url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
push_neg at h2
P_r P_s : Formula r s : VarName P_u Q_u P_v Q_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_2 : IsReplOfVarInFormula r s Q_u Q_v h1_ih_1 : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h1_ih_2 : ¬isBoundIn r Q_u → ¬isBoundIn s Q_u → IsProof ((eq_ r s).imp_ (Q_u.iff_ Q_v)) h2 : ¬(isBoundIn r P_u ∨ isBoundIn r Q_u) h3 : ¬isBoundIn s (P_u.imp_ Q_u) ⊢ IsProof ((eq_ r s).imp_ ((P_u.imp_ Q_u).iff_ (P_v.imp_ Q_v)))
P_r P_s : Formula r s : VarName P_u Q_u P_v Q_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_2 : IsReplOfVarInFormula r s Q_u Q_v h1_ih_1 : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h1_ih_2 : ¬isBoundIn r Q_u → ¬isBoundIn s Q_u → IsProof ((eq_ r s).imp_ (Q_u.iff_ Q_v)) h3 : ¬isBoundIn s (P_u.imp_ Q_u) h2 : ¬isBoundIn r P_u ∧ ¬isBoundIn r Q_u ⊢ IsProof ((eq_ r s).imp_ ((P_u.imp_ Q_u).iff_ (P_v.imp_ Q_v)))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
cases h2
P_r P_s : Formula r s : VarName P_u Q_u P_v Q_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_2 : IsReplOfVarInFormula r s Q_u Q_v h1_ih_1 : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h1_ih_2 : ¬isBoundIn r Q_u → ¬isBoundIn s Q_u → IsProof ((eq_ r s).imp_ (Q_u.iff_ Q_v)) h3 : ¬isBoundIn s (P_u.imp_ Q_u) h2 : ¬isBoundIn r P_u ∧ ¬isBoundIn r Q_u ⊢ IsProof ((eq_ r s).imp_ ((P_u.imp_ Q_u).iff_ (P_v.imp_ Q_v)))
case intro P_r P_s : Formula r s : VarName P_u Q_u P_v Q_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_2 : IsReplOfVarInFormula r s Q_u Q_v h1_ih_1 : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h1_ih_2 : ¬isBoundIn r Q_u → ¬isBoundIn s Q_u → IsProof ((eq_ r s).imp_ (Q_u.iff_ Q_v)) h3 : ¬isBoundIn s (P_u.imp_ Q_u) left✝ : ¬isBoundIn r P_u right✝ : ¬isBoundIn r Q_u ⊢ IsProof ((eq_ r s).imp_ ((P_u.imp_ Q_u).iff_ (P_v.imp_ Q_v)))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
simp only [isBoundIn] at h3
P_r P_s : Formula r s : VarName P_u Q_u P_v Q_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_2 : IsReplOfVarInFormula r s Q_u Q_v h1_ih_1 : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h1_ih_2 : ¬isBoundIn r Q_u → ¬isBoundIn s Q_u → IsProof ((eq_ r s).imp_ (Q_u.iff_ Q_v)) h3 : ¬isBoundIn s (P_u.imp_ Q_u) h2_left : ¬isBoundIn r P_u h2_right : ¬isBoundIn r Q_u ⊢ IsProof ((eq_ r s).imp_ ((P_u.imp_ Q_u).iff_ (P_v.imp_ Q_v)))
P_r P_s : Formula r s : VarName P_u Q_u P_v Q_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_2 : IsReplOfVarInFormula r s Q_u Q_v h1_ih_1 : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h1_ih_2 : ¬isBoundIn r Q_u → ¬isBoundIn s Q_u → IsProof ((eq_ r s).imp_ (Q_u.iff_ Q_v)) h3 : ¬(isBoundIn s P_u ∨ isBoundIn s Q_u) h2_left : ¬isBoundIn r P_u h2_right : ¬isBoundIn r Q_u ⊢ IsProof ((eq_ r s).imp_ ((P_u.imp_ Q_u).iff_ (P_v.imp_ Q_v)))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
push_neg at h3
P_r P_s : Formula r s : VarName P_u Q_u P_v Q_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_2 : IsReplOfVarInFormula r s Q_u Q_v h1_ih_1 : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h1_ih_2 : ¬isBoundIn r Q_u → ¬isBoundIn s Q_u → IsProof ((eq_ r s).imp_ (Q_u.iff_ Q_v)) h3 : ¬(isBoundIn s P_u ∨ isBoundIn s Q_u) h2_left : ¬isBoundIn r P_u h2_right : ¬isBoundIn r Q_u ⊢ IsProof ((eq_ r s).imp_ ((P_u.imp_ Q_u).iff_ (P_v.imp_ Q_v)))
P_r P_s : Formula r s : VarName P_u Q_u P_v Q_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_2 : IsReplOfVarInFormula r s Q_u Q_v h1_ih_1 : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h1_ih_2 : ¬isBoundIn r Q_u → ¬isBoundIn s Q_u → IsProof ((eq_ r s).imp_ (Q_u.iff_ Q_v)) h2_left : ¬isBoundIn r P_u h2_right : ¬isBoundIn r Q_u h3 : ¬isBoundIn s P_u ∧ ¬isBoundIn s Q_u ⊢ IsProof ((eq_ r s).imp_ ((P_u.imp_ Q_u).iff_ (P_v.imp_ Q_v)))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
cases h3
P_r P_s : Formula r s : VarName P_u Q_u P_v Q_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_2 : IsReplOfVarInFormula r s Q_u Q_v h1_ih_1 : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h1_ih_2 : ¬isBoundIn r Q_u → ¬isBoundIn s Q_u → IsProof ((eq_ r s).imp_ (Q_u.iff_ Q_v)) h2_left : ¬isBoundIn r P_u h2_right : ¬isBoundIn r Q_u h3 : ¬isBoundIn s P_u ∧ ¬isBoundIn s Q_u ⊢ IsProof ((eq_ r s).imp_ ((P_u.imp_ Q_u).iff_ (P_v.imp_ Q_v)))
case intro P_r P_s : Formula r s : VarName P_u Q_u P_v Q_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_2 : IsReplOfVarInFormula r s Q_u Q_v h1_ih_1 : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h1_ih_2 : ¬isBoundIn r Q_u → ¬isBoundIn s Q_u → IsProof ((eq_ r s).imp_ (Q_u.iff_ Q_v)) h2_left : ¬isBoundIn r P_u h2_right : ¬isBoundIn r Q_u left✝ : ¬isBoundIn s P_u right✝ : ¬isBoundIn s Q_u ⊢ IsProof ((eq_ r s).imp_ ((P_u.imp_ Q_u).iff_ (P_v.imp_ Q_v)))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
specialize h1_ih_1 h2_left h3_left
P_r P_s : Formula r s : VarName P_u Q_u P_v Q_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_2 : IsReplOfVarInFormula r s Q_u Q_v h1_ih_1 : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h1_ih_2 : ¬isBoundIn r Q_u → ¬isBoundIn s Q_u → IsProof ((eq_ r s).imp_ (Q_u.iff_ Q_v)) h2_left : ¬isBoundIn r P_u h2_right : ¬isBoundIn r Q_u h3_left : ¬isBoundIn s P_u h3_right : ¬isBoundIn s Q_u ⊢ IsProof ((eq_ r s).imp_ ((P_u.imp_ Q_u).iff_ (P_v.imp_ Q_v)))
P_r P_s : Formula r s : VarName P_u Q_u P_v Q_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_2 : IsReplOfVarInFormula r s Q_u Q_v h1_ih_2 : ¬isBoundIn r Q_u → ¬isBoundIn s Q_u → IsProof ((eq_ r s).imp_ (Q_u.iff_ Q_v)) h2_left : ¬isBoundIn r P_u h2_right : ¬isBoundIn r Q_u h3_left : ¬isBoundIn s P_u h3_right : ¬isBoundIn s Q_u h1_ih_1 : IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) ⊢ IsProof ((eq_ r s).imp_ ((P_u.imp_ Q_u).iff_ (P_v.imp_ Q_v)))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
specialize h1_ih_2 h2_right h3_right
P_r P_s : Formula r s : VarName P_u Q_u P_v Q_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_2 : IsReplOfVarInFormula r s Q_u Q_v h1_ih_2 : ¬isBoundIn r Q_u → ¬isBoundIn s Q_u → IsProof ((eq_ r s).imp_ (Q_u.iff_ Q_v)) h2_left : ¬isBoundIn r P_u h2_right : ¬isBoundIn r Q_u h3_left : ¬isBoundIn s P_u h3_right : ¬isBoundIn s Q_u h1_ih_1 : IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) ⊢ IsProof ((eq_ r s).imp_ ((P_u.imp_ Q_u).iff_ (P_v.imp_ Q_v)))
