url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/MM0/MM0.lean
MM0.holds_is_proof
[2060, 1]
[2162, 13]
case eq_3 h1_Γ h1_Δ h1_n h1_name h1_xs h1_ys => sorry
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_n : ℕ h1_name : PredName h1_xs h1_ys : Fin h1_n → VarName M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F ⊢ ∀ (V : Valuation D), Holds D I V M E (eqSubPred h1_name h1_n h1_xs h1_ys)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/MM0/MM0.lean
MM0.holds_is_proof
[2060, 1]
[2162, 13]
case conv h1_Γ h1_Δ h1_phi h1_phi' h1_1 h1_2 h1_3 h1_ih => intro V have s1 : Holds D I V M E h1_phi := h1_ih M nf hyp V simp only [← holds_conv D I V M E h1_phi h1_phi' h2 h1_3] exact s1
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_phi h1_phi' : Formula h1_1 : IsMetaVarOrAllDefInEnv E h1_phi' h1_2 : IsProof E h1_Γ h1_Δ h1_phi h1_3 : IsConv E h1_phi h1_phi' h1_ih : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F ⊢ ∀ (V : Valuation D), Holds D I V M E h1_phi'
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/MM0/MM0.lean
MM0.holds_is_proof
[2060, 1]
[2162, 13]
intro V
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_phi : Formula h1_1 : IsMetaVarOrAllDefInEnv E h1_phi h1_2 : h1_phi ∈ h1_Δ M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F ⊢ ∀ (V : Valuation D), Holds D I V M E h1_phi
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_phi : Formula h1_1 : IsMetaVarOrAllDefInEnv E h1_phi h1_2 : h1_phi ∈ h1_Δ M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F V : Valuation D ⊢ Holds D I V M E h1_phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/MM0/MM0.lean
MM0.holds_is_proof
[2060, 1]
[2162, 13]
exact hyp h1_phi V h1_2
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_phi : Formula h1_1 : IsMetaVarOrAllDefInEnv E h1_phi h1_2 : h1_phi ∈ h1_Δ M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F V : Valuation D ⊢ Holds D I V M E h1_phi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/MM0/MM0.lean
MM0.holds_is_proof
[2060, 1]
[2162, 13]
simp only [Holds] at h1_ih_2
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_phi h1_psi : Formula h1_1 : IsProof E h1_Γ h1_Δ h1_phi h1_2 : IsProof E h1_Γ h1_Δ (h1_phi.imp_ h1_psi) h1_ih_1 : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi h1_ih_2 : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E (h1_phi.imp_ h1_psi) M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F ⊢ ∀ (V : Valuation D), Holds D I V M E h1_psi
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_phi h1_psi : Formula h1_1 : IsProof E h1_Γ h1_Δ h1_phi h1_2 : IsProof E h1_Γ h1_Δ (h1_phi.imp_ h1_psi) h1_ih_1 : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F h1_ih_2 : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi → Holds D I V M E h1_psi ⊢ ∀ (V : Valuation D), Holds D I V M E h1_psi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/MM0/MM0.lean
MM0.holds_is_proof
[2060, 1]
[2162, 13]
intro V
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_phi h1_psi : Formula h1_1 : IsProof E h1_Γ h1_Δ h1_phi h1_2 : IsProof E h1_Γ h1_Δ (h1_phi.imp_ h1_psi) h1_ih_1 : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F h1_ih_2 : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi → Holds D I V M E h1_psi ⊢ ∀ (V : Valuation D), Holds D I V M E h1_psi
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_phi h1_psi : Formula h1_1 : IsProof E h1_Γ h1_Δ h1_phi h1_2 : IsProof E h1_Γ h1_Δ (h1_phi.imp_ h1_psi) h1_ih_1 : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F h1_ih_2 : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi → Holds D I V M E h1_psi V : Valuation D ⊢ Holds D I V M E h1_psi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/MM0/MM0.lean
MM0.holds_is_proof
[2060, 1]
[2162, 13]
exact h1_ih_2 M nf hyp V (h1_ih_1 M nf hyp V)
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_phi h1_psi : Formula h1_1 : IsProof E h1_Γ h1_Δ h1_phi h1_2 : IsProof E h1_Γ h1_Δ (h1_phi.imp_ h1_psi) h1_ih_1 : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F h1_ih_2 : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi → Holds D I V M E h1_psi V : Valuation D ⊢ Holds D I V M E h1_psi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/MM0/MM0.lean
MM0.holds_is_proof
[2060, 1]
[2162, 13]
simp only [Holds]
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_phi h1_psi : Formula h1_1 : IsMetaVarOrAllDefInEnv E h1_phi h1_2 : IsMetaVarOrAllDefInEnv E h1_psi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F ⊢ ∀ (V : Valuation D), Holds D I V M E (h1_phi.imp_ (h1_psi.imp_ h1_phi))
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_phi h1_psi : Formula h1_1 : IsMetaVarOrAllDefInEnv E h1_phi h1_2 : IsMetaVarOrAllDefInEnv E h1_psi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F ⊢ ∀ (V : Valuation D), Holds D I V M E h1_phi → Holds D I V M E h1_psi → Holds D I V M E h1_phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/MM0/MM0.lean
MM0.holds_is_proof
[2060, 1]
[2162, 13]
intro V a1 a2
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_phi h1_psi : Formula h1_1 : IsMetaVarOrAllDefInEnv E h1_phi h1_2 : IsMetaVarOrAllDefInEnv E h1_psi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F ⊢ ∀ (V : Valuation D), Holds D I V M E h1_phi → Holds D I V M E h1_psi → Holds D I V M E h1_phi
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_phi h1_psi : Formula h1_1 : IsMetaVarOrAllDefInEnv E h1_phi h1_2 : IsMetaVarOrAllDefInEnv E h1_psi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F V : Valuation D a1 : Holds D I V M E h1_phi a2 : Holds D I V M E h1_psi ⊢ Holds D I V M E h1_phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/MM0/MM0.lean
MM0.holds_is_proof
[2060, 1]
[2162, 13]
exact a1
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_phi h1_psi : Formula h1_1 : IsMetaVarOrAllDefInEnv E h1_phi h1_2 : IsMetaVarOrAllDefInEnv E h1_psi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F V : Valuation D a1 : Holds D I V M E h1_phi a2 : Holds D I V M E h1_psi ⊢ Holds D I V M E h1_phi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/MM0/MM0.lean
MM0.holds_is_proof
[2060, 1]
[2162, 13]
simp only [Holds]
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_phi h1_psi h1_chi : Formula h1_1 : IsMetaVarOrAllDefInEnv E h1_phi h1_2 : IsMetaVarOrAllDefInEnv E h1_psi h1_3 : IsMetaVarOrAllDefInEnv E h1_chi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F ⊢ ∀ (V : Valuation D), Holds D I V M E ((h1_phi.imp_ (h1_psi.imp_ h1_chi)).imp_ ((h1_phi.imp_ h1_psi).imp_ (h1_phi.imp_ h1_chi)))
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_phi h1_psi h1_chi : Formula h1_1 : IsMetaVarOrAllDefInEnv E h1_phi h1_2 : IsMetaVarOrAllDefInEnv E h1_psi h1_3 : IsMetaVarOrAllDefInEnv E h1_chi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F ⊢ ∀ (V : Valuation D), (Holds D I V M E h1_phi → Holds D I V M E h1_psi → Holds D I V M E h1_chi) → (Holds D I V M E h1_phi → Holds D I V M E h1_psi) → Holds D I V M E h1_phi → Holds D I V M E h1_chi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/MM0/MM0.lean
MM0.holds_is_proof
[2060, 1]
[2162, 13]
intro V a1 a2 a3
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_phi h1_psi h1_chi : Formula h1_1 : IsMetaVarOrAllDefInEnv E h1_phi h1_2 : IsMetaVarOrAllDefInEnv E h1_psi h1_3 : IsMetaVarOrAllDefInEnv E h1_chi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F ⊢ ∀ (V : Valuation D), (Holds D I V M E h1_phi → Holds D I V M E h1_psi → Holds D I V M E h1_chi) → (Holds D I V M E h1_phi → Holds D I V M E h1_psi) → Holds D I V M E h1_phi → Holds D I V M E h1_chi
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_phi h1_psi h1_chi : Formula h1_1 : IsMetaVarOrAllDefInEnv E h1_phi h1_2 : IsMetaVarOrAllDefInEnv E h1_psi h1_3 : IsMetaVarOrAllDefInEnv E h1_chi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F V : Valuation D a1 : Holds D I V M E h1_phi → Holds D I V M E h1_psi → Holds D I V M E h1_chi a2 : Holds D I V M E h1_phi → Holds D I V M E h1_psi a3 : Holds D I V M E h1_phi ⊢ Holds D I V M E h1_chi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/MM0/MM0.lean
MM0.holds_is_proof
[2060, 1]
[2162, 13]
apply a1 a3
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_phi h1_psi h1_chi : Formula h1_1 : IsMetaVarOrAllDefInEnv E h1_phi h1_2 : IsMetaVarOrAllDefInEnv E h1_psi h1_3 : IsMetaVarOrAllDefInEnv E h1_chi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F V : Valuation D a1 : Holds D I V M E h1_phi → Holds D I V M E h1_psi → Holds D I V M E h1_chi a2 : Holds D I V M E h1_phi → Holds D I V M E h1_psi a3 : Holds D I V M E h1_phi ⊢ Holds D I V M E h1_chi
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_phi h1_psi h1_chi : Formula h1_1 : IsMetaVarOrAllDefInEnv E h1_phi h1_2 : IsMetaVarOrAllDefInEnv E h1_psi h1_3 : IsMetaVarOrAllDefInEnv E h1_chi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F V : Valuation D a1 : Holds D I V M E h1_phi → Holds D I V M E h1_psi → Holds D I V M E h1_chi a2 : Holds D I V M E h1_phi → Holds D I V M E h1_psi a3 : Holds D I V M E h1_phi ⊢ Holds D I V M E h1_psi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/MM0/MM0.lean
MM0.holds_is_proof
[2060, 1]
[2162, 13]
exact a2 a3
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_phi h1_psi h1_chi : Formula h1_1 : IsMetaVarOrAllDefInEnv E h1_phi h1_2 : IsMetaVarOrAllDefInEnv E h1_psi h1_3 : IsMetaVarOrAllDefInEnv E h1_chi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F V : Valuation D a1 : Holds D I V M E h1_phi → Holds D I V M E h1_psi → Holds D I V M E h1_chi a2 : Holds D I V M E h1_phi → Holds D I V M E h1_psi a3 : Holds D I V M E h1_phi ⊢ Holds D I V M E h1_psi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/MM0/MM0.lean
MM0.holds_is_proof
[2060, 1]
[2162, 13]
simp only [Holds]
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_phi h1_psi : Formula h1_1 : IsMetaVarOrAllDefInEnv E h1_phi h1_2 : IsMetaVarOrAllDefInEnv E h1_psi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F ⊢ ∀ (V : Valuation D), Holds D I V M E ((h1_phi.not_.imp_ h1_psi.not_).imp_ (h1_psi.imp_ h1_phi))
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_phi h1_psi : Formula h1_1 : IsMetaVarOrAllDefInEnv E h1_phi h1_2 : IsMetaVarOrAllDefInEnv E h1_psi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F ⊢ ∀ (V : Valuation D), (¬Holds D I V M E h1_phi → ¬Holds D I V M E h1_psi) → Holds D I V M E h1_psi → Holds D I V M E h1_phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/MM0/MM0.lean
MM0.holds_is_proof
[2060, 1]
[2162, 13]
intro V a1 a2
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_phi h1_psi : Formula h1_1 : IsMetaVarOrAllDefInEnv E h1_phi h1_2 : IsMetaVarOrAllDefInEnv E h1_psi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F ⊢ ∀ (V : Valuation D), (¬Holds D I V M E h1_phi → ¬Holds D I V M E h1_psi) → Holds D I V M E h1_psi → Holds D I V M E h1_phi
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_phi h1_psi : Formula h1_1 : IsMetaVarOrAllDefInEnv E h1_phi h1_2 : IsMetaVarOrAllDefInEnv E h1_psi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F V : Valuation D a1 : ¬Holds D I V M E h1_phi → ¬Holds D I V M E h1_psi a2 : Holds D I V M E h1_psi ⊢ Holds D I V M E h1_phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/MM0/MM0.lean
MM0.holds_is_proof
[2060, 1]
[2162, 13]
by_contra contra
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_phi h1_psi : Formula h1_1 : IsMetaVarOrAllDefInEnv E h1_phi h1_2 : IsMetaVarOrAllDefInEnv E h1_psi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F V : Valuation D a1 : ¬Holds D I V M E h1_phi → ¬Holds D I V M E h1_psi a2 : Holds D I V M E h1_psi ⊢ Holds D I V M E h1_phi
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_phi h1_psi : Formula h1_1 : IsMetaVarOrAllDefInEnv E h1_phi h1_2 : IsMetaVarOrAllDefInEnv E h1_psi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F V : Valuation D a1 : ¬Holds D I V M E h1_phi → ¬Holds D I V M E h1_psi a2 : Holds D I V M E h1_psi contra : ¬Holds D I V M E h1_phi ⊢ False
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/MM0/MM0.lean
MM0.holds_is_proof
[2060, 1]
[2162, 13]
exact a1 contra a2
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_phi h1_psi : Formula h1_1 : IsMetaVarOrAllDefInEnv E h1_phi h1_2 : IsMetaVarOrAllDefInEnv E h1_psi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F V : Valuation D a1 : ¬Holds D I V M E h1_phi → ¬Holds D I V M E h1_psi a2 : Holds D I V M E h1_psi contra : ¬Holds D I V M E h1_phi ⊢ False
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/MM0/MM0.lean
MM0.holds_is_proof
[2060, 1]
[2162, 13]
simp only [Holds]
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_phi : Formula h1_x : VarName h1_1 : IsProof E h1_Γ h1_Δ h1_phi h1_ih : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F ⊢ ∀ (V : Valuation D), Holds D I V M E (forall_ h1_x h1_phi)
