ ˜V ,
1193
+ the ball Kcl
1194
+ ̺ appearing in the above theorem can be interpreted as a ball in ˜V of radius ̺
1195
+ with center in
1196
+ u0 :=
1197
+
1198
+ 0
1199
+ in Ω,
1200
+ −uinc
1201
+ in BR \ Ω.
1202
+ Indeed, for u of the form (3), it holds that
1203
+ ∥u − u0∥2
1204
+ ˜V = ∥utrans∥2
1205
+ 1,2,Ω + ∥urad + uinc∥2
1206
+ 1,2,BR\Ω = ∥u∥2
1207
+ V .
1208
+ This means that the influence of the incident field uinc on the radius ̺ in Thm. 18 depends
1209
+ only on the deviation of uinc from a radiating field measured by ∥ℓinc∥V ∗, but not directly on
1210
+ the intensity of uinc. In other words, if the incident field uinc is radiating (i.e., it also satisfies
1211
+ the Sommerfeld radiation condition (4) and thus ℓinc = 0), the radius ̺ does not depend
1212
+ on uinc. In particular, uinc can be a strong field, which is important for the occurence of
1213
+ generation efffects of higher harmonics [AY19].
1214
+ Example 19 (Example 15 continued). The identity
1215
+ c(·, ξ) − c(·, η) = α (|ξ|2 − |η|2) = α (|ξ| + |η|)(|ξ| − |η|)
1216
+ for all ξ, η ∈ C and the inequality ||ξ| − |η|| ≤ |ξ − η| show that
1217
+ |c(·, ξ) − c(·, η)| ≤ |α|(|ξ| + |η|)|ξ − η|
1218
+ holds, hence we can set Lc(·, ξ, η) := |α|(|ξ| + |η|). With pc = qc = 4, c generates a locally
1219
+ Lipschitz continuous Nemycki operator in V . Furthermore we may choose wc = 0. Then:
1220
+ ∥c(·, wc) − 1∥0,˜qc,Ω = ∥ε(L) − 1∥0,2,Ω,
1221
+ ∥Lc(·, w, v)∥0,qc,Ω = ∥α(|w| + |v|)∥0,4,Ω ≤ ∥αw∥0,4,Ω + ∥αv∥0,4,Ω
1222
+ ≤ ∥α∥0,∞,Ω [∥w∥0,4,Ω + ∥v∥0,4,Ω] ≤ Cemb∥α∥0,∞,Ω [∥w∥V + ∥v∥V ] ,
1223
+ ∥Lc(·, w, wc)∥0,qc,Ω = ∥αw∥0,4,Ω ≤ Cemb∥α∥0,∞,Ω∥w∥V .
1224
+ 20
1225
+
1226
+ Resonant compactly supported nonlinearities
1227
+ January 30, 2023
1228
+ Hence the validity of the following conditions is sufficient for (37), (38):
1229
+ κ2 �
1230
+ ∥ε(L) − 1∥0,2,Ω + Cemb∥α∥0,∞,Ω̺2�
1231
+ ̺
1232
+ + Ctr∥ˆx · ∇uinc − Tκuinc∥−1/2,2,SR ≤ ̺β(R, κ),
1233
+ κ2 �
1234
+ ∥ε(L) − 1∥0,2,Ω + 3Cemb∥α∥0,∞,Ω̺2�
1235
+ ≤ LF.
1236
+ A consideration of these condition shows that there can be different scenarios for which
1237
+ they can be fulfilled. In particular, one of the smallness requirements concerns the product
1238
+ ∥α∥0,∞,Ω̺3.
1239
+ Example 20 (saturated Kerr nonlinearity). Another important example for the nonlineari-
1240
+ ties is [Akh98]
1241
+ c(x, ξ) :=
1242
+
1243
+ 1,
1244
+ (x, ξ) ∈ Ω+ × C,
1245
+ ε(L)(x) + α(x)|ξ|2/(1 + γ|ξ|2),
1246
+ (x, ξ) ∈ Ω × C,
1247
+ with given ε(L), α ∈ L∞(Ω), saturation parameter γ > 0, and f = 0. Based on the identity
1248
+ |ξ|2
1249
+ 1 + γ|ξ|2 −
1250
+ |η|2
1251
+ 1 + γ|η|2 = (1 + γ|η|2)|ξ|2 − (1 + γ|ξ|2)|η|2
1252
+ (1 + γ|ξ|2)(1 + γ|η|2)
1253
+ =
1254
+ |ξ|2 − |η|2
1255
+ (1 + γ|ξ|2)(1 + γ|η|2)
1256
+ for all ξ, η ∈ C we obtain
1257
+ ����
1258
+ |ξ|2
1259
+ 1 + γ|ξ|2 −
1260
+ |η|2
1261
+ 1 + γ|η|2
1262
+ ���� = (|ξ| + |η|) ||ξ| − |η||
1263
+ (1 + γ|ξ|2)(1 + γ|η|2) ≤ (|ξ| + |η|)|ξ − η|.
1264
+ Hence on Ω we arrive at the same Lipschitz function as in the previous Example 19, that is
1265
+ Lc(x, ξ, η) :=
1266
+
1267
+ 0,
1268
+ (x, ξ, η) ∈ Ω+ × C × C,
1269
+ |α|(|ξ| + |η|),
1270
+ (x, ξ, η) ∈ Ω × C × C.
1271
+ Moreover, since
1272
+ c(x, wc) = c(x, 0) =
1273
+
1274
+ 0,
1275
+ (x, ξ) ∈ Ω+ × C,
1276
+ ε(L),
1277
+ (x, ξ) ∈ Ω × C.
1278
+ we get the same sufficient conditions.
1279
+ 6 The modified boundary value problem
1280
+ Since the exact DtN operator is represented as an infinite series (see (9), (12)), it is practically
1281
+ necessary to truncate this nonlocal operator and consider only finite sums
1282
+ Tκ,Nu(x) := 1
1283
+ R
1284
+
1285
+ |n|≤N
1286
+ Zn(κR)un(R)Yn(ˆx),
1287
+ x = Rˆx ∈ SR ⊂ R2,
1288
+ (39)
1289
+ Tκ,Nu(x) = 1
1290
+ R
1291
+ N
1292
+
1293
+ n=0
1294
+
1295
+ |m|≤n
1296
+ zn(κR)um
1297
+ n (R)Y m
1298
+ n (ˆx),
1299
+ x = Rˆx ∈ SR ⊂ R3
1300
+ (40)
1301
+ 21
1302
+
1303
+ Resonant compactly supported nonlinearities
1304
+ January 30, 2023
1305
+ for some N ∈ N0. The map Tκ,N is called the truncated DtN operator, and N is the truncation
1306
+ order of the DtN operator.
1307
+ The replacement of the exact DtN operator Tκ in the problem (18) by the truncated DtN
1308
+ operator Tκ,N introduces a perturbation, hence we have to answer the question of existence
1309
+ and uniqueness of a solution to the following problem:
1310
+ Find uN ∈ V such that
1311
+ aN(uN, v) = nN(uN, v)
1312
+ for all v ∈ V.