P_r P_s : Formula r s : VarName P_u Q_u P_v Q_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_2 : IsReplOfVarInFormula r s Q_u Q_v h2_left : ¬isBoundIn r P_u h2_right : ¬isBoundIn r Q_u h3_left : ¬isBoundIn s P_u h3_right : ¬isBoundIn s Q_u h1_ih_1 : IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h1_ih_2 : IsProof ((eq_ r s).imp_ (Q_u.iff_ Q_v)) ⊢ IsProof ((eq_ r s).imp_ ((P_u.imp_ Q_u).iff_ (P_v.imp_ Q_v)))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
apply IsDeduct.mp_ ((eq_ r s).imp_ (Q_u.iff_ Q_v))
P_r P_s : Formula r s : VarName P_u Q_u P_v Q_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_2 : IsReplOfVarInFormula r s Q_u Q_v h2_left : ¬isBoundIn r P_u h2_right : ¬isBoundIn r Q_u h3_left : ¬isBoundIn s P_u h3_right : ¬isBoundIn s Q_u h1_ih_1 : IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h1_ih_2 : IsProof ((eq_ r s).imp_ (Q_u.iff_ Q_v)) ⊢ IsProof ((eq_ r s).imp_ ((P_u.imp_ Q_u).iff_ (P_v.imp_ Q_v)))
case a P_r P_s : Formula r s : VarName P_u Q_u P_v Q_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_2 : IsReplOfVarInFormula r s Q_u Q_v h2_left : ¬isBoundIn r P_u h2_right : ¬isBoundIn r Q_u h3_left : ¬isBoundIn s P_u h3_right : ¬isBoundIn s Q_u h1_ih_1 : IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h1_ih_2 : IsProof ((eq_ r s).imp_ (Q_u.iff_ Q_v)) ⊢ IsDeduct ∅ (((eq_ r s).imp_ (Q_u.iff_ Q_v)).imp_ ((eq_ r s).imp_ ((P_u.imp_ Q_u).iff_ (P_v.imp_ Q_v)))) case a P_r P_s : Formula r s : VarName P_u Q_u P_v Q_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_2 : IsReplOfVarInFormula r s Q_u Q_v h2_left : ¬isBoundIn r P_u h2_right : ¬isBoundIn r Q_u h3_left : ¬isBoundIn s P_u h3_right : ¬isBoundIn s Q_u h1_ih_1 : IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h1_ih_2 : IsProof ((eq_ r s).imp_ (Q_u.iff_ Q_v)) ⊢ IsDeduct ∅ ((eq_ r s).imp_ (Q_u.iff_ Q_v))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
apply IsDeduct.mp_ ((eq_ r s).imp_ (P_u.iff_ P_v))
case a P_r P_s : Formula r s : VarName P_u Q_u P_v Q_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_2 : IsReplOfVarInFormula r s Q_u Q_v h2_left : ¬isBoundIn r P_u h2_right : ¬isBoundIn r Q_u h3_left : ¬isBoundIn s P_u h3_right : ¬isBoundIn s Q_u h1_ih_1 : IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h1_ih_2 : IsProof ((eq_ r s).imp_ (Q_u.iff_ Q_v)) ⊢ IsDeduct ∅ (((eq_ r s).imp_ (Q_u.iff_ Q_v)).imp_ ((eq_ r s).imp_ ((P_u.imp_ Q_u).iff_ (P_v.imp_ Q_v))))
case a.a P_r P_s : Formula r s : VarName P_u Q_u P_v Q_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_2 : IsReplOfVarInFormula r s Q_u Q_v h2_left : ¬isBoundIn r P_u h2_right : ¬isBoundIn r Q_u h3_left : ¬isBoundIn s P_u h3_right : ¬isBoundIn s Q_u h1_ih_1 : IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h1_ih_2 : IsProof ((eq_ r s).imp_ (Q_u.iff_ Q_v)) ⊢ IsDeduct ∅ (((eq_ r s).imp_ (P_u.iff_ P_v)).imp_ (((eq_ r s).imp_ (Q_u.iff_ Q_v)).imp_ ((eq_ r s).imp_ ((P_u.imp_ Q_u).iff_ (P_v.imp_ Q_v))))) case a.a P_r P_s : Formula r s : VarName P_u Q_u P_v Q_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_2 : IsReplOfVarInFormula r s Q_u Q_v h2_left : ¬isBoundIn r P_u h2_right : ¬isBoundIn r Q_u h3_left : ¬isBoundIn s P_u h3_right : ¬isBoundIn s Q_u h1_ih_1 : IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h1_ih_2 : IsProof ((eq_ r s).imp_ (Q_u.iff_ Q_v)) ⊢ IsDeduct ∅ ((eq_ r s).imp_ (P_u.iff_ P_v))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
simp only [def_iff_]
case a.a P_r P_s : Formula r s : VarName P_u Q_u P_v Q_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_2 : IsReplOfVarInFormula r s Q_u Q_v h2_left : ¬isBoundIn r P_u h2_right : ¬isBoundIn r Q_u h3_left : ¬isBoundIn s P_u h3_right : ¬isBoundIn s Q_u h1_ih_1 : IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h1_ih_2 : IsProof ((eq_ r s).imp_ (Q_u.iff_ Q_v)) ⊢ IsDeduct ∅ (((eq_ r s).imp_ (P_u.iff_ P_v)).imp_ (((eq_ r s).imp_ (Q_u.iff_ Q_v)).imp_ ((eq_ r s).imp_ ((P_u.imp_ Q_u).iff_ (P_v.imp_ Q_v)))))
case a.a P_r P_s : Formula r s : VarName P_u Q_u P_v Q_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_2 : IsReplOfVarInFormula r s Q_u Q_v h2_left : ¬isBoundIn r P_u h2_right : ¬isBoundIn r Q_u h3_left : ¬isBoundIn s P_u h3_right : ¬isBoundIn s Q_u h1_ih_1 : IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h1_ih_2 : IsProof ((eq_ r s).imp_ (Q_u.iff_ Q_v)) ⊢ IsDeduct ∅ (((eq_ r s).imp_ ((P_u.imp_ P_v).and_ (P_v.imp_ P_u))).imp_ (((eq_ r s).imp_ ((Q_u.imp_ Q_v).and_ (Q_v.imp_ Q_u))).imp_ ((eq_ r s).imp_ (((P_u.imp_ Q_u).imp_ (P_v.imp_ Q_v)).and_ ((P_v.imp_ Q_v).imp_ (P_u.imp_ Q_u))))))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
simp only [def_and_]
case a.a P_r P_s : Formula r s : VarName P_u Q_u P_v Q_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_2 : IsReplOfVarInFormula r s Q_u Q_v h2_left : ¬isBoundIn r P_u h2_right : ¬isBoundIn r Q_u h3_left : ¬isBoundIn s P_u h3_right : ¬isBoundIn s Q_u h1_ih_1 : IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h1_ih_2 : IsProof ((eq_ r s).imp_ (Q_u.iff_ Q_v)) ⊢ IsDeduct ∅ (((eq_ r s).imp_ ((P_u.imp_ P_v).and_ (P_v.imp_ P_u))).imp_ (((eq_ r s).imp_ ((Q_u.imp_ Q_v).and_ (Q_v.imp_ Q_u))).imp_ ((eq_ r s).imp_ (((P_u.imp_ Q_u).imp_ (P_v.imp_ Q_v)).and_ ((P_v.imp_ Q_v).imp_ (P_u.imp_ Q_u))))))
case a.a P_r P_s : Formula r s : VarName P_u Q_u P_v Q_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_2 : IsReplOfVarInFormula r s Q_u Q_v h2_left : ¬isBoundIn r P_u h2_right : ¬isBoundIn r Q_u h3_left : ¬isBoundIn s P_u h3_right : ¬isBoundIn s Q_u h1_ih_1 : IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h1_ih_2 : IsProof ((eq_ r s).imp_ (Q_u.iff_ Q_v)) ⊢ IsDeduct ∅ (((eq_ r s).imp_ ((P_u.imp_ P_v).imp_ (P_v.imp_ P_u).not_).not_).imp_ (((eq_ r s).imp_ ((Q_u.imp_ Q_v).imp_ (Q_v.imp_ Q_u).not_).not_).imp_ ((eq_ r s).imp_ (((P_u.imp_ Q_u).imp_ (P_v.imp_ Q_v)).imp_ ((P_v.imp_ Q_v).imp_ (P_u.imp_ Q_u)).not_).not_)))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
SC
case a.a P_r P_s : Formula r s : VarName P_u Q_u P_v Q_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_2 : IsReplOfVarInFormula r s Q_u Q_v h2_left : ¬isBoundIn r P_u h2_right : ¬isBoundIn r Q_u h3_left : ¬isBoundIn s P_u h3_right : ¬isBoundIn s Q_u h1_ih_1 : IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h1_ih_2 : IsProof ((eq_ r s).imp_ (Q_u.iff_ Q_v)) ⊢ IsDeduct ∅ (((eq_ r s).imp_ ((P_u.imp_ P_v).imp_ (P_v.imp_ P_u).not_).not_).imp_ (((eq_ r s).imp_ ((Q_u.imp_ Q_v).imp_ (Q_v.imp_ Q_u).not_).not_).imp_ ((eq_ r s).imp_ (((P_u.imp_ Q_u).imp_ (P_v.imp_ Q_v)).imp_ ((P_v.imp_ Q_v).imp_ (P_u.imp_ Q_u)).not_).not_)))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
exact h1_ih_1