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_phi : Formula h1_x : VarName h1_1 : IsProof E h1_Γ h1_Δ h1_phi h1_ih : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F ⊢ ∀ (V : Valuation D) (d : D), Holds D I (Function.updateITE V h1_x d) M E h1_phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/MM0/MM0.lean
MM0.holds_is_proof
[2060, 1]
[2162, 13]
intro V d
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_phi : Formula h1_x : VarName h1_1 : IsProof E h1_Γ h1_Δ h1_phi h1_ih : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F ⊢ ∀ (V : Valuation D) (d : D), Holds D I (Function.updateITE V h1_x d) M E h1_phi
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_phi : Formula h1_x : VarName h1_1 : IsProof E h1_Γ h1_Δ h1_phi h1_ih : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F V : Valuation D d : D ⊢ Holds D I (Function.updateITE V h1_x d) M E h1_phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/MM0/MM0.lean
MM0.holds_is_proof
[2060, 1]
[2162, 13]
exact h1_ih M nf hyp (Function.updateITE V h1_x d)
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_phi : Formula h1_x : VarName h1_1 : IsProof E h1_Γ h1_Δ h1_phi h1_ih : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F V : Valuation D d : D ⊢ Holds D I (Function.updateITE V h1_x d) M E h1_phi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/MM0/MM0.lean
MM0.holds_is_proof
[2060, 1]
[2162, 13]
simp only [Holds]
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_phi h1_psi : Formula h1_x : VarName h1_1 : IsMetaVarOrAllDefInEnv E h1_phi h1_2 : IsMetaVarOrAllDefInEnv E h1_psi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F ⊢ ∀ (V : Valuation D), Holds D I V M E ((forall_ h1_x (h1_phi.imp_ h1_psi)).imp_ ((forall_ h1_x h1_phi).imp_ (forall_ h1_x h1_psi)))
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_phi h1_psi : Formula h1_x : VarName h1_1 : IsMetaVarOrAllDefInEnv E h1_phi h1_2 : IsMetaVarOrAllDefInEnv E h1_psi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F ⊢ ∀ (V : Valuation D), (∀ (d : D), Holds D I (Function.updateITE V h1_x d) M E h1_phi → Holds D I (Function.updateITE V h1_x d) M E h1_psi) → (∀ (d : D), Holds D I (Function.updateITE V h1_x d) M E h1_phi) → ∀ (d : D), Holds D I (Function.updateITE V h1_x d) M E h1_psi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/MM0/MM0.lean
MM0.holds_is_proof
[2060, 1]
[2162, 13]
intro V a1 a2 d
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_phi h1_psi : Formula h1_x : VarName h1_1 : IsMetaVarOrAllDefInEnv E h1_phi h1_2 : IsMetaVarOrAllDefInEnv E h1_psi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F ⊢ ∀ (V : Valuation D), (∀ (d : D), Holds D I (Function.updateITE V h1_x d) M E h1_phi → Holds D I (Function.updateITE V h1_x d) M E h1_psi) → (∀ (d : D), Holds D I (Function.updateITE V h1_x d) M E h1_phi) → ∀ (d : D), Holds D I (Function.updateITE V h1_x d) M E h1_psi
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_phi h1_psi : Formula h1_x : VarName h1_1 : IsMetaVarOrAllDefInEnv E h1_phi h1_2 : IsMetaVarOrAllDefInEnv E h1_psi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F V : Valuation D a1 : ∀ (d : D), Holds D I (Function.updateITE V h1_x d) M E h1_phi → Holds D I (Function.updateITE V h1_x d) M E h1_psi a2 : ∀ (d : D), Holds D I (Function.updateITE V h1_x d) M E h1_phi d : D ⊢ Holds D I (Function.updateITE V h1_x d) M E h1_psi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/MM0/MM0.lean
MM0.holds_is_proof
[2060, 1]
[2162, 13]
apply a1 d
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_phi h1_psi : Formula h1_x : VarName h1_1 : IsMetaVarOrAllDefInEnv E h1_phi h1_2 : IsMetaVarOrAllDefInEnv E h1_psi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F V : Valuation D a1 : ∀ (d : D), Holds D I (Function.updateITE V h1_x d) M E h1_phi → Holds D I (Function.updateITE V h1_x d) M E h1_psi a2 : ∀ (d : D), Holds D I (Function.updateITE V h1_x d) M E h1_phi d : D ⊢ Holds D I (Function.updateITE V h1_x d) M E h1_psi
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_phi h1_psi : Formula h1_x : VarName h1_1 : IsMetaVarOrAllDefInEnv E h1_phi h1_2 : IsMetaVarOrAllDefInEnv E h1_psi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F V : Valuation D a1 : ∀ (d : D), Holds D I (Function.updateITE V h1_x d) M E h1_phi → Holds D I (Function.updateITE V h1_x d) M E h1_psi a2 : ∀ (d : D), Holds D I (Function.updateITE V h1_x d) M E h1_phi d : D ⊢ Holds D I (Function.updateITE V h1_x d) M E h1_phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/MM0/MM0.lean
MM0.holds_is_proof
[2060, 1]
[2162, 13]
exact a2 d
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_phi h1_psi : Formula h1_x : VarName h1_1 : IsMetaVarOrAllDefInEnv E h1_phi h1_2 : IsMetaVarOrAllDefInEnv E h1_psi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F V : Valuation D a1 : ∀ (d : D), Holds D I (Function.updateITE V h1_x d) M E h1_phi → Holds D I (Function.updateITE V h1_x d) M E h1_psi a2 : ∀ (d : D), Holds D I (Function.updateITE V h1_x d) M E h1_phi d : D ⊢ Holds D I (Function.updateITE V h1_x d) M E h1_phi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/MM0/MM0.lean
MM0.holds_is_proof
[2060, 1]
[2162, 13]
have s1 : IsNotFree D I M E h1_phi h1_x
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_phi : Formula h1_x : VarName h1_1 : IsMetaVarOrAllDefInEnv E h1_phi h1_2 : NotFree h1_Γ h1_x h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F ⊢ ∀ (V : Valuation D), Holds D I V M E (h1_phi.imp_ (forall_ h1_x h1_phi))
case s1 D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_phi : Formula h1_x : VarName h1_1 : IsMetaVarOrAllDefInEnv E h1_phi h1_2 : NotFree h1_Γ h1_x h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F ⊢ IsNotFree D I M E h1_phi h1_x D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_phi : Formula h1_x : VarName h1_1 : IsMetaVarOrAllDefInEnv E h1_phi h1_2 : NotFree h1_Γ h1_x h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F s1 : IsNotFree D I M E h1_phi h1_x ⊢ ∀ (V : Valuation D), Holds D I V M E (h1_phi.imp_ (forall_ h1_x h1_phi))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/MM0/MM0.lean
MM0.holds_is_proof
[2060, 1]
[2162, 13]
apply not_free_imp_is_not_free D I M E h1_phi h1_Γ h1_x h1_2
case s1 D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_phi : Formula h1_x : VarName h1_1 : IsMetaVarOrAllDefInEnv E h1_phi h1_2 : NotFree h1_Γ h1_x h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F ⊢ IsNotFree D I M E h1_phi h1_x D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_phi : Formula h1_x : VarName h1_1 : IsMetaVarOrAllDefInEnv E h1_phi h1_2 : NotFree h1_Γ h1_x h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F s1 : IsNotFree D I M E h1_phi h1_x ⊢ ∀ (V : Valuation D), Holds D I V M E (h1_phi.imp_ (forall_ h1_x h1_phi))
case s1 D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_phi : Formula h1_x : VarName h1_1 : IsMetaVarOrAllDefInEnv E h1_phi h1_2 : NotFree h1_Γ h1_x h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F ⊢ ∀ (X : MetaVarName), (h1_x, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) h1_x D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_phi : Formula h1_x : VarName h1_1 : IsMetaVarOrAllDefInEnv E h1_phi h1_2 : NotFree h1_Γ h1_x h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F s1 : IsNotFree D I M E h1_phi h1_x ⊢ ∀ (V : Valuation D), Holds D I V M E (h1_phi.imp_ (forall_ h1_x h1_phi))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/MM0/MM0.lean
MM0.holds_is_proof
[2060, 1]
[2162, 13]
exact nf h1_x
case s1 D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_phi : Formula h1_x : VarName h1_1 : IsMetaVarOrAllDefInEnv E h1_phi h1_2 : NotFree h1_Γ h1_x h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F ⊢ ∀ (X : MetaVarName), (h1_x, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) h1_x D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_phi : Formula h1_x : VarName h1_1 : IsMetaVarOrAllDefInEnv E h1_phi h1_2 : NotFree h1_Γ h1_x h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F s1 : IsNotFree D I M E h1_phi h1_x ⊢ ∀ (V : Valuation D), Holds D I V M E (h1_phi.imp_ (forall_ h1_x h1_phi))
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_phi : Formula h1_x : VarName h1_1 : IsMetaVarOrAllDefInEnv E h1_phi h1_2 : NotFree h1_Γ h1_x h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F s1 : IsNotFree D I M E h1_phi h1_x ⊢ ∀ (V : Valuation D), Holds D I V M E (h1_phi.imp_ (forall_ h1_x h1_phi))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/MM0/MM0.lean
MM0.holds_is_proof
[2060, 1]
[2162, 13]
simp only [Holds]
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_phi : Formula h1_x : VarName h1_1 : IsMetaVarOrAllDefInEnv E h1_phi h1_2 : NotFree h1_Γ h1_x h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F s1 : IsNotFree D I M E h1_phi h1_x ⊢ ∀ (V : Valuation D), Holds D I V M E (h1_phi.imp_ (forall_ h1_x h1_phi))
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_phi : Formula h1_x : VarName h1_1 : IsMetaVarOrAllDefInEnv E h1_phi h1_2 : NotFree h1_Γ h1_x h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F s1 : IsNotFree D I M E h1_phi h1_x ⊢ ∀ (V : Valuation D), Holds D I V M E h1_phi → ∀ (d : D), Holds D I (Function.updateITE V h1_x d) M E h1_phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/MM0/MM0.lean
MM0.holds_is_proof
[2060, 1]
[2162, 13]
intro V a1 a
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_phi : Formula h1_x : VarName h1_1 : IsMetaVarOrAllDefInEnv E h1_phi h1_2 : NotFree h1_Γ h1_x h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F s1 : IsNotFree D I M E h1_phi h1_x ⊢ ∀ (V : Valuation D), Holds D I V M E h1_phi → ∀ (d : D), Holds D I (Function.updateITE V h1_x d) M E h1_phi
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_phi : Formula h1_x : VarName h1_1 : IsMetaVarOrAllDefInEnv E h1_phi h1_2 : NotFree h1_Γ h1_x h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F s1 : IsNotFree D I M E h1_phi h1_x V : Valuation D a1 : Holds D I V M E h1_phi a : D ⊢ Holds D I (Function.updateITE V h1_x a) M E h1_phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/MM0/MM0.lean
MM0.holds_is_proof
[2060, 1]
[2162, 13]
unfold IsNotFree at s1
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_phi : Formula h1_x : VarName h1_1 : IsMetaVarOrAllDefInEnv E h1_phi h1_2 : NotFree h1_Γ h1_x h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F s1 : IsNotFree D I M E h1_phi h1_x V : Valuation D a1 : Holds D I V M E h1_phi a : D ⊢ Holds D I (Function.updateITE V h1_x a) M E h1_phi
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_phi : Formula h1_x : VarName h1_1 : IsMetaVarOrAllDefInEnv E h1_phi h1_2 : NotFree h1_Γ h1_x h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F s1 : ∀ (V : Valuation D) (d : D), Holds D I V M E h1_phi ↔ Holds D I (Function.updateITE V h1_x d) M E h1_phi V : Valuation D a1 : Holds D I V M E h1_phi a : D ⊢ Holds D I (Function.updateITE V h1_x a) M E h1_phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/MM0/MM0.lean
MM0.holds_is_proof
[2060, 1]
[2162, 13]
simp only [← s1 V a]
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_phi : Formula h1_x : VarName h1_1 : IsMetaVarOrAllDefInEnv E h1_phi h1_2 : NotFree h1_Γ h1_x h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F s1 : ∀ (V : Valuation D) (d : D), Holds D I V M E h1_phi ↔ Holds D I (Function.updateITE V h1_x d) M E h1_phi V : Valuation D a1 : Holds D I V M E h1_phi a : D ⊢ Holds D I (Function.updateITE V h1_x a) M E h1_phi
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_phi : Formula h1_x : VarName h1_1 : IsMetaVarOrAllDefInEnv E h1_phi h1_2 : NotFree h1_Γ h1_x h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F s1 : ∀ (V : Valuation D) (d : D), Holds D I V M E h1_phi ↔ Holds D I (Function.updateITE V h1_x d) M E h1_phi V : Valuation D a1 : Holds D I V M E h1_phi a : D ⊢ Holds D I V M E h1_phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/MM0/MM0.lean
MM0.holds_is_proof
[2060, 1]
[2162, 13]
exact a1
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_phi : Formula h1_x : VarName h1_1 : IsMetaVarOrAllDefInEnv E h1_phi h1_2 : NotFree h1_Γ h1_x h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F s1 : ∀ (V : Valuation D) (d : D), Holds D I V M E h1_phi ↔ Holds D I (Function.updateITE V h1_x d) M E h1_phi V : Valuation D a1 : Holds D I V M E h1_phi a : D ⊢ Holds D I V M E h1_phi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/MM0/MM0.lean
MM0.holds_is_proof
[2060, 1]
[2162, 13]
unfold exists_
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_x h1_y : VarName h1_1 : ¬h1_y = h1_x M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F ⊢ ∀ (V : Valuation D), Holds D I V M E (exists_ h1_x (eq_ h1_x h1_y))
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_x h1_y : VarName h1_1 : ¬h1_y = h1_x M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F ⊢ ∀ (V : Valuation D), Holds D I V M E (forall_ h1_x (eq_ h1_x h1_y).not_).not_