1313
+ (41)
1314
+ holds, where aN and nN are the forms defined by (23), (24) with Tκ replaced by Tκ,N.
1315
+ The next result is the counterpart to Lemmata 8, 9. Here we formulate a different version
1316
+ of G˚arding’s inequality compared to the case d = 2 considered in [HNPX11, Thm. 4.4].
1317
+ Lemma 21. The sesquilinear form aN
1318
+ (i) is bounded, i.e. there exists a constant C > 0 independent of N such that
1319
+ |aN(w, v)| ≤ C∥w∥V ∥v∥V
1320
+ for all w, v ∈ V,
1321
+ and
1322
+ (ii) satisfies a G˚arding’s inequality in the form
1323
+ Re aN(v, v) ≥ ∥v∥2
1324
+ V,κ − 2κ2∥v∥2
1325
+ 0,2,BR
1326
+ for all v ∈ V.
1327
+ Proof. (i) If the proof of [MS10, eq. (3.4a)] is carried out with finitely many terms of the
1328
+ expansion of Tκ only, the statement follows easily. Alternatively, Lemma 23 with s = 0 can
1329
+ also be used.
1330
+ (ii) As in the proof of Lemma 9, the definitions of aN and the wavenumber dependent norm
1331
+ yield
1332
+ Re aN(v, v) = ∥v∥2
1333
+ V,κ − 2κ2∥v∥2
1334
+ 0,2,BR − Re (Tκ,Nv, v)SR.
1335
+ Hence it remains to estimate the last term. In the case d = 2, we have (see (39))
1336
+ Tκ,Nv(x) := 1
1337
+ R
1338
+
1339
+ |n|≤N
1340
+ Zn(κR)vn(R)Yn(ˆx),
1341
+ x = Rˆx ∈ SR.
1342
+ Then, using the L2(S1)-orthonormality of the circular harmonics [Zei95, Prop. 3.2.1], we get
1343
+ −(Tκ,Nv, v)SR = − 1
1344
+ R
1345
+
1346
+ |n|≤N
1347
+ Zn(κR)(vn(R)Yn, vn(R)Yn)SR
1348
+ = − 1
1349
+ R
1350
+
1351
+ |n|≤N
1352
+ Zn(κR)|vn(R)|2(Yn, Yn)SR
1353
+ = −
1354
+
1355
+ |n|≤N
1356
+ Zn(κR)|vn(R)|2(Yn, Yn)S1
1357
+ = −
1358
+
1359
+ |n|≤N
1360
+ Zn(κR)|vn(R)|2.
1361
+ 22
1362
+
1363
+ Resonant compactly supported nonlinearities
1364
+ January 30, 2023
1365
+ Hence, by Lemma 4,
1366
+ − Re (Tκ,Nv, v)SR =
1367
+
1368
+ |n|≤N
1369
+ (− Re Zn(κR))
1370
+
1371
+ ��
1372
+
1373
+ ≥1/2
1374
+ |vn(R)|2 + (− Re Z0(κR))
1375
+
1376
+ ��
1377
+
1378
+ >0
1379
+ |v0(R)|2
1380
+ ≥ 1
1381
+ 2
1382
+
1383
+ |n|≤N
1384
+ |vn(R)|2 ≥ 0.
1385
+ The case d = 3 can be treated similarly. From
1386
+ Tκ,Nv(x) = 1
1387
+ R
1388
+ N
1389
+
1390
+ n=0
1391
+
1392
+ |m|≤n
1393
+ zn(κR)vm
1394
+ n (R)Y m
1395
+ n (ˆx)
1396
+ (see (40)), we immediately obtain, using the L2(S1)-orthonormality of the spherical harmon-
1397
+ ics [CK19, Thm. 2.8] that
1398
+ −(Tκ,Nv, v)SR = − 1
1399
+ R
1400
+ N
1401
+
1402
+ n=0
1403
+
1404
+ |m|≤n
1405
+ zn(κR)(vm
1406
+ n (R)Y m
1407
+ n , vm
1408
+ n (R)Y m
1409
+ n )SR
1410
+ = − 1
1411
+ R
1412
+ N
1413
+
1414
+ n=0
1415
+
1416
+ |m|≤n
1417
+ zn(κR)|vm
1418
+ n (R)|2(Y m
1419
+ n , Y m
1420
+ n )SR
1421
+ = −R
1422
+ N
1423
+
1424
+ n=0
1425
+
1426
+ |m|≤n
1427
+ zn(κR)|vm
1428
+ n (R)|2(Y m
1429
+ n , Y m
1430
+ n )S1
1431
+ = −R
1432
+ N
1433
+
1434
+ n=0
1435
+
1436
+ |m|≤n
1437
+ zn(κR)|vm
1438
+ n (R)|2,
1439
+ and Lemma 4 implies
1440
+ − Re (Tκ,Nv, v)SR = R
1441
+ N
1442
+
1443
+ n=0
1444
+
1445
+ |m|≤n
1446
+ (− Re zn(κR))
1447
+
1448
+ ��
1449
+
1450
+ ≥1
1451
+ |vm
1452
+ n (R)|2 ≥ R
1453
+ N
1454
+
1455
+ n=0
1456
+
1457
+ |m|≤n
1458
+ |vm
1459
+ n (R)|2 ≥ 0.
1460
+ In both cases we obtain the same G˚arding’s inequality as in the original (untruncated)
1461
+ problem Lemma 9.
1462
+ The next result is the variational version of the truncation error estimate. It closely follows
1463
+ the lines of the proof of [HNPX11, Thm. 3.3], where an estimate of ∥(Tκ − Tκ,N)v∥s−1/2,2,SR,
1464
+ s ∈ R, was proved in the case d = 2.
1465
+ Lemma 22. For given w, v ∈ H1/2(SR) it holds that
1466
+ ���((Tκ − Tκ,N)w, v)SR
1467
+ ��� ≤ c(N, w, v)∥w∥1/2,2,SR∥v∥1/2,2,SR,
1468
+ where c(N, w, v) ≥ 0 and limN→∞ c(N, w, v) = 0.
1469
+ 23
1470
+
1471
+ Resonant compactly supported nonlinearities
1472
+ January 30, 2023
1473
+ Proof. We start with the two-dimensional situation. So let
1474
+ w(x) = w(Rˆx) =
1475
+
1476
+ |n|∈N0
1477
+ wn(R)Yn(ˆx),
1478
+ v(x) = v(Rˆx) =
1479
+
1480
+ |k|∈N0
1481
+ vk(R)Yk(ˆx),
1482
+ x ∈ SR,
1483
+ (42)
1484
+ be series representations of w|SR, v|SR with the Fourier coefficients
1485
+ wn(R) = (w(R·), Yn)S1 =
1486
+
1487
+ S1
1488
+ w(Rˆx)Yn(ˆx)ds(ˆx),
1489
+ vk(R) = (v(R·), Yk)S1 =
1490
+
1491
+ S1
1492
+ v(Rˆx)Yk(ˆx)ds(ˆx).
