code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" def _snake_case ( lowercase__ , lowercase__ = False ): if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3317044064679887385961981 and not allow_probable: raise ValueError( 'Warning: upper bound of deterministic test is exceeded. ' 'Pass allow_probable=True to allow probabilistic test. ' 'A return value of True indicates a probable prime.' ) # array bounds provided by analysis _lowerCamelCase : List[Any] = [ 2047, 1373653, 25326001, 3215031751, 2152302898747, 3474749660383, 341550071728321, 1, 3825123056546413051, 1, 1, 318665857834031151167461, 3317044064679887385961981, ] _lowerCamelCase : Optional[int] = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(_UpperCAmelCase , 1 ): if n < _p: # then we have our last prime to check _lowerCamelCase : Any = primes[:idx] break _lowerCamelCase : Any = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: _lowerCamelCase : Optional[int] = False for r in range(_UpperCAmelCase ): _lowerCamelCase : str = pow(_UpperCAmelCase , d * 2**r , _UpperCAmelCase ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): _lowerCamelCase : Union[str, Any] = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def _snake_case ( ): assert not miller_rabin(561 ) assert miller_rabin(563 ) # 2047 assert not miller_rabin(838201 ) assert miller_rabin(838207 ) # 1_373_653 assert not miller_rabin(17316001 ) assert miller_rabin(17316017 ) # 25_326_001 assert not miller_rabin(3078386641 ) assert miller_rabin(3078386653 ) # 3_215_031_751 assert not miller_rabin(1713045574801 ) assert miller_rabin(1713045574819 ) # 2_152_302_898_747 assert not miller_rabin(2779799728307 ) assert miller_rabin(2779799728327 ) # 3_474_749_660_383 assert not miller_rabin(113850023909441 ) assert miller_rabin(113850023909527 ) # 341_550_071_728_321 assert not miller_rabin(1275041018848804351 ) assert miller_rabin(1275041018848804391 ) # 3_825_123_056_546_413_051 assert not miller_rabin(79666464458507787791867 ) assert miller_rabin(79666464458507787791951 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(552840677446647897660333 ) assert miller_rabin(552840677446647897660359 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
350
"""simple docstring""" # XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path lowercase__ = Path(__file__).resolve().parents[3] / """src""" sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) lowercase__ = {"""base""": """patrickvonplaten/wav2vec2_tiny_random""", """robust""": """patrickvonplaten/wav2vec2_tiny_random_robust"""} lowercase__ = """zero2""" lowercase__ = """zero3""" lowercase__ = [ZEROa, ZEROa] def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param _lowerCamelCase : List[str] = parameterized.to_safe_name('_'.join(str(lowercase__ ) for x in param.args ) ) return f'''{func.__name__}_{param_based_name}''' # Cartesian-product of zero stages with models to test lowercase__ = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class lowerCAmelCase__ ( lowercase ): '''simple docstring''' @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) def A_ ( self , lowercase ): # XXX: run_asr is premature and doesn't save any results # so all we check for now is that the process didn't fail pass def A_ ( self , lowercase , lowercase , lowercase = 10 , lowercase = True , lowercase = True , lowercase = True , ): _lowerCamelCase : List[str] = models[model] _lowerCamelCase : Optional[int] = self.run_trainer( stage=lowercase , model_name=lowercase , eval_steps=lowercase , num_train_epochs=1 , distributed=lowercase , fpaa=lowercase , ) self.do_checks(lowercase ) return output_dir def A_ ( self , lowercase , lowercase , lowercase = 10 , lowercase = 1 , lowercase = True , lowercase = True , ): _lowerCamelCase : List[str] = self.get_auto_remove_tmp_dir('./xxx' , after=lowercase ) _lowerCamelCase : Any = F''' --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(lowercase )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none '''.split() if fpaa: args.extend(['--fp16'] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files _lowerCamelCase : Optional[int] = F'''--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'''.split() _lowerCamelCase : Optional[Any] = [F'''{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'''] _lowerCamelCase : Dict = self.get_launcher(lowercase ) _lowerCamelCase : Union[str, Any] = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(lowercase , env=self.get_env() ) return output_dir def A_ ( self , lowercase=False ): # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup # - it won't be able to handle that # 2. for now testing with just 2 gpus max (since some quality tests may give different # results with mode gpus because we use very little data) _lowerCamelCase : Any = min(2 , get_gpu_count() ) if distributed else 1 return F'''deepspeed --num_nodes 1 --num_gpus {num_gpus}'''.split()
12
0
"""simple docstring""" import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowercase__ = 16 lowercase__ = 32 def _snake_case ( lowercase__ , lowercase__ = 16 , lowercase__ = "bert-base-cased" ): _lowerCamelCase : List[str] = AutoTokenizer.from_pretrained(lowercase__ ) _lowerCamelCase : Optional[Any] = load_dataset('glue' , 'mrpc' ) def tokenize_function(lowercase__ ): # max_length=None => use the model max length (it's actually the default) _lowerCamelCase : str = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=lowercase__ , max_length=lowercase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _lowerCamelCase : str = datasets.map( lowercase__ , batched=lowercase__ , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=lowercase__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _lowerCamelCase : List[str] = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(lowercase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowercase__ , padding='max_length' , max_length=128 , return_tensors='pt' ) return tokenizer.pad(lowercase__ , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. _lowerCamelCase : Optional[int] = DataLoader( tokenized_datasets['train'] , shuffle=lowercase__ , collate_fn=lowercase__ , batch_size=lowercase__ ) _lowerCamelCase : Any = DataLoader( tokenized_datasets['validation'] , shuffle=lowercase__ , collate_fn=lowercase__ , batch_size=lowercase__ ) return train_dataloader, eval_dataloader def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): model.eval() _lowerCamelCase : Dict = 0 for step, batch in enumerate(lowercase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _lowerCamelCase : Optional[int] = model(**lowercase__ ) _lowerCamelCase : Optional[int] = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times _lowerCamelCase : List[Any] = accelerator.gather( (predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(lowercase__ ) - 1: _lowerCamelCase : Optional[Any] = predictions[: len(eval_dataloader.dataset ) - samples_seen] _lowerCamelCase : Any = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=lowercase__ , references=lowercase__ , ) _lowerCamelCase : Tuple = metric.compute() return eval_metric["accuracy"] def _snake_case ( lowercase__ , lowercase__ ): _lowerCamelCase : Optional[int] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _lowerCamelCase : int = config["""lr"""] _lowerCamelCase : Union[str, Any] = int(config['num_epochs'] ) _lowerCamelCase : Optional[int] = int(config['seed'] ) _lowerCamelCase : Union[str, Any] = int(config['batch_size'] ) _lowerCamelCase : Optional[Any] = args.model_name_or_path set_seed(lowercase__ ) _lowerCamelCase : Dict = get_dataloaders(lowercase__ , lowercase__ , lowercase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _lowerCamelCase : str = AutoModelForSequenceClassification.from_pretrained(lowercase__ , return_dict=lowercase__ ) # Instantiate optimizer _lowerCamelCase : List[str] = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) _lowerCamelCase : str = optimizer_cls(params=model.parameters() , lr=lowercase__ ) if accelerator.state.deepspeed_plugin is not None: _lowerCamelCase : Union[str, Any] = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: _lowerCamelCase : Any = 1 _lowerCamelCase : str = (len(lowercase__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): _lowerCamelCase : List[str] = get_linear_schedule_with_warmup( optimizer=lowercase__ , num_warmup_steps=0 , num_training_steps=lowercase__ , ) else: _lowerCamelCase : int = DummyScheduler(lowercase__ , total_num_steps=lowercase__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _lowerCamelCase : List[Any] = accelerator.prepare( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # We need to keep track of how many total steps we have iterated over _lowerCamelCase : List[str] = 0 # We also need to keep track of the stating epoch so files are named properly _lowerCamelCase : List[Any] = 0 _lowerCamelCase : str = evaluate.load('glue' , 'mrpc' ) _lowerCamelCase : Optional[Any] = num_epochs if args.partial_train_epoch is not None: _lowerCamelCase : Dict = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) _lowerCamelCase : Optional[Any] = args.resume_from_checkpoint.split('epoch_' )[1] _lowerCamelCase : int = """""" for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break _lowerCamelCase : Union[str, Any] = int(lowercase__ ) + 1 _lowerCamelCase : Optional[int] = evaluation_loop(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) accelerator.print('resumed checkpoint performance:' , lowercase__ ) accelerator.print('resumed checkpoint\'s scheduler\'s lr:' , lr_scheduler.get_lr()[0] ) accelerator.print('resumed optimizers\'s lr:' , optimizer.param_groups[0]['lr'] ) with open(os.path.join(args.output_dir , f'''state_{starting_epoch-1}.json''' ) , 'r' ) as f: _lowerCamelCase : List[str] = json.load(lowercase__ ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model _lowerCamelCase : List[Any] = {} for epoch in range(lowercase__ , lowercase__ ): model.train() for step, batch in enumerate(lowercase__ ): _lowerCamelCase : Optional[int] = model(**lowercase__ ) _lowerCamelCase : Dict = outputs.loss _lowerCamelCase : int = loss / gradient_accumulation_steps accelerator.backward(lowercase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 _lowerCamelCase : List[str] = f'''epoch_{epoch}''' _lowerCamelCase : Any = os.path.join(args.output_dir , lowercase__ ) accelerator.save_state(lowercase__ ) _lowerCamelCase : List[Any] = evaluation_loop(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) _lowerCamelCase : Union[str, Any] = accuracy _lowerCamelCase : Any = lr_scheduler.get_lr()[0] _lowerCamelCase : str = optimizer.param_groups[0]["""lr"""] _lowerCamelCase : List[Any] = epoch _lowerCamelCase : Tuple = overall_step accelerator.print(f'''epoch {epoch}:''' , lowercase__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , f'''state_{epoch}.json''' ) , 'w' ) as f: json.dump(lowercase__ , lowercase__ ) def _snake_case ( ): _lowerCamelCase : List[Any] = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' , type=lowercase__ , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=lowercase__ , ) parser.add_argument( '--output_dir' , type=lowercase__ , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--resume_from_checkpoint' , type=lowercase__ , default=lowercase__ , help='If the training should continue from a checkpoint folder.' , ) parser.add_argument( '--partial_train_epoch' , type=lowercase__ , default=lowercase__ , help='If passed, the training will stop after this number of epochs.' , ) parser.add_argument( '--num_epochs' , type=lowercase__ , default=2 , help='Number of train epochs.' , ) _lowerCamelCase : Optional[int] = parser.parse_args() _lowerCamelCase : List[Any] = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(lowercase__ , lowercase__ ) if __name__ == "__main__": main()
351
"""simple docstring""" from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging lowercase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = ["""pixel_values"""] def __init__( self , lowercase = True , lowercase = 1 / 255 , lowercase = True , lowercase = 8 , **lowercase , ): super().__init__(**lowercase ) _lowerCamelCase : Optional[Any] = do_rescale _lowerCamelCase : Union[str, Any] = rescale_factor _lowerCamelCase : Any = do_pad _lowerCamelCase : Optional[int] = pad_size def A_ ( self , lowercase , lowercase , lowercase = None , **lowercase ): return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase ) def A_ ( self , lowercase , lowercase , lowercase = None ): _lowerCamelCase, _lowerCamelCase : Tuple = get_image_size(lowercase ) _lowerCamelCase : Union[str, Any] = (old_height // size + 1) * size - old_height _lowerCamelCase : Tuple = (old_width // size + 1) * size - old_width return pad(lowercase , ((0, pad_height), (0, pad_width)) , mode='symmetric' , data_format=lowercase ) def A_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = ChannelDimension.FIRST , **lowercase , ): _lowerCamelCase : List[str] = do_rescale if do_rescale is not None else self.do_rescale _lowerCamelCase : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCamelCase : Any = do_pad if do_pad is not None else self.do_pad _lowerCamelCase : int = pad_size if pad_size is not None else self.pad_size _lowerCamelCase : Dict = make_list_of_images(lowercase ) if not valid_images(lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. _lowerCamelCase : Dict = [to_numpy_array(lowercase ) for image in images] if do_rescale: _lowerCamelCase : str = [self.rescale(image=lowercase , scale=lowercase ) for image in images] if do_pad: _lowerCamelCase : str = [self.pad(lowercase , size=lowercase ) for image in images] _lowerCamelCase : Any = [to_channel_dimension_format(lowercase , lowercase ) for image in images] _lowerCamelCase : Union[str, Any] = {'pixel_values': images} return BatchFeature(data=lowercase , tensor_type=lowercase )
12
0
import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase__ ( _UpperCAmelCase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = TransfoXLTokenizer lowerCamelCase__ = False lowerCamelCase__ = False def A_ ( self ): super().setUp() _lowerCamelCase : int = [ '''<unk>''', '''[CLS]''', '''[SEP]''', '''want''', '''unwanted''', '''wa''', '''un''', '''running''', ''',''', '''low''', '''l''', ] _lowerCamelCase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def A_ ( self , **lowercase ): _lowerCamelCase : Tuple = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def A_ ( self , lowercase ): _lowerCamelCase : List[Any] = '''<unk> UNwanted , running''' _lowerCamelCase : Optional[Any] = '''<unk> unwanted, running''' return input_text, output_text def A_ ( self ): _lowerCamelCase : str = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=_UpperCAmelCase ) _lowerCamelCase : Dict = tokenizer.tokenize('<unk> UNwanted , running' ) self.assertListEqual(_UpperCAmelCase , ['<unk>', 'unwanted', ',', 'running'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [0, 4, 8, 7] ) def A_ ( self ): _lowerCamelCase : Optional[int] = TransfoXLTokenizer(lower_case=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo ! how \n Are yoU ? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) def A_ ( self ): _lowerCamelCase : str = TransfoXLTokenizer(lower_case=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo ! how \n Are yoU ? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def A_ ( self ): _lowerCamelCase : Optional[Any] = TransfoXLTokenizer(lower_case=_UpperCAmelCase ) _lowerCamelCase : Optional[Any] = '''Hello (bracket) and side-scrolled [and] Henry\'s $5,000 with 3.34 m. What\'s up!?''' _lowerCamelCase : Optional[Any] = [ '''Hello''', '''(''', '''bracket''', ''')''', '''and''', '''side''', '''@-@''', '''scrolled''', '''[''', '''and''', ''']''', '''Henry''', '''\'s''', '''$''', '''5''', '''@,@''', '''000''', '''with''', '''3''', '''@.@''', '''34''', '''m''', '''.''', '''What''', '''\'s''', '''up''', '''!''', '''?''', ] self.assertListEqual(tokenizer.tokenize(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(tokenizer.convert_tokens_to_string(_UpperCAmelCase ) , _UpperCAmelCase ) def A_ ( self ): _lowerCamelCase : Optional[int] = self.get_tokenizer() _lowerCamelCase : int = len(_UpperCAmelCase ) tokenizer.add_tokens(['new1', 'new2'] ) tokenizer.move_added_token('new1' , 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(_UpperCAmelCase ) , original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode('new1' ) , [1] ) self.assertEqual(tokenizer.decode([1] ) , 'new1' )
352
"""simple docstring""" import os import string import sys lowercase__ = 1 << 8 lowercase__ = { """tab""": ord("""\t"""), """newline""": ord("""\r"""), """esc""": 27, """up""": 65 + ARROW_KEY_FLAG, """down""": 66 + ARROW_KEY_FLAG, """right""": 67 + ARROW_KEY_FLAG, """left""": 68 + ARROW_KEY_FLAG, """mod_int""": 91, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 50, """delete""": 51, """pg_up""": 53, """pg_down""": 54, } lowercase__ = KEYMAP["""up"""] lowercase__ = KEYMAP["""left"""] if sys.platform == "win32": lowercase__ = [] lowercase__ = { B"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, B"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(10): lowercase__ = ord(str(i)) def _snake_case ( ): if os.name == "nt": import msvcrt _lowerCamelCase : Any = 'mbcs' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(lowercase__ ) == 0: # Read the keystroke _lowerCamelCase : str = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): _lowerCamelCase : List[Any] = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: _lowerCamelCase : Union[str, Any] = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) ) WIN_CH_BUFFER.append(lowercase__ ) if ord(lowercase__ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) _lowerCamelCase : List[Any] = chr(KEYMAP['esc'] ) except KeyError: _lowerCamelCase : int = cha[1] else: _lowerCamelCase : Optional[int] = ch.decode(lowercase__ ) else: _lowerCamelCase : Union[str, Any] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty _lowerCamelCase : List[str] = sys.stdin.fileno() _lowerCamelCase : Tuple = termios.tcgetattr(lowercase__ ) try: tty.setraw(lowercase__ ) _lowerCamelCase : Optional[Any] = sys.stdin.read(1 ) finally: termios.tcsetattr(lowercase__ , termios.TCSADRAIN , lowercase__ ) return ch def _snake_case ( ): _lowerCamelCase : int = get_raw_chars() if ord(lowercase__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(lowercase__ ) == KEYMAP["esc"]: _lowerCamelCase : Union[str, Any] = get_raw_chars() if ord(lowercase__ ) == KEYMAP["mod_int"]: _lowerCamelCase : List[Any] = get_raw_chars() if ord(lowercase__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(lowercase__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(lowercase__ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