case a.a P_r P_s : Formula r s : VarName P_u Q_u P_v Q_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_2 : IsReplOfVarInFormula r s Q_u Q_v h2_left : ¬isBoundIn r P_u h2_right : ¬isBoundIn r Q_u h3_left : ¬isBoundIn s P_u h3_right : ¬isBoundIn s Q_u h1_ih_1 : IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h1_ih_2 : IsProof ((eq_ r s).imp_ (Q_u.iff_ Q_v)) ⊢ IsDeduct ∅ ((eq_ r s).imp_ (P_u.iff_ P_v))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
exact h1_ih_2
case a P_r P_s : Formula r s : VarName P_u Q_u P_v Q_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_2 : IsReplOfVarInFormula r s Q_u Q_v h2_left : ¬isBoundIn r P_u h2_right : ¬isBoundIn r Q_u h3_left : ¬isBoundIn s P_u h3_right : ¬isBoundIn s Q_u h1_ih_1 : IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h1_ih_2 : IsProof ((eq_ r s).imp_ (Q_u.iff_ Q_v)) ⊢ IsDeduct ∅ ((eq_ r s).imp_ (Q_u.iff_ Q_v))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
simp only [isBoundIn] at h2
P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2 : ¬isBoundIn r (forall_ x P_u) h3 : ¬isBoundIn s (forall_ x P_u) ⊢ IsProof ((eq_ r s).imp_ ((forall_ x P_u).iff_ (forall_ x P_v)))
P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2 : ¬(r = x ∨ isBoundIn r P_u) h3 : ¬isBoundIn s (forall_ x P_u) ⊢ IsProof ((eq_ r s).imp_ ((forall_ x P_u).iff_ (forall_ x P_v)))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
push_neg at h2
P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2 : ¬(r = x ∨ isBoundIn r P_u) h3 : ¬isBoundIn s (forall_ x P_u) ⊢ IsProof ((eq_ r s).imp_ ((forall_ x P_u).iff_ (forall_ x P_v)))
P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h3 : ¬isBoundIn s (forall_ x P_u) h2 : r ≠ x ∧ ¬isBoundIn r P_u ⊢ IsProof ((eq_ r s).imp_ ((forall_ x P_u).iff_ (forall_ x P_v)))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
cases h2
P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h3 : ¬isBoundIn s (forall_ x P_u) h2 : r ≠ x ∧ ¬isBoundIn r P_u ⊢ IsProof ((eq_ r s).imp_ ((forall_ x P_u).iff_ (forall_ x P_v)))
case intro P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h3 : ¬isBoundIn s (forall_ x P_u) left✝ : r ≠ x right✝ : ¬isBoundIn r P_u ⊢ IsProof ((eq_ r s).imp_ ((forall_ x P_u).iff_ (forall_ x P_v)))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
simp only [isBoundIn] at h3
P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h3 : ¬isBoundIn s (forall_ x P_u) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u ⊢ IsProof ((eq_ r s).imp_ ((forall_ x P_u).iff_ (forall_ x P_v)))
P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h3 : ¬(s = x ∨ isBoundIn s P_u) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u ⊢ IsProof ((eq_ r s).imp_ ((forall_ x P_u).iff_ (forall_ x P_v)))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
push_neg at h3
P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h3 : ¬(s = x ∨ isBoundIn s P_u) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u ⊢ IsProof ((eq_ r s).imp_ ((forall_ x P_u).iff_ (forall_ x P_v)))
P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3 : s ≠ x ∧ ¬isBoundIn s P_u ⊢ IsProof ((eq_ r s).imp_ ((forall_ x P_u).iff_ (forall_ x P_v)))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
cases h3
P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3 : s ≠ x ∧ ¬isBoundIn s P_u ⊢ IsProof ((eq_ r s).imp_ ((forall_ x P_u).iff_ (forall_ x P_v)))
case intro P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u left✝ : s ≠ x right✝ : ¬isBoundIn s P_u ⊢ IsProof ((eq_ r s).imp_ ((forall_ x P_u).iff_ (forall_ x P_v)))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
apply deduction_theorem
P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ IsProof ((eq_ r s).imp_ ((forall_ x P_u).iff_ (forall_ x P_v)))
case h1 P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ IsDeduct (∅ ∪ {eq_ r s}) ((forall_ x P_u).iff_ (forall_ x P_v))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
simp
case h1 P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ IsDeduct (∅ ∪ {eq_ r s}) ((forall_ x P_u).iff_ (forall_ x P_v))
case h1 P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ IsDeduct {eq_ r s} ((forall_ x P_u).iff_ (forall_ x P_v))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
apply IsDeduct.mp_ (forall_ x (P_u.iff_ P_v))
case h1 P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ IsDeduct {eq_ r s} ((forall_ x P_u).iff_ (forall_ x P_v))
case h1.a P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ IsDeduct {eq_ r s} ((forall_ x (P_u.iff_ P_v)).imp_ ((forall_ x P_u).iff_ (forall_ x P_v))) case h1.a P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ IsDeduct {eq_ r s} (forall_ x (P_u.iff_ P_v))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
apply proof_imp_deduct
case h1.a P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ IsDeduct {eq_ r s} ((forall_ x (P_u.iff_ P_v)).imp_ ((forall_ x P_u).iff_ (forall_ x P_v)))
case h1.a.h1 P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ IsProof ((forall_ x (P_u.iff_ P_v)).imp_ ((forall_ x P_u).iff_ (forall_ x P_v)))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
apply T_18_1
case h1.a.h1 P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ IsProof ((forall_ x (P_u.iff_ P_v)).imp_ ((forall_ x P_u).iff_ (forall_ x P_v)))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
apply IsDeduct.mp_ (eq_ r s)
case h1.a P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ IsDeduct {eq_ r s} (forall_ x (P_u.iff_ P_v))
case h1.a.a P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ IsDeduct {eq_ r s} ((eq_ r s).imp_ (forall_ x (P_u.iff_ P_v))) case h1.a.a P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ IsDeduct {eq_ r s} (eq_ r s)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
apply proof_imp_deduct
case h1.a.a P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ IsDeduct {eq_ r s} ((eq_ r s).imp_ (forall_ x (P_u.iff_ P_v)))
case h1.a.a.h1 P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ IsProof ((eq_ r s).imp_ (forall_ x (P_u.iff_ P_v)))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
apply IsDeduct.mp_ (forall_ x ((eq_ r s).imp_ (P_u.iff_ P_v)))
case h1.a.a.h1 P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ IsProof ((eq_ r s).imp_ (forall_ x (P_u.iff_ P_v)))
case h1.a.a.h1.a P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ IsDeduct ∅ ((forall_ x ((eq_ r s).imp_ (P_u.iff_ P_v))).imp_ ((eq_ r s).imp_ (forall_ x (P_u.iff_ P_v)))) case h1.a.a.h1.a P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ IsDeduct ∅ (forall_ x ((eq_ r s).imp_ (P_u.iff_ P_v)))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