1493
+ The norm on the Sobolev space Hs(SR), s ≥ 0, can be defined as follows [LM72, Ch. 1,
1494
+ Rem. 7.6]:
1495
+ ∥v∥2
1496
+ s,2,SR := R
1497
+
1498
+ n∈Z
1499
+ (1 + n2)s|vn(R)|2.
1500
+ (43)
1501
+ Then, by (39), the orthonormality of the circular harmonics [Zei95, Prop. 3.2.1] and (43),
1502
+ ���((Tκ − Tκ,N)w, v)SR
1503
+ ��� = 1
1504
+ R
1505
+ ������
1506
+
1507
+ |n|,|k|>N
1508
+
1509
+ Zn(κR)wn(R)Yn(R−1·), vk(R)Yk(R−1·)
1510
+
1511
+ SR
1512
+ ������
1513
+ =
1514
+ ������
1515
+
1516
+ |n|,|k|>N
1517
+ Zn(κR) (wn(R)Yn, vk(R)Yk)S1
1518
+ ������
1519
+ =
1520
+ ������
1521
+
1522
+ |n|>N
1523
+ Zn(κR)wn(R)vn(R)
1524
+ ������
1525
+ =
1526
+ ������
1527
+
1528
+ |n|>N
1529
+ Zn(κR)
1530
+ (1 + n2)1/2(1 + n2)1/4wn(R)(1 + n2)1/4vn(R)
1531
+ ������
1532
+ ≤ max
1533
+ |n|>N
1534
+ ����
1535
+ Zn(κR)
1536
+ (1 + n2)1/2
1537
+ ����
1538
+
1539
+ |n|>N
1540
+ ��(1 + n2)1/4wn(R)(1 + n2)1/4vn(R)
1541
+ ��
1542
+ ≤ max
1543
+ |n|>N
1544
+ ����
1545
+ Zn(κR)
1546
+ (1 + n2)1/2
1547
+ ����
1548
+
1549
+  �
1550
+ |n|>N
1551
+ (1 + n2)1/2 |wn(R)|2
1552
+
1553
+
1554
+ 1/2
1555
+ ×
1556
+
1557
+  �
1558
+ |n|>N
1559
+ (1 + n2)1/2 |vn(R)|2
1560
+
1561
+
1562
+ 1/2
1563
+ ≤ 1
1564
+ R max
1565
+ |n|>N
1566
+ ����
1567
+ Zn(κR)
1568
+ (1 + n2)1/2
1569
+ ���� ˜c(N, w, v)∥w∥1/2,2,SR∥v∥1/2,2,SR,
1570
+ 24
1571
+
1572
+ Resonant compactly supported nonlinearities
1573
+ January 30, 2023
1574
+ where
1575
+ ˜c(N, w, v)2 :=
1576
+
1577
+ |n|>N(1 + n2)1/2|wn(R)|2
1578
+
1579
+ |n|∈N0(1 + n2)1/2|wn(R)|2
1580
+
1581
+ |n|>N(1 + n2)1/2|vn(R)|2
1582
+
1583
+ |n|∈N0(1 + n2)1/2|vn(R)|2.
1584
+ The coefficient ˜c(N, w, v) tends to zero for N → ∞ thanks to (43), (45).. Corollary 5 implies
1585
+ the estimate
1586
+ 1
1587
+ 1 + n2|Zn(κR)|2 ≤ max{|Z0(κR)|2, 1 + |κR|2},
1588
+ |n| ∈ N0,
1589
+ hence we can set
1590
+ c(N, w, v) := ˜c(N, w, v)
1591
+ R
1592
+ max{|Z0(κR)|, (1 + |κR|2)1/2}.
1593
+ The investigation of the case d = 3 runs similarly. So let
1594
+ w(x) = w(Rˆx) =
1595
+
1596
+ n∈N0
1597
+
1598
+ |m|≤n
1599
+ wm
1600
+ n (R)Y m
1601
+ n (ˆx),
1602
+ v(x) = v(Rˆx) =
1603
+
1604
+ k∈N0
1605
+
1606
+ |l|≤k
1607
+ vl
1608
+ k(R)Y l
1609
+ k(ˆx),
1610
+ x ∈ SR,
1611
+ (44)
1612
+ be series representations of w|SR, v|SR with the Fourier coefficients
1613
+ wm
1614
+ n (R) = (w(R·), Y m
1615
+ n )S1 =
1616
+
1617
+ S1
1618
+ w(Rˆx)Y m
1619
+ n (ˆx)ds(ˆx),
1620
+ vl
1621
+ k(R) = (v(R·), Y l
1622
+ k)S1 =
1623
+
1624
+ S1
1625
+ v(Rˆx)Y l
1626
+ k(ˆx)ds(ˆx).
1627
+ The norm on the Sobolev space Hs(SR), s ≥ 0, can be defined as follows [LM72, Ch. 1,
1628
+ Rem. 7.6]:
1629
+ ∥v∥2
1630
+ s,2,SR := R2 �
1631
+ n∈N0
1632
+
1633
+ |m|≤n
1634
+ (1 + n2)s|vm
1635
+ n (R)|2.