12
0
"""simple docstring""" import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib lowercase__ = get_logger() lowercase__ = None class lowerCAmelCase__ ( TensorFormatter[Mapping, """jax.Array""", Mapping] ): '''simple docstring''' def __init__( self , lowercase=None , lowercase=None , **lowercase ): super().__init__(features=__snake_case ) import jax from jaxlib.xla_client import Device if isinstance(__snake_case , __snake_case ): raise ValueError( F'''Expected {device} to be a `str` not {type(__snake_case )}, as `jaxlib.xla_extension.Device` ''' 'is not serializable neither with `pickle` nor with `dill`. Instead you can surround ' 'the device with `str()` to get its string identifier that will be internally mapped ' 'to the actual `jaxlib.xla_extension.Device`.' ) _lowerCamelCase : int = device if isinstance(__snake_case , __snake_case ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _lowerCamelCase : Tuple = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F'''Device with string identifier {self.device} not listed among the available ''' F'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ''' F'''device: {str(jax.devices()[0] )}.''' ) _lowerCamelCase : Optional[Any] = str(jax.devices()[0] ) _lowerCamelCase : List[Any] = jnp_array_kwargs @staticmethod def A_ ( ): import jax return {str(__snake_case ): device for device in jax.devices()} def A_ ( self , lowercase ): import jax import jax.numpy as jnp if isinstance(__snake_case , __snake_case ) and column: if all( isinstance(__snake_case , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(__snake_case , axis=0 ) return column def A_ ( self , lowercase ): import jax import jax.numpy as jnp if isinstance(__snake_case , (str, bytes, type(__snake_case )) ): return value elif isinstance(__snake_case , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() _lowerCamelCase : Optional[int] = {} if isinstance(__snake_case , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: _lowerCamelCase : Any = {'dtype': jnp.intaa} else: _lowerCamelCase : Optional[int] = {'dtype': jnp.intaa} elif isinstance(__snake_case , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): _lowerCamelCase : Optional[Any] = {'dtype': jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(__snake_case , PIL.Image.Image ): _lowerCamelCase : str = np.asarray(__snake_case ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _lowerCamelCase : Any = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(__snake_case , **{**default_dtype, **self.jnp_array_kwargs} ) def A_ ( self , lowercase ): import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(__snake_case , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(__snake_case , '__array__' ) and not isinstance(__snake_case , jax.Array ): _lowerCamelCase : Dict = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(__snake_case , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(__snake_case ) for substruct in data_struct] ) elif isinstance(__snake_case , (list, tuple) ): return self._consolidate([self.recursive_tensorize(__snake_case ) for substruct in data_struct] ) return self._tensorize(__snake_case ) def A_ ( self , lowercase ): return map_nested(self._recursive_tensorize , __snake_case , map_list=__snake_case ) def A_ ( self , lowercase ): _lowerCamelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_row(__snake_case ) _lowerCamelCase : int = self.python_features_decoder.decode_row(__snake_case ) return self.recursive_tensorize(__snake_case ) def A_ ( self , lowercase ): _lowerCamelCase : Any = self.numpy_arrow_extractor().extract_column(__snake_case ) _lowerCamelCase : List[Any] = self.python_features_decoder.decode_column(__snake_case , pa_table.column_names[0] ) _lowerCamelCase : List[Any] = self.recursive_tensorize(__snake_case ) _lowerCamelCase : List[Any] = self._consolidate(__snake_case ) return column def A_ ( self , lowercase ): _lowerCamelCase : List[str] = self.numpy_arrow_extractor().extract_batch(__snake_case ) _lowerCamelCase : List[str] = self.python_features_decoder.decode_batch(__snake_case ) _lowerCamelCase : Tuple = self.recursive_tensorize(__snake_case ) for column_name in batch: _lowerCamelCase : List[Any] = self._consolidate(batch[column_name] ) return batch
353
"""simple docstring""" from typing import Any def _snake_case ( lowercase__ ): if not input_list: return [] _lowerCamelCase : Any = [input_list.count(lowercase__ ) for value in input_list] _lowerCamelCase : Dict = max(lowercase__ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(lowercase__ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
12
0
"""simple docstring""" lowercase__ = { """joule""": 1.0, """kilojoule""": 1000, """megajoule""": 100_0000, """gigajoule""": 10_0000_0000, """wattsecond""": 1.0, """watthour""": 3600, """kilowatthour""": 360_0000, """newtonmeter""": 1.0, """calorie_nutr""": 4186.8, """kilocalorie_nutr""": 418_6800.00, """electronvolt""": 1.602176634E-19, """britishthermalunit_it""": 1055.0_5585, """footpound""": 1.355818, } def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: _lowerCamelCase : Dict = ( f'''Incorrect \'from_type\' or \'to_type\' value: {from_type!r}, {to_type!r}\n''' f'''Valid values are: {', '.join(lowerCamelCase__ )}''' ) raise ValueError(lowerCamelCase__ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
354
"""simple docstring""" def _snake_case ( lowercase__ ): # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection _lowerCamelCase : List[str] = len(lowercase__ ) _lowerCamelCase : List[str] = max(lowercase__ ) _lowerCamelCase : List[str] = min(lowercase__ ) # create the counting array _lowerCamelCase : List[Any] = coll_max + 1 - coll_min _lowerCamelCase : List[Any] = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , lowercase__ ): _lowerCamelCase : Optional[int] = counting_arr[i] + counting_arr[i - 1] # create the output collection _lowerCamelCase : Dict = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , lowercase__ ) ): _lowerCamelCase : Any = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def _snake_case ( lowercase__ ): return "".join([chr(lowercase__ ) for i in counting_sort([ord(lowercase__ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("""thisisthestring""") == "eghhiiinrsssttt" lowercase__ = input("""Enter numbers separated by a comma:\n""").strip() lowercase__ = [int(item) for item in user_input.split(""",""")] print(counting_sort(unsorted))
12
0
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowercase__ = logging.get_logger(__name__) lowercase__ = {"""tokenizer_file""": """tokenizer.json"""} lowercase__ = { """tokenizer_file""": { """bigscience/tokenizer""": """https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json""", """bigscience/bloom-560m""": """https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json""", """bigscience/bloom-1b1""": """https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json""", """bigscience/bloom-1b7""": """https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json""", """bigscience/bloom-3b""": """https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json""", """bigscience/bloom-7b1""": """https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json""", """bigscience/bloom""": """https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json""", }, } class lowerCAmelCase__ ( lowercase__ ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = ['''input_ids''', '''attention_mask'''] lowerCamelCase__ = None def __init__( self , lowercase=None , lowercase=None , lowercase=None , lowercase="<unk>" , lowercase="<s>" , lowercase="</s>" , lowercase="<pad>" , lowercase=False , lowercase=False , **lowercase , ): super().__init__( _a , _a , tokenizer_file=_a , unk_token=_a , bos_token=_a , eos_token=_a , pad_token=_a , add_prefix_space=_a , clean_up_tokenization_spaces=_a , **_a , ) _lowerCamelCase : Union[str, Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , _a ) != add_prefix_space: _lowerCamelCase : List[Any] = getattr(_a , pre_tok_state.pop('type' ) ) _lowerCamelCase : Optional[int] = add_prefix_space _lowerCamelCase : Tuple = pre_tok_class(**_a ) _lowerCamelCase : Optional[int] = add_prefix_space def A_ ( self , *lowercase , **lowercase ): _lowerCamelCase : Optional[int] = kwargs.get('is_split_into_words' , _a ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with''' ' pretokenized inputs.' ) return super()._batch_encode_plus(*_a , **_a ) def A_ ( self , *lowercase , **lowercase ): _lowerCamelCase : List[Any] = kwargs.get('is_split_into_words' , _a ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with''' ' pretokenized inputs.' ) return super()._encode_plus(*_a , **_a ) def A_ ( self , lowercase , lowercase = None ): _lowerCamelCase : Dict = self._tokenizer.model.save(_a , name=_a ) return tuple(_a ) def A_ ( self , lowercase ): _lowerCamelCase : Any = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_a , add_special_tokens=_a ) + [self.eos_token_id] ) if len(_a ) > self.model_max_length: _lowerCamelCase : Any = input_ids[-self.model_max_length :] return input_ids
