url
stringclasses 147
values | commit
stringclasses 147
values | file_path
stringlengths 7
101
| full_name
stringlengths 1
94
| start
stringlengths 6
10
| end
stringlengths 6
11
| tactic
stringlengths 1
11.2k
| state_before
stringlengths 3
2.09M
| state_after
stringlengths 6
2.09M
|
---|---|---|---|---|---|---|---|---|
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/MM0/MM0.lean | MM0.holds_is_proof | [2060, 1] | [2162, 13] | case eq_3 h1_Γ h1_Δ h1_n h1_name h1_xs h1_ys =>
sorry | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_n : ℕ
h1_name : PredName
h1_xs h1_ys : Fin h1_n → VarName
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
⊢ ∀ (V : Valuation D), Holds D I V M E (eqSubPred h1_name h1_n h1_xs h1_ys) | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/MM0/MM0.lean | MM0.holds_is_proof | [2060, 1] | [2162, 13] | case conv h1_Γ h1_Δ h1_phi h1_phi' h1_1 h1_2 h1_3 h1_ih =>
intro V
have s1 : Holds D I V M E h1_phi := h1_ih M nf hyp V
simp only [← holds_conv D I V M E h1_phi h1_phi' h2 h1_3]
exact s1 | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_phi h1_phi' : Formula
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi'
h1_2 : IsProof E h1_Γ h1_Δ h1_phi
h1_3 : IsConv E h1_phi h1_phi'
h1_ih :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
⊢ ∀ (V : Valuation D), Holds D I V M E h1_phi' | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/MM0/MM0.lean | MM0.holds_is_proof | [2060, 1] | [2162, 13] | intro V | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_phi : Formula
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi
h1_2 : h1_phi ∈ h1_Δ
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
⊢ ∀ (V : Valuation D), Holds D I V M E h1_phi | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_phi : Formula
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi
h1_2 : h1_phi ∈ h1_Δ
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
V : Valuation D
⊢ Holds D I V M E h1_phi |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/MM0/MM0.lean | MM0.holds_is_proof | [2060, 1] | [2162, 13] | exact hyp h1_phi V h1_2 | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_phi : Formula
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi
h1_2 : h1_phi ∈ h1_Δ
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
V : Valuation D
⊢ Holds D I V M E h1_phi | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/MM0/MM0.lean | MM0.holds_is_proof | [2060, 1] | [2162, 13] | simp only [Holds] at h1_ih_2 | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_phi h1_psi : Formula
h1_1 : IsProof E h1_Γ h1_Δ h1_phi
h1_2 : IsProof E h1_Γ h1_Δ (h1_phi.imp_ h1_psi)
h1_ih_1 :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi
h1_ih_2 :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) →
∀ (V : Valuation D), Holds D I V M E (h1_phi.imp_ h1_psi)
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
⊢ ∀ (V : Valuation D), Holds D I V M E h1_psi | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_phi h1_psi : Formula
h1_1 : IsProof E h1_Γ h1_Δ h1_phi
h1_2 : IsProof E h1_Γ h1_Δ (h1_phi.imp_ h1_psi)
h1_ih_1 :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
h1_ih_2 :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) →
∀ (V : Valuation D), Holds D I V M E h1_phi → Holds D I V M E h1_psi
⊢ ∀ (V : Valuation D), Holds D I V M E h1_psi |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/MM0/MM0.lean | MM0.holds_is_proof | [2060, 1] | [2162, 13] | intro V | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_phi h1_psi : Formula
h1_1 : IsProof E h1_Γ h1_Δ h1_phi
h1_2 : IsProof E h1_Γ h1_Δ (h1_phi.imp_ h1_psi)
h1_ih_1 :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
h1_ih_2 :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) →
∀ (V : Valuation D), Holds D I V M E h1_phi → Holds D I V M E h1_psi
⊢ ∀ (V : Valuation D), Holds D I V M E h1_psi | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_phi h1_psi : Formula
h1_1 : IsProof E h1_Γ h1_Δ h1_phi
h1_2 : IsProof E h1_Γ h1_Δ (h1_phi.imp_ h1_psi)
h1_ih_1 :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
h1_ih_2 :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) →
∀ (V : Valuation D), Holds D I V M E h1_phi → Holds D I V M E h1_psi
V : Valuation D
⊢ Holds D I V M E h1_psi |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/MM0/MM0.lean | MM0.holds_is_proof | [2060, 1] | [2162, 13] | exact h1_ih_2 M nf hyp V (h1_ih_1 M nf hyp V) | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_phi h1_psi : Formula
h1_1 : IsProof E h1_Γ h1_Δ h1_phi
h1_2 : IsProof E h1_Γ h1_Δ (h1_phi.imp_ h1_psi)
h1_ih_1 :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
h1_ih_2 :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) →
∀ (V : Valuation D), Holds D I V M E h1_phi → Holds D I V M E h1_psi
V : Valuation D
⊢ Holds D I V M E h1_psi | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/MM0/MM0.lean | MM0.holds_is_proof | [2060, 1] | [2162, 13] | simp only [Holds] | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_phi h1_psi : Formula
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi
h1_2 : IsMetaVarOrAllDefInEnv E h1_psi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
⊢ ∀ (V : Valuation D), Holds D I V M E (h1_phi.imp_ (h1_psi.imp_ h1_phi)) | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_phi h1_psi : Formula
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi
h1_2 : IsMetaVarOrAllDefInEnv E h1_psi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
⊢ ∀ (V : Valuation D), Holds D I V M E h1_phi → Holds D I V M E h1_psi → Holds D I V M E h1_phi |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/MM0/MM0.lean | MM0.holds_is_proof | [2060, 1] | [2162, 13] | intro V a1 a2 | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_phi h1_psi : Formula
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi
h1_2 : IsMetaVarOrAllDefInEnv E h1_psi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
⊢ ∀ (V : Valuation D), Holds D I V M E h1_phi → Holds D I V M E h1_psi → Holds D I V M E h1_phi | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_phi h1_psi : Formula
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi
h1_2 : IsMetaVarOrAllDefInEnv E h1_psi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
V : Valuation D
a1 : Holds D I V M E h1_phi
a2 : Holds D I V M E h1_psi
⊢ Holds D I V M E h1_phi |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/MM0/MM0.lean | MM0.holds_is_proof | [2060, 1] | [2162, 13] | exact a1 | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_phi h1_psi : Formula
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi
h1_2 : IsMetaVarOrAllDefInEnv E h1_psi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
V : Valuation D
a1 : Holds D I V M E h1_phi
a2 : Holds D I V M E h1_psi
⊢ Holds D I V M E h1_phi | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/MM0/MM0.lean | MM0.holds_is_proof | [2060, 1] | [2162, 13] | simp only [Holds] | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_phi h1_psi h1_chi : Formula
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi
h1_2 : IsMetaVarOrAllDefInEnv E h1_psi
h1_3 : IsMetaVarOrAllDefInEnv E h1_chi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
⊢ ∀ (V : Valuation D),
Holds D I V M E ((h1_phi.imp_ (h1_psi.imp_ h1_chi)).imp_ ((h1_phi.imp_ h1_psi).imp_ (h1_phi.imp_ h1_chi))) | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_phi h1_psi h1_chi : Formula
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi
h1_2 : IsMetaVarOrAllDefInEnv E h1_psi
h1_3 : IsMetaVarOrAllDefInEnv E h1_chi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
⊢ ∀ (V : Valuation D),
(Holds D I V M E h1_phi → Holds D I V M E h1_psi → Holds D I V M E h1_chi) →
(Holds D I V M E h1_phi → Holds D I V M E h1_psi) → Holds D I V M E h1_phi → Holds D I V M E h1_chi |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/MM0/MM0.lean | MM0.holds_is_proof | [2060, 1] | [2162, 13] | intro V a1 a2 a3 | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_phi h1_psi h1_chi : Formula
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi
h1_2 : IsMetaVarOrAllDefInEnv E h1_psi
h1_3 : IsMetaVarOrAllDefInEnv E h1_chi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
⊢ ∀ (V : Valuation D),
(Holds D I V M E h1_phi → Holds D I V M E h1_psi → Holds D I V M E h1_chi) →
(Holds D I V M E h1_phi → Holds D I V M E h1_psi) → Holds D I V M E h1_phi → Holds D I V M E h1_chi | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_phi h1_psi h1_chi : Formula
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi
h1_2 : IsMetaVarOrAllDefInEnv E h1_psi
h1_3 : IsMetaVarOrAllDefInEnv E h1_chi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
V : Valuation D
a1 : Holds D I V M E h1_phi → Holds D I V M E h1_psi → Holds D I V M E h1_chi
a2 : Holds D I V M E h1_phi → Holds D I V M E h1_psi
a3 : Holds D I V M E h1_phi
⊢ Holds D I V M E h1_chi |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/MM0/MM0.lean | MM0.holds_is_proof | [2060, 1] | [2162, 13] | apply a1 a3 | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_phi h1_psi h1_chi : Formula
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi
h1_2 : IsMetaVarOrAllDefInEnv E h1_psi
h1_3 : IsMetaVarOrAllDefInEnv E h1_chi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
V : Valuation D
a1 : Holds D I V M E h1_phi → Holds D I V M E h1_psi → Holds D I V M E h1_chi
a2 : Holds D I V M E h1_phi → Holds D I V M E h1_psi
a3 : Holds D I V M E h1_phi
⊢ Holds D I V M E h1_chi | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_phi h1_psi h1_chi : Formula
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi
h1_2 : IsMetaVarOrAllDefInEnv E h1_psi
h1_3 : IsMetaVarOrAllDefInEnv E h1_chi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
V : Valuation D
a1 : Holds D I V M E h1_phi → Holds D I V M E h1_psi → Holds D I V M E h1_chi
a2 : Holds D I V M E h1_phi → Holds D I V M E h1_psi
a3 : Holds D I V M E h1_phi
⊢ Holds D I V M E h1_psi |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/MM0/MM0.lean | MM0.holds_is_proof | [2060, 1] | [2162, 13] | exact a2 a3 | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_phi h1_psi h1_chi : Formula
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi
h1_2 : IsMetaVarOrAllDefInEnv E h1_psi
h1_3 : IsMetaVarOrAllDefInEnv E h1_chi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
V : Valuation D
a1 : Holds D I V M E h1_phi → Holds D I V M E h1_psi → Holds D I V M E h1_chi
a2 : Holds D I V M E h1_phi → Holds D I V M E h1_psi
a3 : Holds D I V M E h1_phi
⊢ Holds D I V M E h1_psi | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/MM0/MM0.lean | MM0.holds_is_proof | [2060, 1] | [2162, 13] | simp only [Holds] | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_phi h1_psi : Formula
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi
h1_2 : IsMetaVarOrAllDefInEnv E h1_psi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
⊢ ∀ (V : Valuation D), Holds D I V M E ((h1_phi.not_.imp_ h1_psi.not_).imp_ (h1_psi.imp_ h1_phi)) | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_phi h1_psi : Formula
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi
h1_2 : IsMetaVarOrAllDefInEnv E h1_psi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
⊢ ∀ (V : Valuation D),
(¬Holds D I V M E h1_phi → ¬Holds D I V M E h1_psi) → Holds D I V M E h1_psi → Holds D I V M E h1_phi |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/MM0/MM0.lean | MM0.holds_is_proof | [2060, 1] | [2162, 13] | intro V a1 a2 | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_phi h1_psi : Formula
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi
h1_2 : IsMetaVarOrAllDefInEnv E h1_psi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
⊢ ∀ (V : Valuation D),
(¬Holds D I V M E h1_phi → ¬Holds D I V M E h1_psi) → Holds D I V M E h1_psi → Holds D I V M E h1_phi | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_phi h1_psi : Formula
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi
h1_2 : IsMetaVarOrAllDefInEnv E h1_psi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
V : Valuation D
a1 : ¬Holds D I V M E h1_phi → ¬Holds D I V M E h1_psi
a2 : Holds D I V M E h1_psi
⊢ Holds D I V M E h1_phi |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/MM0/MM0.lean | MM0.holds_is_proof | [2060, 1] | [2162, 13] | by_contra contra | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_phi h1_psi : Formula
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi
h1_2 : IsMetaVarOrAllDefInEnv E h1_psi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
V : Valuation D
a1 : ¬Holds D I V M E h1_phi → ¬Holds D I V M E h1_psi
a2 : Holds D I V M E h1_psi
⊢ Holds D I V M E h1_phi | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_phi h1_psi : Formula
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi
h1_2 : IsMetaVarOrAllDefInEnv E h1_psi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
V : Valuation D
a1 : ¬Holds D I V M E h1_phi → ¬Holds D I V M E h1_psi
a2 : Holds D I V M E h1_psi
contra : ¬Holds D I V M E h1_phi