1636
+ (45)
1637
+ Then, by (40), the orthonormality of the spherical harmonics [CK19, Thm. 2.8] and (45),
1638
+ ���((Tκ − Tκ,N)w, v)SR
1639
+ ��� = 1
1640
+ R
1641
+ ������
1642
+
1643
+ n,k>N
1644
+
1645
+ |m|≤n,|l|≤k
1646
+
1647
+ zn(κR)wm
1648
+ n (R)Y m
1649
+ n (R−1·), vl
1650
+ k(R)Y l
1651
+ k(R−1·)
1652
+
1653
+ SR
1654
+ ������
1655
+ = R
1656
+ ������
1657
+
1658
+ n,k>N
1659
+
1660
+ |m|≤n,|l|≤k
1661
+ zn(κR)
1662
+
1663
+ wm
1664
+ n (R)Y m
1665
+ n , vl
1666
+ k(R)Y l
1667
+ k)
1668
+
1669
+ S1
1670
+ ������
1671
+ = R
1672
+ ������
1673
+
1674
+ n>N
1675
+
1676
+ |m|≤n
1677
+ zn(κR)wm
1678
+ n (R)vm
1679
+ n (R)
1680
+ ������
1681
+ = R
1682
+ ������
1683
+
1684
+ n>N
1685
+
1686
+ |m|≤n
1687
+ zn(κR)
1688
+ (1 + n2)1/2(1 + n2)1/4wm
1689
+ n (R)(1 + n2)1/4vm
1690
+ n (R)
1691
+ ������
1692
+ 25
1693
+
1694
+ Resonant compactly supported nonlinearities
1695
+ January 30, 2023
1696
+ ≤ R max
1697
+ n>N
1698
+ ����
1699
+ zn(κR)
1700
+ (1 + n2)1/2
1701
+ ����
1702
+
1703
+ n>N
1704
+
1705
+ |m|≤n
1706
+ ��(1 + n2)1/4wm
1707
+ n (R)(1 + n2)1/4vm
1708
+ n (R)
1709
+ ��
1710
+ ≤ R max
1711
+ n>N
1712
+ ����
1713
+ zn(κR)
1714
+ (1 + n2)1/2
1715
+ ����
1716
+
1717
+ �
1718
+ n>N
1719
+
1720
+ |m|≤n
1721
+ (1 + n2)1/2 |wm
1722
+ n (R)|2
1723
+
1724
+
1725
+ 1/2
1726
+ ×
1727
+
1728
+ �
1729
+ n>N
1730
+
1731
+ |m|≤n
1732
+ (1 + n2)1/2 |vm
1733
+ n (R)|2
1734
+
1735
+
1736
+ 1/2
1737
+ ≤ 1
1738
+ R max
1739
+ n>N
1740
+ ����
1741
+ zn(κR)
1742
+ (1 + n2)1/2
1743
+ ���� ˜c(N, w, v)∥w∥1/2,2,SR∥v∥1/2,2,SR,
1744
+ where
1745
+ ˜c(N, w, v)2 :=
1746
+
1747
+ n>N
1748
+
1749
+ |m|≤n(1 + n2)1/2 |wm
1750
+ n (R)|2
1751
+
1752
+ |n|∈N0
1753
+
1754
+ |m|≤n(1 + n2)1/2 |wm
1755
+ n (R)|2
1756
+
1757
+ n>N
1758
+
1759
+ |m|≤n(1 + n2)1/2 |vm
1760
+ n (R)|2
1761
+
1762
+ |n|∈N0
1763
+
1764
+ |m|≤n(1 + n2)1/2 |vm
1765
+ n (R)|2.
1766
+ Thanks to Corollary 5 we can define
1767
+ c(N, w, v) := ˜c(N, w, v)
1768
+ R
1769
+
1770
+ 2 + |κR|2�1/2 .
1771
+ Lemma 23. For s ∈ [0, 1/2) and w ∈ H1−s(BR \ Ω), v ∈ H1+s(BR \ Ω) it holds that
1772
+ |(Tκ,Nw, v)SR| ≤ Cbl∥w∥1−s,2,BR\Ω∥v∥1+s,2,BR\Ω,
1773
+ where the constant Cbl ≥ 0 does not depend on N.
1774
+ Proof. We start with the two-dimensional situation as in the proof of Lemma 22. If w, v
1775
+ have the representations (42), then, by (39), the orthonormality of the circular harmonics
1776
+ [Zei95, Prop. 3.2.1] and (43),
1777
+ |(Tκ,Nw, v)SR| = 1
1778
+ R
1779
+ ������
1780
+
1781
+ |n|,|k|≤N
1782
+
1783
+ Zn(κR)wn(R)Yn(R−1·), vk(R)Yk(R−1·)
1784
+
1785
+ SR
1786
+ ������
1787
+ =
1788
+ ������
1789
+
1790
+ |n|,|k|≤N
1791
+ Zn(κR) (wn(R)Yn, vk(R)Yk)S1
1792
+ ������
1793
+ =
1794
+ ������
1795
+
1796
+ |n|≤N
1797
+ Zn(κR)wn(R)vn(R)
1798
+ ������
1799
+ =
1800
+ ������
1801
+
1802
+ |n|≤N
1803
+ Zn(κR)
1804
+ (1 + n2)1/2(1 + n2)(1/2−s)/2wn(R)(1 + n2)(1/2+s)/2vn(R)
1805
+ ������
1806
+ ≤ max
1807
+ |n|≤N
1808
+ ����
1809
+ Zn(κR)
1810
+ (1 + n2)1/2
1811
+ ����
1812
+
1813
+ |n|≤N
1814
+ ��(1 + n2)(1/2−s)/2wn(R)(1 + n2)(1/2+s)/2vn(R)
1815
+ ��
1816
+ 26
1817
+
1818
+ Resonant compactly supported nonlinearities
1819
+ January 30, 2023
1820
+ ≤ max
1821
+ |n|≤N
1822
+ ����
1823
+ Zn(κR)
1824
+ (1 + n2)1/2
1825
+ ����
1826
+
1827
+  �
1828
+ |n|≤N
1829
+ (1 + n2)1/2−s |wn(R)|2
1830
+
1831
+
1832
+ 1/2
1833
+ ×
1834
+
1835
+  �
1836
+ |n|≤N
1837
+ (1 + n2)1/2+s |vn(R)|2
1838
+
1839
+
1840
+ 1/2
1841
+ ≤ 1
1842
+ R max
1843
+ |n|≤N
1844
+ ����
1845
+ Zn(κR)
1846
+ (1 + n2)1/2
1847
+ ���� ∥w∥1/2−s,2,SR∥v∥1/2+s,2,SR.
1848
+ Corollary 5 implies the estimate
1849
+ 1
1850
+ 1 + n2|Zn(κR)|2 ≤ max{|Z0(κR)|2, 1 + |κR|2},
1851
+ |n| ∈ N0,
1852
+ hence
1853
+ |(Tκ,Nw, v)SR| ≤ 1
1854
+ R max{|Z0(κR)|, (1 + |κR|2)1/2}∥w∥1/2−s,2,SR∥v∥1/2+s,2,SR.
1855
+ (46)
1856
+ By the trace theorem [McL00, Thm. 3.38], we finally arrive at
1857
+ |(Tκ,Nw, v)SR| ≤ C2
1858
+ tr
1859
+ R max{|Z0(κR)|, (1 + |κR|2)1/2}∥w∥1−s,2,BR\Ω∥v∥1+s,2,BR\Ω.