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/MM0/MM0.lean
MM0.holds_is_proof
[2060, 1]
[2162, 13]
simp only [Holds]
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_x h1_y : VarName h1_1 : ¬h1_y = h1_x M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F ⊢ ∀ (V : Valuation D), Holds D I V M E (forall_ h1_x (eq_ h1_x h1_y).not_).not_
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_x h1_y : VarName h1_1 : ¬h1_y = h1_x M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F ⊢ ∀ (V : Valuation D), ¬∀ (d : D), ¬Function.updateITE V h1_x d h1_x = Function.updateITE V h1_x d h1_y
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/MM0/MM0.lean
MM0.holds_is_proof
[2060, 1]
[2162, 13]
simp
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_x h1_y : VarName h1_1 : ¬h1_y = h1_x M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F ⊢ ∀ (V : Valuation D), ¬∀ (d : D), ¬Function.updateITE V h1_x d h1_x = Function.updateITE V h1_x d h1_y
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_x h1_y : VarName h1_1 : ¬h1_y = h1_x M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F ⊢ ∀ (V : Valuation D), ∃ x, Function.updateITE V h1_x x h1_x = Function.updateITE V h1_x x h1_y
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/MM0/MM0.lean
MM0.holds_is_proof
[2060, 1]
[2162, 13]
intro V
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_x h1_y : VarName h1_1 : ¬h1_y = h1_x M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F ⊢ ∀ (V : Valuation D), ∃ x, Function.updateITE V h1_x x h1_x = Function.updateITE V h1_x x h1_y
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_x h1_y : VarName h1_1 : ¬h1_y = h1_x M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F V : Valuation D ⊢ ∃ x, Function.updateITE V h1_x x h1_x = Function.updateITE V h1_x x h1_y
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/MM0/MM0.lean
MM0.holds_is_proof
[2060, 1]
[2162, 13]
apply Exists.intro (V h1_y)
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_x h1_y : VarName h1_1 : ¬h1_y = h1_x M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F V : Valuation D ⊢ ∃ x, Function.updateITE V h1_x x h1_x = Function.updateITE V h1_x x h1_y
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_x h1_y : VarName h1_1 : ¬h1_y = h1_x M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F V : Valuation D ⊢ Function.updateITE V h1_x (V h1_y) h1_x = Function.updateITE V h1_x (V h1_y) h1_y
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/MM0/MM0.lean
MM0.holds_is_proof
[2060, 1]
[2162, 13]
unfold Function.updateITE
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_x h1_y : VarName h1_1 : ¬h1_y = h1_x M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F V : Valuation D ⊢ Function.updateITE V h1_x (V h1_y) h1_x = Function.updateITE V h1_x (V h1_y) h1_y
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_x h1_y : VarName h1_1 : ¬h1_y = h1_x M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F V : Valuation D ⊢ (if h1_x = h1_x then V h1_y else V h1_x) = if h1_y = h1_x then V h1_y else V h1_y
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/MM0/MM0.lean
MM0.holds_is_proof
[2060, 1]
[2162, 13]
simp
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_x h1_y : VarName h1_1 : ¬h1_y = h1_x M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F V : Valuation D ⊢ (if h1_x = h1_x then V h1_y else V h1_x) = if h1_y = h1_x then V h1_y else V h1_y
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/MM0/MM0.lean
MM0.holds_is_proof
[2060, 1]
[2162, 13]
simp only [Holds]
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_x h1_y h1_z : VarName M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F ⊢ ∀ (V : Valuation D), Holds D I V M E ((eq_ h1_x h1_y).imp_ ((eq_ h1_x h1_z).imp_ (eq_ h1_y h1_z)))
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_x h1_y h1_z : VarName M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F ⊢ ∀ (V : Valuation D), V h1_x = V h1_y → V h1_x = V h1_z → V h1_y = V h1_z
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/MM0/MM0.lean
MM0.holds_is_proof
[2060, 1]
[2162, 13]
intro V a1 a2
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_x h1_y h1_z : VarName M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F ⊢ ∀ (V : Valuation D), V h1_x = V h1_y → V h1_x = V h1_z → V h1_y = V h1_z
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_x h1_y h1_z : VarName M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F V : Valuation D a1 : V h1_x = V h1_y a2 : V h1_x = V h1_z ⊢ V h1_y = V h1_z
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/MM0/MM0.lean
MM0.holds_is_proof
[2060, 1]
[2162, 13]
trans V h1_x
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_x h1_y h1_z : VarName M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F V : Valuation D a1 : V h1_x = V h1_y a2 : V h1_x = V h1_z ⊢ V h1_y = V h1_z
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_x h1_y h1_z : VarName M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F V : Valuation D a1 : V h1_x = V h1_y a2 : V h1_x = V h1_z ⊢ V h1_y = V h1_x D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_x h1_y h1_z : VarName M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F V : Valuation D a1 : V h1_x = V h1_y a2 : V h1_x = V h1_z ⊢ V h1_x = V h1_z
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/MM0/MM0.lean
MM0.holds_is_proof
[2060, 1]
[2162, 13]
simp only [a1]
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_x h1_y h1_z : VarName M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F V : Valuation D a1 : V h1_x = V h1_y a2 : V h1_x = V h1_z ⊢ V h1_y = V h1_x
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/MM0/MM0.lean
MM0.holds_is_proof
[2060, 1]
[2162, 13]
exact a2
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_x h1_y h1_z : VarName M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F V : Valuation D a1 : V h1_x = V h1_y a2 : V h1_x = V h1_z ⊢ V h1_x = V h1_z
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/MM0/MM0.lean
MM0.holds_is_proof
[2060, 1]
[2162, 13]
sorry
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_n : ℕ h1_name : PredName h1_xs h1_ys : Fin h1_n → VarName M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F ⊢ ∀ (V : Valuation D), Holds D I V M E (eqSubPred h1_name h1_n h1_xs h1_ys)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/MM0/MM0.lean
MM0.holds_is_proof
[2060, 1]
[2162, 13]
obtain ⟨σ', a1⟩ := h1_σ.2
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ h1_Γ' : List (VarName × MetaVarName) h1_Δ h1_Δ' : List Formula h1_phi : Formula h1_σ : Instantiation h1_τ : MetaInstantiation h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X) h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X) h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi) h1_4 : IsProof E h1_Γ h1_Δ h1_phi h1_ih_1 : ∀ psi ∈ h1_Δ, ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi) h1_ih_2 : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F ⊢ ∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ h1_phi)
case intro D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ h1_Γ' : List (VarName × MetaVarName) h1_Δ h1_Δ' : List Formula h1_phi : Formula h1_σ : Instantiation h1_τ : MetaInstantiation h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X) h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X) h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi) h1_4 : IsProof E h1_Γ h1_Δ h1_phi h1_ih_1 : ∀ psi ∈ h1_Δ, ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi) h1_ih_2 : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F σ' : VarName → VarName a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id ⊢ ∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ h1_phi)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/MM0/MM0.lean
MM0.holds_is_proof
[2060, 1]
[2162, 13]
have s1 : IsMetaVarOrAllDefInEnv E h1_phi := is_proof_imp_is_meta_var_or_all_def_in_env E h1_Γ h1_Δ h1_phi h1_4
case intro D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ h1_Γ' : List (VarName × MetaVarName) h1_Δ h1_Δ' : List Formula h1_phi : Formula h1_σ : Instantiation h1_τ : MetaInstantiation h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X) h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X) h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi) h1_4 : IsProof E h1_Γ h1_Δ h1_phi h1_ih_1 : ∀ psi ∈ h1_Δ, ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi) h1_ih_2 : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F σ' : VarName → VarName a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id ⊢ ∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ h1_phi)
case intro D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ h1_Γ' : List (VarName × MetaVarName) h1_Δ h1_Δ' : List Formula h1_phi : Formula h1_σ : Instantiation h1_τ : MetaInstantiation h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X) h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X) h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi) h1_4 : IsProof E h1_Γ h1_Δ h1_phi h1_ih_1 : ∀ psi ∈ h1_Δ, ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi) h1_ih_2 : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F σ' : VarName → VarName a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id s1 : IsMetaVarOrAllDefInEnv E h1_phi ⊢ ∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ h1_phi)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/MM0/MM0.lean
MM0.holds_is_proof
[2060, 1]
[2162, 13]
intro V
case intro D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ h1_Γ' : List (VarName × MetaVarName) h1_Δ h1_Δ' : List Formula h1_phi : Formula h1_σ : Instantiation h1_τ : MetaInstantiation h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X) h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X) h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi) h1_4 : IsProof E h1_Γ h1_Δ h1_phi h1_ih_1 : ∀ psi ∈ h1_Δ, ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi) h1_ih_2 : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F σ' : VarName → VarName a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id s1 : IsMetaVarOrAllDefInEnv E h1_phi ⊢ ∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ h1_phi)
case intro D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ h1_Γ' : List (VarName × MetaVarName) h1_Δ h1_Δ' : List Formula h1_phi : Formula h1_σ : Instantiation h1_τ : MetaInstantiation h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X) h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X) h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi) h1_4 : IsProof E h1_Γ h1_Δ h1_phi h1_ih_1 : ∀ psi ∈ h1_Δ, ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi) h1_ih_2 : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F σ' : VarName → VarName a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id s1 : IsMetaVarOrAllDefInEnv E h1_phi V : Valuation D ⊢ Holds D I V M E (sub h1_σ h1_τ h1_phi)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/MM0/MM0.lean
MM0.holds_is_proof
[2060, 1]
[2162, 13]
simp only [← holds_sub D I V M E h1_σ σ' h1_τ h1_phi s1 a1]
case intro D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ h1_Γ' : List (VarName × MetaVarName) h1_Δ h1_Δ' : List Formula h1_phi : Formula h1_σ : Instantiation h1_τ : MetaInstantiation h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X) h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X) h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi) h1_4 : IsProof E h1_Γ h1_Δ h1_phi h1_ih_1 : ∀ psi ∈ h1_Δ, ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi) h1_ih_2 : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F σ' : VarName → VarName a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id s1 : IsMetaVarOrAllDefInEnv E h1_phi V : Valuation D ⊢ Holds D I V M E (sub h1_σ h1_τ h1_phi)
case intro D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ h1_Γ' : List (VarName × MetaVarName) h1_Δ h1_Δ' : List Formula h1_phi : Formula h1_σ : Instantiation h1_τ : MetaInstantiation h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X) h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X) h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi) h1_4 : IsProof E h1_Γ h1_Δ h1_phi h1_ih_1 : ∀ psi ∈ h1_Δ, ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi) h1_ih_2 : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F σ' : VarName → VarName a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id s1 : IsMetaVarOrAllDefInEnv E h1_phi V : Valuation D ⊢ Holds D I (V ∘ ↑h1_σ) (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E h1_phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/MM0/MM0.lean
MM0.holds_is_proof
[2060, 1]
[2162, 13]
apply h1_ih_2