⊢ False |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/MM0/MM0.lean | MM0.holds_is_proof | [2060, 1] | [2162, 13] | exact a1 contra a2 | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_phi h1_psi : Formula
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi
h1_2 : IsMetaVarOrAllDefInEnv E h1_psi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
V : Valuation D
a1 : ¬Holds D I V M E h1_phi → ¬Holds D I V M E h1_psi
a2 : Holds D I V M E h1_psi
contra : ¬Holds D I V M E h1_phi
⊢ False | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/MM0/MM0.lean | MM0.holds_is_proof | [2060, 1] | [2162, 13] | simp only [Holds] | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_phi : Formula
h1_x : VarName
h1_1 : IsProof E h1_Γ h1_Δ h1_phi
h1_ih :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
⊢ ∀ (V : Valuation D), Holds D I V M E (forall_ h1_x h1_phi) | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_phi : Formula
h1_x : VarName
h1_1 : IsProof E h1_Γ h1_Δ h1_phi
h1_ih :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
⊢ ∀ (V : Valuation D) (d : D), Holds D I (Function.updateITE V h1_x d) M E h1_phi |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/MM0/MM0.lean | MM0.holds_is_proof | [2060, 1] | [2162, 13] | intro V d | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_phi : Formula
h1_x : VarName
h1_1 : IsProof E h1_Γ h1_Δ h1_phi
h1_ih :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
⊢ ∀ (V : Valuation D) (d : D), Holds D I (Function.updateITE V h1_x d) M E h1_phi | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_phi : Formula
h1_x : VarName
h1_1 : IsProof E h1_Γ h1_Δ h1_phi
h1_ih :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
V : Valuation D
d : D
⊢ Holds D I (Function.updateITE V h1_x d) M E h1_phi |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/MM0/MM0.lean | MM0.holds_is_proof | [2060, 1] | [2162, 13] | exact h1_ih M nf hyp (Function.updateITE V h1_x d) | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_phi : Formula
h1_x : VarName
h1_1 : IsProof E h1_Γ h1_Δ h1_phi
h1_ih :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
V : Valuation D
d : D
⊢ Holds D I (Function.updateITE V h1_x d) M E h1_phi | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/MM0/MM0.lean | MM0.holds_is_proof | [2060, 1] | [2162, 13] | simp only [Holds] | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_phi h1_psi : Formula
h1_x : VarName
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi
h1_2 : IsMetaVarOrAllDefInEnv E h1_psi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
⊢ ∀ (V : Valuation D),
Holds D I V M E ((forall_ h1_x (h1_phi.imp_ h1_psi)).imp_ ((forall_ h1_x h1_phi).imp_ (forall_ h1_x h1_psi))) | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_phi h1_psi : Formula
h1_x : VarName
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi
h1_2 : IsMetaVarOrAllDefInEnv E h1_psi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
⊢ ∀ (V : Valuation D),
(∀ (d : D),
Holds D I (Function.updateITE V h1_x d) M E h1_phi → Holds D I (Function.updateITE V h1_x d) M E h1_psi) →
(∀ (d : D), Holds D I (Function.updateITE V h1_x d) M E h1_phi) →
∀ (d : D), Holds D I (Function.updateITE V h1_x d) M E h1_psi |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/MM0/MM0.lean | MM0.holds_is_proof | [2060, 1] | [2162, 13] | intro V a1 a2 d | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_phi h1_psi : Formula
h1_x : VarName
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi
h1_2 : IsMetaVarOrAllDefInEnv E h1_psi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
⊢ ∀ (V : Valuation D),
(∀ (d : D),
Holds D I (Function.updateITE V h1_x d) M E h1_phi → Holds D I (Function.updateITE V h1_x d) M E h1_psi) →
(∀ (d : D), Holds D I (Function.updateITE V h1_x d) M E h1_phi) →
∀ (d : D), Holds D I (Function.updateITE V h1_x d) M E h1_psi | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_phi h1_psi : Formula
h1_x : VarName
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi
h1_2 : IsMetaVarOrAllDefInEnv E h1_psi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
V : Valuation D
a1 : ∀ (d : D), Holds D I (Function.updateITE V h1_x d) M E h1_phi → Holds D I (Function.updateITE V h1_x d) M E h1_psi
a2 : ∀ (d : D), Holds D I (Function.updateITE V h1_x d) M E h1_phi
d : D
⊢ Holds D I (Function.updateITE V h1_x d) M E h1_psi |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/MM0/MM0.lean | MM0.holds_is_proof | [2060, 1] | [2162, 13] | apply a1 d | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_phi h1_psi : Formula
h1_x : VarName
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi
h1_2 : IsMetaVarOrAllDefInEnv E h1_psi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
V : Valuation D
a1 : ∀ (d : D), Holds D I (Function.updateITE V h1_x d) M E h1_phi → Holds D I (Function.updateITE V h1_x d) M E h1_psi
a2 : ∀ (d : D), Holds D I (Function.updateITE V h1_x d) M E h1_phi
d : D
⊢ Holds D I (Function.updateITE V h1_x d) M E h1_psi | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_phi h1_psi : Formula
h1_x : VarName
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi
h1_2 : IsMetaVarOrAllDefInEnv E h1_psi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
V : Valuation D
a1 : ∀ (d : D), Holds D I (Function.updateITE V h1_x d) M E h1_phi → Holds D I (Function.updateITE V h1_x d) M E h1_psi
a2 : ∀ (d : D), Holds D I (Function.updateITE V h1_x d) M E h1_phi
d : D
⊢ Holds D I (Function.updateITE V h1_x d) M E h1_phi |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/MM0/MM0.lean | MM0.holds_is_proof | [2060, 1] | [2162, 13] | exact a2 d | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_phi h1_psi : Formula
h1_x : VarName
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi
h1_2 : IsMetaVarOrAllDefInEnv E h1_psi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
V : Valuation D
a1 : ∀ (d : D), Holds D I (Function.updateITE V h1_x d) M E h1_phi → Holds D I (Function.updateITE V h1_x d) M E h1_psi
a2 : ∀ (d : D), Holds D I (Function.updateITE V h1_x d) M E h1_phi
d : D
⊢ Holds D I (Function.updateITE V h1_x d) M E h1_phi | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/MM0/MM0.lean | MM0.holds_is_proof | [2060, 1] | [2162, 13] | have s1 : IsNotFree D I M E h1_phi h1_x | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_phi : Formula
h1_x : VarName
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi
h1_2 : NotFree h1_Γ h1_x h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
⊢ ∀ (V : Valuation D), Holds D I V M E (h1_phi.imp_ (forall_ h1_x h1_phi)) | case s1
D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_phi : Formula
h1_x : VarName
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi
h1_2 : NotFree h1_Γ h1_x h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
⊢ IsNotFree D I M E h1_phi h1_x
D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_phi : Formula
h1_x : VarName
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi
h1_2 : NotFree h1_Γ h1_x h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
s1 : IsNotFree D I M E h1_phi h1_x
⊢ ∀ (V : Valuation D), Holds D I V M E (h1_phi.imp_ (forall_ h1_x h1_phi)) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/MM0/MM0.lean | MM0.holds_is_proof | [2060, 1] | [2162, 13] | apply not_free_imp_is_not_free D I M E h1_phi h1_Γ h1_x h1_2 | case s1
D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_phi : Formula
h1_x : VarName
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi
h1_2 : NotFree h1_Γ h1_x h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
⊢ IsNotFree D I M E h1_phi h1_x
D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_phi : Formula
h1_x : VarName
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi
h1_2 : NotFree h1_Γ h1_x h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
s1 : IsNotFree D I M E h1_phi h1_x
⊢ ∀ (V : Valuation D), Holds D I V M E (h1_phi.imp_ (forall_ h1_x h1_phi)) | case s1
D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_phi : Formula
h1_x : VarName
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi
h1_2 : NotFree h1_Γ h1_x h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
⊢ ∀ (X : MetaVarName), (h1_x, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) h1_x
D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_phi : Formula
h1_x : VarName
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi
h1_2 : NotFree h1_Γ h1_x h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
s1 : IsNotFree D I M E h1_phi h1_x
⊢ ∀ (V : Valuation D), Holds D I V M E (h1_phi.imp_ (forall_ h1_x h1_phi)) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/MM0/MM0.lean | MM0.holds_is_proof | [2060, 1] | [2162, 13] | exact nf h1_x | case s1
D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_phi : Formula
h1_x : VarName
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi
h1_2 : NotFree h1_Γ h1_x h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
⊢ ∀ (X : MetaVarName), (h1_x, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) h1_x
D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_phi : Formula
h1_x : VarName
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi
h1_2 : NotFree h1_Γ h1_x h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
s1 : IsNotFree D I M E h1_phi h1_x
⊢ ∀ (V : Valuation D), Holds D I V M E (h1_phi.imp_ (forall_ h1_x h1_phi)) | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_phi : Formula
h1_x : VarName
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi
h1_2 : NotFree h1_Γ h1_x h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
s1 : IsNotFree D I M E h1_phi h1_x
⊢ ∀ (V : Valuation D), Holds D I V M E (h1_phi.imp_ (forall_ h1_x h1_phi)) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/MM0/MM0.lean | MM0.holds_is_proof | [2060, 1] | [2162, 13] | simp only [Holds] | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_phi : Formula
h1_x : VarName
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi
h1_2 : NotFree h1_Γ h1_x h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
s1 : IsNotFree D I M E h1_phi h1_x
⊢ ∀ (V : Valuation D), Holds D I V M E (h1_phi.imp_ (forall_ h1_x h1_phi)) | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_phi : Formula
h1_x : VarName
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi
h1_2 : NotFree h1_Γ h1_x h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
s1 : IsNotFree D I M E h1_phi h1_x
⊢ ∀ (V : Valuation D), Holds D I V M E h1_phi → ∀ (d : D), Holds D I (Function.updateITE V h1_x d) M E h1_phi |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/MM0/MM0.lean | MM0.holds_is_proof | [2060, 1] | [2162, 13] | intro V a1 a | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_phi : Formula
h1_x : VarName
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi
h1_2 : NotFree h1_Γ h1_x h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
s1 : IsNotFree D I M E h1_phi h1_x
⊢ ∀ (V : Valuation D), Holds D I V M E h1_phi → ∀ (d : D), Holds D I (Function.updateITE V h1_x d) M E h1_phi | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_phi : Formula
h1_x : VarName
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi
h1_2 : NotFree h1_Γ h1_x h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
s1 : IsNotFree D I M E h1_phi h1_x
V : Valuation D
a1 : Holds D I V M E h1_phi
a : D
⊢ Holds D I (Function.updateITE V h1_x a) M E h1_phi |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/MM0/MM0.lean | MM0.holds_is_proof | [2060, 1] | [2162, 13] | unfold IsNotFree at s1 | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_phi : Formula
h1_x : VarName
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi
h1_2 : NotFree h1_Γ h1_x h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
s1 : IsNotFree D I M E h1_phi h1_x
V : Valuation D
a1 : Holds D I V M E h1_phi
a : D
⊢ Holds D I (Function.updateITE V h1_x a) M E h1_phi | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_phi : Formula
h1_x : VarName
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi
h1_2 : NotFree h1_Γ h1_x h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
s1 : ∀ (V : Valuation D) (d : D), Holds D I V M E h1_phi ↔ Holds D I (Function.updateITE V h1_x d) M E h1_phi
V : Valuation D
a1 : Holds D I V M E h1_phi
a : D
⊢ Holds D I (Function.updateITE V h1_x a) M E h1_phi |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/MM0/MM0.lean | MM0.holds_is_proof | [2060, 1] | [2162, 13] | simp only [← s1 V a] | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_phi : Formula
h1_x : VarName
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi
h1_2 : NotFree h1_Γ h1_x h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
s1 : ∀ (V : Valuation D) (d : D), Holds D I V M E h1_phi ↔ Holds D I (Function.updateITE V h1_x d) M E h1_phi
V : Valuation D
a1 : Holds D I V M E h1_phi
a : D
⊢ Holds D I (Function.updateITE V h1_x a) M E h1_phi | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_phi : Formula
h1_x : VarName
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi
h1_2 : NotFree h1_Γ h1_x h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