1860
+ The investigation of the case d = 3 runs similarly. So let w, v have the representations (44),
1861
+ then, by (40), the orthonormality of the spherical harmonics [CK19, Thm. 2.8] and (45),
1862
+ |(Tκ,Nw, v)SR| = 1
1863
+ R
1864
+ ������
1865
+ N
1866
+
1867
+ n,k=0
1868
+
1869
+ |m|≤n,|l|≤k
1870
+
1871
+ zn(κR)wm
1872
+ n (R)Y m
1873
+ n (R−1·), vl
1874
+ k(R)Y l
1875
+ k(R−1·)
1876
+
1877
+ SR
1878
+ ������
1879
+ = R
1880
+ ������
1881
+ N
1882
+
1883
+ n,k=0
1884
+
1885
+ |m|≤n,|l|≤k
1886
+ zn(κR)
1887
+
1888
+ wm
1889
+ n (R)Y m
1890
+ n , vl
1891
+ k(R)Y l
1892
+ k)
1893
+
1894
+ S1
1895
+ ������
1896
+ = R
1897
+ ������
1898
+ N
1899
+
1900
+ n=0
1901
+
1902
+ |m|≤n
1903
+ zn(κR)wm
1904
+ n (R)vm
1905
+ n (R)
1906
+ ������
1907
+ = R
1908
+ ������
1909
+ N
1910
+
1911
+ n=0
1912
+
1913
+ |m|≤n
1914
+ zn(κR)
1915
+ (1 + n2)1/2(1 + n2)(1/2−s)/2wm
1916
+ n (R)(1 + n2)(1/2+s)/2vm
1917
+ n (R)
1918
+ ������
1919
+ ≤ R max
1920
+ n∈N0
1921
+ ����
1922
+ zn(κR)
1923
+ (1 + n2)1/2
1924
+ ����
1925
+ N
1926
+
1927
+ n=0
1928
+
1929
+ |m|≤n
1930
+ ��(1 + n2)(1/2−s)/2wm
1931
+ n (R)(1 + n2)(1/2+s)/2vm
1932
+ n (R)
1933
+ ��
1934
+ ≤ R max
1935
+ n∈N0
1936
+ ����
1937
+ zn(κR)
1938
+ (1 + n2)1/2
1939
+ ����
1940
+
1941
+
1942
+ N
1943
+
1944
+ n=0
1945
+
1946
+ |m|≤n
1947
+ (1 + n2)1/2−s |wm
1948
+ n (R)|2
1949
+
1950
+
1951
+ 1/2
1952
+ ×
1953
+
1954
+
1955
+ N
1956
+
1957
+ n=0
1958
+
1959
+ |m|≤n
1960
+ (1 + n2)1/2+s |vm
1961
+ n (R)|2
1962
+
1963
+
1964
+ 1/2
1965
+ 27
1966
+
1967
+ Resonant compactly supported nonlinearities
1968
+ January 30, 2023
1969
+ ≤ 1
1970
+ R max
1971
+ n∈N0
1972
+ ����
1973
+ zn(κR)
1974
+ (1 + n2)1/2
1975
+ ���� ∥w∥1/2−s,2,SR∥v∥1/2+s,2,SR.
1976
+ Corollary 5 yields
1977
+ |(Tκ,Nw, v)SR| ≤ 1
1978
+ R
1979
+
1980
+ 2 + |κR|2�1/2 ∥w∥1/2−s,2,SR∥v∥1/2+s,2,SR.
1981
+ (47)
1982
+ By the trace theorem [McL00, Thm. 3.38], we finally arrive at
1983
+ |(Tκ,Nw, v)SR| ≤ C2
1984
+ tr
1985
+ R
1986
+
1987
+ 2 + |κR|2�1/2 ∥w∥1−s,2,BR\Ω∥v∥1+s,2,BR\Ω.
1988
+ Theorem 24. Under the assumptions of Lemma 9, given an antilinear continuous functional
1989
+ ℓ : V → C, there exists a constant N∗ > 0 such that for N ≥ N∗ the problem
1990
+ Find uN ∈ V such that
1991
+ aN(uN, v) = ℓ(v)
1992
+ for all v ∈ V
1993
+ (48)
1994
+ is uniquely solvable.
1995
+ Proof. First we show that the problem (48) has at most one solution. We start as in the
1996
+ proof of [HNPX11, Thm. 4.5] and argue by contradiction, i.e. we suppose the following:
1997
+ ∀N∗ ∈ N
1998
+ ∃N = N(N∗) ≥ N∗
1999
+ and
2000
+ uN = uN(N∗) ∈ V
2001
+ such that
2002
+ aN(uN, v) = 0
2003
+ for all v ∈ V
2004
+ and ∥uN∥V = 1.
2005
+ (49)
2006
+ However, the subsequent discussion differs significantly from the proof of [HNPX11, Thm. 4.5].
2007
+ We apply an argument the idea of which goes back to Schatz [Sch74].
2008
+ First we assume there exists a solution uN ∈ V of (48) and derive an a priori estimate of
2009
+ the error ∥u − uN∥V , where u ∈ V is the solution of (29), see Thm. 10. Since aN satisfies a
2010
+ G˚arding’s inequality (Lemma 21(ii)), we have, making use of (28),
2011
+ C2
2012
+ −∥u − uN∥2
2013
+ V − 2κ2∥u − uN∥2
2014
+ 0,2,BR ≤ Re aN(u − uN, u − uN).
2015
+ Since
2016
+ aN(u − uN, v) = aN(u, v) − aN(uN, v)
2017
+ = a(u, v)
2018
+ � �� �
2019
+ =ℓ(v)
2020
+ +aN(u, v) − a(u, v) − aN(uN, v)
2021
+
2022
+ ��
2023
+
2024
+ =ℓ(v)
2025
+ = ((Tκ − Tκ,N)u, v)SR ,
2026
+ we obtain
2027
+ C2
2028
+ −∥u − uN∥2
2029
+ V − 2κ2∥u − uN∥2
2030
+ 0,2,BR ≤ η1∥u − uN∥V
2031
+ (50)
2032
+ with
2033
+ η1 := sup
2034
+ v∈V
2035
+ Re ((Tκ − Tκ,N)u, v)SR
2036
+ ∥v∥V
2037
+ .
2038
+ Now we consider the following auxiliary adjoint problem (cf. [McL00, p. 43]):
2039
+ 28
2040
+
2041
+ Resonant compactly supported nonlinearities
2042
+ January 30, 2023
2043
+ Find wN ∈ V such that
2044
+ a(v, wN) = (v, u − uN)BR
2045
+ for all v ∈ V.
2046
+ (51)
2047
+ Since A is a Fredholm operator (see the proof of Thm. 10), the adjoint problem possesses a
2048
+ unique solution wN ∈ V . Then
2049
+ ∥u − uN∥2
2050
+ 0,2,SR = a(u − uN, wN) = a(u, wN) − a(uN, wN)
2051
+ = a(u, wN) − aN(uN, wN)
2052
+
2053
+ ��
2054
+
2055
+ =ℓ(wN)−ℓ(wN)=0
2056
+ +aN(uN, wN) − a(uN, wN)
2057
+ = ((Tκ − Tκ,N)uN, wN)SR.
2058
+ In particular, this relation shows that ((Tκ − Tκ,N)uN, wN)SR is real. With
2059
+ η2 := sup
2060
+ v∈V
2061
+ ((Tκ − Tκ,N)uN, v)SR
2062
+ ∥v∥V
2063
+ we obtain
2064
+ ∥u − uN∥2
2065
+ 0,2,BR ≤ η2∥wN∥V ≤ η2C−1
2066
+ − C(R, κ)∥u − uN∥V ∗.
2067
+ The continuous embedding V ⊂ V ∗ yields
2068
+ ∥u − uN∥2
2069
+ 0,2,BR ≤ η2C−1
2070
+ − C(R, κ)Cemb∥u − uN∥V .
2071
+ Applying this estimate in (50), we get
2072
+ C2
2073
+ −∥u − uN∥2
2074
+ V − 2κ2η2C−1
2075
+ − C(R, κ)Cemb∥u − uN∥V ≤ η1∥u − uN∥V .