case intro D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ h1_Γ' : List (VarName × MetaVarName) h1_Δ h1_Δ' : List Formula h1_phi : Formula h1_σ : Instantiation h1_τ : MetaInstantiation h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X) h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X) h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi) h1_4 : IsProof E h1_Γ h1_Δ h1_phi h1_ih_1 : ∀ psi ∈ h1_Δ, ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi) h1_ih_2 : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F σ' : VarName → VarName a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id s1 : IsMetaVarOrAllDefInEnv E h1_phi V : Valuation D ⊢ Holds D I (V ∘ ↑h1_σ) (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E h1_phi
case intro.nf D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ h1_Γ' : List (VarName × MetaVarName) h1_Δ h1_Δ' : List Formula h1_phi : Formula h1_σ : Instantiation h1_τ : MetaInstantiation h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X) h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X) h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi) h1_4 : IsProof E h1_Γ h1_Δ h1_phi h1_ih_1 : ∀ psi ∈ h1_Δ, ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi) h1_ih_2 : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F σ' : VarName → VarName a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id s1 : IsMetaVarOrAllDefInEnv E h1_phi V : Valuation D ⊢ ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E (meta_var_ X) v case intro.hyp D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ h1_Γ' : List (VarName × MetaVarName) h1_Δ h1_Δ' : List Formula h1_phi : Formula h1_σ : Instantiation h1_τ : MetaInstantiation h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X) h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X) h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi) h1_4 : IsProof E h1_Γ h1_Δ h1_phi h1_ih_1 : ∀ psi ∈ h1_Δ, ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi) h1_ih_2 : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F σ' : VarName → VarName a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id s1 : IsMetaVarOrAllDefInEnv E h1_phi V : Valuation D ⊢ ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E F
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/MM0/MM0.lean
MM0.holds_is_proof
[2060, 1]
[2162, 13]
intro v X a2
case intro.nf D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ h1_Γ' : List (VarName × MetaVarName) h1_Δ h1_Δ' : List Formula h1_phi : Formula h1_σ : Instantiation h1_τ : MetaInstantiation h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X) h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X) h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi) h1_4 : IsProof E h1_Γ h1_Δ h1_phi h1_ih_1 : ∀ psi ∈ h1_Δ, ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi) h1_ih_2 : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F σ' : VarName → VarName a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id s1 : IsMetaVarOrAllDefInEnv E h1_phi V : Valuation D ⊢ ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E (meta_var_ X) v
case intro.nf D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ h1_Γ' : List (VarName × MetaVarName) h1_Δ h1_Δ' : List Formula h1_phi : Formula h1_σ : Instantiation h1_τ : MetaInstantiation h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X) h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X) h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi) h1_4 : IsProof E h1_Γ h1_Δ h1_phi h1_ih_1 : ∀ psi ∈ h1_Δ, ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi) h1_ih_2 : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F σ' : VarName → VarName a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id s1 : IsMetaVarOrAllDefInEnv E h1_phi V : Valuation D v : VarName X : MetaVarName a2 : (v, X) ∈ h1_Γ ⊢ IsNotFree D I (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E (meta_var_ X) v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/MM0/MM0.lean
MM0.holds_is_proof
[2060, 1]
[2162, 13]
exact lem_1 D I M E h1_Γ h1_Γ' h1_σ σ' h1_τ a1 nf h1_2 v X a2
case intro.nf D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ h1_Γ' : List (VarName × MetaVarName) h1_Δ h1_Δ' : List Formula h1_phi : Formula h1_σ : Instantiation h1_τ : MetaInstantiation h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X) h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X) h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi) h1_4 : IsProof E h1_Γ h1_Δ h1_phi h1_ih_1 : ∀ psi ∈ h1_Δ, ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi) h1_ih_2 : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F σ' : VarName → VarName a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id s1 : IsMetaVarOrAllDefInEnv E h1_phi V : Valuation D v : VarName X : MetaVarName a2 : (v, X) ∈ h1_Γ ⊢ IsNotFree D I (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E (meta_var_ X) v
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/MM0/MM0.lean
MM0.holds_is_proof
[2060, 1]
[2162, 13]
intro psi V' a2
case intro.hyp D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ h1_Γ' : List (VarName × MetaVarName) h1_Δ h1_Δ' : List Formula h1_phi : Formula h1_σ : Instantiation h1_τ : MetaInstantiation h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X) h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X) h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi) h1_4 : IsProof E h1_Γ h1_Δ h1_phi h1_ih_1 : ∀ psi ∈ h1_Δ, ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi) h1_ih_2 : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F σ' : VarName → VarName a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id s1 : IsMetaVarOrAllDefInEnv E h1_phi V : Valuation D ⊢ ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E F
case intro.hyp D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ h1_Γ' : List (VarName × MetaVarName) h1_Δ h1_Δ' : List Formula h1_phi : Formula h1_σ : Instantiation h1_τ : MetaInstantiation h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X) h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X) h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi) h1_4 : IsProof E h1_Γ h1_Δ h1_phi h1_ih_1 : ∀ psi ∈ h1_Δ, ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi) h1_ih_2 : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F σ' : VarName → VarName a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id s1 : IsMetaVarOrAllDefInEnv E h1_phi V : Valuation D psi : Formula V' : Valuation D a2 : psi ∈ h1_Δ ⊢ Holds D I V' (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/MM0/MM0.lean
MM0.holds_is_proof
[2060, 1]
[2162, 13]
have s2 : IsMetaVarOrAllDefInEnv E psi
case intro.hyp D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ h1_Γ' : List (VarName × MetaVarName) h1_Δ h1_Δ' : List Formula h1_phi : Formula h1_σ : Instantiation h1_τ : MetaInstantiation h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X) h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X) h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi) h1_4 : IsProof E h1_Γ h1_Δ h1_phi h1_ih_1 : ∀ psi ∈ h1_Δ, ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi) h1_ih_2 : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F σ' : VarName → VarName a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id s1 : IsMetaVarOrAllDefInEnv E h1_phi V : Valuation D psi : Formula V' : Valuation D a2 : psi ∈ h1_Δ ⊢ Holds D I V' (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi
case s2 D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ h1_Γ' : List (VarName × MetaVarName) h1_Δ h1_Δ' : List Formula h1_phi : Formula h1_σ : Instantiation h1_τ : MetaInstantiation h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X) h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X) h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi) h1_4 : IsProof E h1_Γ h1_Δ h1_phi h1_ih_1 : ∀ psi ∈ h1_Δ, ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi) h1_ih_2 : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F σ' : VarName → VarName a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id s1 : IsMetaVarOrAllDefInEnv E h1_phi V : Valuation D psi : Formula V' : Valuation D a2 : psi ∈ h1_Δ ⊢ IsMetaVarOrAllDefInEnv E psi case intro.hyp D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ h1_Γ' : List (VarName × MetaVarName) h1_Δ h1_Δ' : List Formula h1_phi : Formula h1_σ : Instantiation h1_τ : MetaInstantiation h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X) h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X) h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi) h1_4 : IsProof E h1_Γ h1_Δ h1_phi h1_ih_1 : ∀ psi ∈ h1_Δ, ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi) h1_ih_2 : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F σ' : VarName → VarName a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id s1 : IsMetaVarOrAllDefInEnv E h1_phi V : Valuation D psi : Formula V' : Valuation D a2 : psi ∈ h1_Δ s2 : IsMetaVarOrAllDefInEnv E psi ⊢ Holds D I V' (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/MM0/MM0.lean
MM0.holds_is_proof
[2060, 1]
[2162, 13]
apply lem_2_b E h1_σ h1_τ
case s2 D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ h1_Γ' : List (VarName × MetaVarName) h1_Δ h1_Δ' : List Formula h1_phi : Formula h1_σ : Instantiation h1_τ : MetaInstantiation h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X) h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X) h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi) h1_4 : IsProof E h1_Γ h1_Δ h1_phi h1_ih_1 : ∀ psi ∈ h1_Δ, ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi) h1_ih_2 : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F σ' : VarName → VarName a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id s1 : IsMetaVarOrAllDefInEnv E h1_phi V : Valuation D psi : Formula V' : Valuation D a2 : psi ∈ h1_Δ ⊢ IsMetaVarOrAllDefInEnv E psi case intro.hyp D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ h1_Γ' : List (VarName × MetaVarName) h1_Δ h1_Δ' : List Formula h1_phi : Formula h1_σ : Instantiation h1_τ : MetaInstantiation h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X) h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X) h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi) h1_4 : IsProof E h1_Γ h1_Δ h1_phi h1_ih_1 : ∀ psi ∈ h1_Δ, ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi) h1_ih_2 : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F σ' : VarName → VarName a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id s1 : IsMetaVarOrAllDefInEnv E h1_phi V : Valuation D psi : Formula V' : Valuation D a2 : psi ∈ h1_Δ s2 : IsMetaVarOrAllDefInEnv E psi ⊢ Holds D I V' (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi
case s2.h1 D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ h1_Γ' : List (VarName × MetaVarName) h1_Δ h1_Δ' : List Formula h1_phi : Formula h1_σ : Instantiation h1_τ : MetaInstantiation h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X) h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X) h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi) h1_4 : IsProof E h1_Γ h1_Δ h1_phi h1_ih_1 : ∀ psi ∈ h1_Δ, ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi) h1_ih_2 : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F σ' : VarName → VarName a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id s1 : IsMetaVarOrAllDefInEnv E h1_phi V : Valuation D psi : Formula V' : Valuation D a2 : psi ∈ h1_Δ ⊢ IsMetaVarOrAllDefInEnv E (sub h1_σ h1_τ psi) case intro.hyp D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ h1_Γ' : List (VarName × MetaVarName) h1_Δ h1_Δ' : List Formula h1_phi : Formula h1_σ : Instantiation h1_τ : MetaInstantiation h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X) h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X) h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi) h1_4 : IsProof E h1_Γ h1_Δ h1_phi h1_ih_1 : ∀ psi ∈ h1_Δ, ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi) h1_ih_2 : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F σ' : VarName → VarName a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id s1 : IsMetaVarOrAllDefInEnv E h1_phi V : Valuation D psi : Formula V' : Valuation D a2 : psi ∈ h1_Δ s2 : IsMetaVarOrAllDefInEnv E psi ⊢ Holds D I V' (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/MM0/MM0.lean
MM0.holds_is_proof
[2060, 1]
[2162, 13]
apply is_proof_imp_is_meta_var_or_all_def_in_env E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi)