355
"""simple docstring""" import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( """--original_config_file""", default=None, type=str, help="""The YAML config file corresponding to the original architecture.""", ) parser.add_argument( """--num_in_channels""", default=None, type=int, help="""The number of input channels. If `None` number of input channels will be automatically inferred.""", ) parser.add_argument( """--scheduler_type""", default="""pndm""", type=str, help="""Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']""", ) parser.add_argument( """--pipeline_type""", default=None, type=str, help=( """The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'""" """. If `None` pipeline will be automatically inferred.""" ), ) parser.add_argument( """--image_size""", default=None, type=int, help=( """The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2""" """ Base. Use 768 for Stable Diffusion v2.""" ), ) parser.add_argument( """--prediction_type""", default=None, type=str, help=( """The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable""" """ Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2.""" ), ) parser.add_argument( """--extract_ema""", action="""store_true""", help=( """Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights""" """ or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield""" """ higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.""" ), ) parser.add_argument( """--upcast_attention""", action="""store_true""", help=( """Whether the attention computation should always be upcasted. This is necessary when running stable""" """ diffusion 2.1.""" ), ) parser.add_argument( """--from_safetensors""", action="""store_true""", help="""If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.""", ) parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") parser.add_argument( """--stable_unclip""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.""", ) parser.add_argument( """--stable_unclip_prior""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.""", ) parser.add_argument( """--clip_stats_path""", type=str, help="""Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.""", required=False, ) parser.add_argument( """--controlnet""", action="""store_true""", default=None, help="""Set flag if this is a controlnet checkpoint.""" ) parser.add_argument("""--half""", action="""store_true""", help="""Save weights in half precision.""") parser.add_argument( """--vae_path""", type=str, default=None, required=False, help="""Set to a path, hub id to an already converted vae to not convert it again.""", ) lowercase__ = parser.parse_args() lowercase__ = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
12
0
"""simple docstring""" from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCAmelCase__ ( lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ = ['image_processor', 'tokenizer'] lowerCamelCase__ = 'BlipImageProcessor' lowerCamelCase__ = ('BertTokenizer', 'BertTokenizerFast') def __init__( self , lowercase , lowercase ): _lowerCamelCase : Optional[Any] = False super().__init__(lowercase , lowercase ) _lowerCamelCase : List[Any] = self.image_processor def __call__( self , lowercase = None , lowercase = None , lowercase = True , lowercase = False , lowercase = None , lowercase = None , lowercase = 0 , lowercase = None , lowercase = None , lowercase = False , lowercase = False , lowercase = False , lowercase = False , lowercase = False , lowercase = True , lowercase = None , **lowercase , ): if images is None and text is None: raise ValueError('You have to specify either images or text.' ) # Get only text if images is None: _lowerCamelCase : List[Any] = self.tokenizer _lowerCamelCase : int = self.tokenizer( text=lowercase , add_special_tokens=lowercase , padding=lowercase , truncation=lowercase , max_length=lowercase , stride=lowercase , pad_to_multiple_of=lowercase , return_attention_mask=lowercase , return_overflowing_tokens=lowercase , return_special_tokens_mask=lowercase , return_offsets_mapping=lowercase , return_token_type_ids=lowercase , return_length=lowercase , verbose=lowercase , return_tensors=lowercase , **lowercase , ) return text_encoding # add pixel_values _lowerCamelCase : int = self.image_processor(lowercase , return_tensors=lowercase ) if text is not None: _lowerCamelCase : Tuple = self.tokenizer( text=lowercase , add_special_tokens=lowercase , padding=lowercase , truncation=lowercase , max_length=lowercase , stride=lowercase , pad_to_multiple_of=lowercase , return_attention_mask=lowercase , return_overflowing_tokens=lowercase , return_special_tokens_mask=lowercase , return_offsets_mapping=lowercase , return_token_type_ids=lowercase , return_length=lowercase , verbose=lowercase , return_tensors=lowercase , **lowercase , ) else: _lowerCamelCase : Any = None if text_encoding is not None: encoding_image_processor.update(lowercase ) return encoding_image_processor def A_ ( self , *lowercase , **lowercase ): return self.tokenizer.batch_decode(*lowercase , **lowercase ) def A_ ( self , *lowercase , **lowercase ): return self.tokenizer.decode(*lowercase , **lowercase ) @property def A_ ( self ): _lowerCamelCase : int = self.tokenizer.model_input_names _lowerCamelCase : List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
356
"""simple docstring""" import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = (UnCLIPScheduler,) def A_ ( self , **lowercase ): _lowerCamelCase : Any = { 'num_train_timesteps': 1000, 'variance_type': 'fixed_small_log', 'clip_sample': True, 'clip_sample_range': 1.0, 'prediction_type': 'epsilon', } config.update(**lowercase ) return config def A_ ( self ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=lowercase ) def A_ ( self ): for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=lowercase ) def A_ ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowercase ) def A_ ( self ): for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=lowercase ) def A_ ( self ): for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=lowercase ) def A_ ( self ): for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=lowercase , prev_timestep=lowercase ) def A_ ( self ): _lowerCamelCase : Optional[Any] = self.scheduler_classes[0] _lowerCamelCase : Optional[int] = self.get_scheduler_config(variance_type='fixed_small_log' ) _lowerCamelCase : str = scheduler_class(**lowercase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_54_96_25 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_99_49_87 ) ) < 1E-5 def A_ ( self ): _lowerCamelCase : List[str] = self.scheduler_classes[0] _lowerCamelCase : Optional[Any] = self.get_scheduler_config(variance_type='learned_range' ) _lowerCamelCase : int = scheduler_class(**lowercase ) _lowerCamelCase : List[str] = 0.5 assert scheduler._get_variance(1 , predicted_variance=lowercase ) - -10.1_71_27_90 < 1E-5 assert scheduler._get_variance(487 , predicted_variance=lowercase ) - -5.7_99_80_52 < 1E-5 assert scheduler._get_variance(999 , predicted_variance=lowercase ) - -0.0_01_00_11 < 1E-5 def A_ ( self ): _lowerCamelCase : List[Any] = self.scheduler_classes[0] _lowerCamelCase : Optional[Any] = self.get_scheduler_config() _lowerCamelCase : Tuple = scheduler_class(**lowercase ) _lowerCamelCase : Union[str, Any] = scheduler.timesteps _lowerCamelCase : Any = self.dummy_model() _lowerCamelCase : Optional[Any] = self.dummy_sample_deter _lowerCamelCase : Optional[int] = torch.manual_seed(0 ) for i, t in enumerate(lowercase ): # 1. predict noise residual _lowerCamelCase : Tuple = model(lowercase , lowercase ) # 2. predict previous mean of sample x_t-1 _lowerCamelCase : List[Any] = scheduler.step(lowercase , lowercase , lowercase , generator=lowercase ).prev_sample _lowerCamelCase : Optional[int] = pred_prev_sample _lowerCamelCase : Optional[Any] = torch.sum(torch.abs(lowercase ) ) _lowerCamelCase : List[Any] = torch.mean(torch.abs(lowercase ) ) assert abs(result_sum.item() - 2_52.2_68_24_95 ) < 1E-2 assert abs(result_mean.item() - 0.3_28_47_43 ) < 1E-3 def A_ ( self ): _lowerCamelCase : Tuple = self.scheduler_classes[0] _lowerCamelCase : str = self.get_scheduler_config() _lowerCamelCase : Optional[Any] = scheduler_class(**lowercase ) scheduler.set_timesteps(25 ) _lowerCamelCase : Optional[Any] = scheduler.timesteps _lowerCamelCase : Optional[int] = self.dummy_model() _lowerCamelCase : Any = self.dummy_sample_deter _lowerCamelCase : str = torch.manual_seed(0 ) for i, t in enumerate(lowercase ): # 1. predict noise residual _lowerCamelCase : List[Any] = model(lowercase , lowercase ) if i + 1 == timesteps.shape[0]: _lowerCamelCase : Optional[int] = None else: _lowerCamelCase : List[str] = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 _lowerCamelCase : Union[str, Any] = scheduler.step( lowercase , lowercase , lowercase , prev_timestep=lowercase , generator=lowercase ).prev_sample _lowerCamelCase : List[Any] = pred_prev_sample _lowerCamelCase : Optional[Any] = torch.sum(torch.abs(lowercase ) ) _lowerCamelCase : List[str] = torch.mean(torch.abs(lowercase ) ) assert abs(result_sum.item() - 2_58.2_04_49_83 ) < 1E-2 assert abs(result_mean.item() - 0.3_36_20_38 ) < 1E-3 def A_ ( self ): pass def A_ ( self ): pass