2076
+ Now, if ∥u − uN∥V ̸= 0, we finally arrive at
2077
+ C2
2078
+ −∥u − uN∥V ≤ η1 + 2κ2η2C−1
2079
+ − C(R, κ)Cemb.
2080
+ (52)
2081
+ Clearly this inequality is true also for ∥u − uN∥V = 0 so that we can remove this interim
2082
+ assumption.
2083
+ Thanks to Lemma 22 we have that
2084
+ ���((Tκ − Tκ,N)u, v)SR
2085
+ ��� ≤ c(N, u, v)∥u∥1/2,2,SR∥v∥1/2,2,SR ≤ c(N, u, c)C2
2086
+ tr∥u∥V ∥v∥V ,
2087
+ hence
2088
+ η1 ≤ c+(N, u)C2
2089
+ tr∥u∥V
2090
+ with
2091
+ c+(N, u) := sup
2092
+ v∈V
2093
+ c(N, u, v),
2094
+ (53)
2095
+ where limN→∞ c+(N, u) = 0. Note that, as can be seen from the proof of Lemma 22, the
2096
+ second fractional factor in the representation of ˜c(N, w, v) can be estimated from above by
2097
+ one without losing the limit behaviour for N → ∞. Consequently, η1 can be made arbitrarily
2098
+ small provided N is large enough.
2099
+ In order to estimate η2 we cannot apply Lemma 22 directly since the second argument in
2100
+ the factor c(N, uN, v) depends on N, too. Therefore we give a more direct estimate.
2101
+ 29
2102
+
2103
+ Resonant compactly supported nonlinearities
2104
+ January 30, 2023
2105
+ Namely, let v ∈ V have the representation (42) or (44), respectively. Then we define
2106
+ VN|SR :=
2107
+
2108
+ span|n|≤N{Yn(R−1·)},
2109
+ d = 2,
2110
+ spann=0...N,|m|≤n{Y m
2111
+ n (R−1·)},
2112
+ d = 3,
2113
+ and introduce an orthogonal projector
2114
+ PN : V |SR → VN|SR : v �→ PNv :=
2115
+ ��
2116
+ |n|≤N vn(R)Yn(R−1·),
2117
+ d = 2,
2118
+ �N
2119
+ n=0
2120
+
2121
+ |m|≤n vm
2122
+ n (R)Y m
2123
+ n (R−1·),
2124
+ d = 3.
2125
+ Then it holds that VN|SR ⊂ ker(TκPN − Tκ,N).
2126
+ Indeed, if d = 2 and v ∈ VN|SR, then
2127
+ PNv = v = �
2128
+ |n|≤N vn(R)Yn(R−1·) and
2129
+ TκPNv = Tκv = 1
2130
+ R
2131
+
2132
+ |n|≤N
2133
+ Zn(κR)vn(R)Yn(R−1·) = Tκ,Nv.
2134
+ An analogous argument applies in the case d = 3.
2135
+ Now we return to the estimate of η2 and write, for uN ∈ V ,
2136
+ (Tκ − Tκ,N)uN = (Tκ − TκPN)uN + (TκPN − Tκ,N)uN = Tκ(id −PN)uN,
2137
+ where we have used the above property. The advantage of this approach is that we can apply
2138
+ a wellknown estimate of the projection error. The proof of this estimate runs similarly to
2139
+ the proof of Lemma 22 but only without the coefficients Zn or zn, respectively:
2140
+ ��((id −PN)w, v)SR
2141
+ �� =
2142
+ ������
2143
+
2144
+ |n|,|k|>N
2145
+
2146
+ wn(R)Yn(R−1·), vk(R)Yk(R−1·)
2147
+
2148
+ SR
2149
+ ������
2150
+ = R
2151
+ ������
2152
+
2153
+ |n|,|k|>N
2154
+ (wn(R)Yn, vk(R)Yk)S1
2155
+ ������
2156
+ = R
2157
+ ������
2158
+
2159
+ |n|>N
2160
+ wn(R)vn(R)
2161
+ ������
2162
+ = R
2163
+ ������
2164
+
2165
+ |n|>N
2166
+ 1
2167
+ (1 + n2)1/2(1 + n2)1/4wn(R)(1 + n2)1/4vn(R)
2168
+ ������
2169
+ ≤ max
2170
+ |n|>N
2171
+ R
2172
+ (1 + n2)1/2
2173
+
2174
+ |n|>N
2175
+ ��(1 + n2)1/4wn(R)(1 + n2)1/4vn(R)
2176
+ ��
2177
+
2178
+ R
2179
+ (1 + N2)1/2
2180
+
2181
+  �
2182
+ |n|>N
2183
+ (1 + n2)1/2 |wn(R)|2
2184
+
2185
+
2186
+ 1/2
2187
+ ×
2188
+
2189
+  �
2190
+ |n|>N
2191
+ (1 + n2)1/2 |vn(R)|2
2192
+
2193
+
2194
+ 1/2
2195
+
2196
+ 1
2197
+ (1 + N2)1/2∥w∥1/2,2,SR∥v∥1/2,2,SR.
2198
+ 30
2199
+
2200
+ Resonant compactly supported nonlinearities
2201
+ January 30, 2023
2202
+ The same estimate holds true for d = 3. Then we get, by Remark 3 (or Lemma 23),
2203
+ ���((Tκ − Tκ,N)uN, v)SR
2204
+ ��� =
2205
+ ��(Tκ(id −PN)uN, v)SR
2206
+ ��
2207
+
2208
+
2209
+ (1 + N2)1/2∥uN∥1/2,2,SR∥v∥1/2,2,SR
2210
+
2211
+ CC2
2212
+ trκ
2213
+ (1 + N2)1/2∥uN∥V ∥v∥V ,
2214
+ thus
2215
+ η2 ≤
2216
+ CC2
2217
+ trκ
2218
+ (1 + N2)1/2∥uN∥V .
2219
+ Using this estimate and (53) in (52), we obtain
2220
+ C2
2221
+ −∥u − uN∥V ≤ c+(N, u)C2
2222
+ tr∥u∥V + 2κ2C−1
2223
+ − C(R, κ)Cemb
2224
+ CC2
2225
+ trκ
2226
+ (1 + N2)1/2∥uN∥V .
2227
+ (54)
2228
+ Now we appply this estimate to the solutions uN of the homogeneous truncated problems in
2229
+ (49). By Thm. 10, the homogeneous linear interior problem (29) (i.e. ℓ = 0) has the solution
2230
+ u = 0, and the above estimate implies
2231
+ C2
2232
+ −∥uN∥V ≤ 2κ2C−1
2233
+ − C(R, κ)Cemb
2234
+ CC2
2235
+ trκ
2236
+ (1 + N2)1/2∥uN∥V ,
2237
+ which is a contradiction to ∥uN∥V = 1 for all N.
2238
+ Although the proof of Thm. 24 allows an analogous conclusion as in Lemma 11 that the
2239
+ truncated bilinear form aN satisfies an inf-sup condition, such a conclusion is not fully
2240
+ satisfactory since the question remains whether and how the inf-sup constant depends on N
2241
+ or not. However, at least for sufficiently large N, a positive answer can given.