s1 : ∀ (V : Valuation D) (d : D), Holds D I V M E h1_phi ↔ Holds D I (Function.updateITE V h1_x d) M E h1_phi
V : Valuation D
a1 : Holds D I V M E h1_phi
a : D
⊢ Holds D I V M E h1_phi |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/MM0/MM0.lean | MM0.holds_is_proof | [2060, 1] | [2162, 13] | exact a1 | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_phi : Formula
h1_x : VarName
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi
h1_2 : NotFree h1_Γ h1_x h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
s1 : ∀ (V : Valuation D) (d : D), Holds D I V M E h1_phi ↔ Holds D I (Function.updateITE V h1_x d) M E h1_phi
V : Valuation D
a1 : Holds D I V M E h1_phi
a : D
⊢ Holds D I V M E h1_phi | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/MM0/MM0.lean | MM0.holds_is_proof | [2060, 1] | [2162, 13] | unfold exists_ | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_x h1_y : VarName
h1_1 : ¬h1_y = h1_x
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
⊢ ∀ (V : Valuation D), Holds D I V M E (exists_ h1_x (eq_ h1_x h1_y)) | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_x h1_y : VarName
h1_1 : ¬h1_y = h1_x
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
⊢ ∀ (V : Valuation D), Holds D I V M E (forall_ h1_x (eq_ h1_x h1_y).not_).not_ |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/MM0/MM0.lean | MM0.holds_is_proof | [2060, 1] | [2162, 13] | simp only [Holds] | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_x h1_y : VarName
h1_1 : ¬h1_y = h1_x
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
⊢ ∀ (V : Valuation D), Holds D I V M E (forall_ h1_x (eq_ h1_x h1_y).not_).not_ | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_x h1_y : VarName
h1_1 : ¬h1_y = h1_x
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
⊢ ∀ (V : Valuation D), ¬∀ (d : D), ¬Function.updateITE V h1_x d h1_x = Function.updateITE V h1_x d h1_y |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/MM0/MM0.lean | MM0.holds_is_proof | [2060, 1] | [2162, 13] | simp | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_x h1_y : VarName
h1_1 : ¬h1_y = h1_x
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
⊢ ∀ (V : Valuation D), ¬∀ (d : D), ¬Function.updateITE V h1_x d h1_x = Function.updateITE V h1_x d h1_y | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_x h1_y : VarName
h1_1 : ¬h1_y = h1_x
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
⊢ ∀ (V : Valuation D), ∃ x, Function.updateITE V h1_x x h1_x = Function.updateITE V h1_x x h1_y |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/MM0/MM0.lean | MM0.holds_is_proof | [2060, 1] | [2162, 13] | intro V | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_x h1_y : VarName
h1_1 : ¬h1_y = h1_x
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
⊢ ∀ (V : Valuation D), ∃ x, Function.updateITE V h1_x x h1_x = Function.updateITE V h1_x x h1_y | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_x h1_y : VarName
h1_1 : ¬h1_y = h1_x
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
V : Valuation D
⊢ ∃ x, Function.updateITE V h1_x x h1_x = Function.updateITE V h1_x x h1_y |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/MM0/MM0.lean | MM0.holds_is_proof | [2060, 1] | [2162, 13] | apply Exists.intro (V h1_y) | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_x h1_y : VarName
h1_1 : ¬h1_y = h1_x
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
V : Valuation D
⊢ ∃ x, Function.updateITE V h1_x x h1_x = Function.updateITE V h1_x x h1_y | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_x h1_y : VarName
h1_1 : ¬h1_y = h1_x
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
V : Valuation D
⊢ Function.updateITE V h1_x (V h1_y) h1_x = Function.updateITE V h1_x (V h1_y) h1_y |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/MM0/MM0.lean | MM0.holds_is_proof | [2060, 1] | [2162, 13] | unfold Function.updateITE | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_x h1_y : VarName
h1_1 : ¬h1_y = h1_x
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
V : Valuation D
⊢ Function.updateITE V h1_x (V h1_y) h1_x = Function.updateITE V h1_x (V h1_y) h1_y | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_x h1_y : VarName
h1_1 : ¬h1_y = h1_x
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
V : Valuation D
⊢ (if h1_x = h1_x then V h1_y else V h1_x) = if h1_y = h1_x then V h1_y else V h1_y |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/MM0/MM0.lean | MM0.holds_is_proof | [2060, 1] | [2162, 13] | simp | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_x h1_y : VarName
h1_1 : ¬h1_y = h1_x
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
V : Valuation D
⊢ (if h1_x = h1_x then V h1_y else V h1_x) = if h1_y = h1_x then V h1_y else V h1_y | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/MM0/MM0.lean | MM0.holds_is_proof | [2060, 1] | [2162, 13] | simp only [Holds] | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_x h1_y h1_z : VarName
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
⊢ ∀ (V : Valuation D), Holds D I V M E ((eq_ h1_x h1_y).imp_ ((eq_ h1_x h1_z).imp_ (eq_ h1_y h1_z))) | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_x h1_y h1_z : VarName
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
⊢ ∀ (V : Valuation D), V h1_x = V h1_y → V h1_x = V h1_z → V h1_y = V h1_z |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/MM0/MM0.lean | MM0.holds_is_proof | [2060, 1] | [2162, 13] | intro V a1 a2 | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_x h1_y h1_z : VarName
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
⊢ ∀ (V : Valuation D), V h1_x = V h1_y → V h1_x = V h1_z → V h1_y = V h1_z | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_x h1_y h1_z : VarName
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
V : Valuation D
a1 : V h1_x = V h1_y
a2 : V h1_x = V h1_z
⊢ V h1_y = V h1_z |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/MM0/MM0.lean | MM0.holds_is_proof | [2060, 1] | [2162, 13] | trans V h1_x | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_x h1_y h1_z : VarName
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
V : Valuation D
a1 : V h1_x = V h1_y
a2 : V h1_x = V h1_z
⊢ V h1_y = V h1_z | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_x h1_y h1_z : VarName
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
V : Valuation D
a1 : V h1_x = V h1_y
a2 : V h1_x = V h1_z
⊢ V h1_y = V h1_x
D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_x h1_y h1_z : VarName
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
V : Valuation D
a1 : V h1_x = V h1_y
a2 : V h1_x = V h1_z
⊢ V h1_x = V h1_z |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/MM0/MM0.lean | MM0.holds_is_proof | [2060, 1] | [2162, 13] | simp only [a1] | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_x h1_y h1_z : VarName
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
V : Valuation D
a1 : V h1_x = V h1_y
a2 : V h1_x = V h1_z
⊢ V h1_y = V h1_x | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/MM0/MM0.lean | MM0.holds_is_proof | [2060, 1] | [2162, 13] | exact a2 | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_x h1_y h1_z : VarName
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
V : Valuation D
a1 : V h1_x = V h1_y
a2 : V h1_x = V h1_z
⊢ V h1_x = V h1_z | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/MM0/MM0.lean | MM0.holds_is_proof | [2060, 1] | [2162, 13] | sorry | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_n : ℕ
h1_name : PredName
h1_xs h1_ys : Fin h1_n → VarName
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
⊢ ∀ (V : Valuation D), Holds D I V M E (eqSubPred h1_name h1_n h1_xs h1_ys) | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/MM0/MM0.lean | MM0.holds_is_proof | [2060, 1] | [2162, 13] | obtain ⟨σ', a1⟩ := h1_σ.2 | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ h1_Γ' : List (VarName × MetaVarName)
h1_Δ h1_Δ' : List Formula
h1_phi : Formula
h1_σ : Instantiation
h1_τ : MetaInstantiation
h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X)
h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X)
h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi)
h1_4 : IsProof E h1_Γ h1_Δ h1_phi
h1_ih_1 :
∀ psi ∈ h1_Δ,
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) →
∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi)
h1_ih_2 :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F
⊢ ∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ h1_phi) | case intro
D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ h1_Γ' : List (VarName × MetaVarName)
h1_Δ h1_Δ' : List Formula
h1_phi : Formula
h1_σ : Instantiation
h1_τ : MetaInstantiation
h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X)
h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X)
h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi)
h1_4 : IsProof E h1_Γ h1_Δ h1_phi
h1_ih_1 :
∀ psi ∈ h1_Δ,
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) →
∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi)
h1_ih_2 :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F
σ' : VarName → VarName
a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id
⊢ ∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ h1_phi) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/MM0/MM0.lean | MM0.holds_is_proof | [2060, 1] | [2162, 13] | have s1 : IsMetaVarOrAllDefInEnv E h1_phi := is_proof_imp_is_meta_var_or_all_def_in_env E h1_Γ h1_Δ h1_phi h1_4 | case intro
D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ h1_Γ' : List (VarName × MetaVarName)
h1_Δ h1_Δ' : List Formula
h1_phi : Formula
h1_σ : Instantiation
h1_τ : MetaInstantiation
h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X)
h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X)
h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi)
h1_4 : IsProof E h1_Γ h1_Δ h1_phi
h1_ih_1 :
∀ psi ∈ h1_Δ,
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) →
∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi)
h1_ih_2 :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F
σ' : VarName → VarName
a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id
⊢ ∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ h1_phi) | case intro
D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ h1_Γ' : List (VarName × MetaVarName)
h1_Δ h1_Δ' : List Formula
h1_phi : Formula
h1_σ : Instantiation
h1_τ : MetaInstantiation
h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X)
h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X)
h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi)
h1_4 : IsProof E h1_Γ h1_Δ h1_phi
h1_ih_1 :
∀ psi ∈ h1_Δ,
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) →
∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi)
h1_ih_2 :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F
σ' : VarName → VarName
a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
⊢ ∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ h1_phi) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/MM0/MM0.lean | MM0.holds_is_proof | [2060, 1] | [2162, 13] | intro V | case intro
D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ h1_Γ' : List (VarName × MetaVarName)
h1_Δ h1_Δ' : List Formula
h1_phi : Formula
h1_σ : Instantiation
h1_τ : MetaInstantiation
h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X)
h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X)
h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi)
h1_4 : IsProof E h1_Γ h1_Δ h1_phi
h1_ih_1 :
∀ psi ∈ h1_Δ,
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) →
∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi)
h1_ih_2 :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F
σ' : VarName → VarName
a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
⊢ ∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ h1_phi) | case intro
D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ h1_Γ' : List (VarName × MetaVarName)
h1_Δ h1_Δ' : List Formula
h1_phi : Formula
h1_σ : Instantiation
h1_τ : MetaInstantiation
h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X)
h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X)
h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi)
h1_4 : IsProof E h1_Γ h1_Δ h1_phi
h1_ih_1 :
∀ psi ∈ h1_Δ,
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) →
∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi)
h1_ih_2 :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F
σ' : VarName → VarName
a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
⊢ Holds D I V M E (sub h1_σ h1_τ h1_phi) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/MM0/MM0.lean | MM0.holds_is_proof | [2060, 1] | [2162, 13] | simp only [← holds_sub D I V M E h1_σ σ' h1_τ h1_phi s1 a1] | case intro
D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ h1_Γ' : List (VarName × MetaVarName)
h1_Δ h1_Δ' : List Formula
h1_phi : Formula
h1_σ : Instantiation
h1_τ : MetaInstantiation
h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X)
h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X)
h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi)
h1_4 : IsProof E h1_Γ h1_Δ h1_phi
h1_ih_1 :
∀ psi ∈ h1_Δ,
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) →
∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi)
h1_ih_2 :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F
σ' : VarName → VarName
a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
⊢ Holds D I V M E (sub h1_σ h1_τ h1_phi) | case intro
D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ h1_Γ' : List (VarName × MetaVarName)
h1_Δ h1_Δ' : List Formula
h1_phi : Formula
h1_σ : Instantiation
h1_τ : MetaInstantiation
h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X)
h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X)
h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi)
h1_4 : IsProof E h1_Γ h1_Δ h1_phi
h1_ih_1 :
∀ psi ∈ h1_Δ,
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) →
∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi)
h1_ih_2 :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F
σ' : VarName → VarName
a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
⊢ Holds D I (V ∘ ↑h1_σ) (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E h1_phi |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/MM0/MM0.lean | MM0.holds_is_proof | [2060, 1] | [2162, 13] | apply h1_ih_2 | case intro
D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ h1_Γ' : List (VarName × MetaVarName)
h1_Δ h1_Δ' : List Formula
h1_phi : Formula
h1_σ : Instantiation
h1_τ : MetaInstantiation
h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X)
h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X)
h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi)
h1_4 : IsProof E h1_Γ h1_Δ h1_phi
h1_ih_1 :
∀ psi ∈ h1_Δ,
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) →
∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi)
h1_ih_2 :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F
σ' : VarName → VarName
a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
⊢ Holds D I (V ∘ ↑h1_σ) (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E h1_phi | case intro.nf
D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ h1_Γ' : List (VarName × MetaVarName)
h1_Δ h1_Δ' : List Formula
h1_phi : Formula
h1_σ : Instantiation
h1_τ : MetaInstantiation
h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X)
h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X)
h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi)
h1_4 : IsProof E h1_Γ h1_Δ h1_phi
h1_ih_1 :
∀ psi ∈ h1_Δ,
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) →
∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi)
h1_ih_2 :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F
σ' : VarName → VarName
a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
⊢ ∀ (v : VarName) (X : MetaVarName),
(v, X) ∈ h1_Γ → IsNotFree D I (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E (meta_var_ X) v
case intro.hyp
D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ h1_Γ' : List (VarName × MetaVarName)
h1_Δ h1_Δ' : List Formula
h1_phi : Formula
h1_σ : Instantiation
h1_τ : MetaInstantiation
h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X)
h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X)
h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi)
h1_4 : IsProof E h1_Γ h1_Δ h1_phi
h1_ih_1 :
∀ psi ∈ h1_Δ,
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) →
∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi)
h1_ih_2 :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F
σ' : VarName → VarName
a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
⊢ ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E F |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/MM0/MM0.lean | MM0.holds_is_proof | [2060, 1] | [2162, 13] | intro v X a2 | case intro.nf
D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ h1_Γ' : List (VarName × MetaVarName)
h1_Δ h1_Δ' : List Formula
h1_phi : Formula
h1_σ : Instantiation
h1_τ : MetaInstantiation
h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X)
h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X)
h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi)
h1_4 : IsProof E h1_Γ h1_Δ h1_phi
h1_ih_1 :
∀ psi ∈ h1_Δ,
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) →
∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi)
h1_ih_2 :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F
σ' : VarName → VarName
a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
⊢ ∀ (v : VarName) (X : MetaVarName),
(v, X) ∈ h1_Γ → IsNotFree D I (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E (meta_var_ X) v | case intro.nf
D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ h1_Γ' : List (VarName × MetaVarName)
h1_Δ h1_Δ' : List Formula
h1_phi : Formula
h1_σ : Instantiation
h1_τ : MetaInstantiation
h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X)
h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X)
h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi)
h1_4 : IsProof E h1_Γ h1_Δ h1_phi
h1_ih_1 :
∀ psi ∈ h1_Δ,
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) →
∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi)
h1_ih_2 :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F
σ' : VarName → VarName
a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
v : VarName
X : MetaVarName
a2 : (v, X) ∈ h1_Γ
⊢ IsNotFree D I (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E (meta_var_ X) v |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/MM0/MM0.lean | MM0.holds_is_proof | [2060, 1] | [2162, 13] | exact lem_1 D I M E h1_Γ h1_Γ' h1_σ σ' h1_τ a1 nf h1_2 v X a2 | case intro.nf
D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ h1_Γ' : List (VarName × MetaVarName)
h1_Δ h1_Δ' : List Formula
h1_phi : Formula
h1_σ : Instantiation
h1_τ : MetaInstantiation
h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X)
h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X)
h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi)
h1_4 : IsProof E h1_Γ h1_Δ h1_phi
h1_ih_1 :
∀ psi ∈ h1_Δ,
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) →
∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi)
h1_ih_2 :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F
σ' : VarName → VarName
a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
v : VarName
X : MetaVarName
a2 : (v, X) ∈ h1_Γ
⊢ IsNotFree D I (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E (meta_var_ X) v | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/MM0/MM0.lean | MM0.holds_is_proof | [2060, 1] | [2162, 13] | intro psi V' a2 | case intro.hyp
D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ h1_Γ' : List (VarName × MetaVarName)
h1_Δ h1_Δ' : List Formula
h1_phi : Formula
h1_σ : Instantiation
h1_τ : MetaInstantiation
h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X)
h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X)
h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi)
h1_4 : IsProof E h1_Γ h1_Δ h1_phi
h1_ih_1 :
∀ psi ∈ h1_Δ,
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) →
∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi)
h1_ih_2 :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F
σ' : VarName → VarName
a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
⊢ ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E F | case intro.hyp
D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ h1_Γ' : List (VarName × MetaVarName)
h1_Δ h1_Δ' : List Formula
h1_phi : Formula
h1_σ : Instantiation
h1_τ : MetaInstantiation
h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X)
h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X)
h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi)
h1_4 : IsProof E h1_Γ h1_Δ h1_phi
h1_ih_1 :
∀ psi ∈ h1_Δ,
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) →
∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi)
h1_ih_2 :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F
σ' : VarName → VarName
a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi ∈ h1_Δ
⊢ Holds D I V' (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/MM0/MM0.lean | MM0.holds_is_proof | [2060, 1] | [2162, 13] | have s2 : IsMetaVarOrAllDefInEnv E psi | case intro.hyp
D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ h1_Γ' : List (VarName × MetaVarName)
h1_Δ h1_Δ' : List Formula
h1_phi : Formula
h1_σ : Instantiation
h1_τ : MetaInstantiation
h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X)
h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X)
h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi)
h1_4 : IsProof E h1_Γ h1_Δ h1_phi
h1_ih_1 :
∀ psi ∈ h1_Δ,
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) →
∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi)
h1_ih_2 :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F
σ' : VarName → VarName
a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi ∈ h1_Δ
⊢ Holds D I V' (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi | case s2
D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ h1_Γ' : List (VarName × MetaVarName)
h1_Δ h1_Δ' : List Formula
h1_phi : Formula
h1_σ : Instantiation
h1_τ : MetaInstantiation
h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X)
h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X)
h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi)
h1_4 : IsProof E h1_Γ h1_Δ h1_phi
h1_ih_1 :
∀ psi ∈ h1_Δ,
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) →
∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi)
h1_ih_2 :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F
σ' : VarName → VarName
a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi ∈ h1_Δ
⊢ IsMetaVarOrAllDefInEnv E psi
case intro.hyp
D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ h1_Γ' : List (VarName × MetaVarName)
h1_Δ h1_Δ' : List Formula
h1_phi : Formula
h1_σ : Instantiation
h1_τ : MetaInstantiation
h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X)
h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X)
h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi)
h1_4 : IsProof E h1_Γ h1_Δ h1_phi
h1_ih_1 :
∀ psi ∈ h1_Δ,
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) →
∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi)
h1_ih_2 :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F
σ' : VarName → VarName
a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi ∈ h1_Δ
s2 : IsMetaVarOrAllDefInEnv E psi
⊢ Holds D I V' (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/MM0/MM0.lean | MM0.holds_is_proof | [2060, 1] | [2162, 13] | apply lem_2_b E h1_σ h1_τ | case s2
D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ h1_Γ' : List (VarName × MetaVarName)
h1_Δ h1_Δ' : List Formula
h1_phi : Formula
h1_σ : Instantiation
h1_τ : MetaInstantiation
h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X)
h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X)
h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi)
h1_4 : IsProof E h1_Γ h1_Δ h1_phi
h1_ih_1 :
∀ psi ∈ h1_Δ,
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) →
∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi)
h1_ih_2 :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F
σ' : VarName → VarName
a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi ∈ h1_Δ
⊢ IsMetaVarOrAllDefInEnv E psi
case intro.hyp
D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ h1_Γ' : List (VarName × MetaVarName)
h1_Δ h1_Δ' : List Formula
h1_phi : Formula
h1_σ : Instantiation
h1_τ : MetaInstantiation
h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X)
h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X)
h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi)
h1_4 : IsProof E h1_Γ h1_Δ h1_phi
h1_ih_1 :
∀ psi ∈ h1_Δ,
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) →
∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi)
h1_ih_2 :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F
σ' : VarName → VarName
a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi ∈ h1_Δ
s2 : IsMetaVarOrAllDefInEnv E psi
⊢ Holds D I V' (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi | case s2.h1
D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ h1_Γ' : List (VarName × MetaVarName)
h1_Δ h1_Δ' : List Formula
h1_phi : Formula
h1_σ : Instantiation
h1_τ : MetaInstantiation
h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X)
h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X)
h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi)
h1_4 : IsProof E h1_Γ h1_Δ h1_phi
h1_ih_1 :
∀ psi ∈ h1_Δ,
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) →
∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi)
h1_ih_2 :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F
σ' : VarName → VarName
a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi ∈ h1_Δ
⊢ IsMetaVarOrAllDefInEnv E (sub h1_σ h1_τ psi)
case intro.hyp
D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ h1_Γ' : List (VarName × MetaVarName)
h1_Δ h1_Δ' : List Formula
h1_phi : Formula
h1_σ : Instantiation
h1_τ : MetaInstantiation
h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X)
h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X)
h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi)