case s2.h1 D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ h1_Γ' : List (VarName × MetaVarName) h1_Δ h1_Δ' : List Formula h1_phi : Formula h1_σ : Instantiation h1_τ : MetaInstantiation h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X) h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X) h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi) h1_4 : IsProof E h1_Γ h1_Δ h1_phi h1_ih_1 : ∀ psi ∈ h1_Δ, ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi) h1_ih_2 : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F σ' : VarName → VarName a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id s1 : IsMetaVarOrAllDefInEnv E h1_phi V : Valuation D psi : Formula V' : Valuation D a2 : psi ∈ h1_Δ ⊢ IsMetaVarOrAllDefInEnv E (sub h1_σ h1_τ psi) case intro.hyp D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ h1_Γ' : List (VarName × MetaVarName) h1_Δ h1_Δ' : List Formula h1_phi : Formula h1_σ : Instantiation h1_τ : MetaInstantiation h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X) h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X) h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi) h1_4 : IsProof E h1_Γ h1_Δ h1_phi h1_ih_1 : ∀ psi ∈ h1_Δ, ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi) h1_ih_2 : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F σ' : VarName → VarName a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id s1 : IsMetaVarOrAllDefInEnv E h1_phi V : Valuation D psi : Formula V' : Valuation D a2 : psi ∈ h1_Δ s2 : IsMetaVarOrAllDefInEnv E psi ⊢ Holds D I V' (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi
case s2.h1 D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ h1_Γ' : List (VarName × MetaVarName) h1_Δ h1_Δ' : List Formula h1_phi : Formula h1_σ : Instantiation h1_τ : MetaInstantiation h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X) h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X) h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi) h1_4 : IsProof E h1_Γ h1_Δ h1_phi h1_ih_1 : ∀ psi ∈ h1_Δ, ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi) h1_ih_2 : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F σ' : VarName → VarName a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id s1 : IsMetaVarOrAllDefInEnv E h1_phi V : Valuation D psi : Formula V' : Valuation D a2 : psi ∈ h1_Δ ⊢ IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi) case intro.hyp D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ h1_Γ' : List (VarName × MetaVarName) h1_Δ h1_Δ' : List Formula h1_phi : Formula h1_σ : Instantiation h1_τ : MetaInstantiation h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X) h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X) h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi) h1_4 : IsProof E h1_Γ h1_Δ h1_phi h1_ih_1 : ∀ psi ∈ h1_Δ, ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi) h1_ih_2 : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F σ' : VarName → VarName a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id s1 : IsMetaVarOrAllDefInEnv E h1_phi V : Valuation D psi : Formula V' : Valuation D a2 : psi ∈ h1_Δ s2 : IsMetaVarOrAllDefInEnv E psi ⊢ Holds D I V' (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/MM0/MM0.lean
MM0.holds_is_proof
[2060, 1]
[2162, 13]
exact h1_3 psi a2
case s2.h1 D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ h1_Γ' : List (VarName × MetaVarName) h1_Δ h1_Δ' : List Formula h1_phi : Formula h1_σ : Instantiation h1_τ : MetaInstantiation h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X) h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X) h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi) h1_4 : IsProof E h1_Γ h1_Δ h1_phi h1_ih_1 : ∀ psi ∈ h1_Δ, ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi) h1_ih_2 : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F σ' : VarName → VarName a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id s1 : IsMetaVarOrAllDefInEnv E h1_phi V : Valuation D psi : Formula V' : Valuation D a2 : psi ∈ h1_Δ ⊢ IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi) case intro.hyp D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ h1_Γ' : List (VarName × MetaVarName) h1_Δ h1_Δ' : List Formula h1_phi : Formula h1_σ : Instantiation h1_τ : MetaInstantiation h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X) h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X) h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi) h1_4 : IsProof E h1_Γ h1_Δ h1_phi h1_ih_1 : ∀ psi ∈ h1_Δ, ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi) h1_ih_2 : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F σ' : VarName → VarName a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id s1 : IsMetaVarOrAllDefInEnv E h1_phi V : Valuation D psi : Formula V' : Valuation D a2 : psi ∈ h1_Δ s2 : IsMetaVarOrAllDefInEnv E psi ⊢ Holds D I V' (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi
case intro.hyp D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ h1_Γ' : List (VarName × MetaVarName) h1_Δ h1_Δ' : List Formula h1_phi : Formula h1_σ : Instantiation h1_τ : MetaInstantiation h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X) h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X) h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi) h1_4 : IsProof E h1_Γ h1_Δ h1_phi h1_ih_1 : ∀ psi ∈ h1_Δ, ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi) h1_ih_2 : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F σ' : VarName → VarName a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id s1 : IsMetaVarOrAllDefInEnv E h1_phi V : Valuation D psi : Formula V' : Valuation D a2 : psi ∈ h1_Δ s2 : IsMetaVarOrAllDefInEnv E psi ⊢ Holds D I V' (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/MM0/MM0.lean
MM0.holds_is_proof
[2060, 1]
[2162, 13]
have s3 : ∀ V'' : Valuation D, Holds D I (V'' ∘ h1_σ.val) (fun (X' : MetaVarName) (V' : Valuation D) => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi
case intro.hyp D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ h1_Γ' : List (VarName × MetaVarName) h1_Δ h1_Δ' : List Formula h1_phi : Formula h1_σ : Instantiation h1_τ : MetaInstantiation h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X) h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X) h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi) h1_4 : IsProof E h1_Γ h1_Δ h1_phi h1_ih_1 : ∀ psi ∈ h1_Δ, ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi) h1_ih_2 : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F σ' : VarName → VarName a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id s1 : IsMetaVarOrAllDefInEnv E h1_phi V : Valuation D psi : Formula V' : Valuation D a2 : psi ∈ h1_Δ s2 : IsMetaVarOrAllDefInEnv E psi ⊢ Holds D I V' (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi
case s3 D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ h1_Γ' : List (VarName × MetaVarName) h1_Δ h1_Δ' : List Formula h1_phi : Formula h1_σ : Instantiation h1_τ : MetaInstantiation h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X) h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X) h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi) h1_4 : IsProof E h1_Γ h1_Δ h1_phi h1_ih_1 : ∀ psi ∈ h1_Δ, ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi) h1_ih_2 : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F σ' : VarName → VarName a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id s1 : IsMetaVarOrAllDefInEnv E h1_phi V : Valuation D psi : Formula V' : Valuation D a2 : psi ∈ h1_Δ s2 : IsMetaVarOrAllDefInEnv E psi ⊢ ∀ (V'' : Valuation D), Holds D I (V'' ∘ ↑h1_σ) (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi case intro.hyp D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ h1_Γ' : List (VarName × MetaVarName) h1_Δ h1_Δ' : List Formula h1_phi : Formula h1_σ : Instantiation h1_τ : MetaInstantiation h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X) h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X) h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi) h1_4 : IsProof E h1_Γ h1_Δ h1_phi h1_ih_1 : ∀ psi ∈ h1_Δ, ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi) h1_ih_2 : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F σ' : VarName → VarName a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id s1 : IsMetaVarOrAllDefInEnv E h1_phi V : Valuation D psi : Formula V' : Valuation D a2 : psi ∈ h1_Δ s2 : IsMetaVarOrAllDefInEnv E psi s3 : ∀ (V'' : Valuation D), Holds D I (V'' ∘ ↑h1_σ) (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi ⊢ Holds D I V' (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/MM0/MM0.lean
MM0.holds_is_proof
[2060, 1]
[2162, 13]
intro V''
case s3 D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ h1_Γ' : List (VarName × MetaVarName) h1_Δ h1_Δ' : List Formula h1_phi : Formula h1_σ : Instantiation h1_τ : MetaInstantiation h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X) h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X) h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi) h1_4 : IsProof E h1_Γ h1_Δ h1_phi h1_ih_1 : ∀ psi ∈ h1_Δ, ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi) h1_ih_2 : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F σ' : VarName → VarName a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id s1 : IsMetaVarOrAllDefInEnv E h1_phi V : Valuation D psi : Formula V' : Valuation D a2 : psi ∈ h1_Δ s2 : IsMetaVarOrAllDefInEnv E psi ⊢ ∀ (V'' : Valuation D), Holds D I (V'' ∘ ↑h1_σ) (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi case intro.hyp D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ h1_Γ' : List (VarName × MetaVarName) h1_Δ h1_Δ' : List Formula h1_phi : Formula h1_σ : Instantiation h1_τ : MetaInstantiation h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X) h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X) h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi) h1_4 : IsProof E h1_Γ h1_Δ h1_phi h1_ih_1 : ∀ psi ∈ h1_Δ, ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi) h1_ih_2 : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F σ' : VarName → VarName a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id s1 : IsMetaVarOrAllDefInEnv E h1_phi V : Valuation D psi : Formula V' : Valuation D a2 : psi ∈ h1_Δ s2 : IsMetaVarOrAllDefInEnv E psi s3 : ∀ (V'' : Valuation D), Holds D I (V'' ∘ ↑h1_σ) (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi ⊢ Holds D I V' (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi
case s3 D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ h1_Γ' : List (VarName × MetaVarName) h1_Δ h1_Δ' : List Formula h1_phi : Formula h1_σ : Instantiation h1_τ : MetaInstantiation h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X) h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X) h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi) h1_4 : IsProof E h1_Γ h1_Δ h1_phi h1_ih_1 : ∀ psi ∈ h1_Δ, ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi) h1_ih_2 : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F σ' : VarName → VarName a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id s1 : IsMetaVarOrAllDefInEnv E h1_phi V : Valuation D psi : Formula V' : Valuation D a2 : psi ∈ h1_Δ s2 : IsMetaVarOrAllDefInEnv E psi V'' : Valuation D ⊢ Holds D I (V'' ∘ ↑h1_σ) (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi case intro.hyp D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ h1_Γ' : List (VarName × MetaVarName) h1_Δ h1_Δ' : List Formula h1_phi : Formula h1_σ : Instantiation h1_τ : MetaInstantiation h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X) h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X) h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi) h1_4 : IsProof E h1_Γ h1_Δ h1_phi h1_ih_1 : ∀ psi ∈ h1_Δ, ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi) h1_ih_2 : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F σ' : VarName → VarName a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id s1 : IsMetaVarOrAllDefInEnv E h1_phi V : Valuation D psi : Formula V' : Valuation D a2 : psi ∈ h1_Δ s2 : IsMetaVarOrAllDefInEnv E psi s3 : ∀ (V'' : Valuation D), Holds D I (V'' ∘ ↑h1_σ) (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi ⊢ Holds D I V' (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/MM0/MM0.lean
MM0.holds_is_proof
[2060, 1]
[2162, 13]
simp only [holds_sub D I V'' M E h1_σ σ' h1_τ psi s2 a1]