apply T_19_TS_21_left
case h1.a.a.h1.a P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ IsDeduct ∅ ((forall_ x ((eq_ r s).imp_ (P_u.iff_ P_v))).imp_ ((eq_ r s).imp_ (forall_ x (P_u.iff_ P_v))))
case h1.a.a.h1.a.h1 P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ ¬isFreeIn x (eq_ r s)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
simp only [isFreeIn]
case h1.a.a.h1.a.h1 P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ ¬isFreeIn x (eq_ r s)
case h1.a.a.h1.a.h1 P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ ¬(x = r ∨ x = s)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
push_neg
case h1.a.a.h1.a.h1 P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ ¬(x = r ∨ x = s)
case h1.a.a.h1.a.h1 P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ x ≠ r ∧ x ≠ s
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
constructor
case h1.a.a.h1.a.h1 P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ x ≠ r ∧ x ≠ s
case h1.a.a.h1.a.h1.left P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ x ≠ r case h1.a.a.h1.a.h1.right P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ x ≠ s
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
simp only [ne_comm]
case h1.a.a.h1.a.h1.left P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ x ≠ r
case h1.a.a.h1.a.h1.left P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ r ≠ x
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
exact h2_left
case h1.a.a.h1.a.h1.left P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ r ≠ x
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
simp only [ne_comm]
case h1.a.a.h1.a.h1.right P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ x ≠ s
case h1.a.a.h1.a.h1.right P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ s ≠ x
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
exact h3_left
case h1.a.a.h1.a.h1.right P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ s ≠ x
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
apply generalization
case h1.a.a.h1.a P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ IsDeduct ∅ (forall_ x ((eq_ r s).imp_ (P_u.iff_ P_v)))
case h1.a.a.h1.a.h1 P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ IsDeduct ∅ ((eq_ r s).imp_ (P_u.iff_ P_v)) case h1.a.a.h1.a.h2 P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ ∀ H ∈ ∅, ¬isFreeIn x H
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
exact h1_ih h2_right h3_right
case h1.a.a.h1.a.h1 P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ IsDeduct ∅ ((eq_ r s).imp_ (P_u.iff_ P_v))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
intro H a1
case h1.a.a.h1.a.h2 P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ ∀ H ∈ ∅, ¬isFreeIn x H
case h1.a.a.h1.a.h2 P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u H : Formula a1 : H ∈ ∅ ⊢ ¬isFreeIn x H
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
simp at a1
case h1.a.a.h1.a.h2 P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u H : Formula a1 : H ∈ ∅ ⊢ ¬isFreeIn x H
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
apply IsDeduct.assume_
case h1.a.a P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ IsDeduct {eq_ r s} (eq_ r s)
case h1.a.a.a P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ eq_ r s ∈ {eq_ r s}
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
simp
case h1.a.a.a P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ eq_ r s ∈ {eq_ r s}
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
sorry
case exists_ P_r P_s : Formula r s x✝ : VarName P_u✝ P_v✝ : Formula a✝ : IsReplOfVarInFormula r s P_u✝ P_v✝ a_ih✝ : ¬isBoundIn r P_u✝ → ¬isBoundIn s P_u✝ → IsProof ((eq_ r s).imp_ (P_u✝.iff_ P_v✝)) h2 : ¬isBoundIn r (exists_ x✝ P_u✝) h3 : ¬isBoundIn s (exists_ x✝ P_u✝) ⊢ IsProof ((eq_ r s).imp_ ((exists_ x✝ P_u✝).iff_ (exists_ x✝ P_v✝)))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.sub_no_predVar
[47, 1]
[91, 20]
induction F
F : Formula τ : PredName → PredName h1 : F.predVarSet = ∅ ⊢ sub τ F = F
case pred_const_ τ : PredName → PredName a✝¹ : PredName a✝ : List VarName h1 : (pred_const_ a✝¹ a✝).predVarSet = ∅ ⊢ sub τ (pred_const_ a✝¹ a✝) = pred_const_ a✝¹ a✝ case pred_var_ τ : PredName → PredName a✝¹ : PredName a✝ : List VarName h1 : (pred_var_ a✝¹ a✝).predVarSet = ∅ ⊢ sub τ (pred_var_ a✝¹ a✝) = pred_var_ a✝¹ a✝ case eq_ τ : PredName → PredName a✝¹ a✝ : VarName h1 : (eq_ a✝¹ a✝).predVarSet = ∅ ⊢ sub τ (eq_ a✝¹ a✝) = eq_ a✝¹ a✝ case true_ τ : PredName → PredName h1 : true_.predVarSet = ∅ ⊢ sub τ true_ = true_ case false_ τ : PredName → PredName h1 : false_.predVarSet = ∅ ⊢ sub τ false_ = false_ case not_ τ : PredName → PredName a✝ : Formula a_ih✝ : a✝.predVarSet = ∅ → sub τ a✝ = a✝ h1 : a✝.not_.predVarSet = ∅ ⊢ sub τ a✝.not_ = a✝.not_ case imp_ τ : PredName → PredName a✝¹ a✝ : Formula a_ih✝¹ : a✝¹.predVarSet = ∅ → sub τ a✝¹ = a✝¹ a_ih✝ : a✝.predVarSet = ∅ → sub τ a✝ = a✝ h1 : (a✝¹.imp_ a✝).predVarSet = ∅ ⊢ sub τ (a✝¹.imp_ a✝) = a✝¹.imp_ a✝ case and_ τ : PredName → PredName a✝¹ a✝ : Formula a_ih✝¹ : a✝¹.predVarSet = ∅ → sub τ a✝¹ = a✝¹ a_ih✝ : a✝.predVarSet = ∅ → sub τ a✝ = a✝ h1 : (a✝¹.and_ a✝).predVarSet = ∅ ⊢ sub τ (a✝¹.and_ a✝) = a✝¹.and_ a✝ case or_ τ : PredName → PredName a✝¹ a✝ : Formula a_ih✝¹ : a✝¹.predVarSet = ∅ → sub τ a✝¹ = a✝¹ a_ih✝ : a✝.predVarSet = ∅ → sub τ a✝ = a✝ h1 : (a✝¹.or_ a✝).predVarSet = ∅ ⊢ sub τ (a✝¹.or_ a✝) = a✝¹.or_ a✝ case iff_ τ : PredName → PredName a✝¹ a✝ : Formula a_ih✝¹ : a✝¹.predVarSet = ∅ → sub τ a✝¹ = a✝¹ a_ih✝ : a✝.predVarSet = ∅ → sub τ a✝ = a✝ h1 : (a✝¹.iff_ a✝).predVarSet = ∅ ⊢ sub τ (a✝¹.iff_ a✝) = a✝¹.iff_ a✝ case forall_ τ : PredName → PredName a✝¹ : VarName a✝ : Formula a_ih✝ : a✝.predVarSet = ∅ → sub τ a✝ = a✝ h1 : (forall_ a✝¹ a✝).predVarSet = ∅ ⊢ sub τ (forall_ a✝¹ a✝) = forall_ a✝¹ a✝ case exists_ τ : PredName → PredName a✝¹ : VarName a✝ : Formula a_ih✝ : a✝.predVarSet = ∅ → sub τ a✝ = a✝ h1 : (exists_ a✝¹ a✝).predVarSet = ∅ ⊢ sub τ (exists_ a✝¹ a✝) = exists_ a✝¹ a✝ case def_ τ : PredName → PredName a✝¹ : DefName a✝ : List VarName h1 : (def_ a✝¹ a✝).predVarSet = ∅ ⊢ sub τ (def_ a✝¹ a✝) = def_ a✝¹ a✝
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.sub_no_predVar
[47, 1]
[91, 20]
case pred_const_ X xs => simp only [sub]
τ : PredName → PredName X : PredName xs : List VarName h1 : (pred_const_ X xs).predVarSet = ∅ ⊢ sub τ (pred_const_ X xs) = pred_const_ X xs
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.sub_no_predVar