12
0
"""simple docstring""" def _snake_case ( lowercase__ , lowercase__ ): assert x is not None assert y is not None _lowerCamelCase : Optional[int] = len(__A ) _lowerCamelCase : List[str] = len(__A ) # declaring the array for storing the dp values _lowerCamelCase : List[str] = [[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741 for i in range(1 , m + 1 ): for j in range(1 , n + 1 ): _lowerCamelCase : List[Any] = 1 if x[i - 1] == y[j - 1] else 0 _lowerCamelCase : Optional[Any] = max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match ) _lowerCamelCase : Optional[int] = '' _lowerCamelCase, _lowerCamelCase : List[str] = m, n while i > 0 and j > 0: _lowerCamelCase : Tuple = 1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: _lowerCamelCase : Dict = x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": lowercase__ = "AGGTAB" lowercase__ = "GXTXAYB" lowercase__ = 4 lowercase__ = "GTAB" lowercase__ = longest_common_subsequence(a, b) print("""len =""", ln, """, sub-sequence =""", subseq) import doctest doctest.testmod()
357
"""simple docstring""" import math from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { """facebook/data2vec-base-960h""": """https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json""", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """data2vec-audio""" def __init__( self , lowercase=32 , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=0.1 , lowercase=0.0 , lowercase=0.1 , lowercase=0.1 , lowercase=0.02 , lowercase=1E-5 , lowercase="gelu" , lowercase=(512, 512, 512, 512, 512, 512, 512) , lowercase=(5, 2, 2, 2, 2, 2, 2) , lowercase=(10, 3, 3, 3, 3, 2, 2) , lowercase=False , lowercase=16 , lowercase=19 , lowercase=5 , lowercase=0.05 , lowercase=10 , lowercase=2 , lowercase=0.0 , lowercase=10 , lowercase=0 , lowercase="sum" , lowercase=False , lowercase=False , lowercase=256 , lowercase=(512, 512, 512, 512, 1500) , lowercase=(5, 3, 3, 1, 1) , lowercase=(1, 2, 3, 1, 1) , lowercase=512 , lowercase=0 , lowercase=1 , lowercase=2 , lowercase=False , lowercase=3 , lowercase=2 , lowercase=3 , lowercase=None , **lowercase , ): super().__init__(**lowercase , pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase ) _lowerCamelCase : str = hidden_size _lowerCamelCase : str = feat_extract_activation _lowerCamelCase : Optional[Any] = list(lowercase ) _lowerCamelCase : Dict = list(lowercase ) _lowerCamelCase : Dict = list(lowercase ) _lowerCamelCase : Optional[Any] = conv_bias _lowerCamelCase : Union[str, Any] = num_conv_pos_embeddings _lowerCamelCase : List[Any] = num_conv_pos_embedding_groups _lowerCamelCase : List[Any] = conv_pos_kernel_size _lowerCamelCase : Optional[int] = len(self.conv_dim ) _lowerCamelCase : List[str] = num_hidden_layers _lowerCamelCase : Any = intermediate_size _lowerCamelCase : List[str] = hidden_act _lowerCamelCase : Tuple = num_attention_heads _lowerCamelCase : Any = hidden_dropout _lowerCamelCase : Union[str, Any] = attention_dropout _lowerCamelCase : str = activation_dropout _lowerCamelCase : Any = feat_proj_dropout _lowerCamelCase : Tuple = final_dropout _lowerCamelCase : Union[str, Any] = layerdrop _lowerCamelCase : List[Any] = layer_norm_eps _lowerCamelCase : Optional[Any] = initializer_range _lowerCamelCase : Optional[int] = vocab_size _lowerCamelCase : Tuple = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCamelCase : Optional[Any] = mask_time_prob _lowerCamelCase : List[Any] = mask_time_length _lowerCamelCase : List[Any] = mask_time_min_masks _lowerCamelCase : Tuple = mask_feature_prob _lowerCamelCase : Optional[Any] = mask_feature_length _lowerCamelCase : Dict = mask_feature_min_masks # ctc loss _lowerCamelCase : Tuple = ctc_loss_reduction _lowerCamelCase : str = ctc_zero_infinity # adapter _lowerCamelCase : Union[str, Any] = add_adapter _lowerCamelCase : List[Any] = adapter_kernel_size _lowerCamelCase : Optional[Any] = adapter_stride _lowerCamelCase : List[Any] = num_adapter_layers _lowerCamelCase : int = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowerCamelCase : Optional[int] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowerCamelCase : List[str] = list(lowercase ) _lowerCamelCase : Optional[Any] = list(lowercase ) _lowerCamelCase : Any = list(lowercase ) _lowerCamelCase : Optional[Any] = xvector_output_dim @property def A_ ( self ): return math.prod(self.conv_stride )
12
0
"""simple docstring""" import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase__ ( lowercase__, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = XLMTokenizer lowerCamelCase__ = False def A_ ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCamelCase : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] _lowerCamelCase : str = dict(zip(_UpperCamelCase , range(len(_UpperCamelCase ) ) ) ) _lowerCamelCase : Optional[int] = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""] _lowerCamelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _lowerCamelCase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' ) as fp: fp.write(json.dumps(_UpperCamelCase ) ) with open(self.merges_file , 'w' ) as fp: fp.write('\n'.join(_UpperCamelCase ) ) def A_ ( self , lowercase ): _lowerCamelCase : Union[str, Any] = """lower newer""" _lowerCamelCase : int = """lower newer""" return input_text, output_text def A_ ( self ): _lowerCamelCase : Tuple = XLMTokenizer(self.vocab_file , self.merges_file ) _lowerCamelCase : str = """lower""" _lowerCamelCase : Union[str, Any] = ["""low""", """er</w>"""] _lowerCamelCase : str = tokenizer.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) _lowerCamelCase : Union[str, Any] = tokens + ["""<unk>"""] _lowerCamelCase : List[Any] = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCamelCase ) , _UpperCamelCase ) @slow def A_ ( self ): _lowerCamelCase : str = XLMTokenizer.from_pretrained('xlm-mlm-en-2048' ) _lowerCamelCase : int = tokenizer.encode('sequence builders' , add_special_tokens=_UpperCamelCase ) _lowerCamelCase : List[Any] = tokenizer.encode('multi-sequence build' , add_special_tokens=_UpperCamelCase ) _lowerCamelCase : int = tokenizer.build_inputs_with_special_tokens(_UpperCamelCase ) _lowerCamelCase : Tuple = tokenizer.build_inputs_with_special_tokens(_UpperCamelCase , _UpperCamelCase ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
358
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool lowercase__ = { """Acehnese Arabic""": """ace_Arab""", """Acehnese Latin""": """ace_Latn""", """Mesopotamian Arabic""": """acm_Arab""", """Ta'izzi-Adeni Arabic""": """acq_Arab""", """Tunisian Arabic""": """aeb_Arab""", """Afrikaans""": """afr_Latn""", """South Levantine Arabic""": """ajp_Arab""", """Akan""": """aka_Latn""", """Amharic""": """amh_Ethi""", """North Levantine Arabic""": """apc_Arab""", """Modern Standard Arabic""": """arb_Arab""", """Modern Standard Arabic Romanized""": """arb_Latn""", """Najdi Arabic""": """ars_Arab""", """Moroccan Arabic""": """ary_Arab""", """Egyptian Arabic""": """arz_Arab""", """Assamese""": """asm_Beng""", """Asturian""": """ast_Latn""", """Awadhi""": """awa_Deva""", """Central Aymara""": """ayr_Latn""", """South Azerbaijani""": """azb_Arab""", """North Azerbaijani""": """azj_Latn""", """Bashkir""": """bak_Cyrl""", """Bambara""": """bam_Latn""", """Balinese""": """ban_Latn""", """Belarusian""": """bel_Cyrl""", """Bemba""": """bem_Latn""", """Bengali""": """ben_Beng""", """Bhojpuri""": """bho_Deva""", """Banjar Arabic""": """bjn_Arab""", """Banjar Latin""": """bjn_Latn""", """Standard Tibetan""": """bod_Tibt""", """Bosnian""": """bos_Latn""", """Buginese""": """bug_Latn""", """Bulgarian""": """bul_Cyrl""", """Catalan""": """cat_Latn""", """Cebuano""": """ceb_Latn""", """Czech""": """ces_Latn""", """Chokwe""": """cjk_Latn""", """Central Kurdish""": """ckb_Arab""", """Crimean Tatar""": """crh_Latn""", """Welsh""": """cym_Latn""", """Danish""": """dan_Latn""", """German""": """deu_Latn""", """Southwestern Dinka""": """dik_Latn""", """Dyula""": """dyu_Latn""", """Dzongkha""": """dzo_Tibt""", """Greek""": """ell_Grek""", """English""": """eng_Latn""", """Esperanto""": """epo_Latn""", """Estonian""": """est_Latn""", """Basque""": """eus_Latn""", """Ewe""": """ewe_Latn""", """Faroese""": """fao_Latn""", """Fijian""": """fij_Latn""", """Finnish""": """fin_Latn""", """Fon""": """fon_Latn""", """French""": """fra_Latn""", """Friulian""": """fur_Latn""", """Nigerian Fulfulde""": """fuv_Latn""", """Scottish