h1_4 : IsProof E h1_Γ h1_Δ h1_phi
h1_ih_1 :
∀ psi ∈ h1_Δ,
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) →
∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi)
h1_ih_2 :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F
σ' : VarName → VarName
a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi ∈ h1_Δ
s2 : IsMetaVarOrAllDefInEnv E psi
⊢ Holds D I V' (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/MM0/MM0.lean | MM0.holds_is_proof | [2060, 1] | [2162, 13] | apply is_proof_imp_is_meta_var_or_all_def_in_env E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi) | case s2.h1
D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ h1_Γ' : List (VarName × MetaVarName)
h1_Δ h1_Δ' : List Formula
h1_phi : Formula
h1_σ : Instantiation
h1_τ : MetaInstantiation
h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X)
h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X)
h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi)
h1_4 : IsProof E h1_Γ h1_Δ h1_phi
h1_ih_1 :
∀ psi ∈ h1_Δ,
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) →
∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi)
h1_ih_2 :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F
σ' : VarName → VarName
a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi ∈ h1_Δ
⊢ IsMetaVarOrAllDefInEnv E (sub h1_σ h1_τ psi)
case intro.hyp
D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ h1_Γ' : List (VarName × MetaVarName)
h1_Δ h1_Δ' : List Formula
h1_phi : Formula
h1_σ : Instantiation
h1_τ : MetaInstantiation
h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X)
h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X)
h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi)
h1_4 : IsProof E h1_Γ h1_Δ h1_phi
h1_ih_1 :
∀ psi ∈ h1_Δ,
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) →
∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi)
h1_ih_2 :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F
σ' : VarName → VarName
a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi ∈ h1_Δ
s2 : IsMetaVarOrAllDefInEnv E psi
⊢ Holds D I V' (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi | case s2.h1
D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ h1_Γ' : List (VarName × MetaVarName)
h1_Δ h1_Δ' : List Formula
h1_phi : Formula
h1_σ : Instantiation
h1_τ : MetaInstantiation
h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X)
h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X)
h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi)
h1_4 : IsProof E h1_Γ h1_Δ h1_phi
h1_ih_1 :
∀ psi ∈ h1_Δ,
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) →
∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi)
h1_ih_2 :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F
σ' : VarName → VarName
a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi ∈ h1_Δ
⊢ IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi)
case intro.hyp
D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ h1_Γ' : List (VarName × MetaVarName)
h1_Δ h1_Δ' : List Formula
h1_phi : Formula
h1_σ : Instantiation
h1_τ : MetaInstantiation
h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X)
h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X)
h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi)
h1_4 : IsProof E h1_Γ h1_Δ h1_phi
h1_ih_1 :
∀ psi ∈ h1_Δ,
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) →
∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi)
h1_ih_2 :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F
σ' : VarName → VarName
a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi ∈ h1_Δ
s2 : IsMetaVarOrAllDefInEnv E psi
⊢ Holds D I V' (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/MM0/MM0.lean | MM0.holds_is_proof | [2060, 1] | [2162, 13] | exact h1_3 psi a2 | case s2.h1
D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ h1_Γ' : List (VarName × MetaVarName)
h1_Δ h1_Δ' : List Formula
h1_phi : Formula
h1_σ : Instantiation
h1_τ : MetaInstantiation
h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X)
h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X)
h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi)
h1_4 : IsProof E h1_Γ h1_Δ h1_phi
h1_ih_1 :
∀ psi ∈ h1_Δ,
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) →
∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi)
h1_ih_2 :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F
σ' : VarName → VarName
a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi ∈ h1_Δ
⊢ IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi)
case intro.hyp
D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ h1_Γ' : List (VarName × MetaVarName)
h1_Δ h1_Δ' : List Formula
h1_phi : Formula
h1_σ : Instantiation
h1_τ : MetaInstantiation
h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X)
h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X)
h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi)
h1_4 : IsProof E h1_Γ h1_Δ h1_phi
h1_ih_1 :
∀ psi ∈ h1_Δ,
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) →
∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi)
h1_ih_2 :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F
σ' : VarName → VarName
a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi ∈ h1_Δ
s2 : IsMetaVarOrAllDefInEnv E psi
⊢ Holds D I V' (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi | case intro.hyp
D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ h1_Γ' : List (VarName × MetaVarName)
h1_Δ h1_Δ' : List Formula
h1_phi : Formula
h1_σ : Instantiation
h1_τ : MetaInstantiation
h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X)
h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X)
h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi)
h1_4 : IsProof E h1_Γ h1_Δ h1_phi
h1_ih_1 :
∀ psi ∈ h1_Δ,
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) →
∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi)
h1_ih_2 :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F
σ' : VarName → VarName
a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi ∈ h1_Δ
s2 : IsMetaVarOrAllDefInEnv E psi
⊢ Holds D I V' (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/MM0/MM0.lean | MM0.holds_is_proof | [2060, 1] | [2162, 13] | have s3 : ∀ V'' : Valuation D, Holds D I (V'' ∘ h1_σ.val) (fun (X' : MetaVarName) (V' : Valuation D) => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi | case intro.hyp
D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ h1_Γ' : List (VarName × MetaVarName)
h1_Δ h1_Δ' : List Formula
h1_phi : Formula
h1_σ : Instantiation
h1_τ : MetaInstantiation
h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X)
h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X)
h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi)
h1_4 : IsProof E h1_Γ h1_Δ h1_phi
h1_ih_1 :
∀ psi ∈ h1_Δ,
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) →
∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi)
h1_ih_2 :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F
σ' : VarName → VarName
a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi ∈ h1_Δ
s2 : IsMetaVarOrAllDefInEnv E psi
⊢ Holds D I V' (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi | case s3
D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ h1_Γ' : List (VarName × MetaVarName)
h1_Δ h1_Δ' : List Formula
h1_phi : Formula
h1_σ : Instantiation
h1_τ : MetaInstantiation
h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X)
h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X)
h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi)
h1_4 : IsProof E h1_Γ h1_Δ h1_phi
h1_ih_1 :
∀ psi ∈ h1_Δ,
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) →
∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi)
h1_ih_2 :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F
σ' : VarName → VarName
a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi ∈ h1_Δ
s2 : IsMetaVarOrAllDefInEnv E psi
⊢ ∀ (V'' : Valuation D), Holds D I (V'' ∘ ↑h1_σ) (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi
case intro.hyp
D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ h1_Γ' : List (VarName × MetaVarName)
h1_Δ h1_Δ' : List Formula
h1_phi : Formula
h1_σ : Instantiation
h1_τ : MetaInstantiation
h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X)
h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X)
h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi)
h1_4 : IsProof E h1_Γ h1_Δ h1_phi
h1_ih_1 :
∀ psi ∈ h1_Δ,
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) →
∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi)
h1_ih_2 :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F
σ' : VarName → VarName
a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi ∈ h1_Δ
s2 : IsMetaVarOrAllDefInEnv E psi
s3 : ∀ (V'' : Valuation D), Holds D I (V'' ∘ ↑h1_σ) (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi
⊢ Holds D I V' (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/MM0/MM0.lean | MM0.holds_is_proof | [2060, 1] | [2162, 13] | intro V'' | case s3
D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ h1_Γ' : List (VarName × MetaVarName)
h1_Δ h1_Δ' : List Formula
h1_phi : Formula
h1_σ : Instantiation
h1_τ : MetaInstantiation
h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X)
h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X)
h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi)
h1_4 : IsProof E h1_Γ h1_Δ h1_phi
h1_ih_1 :
∀ psi ∈ h1_Δ,
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) →
∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi)
h1_ih_2 :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F
σ' : VarName → VarName
a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi ∈ h1_Δ
s2 : IsMetaVarOrAllDefInEnv E psi
⊢ ∀ (V'' : Valuation D), Holds D I (V'' ∘ ↑h1_σ) (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi
case intro.hyp
D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ h1_Γ' : List (VarName × MetaVarName)
h1_Δ h1_Δ' : List Formula
h1_phi : Formula
h1_σ : Instantiation
h1_τ : MetaInstantiation
h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X)
h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X)
h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi)
h1_4 : IsProof E h1_Γ h1_Δ h1_phi
h1_ih_1 :
∀ psi ∈ h1_Δ,
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) →
∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi)
h1_ih_2 :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F
σ' : VarName → VarName
a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi ∈ h1_Δ
s2 : IsMetaVarOrAllDefInEnv E psi
s3 : ∀ (V'' : Valuation D), Holds D I (V'' ∘ ↑h1_σ) (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi
⊢ Holds D I V' (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi | case s3
D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ h1_Γ' : List (VarName × MetaVarName)
h1_Δ h1_Δ' : List Formula
h1_phi : Formula
h1_σ : Instantiation
h1_τ : MetaInstantiation
h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X)
h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X)
h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi)
h1_4 : IsProof E h1_Γ h1_Δ h1_phi
h1_ih_1 :
∀ psi ∈ h1_Δ,
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) →
∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi)
h1_ih_2 :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F
σ' : VarName → VarName
a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi ∈ h1_Δ
s2 : IsMetaVarOrAllDefInEnv E psi
V'' : Valuation D
⊢ Holds D I (V'' ∘ ↑h1_σ) (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi
case intro.hyp
D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ h1_Γ' : List (VarName × MetaVarName)
h1_Δ h1_Δ' : List Formula
h1_phi : Formula
h1_σ : Instantiation
h1_τ : MetaInstantiation
h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X)
h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X)
h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi)
h1_4 : IsProof E h1_Γ h1_Δ h1_phi
h1_ih_1 :
∀ psi ∈ h1_Δ,
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) →
∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi)
h1_ih_2 :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F
σ' : VarName → VarName
a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi ∈ h1_Δ
s2 : IsMetaVarOrAllDefInEnv E psi
s3 : ∀ (V'' : Valuation D), Holds D I (V'' ∘ ↑h1_σ) (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi
⊢ Holds D I V' (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/MM0/MM0.lean | MM0.holds_is_proof | [2060, 1] | [2162, 13] | simp only [holds_sub D I V'' M E h1_σ σ' h1_τ psi s2 a1] | case s3
D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ h1_Γ' : List (VarName × MetaVarName)
h1_Δ h1_Δ' : List Formula
h1_phi : Formula
h1_σ : Instantiation
h1_τ : MetaInstantiation
h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X)
h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X)
h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi)
h1_4 : IsProof E h1_Γ h1_Δ h1_phi
h1_ih_1 :
∀ psi ∈ h1_Δ,
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) →
∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi)
h1_ih_2 :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F