[47, 1]
[91, 20]
case pred_var_ X xs => simp only [predVarSet] at h1 simp at h1
τ : PredName → PredName X : PredName xs : List VarName h1 : (pred_var_ X xs).predVarSet = ∅ ⊢ sub τ (pred_var_ X xs) = pred_var_ X xs
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.sub_no_predVar
[47, 1]
[91, 20]
case eq_ x y => simp only [sub]
τ : PredName → PredName x y : VarName h1 : (eq_ x y).predVarSet = ∅ ⊢ sub τ (eq_ x y) = eq_ x y
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.sub_no_predVar
[47, 1]
[91, 20]
case true_ | false_ => simp only [sub]
τ : PredName → PredName h1 : false_.predVarSet = ∅ ⊢ sub τ false_ = false_
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.sub_no_predVar
[47, 1]
[91, 20]
case not_ phi phi_ih => simp only [predVarSet] at h1 simp only [sub] congr! exact phi_ih h1
τ : PredName → PredName phi : Formula phi_ih : phi.predVarSet = ∅ → sub τ phi = phi h1 : phi.not_.predVarSet = ∅ ⊢ sub τ phi.not_ = phi.not_
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.sub_no_predVar
[47, 1]
[91, 20]
case forall_ x phi phi_ih | exists_ x phi phi_ih => simp only [predVarSet] at h1 simp only [sub] congr! exact phi_ih h1
τ : PredName → PredName x : VarName phi : Formula phi_ih : phi.predVarSet = ∅ → sub τ phi = phi h1 : (exists_ x phi).predVarSet = ∅ ⊢ sub τ (exists_ x phi) = exists_ x phi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.sub_no_predVar
[47, 1]
[91, 20]
case def_ X xs => simp only [sub]
τ : PredName → PredName X : DefName xs : List VarName h1 : (def_ X xs).predVarSet = ∅ ⊢ sub τ (def_ X xs) = def_ X xs
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.sub_no_predVar
[47, 1]
[91, 20]
simp only [sub]
τ : PredName → PredName X : PredName xs : List VarName h1 : (pred_const_ X xs).predVarSet = ∅ ⊢ sub τ (pred_const_ X xs) = pred_const_ X xs
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.sub_no_predVar
[47, 1]
[91, 20]
simp only [predVarSet] at h1
τ : PredName → PredName X : PredName xs : List VarName h1 : (pred_var_ X xs).predVarSet = ∅ ⊢ sub τ (pred_var_ X xs) = pred_var_ X xs
τ : PredName → PredName X : PredName xs : List VarName h1 : {(X, xs.length)} = ∅ ⊢ sub τ (pred_var_ X xs) = pred_var_ X xs
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.sub_no_predVar
[47, 1]
[91, 20]
simp at h1
τ : PredName → PredName X : PredName xs : List VarName h1 : {(X, xs.length)} = ∅ ⊢ sub τ (pred_var_ X xs) = pred_var_ X xs
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.sub_no_predVar
[47, 1]
[91, 20]
simp only [sub]
τ : PredName → PredName x y : VarName h1 : (eq_ x y).predVarSet = ∅ ⊢ sub τ (eq_ x y) = eq_ x y
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.sub_no_predVar
[47, 1]
[91, 20]
simp only [sub]
τ : PredName → PredName h1 : false_.predVarSet = ∅ ⊢ sub τ false_ = false_
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.sub_no_predVar
[47, 1]
[91, 20]
simp only [predVarSet] at h1
τ : PredName → PredName phi : Formula phi_ih : phi.predVarSet = ∅ → sub τ phi = phi h1 : phi.not_.predVarSet = ∅ ⊢ sub τ phi.not_ = phi.not_
τ : PredName → PredName phi : Formula phi_ih : phi.predVarSet = ∅ → sub τ phi = phi h1 : phi.predVarSet = ∅ ⊢ sub τ phi.not_ = phi.not_
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.sub_no_predVar
[47, 1]
[91, 20]
simp only [sub]
τ : PredName → PredName phi : Formula phi_ih : phi.predVarSet = ∅ → sub τ phi = phi h1 : phi.predVarSet = ∅ ⊢ sub τ phi.not_ = phi.not_
τ : PredName → PredName phi : Formula phi_ih : phi.predVarSet = ∅ → sub τ phi = phi h1 : phi.predVarSet = ∅ ⊢ (sub τ phi).not_ = phi.not_
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.sub_no_predVar
[47, 1]
[91, 20]
congr!
τ : PredName → PredName phi : Formula phi_ih : phi.predVarSet = ∅ → sub τ phi = phi h1 : phi.predVarSet = ∅ ⊢ (sub τ phi).not_ = phi.not_
case h.e'_1 τ : PredName → PredName phi : Formula phi_ih : phi.predVarSet = ∅ → sub τ phi = phi h1 : phi.predVarSet = ∅ ⊢ sub τ phi = phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.sub_no_predVar
[47, 1]
[91, 20]
exact phi_ih h1
case h.e'_1 τ : PredName → PredName phi : Formula phi_ih : phi.predVarSet = ∅ → sub τ phi = phi h1 : phi.predVarSet = ∅ ⊢ sub τ phi = phi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.sub_no_predVar
[47, 1]
[91, 20]
simp only [predVarSet] at h1
τ : PredName → PredName phi psi : Formula phi_ih : phi.predVarSet = ∅ → sub τ phi = phi psi_ih : psi.predVarSet = ∅ → sub τ psi = psi h1 : (phi.iff_ psi).predVarSet = ∅ ⊢ sub τ (phi.iff_ psi) = phi.iff_ psi
τ : PredName → PredName phi psi : Formula phi_ih : phi.predVarSet = ∅ → sub τ phi = phi psi_ih : psi.predVarSet = ∅ → sub τ psi = psi h1 : phi.predVarSet ∪ psi.predVarSet = ∅ ⊢ sub τ (phi.iff_ psi) = phi.iff_ psi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.sub_no_predVar
[47, 1]
[91, 20]
simp only [Finset.union_eq_empty] at h1
τ : PredName → PredName phi psi : Formula phi_ih : phi.predVarSet = ∅ → sub τ phi = phi psi_ih : psi.predVarSet = ∅ → sub τ psi = psi h1 : phi.predVarSet ∪ psi.predVarSet = ∅ ⊢ sub τ (phi.iff_ psi) = phi.iff_ psi
τ : PredName → PredName phi psi : Formula phi_ih : phi.predVarSet = ∅ → sub τ phi = phi psi_ih : psi.predVarSet = ∅ → sub τ psi = psi h1 : phi.predVarSet = ∅ ∧ psi.predVarSet = ∅ ⊢ sub τ (phi.iff_ psi) = phi.iff_ psi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.sub_no_predVar
[47, 1]
[91, 20]
cases h1
τ : PredName → PredName phi psi : Formula phi_ih : phi.predVarSet = ∅ → sub τ phi = phi psi_ih : psi.predVarSet = ∅ → sub τ psi = psi h1 : phi.predVarSet = ∅ ∧ psi.predVarSet = ∅ ⊢ sub τ (phi.iff_ psi) = phi.iff_ psi
case intro τ : PredName → PredName phi psi : Formula phi_ih : phi.predVarSet = ∅ → sub τ phi = phi psi_ih : psi.predVarSet = ∅ → sub τ psi = psi left✝ : phi.predVarSet = ∅ right✝ : psi.predVarSet = ∅ ⊢ sub τ (phi.iff_ psi) = phi.iff_ psi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.sub_no_predVar
[47, 1]
[91, 20]
simp only [sub]
τ : PredName → PredName phi psi : Formula phi_ih : phi.predVarSet = ∅ → sub τ phi = phi psi_ih : psi.predVarSet = ∅ → sub τ psi = psi h1_left : phi.predVarSet = ∅ h1_right : psi.predVarSet = ∅ ⊢ sub τ (phi.iff_ psi) = phi.iff_ psi
τ : PredName → PredName phi psi : Formula phi_ih : phi.predVarSet = ∅ → sub τ phi = phi psi_ih : psi.predVarSet = ∅ → sub τ psi = psi h1_left : phi.predVarSet = ∅ h1_right : psi.predVarSet = ∅ ⊢ (sub τ phi).iff_ (sub τ psi) = phi.iff_ psi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.sub_no_predVar
[47, 1]
[91, 20]
congr!