Gaelic""": """gla_Latn""", """Irish""": """gle_Latn""", """Galician""": """glg_Latn""", """Guarani""": """grn_Latn""", """Gujarati""": """guj_Gujr""", """Haitian Creole""": """hat_Latn""", """Hausa""": """hau_Latn""", """Hebrew""": """heb_Hebr""", """Hindi""": """hin_Deva""", """Chhattisgarhi""": """hne_Deva""", """Croatian""": """hrv_Latn""", """Hungarian""": """hun_Latn""", """Armenian""": """hye_Armn""", """Igbo""": """ibo_Latn""", """Ilocano""": """ilo_Latn""", """Indonesian""": """ind_Latn""", """Icelandic""": """isl_Latn""", """Italian""": """ita_Latn""", """Javanese""": """jav_Latn""", """Japanese""": """jpn_Jpan""", """Kabyle""": """kab_Latn""", """Jingpho""": """kac_Latn""", """Kamba""": """kam_Latn""", """Kannada""": """kan_Knda""", """Kashmiri Arabic""": """kas_Arab""", """Kashmiri Devanagari""": """kas_Deva""", """Georgian""": """kat_Geor""", """Central Kanuri Arabic""": """knc_Arab""", """Central Kanuri Latin""": """knc_Latn""", """Kazakh""": """kaz_Cyrl""", """Kabiyè""": """kbp_Latn""", """Kabuverdianu""": """kea_Latn""", """Khmer""": """khm_Khmr""", """Kikuyu""": """kik_Latn""", """Kinyarwanda""": """kin_Latn""", """Kyrgyz""": """kir_Cyrl""", """Kimbundu""": """kmb_Latn""", """Northern Kurdish""": """kmr_Latn""", """Kikongo""": """kon_Latn""", """Korean""": """kor_Hang""", """Lao""": """lao_Laoo""", """Ligurian""": """lij_Latn""", """Limburgish""": """lim_Latn""", """Lingala""": """lin_Latn""", """Lithuanian""": """lit_Latn""", """Lombard""": """lmo_Latn""", """Latgalian""": """ltg_Latn""", """Luxembourgish""": """ltz_Latn""", """Luba-Kasai""": """lua_Latn""", """Ganda""": """lug_Latn""", """Luo""": """luo_Latn""", """Mizo""": """lus_Latn""", """Standard Latvian""": """lvs_Latn""", """Magahi""": """mag_Deva""", """Maithili""": """mai_Deva""", """Malayalam""": """mal_Mlym""", """Marathi""": """mar_Deva""", """Minangkabau Arabic """: """min_Arab""", """Minangkabau Latin""": """min_Latn""", """Macedonian""": """mkd_Cyrl""", """Plateau Malagasy""": """plt_Latn""", """Maltese""": """mlt_Latn""", """Meitei Bengali""": """mni_Beng""", """Halh Mongolian""": """khk_Cyrl""", """Mossi""": """mos_Latn""", """Maori""": """mri_Latn""", """Burmese""": """mya_Mymr""", """Dutch""": """nld_Latn""", """Norwegian Nynorsk""": """nno_Latn""", """Norwegian Bokmål""": """nob_Latn""", """Nepali""": """npi_Deva""", """Northern Sotho""": """nso_Latn""", """Nuer""": """nus_Latn""", """Nyanja""": """nya_Latn""", """Occitan""": """oci_Latn""", """West Central Oromo""": """gaz_Latn""", """Odia""": """ory_Orya""", """Pangasinan""": """pag_Latn""", """Eastern Panjabi""": """pan_Guru""", """Papiamento""": """pap_Latn""", """Western Persian""": """pes_Arab""", """Polish""": """pol_Latn""", """Portuguese""": """por_Latn""", """Dari""": """prs_Arab""", """Southern Pashto""": """pbt_Arab""", """Ayacucho Quechua""": """quy_Latn""", """Romanian""": """ron_Latn""", """Rundi""": """run_Latn""", """Russian""": """rus_Cyrl""", """Sango""": """sag_Latn""", """Sanskrit""": """san_Deva""", """Santali""": """sat_Olck""", """Sicilian""": """scn_Latn""", """Shan""": """shn_Mymr""", """Sinhala""": """sin_Sinh""", """Slovak""": """slk_Latn""", """Slovenian""": """slv_Latn""", """Samoan""": """smo_Latn""", """Shona""": """sna_Latn""", """Sindhi""": """snd_Arab""", """Somali""": """som_Latn""", """Southern Sotho""": """sot_Latn""", """Spanish""": """spa_Latn""", """Tosk Albanian""": """als_Latn""", """Sardinian""": """srd_Latn""", """Serbian""": """srp_Cyrl""", """Swati""": """ssw_Latn""", """Sundanese""": """sun_Latn""", """Swedish""": """swe_Latn""", """Swahili""": """swh_Latn""", """Silesian""": """szl_Latn""", """Tamil""": """tam_Taml""", """Tatar""": """tat_Cyrl""", """Telugu""": """tel_Telu""", """Tajik""": """tgk_Cyrl""", """Tagalog""": """tgl_Latn""", """Thai""": """tha_Thai""", """Tigrinya""": """tir_Ethi""", """Tamasheq Latin""": """taq_Latn""", """Tamasheq Tifinagh""": """taq_Tfng""", """Tok Pisin""": """tpi_Latn""", """Tswana""": """tsn_Latn""", """Tsonga""": """tso_Latn""", """Turkmen""": """tuk_Latn""", """Tumbuka""": """tum_Latn""", """Turkish""": """tur_Latn""", """Twi""": """twi_Latn""", """Central Atlas Tamazight""": """tzm_Tfng""", """Uyghur""": """uig_Arab""", """Ukrainian""": """ukr_Cyrl""", """Umbundu""": """umb_Latn""", """Urdu""": """urd_Arab""", """Northern Uzbek""": """uzn_Latn""", """Venetian""": """vec_Latn""", """Vietnamese""": """vie_Latn""", """Waray""": """war_Latn""", """Wolof""": """wol_Latn""", """Xhosa""": """xho_Latn""", """Eastern Yiddish""": """ydd_Hebr""", """Yoruba""": """yor_Latn""", """Yue Chinese""": """yue_Hant""", """Chinese Simplified""": """zho_Hans""", """Chinese Traditional""": """zho_Hant""", """Standard Malay""": """zsm_Latn""", """Zulu""": """zul_Latn""", } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """facebook/nllb-200-distilled-600M""" lowerCamelCase__ = ( """This is a tool that translates text from a language to another. It takes three inputs: `text`, which should """ """be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, """ """which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in """ """plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`.""" ) lowerCamelCase__ = """translator""" lowerCamelCase__ = AutoTokenizer lowerCamelCase__ = AutoModelForSeqaSeqLM lowerCamelCase__ = LANGUAGE_CODES lowerCamelCase__ = ["""text""", """text""", """text"""] lowerCamelCase__ = ["""text"""] def A_ ( self , lowercase , lowercase , lowercase ): if src_lang not in self.lang_to_code: raise ValueError(F'''{src_lang} is not a supported language.''' ) if tgt_lang not in self.lang_to_code: raise ValueError(F'''{tgt_lang} is not a supported language.''' ) _lowerCamelCase : str = self.lang_to_code[src_lang] _lowerCamelCase : int = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( lowercase , return_tensors='pt' , src_lang=lowercase , tgt_lang=lowercase ) def A_ ( self , lowercase ): return self.model.generate(**lowercase ) def A_ ( self , lowercase ): return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowercase )
12
0
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class lowerCAmelCase__ : '''simple docstring''' def __init__( self , lowercase , lowercase=13 , lowercase=64 , lowercase=2 , lowercase=3 , lowercase=True , lowercase=True , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=37 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=10 , lowercase=0.02 , lowercase=[1, 16, 4, 4] , lowercase=None , ): _lowerCamelCase : Optional[int] = parent _lowerCamelCase : List[str] = batch_size _lowerCamelCase : Union[str, Any] = image_size _lowerCamelCase : Any = patch_size _lowerCamelCase : Any = num_channels _lowerCamelCase : Union[str, Any] = is_training _lowerCamelCase : Optional[int] = use_labels _lowerCamelCase : Union[str, Any] = hidden_size _lowerCamelCase : Union[str, Any] = num_hidden_layers _lowerCamelCase : str = num_attention_heads _lowerCamelCase : Dict = intermediate_size _lowerCamelCase : Optional[Any] = hidden_act _lowerCamelCase : Union[str, Any] = hidden_dropout_prob _lowerCamelCase : int = attention_probs_dropout_prob _lowerCamelCase : Tuple = type_sequence_label_size _lowerCamelCase : Union[str, Any] = initializer_range _lowerCamelCase : Dict = scope _lowerCamelCase : Optional[int] = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size _lowerCamelCase : Any = (self.image_size // 32) ** 2 _lowerCamelCase : int = num_patches + 1 def A_ ( self ): _lowerCamelCase : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase : str = None if self.use_labels: _lowerCamelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCamelCase : Tuple = self.get_config() return config, pixel_values, labels def A_ ( self ): _lowerCamelCase : Any = { 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, 'hidden_sizes': [4, 8, 16, 32], 'num_groups': 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__lowercase , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=__lowercase , ) def A_ ( self , lowercase , lowercase , lowercase ): _lowerCamelCase : List[str] = ViTHybridModel(config=__lowercase ) model.to(__lowercase ) model.eval() _lowerCamelCase : Dict = model(__lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A_ ( self , lowercase , lowercase , lowercase ): _lowerCamelCase : int = self.type_sequence_label_size _lowerCamelCase : List[Any] = ViTHybridForImageClassification(__lowercase ) model.to(__lowercase ) model.eval() _lowerCamelCase : Tuple = model(__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A_ ( self ): _lowerCamelCase : Tuple = self.prepare_config_and_inputs() _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[Any] = config_and_inputs _lowerCamelCase : Optional[int] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase__ ( __A, __A, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () lowerCamelCase__ = ( {'feature-extraction': ViTHybridModel, 'image-classification': ViTHybridForImageClassification} if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def A_ ( self ): _lowerCamelCase : Optional[int] = ViTHybridModelTester(self ) _lowerCamelCase : Optional[int] = ConfigTester(self , config_class=__lowercase , has_text_modality=__lowercase , hidden_size=37 ) def A_ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def A_ ( self ): pass def A_ ( self ): _lowerCamelCase, _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : List[Any] = model_class(__lowercase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowerCamelCase : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowercase , nn.Linear ) ) def A_ ( self ): _lowerCamelCase, _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Union[str, Any] = model_class(__lowercase ) _lowerCamelCase : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : Optional[Any] = [*signature.parameters.keys()] _lowerCamelCase : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , __lowercase ) def A_ ( self ): _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) def A_ ( self ): _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowercase ) def A_ ( self ): _lowerCamelCase, _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : int = _config_zero_init(__lowercase ) for model_class in self.all_model_classes: _lowerCamelCase : List[Any] = model_class(config=__lowercase ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": _lowerCamelCase : Tuple = [F'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def A_ ( self ): for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : str = ViTHybridModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) def _snake_case ( ): _lowerCamelCase : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def A_ ( self ): return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def A_ ( self ): _lowerCamelCase : Union[str, Any] = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( __lowercase ) _lowerCamelCase : str = self.default_image_processor _lowerCamelCase : Optional[Any] = prepare_img() _lowerCamelCase : Optional[int] = image_processor(images=__lowercase , return_tensors='pt' ).to(__lowercase ) # forward pass with torch.no_grad(): _lowerCamelCase : List[Any] = model(**__lowercase ) # verify the logits _lowerCamelCase : Any = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __lowercase ) _lowerCamelCase : Tuple = torch.tensor([-1.90_90, -0.49_93, -0.23_89] ).to(__lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowercase , atol=1E-4 ) ) @slow @require_accelerate def A_ ( self ): _lowerCamelCase : Tuple = ViTHybridImageProcessor.from_pretrained('google/vit-hybrid-base-bit-384' ) _lowerCamelCase : List[Any] = ViTHybridForImageClassification.from_pretrained('google/vit-hybrid-base-bit-384' , device_map='auto' ) _lowerCamelCase : List[str] = prepare_img() _lowerCamelCase : List[str] = image_processor(images=__lowercase , return_tensors='pt' ) _lowerCamelCase : Dict = model(**__lowercase ) _lowerCamelCase : Union[str, Any] = outputs.logits # model predicts one of the 1000 ImageNet classes _lowerCamelCase : List[Any] = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , 'tabby, tabby cat' )
359
"""simple docstring""" import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def A_ ( self , lowercase , lowercase , lowercase ): _lowerCamelCase : Optional[int] = hf_hub_download( repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' ) _lowerCamelCase : Tuple = VideoClassificationPipeline(model=lowercase , image_processor=lowercase , top_k=2 ) _lowerCamelCase : List[str] = [ example_video_filepath, 'https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4', ] return video_classifier, examples def A_ ( self , lowercase , lowercase ): for example in examples: _lowerCamelCase : Tuple = video_classifier(lowercase ) self.assertEqual( lowercase , [ {'score': ANY(lowercase ), 'label': ANY(lowercase )}, {'score': ANY(lowercase ), 'label': ANY(lowercase )}, ] , ) @require_torch def A_ ( self ): _lowerCamelCase : Optional[Any] = 'hf-internal-testing/tiny-random-VideoMAEForVideoClassification' _lowerCamelCase : Tuple = VideoMAEFeatureExtractor( size={'shortest_edge': 10} , crop_size={'height': 10, 'width': 10} ) _lowerCamelCase : Dict = pipeline( 'video-classification' , model=lowercase , feature_extractor=lowercase , frame_sampling_rate=4 ) _lowerCamelCase : Any = hf_hub_download(repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' ) _lowerCamelCase : Dict = video_classifier(lowercase , top_k=2 ) self.assertEqual( nested_simplify(lowercase , decimals=4 ) , [{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}] , ) _lowerCamelCase : str = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(lowercase , decimals=4 ) , [ [{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}], [{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}], ] , ) @require_tf def A_ ( self ): pass
12
0
"""simple docstring""" from typing import Any def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): _validation( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) # Creates data structures and fill initial step _lowerCamelCase : dict = {} _lowerCamelCase : dict = {} for state in states_space: _lowerCamelCase : int = observations_space[0] _lowerCamelCase : Optional[Any] = ( initial_probabilities[state] * emission_probabilities[state][observation] ) _lowerCamelCase : List[str] = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__lowerCamelCase ) ): _lowerCamelCase : Tuple = observations_space[o] _lowerCamelCase : str = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function _lowerCamelCase : Union[str, Any] = "" _lowerCamelCase : Dict = -1 for k_state in states_space: _lowerCamelCase : Tuple = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: _lowerCamelCase : Tuple = probability _lowerCamelCase : int = k_state # Update probabilities and pointers dicts _lowerCamelCase : List[Any] = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) _lowerCamelCase : Any = arg_max # The final observation _lowerCamelCase : Optional[int] = observations_space[len(__lowerCamelCase ) - 1] # argmax for given final observation _lowerCamelCase : Optional[Any] = "" _lowerCamelCase : str = -1 for k_state in states_space: _lowerCamelCase : Tuple = probabilities[(k_state, final_observation)] if probability > max_probability: _lowerCamelCase : List[str] = probability _lowerCamelCase : Union[str, Any] = k_state _lowerCamelCase : List[str] = arg_max # Process pointers backwards _lowerCamelCase : Union[str, Any] = last_state _lowerCamelCase : Tuple = [] for o in range(len(__lowerCamelCase ) - 1 , -1 , -1 ): result.append(__lowerCamelCase ) _lowerCamelCase : Union[str, Any] = pointers[previous, observations_space[o]] result.reverse() return result def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): _validate_not_empty( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) _validate_lists(__lowerCamelCase , __lowerCamelCase ) _validate_dicts( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('There\'s an empty parameter' ) def _snake_case ( lowercase__ , lowercase__ ): _validate_list(__lowerCamelCase , 'observations_space' ) _validate_list(__lowerCamelCase , 'states_space' ) def _snake_case ( lowercase__ , lowercase__ ): if not isinstance(_object , __lowerCamelCase ): _lowerCamelCase : Tuple = f'''{var_name} must be a list''' raise ValueError(__lowerCamelCase ) else: for x in _object: if not isinstance(__lowerCamelCase , __lowerCamelCase ): _lowerCamelCase : int = f'''{var_name} must be a list of strings''' raise ValueError(__lowerCamelCase ) def _snake_case ( lowercase__ , lowercase__ , lowercase__ , ): _validate_dict(__lowerCamelCase , 'initial_probabilities' , __lowerCamelCase ) _validate_nested_dict(__lowerCamelCase , 'transition_probabilities' ) _validate_nested_dict(__lowerCamelCase , 'emission_probabilities' ) def _snake_case ( lowercase__ , lowercase__ ): _validate_dict(_object , __lowerCamelCase , __lowerCamelCase ) for x in _object.values(): _validate_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ = False ): if not isinstance(_object , __lowerCamelCase ): _lowerCamelCase : List[str] = f'''{var_name} must be a dict''' raise ValueError(__lowerCamelCase ) if not all(isinstance(__lowerCamelCase , __lowerCamelCase ) for x in _object ): _lowerCamelCase : Optional[Any] = f'''{var_name} all keys must be strings''' raise ValueError(__lowerCamelCase ) if not all(isinstance(__lowerCamelCase , __lowerCamelCase ) for x in _object.values() ): _lowerCamelCase : Union[str, Any] = "nested dictionary " if nested else "" _lowerCamelCase : Any = f'''{var_name} {nested_text}all values must be {value_type.__name__}''' raise ValueError(__lowerCamelCase ) if __name__ == "__main__": from doctest import testmod testmod()
360
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowercase__ = { """configuration_mega""": ["""MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MegaConfig""", """MegaOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """MEGA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MegaForCausalLM""", """MegaForMaskedLM""", """MegaForMultipleChoice""", """MegaForQuestionAnswering""", """MegaForSequenceClassification""", """MegaForTokenClassification""", """MegaModel""", """MegaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