σ' : VarName → VarName
a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi ∈ h1_Δ
s2 : IsMetaVarOrAllDefInEnv E psi
V'' : Valuation D
⊢ Holds D I (V'' ∘ ↑h1_σ) (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi
case intro.hyp
D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ h1_Γ' : List (VarName × MetaVarName)
h1_Δ h1_Δ' : List Formula
h1_phi : Formula
h1_σ : Instantiation
h1_τ : MetaInstantiation
h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X)
h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X)
h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi)
h1_4 : IsProof E h1_Γ h1_Δ h1_phi
h1_ih_1 :
∀ psi ∈ h1_Δ,
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) →
∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi)
h1_ih_2 :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F
σ' : VarName → VarName
a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi ∈ h1_Δ
s2 : IsMetaVarOrAllDefInEnv E psi
s3 : ∀ (V'' : Valuation D), Holds D I (V'' ∘ ↑h1_σ) (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi
⊢ Holds D I V' (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi | case s3
D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ h1_Γ' : List (VarName × MetaVarName)
h1_Δ h1_Δ' : List Formula
h1_phi : Formula
h1_σ : Instantiation
h1_τ : MetaInstantiation
h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X)
h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X)
h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi)
h1_4 : IsProof E h1_Γ h1_Δ h1_phi
h1_ih_1 :
∀ psi ∈ h1_Δ,
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) →
∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi)
h1_ih_2 :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F
σ' : VarName → VarName
a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi ∈ h1_Δ
s2 : IsMetaVarOrAllDefInEnv E psi
V'' : Valuation D
⊢ Holds D I V'' M E (sub h1_σ h1_τ psi)
case intro.hyp
D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ h1_Γ' : List (VarName × MetaVarName)
h1_Δ h1_Δ' : List Formula
h1_phi : Formula
h1_σ : Instantiation
h1_τ : MetaInstantiation
h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X)
h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X)
h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi)
h1_4 : IsProof E h1_Γ h1_Δ h1_phi
h1_ih_1 :
∀ psi ∈ h1_Δ,
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) →
∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi)
h1_ih_2 :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F
σ' : VarName → VarName
a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi ∈ h1_Δ
s2 : IsMetaVarOrAllDefInEnv E psi
s3 : ∀ (V'' : Valuation D), Holds D I (V'' ∘ ↑h1_σ) (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi
⊢ Holds D I V' (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/MM0/MM0.lean | MM0.holds_is_proof | [2060, 1] | [2162, 13] | exact h1_ih_1 psi a2 M nf hyp V'' | case s3
D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ h1_Γ' : List (VarName × MetaVarName)
h1_Δ h1_Δ' : List Formula
h1_phi : Formula
h1_σ : Instantiation
h1_τ : MetaInstantiation
h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X)
h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X)
h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi)
h1_4 : IsProof E h1_Γ h1_Δ h1_phi
h1_ih_1 :
∀ psi ∈ h1_Δ,
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) →
∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi)
h1_ih_2 :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F
σ' : VarName → VarName
a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi ∈ h1_Δ
s2 : IsMetaVarOrAllDefInEnv E psi
V'' : Valuation D
⊢ Holds D I V'' M E (sub h1_σ h1_τ psi)
case intro.hyp
D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ h1_Γ' : List (VarName × MetaVarName)
h1_Δ h1_Δ' : List Formula
h1_phi : Formula
h1_σ : Instantiation
h1_τ : MetaInstantiation
h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X)
h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X)
h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi)
h1_4 : IsProof E h1_Γ h1_Δ h1_phi
h1_ih_1 :
∀ psi ∈ h1_Δ,
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) →
∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi)
h1_ih_2 :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F
σ' : VarName → VarName
a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi ∈ h1_Δ
s2 : IsMetaVarOrAllDefInEnv E psi
s3 : ∀ (V'' : Valuation D), Holds D I (V'' ∘ ↑h1_σ) (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi
⊢ Holds D I V' (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi | case intro.hyp
D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ h1_Γ' : List (VarName × MetaVarName)
h1_Δ h1_Δ' : List Formula
h1_phi : Formula
h1_σ : Instantiation
h1_τ : MetaInstantiation
h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X)
h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X)
h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi)
h1_4 : IsProof E h1_Γ h1_Δ h1_phi
h1_ih_1 :
∀ psi ∈ h1_Δ,
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) →
∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi)
h1_ih_2 :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F
σ' : VarName → VarName
a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi ∈ h1_Δ
s2 : IsMetaVarOrAllDefInEnv E psi
s3 : ∀ (V'' : Valuation D), Holds D I (V'' ∘ ↑h1_σ) (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi
⊢ Holds D I V' (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/MM0/MM0.lean | MM0.holds_is_proof | [2060, 1] | [2162, 13] | specialize s3 (V' ∘ σ') | case intro.hyp
D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ h1_Γ' : List (VarName × MetaVarName)
h1_Δ h1_Δ' : List Formula
h1_phi : Formula
h1_σ : Instantiation
h1_τ : MetaInstantiation
h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X)
h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X)
h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi)
h1_4 : IsProof E h1_Γ h1_Δ h1_phi
h1_ih_1 :
∀ psi ∈ h1_Δ,
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) →
∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi)
h1_ih_2 :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F
σ' : VarName → VarName
a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi ∈ h1_Δ
s2 : IsMetaVarOrAllDefInEnv E psi
s3 : ∀ (V'' : Valuation D), Holds D I (V'' ∘ ↑h1_σ) (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi
⊢ Holds D I V' (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi | case intro.hyp
D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ h1_Γ' : List (VarName × MetaVarName)
h1_Δ h1_Δ' : List Formula
h1_phi : Formula
h1_σ : Instantiation
h1_τ : MetaInstantiation
h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X)
h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X)
h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi)
h1_4 : IsProof E h1_Γ h1_Δ h1_phi
h1_ih_1 :
∀ psi ∈ h1_Δ,
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) →
∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi)
h1_ih_2 :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F
σ' : VarName → VarName
a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi ∈ h1_Δ
s2 : IsMetaVarOrAllDefInEnv E psi
s3 : Holds D I ((V' ∘ σ') ∘ ↑h1_σ) (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi
⊢ Holds D I V' (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/MM0/MM0.lean | MM0.holds_is_proof | [2060, 1] | [2162, 13] | simp only [Function.comp.assoc] at s3 | case intro.hyp
D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ h1_Γ' : List (VarName × MetaVarName)
h1_Δ h1_Δ' : List Formula
h1_phi : Formula
h1_σ : Instantiation
h1_τ : MetaInstantiation
h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X)
h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X)
h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi)
h1_4 : IsProof E h1_Γ h1_Δ h1_phi
h1_ih_1 :
∀ psi ∈ h1_Δ,
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) →
∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi)
h1_ih_2 :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F
σ' : VarName → VarName
a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi ∈ h1_Δ
s2 : IsMetaVarOrAllDefInEnv E psi
s3 : Holds D I ((V' ∘ σ') ∘ ↑h1_σ) (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi
⊢ Holds D I V' (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi | case intro.hyp
D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ h1_Γ' : List (VarName × MetaVarName)
h1_Δ h1_Δ' : List Formula
h1_phi : Formula
h1_σ : Instantiation
h1_τ : MetaInstantiation
h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X)
h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X)
h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi)
h1_4 : IsProof E h1_Γ h1_Δ h1_phi
h1_ih_1 :
∀ psi ∈ h1_Δ,
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) →
∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi)
h1_ih_2 :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F
σ' : VarName → VarName
a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi ∈ h1_Δ
s2 : IsMetaVarOrAllDefInEnv E psi
s3 : Holds D I (V' ∘ σ' ∘ ↑h1_σ) (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi
⊢ Holds D I V' (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/MM0/MM0.lean | MM0.holds_is_proof | [2060, 1] | [2162, 13] | simp only [a1.right] at s3 | case intro.hyp
D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ h1_Γ' : List (VarName × MetaVarName)
h1_Δ h1_Δ' : List Formula
h1_phi : Formula
h1_σ : Instantiation
h1_τ : MetaInstantiation
h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X)
h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X)
h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi)
h1_4 : IsProof E h1_Γ h1_Δ h1_phi
h1_ih_1 :
∀ psi ∈ h1_Δ,
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) →
∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi)
h1_ih_2 :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F
σ' : VarName → VarName
a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi ∈ h1_Δ
s2 : IsMetaVarOrAllDefInEnv E psi
s3 : Holds D I (V' ∘ σ' ∘ ↑h1_σ) (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi
⊢ Holds D I V' (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi | case intro.hyp
D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ h1_Γ' : List (VarName × MetaVarName)
h1_Δ h1_Δ' : List Formula
h1_phi : Formula
h1_σ : Instantiation
h1_τ : MetaInstantiation
h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X)
h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X)
h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi)
h1_4 : IsProof E h1_Γ h1_Δ h1_phi
h1_ih_1 :
∀ psi ∈ h1_Δ,
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) →
∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi)
h1_ih_2 :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F
σ' : VarName → VarName
a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi ∈ h1_Δ
s2 : IsMetaVarOrAllDefInEnv E psi
s3 : Holds D I (V' ∘ id) (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi
⊢ Holds D I V' (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/MM0/MM0.lean | MM0.holds_is_proof | [2060, 1] | [2162, 13] | simp only [Function.comp_id] at s3 | case intro.hyp
D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ h1_Γ' : List (VarName × MetaVarName)
h1_Δ h1_Δ' : List Formula
h1_phi : Formula
h1_σ : Instantiation
h1_τ : MetaInstantiation
h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X)
h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X)
h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi)
h1_4 : IsProof E h1_Γ h1_Δ h1_phi
h1_ih_1 :
∀ psi ∈ h1_Δ,
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) →
∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi)
h1_ih_2 :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F
σ' : VarName → VarName
a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi ∈ h1_Δ
s2 : IsMetaVarOrAllDefInEnv E psi
s3 : Holds D I (V' ∘ id) (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi
⊢ Holds D I V' (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi | case intro.hyp
D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ h1_Γ' : List (VarName × MetaVarName)
h1_Δ h1_Δ' : List Formula
h1_phi : Formula
h1_σ : Instantiation
h1_τ : MetaInstantiation
h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X)
h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X)
h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi)
h1_4 : IsProof E h1_Γ h1_Δ h1_phi
h1_ih_1 :
∀ psi ∈ h1_Δ,
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) →
∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi)
h1_ih_2 :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F
σ' : VarName → VarName
a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi ∈ h1_Δ
s2 : IsMetaVarOrAllDefInEnv E psi
s3 : Holds D I V' (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi
⊢ Holds D I V' (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/MM0/MM0.lean | MM0.holds_is_proof | [2060, 1] | [2162, 13] | exact s3 | case intro.hyp