τ : PredName → PredName phi psi : Formula phi_ih : phi.predVarSet = ∅ → sub τ phi = phi psi_ih : psi.predVarSet = ∅ → sub τ psi = psi h1_left : phi.predVarSet = ∅ h1_right : psi.predVarSet = ∅ ⊢ (sub τ phi).iff_ (sub τ psi) = phi.iff_ psi
case h.e'_1 τ : PredName → PredName phi psi : Formula phi_ih : phi.predVarSet = ∅ → sub τ phi = phi psi_ih : psi.predVarSet = ∅ → sub τ psi = psi h1_left : phi.predVarSet = ∅ h1_right : psi.predVarSet = ∅ ⊢ sub τ phi = phi case h.e'_2 τ : PredName → PredName phi psi : Formula phi_ih : phi.predVarSet = ∅ → sub τ phi = phi psi_ih : psi.predVarSet = ∅ → sub τ psi = psi h1_left : phi.predVarSet = ∅ h1_right : psi.predVarSet = ∅ ⊢ sub τ psi = psi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.sub_no_predVar
[47, 1]
[91, 20]
exact phi_ih h1_left
case h.e'_1 τ : PredName → PredName phi psi : Formula phi_ih : phi.predVarSet = ∅ → sub τ phi = phi psi_ih : psi.predVarSet = ∅ → sub τ psi = psi h1_left : phi.predVarSet = ∅ h1_right : psi.predVarSet = ∅ ⊢ sub τ phi = phi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.sub_no_predVar
[47, 1]
[91, 20]
exact psi_ih h1_right
case h.e'_2 τ : PredName → PredName phi psi : Formula phi_ih : phi.predVarSet = ∅ → sub τ phi = phi psi_ih : psi.predVarSet = ∅ → sub τ psi = psi h1_left : phi.predVarSet = ∅ h1_right : psi.predVarSet = ∅ ⊢ sub τ psi = psi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.sub_no_predVar
[47, 1]
[91, 20]
simp only [predVarSet] at h1
τ : PredName → PredName x : VarName phi : Formula phi_ih : phi.predVarSet = ∅ → sub τ phi = phi h1 : (exists_ x phi).predVarSet = ∅ ⊢ sub τ (exists_ x phi) = exists_ x phi
τ : PredName → PredName x : VarName phi : Formula phi_ih : phi.predVarSet = ∅ → sub τ phi = phi h1 : phi.predVarSet = ∅ ⊢ sub τ (exists_ x phi) = exists_ x phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.sub_no_predVar
[47, 1]
[91, 20]
simp only [sub]
τ : PredName → PredName x : VarName phi : Formula phi_ih : phi.predVarSet = ∅ → sub τ phi = phi h1 : phi.predVarSet = ∅ ⊢ sub τ (exists_ x phi) = exists_ x phi
τ : PredName → PredName x : VarName phi : Formula phi_ih : phi.predVarSet = ∅ → sub τ phi = phi h1 : phi.predVarSet = ∅ ⊢ exists_ x (sub τ phi) = exists_ x phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.sub_no_predVar
[47, 1]
[91, 20]
congr!
τ : PredName → PredName x : VarName phi : Formula phi_ih : phi.predVarSet = ∅ → sub τ phi = phi h1 : phi.predVarSet = ∅ ⊢ exists_ x (sub τ phi) = exists_ x phi
case h.e'_2 τ : PredName → PredName x : VarName phi : Formula phi_ih : phi.predVarSet = ∅ → sub τ phi = phi h1 : phi.predVarSet = ∅ ⊢ sub τ phi = phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.sub_no_predVar
[47, 1]
[91, 20]
exact phi_ih h1
case h.e'_2 τ : PredName → PredName x : VarName phi : Formula phi_ih : phi.predVarSet = ∅ → sub τ phi = phi h1 : phi.predVarSet = ∅ ⊢ sub τ phi = phi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.sub_no_predVar
[47, 1]
[91, 20]
simp only [sub]
τ : PredName → PredName X : DefName xs : List VarName h1 : (def_ X xs).predVarSet = ∅ ⊢ sub τ (def_ X xs) = def_ X xs
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
induction E generalizing F V
D : Type I : Interpretation D V : VarAssignment D E : Env τ : PredName → PredName F : Formula ⊢ Holds D I V E (sub τ F) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V E (pred_var_ (τ P) []) else I.pred_var_ P ds } V E F
case nil D : Type I : Interpretation D τ : PredName → PredName V : VarAssignment D F : Formula ⊢ Holds D I V [] (sub τ F) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V [] (pred_var_ (τ P) []) else I.pred_var_ P ds } V [] F case cons D : Type I : Interpretation D τ : PredName → PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub τ F) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (τ P) []) else I.pred_var_ P ds } V tail✝ F V : VarAssignment D F : Formula ⊢ Holds D I V (head✝ :: tail✝) (sub τ F) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (τ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) F
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
case nil.def_ X xs => simp only [sub] simp only [Holds]
D : Type I : Interpretation D τ : PredName → PredName X : DefName xs : List VarName V : VarAssignment D ⊢ Holds D I V [] (sub τ (def_ X xs)) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V [] (pred_var_ (τ P) []) else I.pred_var_ P ds } V [] (def_ X xs)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
case cons.def_ hd tl ih X xs => simp only [Holds] at ih simp at ih simp only [sub] simp only [Holds] split_ifs case _ c1 => specialize ih (Function.updateListITE V hd.args (List.map V xs)) hd.q simp only [sub_no_predVar hd.q τ hd.h2] at ih apply ih case _ c1 => specialize ih V (def_ X xs) simp only [sub] at ih exact ih
D : Type I : Interpretation D τ : PredName → PredName hd : Definition tl : List Definition ih : ∀ (V : VarAssignment D) (F : Formula), Holds D I V tl (sub τ F) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tl (pred_var_ (τ P) []) else I.pred_var_ P ds } V tl F X : DefName xs : List VarName V : VarAssignment D ⊢ Holds D I V (hd :: tl) (sub τ (def_ X xs)) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (hd :: tl) (pred_var_ (τ P) []) else I.pred_var_ P ds } V (hd :: tl) (def_ X xs)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
induction F generalizing V
case cons D : Type I : Interpretation D τ : PredName → PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub τ F) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (τ P) []) else I.pred_var_ P ds } V tail✝ F V : VarAssignment D F : Formula ⊢ Holds D I V (head✝ :: tail✝) (sub τ F) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (τ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) F
case cons.pred_const_ D : Type I : Interpretation D τ : PredName → PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub τ F) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (τ P) []) else I.pred_var_ P ds } V tail✝ F a✝¹ : PredName a✝ : List VarName V : VarAssignment D ⊢ Holds D I V (head✝ :: tail✝) (sub τ (pred_const_ a✝¹ a✝)) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (τ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (pred_const_ a✝¹ a✝) case cons.pred_var_ D : Type I : Interpretation D τ : PredName → PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub τ F) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (τ P) []) else I.pred_var_ P ds } V tail✝ F a✝¹ : PredName a✝ : List VarName V : VarAssignment D ⊢ Holds D I V (head✝ :: tail✝) (sub τ (pred_var_ a✝¹ a✝)) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (τ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (pred_var_ a✝¹ a✝) case cons.eq_ D : Type I : Interpretation D τ : PredName → PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub τ F) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (τ P) []) else I.pred_var_ P ds } V tail✝ F a✝¹ a✝ : VarName V : VarAssignment D ⊢ Holds D I V (head✝ :: tail✝) (sub τ (eq_ a✝¹ a✝)) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (τ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (eq_ a✝¹ a✝) case cons.true_ D : Type I : Interpretation D τ : PredName → PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub τ F) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (τ P) []) else I.pred_var_ P ds } V tail✝ F V : VarAssignment D ⊢ Holds D I V (head✝ :: tail✝) (sub τ true_) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (τ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) true_ case cons.false_ D : Type I : Interpretation D τ : PredName → PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub τ F) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (τ P) []) else I.pred_var_ P ds } V tail✝ F V : VarAssignment D ⊢ Holds D I V (head✝ :: tail✝) (sub τ false_) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (τ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) false_ case cons.not_ D : Type I : Interpretation D τ : PredName → PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub τ F) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (τ P) []) else I.pred_var_ P ds } V tail✝ F a✝ : Formula a_ih✝ : ∀ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub τ a✝) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (τ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) a✝ V : VarAssignment D ⊢ Holds D I V (head✝ :: tail✝) (sub τ a✝.not_) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (τ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) a✝.not_ case cons.imp_ D : Type I : Interpretation D τ : PredName → PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub τ F) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (τ P) []) else I.pred_var_ P ds } V tail✝ F a✝¹ a✝ : Formula a_ih✝¹ : ∀ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub τ a✝¹) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (τ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) a✝¹ a_ih✝ : ∀ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub τ a✝) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (τ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) a✝ V : VarAssignment D ⊢ Holds D I V (head✝ :: tail✝) (sub τ (a✝¹.imp_ a✝)) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (τ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (a✝¹.imp_ a✝) case cons.and_ D : Type I : Interpretation D τ : PredName → PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub τ F) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (τ P) []) else I.pred_var_ P ds } V tail✝ F a✝¹ a✝ : Formula a_ih✝¹ : ∀ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub τ a✝¹) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (τ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) a✝¹ a_ih✝ : ∀ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub τ a✝) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (τ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) a✝ V : VarAssignment D ⊢ Holds D I V (head✝ :: tail✝) (sub τ (a✝¹.and_ a✝)) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (τ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (a✝¹.and_ a✝) case cons.or_ D : Type I : Interpretation D τ : PredName → PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub τ F) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (τ P) []) else I.pred_var_ P ds } V tail✝ F a✝¹ a✝ : Formula a_ih✝¹ : ∀ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub τ a✝¹) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (τ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) a✝¹ a_ih✝ : ∀ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub τ a✝) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (τ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) a✝ V : VarAssignment D ⊢ Holds D I V (head✝ :: tail✝) (sub τ (a✝¹.or_ a✝)) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (τ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (a✝¹.or_ a✝) case cons.iff_ D : Type I : Interpretation D τ : PredName → PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub τ F) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (τ P) []) else I.pred_var_ P ds } V tail✝ F a✝¹ a✝ : Formula a_ih✝¹ : ∀ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub τ a✝¹) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (τ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) a✝¹ a_ih✝ : ∀ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub τ a✝) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (τ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) a✝ V : VarAssignment D ⊢ Holds D I V (head✝ :: tail✝) (sub τ (a✝¹.iff_ a✝)) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (τ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (a✝¹.iff_ a✝) case cons.forall_ D : Type I : Interpretation D τ : PredName → PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub τ F) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (τ P) []) else I.pred_var_ P ds } V tail✝ F a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub τ a✝) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (τ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) a✝ V : VarAssignment D ⊢ Holds D I V (head✝ :: tail✝) (sub τ (forall_ a✝¹ a✝)) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (τ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (forall_ a✝¹ a✝) case cons.exists_ D : Type I : Interpretation D τ : PredName → PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub τ F) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (τ P) []) else I.pred_var_ P ds } V tail✝ F a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub τ a✝) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (τ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) a✝ V : VarAssignment D ⊢ Holds D I V (head✝ :: tail✝) (sub τ (exists_ a✝¹ a✝)) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (τ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (exists_ a✝¹ a✝) case cons.def_ D : Type I : Interpretation D τ : PredName → PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub τ F) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (τ P) []) else I.pred_var_ P ds } V tail✝ F a✝¹ : DefName a✝ : List VarName V : VarAssignment D ⊢ Holds D I V (head✝ :: tail✝) (sub τ (def_ a✝¹ a✝)) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (τ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (def_ a✝¹ a✝)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
case pred_const_ X xs => simp only [sub] simp only [Holds]
D : Type I : Interpretation D τ : PredName → PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub τ F) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (τ P) []) else I.pred_var_ P ds } V tail✝ F X : PredName xs : List VarName V : VarAssignment D ⊢ Holds D I V (head✝ :: tail✝) (sub τ (pred_const_ X xs)) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (τ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (pred_const_ X xs)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
case pred_var_ X xs => simp only [sub] split_ifs case pos c1 => simp only [Holds] simp simp only [if_pos c1] case neg c1 => simp only [Holds] simp simp only [if_neg c1]
D : Type I : Interpretation D τ : PredName → PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub τ F) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (τ P) []) else I.pred_var_ P ds } V tail✝ F X : PredName xs : List VarName V : VarAssignment D ⊢ Holds D I V (head✝ :: tail✝) (sub τ (pred_var_ X xs)) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (τ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (pred_var_ X xs)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
case eq_ x y => simp only [sub] simp only [Holds]
D : Type I : Interpretation D τ : PredName → PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub τ F) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (τ P) []) else I.pred_var_ P ds } V tail✝ F x y : VarName V : VarAssignment D ⊢ Holds D I V (head✝ :: tail✝) (sub τ (eq_ x y)) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (τ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (eq_ x y)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
case true_ | false_ => simp only [sub] simp only [Holds]
D : Type I : Interpretation D τ : PredName → PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub τ F) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (τ P) []) else I.pred_var_ P ds } V tail✝ F V : VarAssignment D ⊢ Holds D I V (head✝ :: tail✝) (sub τ false_) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (τ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) false_
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
case not_ phi phi_ih => simp only [Holds] at phi_ih simp only [sub] simp only [Holds] congr! 1 apply phi_ih
D : Type I : Interpretation D τ : PredName → PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub τ F) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (τ P) []) else I.pred_var_ P ds } V tail✝ F phi : Formula phi_ih : ∀ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub τ phi) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (τ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi V : VarAssignment D ⊢ Holds D I V (head✝ :: tail✝) (sub τ phi.not_) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (τ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi.not_
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
case forall_ x phi phi_ih | exists_ x phi phi_ih => simp only [Holds] at phi_ih simp only [sub] simp only [Holds] first | apply forall_congr' | apply exists_congr intros d apply phi_ih
D : Type I : Interpretation D τ : PredName → PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub τ F) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (τ P) []) else I.pred_var_ P ds } V tail✝ F x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub τ phi) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (τ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi V : VarAssignment D ⊢ Holds D I V (head✝ :: tail✝) (sub τ (exists_ x phi)) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (τ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (exists_ x phi)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
simp only [sub]
D : Type I : Interpretation D τ : PredName → PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub τ F) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (τ P) []) else I.pred_var_ P ds } V tail✝ F X : PredName xs : List VarName V : VarAssignment D ⊢ Holds D I V (head✝ :: tail✝) (sub τ (pred_const_ X xs)) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (τ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (pred_const_ X xs)
D : Type I : Interpretation D τ : PredName → PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub τ F) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (τ P) []) else I.pred_var_ P ds } V tail✝ F X : PredName xs : List VarName V : VarAssignment D ⊢ Holds D I V (head✝ :: tail✝) (pred_const_ X xs) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (τ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (pred_const_ X xs)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
simp only [Holds]
D : Type I : Interpretation D τ : PredName → PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub τ F) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (τ P) []) else I.pred_var_ P ds } V tail✝ F X : PredName xs : List VarName V : VarAssignment D ⊢ Holds D I V (head✝ :: tail✝) (pred_const_ X xs) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (τ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (pred_const_ X xs)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
simp only [sub]
D : Type I : Interpretation D τ : PredName → PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub τ F) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (τ P) []) else I.pred_var_ P ds } V tail✝ F X : PredName xs : List VarName V : VarAssignment D ⊢ Holds D I V (head✝ :: tail✝) (sub τ (pred_var_ X xs)) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (τ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (pred_var_ X xs)
D : Type I : Interpretation D τ : PredName → PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub τ F) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (τ P) []) else I.pred_var_ P ds } V tail✝ F X : PredName xs : List VarName V : VarAssignment D ⊢ Holds D I V (head✝ :: tail✝) (if xs = [] then pred_var_ (τ X) [] else pred_var_ X xs) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (τ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (pred_var_ X xs)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
split_ifs
D : Type I : Interpretation D τ : PredName → PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub τ F) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (τ P) []) else I.pred_var_ P ds } V tail✝ F X : PredName xs : List VarName V : VarAssignment D ⊢ Holds D I V (head✝ :: tail✝) (if xs = [] then pred_var_ (τ X) [] else pred_var_ X xs) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (τ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (pred_var_ X xs)
case pos D : Type I : Interpretation D τ : PredName → PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub τ F) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (τ P) []) else I.pred_var_ P ds } V tail✝ F X : PredName xs : List VarName V : VarAssignment D h✝ : xs = [] ⊢ Holds D I V (head✝ :: tail✝) (pred_var_ (τ X) []) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (τ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (pred_var_ X xs) case neg D : Type I : Interpretation D τ : PredName → PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub τ F) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (τ P) []) else I.pred_var_ P ds } V tail✝ F X : PredName xs : List VarName V : VarAssignment D h✝ : ¬xs = [] ⊢ Holds D I V (head✝ :: tail✝) (pred_var_ X xs) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (τ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (pred_var_ X xs)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
case pos c1 => simp only [Holds] simp simp only [if_pos c1]