2242
+ Lemma 25. Under the assumptions of Lemma 9, there exists a number N∗ ∈ N such that
2243
+ βN∗(R, κ) :=
2244
+ inf
2245
+ w∈V \{0}
2246
+ sup
2247
+ v∈V \{0}
2248
+ |aN(w, v)|
2249
+ ∥w∥V,κ∥v∥V,κ
2250
+ > 0
2251
+ is independent of N ≥ N∗.
2252
+ In the proof a formula is given that expresses βN∗(R, κ) in terms of β(R, κ).
2253
+ Proof. We return to the proof of Thm. 24 and mention that the estimate (54) is valid for
2254
+ solutions u, uN of the general linear problems (29) (or, equally, (31)) and (48), respectively.
2255
+ By the triangle inequality,
2256
+ ∥uN∥V ≤ ∥u∥V + ∥u − uN∥V
2257
+ ≤ ∥u∥V + c+(N, u)C−2
2258
+ − C2
2259
+ tr∥u∥V + 2κ2C−3
2260
+ − C(R, κ)Cemb
2261
+ CC2
2262
+ trκ
2263
+ (1 + N2)1/2∥uN∥V .
2264
+ 31
2265
+
2266
+ Resonant compactly supported nonlinearities
2267
+ January 30, 2023
2268
+ If N∗ is sufficiently large such that
2269
+ κ2C−3
2270
+ − C(R, κ)Cemb
2271
+ CC2
2272
+ trκ
2273
+ (1 + N2)1/2 ≤ 1
2274
+ 4
2275
+ and
2276
+ c+(N, u)C−2
2277
+ − C2
2278
+ tr ≤ 1
2279
+ for all N ≥ N∗,
2280
+ then, by Lemma 11,
2281
+ ∥uN∥V ≤ 4∥u∥V ≤ 4
2282
+ C−
2283
+ ∥u∥V,κ ≤ ∥ℓ∥V ∗.
2284
+ That is, the sesquilinear form aN satisfies an inf-sup condition
2285
+ βN∗(R, κ) :=
2286
+ inf
2287
+ w∈V \{0}
2288
+ sup
2289
+ v∈V \{0}
2290
+ |aN(w, v)|
2291
+ ∥w∥V,κ∥v∥V,κ
2292
+ > 0
2293
+ with βN∗(R, κ) := C−β(R, κ)
2294
+ 4C+
2295
+ independent of N ≥ N∗.
2296
+ Analogously to (30) we introduce the truncated linear operator AN : V → V ∗ by
2297
+ ANw(v) := aN(w, v)
2298
+ for all w, v ∈ V.
2299
+ By Lemma 21, AN is a bounded operator, and Lemma 25 implies that AN has a bounded
2300
+ inverse:
2301
+ ∥w∥V,κ ≤ βN∗(R, κ)−1∥ANw∥∗
2302
+ for all w ∈ V.
2303
+ Furthermore, we define a nonlinear operator FN : V → V ∗ by
2304
+ FN(w)(v) := ℓcontr(w) + ℓsrc(w) + ℓinc
2305
+ N
2306
+ for all w ∈ V,
2307
+ where
2308
+ ⟨ℓinc
2309
+ N , v⟩ := (ˆx · ∇uinc − Tκ,Nuinc, v)SR.
2310
+ The problem (41) is then equivalent to the operator equation
2311
+ ANu = FN(u)
2312
+ in V ∗,
2313
+ and further to the fixed-point problem
2314
+ u = A−1
2315
+ N FN(u)
2316
+ in V.
2317
+ (55)
2318
+ Theorem 26. Under the assumptions of Lemma 9, let the functions c and f generate locally
2319
+ Lipschitz continuous Nemycki operators in V and assume that there exist functions wf, wc ∈
2320
+ V such that f(·, wf) ∈ Lpf/(pf −1)(Ω) and c(·, wf) ∈ Lpc/(pc−2)(Ω), respectively.
2321
+ Furthermore let uinc ∈ H1
2322
+ loc(Ω+) be such that additionally ∆uinc ∈ L2,loc(Ω+) holds.
2323
+ If there exist numbers ̺ > 0 and LF ∈ (0, βN∗(R, κ)) (where N∗ and βN∗(R, κ) are from
2324
+ Lemma 25) such that the following two conditions
2325
+ κ2 [∥c(·, wc) − 1∥0,˜qc,Ω + ∥Lc(·, w, wc)∥0,qc,Ω(̺ + ∥wc∥V )] ̺
2326
+ +
2327
+
2328
+ ∥f(·, wf)∥0,˜qf,Ω + ∥Lf(·, w, wf)∥0,qf,Ω(̺ + ∥wf∥V )
2329
+
2330
+ + Ctr∥ˆx · ∇uinc − Tκ,Nuinc∥−1/2,2,SR ≤ ̺βN∗(R, κ),
2331
+ κ2 [∥Lc(·, w, v)∥0,qc,Ω̺ + ∥c(·, wc) − 1∥0,˜qc,Ω + ∥Lc(·, w, wc)∥0,qc,Ω(̺ + ∥wc∥V )]
2332
+ + ∥Lf(·, w, v)∥0,qf,Ω ≤ LF
2333
+ are satisfied for all w, v ∈ Kcl
2334
+ ̺ , then the problem (35) has a unique solution uN ∈ Kcl
2335
+ ̺ for all
2336
+ N ≥ N∗.
2337
+ Proof. Analogously to the proof of Thm. 18.
2338
+ 32
2339
+
2340
+ Resonant compactly supported nonlinearities
2341
+ January 30, 2023
2342
+ 7 Conclusion
2343
+ A mathematical model together with an investigation of existence and uniqueness of its
2344
+ solution for radiation and propagation effects on compactly supported cubic nonlinearities
2345
+ is presented. The full-space problem is reduced to an equivalent truncated local problem,
2346
+ whereby in particular the dependence of the solution on the truncation parameter (with
2347
+ regard to stability and errors) is studied. The results form the basis for the use of numerical
2348
+ methods, e.g., FEM, for the approximate solution of the original problem with controllable
2349
+ accuracy.
2350
+ References
2351
+ [AF03]
2352
+ R.A. Adams and J.J.F. Fournier.
2353
+ Sobolev spaces, volume 140 of Pure and
2354
+ Applied Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam, 2nd
2355
+ edition, 2003.
2356
+ [Akh98]
2357
+ N.N. Akhmediev. Spatial solitons in Kerr and Kerr-like media. Optical and
2358
+ Quantum Electronics, 30:535–569, 1998.
2359
+ [AY19]
2360
+ L. Angermann and V.V. Yatsyk. Resonant Scattering and Generation of Waves.
2361
+ Cubically Polarizable Layers. Springer-Verlag, Cham, 2019.