case s3 D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ h1_Γ' : List (VarName × MetaVarName) h1_Δ h1_Δ' : List Formula h1_phi : Formula h1_σ : Instantiation h1_τ : MetaInstantiation h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X) h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X) h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi) h1_4 : IsProof E h1_Γ h1_Δ h1_phi h1_ih_1 : ∀ psi ∈ h1_Δ, ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi) h1_ih_2 : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F σ' : VarName → VarName a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id s1 : IsMetaVarOrAllDefInEnv E h1_phi V : Valuation D psi : Formula V' : Valuation D a2 : psi ∈ h1_Δ s2 : IsMetaVarOrAllDefInEnv E psi V'' : Valuation D ⊢ Holds D I (V'' ∘ ↑h1_σ) (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi case intro.hyp D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ h1_Γ' : List (VarName × MetaVarName) h1_Δ h1_Δ' : List Formula h1_phi : Formula h1_σ : Instantiation h1_τ : MetaInstantiation h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X) h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X) h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi) h1_4 : IsProof E h1_Γ h1_Δ h1_phi h1_ih_1 : ∀ psi ∈ h1_Δ, ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi) h1_ih_2 : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F σ' : VarName → VarName a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id s1 : IsMetaVarOrAllDefInEnv E h1_phi V : Valuation D psi : Formula V' : Valuation D a2 : psi ∈ h1_Δ s2 : IsMetaVarOrAllDefInEnv E psi s3 : ∀ (V'' : Valuation D), Holds D I (V'' ∘ ↑h1_σ) (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi ⊢ Holds D I V' (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi
case s3 D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ h1_Γ' : List (VarName × MetaVarName) h1_Δ h1_Δ' : List Formula h1_phi : Formula h1_σ : Instantiation h1_τ : MetaInstantiation h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X) h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X) h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi) h1_4 : IsProof E h1_Γ h1_Δ h1_phi h1_ih_1 : ∀ psi ∈ h1_Δ, ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi) h1_ih_2 : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F σ' : VarName → VarName a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id s1 : IsMetaVarOrAllDefInEnv E h1_phi V : Valuation D psi : Formula V' : Valuation D a2 : psi ∈ h1_Δ s2 : IsMetaVarOrAllDefInEnv E psi V'' : Valuation D ⊢ Holds D I V'' M E (sub h1_σ h1_τ psi) case intro.hyp D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ h1_Γ' : List (VarName × MetaVarName) h1_Δ h1_Δ' : List Formula h1_phi : Formula h1_σ : Instantiation h1_τ : MetaInstantiation h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X) h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X) h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi) h1_4 : IsProof E h1_Γ h1_Δ h1_phi h1_ih_1 : ∀ psi ∈ h1_Δ, ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi) h1_ih_2 : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F σ' : VarName → VarName a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id s1 : IsMetaVarOrAllDefInEnv E h1_phi V : Valuation D psi : Formula V' : Valuation D a2 : psi ∈ h1_Δ s2 : IsMetaVarOrAllDefInEnv E psi s3 : ∀ (V'' : Valuation D), Holds D I (V'' ∘ ↑h1_σ) (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi ⊢ Holds D I V' (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/MM0/MM0.lean
MM0.holds_is_proof
[2060, 1]
[2162, 13]
exact h1_ih_1 psi a2 M nf hyp V''
case s3 D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ h1_Γ' : List (VarName × MetaVarName) h1_Δ h1_Δ' : List Formula h1_phi : Formula h1_σ : Instantiation h1_τ : MetaInstantiation h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X) h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X) h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi) h1_4 : IsProof E h1_Γ h1_Δ h1_phi h1_ih_1 : ∀ psi ∈ h1_Δ, ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi) h1_ih_2 : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F σ' : VarName → VarName a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id s1 : IsMetaVarOrAllDefInEnv E h1_phi V : Valuation D psi : Formula V' : Valuation D a2 : psi ∈ h1_Δ s2 : IsMetaVarOrAllDefInEnv E psi V'' : Valuation D ⊢ Holds D I V'' M E (sub h1_σ h1_τ psi) case intro.hyp D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ h1_Γ' : List (VarName × MetaVarName) h1_Δ h1_Δ' : List Formula h1_phi : Formula h1_σ : Instantiation h1_τ : MetaInstantiation h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X) h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X) h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi) h1_4 : IsProof E h1_Γ h1_Δ h1_phi h1_ih_1 : ∀ psi ∈ h1_Δ, ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi) h1_ih_2 : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F σ' : VarName → VarName a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id s1 : IsMetaVarOrAllDefInEnv E h1_phi V : Valuation D psi : Formula V' : Valuation D a2 : psi ∈ h1_Δ s2 : IsMetaVarOrAllDefInEnv E psi s3 : ∀ (V'' : Valuation D), Holds D I (V'' ∘ ↑h1_σ) (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi ⊢ Holds D I V' (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi
case intro.hyp D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ h1_Γ' : List (VarName × MetaVarName) h1_Δ h1_Δ' : List Formula h1_phi : Formula h1_σ : Instantiation h1_τ : MetaInstantiation h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X) h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X) h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi) h1_4 : IsProof E h1_Γ h1_Δ h1_phi h1_ih_1 : ∀ psi ∈ h1_Δ, ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi) h1_ih_2 : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F σ' : VarName → VarName a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id s1 : IsMetaVarOrAllDefInEnv E h1_phi V : Valuation D psi : Formula V' : Valuation D a2 : psi ∈ h1_Δ s2 : IsMetaVarOrAllDefInEnv E psi s3 : ∀ (V'' : Valuation D), Holds D I (V'' ∘ ↑h1_σ) (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi ⊢ Holds D I V' (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/MM0/MM0.lean
MM0.holds_is_proof
[2060, 1]
[2162, 13]
specialize s3 (V' ∘ σ')
case intro.hyp D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ h1_Γ' : List (VarName × MetaVarName) h1_Δ h1_Δ' : List Formula h1_phi : Formula h1_σ : Instantiation h1_τ : MetaInstantiation h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X) h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X) h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi) h1_4 : IsProof E h1_Γ h1_Δ h1_phi h1_ih_1 : ∀ psi ∈ h1_Δ, ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi) h1_ih_2 : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F σ' : VarName → VarName a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id s1 : IsMetaVarOrAllDefInEnv E h1_phi V : Valuation D psi : Formula V' : Valuation D a2 : psi ∈ h1_Δ s2 : IsMetaVarOrAllDefInEnv E psi s3 : ∀ (V'' : Valuation D), Holds D I (V'' ∘ ↑h1_σ) (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi ⊢ Holds D I V' (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi
case intro.hyp D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ h1_Γ' : List (VarName × MetaVarName) h1_Δ h1_Δ' : List Formula h1_phi : Formula h1_σ : Instantiation h1_τ : MetaInstantiation h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X) h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X) h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi) h1_4 : IsProof E h1_Γ h1_Δ h1_phi h1_ih_1 : ∀ psi ∈ h1_Δ, ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi) h1_ih_2 : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F σ' : VarName → VarName a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id s1 : IsMetaVarOrAllDefInEnv E h1_phi V : Valuation D psi : Formula V' : Valuation D a2 : psi ∈ h1_Δ s2 : IsMetaVarOrAllDefInEnv E psi s3 : Holds D I ((V' ∘ σ') ∘ ↑h1_σ) (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi ⊢ Holds D I V' (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/MM0/MM0.lean
MM0.holds_is_proof
[2060, 1]
[2162, 13]
simp only [Function.comp.assoc] at s3
case intro.hyp D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ h1_Γ' : List (VarName × MetaVarName) h1_Δ h1_Δ' : List Formula h1_phi : Formula h1_σ : Instantiation h1_τ : MetaInstantiation h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X) h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X) h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi) h1_4 : IsProof E h1_Γ h1_Δ h1_phi h1_ih_1 : ∀ psi ∈ h1_Δ, ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi) h1_ih_2 : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F σ' : VarName → VarName a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id s1 : IsMetaVarOrAllDefInEnv E h1_phi V : Valuation D psi : Formula V' : Valuation D a2 : psi ∈ h1_Δ s2 : IsMetaVarOrAllDefInEnv E psi s3 : Holds D I ((V' ∘ σ') ∘ ↑h1_σ) (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi ⊢ Holds D I V' (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi
case intro.hyp D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ h1_Γ' : List (VarName × MetaVarName) h1_Δ h1_Δ' : List Formula h1_phi : Formula h1_σ : Instantiation h1_τ : MetaInstantiation h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X) h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X) h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi) h1_4 : IsProof E h1_Γ h1_Δ h1_phi h1_ih_1 : ∀ psi ∈ h1_Δ, ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi) h1_ih_2 : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F σ' : VarName → VarName a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id s1 : IsMetaVarOrAllDefInEnv E h1_phi V : Valuation D psi : Formula V' : Valuation D a2 : psi ∈ h1_Δ s2 : IsMetaVarOrAllDefInEnv E psi s3 : Holds D I (V' ∘ σ' ∘ ↑h1_σ) (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi ⊢ Holds D I V' (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/MM0/MM0.lean
MM0.holds_is_proof
[2060, 1]
[2162, 13]
simp only [a1.right] at s3
case intro.hyp D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ h1_Γ' : List (VarName × MetaVarName) h1_Δ h1_Δ' : List Formula h1_phi : Formula h1_σ : Instantiation h1_τ : MetaInstantiation h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X) h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X) h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi) h1_4 : IsProof E h1_Γ h1_Δ h1_phi h1_ih_1 : ∀ psi ∈ h1_Δ, ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi) h1_ih_2 : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F σ' : VarName → VarName a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id s1 : IsMetaVarOrAllDefInEnv E h1_phi V : Valuation D psi : Formula V' : Valuation D a2 : psi ∈ h1_Δ s2 : IsMetaVarOrAllDefInEnv E psi s3 : Holds D I (V' ∘ σ' ∘ ↑h1_σ) (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi ⊢ Holds D I V' (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi
case intro.hyp D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ h1_Γ' : List (VarName × MetaVarName) h1_Δ h1_Δ' : List Formula h1_phi : Formula h1_σ : Instantiation h1_τ : MetaInstantiation h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X) h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X) h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi) h1_4 : IsProof E h1_Γ h1_Δ h1_phi h1_ih_1 : ∀ psi ∈ h1_Δ, ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi) h1_ih_2 : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F σ' : VarName → VarName a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id s1 : IsMetaVarOrAllDefInEnv E h1_phi V : Valuation D psi : Formula V' : Valuation D a2 : psi ∈ h1_Δ s2 : IsMetaVarOrAllDefInEnv E psi s3 : Holds D I (V' ∘ id) (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi ⊢ Holds D I V' (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/MM0/MM0.lean
MM0.holds_is_proof
[2060, 1]
[2162, 13]
simp only [Function.comp_id] at s3
case intro.hyp D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ h1_Γ' : List (VarName × MetaVarName) h1_Δ h1_Δ' : List Formula h1_phi : Formula h1_σ : Instantiation h1_τ : MetaInstantiation h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X) h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X) h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi) h1_4 : IsProof E h1_Γ h1_Δ h1_phi h1_ih_1 : ∀ psi ∈ h1_Δ, ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi) h1_ih_2 : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F σ' : VarName → VarName a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id s1 : IsMetaVarOrAllDefInEnv E h1_phi V : Valuation D psi : Formula V' : Valuation D a2 : psi ∈ h1_Δ s2 : IsMetaVarOrAllDefInEnv E psi s3 : Holds D I (V' ∘ id) (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi ⊢ Holds D I V' (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi
case intro.hyp D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ h1_Γ' : List (VarName × MetaVarName) h1_Δ h1_Δ' : List Formula h1_phi : Formula h1_σ : Instantiation h1_τ : MetaInstantiation h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X) h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X) h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi) h1_4 : IsProof E h1_Γ h1_Δ h1_phi h1_ih_1 : ∀ psi ∈ h1_Δ, ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi) h1_ih_2 : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F σ' : VarName → VarName a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id s1 : IsMetaVarOrAllDefInEnv E h1_phi V : Valuation D psi : Formula V' : Valuation D a2 : psi ∈ h1_Δ s2 : IsMetaVarOrAllDefInEnv E psi s3 : Holds D I V' (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi ⊢ Holds D I V' (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/MM0/MM0.lean