D : Type I : Interpretation D τ : PredName → PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub τ F) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (τ P) []) else I.pred_var_ P ds } V tail✝ F X : PredName xs : List VarName V : VarAssignment D c1 : xs = [] ⊢ Holds D I V (head✝ :: tail✝) (pred_var_ (τ X) []) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (τ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (pred_var_ X xs)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
case neg c1 => simp only [Holds] simp simp only [if_neg c1]
D : Type I : Interpretation D τ : PredName → PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub τ F) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (τ P) []) else I.pred_var_ P ds } V tail✝ F X : PredName xs : List VarName V : VarAssignment D c1 : ¬xs = [] ⊢ Holds D I V (head✝ :: tail✝) (pred_var_ X xs) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (τ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (pred_var_ X xs)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
simp only [Holds]
D : Type I : Interpretation D τ : PredName → PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub τ F) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (τ P) []) else I.pred_var_ P ds } V tail✝ F X : PredName xs : List VarName V : VarAssignment D c1 : xs = [] ⊢ Holds D I V (head✝ :: tail✝) (pred_var_ (τ X) []) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (τ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (pred_var_ X xs)
D : Type I : Interpretation D τ : PredName → PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub τ F) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (τ P) []) else I.pred_var_ P ds } V tail✝ F X : PredName xs : List VarName V : VarAssignment D c1 : xs = [] ⊢ I.pred_var_ (τ X) (List.map V []) ↔ if List.map V xs = [] then I.pred_var_ (τ X) (List.map V []) else I.pred_var_ X (List.map V xs)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
simp
D : Type I : Interpretation D τ : PredName → PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub τ F) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (τ P) []) else I.pred_var_ P ds } V tail✝ F X : PredName xs : List VarName V : VarAssignment D c1 : xs = [] ⊢ I.pred_var_ (τ X) (List.map V []) ↔ if List.map V xs = [] then I.pred_var_ (τ X) (List.map V []) else I.pred_var_ X (List.map V xs)
D : Type I : Interpretation D τ : PredName → PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub τ F) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (τ P) []) else I.pred_var_ P ds } V tail✝ F X : PredName xs : List VarName V : VarAssignment D c1 : xs = [] ⊢ I.pred_var_ (τ X) [] ↔ if xs = [] then I.pred_var_ (τ X) [] else I.pred_var_ X (List.map V xs)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
simp only [if_pos c1]
D : Type I : Interpretation D τ : PredName → PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub τ F) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (τ P) []) else I.pred_var_ P ds } V tail✝ F X : PredName xs : List VarName V : VarAssignment D c1 : xs = [] ⊢ I.pred_var_ (τ X) [] ↔ if xs = [] then I.pred_var_ (τ X) [] else I.pred_var_ X (List.map V xs)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
simp only [Holds]
D : Type I : Interpretation D τ : PredName → PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub τ F) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (τ P) []) else I.pred_var_ P ds } V tail✝ F X : PredName xs : List VarName V : VarAssignment D c1 : ¬xs = [] ⊢ Holds D I V (head✝ :: tail✝) (pred_var_ X xs) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (τ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (pred_var_ X xs)
D : Type I : Interpretation D τ : PredName → PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub τ F) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (τ P) []) else I.pred_var_ P ds } V tail✝ F X : PredName xs : List VarName V : VarAssignment D c1 : ¬xs = [] ⊢ I.pred_var_ X (List.map V xs) ↔ if List.map V xs = [] then I.pred_var_ (τ X) (List.map V []) else I.pred_var_ X (List.map V xs)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
simp
D : Type I : Interpretation D τ : PredName → PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub τ F) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (τ P) []) else I.pred_var_ P ds } V tail✝ F X : PredName xs : List VarName V : VarAssignment D c1 : ¬xs = [] ⊢ I.pred_var_ X (List.map V xs) ↔ if List.map V xs = [] then I.pred_var_ (τ X) (List.map V []) else I.pred_var_ X (List.map V xs)
D : Type I : Interpretation D τ : PredName → PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub τ F) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (τ P) []) else I.pred_var_ P ds } V tail✝ F X : PredName xs : List VarName V : VarAssignment D c1 : ¬xs = [] ⊢ I.pred_var_ X (List.map V xs) ↔ if xs = [] then I.pred_var_ (τ X) [] else I.pred_var_ X (List.map V xs)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
simp only [if_neg c1]
D : Type I : Interpretation D τ : PredName → PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub τ F) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (τ P) []) else I.pred_var_ P ds } V tail✝ F X : PredName xs : List VarName V : VarAssignment D c1 : ¬xs = [] ⊢ I.pred_var_ X (List.map V xs) ↔ if xs = [] then I.pred_var_ (τ X) [] else I.pred_var_ X (List.map V xs)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
simp only [sub]
D : Type I : Interpretation D τ : PredName → PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub τ F) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (τ P) []) else I.pred_var_ P ds } V tail✝ F x y : VarName V : VarAssignment D ⊢ Holds D I V (head✝ :: tail✝) (sub τ (eq_ x y)) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (τ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (eq_ x y)
D : Type I : Interpretation D τ : PredName → PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub τ F) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (τ P) []) else I.pred_var_ P ds } V tail✝ F x y : VarName V : VarAssignment D ⊢ Holds D I V (head✝ :: tail✝) (eq_ x y) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (τ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (eq_ x y)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
simp only [Holds]
D : Type I : Interpretation D τ : PredName → PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub τ F) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (τ P) []) else I.pred_var_ P ds } V tail✝ F x y : VarName V : VarAssignment D ⊢ Holds D I V (head✝ :: tail✝) (eq_ x y) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (τ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) (eq_ x y)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
simp only [sub]
D : Type I : Interpretation D τ : PredName → PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub τ F) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (τ P) []) else I.pred_var_ P ds } V tail✝ F V : VarAssignment D ⊢ Holds D I V (head✝ :: tail✝) (sub τ false_) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (τ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) false_
D : Type I : Interpretation D τ : PredName → PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub τ F) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (τ P) []) else I.pred_var_ P ds } V tail✝ F V : VarAssignment D ⊢ Holds D I V (head✝ :: tail✝) false_ ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (τ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) false_
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
simp only [Holds]
D : Type I : Interpretation D τ : PredName → PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub τ F) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (τ P) []) else I.pred_var_ P ds } V tail✝ F V : VarAssignment D ⊢ Holds D I V (head✝ :: tail✝) false_ ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (τ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) false_
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
simp only [Holds] at phi_ih
D : Type I : Interpretation D τ : PredName → PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub τ F) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (τ P) []) else I.pred_var_ P ds } V tail✝ F phi : Formula phi_ih : ∀ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub τ phi) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (τ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi V : VarAssignment D ⊢ Holds D I V (head✝ :: tail✝) (sub τ phi.not_) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (τ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi.not_
D : Type I : Interpretation D τ : PredName → PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub τ F) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (τ P) []) else I.pred_var_ P ds } V tail✝ F phi : Formula V : VarAssignment D phi_ih : ∀ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub τ phi) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (τ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi ⊢ Holds D I V (head✝ :: tail✝) (sub τ phi.not_) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (τ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi.not_
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Prop/All/Rec/Sub.lean
FOL.NV.Sub.Prop.All.Rec.substitution_theorem
[94, 1]
[182, 15]
simp only [sub]
D : Type I : Interpretation D τ : PredName → PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub τ F) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (τ P) []) else I.pred_var_ P ds } V tail✝ F phi : Formula V : VarAssignment D phi_ih : ∀ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub τ phi) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (τ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi ⊢ Holds D I V (head✝ :: tail✝) (sub τ phi.not_) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (τ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi.not_
D : Type I : Interpretation D τ : PredName → PredName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), Holds D I V tail✝ (sub τ F) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V tail✝ (pred_var_ (τ P) []) else I.pred_var_ P ds } V tail✝ F phi : Formula V : VarAssignment D phi_ih : ∀ (V : VarAssignment D), Holds D I V (head✝ :: tail✝) (sub τ phi) ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then I.pred_var_ (τ P) (List.map V []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi ⊢ Holds D I V (head✝ :: tail✝) (sub τ phi).not_ ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun P ds => if ds = [] then Holds D I V (head✝ :: tail✝) (pred_var_ (τ P) []) else I.pred_var_ P ds } V (head✝ :: tail✝) phi.not_