2362
+ [BSW16]
2363
+ D. Baskin, E.A. Spence, and J. Wunsch. Sharp high-frequency estimates for
2364
+ the Helmholtz equation and applications to boundary integral equations. SIAM
2365
+ J. Math. Anal., 48(1):229–267, 2016.
2366
+ [CEW21]
2367
+ H. Chen, G. Ev´equoz, and T. Weth. Complex solutions and stationary scatter-
2368
+ ing for the nonlinear Helmholtz equation. SIAM J. Math. Anal., 53(2):2349–
2369
+ 2372, 2021.
2370
+ [CK13]
2371
+ D. Colton and R. Kress. Integral Equation Methods in Scattering Theory. Clas-
2372
+ sics in Applied Mathematics. SIAM, Philadelphia,, 2013.
2373
+ [CK19]
2374
+ D. Colton and R. Kress. Inverse Acoustic and Electromagnetic Scattering The-
2375
+ ory, volume 93 of Applied Mathematical Sciences. Springer Nature, Cham, 4th
2376
+ edition, 2019.
2377
+ [CWGLS12] S.N. Chandler-Wilde, I.G. Graham, S. Langdon, and E.A. Spence. Numerical-
2378
+ asymptotic boundary integral methods in high-frequency acoustic scattering.
2379
+ Acta Numer., 21:89–305, 2012.
2380
+ [DLMF22]
2381
+ NIST Digital Library of Mathematical Functions, 2022.
2382
+ [Ern96]
2383
+ O.G. Ernst. A finite-element capacitance matrix method for exterior Helmholtz
2384
+ problems. Numer. Math., 75(2):175–204, 1996.
2385
+ [Eva15]
2386
+ L.C. Evans. Partial differential equations. AMS, Providence, RI, 2015. Cor-
2387
+ rected reprint of the 2nd edition.
2388
+ [HNPX11]
2389
+ G.C. Hsiao, N. Nigam, J.E. Pasciak, and L. Xu. Error analysis of the DtN-FEM
2390
+ for the scattering problem in acoustics via Fourier analysis. J. Comput. Appl.
2391
+ Math., 235:4949–4965, 2011.
2392
+ [KA21]
2393
+ P. Knabner and L. Angermann. Numerical methods for elliptic and parabolic
2394
+ partial differential equations. Texts in Applied Mathematics, Vol. 44. Springer
2395
+ Nature, Cham, 2nd ext. and rev. edition, 2021.
2396
+ 33
2397
+
2398
+ Resonant compactly supported nonlinearities
2399
+ January 30, 2023
2400
+ [KG89]
2401
+ J.B. Keller and D. Givoli. Exact non-reflecting boundary conditions. J. Comput.
2402
+ Phys., 82(1):172–192, 1989.
2403
+ [KN63]
2404
+ J.L. Kelley and I. Namioka. Linear Topological Spaces. Springer, New York-
2405
+ Heidelberg-Berlin, 1963.
2406
+ [Koy07]
2407
+ D. Koyama. Error estimates of the DtN finite element method for the exterior
2408
+ Helmholtz problem. J. Comput. Appl. Math., 200:21–31, 2007.
2409
+ [Koy09]
2410
+ D. Koyama.
2411
+ Error estimates of the finite element method for the exterior
2412
+ Helmholtz problem with a modified DtN boundary condition. J. Comput. Appl.
2413
+ Math., 232:109–121, 2009.
2414
+ [LM72]
2415
+ J.L. Lions and E. Magenes. Non-homogeneous boundary value problems and
2416
+ applications. Vol. I. Springer-Verlag, Berlin-Heidelberg-New York, 1972.
2417
+ [Man19]
2418
+ R. Mandel. Nonlinear Helmholtz Equations and Systems. Habilitation thesis,
2419
+ Fakult¨at f¨ur Mathematik, Karlsruher Institut f¨ur Technologie, 2019.
2420
+ [Mas87]
2421
+ M. Masmoudi. Numerical solution of exterior problems. Numer. Math., 51:87–
2422
+ 101, 1987.
2423
+ [McL00]
2424
+ W. McLean. Strongly elliptic systems and boundary integral equations. Cam-
2425
+ bridge University Press, Cambridge, 2000.
2426
+ [MS10]
2427
+ J.M. Melenk and M. Sauter. Convergence analysis for finite element discretiza-
2428
+ tions of the Helmholtz equation with Dirichlet-to-Neumann boundary condi-
2429
+ tions. Math. Comp., 79(272):1871–1914, 2010.
2430
+ [MV22]
2431
+ R. Maier and B. Verf¨urth. Multiscale scattering in nonlinear Kerr-type media.
2432
+ Math. Comp., 91(336):1655–1685, 2022.
2433
+ [N´ed01]
2434
+ J.C. N´ed´elec.
2435
+ Acoustic and Electromagnetic Equations. Integral Representa-
2436
+ tions for Harmonic Problems, volume 144 of Applied Mathematical Sciences.
2437
+ Springer-Verlag, New York, 2001.
2438
+ [Rel43]
2439
+ F. Rellich. ¨Uber das asymptotische Verhalten der L¨osungen von ∆u+λu = 0 in
2440
+ unendlichen Gebieten. Jahresbericht der Deutschen Mathematiker-Vereinigung,
2441
+ 53:57–65, 1943.
2442
+ [Sch74]
2443
+ A.H. Schatz. An observation concerning Ritz-Galerkin methods with indefinite
2444
+ bilinear forms. Math. Comp., 28(128):959–962, 1974.
2445
+ [SW07]
2446
+ J. Shen and L.-L. Wang. Analysis of a spectral-Galerkin approximation to the
2447
+ Helmholtz equation in exterior domains. SIAM J. Numer. Anal., 45(5):1954–
2448
+ 1978, 2007.
2449
+ [TW93]
2450
+ R.H. Torres and G.V. Welland.
2451
+ The Helmholtz equation and transmission
2452
+ problems with Lipschitz interfaces. Indiana Univ. Math. J., 42(4):1457–1485,
2453
+ 1993.
2454
+ [Wlo87]
2455
+ J. Wloka. Partial Differential Equations. Cambridge University Press, Cam-
2456
+ bridge, 1987.
2457
+ [Zei95]
2458
+ E. Zeidler. Applied functional analysis. Applications to mathematical physics.
2459
+ Springer-Verlag, New York-Berlin-Heidelberg, 1995. Applied Mathematical Sci-
2460
+ ences, vol. 108.
2461
+ 34
2462
+
AdFKT4oBgHgl3EQfVy5o/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
AtE1T4oBgHgl3EQfVQTf/content/2301.03101v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7cd2b70a0dadb5c4d7b0bb6a1eed42b287fbf2ba309f7515a6fb40fadfd82b3c
3
+ size 821369
AtE1T4oBgHgl3EQfVQTf/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6895da62dc3b027b2174b29f78fa37656086c520f3c743f7d206331f1ef46624
3
+ size 4390957
AtE1T4oBgHgl3EQfVQTf/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6ebb913795c517e12c07eca4a14b66f641599413cbba5acf8dc1baedbc92e33d
3
+ size 158372