D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ h1_Γ' : List (VarName × MetaVarName)
h1_Δ h1_Δ' : List Formula
h1_phi : Formula
h1_σ : Instantiation
h1_τ : MetaInstantiation
h1_1 : ∀ X ∈ h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_τ X)
h1_2 : ∀ (x : VarName) (X : MetaVarName), (x, X) ∈ h1_Γ → NotFree h1_Γ' (↑h1_σ x) (h1_τ X)
h1_3 : ∀ psi ∈ h1_Δ, IsProof E h1_Γ' h1_Δ' (sub h1_σ h1_τ psi)
h1_4 : IsProof E h1_Γ h1_Δ h1_phi
h1_ih_1 :
∀ psi ∈ h1_Δ,
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F) →
∀ (V : Valuation D), Holds D I V M E (sub h1_σ h1_τ psi)
h1_ih_2 :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ' → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ' → Holds D I V M E F
σ' : VarName → VarName
a1 : ↑h1_σ ∘ σ' = id ∧ σ' ∘ ↑h1_σ = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi ∈ h1_Δ
s2 : IsMetaVarOrAllDefInEnv E psi
s3 : Holds D I V' (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi
⊢ Holds D I V' (fun X' V' => Holds D I (V' ∘ σ') M E (h1_τ X')) E psi | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/MM0/MM0.lean | MM0.holds_is_proof | [2060, 1] | [2162, 13] | intro V | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_phi h1_phi' : Formula
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi'
h1_2 : IsProof E h1_Γ h1_Δ h1_phi
h1_3 : IsConv E h1_phi h1_phi'
h1_ih :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
⊢ ∀ (V : Valuation D), Holds D I V M E h1_phi' | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_phi h1_phi' : Formula
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi'
h1_2 : IsProof E h1_Γ h1_Δ h1_phi
h1_3 : IsConv E h1_phi h1_phi'
h1_ih :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
V : Valuation D
⊢ Holds D I V M E h1_phi' |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/MM0/MM0.lean | MM0.holds_is_proof | [2060, 1] | [2162, 13] | have s1 : Holds D I V M E h1_phi := h1_ih M nf hyp V | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_phi h1_phi' : Formula
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi'
h1_2 : IsProof E h1_Γ h1_Δ h1_phi
h1_3 : IsConv E h1_phi h1_phi'
h1_ih :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
V : Valuation D
⊢ Holds D I V M E h1_phi' | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_phi h1_phi' : Formula
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi'
h1_2 : IsProof E h1_Γ h1_Δ h1_phi
h1_3 : IsConv E h1_phi h1_phi'
h1_ih :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
V : Valuation D
s1 : Holds D I V M E h1_phi
⊢ Holds D I V M E h1_phi' |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/MM0/MM0.lean | MM0.holds_is_proof | [2060, 1] | [2162, 13] | simp only [← holds_conv D I V M E h1_phi h1_phi' h2 h1_3] | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_phi h1_phi' : Formula
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi'
h1_2 : IsProof E h1_Γ h1_Δ h1_phi
h1_3 : IsConv E h1_phi h1_phi'
h1_ih :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
V : Valuation D
s1 : Holds D I V M E h1_phi
⊢ Holds D I V M E h1_phi' | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_phi h1_phi' : Formula
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi'
h1_2 : IsProof E h1_Γ h1_Δ h1_phi
h1_3 : IsConv E h1_phi h1_phi'
h1_ih :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
V : Valuation D
s1 : Holds D I V M E h1_phi
⊢ Holds D I V M E h1_phi |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/MM0/MM0.lean | MM0.holds_is_proof | [2060, 1] | [2162, 13] | exact s1 | D : Type
I : Interpretation D
E : Env
Γ : List (VarName × MetaVarName)
Δ : List Formula
F : Formula
h2 : E.WellFormed
h1_Γ : List (VarName × MetaVarName)
h1_Δ : List Formula
h1_phi h1_phi' : Formula
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi'
h1_2 : IsProof E h1_Γ h1_Δ h1_phi
h1_3 : IsConv E h1_phi h1_phi'
h1_ih :
∀ (M : MetaValuation D),
(∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v) →
(∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F) → ∀ (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : ∀ (v : VarName) (X : MetaVarName), (v, X) ∈ h1_Γ → IsNotFree D I M E (meta_var_ X) v
hyp : ∀ (F : Formula) (V : Valuation D), F ∈ h1_Δ → Holds D I V M E F
V : Valuation D
s1 : Holds D I V M E h1_phi
⊢ Holds D I V M E h1_phi | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/Compute.lean | DA.memAccepts | [145, 1] | [151, 67] | rfl | α σ : Type
D : DA α σ
input : List α
⊢ D.accepts input ↔ D.evalFrom D.startingState input ∈ D.acceptingStates | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/Compute.lean | NA.memAccepts | [154, 1] | [161, 38] | rfl | α σ : Type
N : NA α σ
input : List α
⊢ N.accepts input ↔ ∃ s ∈ N.evalFrom N.startingStates input, s ∈ N.acceptingStates | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/Compute.lean | NAtoDAisEquiv | [167, 1] | [183, 10] | ext cs | α σ : Type
N : NA α σ
⊢ N.toDA.accepts = N.accepts | case h.a
α σ : Type
N : NA α σ
cs : List α
⊢ N.toDA.accepts cs ↔ N.accepts cs |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/Compute.lean | NAtoDAisEquiv | [167, 1] | [183, 10] | simp only [DA.memAccepts] | case h.a
α σ : Type
N : NA α σ
cs : List α
⊢ N.toDA.accepts cs ↔ N.accepts cs | case h.a
α σ : Type
N : NA α σ
cs : List α
⊢ N.toDA.evalFrom N.toDA.startingState cs ∈ N.toDA.acceptingStates ↔ N.accepts cs |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/Compute.lean | NAtoDAisEquiv | [167, 1] | [183, 10] | simp only [NA.memAccepts] | case h.a
α σ : Type
N : NA α σ
cs : List α
⊢ N.toDA.evalFrom N.toDA.startingState cs ∈ N.toDA.acceptingStates ↔ N.accepts cs | case h.a
α σ : Type
N : NA α σ
cs : List α
⊢ N.toDA.evalFrom N.toDA.startingState cs ∈ N.toDA.acceptingStates ↔
∃ s ∈ N.evalFrom N.startingStates cs, s ∈ N.acceptingStates |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/Compute.lean | NAtoDAisEquiv | [167, 1] | [183, 10] | simp only [NA.toDA] | case h.a
α σ : Type
N : NA α σ
cs : List α
⊢ N.toDA.evalFrom N.toDA.startingState cs ∈ N.toDA.acceptingStates ↔
∃ s ∈ N.evalFrom N.startingStates cs, s ∈ N.acceptingStates | case h.a
α σ : Type
N : NA α σ
cs : List α
⊢ { step := N.stepSet, startingState := N.startingStates,
acceptingStates := {S | ∃ s ∈ S, s ∈ N.acceptingStates} }.evalFrom
N.startingStates cs ∈
{S | ∃ s ∈ S, s ∈ N.acceptingStates} ↔
∃ s ∈ N.evalFrom N.startingStates cs, s ∈ N.acceptingStates |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/Compute.lean | NAtoDAisEquiv | [167, 1] | [183, 10] | simp | case h.a
α σ : Type
N : NA α σ
cs : List α
⊢ { step := N.stepSet, startingState := N.startingStates,
acceptingStates := {S | ∃ s ∈ S, s ∈ N.acceptingStates} }.evalFrom
N.startingStates cs ∈
{S | ∃ s ∈ S, s ∈ N.acceptingStates} ↔
∃ s ∈ N.evalFrom N.startingStates cs, s ∈ N.acceptingStates | case h.a
α σ : Type
N : NA α σ
cs : List α
⊢ (∃
s ∈
{ step := N.stepSet, startingState := N.startingStates,
acceptingStates := {S | ∃ s ∈ S, s ∈ N.acceptingStates} }.evalFrom
N.startingStates cs,
s ∈ N.acceptingStates) ↔
∃ s ∈ N.evalFrom N.startingStates cs, s ∈ N.acceptingStates |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/Compute.lean | NAtoDAisEquiv | [167, 1] | [183, 10] | constructor | case h.a
α σ : Type
N : NA α σ
cs : List α
⊢ (∃
s ∈
{ step := N.stepSet, startingState := N.startingStates,
acceptingStates := {S | ∃ s ∈ S, s ∈ N.acceptingStates} }.evalFrom
N.startingStates cs,
s ∈ N.acceptingStates) ↔
∃ s ∈ N.evalFrom N.startingStates cs, s ∈ N.acceptingStates | case h.a.mp
α σ : Type
N : NA α σ
cs : List α
⊢ (∃
s ∈
{ step := N.stepSet, startingState := N.startingStates,
acceptingStates := {S | ∃ s ∈ S, s ∈ N.acceptingStates} }.evalFrom
N.startingStates cs,
s ∈ N.acceptingStates) →
∃ s ∈ N.evalFrom N.startingStates cs, s ∈ N.acceptingStates
case h.a.mpr
α σ : Type
N : NA α σ
cs : List α
⊢ (∃ s ∈ N.evalFrom N.startingStates cs, s ∈ N.acceptingStates) →
∃
s ∈
{ step := N.stepSet, startingState := N.startingStates,
acceptingStates := {S | ∃ s ∈ S, s ∈ N.acceptingStates} }.evalFrom
N.startingStates cs,
s ∈ N.acceptingStates |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/Compute.lean | NAtoDAisEquiv | [167, 1] | [183, 10] | all_goals
simp
intro s a1 a2
apply Exists.intro s
tauto | case h.a.mp
α σ : Type
N : NA α σ
cs : List α
⊢ (∃
s ∈
{ step := N.stepSet, startingState := N.startingStates,
acceptingStates := {S | ∃ s ∈ S, s ∈ N.acceptingStates} }.evalFrom
N.startingStates cs,
s ∈ N.acceptingStates) →
∃ s ∈ N.evalFrom N.startingStates cs, s ∈ N.acceptingStates
case h.a.mpr
α σ : Type
N : NA α σ
cs : List α
⊢ (∃ s ∈ N.evalFrom N.startingStates cs, s ∈ N.acceptingStates) →
∃
s ∈
{ step := N.stepSet, startingState := N.startingStates,
acceptingStates := {S | ∃ s ∈ S, s ∈ N.acceptingStates} }.evalFrom
N.startingStates cs,
s ∈ N.acceptingStates | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/Compute.lean | NAtoDAisEquiv | [167, 1] | [183, 10] | simp | case h.a.mpr
α σ : Type
N : NA α σ
cs : List α
⊢ (∃ s ∈ N.evalFrom N.startingStates cs, s ∈ N.acceptingStates) →
∃
s ∈
{ step := N.stepSet, startingState := N.startingStates,
acceptingStates := {S | ∃ s ∈ S, s ∈ N.acceptingStates} }.evalFrom
N.startingStates cs,
s ∈ N.acceptingStates | case h.a.mpr
α σ : Type
N : NA α σ
cs : List α
⊢ ∀ x ∈ N.evalFrom N.startingStates cs,
x ∈ N.acceptingStates →
∃
s ∈
{ step := N.stepSet, startingState := N.startingStates,
acceptingStates := {S | ∃ s ∈ S, s ∈ N.acceptingStates} }.evalFrom
N.startingStates cs,
s ∈ N.acceptingStates |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/Compute.lean | NAtoDAisEquiv | [167, 1] | [183, 10] | intro s a1 a2 | case h.a.mpr
α σ : Type
N : NA α σ
cs : List α
⊢ ∀ x ∈ N.evalFrom N.startingStates cs,
x ∈ N.acceptingStates →
∃
s ∈
{ step := N.stepSet, startingState := N.startingStates,
acceptingStates := {S | ∃ s ∈ S, s ∈ N.acceptingStates} }.evalFrom
N.startingStates cs,
s ∈ N.acceptingStates | case h.a.mpr
α σ : Type
N : NA α σ
cs : List α
s : σ
a1 : s ∈ N.evalFrom N.startingStates cs
a2 : s ∈ N.acceptingStates
⊢ ∃
s ∈
{ step := N.stepSet, startingState := N.startingStates,
acceptingStates := {S | ∃ s ∈ S, s ∈ N.acceptingStates} }.evalFrom
N.startingStates cs,
s ∈ N.acceptingStates |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/Compute.lean | NAtoDAisEquiv | [167, 1] | [183, 10] | apply Exists.intro s | case h.a.mpr
α σ : Type
N : NA α σ
cs : List α
s : σ
a1 : s ∈ N.evalFrom N.startingStates cs
a2 : s ∈ N.acceptingStates
⊢ ∃
s ∈
{ step := N.stepSet, startingState := N.startingStates,
acceptingStates := {S | ∃ s ∈ S, s ∈ N.acceptingStates} }.evalFrom
N.startingStates cs,
s ∈ N.acceptingStates | case h.a.mpr
α σ : Type
N : NA α σ
cs : List α
s : σ
a1 : s ∈ N.evalFrom N.startingStates cs
a2 : s ∈ N.acceptingStates
⊢ s ∈
{ step := N.stepSet, startingState := N.startingStates,
acceptingStates := {S | ∃ s ∈ S, s ∈ N.acceptingStates} }.evalFrom
N.startingStates cs ∧
s ∈ N.acceptingStates |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/Compute.lean | NAtoDAisEquiv | [167, 1] | [183, 10] | tauto | case h.a.mpr
α σ : Type
N : NA α σ
cs : List α
s : σ
a1 : s ∈ N.evalFrom N.startingStates cs
a2 : s ∈ N.acceptingStates
⊢ s ∈
{ step := N.stepSet, startingState := N.startingStates,
acceptingStates := {S | ∃ s ∈ S, s ∈ N.acceptingStates} }.evalFrom
N.startingStates cs ∧
s ∈ N.acceptingStates | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/NFA.lean | NFA.mem_accepts | [106, 1] | [115, 43] | rfl | α : Type
inst✝¹ : DecidableEq α
σ : Type
inst✝ : DecidableEq σ
e : NFA α σ
input : List α
⊢ e.accepts input ↔ ∃ s ∈ e.eval_from e.starting_state_list input, s ∈ e.accepting_state_list | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/EpsilonNFA.lean | EpsilonNFA.eval_one_no_eps_def | [111, 1] | [124, 9] | simp only [eval_one_no_eps] | α : Type
inst✝¹ : DecidableEq α
σ : Type
inst✝ : DecidableEq σ
e : EpsilonNFA α σ
starting_state_list : List σ
symbol : α
stop_state : σ
⊢ stop_state ∈ e.eval_one_no_eps starting_state_list symbol ↔
∃ state ∈ starting_state_list, stop_state ∈ symbol_arrow_list_to_fun e.symbol_arrow_list state symbol | α : Type
inst✝¹ : DecidableEq α
σ : Type
inst✝ : DecidableEq σ
e : EpsilonNFA α σ
starting_state_list : List σ
symbol : α
stop_state : σ
⊢ stop_state ∈
(List.map (fun state => symbol_arrow_list_to_fun e.symbol_arrow_list state symbol)
starting_state_list).join.dedup ↔
∃ state ∈ starting_state_list, stop_state ∈ symbol_arrow_list_to_fun e.symbol_arrow_list state symbol |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/EpsilonNFA.lean | EpsilonNFA.eval_one_no_eps_def | [111, 1] | [124, 9] | simp | α : Type
inst✝¹ : DecidableEq α
σ : Type
inst✝ : DecidableEq σ
e : EpsilonNFA α σ
starting_state_list : List σ
symbol : α
stop_state : σ
⊢ stop_state ∈
(List.map (fun state => symbol_arrow_list_to_fun e.symbol_arrow_list state symbol)
starting_state_list).join.dedup ↔
∃ state ∈ starting_state_list, stop_state ∈ symbol_arrow_list_to_fun e.symbol_arrow_list state symbol | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/EpsilonNFA.lean | EpsilonNFA.eval_one_no_eps_iff | [354, 1] | [374, 53] | simp only [EpsilonNFA.eval_one_no_eps] | α : Type