MM0.holds_is_proof
[2060, 1]
[2162, 13]
exact s3
case intro.hyp D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ h1_Γ' : List (VarName × MetaVarName) h1_Δ h1_Δ' : List Formula h1_phi : Formula h1_σ : Instantiation h1_τ : MetaInstantiation h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X) h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X) h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi) h1_4 : IsProof E h1_Γ h1_Δ h1_phi h1_ih_1 : ∀ psi ∈ h1_Δ, ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi) h1_ih_2 : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F σ' : VarName → VarName a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id s1 : IsMetaVarOrAllDefInEnv E h1_phi V : Valuation D psi : Formula V' : Valuation D a2 : psi ∈ h1_Δ s2 : IsMetaVarOrAllDefInEnv E psi s3 : Holds D I V' (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi ⊢ Holds D I V' (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/MM0/MM0.lean
MM0.holds_is_proof
[2060, 1]
[2162, 13]
intro V
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_phi h1_phi' : Formula h1_1 : IsMetaVarOrAllDefInEnv E h1_phi' h1_2 : IsProof E h1_Γ h1_Δ h1_phi h1_3 : IsConv E h1_phi h1_phi' h1_ih : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F ⊢ ∀ (V : Valuation D), Holds D I V M E h1_phi'
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_phi h1_phi' : Formula h1_1 : IsMetaVarOrAllDefInEnv E h1_phi' h1_2 : IsProof E h1_Γ h1_Δ h1_phi h1_3 : IsConv E h1_phi h1_phi' h1_ih : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F V : Valuation D ⊢ Holds D I V M E h1_phi'
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/MM0/MM0.lean
MM0.holds_is_proof
[2060, 1]
[2162, 13]
have s1 : Holds D I V M E h1_phi := h1_ih M nf hyp V
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_phi h1_phi' : Formula h1_1 : IsMetaVarOrAllDefInEnv E h1_phi' h1_2 : IsProof E h1_Γ h1_Δ h1_phi h1_3 : IsConv E h1_phi h1_phi' h1_ih : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F V : Valuation D ⊢ Holds D I V M E h1_phi'
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_phi h1_phi' : Formula h1_1 : IsMetaVarOrAllDefInEnv E h1_phi' h1_2 : IsProof E h1_Γ h1_Δ h1_phi h1_3 : IsConv E h1_phi h1_phi' h1_ih : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F V : Valuation D s1 : Holds D I V M E h1_phi ⊢ Holds D I V M E h1_phi'
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/MM0/MM0.lean
MM0.holds_is_proof
[2060, 1]
[2162, 13]
simp only [← holds_conv D I V M E h1_phi h1_phi' h2 h1_3]
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_phi h1_phi' : Formula h1_1 : IsMetaVarOrAllDefInEnv E h1_phi' h1_2 : IsProof E h1_Γ h1_Δ h1_phi h1_3 : IsConv E h1_phi h1_phi' h1_ih : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F V : Valuation D s1 : Holds D I V M E h1_phi ⊢ Holds D I V M E h1_phi'
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_phi h1_phi' : Formula h1_1 : IsMetaVarOrAllDefInEnv E h1_phi' h1_2 : IsProof E h1_Γ h1_Δ h1_phi h1_3 : IsConv E h1_phi h1_phi' h1_ih : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F V : Valuation D s1 : Holds D I V M E h1_phi ⊢ Holds D I V M E h1_phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/MM0/MM0.lean
MM0.holds_is_proof
[2060, 1]
[2162, 13]
exact s1
D : Type I : Interpretation D E : Env Γ : List (VarName × MetaVarName) Δ : List Formula F : Formula h2 : E.WellFormed h1_Γ : List (VarName × MetaVarName) h1_Δ : List Formula h1_phi h1_phi' : Formula h1_1 : IsMetaVarOrAllDefInEnv E h1_phi' h1_2 : IsProof E h1_Γ h1_Δ h1_phi h1_3 : IsConv E h1_phi h1_phi' h1_ih : ∀ (M : MetaValuation D), (∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) → (∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi M : MetaValuation D nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F V : Valuation D s1 : Holds D I V M E h1_phi ⊢ Holds D I V M E h1_phi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Compute.lean
DA.memAccepts
[145, 1]
[151, 67]
rfl
α σ : Type D : DA α σ input : List α ⊢ D.accepts input ↔ D.evalFrom D.startingState input ∈ D.acceptingStates
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Compute.lean
NA.memAccepts
[154, 1]
[161, 38]
rfl
α σ : Type N : NA α σ input : List α ⊢ N.accepts input ↔ ∃ s ∈ N.evalFrom N.startingStates input, s ∈ N.acceptingStates
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Compute.lean
NAtoDAisEquiv
[167, 1]
[183, 10]
ext cs
α σ : Type N : NA α σ ⊢ N.toDA.accepts = N.accepts
case h.a α σ : Type N : NA α σ cs : List α ⊢ N.toDA.accepts cs ↔ N.accepts cs
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Compute.lean
NAtoDAisEquiv
[167, 1]
[183, 10]
simp only [DA.memAccepts]
case h.a α σ : Type N : NA α σ cs : List α ⊢ N.toDA.accepts cs ↔ N.accepts cs
case h.a α σ : Type N : NA α σ cs : List α ⊢ N.toDA.evalFrom N.toDA.startingState cs ∈ N.toDA.acceptingStates ↔ N.accepts cs
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Compute.lean
NAtoDAisEquiv
[167, 1]
[183, 10]
simp only [NA.memAccepts]
case h.a α σ : Type N : NA α σ cs : List α ⊢ N.toDA.evalFrom N.toDA.startingState cs ∈ N.toDA.acceptingStates ↔ N.accepts cs
case h.a α σ : Type N : NA α σ cs : List α ⊢ N.toDA.evalFrom N.toDA.startingState cs ∈ N.toDA.acceptingStates ↔ ∃ s ∈ N.evalFrom N.startingStates cs, s ∈ N.acceptingStates
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Compute.lean
NAtoDAisEquiv
[167, 1]
[183, 10]
simp only [NA.toDA]
case h.a α σ : Type N : NA α σ cs : List α ⊢ N.toDA.evalFrom N.toDA.startingState cs ∈ N.toDA.acceptingStates ↔ ∃ s ∈ N.evalFrom N.startingStates cs, s ∈ N.acceptingStates
case h.a α σ : Type N : NA α σ cs : List α ⊢ { step := N.stepSet, startingState := N.startingStates, acceptingStates := {S | ∃ s ∈ S, s ∈ N.acceptingStates} }.evalFrom N.startingStates cs ∈ {S | ∃ s ∈ S, s ∈ N.acceptingStates} ↔ ∃ s ∈ N.evalFrom N.startingStates cs, s ∈ N.acceptingStates
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Compute.lean
NAtoDAisEquiv
[167, 1]
[183, 10]
simp
case h.a α σ : Type N : NA α σ cs : List α ⊢ { step := N.stepSet, startingState := N.startingStates, acceptingStates := {S | ∃ s ∈ S, s ∈ N.acceptingStates} }.evalFrom N.startingStates cs ∈ {S | ∃ s ∈ S, s ∈ N.acceptingStates} ↔ ∃ s ∈ N.evalFrom N.startingStates cs, s ∈ N.acceptingStates
case h.a α σ : Type N : NA α σ cs : List α ⊢ (∃ s ∈ { step := N.stepSet, startingState := N.startingStates, acceptingStates := {S | ∃ s ∈ S, s ∈ N.acceptingStates} }.evalFrom N.startingStates cs, s ∈ N.acceptingStates) ↔ ∃ s ∈ N.evalFrom N.startingStates cs, s ∈ N.acceptingStates
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Compute.lean
NAtoDAisEquiv
[167, 1]
[183, 10]
constructor
case h.a α σ : Type N : NA α σ cs : List α ⊢ (∃ s ∈ { step := N.stepSet, startingState := N.startingStates, acceptingStates := {S | ∃ s ∈ S, s ∈ N.acceptingStates} }.evalFrom N.startingStates cs, s ∈ N.acceptingStates) ↔ ∃ s ∈ N.evalFrom N.startingStates cs, s ∈ N.acceptingStates
case h.a.mp α σ : Type N : NA α σ cs : List α ⊢ (∃ s ∈ { step := N.stepSet, startingState := N.startingStates, acceptingStates := {S | ∃ s ∈ S, s ∈ N.acceptingStates} }.evalFrom N.startingStates cs, s ∈ N.acceptingStates) → ∃ s ∈ N.evalFrom N.startingStates cs, s ∈ N.acceptingStates case h.a.mpr α σ : Type N : NA α σ cs : List α ⊢ (∃ s ∈ N.evalFrom N.startingStates cs, s ∈ N.acceptingStates) → ∃ s ∈ { step := N.stepSet, startingState := N.startingStates, acceptingStates := {S | ∃ s ∈ S, s ∈ N.acceptingStates} }.evalFrom N.startingStates cs, s ∈ N.acceptingStates
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Compute.lean
NAtoDAisEquiv
[167, 1]
[183, 10]
all_goals simp intro s a1 a2 apply Exists.intro s tauto
case h.a.mp α σ : Type N : NA α σ cs : List α ⊢ (∃ s ∈ { step := N.stepSet, startingState := N.startingStates, acceptingStates := {S | ∃ s ∈ S, s ∈ N.acceptingStates} }.evalFrom N.startingStates cs, s ∈ N.acceptingStates) → ∃ s ∈ N.evalFrom N.startingStates cs, s ∈ N.acceptingStates case h.a.mpr α σ : Type N : NA α σ cs : List α ⊢ (∃ s ∈ N.evalFrom N.startingStates cs, s ∈ N.acceptingStates) → ∃ s ∈ { step := N.stepSet, startingState := N.startingStates, acceptingStates := {S | ∃ s ∈ S, s ∈ N.acceptingStates} }.evalFrom N.startingStates cs, s ∈ N.acceptingStates
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Compute.lean
NAtoDAisEquiv
[167, 1]
[183, 10]
simp
case h.a.mpr α σ : Type N : NA α σ cs : List α ⊢ (∃ s ∈ N.evalFrom N.startingStates cs, s ∈ N.acceptingStates) → ∃ s ∈ { step := N.stepSet, startingState := N.startingStates, acceptingStates := {S | ∃ s ∈ S, s ∈ N.acceptingStates} }.evalFrom N.startingStates cs, s ∈ N.acceptingStates
case h.a.mpr α σ : Type N : NA α σ cs : List α ⊢ ∀ x ∈ N.evalFrom N.startingStates cs, x ∈ N.acceptingStates → ∃ s ∈ { step := N.stepSet, startingState := N.startingStates, acceptingStates := {S | ∃ s ∈ S, s ∈ N.acceptingStates} }.evalFrom N.startingStates cs, s ∈ N.acceptingStates
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Compute.lean
NAtoDAisEquiv
[167, 1]
[183, 10]
intro s a1 a2
case h.a.mpr α σ : Type N : NA α σ cs : List α ⊢ ∀ x ∈ N.evalFrom N.startingStates cs, x ∈ N.acceptingStates → ∃ s ∈ { step := N.stepSet, startingState := N.startingStates, acceptingStates := {S | ∃ s ∈ S, s ∈ N.acceptingStates} }.evalFrom N.startingStates cs, s ∈ N.acceptingStates
case h.a.mpr α σ : Type N : NA α σ cs : List α s : σ a1 : s ∈ N.evalFrom N.startingStates cs a2 : s ∈ N.acceptingStates ⊢ ∃ s ∈ { step := N.stepSet, startingState := N.startingStates, acceptingStates := {S | ∃ s ∈ S, s ∈ N.acceptingStates} }.evalFrom N.startingStates cs, s ∈ N.acceptingStates
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Compute.lean
NAtoDAisEquiv
[167, 1]
[183, 10]
apply Exists.intro s
case h.a.mpr α σ : Type N : NA α σ cs : List α s : σ a1 : s ∈ N.evalFrom N.startingStates cs a2 : s ∈ N.acceptingStates ⊢ ∃ s ∈ { step := N.stepSet, startingState := N.startingStates, acceptingStates := {S | ∃ s ∈ S, s ∈ N.acceptingStates} }.evalFrom N.startingStates cs, s ∈ N.acceptingStates
case h.a.mpr α σ : Type N : NA α σ cs : List α s : σ a1 : s ∈ N.evalFrom N.startingStates cs a2 : s ∈ N.acceptingStates ⊢ s ∈ { step := N.stepSet, startingState := N.startingStates, acceptingStates := {S | ∃ s ∈ S, s ∈ N.acceptingStates} }.evalFrom N.startingStates cs ∧ s ∈ N.acceptingStates
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Compute.lean
NAtoDAisEquiv
[167, 1]
[183, 10]
tauto
case h.a.mpr α σ : Type N : NA α σ cs : List α s : σ a1 : s ∈ N.evalFrom N.startingStates cs a2 : s ∈ N.acceptingStates ⊢ s ∈ { step := N.stepSet, startingState := N.startingStates, acceptingStates := {S | ∃ s ∈ S, s ∈ N.acceptingStates} }.evalFrom N.startingStates cs ∧ s ∈ N.acceptingStates
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/NFA.lean
NFA.mem_accepts
[106, 1]
[115, 43]
rfl
α : Type inst✝¹ : DecidableEq α σ : Type inst✝ : DecidableEq σ e : NFA α σ input : List α ⊢ e.accepts input ↔ ∃ s ∈ e.eval_from e.starting_state_list input, s ∈ e.accepting_state_list
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/EpsilonNFA.lean
EpsilonNFA.eval_one_no_eps_def
[111, 1]
[124, 9]
simp only [eval_one_no_eps]
α : Type inst✝¹ : DecidableEq α σ : Type inst✝ : DecidableEq σ e : EpsilonNFA α σ starting_state_list : List σ symbol : α stop_state : σ ⊢ stop_state ∈ e.eval_one_no_eps starting_state_list symbol ↔ ∃ state ∈ starting_state_list, stop_state ∈ symbol_arrow_list_to_fun e.symbol_arrow_list state symbol
α : Type inst✝¹ : DecidableEq α σ : Type inst✝ : DecidableEq σ e : EpsilonNFA α σ starting_state_list : List σ symbol : α stop_state : σ ⊢ stop_state ∈ (List.map (fun state => symbol_arrow_list_to_fun e.symbol_arrow_list state symbol) starting_state_list).join.dedup ↔ ∃ state ∈ starting_state_list, stop_state ∈ symbol_arrow_list_to_fun e.symbol_arrow_list state symbol
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/EpsilonNFA.lean
EpsilonNFA.eval_one_no_eps_def
[111, 1]
[124, 9]
simp
α : Type inst✝¹ : DecidableEq α σ : Type inst✝ : DecidableEq σ e : EpsilonNFA α σ starting_state_list : List σ symbol : α stop_state : σ ⊢ stop_state ∈ (List.map (fun state => symbol_arrow_list_to_fun e.symbol_arrow_list state symbol) starting_state_list).join.dedup ↔ ∃ state ∈ starting_state_list, stop_state ∈ symbol_arrow_list_to_fun e.symbol_arrow_list state symbol
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/EpsilonNFA.lean
EpsilonNFA.eval_one_no_eps_iff
[354, 1]
[374, 53]