inst✝¹ : DecidableEq α
σ : Type
inst✝ : DecidableEq σ
e : EpsilonNFA α σ
starting_state_list : List σ
symbol : α
stop_state : σ
⊢ stop_state ∈ e.eval_one_no_eps starting_state_list symbol ↔
∃ state ∈ starting_state_list, e.toAbstract.symbol state symbol stop_state | α : Type
inst✝¹ : DecidableEq α
σ : Type
inst✝ : DecidableEq σ
e : EpsilonNFA α σ
starting_state_list : List σ
symbol : α
stop_state : σ
⊢ stop_state ∈
(List.map (fun state => symbol_arrow_list_to_fun e.symbol_arrow_list state symbol)
starting_state_list).join.dedup ↔
∃ state ∈ starting_state_list, e.toAbstract.symbol state symbol stop_state |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/EpsilonNFA.lean | EpsilonNFA.eval_one_no_eps_iff | [354, 1] | [374, 53] | simp only [EpsilonNFA.toAbstract] | α : Type
inst✝¹ : DecidableEq α
σ : Type
inst✝ : DecidableEq σ
e : EpsilonNFA α σ
starting_state_list : List σ
symbol : α
stop_state : σ
⊢ stop_state ∈
(List.map (fun state => symbol_arrow_list_to_fun e.symbol_arrow_list state symbol)
starting_state_list).join.dedup ↔
∃ state ∈ starting_state_list, e.toAbstract.symbol state symbol stop_state | α : Type
inst✝¹ : DecidableEq α
σ : Type
inst✝ : DecidableEq σ
e : EpsilonNFA α σ
starting_state_list : List σ
symbol : α
stop_state : σ
⊢ stop_state ∈
(List.map (fun state => symbol_arrow_list_to_fun e.symbol_arrow_list state symbol)
starting_state_list).join.dedup ↔
∃ state ∈ starting_state_list,
∃ stop_state_list,
{ start_state := state, symbol := symbol, stop_state_list := stop_state_list } ∈ e.symbol_arrow_list ∧
stop_state ∈ stop_state_list |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/EpsilonNFA.lean | EpsilonNFA.eval_one_no_eps_iff | [354, 1] | [374, 53] | simp only [symbol_arrow_list_to_fun] | α : Type
inst✝¹ : DecidableEq α
σ : Type
inst✝ : DecidableEq σ
e : EpsilonNFA α σ
starting_state_list : List σ
symbol : α
stop_state : σ
⊢ stop_state ∈
(List.map (fun state => symbol_arrow_list_to_fun e.symbol_arrow_list state symbol)
starting_state_list).join.dedup ↔
∃ state ∈ starting_state_list,
∃ stop_state_list,
{ start_state := state, symbol := symbol, stop_state_list := stop_state_list } ∈ e.symbol_arrow_list ∧
stop_state ∈ stop_state_list | α : Type
inst✝¹ : DecidableEq α
σ : Type
inst✝ : DecidableEq σ
e : EpsilonNFA α σ
starting_state_list : List σ
symbol : α
stop_state : σ
⊢ stop_state ∈
(List.map
(fun state =>
(List.filterMap
(fun arrow =>
if arrow.start_state = state ∧ arrow.symbol = symbol then some arrow.stop_state_list else none)
e.symbol_arrow_list).join.dedup)
starting_state_list).join.dedup ↔
∃ state ∈ starting_state_list,
∃ stop_state_list,
{ start_state := state, symbol := symbol, stop_state_list := stop_state_list } ∈ e.symbol_arrow_list ∧
stop_state ∈ stop_state_list |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/EpsilonNFA.lean | EpsilonNFA.eval_one_no_eps_iff | [354, 1] | [374, 53] | simp | α : Type
inst✝¹ : DecidableEq α
σ : Type
inst✝ : DecidableEq σ
e : EpsilonNFA α σ
starting_state_list : List σ
symbol : α
stop_state : σ
⊢ stop_state ∈
(List.map
(fun state =>
(List.filterMap
(fun arrow =>
if arrow.start_state = state ∧ arrow.symbol = symbol then some arrow.stop_state_list else none)
e.symbol_arrow_list).join.dedup)
starting_state_list).join.dedup ↔
∃ state ∈ starting_state_list,
∃ stop_state_list,
{ start_state := state, symbol := symbol, stop_state_list := stop_state_list } ∈ e.symbol_arrow_list ∧
stop_state ∈ stop_state_list | α : Type
inst✝¹ : DecidableEq α
σ : Type
inst✝ : DecidableEq σ
e : EpsilonNFA α σ
starting_state_list : List σ
symbol : α
stop_state : σ
⊢ (∃ a ∈ starting_state_list,
∃ l,
(∃ a_1 ∈ e.symbol_arrow_list, (a_1.start_state = a ∧ a_1.symbol = symbol) ∧ a_1.stop_state_list = l) ∧
stop_state ∈ l) ↔
∃ state ∈ starting_state_list,
∃ stop_state_list,
{ start_state := state, symbol := symbol, stop_state_list := stop_state_list } ∈ e.symbol_arrow_list ∧
stop_state ∈ stop_state_list |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/EpsilonNFA.lean | EpsilonNFA.eval_one_no_eps_iff | [354, 1] | [374, 53] | constructor | α : Type
inst✝¹ : DecidableEq α
σ : Type
inst✝ : DecidableEq σ
e : EpsilonNFA α σ
starting_state_list : List σ
symbol : α
stop_state : σ
⊢ (∃ a ∈ starting_state_list,
∃ l,
(∃ a_1 ∈ e.symbol_arrow_list, (a_1.start_state = a ∧ a_1.symbol = symbol) ∧ a_1.stop_state_list = l) ∧
stop_state ∈ l) ↔
∃ state ∈ starting_state_list,
∃ stop_state_list,
{ start_state := state, symbol := symbol, stop_state_list := stop_state_list } ∈ e.symbol_arrow_list ∧
stop_state ∈ stop_state_list | case mp
α : Type
inst✝¹ : DecidableEq α
σ : Type
inst✝ : DecidableEq σ
e : EpsilonNFA α σ
starting_state_list : List σ
symbol : α
stop_state : σ
⊢ (∃ a ∈ starting_state_list,
∃ l,
(∃ a_1 ∈ e.symbol_arrow_list, (a_1.start_state = a ∧ a_1.symbol = symbol) ∧ a_1.stop_state_list = l) ∧
stop_state ∈ l) →
∃ state ∈ starting_state_list,
∃ stop_state_list,
{ start_state := state, symbol := symbol, stop_state_list := stop_state_list } ∈ e.symbol_arrow_list ∧
stop_state ∈ stop_state_list
case mpr
α : Type
inst✝¹ : DecidableEq α
σ : Type
inst✝ : DecidableEq σ
e : EpsilonNFA α σ
starting_state_list : List σ
symbol : α
stop_state : σ
⊢ (∃ state ∈ starting_state_list,
∃ stop_state_list,
{ start_state := state, symbol := symbol, stop_state_list := stop_state_list } ∈ e.symbol_arrow_list ∧
stop_state ∈ stop_state_list) →
∃ a ∈ starting_state_list,
∃ l,
(∃ a_1 ∈ e.symbol_arrow_list, (a_1.start_state = a ∧ a_1.symbol = symbol) ∧ a_1.stop_state_list = l) ∧
stop_state ∈ l |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/EpsilonNFA.lean | EpsilonNFA.eval_one_no_eps_iff | [354, 1] | [374, 53] | rintro ⟨_, h1, _, ⟨⟨⟩, h2, ⟨rfl, rfl⟩, rfl⟩, h3⟩ | case mp
α : Type
inst✝¹ : DecidableEq α
σ : Type
inst✝ : DecidableEq σ
e : EpsilonNFA α σ
starting_state_list : List σ
symbol : α
stop_state : σ
⊢ (∃ a ∈ starting_state_list,
∃ l,
(∃ a_1 ∈ e.symbol_arrow_list, (a_1.start_state = a ∧ a_1.symbol = symbol) ∧ a_1.stop_state_list = l) ∧
stop_state ∈ l) →
∃ state ∈ starting_state_list,
∃ stop_state_list,
{ start_state := state, symbol := symbol, stop_state_list := stop_state_list } ∈ e.symbol_arrow_list ∧
stop_state ∈ stop_state_list | case mp.intro.intro.intro.intro.intro.mk.intro.intro.intro
α : Type
inst✝¹ : DecidableEq α
σ : Type
inst✝ : DecidableEq σ
e : EpsilonNFA α σ
starting_state_list : List σ
stop_state start_state✝ : σ
symbol✝ : α
stop_state_list✝ : List σ
h2 : { start_state := start_state✝, symbol := symbol✝, stop_state_list := stop_state_list✝ } ∈ e.symbol_arrow_list
h1 :
{ start_state := start_state✝, symbol := symbol✝, stop_state_list := stop_state_list✝ }.start_state ∈
starting_state_list
h3 :
stop_state ∈ { start_state := start_state✝, symbol := symbol✝, stop_state_list := stop_state_list✝ }.stop_state_list
⊢ ∃ state ∈ starting_state_list,
∃ stop_state_list,
{ start_state := state,
symbol := { start_state := start_state✝, symbol := symbol✝, stop_state_list := stop_state_list✝ }.symbol,
stop_state_list := stop_state_list } ∈
e.symbol_arrow_list ∧
stop_state ∈ stop_state_list |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/EpsilonNFA.lean | EpsilonNFA.eval_one_no_eps_iff | [354, 1] | [374, 53] | exact ⟨_, h1, _, h2, h3⟩ | case mp.intro.intro.intro.intro.intro.mk.intro.intro.intro
α : Type
inst✝¹ : DecidableEq α
σ : Type
inst✝ : DecidableEq σ
e : EpsilonNFA α σ
starting_state_list : List σ
stop_state start_state✝ : σ
symbol✝ : α
stop_state_list✝ : List σ
h2 : { start_state := start_state✝, symbol := symbol✝, stop_state_list := stop_state_list✝ } ∈ e.symbol_arrow_list
h1 :
{ start_state := start_state✝, symbol := symbol✝, stop_state_list := stop_state_list✝ }.start_state ∈
starting_state_list
h3 :
stop_state ∈ { start_state := start_state✝, symbol := symbol✝, stop_state_list := stop_state_list✝ }.stop_state_list
⊢ ∃ state ∈ starting_state_list,
∃ stop_state_list,
{ start_state := state,
symbol := { start_state := start_state✝, symbol := symbol✝, stop_state_list := stop_state_list✝ }.symbol,
stop_state_list := stop_state_list } ∈
e.symbol_arrow_list ∧
stop_state ∈ stop_state_list | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/EpsilonNFA.lean | EpsilonNFA.eval_one_no_eps_iff | [354, 1] | [374, 53] | rintro ⟨_, h1, _, h2, h3⟩ | case mpr
α : Type
inst✝¹ : DecidableEq α
σ : Type
inst✝ : DecidableEq σ
e : EpsilonNFA α σ
starting_state_list : List σ
symbol : α
stop_state : σ
⊢ (∃ state ∈ starting_state_list,
∃ stop_state_list,
{ start_state := state, symbol := symbol, stop_state_list := stop_state_list } ∈ e.symbol_arrow_list ∧
stop_state ∈ stop_state_list) →
∃ a ∈ starting_state_list,
∃ l,
(∃ a_1 ∈ e.symbol_arrow_list, (a_1.start_state = a ∧ a_1.symbol = symbol) ∧ a_1.stop_state_list = l) ∧
stop_state ∈ l | case mpr.intro.intro.intro.intro
α : Type
inst✝¹ : DecidableEq α
σ : Type
inst✝ : DecidableEq σ
e : EpsilonNFA α σ
starting_state_list : List σ
symbol : α
stop_state w✝¹ : σ
h1 : w✝¹ ∈ starting_state_list
w✝ : List σ
h2 : { start_state := w✝¹, symbol := symbol, stop_state_list := w✝ } ∈ e.symbol_arrow_list
h3 : stop_state ∈ w✝
⊢ ∃ a ∈ starting_state_list,
∃ l,
(∃ a_1 ∈ e.symbol_arrow_list, (a_1.start_state = a ∧ a_1.symbol = symbol) ∧ a_1.stop_state_list = l) ∧
stop_state ∈ l |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/EpsilonNFA.lean | EpsilonNFA.eval_one_no_eps_iff | [354, 1] | [374, 53] | exact ⟨_, h1, _, ⟨_, h2, ⟨rfl, rfl⟩, rfl⟩, h3⟩ | case mpr.intro.intro.intro.intro
α : Type
inst✝¹ : DecidableEq α
σ : Type
inst✝ : DecidableEq σ
e : EpsilonNFA α σ
starting_state_list : List σ
symbol : α
stop_state w✝¹ : σ
h1 : w✝¹ ∈ starting_state_list
w✝ : List σ
h2 : { start_state := w✝¹, symbol := symbol, stop_state_list := w✝ } ∈ e.symbol_arrow_list
h3 : stop_state ∈ w✝
⊢ ∃ a ∈ starting_state_list,
∃ l,
(∃ a_1 ∈ e.symbol_arrow_list, (a_1.start_state = a ∧ a_1.symbol = symbol) ∧ a_1.stop_state_list = l) ∧
stop_state ∈ l | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/EpsilonNFA.lean | EpsilonNFA.epsilon_closure_iff | [385, 1] | [402, 83] | simp only [epsilon_closure] | α : Type
inst✝¹ : DecidableEq α
σ : Type
inst✝ : DecidableEq σ
e : EpsilonNFA α σ
starting_state_list : List σ
state : σ
⊢ state ∈ e.epsilon_closure starting_state_list ↔
∃ start_state ∈ starting_state_list, e.toAbstract.EpsilonClosure start_state state | α : Type
inst✝¹ : DecidableEq α
σ : Type
inst✝ : DecidableEq σ
e : EpsilonNFA α σ
starting_state_list : List σ
state : σ
⊢ state ∈ dft (epsilon_arrow_list_to_graph e.epsilon_arrow_list) starting_state_list ↔
∃ start_state ∈ starting_state_list, e.toAbstract.EpsilonClosure start_state state |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/EpsilonNFA.lean | EpsilonNFA.epsilon_closure_iff | [385, 1] | [402, 83] | simp only [dft_iff] | α : Type
inst✝¹ : DecidableEq α
σ : Type
inst✝ : DecidableEq σ
e : EpsilonNFA α σ
starting_state_list : List σ
state : σ
⊢ state ∈ dft (epsilon_arrow_list_to_graph e.epsilon_arrow_list) starting_state_list ↔
∃ start_state ∈ starting_state_list, e.toAbstract.EpsilonClosure start_state state | α : Type
inst✝¹ : DecidableEq α
σ : Type
inst✝ : DecidableEq σ
e : EpsilonNFA α σ
starting_state_list : List σ
state : σ
⊢ (∃ s ∈ starting_state_list,
Relation.ReflTransGen (fun a b => ∃ l, (a, l) ∈ epsilon_arrow_list_to_graph e.epsilon_arrow_list ∧ b ∈ l) s
state) ↔
∃ start_state ∈ starting_state_list, e.toAbstract.EpsilonClosure start_state state |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/EpsilonNFA.lean | EpsilonNFA.epsilon_closure_iff | [385, 1] | [402, 83] | congr! with a b c | α : Type
inst✝¹ : DecidableEq α
σ : Type
inst✝ : DecidableEq σ
e : EpsilonNFA α σ
starting_state_list : List σ
state : σ
⊢ (∃ s ∈ starting_state_list,
Relation.ReflTransGen (fun a b => ∃ l, (a, l) ∈ epsilon_arrow_list_to_graph e.epsilon_arrow_list ∧ b ∈ l) s
state) ↔
∃ start_state ∈ starting_state_list, e.toAbstract.EpsilonClosure start_state state | case a.h.e'_2.h.h.e'_2.h.e.h.e'_2.h.h.a
α : Type
inst✝¹ : DecidableEq α
σ : Type
inst✝ : DecidableEq σ
e : EpsilonNFA α σ
starting_state_list : List σ
state a b c : σ
⊢ (∃ l, (b, l) ∈ epsilon_arrow_list_to_graph e.epsilon_arrow_list ∧ c ∈ l) ↔ e.toAbstract.epsilon b c |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/EpsilonNFA.lean | EpsilonNFA.epsilon_closure_iff | [385, 1] | [402, 83] | simp [toAbstract] | case a.h.e'_2.h.h.e'_2.h.e.h.e'_2.h.h.a
α : Type
inst✝¹ : DecidableEq α
σ : Type
inst✝ : DecidableEq σ
e : EpsilonNFA α σ
starting_state_list : List σ
state a b c : σ
⊢ (∃ l, (b, l) ∈ epsilon_arrow_list_to_graph e.epsilon_arrow_list ∧ c ∈ l) ↔ e.toAbstract.epsilon b c | case a.h.e'_2.h.h.e'_2.h.e.h.e'_2.h.h.a
α : Type
inst✝¹ : DecidableEq α
σ : Type
inst✝ : DecidableEq σ
e : EpsilonNFA α σ
starting_state_list : List σ
state a b c : σ
⊢ (∃ l, (b, l) ∈ epsilon_arrow_list_to_graph e.epsilon_arrow_list ∧ c ∈ l) ↔
∃ stop_state_list,
{ start_state := b, stop_state_list := stop_state_list } ∈ e.epsilon_arrow_list ∧ c ∈ stop_state_list |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.