simp only [EpsilonNFA.eval_one_no_eps]
α : Type inst✝¹ : DecidableEq α σ : Type inst✝ : DecidableEq σ e : EpsilonNFA α σ starting_state_list : List σ symbol : α stop_state : σ ⊢ stop_state ∈ e.eval_one_no_eps starting_state_list symbol ↔ ∃ state ∈ starting_state_list, e.toAbstract.symbol state symbol stop_state
α : Type inst✝¹ : DecidableEq α σ : Type inst✝ : DecidableEq σ e : EpsilonNFA α σ starting_state_list : List σ symbol : α stop_state : σ ⊢ stop_state ∈ (List.map (fun state => symbol_arrow_list_to_fun e.symbol_arrow_list state symbol) starting_state_list).join.dedup ↔ ∃ state ∈ starting_state_list, e.toAbstract.symbol state symbol stop_state
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/EpsilonNFA.lean
EpsilonNFA.eval_one_no_eps_iff
[354, 1]
[374, 53]
simp only [EpsilonNFA.toAbstract]
α : Type inst✝¹ : DecidableEq α σ : Type inst✝ : DecidableEq σ e : EpsilonNFA α σ starting_state_list : List σ symbol : α stop_state : σ ⊢ stop_state ∈ (List.map (fun state => symbol_arrow_list_to_fun e.symbol_arrow_list state symbol) starting_state_list).join.dedup ↔ ∃ state ∈ starting_state_list, e.toAbstract.symbol state symbol stop_state
α : Type inst✝¹ : DecidableEq α σ : Type inst✝ : DecidableEq σ e : EpsilonNFA α σ starting_state_list : List σ symbol : α stop_state : σ ⊢ stop_state ∈ (List.map (fun state => symbol_arrow_list_to_fun e.symbol_arrow_list state symbol) starting_state_list).join.dedup ↔ ∃ state ∈ starting_state_list, ∃ stop_state_list, { start_state := state, symbol := symbol, stop_state_list := stop_state_list } ∈ e.symbol_arrow_list ∧ stop_state ∈ stop_state_list
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/EpsilonNFA.lean
EpsilonNFA.eval_one_no_eps_iff
[354, 1]
[374, 53]
simp only [symbol_arrow_list_to_fun]
α : Type inst✝¹ : DecidableEq α σ : Type inst✝ : DecidableEq σ e : EpsilonNFA α σ starting_state_list : List σ symbol : α stop_state : σ ⊢ stop_state ∈ (List.map (fun state => symbol_arrow_list_to_fun e.symbol_arrow_list state symbol) starting_state_list).join.dedup ↔ ∃ state ∈ starting_state_list, ∃ stop_state_list, { start_state := state, symbol := symbol, stop_state_list := stop_state_list } ∈ e.symbol_arrow_list ∧ stop_state ∈ stop_state_list
α : Type inst✝¹ : DecidableEq α σ : Type inst✝ : DecidableEq σ e : EpsilonNFA α σ starting_state_list : List σ symbol : α stop_state : σ ⊢ stop_state ∈ (List.map (fun state => (List.filterMap (fun arrow => if arrow.start_state = state ∧ arrow.symbol = symbol then some arrow.stop_state_list else none) e.symbol_arrow_list).join.dedup) starting_state_list).join.dedup ↔ ∃ state ∈ starting_state_list, ∃ stop_state_list, { start_state := state, symbol := symbol, stop_state_list := stop_state_list } ∈ e.symbol_arrow_list ∧ stop_state ∈ stop_state_list
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/EpsilonNFA.lean
EpsilonNFA.eval_one_no_eps_iff
[354, 1]
[374, 53]
simp
α : Type inst✝¹ : DecidableEq α σ : Type inst✝ : DecidableEq σ e : EpsilonNFA α σ starting_state_list : List σ symbol : α stop_state : σ ⊢ stop_state ∈ (List.map (fun state => (List.filterMap (fun arrow => if arrow.start_state = state ∧ arrow.symbol = symbol then some arrow.stop_state_list else none) e.symbol_arrow_list).join.dedup) starting_state_list).join.dedup ↔ ∃ state ∈ starting_state_list, ∃ stop_state_list, { start_state := state, symbol := symbol, stop_state_list := stop_state_list } ∈ e.symbol_arrow_list ∧ stop_state ∈ stop_state_list
α : Type inst✝¹ : DecidableEq α σ : Type inst✝ : DecidableEq σ e : EpsilonNFA α σ starting_state_list : List σ symbol : α stop_state : σ ⊢ (∃ a ∈ starting_state_list, ∃ l, (∃ a_1 ∈ e.symbol_arrow_list, (a_1.start_state = a ∧ a_1.symbol = symbol) ∧ a_1.stop_state_list = l) ∧ stop_state ∈ l) ↔ ∃ state ∈ starting_state_list, ∃ stop_state_list, { start_state := state, symbol := symbol, stop_state_list := stop_state_list } ∈ e.symbol_arrow_list ∧ stop_state ∈ stop_state_list
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/EpsilonNFA.lean
EpsilonNFA.eval_one_no_eps_iff
[354, 1]
[374, 53]
constructor
α : Type inst✝¹ : DecidableEq α σ : Type inst✝ : DecidableEq σ e : EpsilonNFA α σ starting_state_list : List σ symbol : α stop_state : σ ⊢ (∃ a ∈ starting_state_list, ∃ l, (∃ a_1 ∈ e.symbol_arrow_list, (a_1.start_state = a ∧ a_1.symbol = symbol) ∧ a_1.stop_state_list = l) ∧ stop_state ∈ l) ↔ ∃ state ∈ starting_state_list, ∃ stop_state_list, { start_state := state, symbol := symbol, stop_state_list := stop_state_list } ∈ e.symbol_arrow_list ∧ stop_state ∈ stop_state_list
case mp α : Type inst✝¹ : DecidableEq α σ : Type inst✝ : DecidableEq σ e : EpsilonNFA α σ starting_state_list : List σ symbol : α stop_state : σ ⊢ (∃ a ∈ starting_state_list, ∃ l, (∃ a_1 ∈ e.symbol_arrow_list, (a_1.start_state = a ∧ a_1.symbol = symbol) ∧ a_1.stop_state_list = l) ∧ stop_state ∈ l) → ∃ state ∈ starting_state_list, ∃ stop_state_list, { start_state := state, symbol := symbol, stop_state_list := stop_state_list } ∈ e.symbol_arrow_list ∧ stop_state ∈ stop_state_list case mpr α : Type inst✝¹ : DecidableEq α σ : Type inst✝ : DecidableEq σ e : EpsilonNFA α σ starting_state_list : List σ symbol : α stop_state : σ ⊢ (∃ state ∈ starting_state_list, ∃ stop_state_list, { start_state := state, symbol := symbol, stop_state_list := stop_state_list } ∈ e.symbol_arrow_list ∧ stop_state ∈ stop_state_list) → ∃ a ∈ starting_state_list, ∃ l, (∃ a_1 ∈ e.symbol_arrow_list, (a_1.start_state = a ∧ a_1.symbol = symbol) ∧ a_1.stop_state_list = l) ∧ stop_state ∈ l
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/EpsilonNFA.lean
EpsilonNFA.eval_one_no_eps_iff
[354, 1]
[374, 53]
rintro ⟨_, h1, _, ⟨⟨⟩, h2, ⟨rfl, rfl⟩, rfl⟩, h3⟩
case mp α : Type inst✝¹ : DecidableEq α σ : Type inst✝ : DecidableEq σ e : EpsilonNFA α σ starting_state_list : List σ symbol : α stop_state : σ ⊢ (∃ a ∈ starting_state_list, ∃ l, (∃ a_1 ∈ e.symbol_arrow_list, (a_1.start_state = a ∧ a_1.symbol = symbol) ∧ a_1.stop_state_list = l) ∧ stop_state ∈ l) → ∃ state ∈ starting_state_list, ∃ stop_state_list, { start_state := state, symbol := symbol, stop_state_list := stop_state_list } ∈ e.symbol_arrow_list ∧ stop_state ∈ stop_state_list
case mp.intro.intro.intro.intro.intro.mk.intro.intro.intro α : Type inst✝¹ : DecidableEq α σ : Type inst✝ : DecidableEq σ e : EpsilonNFA α σ starting_state_list : List σ stop_state start_state✝ : σ symbol✝ : α stop_state_list✝ : List σ h2 : { start_state := start_state✝, symbol := symbol✝, stop_state_list := stop_state_list✝ } ∈ e.symbol_arrow_list h1 : { start_state := start_state✝, symbol := symbol✝, stop_state_list := stop_state_list✝ }.start_state ∈ starting_state_list h3 : stop_state ∈ { start_state := start_state✝, symbol := symbol✝, stop_state_list := stop_state_list✝ }.stop_state_list ⊢ ∃ state ∈ starting_state_list, ∃ stop_state_list, { start_state := state, symbol := { start_state := start_state✝, symbol := symbol✝, stop_state_list := stop_state_list✝ }.symbol, stop_state_list := stop_state_list } ∈ e.symbol_arrow_list ∧ stop_state ∈ stop_state_list
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/EpsilonNFA.lean
EpsilonNFA.eval_one_no_eps_iff
[354, 1]
[374, 53]
exact ⟨_, h1, _, h2, h3⟩
case mp.intro.intro.intro.intro.intro.mk.intro.intro.intro α : Type inst✝¹ : DecidableEq α σ : Type inst✝ : DecidableEq σ e : EpsilonNFA α σ starting_state_list : List σ stop_state start_state✝ : σ symbol✝ : α stop_state_list✝ : List σ h2 : { start_state := start_state✝, symbol := symbol✝, stop_state_list := stop_state_list✝ } ∈ e.symbol_arrow_list h1 : { start_state := start_state✝, symbol := symbol✝, stop_state_list := stop_state_list✝ }.start_state ∈ starting_state_list h3 : stop_state ∈ { start_state := start_state✝, symbol := symbol✝, stop_state_list := stop_state_list✝ }.stop_state_list ⊢ ∃ state ∈ starting_state_list, ∃ stop_state_list, { start_state := state, symbol := { start_state := start_state✝, symbol := symbol✝, stop_state_list := stop_state_list✝ }.symbol, stop_state_list := stop_state_list } ∈ e.symbol_arrow_list ∧ stop_state ∈ stop_state_list
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/EpsilonNFA.lean
EpsilonNFA.eval_one_no_eps_iff
[354, 1]
[374, 53]
rintro ⟨_, h1, _, h2, h3⟩
case mpr α : Type inst✝¹ : DecidableEq α σ : Type inst✝ : DecidableEq σ e : EpsilonNFA α σ starting_state_list : List σ symbol : α stop_state : σ ⊢ (∃ state ∈ starting_state_list, ∃ stop_state_list, { start_state := state, symbol := symbol, stop_state_list := stop_state_list } ∈ e.symbol_arrow_list ∧ stop_state ∈ stop_state_list) → ∃ a ∈ starting_state_list, ∃ l, (∃ a_1 ∈ e.symbol_arrow_list, (a_1.start_state = a ∧ a_1.symbol = symbol) ∧ a_1.stop_state_list = l) ∧ stop_state ∈ l
case mpr.intro.intro.intro.intro α : Type inst✝¹ : DecidableEq α σ : Type inst✝ : DecidableEq σ e : EpsilonNFA α σ starting_state_list : List σ symbol : α stop_state w✝¹ : σ h1 : w✝¹ ∈ starting_state_list w✝ : List σ h2 : { start_state := w✝¹, symbol := symbol, stop_state_list := w✝ } ∈ e.symbol_arrow_list h3 : stop_state ∈ w✝ ⊢ ∃ a ∈ starting_state_list, ∃ l, (∃ a_1 ∈ e.symbol_arrow_list, (a_1.start_state = a ∧ a_1.symbol = symbol) ∧ a_1.stop_state_list = l) ∧ stop_state ∈ l
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/EpsilonNFA.lean
EpsilonNFA.eval_one_no_eps_iff
[354, 1]
[374, 53]
exact ⟨_, h1, _, ⟨_, h2, ⟨rfl, rfl⟩, rfl⟩, h3⟩
case mpr.intro.intro.intro.intro α : Type inst✝¹ : DecidableEq α σ : Type inst✝ : DecidableEq σ e : EpsilonNFA α σ starting_state_list : List σ symbol : α stop_state w✝¹ : σ h1 : w✝¹ ∈ starting_state_list w✝ : List σ h2 : { start_state := w✝¹, symbol := symbol, stop_state_list := w✝ } ∈ e.symbol_arrow_list h3 : stop_state ∈ w✝ ⊢ ∃ a ∈ starting_state_list, ∃ l, (∃ a_1 ∈ e.symbol_arrow_list, (a_1.start_state = a ∧ a_1.symbol = symbol) ∧ a_1.stop_state_list = l) ∧ stop_state ∈ l
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/EpsilonNFA.lean
EpsilonNFA.epsilon_closure_iff
[385, 1]
[402, 83]
simp only [epsilon_closure]
α : Type inst✝¹ : DecidableEq α σ : Type inst✝ : DecidableEq σ e : EpsilonNFA α σ starting_state_list : List σ state : σ ⊢ state ∈ e.epsilon_closure starting_state_list ↔ ∃ start_state ∈ starting_state_list, e.toAbstract.EpsilonClosure start_state state
α : Type inst✝¹ : DecidableEq α σ : Type inst✝ : DecidableEq σ e : EpsilonNFA α σ starting_state_list : List σ state : σ ⊢ state ∈ dft (epsilon_arrow_list_to_graph e.epsilon_arrow_list) starting_state_list ↔ ∃ start_state ∈ starting_state_list, e.toAbstract.EpsilonClosure start_state state
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/EpsilonNFA.lean
EpsilonNFA.epsilon_closure_iff
[385, 1]
[402, 83]
simp only [dft_iff]
α : Type inst✝¹ : DecidableEq α σ : Type inst✝ : DecidableEq σ e : EpsilonNFA α σ starting_state_list : List σ state : σ ⊢ state ∈ dft (epsilon_arrow_list_to_graph e.epsilon_arrow_list) starting_state_list ↔ ∃ start_state ∈ starting_state_list, e.toAbstract.EpsilonClosure start_state state
α : Type inst✝¹ : DecidableEq α σ : Type inst✝ : DecidableEq σ e : EpsilonNFA α σ starting_state_list : List σ state : σ ⊢ (∃ s ∈ starting_state_list, Relation.ReflTransGen (fun a b => ∃ l, (a, l) ∈ epsilon_arrow_list_to_graph e.epsilon_arrow_list ∧ b ∈ l) s state) ↔ ∃ start_state ∈ starting_state_list, e.toAbstract.EpsilonClosure start_state state
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/EpsilonNFA.lean
EpsilonNFA.epsilon_closure_iff
[385, 1]
[402, 83]
congr! with a b c
α : Type inst✝¹ : DecidableEq α σ : Type inst✝ : DecidableEq σ e : EpsilonNFA α σ starting_state_list : List σ state : σ ⊢ (∃ s ∈ starting_state_list, Relation.ReflTransGen (fun a b => ∃ l, (a, l) ∈ epsilon_arrow_list_to_graph e.epsilon_arrow_list ∧ b ∈ l) s state) ↔ ∃ start_state ∈ starting_state_list, e.toAbstract.EpsilonClosure start_state state
case a.h.e'_2.h.h.e'_2.h.e.h.e'_2.h.h.a α : Type inst✝¹ : DecidableEq α σ : Type inst✝ : DecidableEq σ e : EpsilonNFA α σ starting_state_list : List σ state a b c : σ ⊢ (∃ l, (b, l) ∈ epsilon_arrow_list_to_graph e.epsilon_arrow_list ∧ c ∈ l) ↔ e.toAbstract.epsilon b c
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/EpsilonNFA.lean
EpsilonNFA.epsilon_closure_iff
[385, 1]
[402, 83]
simp [toAbstract]
case a.h.e'_2.h.h.e'_2.h.e.h.e'_2.h.h.a α : Type inst✝¹ : DecidableEq α σ : Type inst✝ : DecidableEq σ e : EpsilonNFA α σ starting_state_list : List σ state a b c : σ ⊢ (∃ l, (b, l) ∈ epsilon_arrow_list_to_graph e.epsilon_arrow_list ∧ c ∈ l) ↔ e.toAbstract.epsilon b c
case a.h.e'_2.h.h.e'_2.h.e.h.e'_2.h.h.a α : Type inst✝¹ : DecidableEq α σ : Type inst✝ : DecidableEq σ e : EpsilonNFA α σ starting_state_list : List σ state a b c : σ ⊢ (∃ l, (b, l) ∈ epsilon_arrow_list_to_graph e.epsilon_arrow_list ∧ c ∈ l) ↔ ∃ stop_state_list, { start_state := b, stop_state_list := stop_state_list } ∈ e.epsilon_arrow_list ∧ c ∈ stop_state_list