12
0
"""simple docstring""" import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) lowercase__ = """bert-base-cased""" lowercase__ = """fp16""" lowercase__ = """bf16""" lowercase__ = [FPaa, BFaa] @require_fsdp @require_cuda class lowerCAmelCase__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def A_ ( self ): super().setUp() _lowerCamelCase : Union[str, Any] = dict( ACCELERATE_USE_FSDP='true' , MASTER_ADDR='localhost' , MASTER_PORT='10999' , RANK='0' , LOCAL_RANK='0' , WORLD_SIZE='1' , ) def A_ ( self ): from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(_a ): _lowerCamelCase : int = self.dist_env.copy() _lowerCamelCase : str = F'''{i + 1}''' _lowerCamelCase : Tuple = strategy with mockenv_context(**_a ): _lowerCamelCase : Tuple = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1 ) ) def A_ ( self ): from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(_a ): _lowerCamelCase : List[Any] = self.dist_env.copy() _lowerCamelCase : Optional[Any] = prefetch_policy with mockenv_context(**_a ): _lowerCamelCase : Optional[int] = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1 ) ) def A_ ( self ): from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(_a ): _lowerCamelCase : Dict = self.dist_env.copy() _lowerCamelCase : Tuple = state_dict_type with mockenv_context(**_a ): _lowerCamelCase : str = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def A_ ( self ): _lowerCamelCase : Dict = AutoModel.from_pretrained(_a ) for policy in FSDP_AUTO_WRAP_POLICY: _lowerCamelCase : Union[str, Any] = self.dist_env.copy() _lowerCamelCase : int = policy if policy == "TRANSFORMER_BASED_WRAP": _lowerCamelCase : str = 'BertLayer' elif policy == "SIZE_BASED_WRAP": _lowerCamelCase : Optional[int] = '2000' with mockenv_context(**_a ): _lowerCamelCase : List[str] = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(_a ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) _lowerCamelCase : Any = self.dist_env.copy() _lowerCamelCase : List[Any] = 'TRANSFORMER_BASED_WRAP' _lowerCamelCase : str = 'T5Layer' with mockenv_context(**_a ): _lowerCamelCase : List[str] = FullyShardedDataParallelPlugin() with self.assertRaises(_a ) as cm: fsdp_plugin.set_auto_wrap_policy(_a ) self.assertTrue('Could not find the transformer layer class to wrap in the model.' in str(cm.exception ) ) _lowerCamelCase : Tuple = self.dist_env.copy() _lowerCamelCase : Tuple = 'SIZE_BASED_WRAP' _lowerCamelCase : str = '0' with mockenv_context(**_a ): _lowerCamelCase : List[str] = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(_a ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def A_ ( self ): from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: _lowerCamelCase : List[Any] = self.dist_env.copy() _lowerCamelCase : Optional[Any] = mp_dtype with mockenv_context(**_a ): _lowerCamelCase : List[str] = Accelerator() if mp_dtype == "fp16": _lowerCamelCase : Optional[int] = torch.floataa elif mp_dtype == "bf16": _lowerCamelCase : Optional[int] = torch.bfloataa _lowerCamelCase : Any = MixedPrecision(param_dtype=_a , reduce_dtype=_a , buffer_dtype=_a ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , _a ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler , _a ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(_a ) def A_ ( self ): from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: _lowerCamelCase : Union[str, Any] = self.dist_env.copy() _lowerCamelCase : Optional[Any] = str(_a ).lower() with mockenv_context(**_a ): _lowerCamelCase : Any = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=_a ) ) @require_fsdp @require_multi_gpu @slow class lowerCAmelCase__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def A_ ( self ): super().setUp() _lowerCamelCase : Tuple = 0.82 _lowerCamelCase : Dict = [ 'fsdp_shard_grad_op_transformer_based_wrap', 'fsdp_full_shard_transformer_based_wrap', ] _lowerCamelCase : Optional[Any] = { 'multi_gpu_fp16': 3200, 'fsdp_shard_grad_op_transformer_based_wrap_fp16': 2000, 'fsdp_full_shard_transformer_based_wrap_fp16': 1900, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } _lowerCamelCase : Union[str, Any] = 160 _lowerCamelCase : Any = 160 _lowerCamelCase : List[Any] = inspect.getfile(accelerate.test_utils ) _lowerCamelCase : Optional[int] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'external_deps'] ) def A_ ( self ): _lowerCamelCase : int = os.path.join(self.test_scripts_folder , 'test_performance.py' ) _lowerCamelCase : List[Any] = ['accelerate', 'launch', '--num_processes=2', '--num_machines=1', '--machine_rank=0', '--use_fsdp'] for config in self.performance_configs: _lowerCamelCase : List[Any] = cmd.copy() for i, strategy in enumerate(_a ): if strategy.lower() in config: cmd_config.append(F'''--fsdp_sharding_strategy={i+1}''' ) break if "fp32" in config: cmd_config.append('--mixed_precision=no' ) else: cmd_config.append('--mixed_precision=fp16' ) if "cpu_offload" in config: cmd_config.append('--fsdp_offload_params=True' ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(F'''--fsdp_auto_wrap_policy={policy}''' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('--fsdp_transformer_layer_cls_to_wrap=BertLayer' ) elif policy == "SIZE_BASED_WRAP": cmd_config.append('--fsdp_min_num_params=2000' ) cmd_config.extend( [ self.test_file_path, F'''--output_dir={self.tmpdir}''', F'''--performance_lower_bound={self.performance_lower_bound}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_a , env=os.environ.copy() ) def A_ ( self ): _lowerCamelCase : Any = os.path.join(self.test_scripts_folder , 'test_checkpointing.py' ) _lowerCamelCase : Tuple = [ 'accelerate', 'launch', '--num_processes=2', '--num_machines=1', '--machine_rank=0', '--use_fsdp', '--mixed_precision=fp16', '--fsdp_transformer_layer_cls_to_wrap=BertLayer', ] for i, strategy in enumerate(_a ): _lowerCamelCase : Optional[Any] = cmd.copy() cmd_config.append(F'''--fsdp_sharding_strategy={i+1}''' ) if strategy != "FULL_SHARD": continue _lowerCamelCase : str = len(_a ) for state_dict_type in FSDP_STATE_DICT_TYPE: _lowerCamelCase : Any = cmd_config[:state_dict_config_index] cmd_config.append(F'''--fsdp_state_dict_type={state_dict_type}''' ) cmd_config.extend( [ self.test_file_path, F'''--output_dir={self.tmpdir}''', '--partial_train_epoch=1', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_a , env=os.environ.copy() ) _lowerCamelCase : List[str] = cmd_config[:-1] _lowerCamelCase : Optional[int] = os.path.join(self.tmpdir , 'epoch_0' ) cmd_config.extend( [ F'''--resume_from_checkpoint={resume_from_checkpoint}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_a , env=os.environ.copy() ) def A_ ( self ): _lowerCamelCase : Any = os.path.join(self.test_scripts_folder , 'test_peak_memory_usage.py' ) _lowerCamelCase : Tuple = [ 'accelerate', 'launch', '--num_processes=2', '--num_machines=1', '--machine_rank=0', ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): _lowerCamelCase : Union[str, Any] = cmd.copy() if "fp16" in spec: cmd_config.extend(['--mixed_precision=fp16'] ) else: cmd_config.extend(['--mixed_precision=no'] ) if "multi_gpu" in spec: continue else: cmd_config.extend(['--use_fsdp'] ) for i, strategy in enumerate(_a ): if strategy.lower() in spec: cmd_config.append(F'''--fsdp_sharding_strategy={i+1}''' ) break if "cpu_offload" in spec: cmd_config.append('--fsdp_offload_params=True' ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(F'''--fsdp_auto_wrap_policy={policy}''' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('--fsdp_transformer_layer_cls_to_wrap=BertLayer' ) elif policy == "SIZE_BASED_WRAP": cmd_config.append('--fsdp_min_num_params=2000' ) cmd_config.extend( [ self.test_file_path, F'''--output_dir={self.tmpdir}''', F'''--peak_memory_upper_bound={peak_mem_upper_bound}''', F'''--n_train={self.n_train}''', F'''--n_val={self.n_val}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_a , env=os.environ.copy() )
361
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def _snake_case ( lowercase__ , lowercase__ , lowercase__=None , lowercase__=None ): if attention_mask is None: _lowerCamelCase : List[str] = tf.cast(tf.math.not_equal(lowercase__ , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class lowerCAmelCase__ : '''simple docstring''' lowerCamelCase__ = OPTConfig lowerCamelCase__ = {} lowerCamelCase__ = """gelu""" def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=False , lowercase=99 , lowercase=16 , lowercase=2 , lowercase=4 , lowercase=4 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=20 , lowercase=2 , lowercase=1 , lowercase=0 , lowercase=16 , lowercase=16 , ): _lowerCamelCase : Tuple = parent _lowerCamelCase : Any = batch_size _lowerCamelCase : Tuple = seq_length _lowerCamelCase : str = is_training _lowerCamelCase : Optional[int] = use_labels _lowerCamelCase : List[Any] = vocab_size _lowerCamelCase : Dict = hidden_size _lowerCamelCase : str = num_hidden_layers _lowerCamelCase : Optional[int] = num_attention_heads _lowerCamelCase : Any = intermediate_size _lowerCamelCase : Dict = hidden_act _lowerCamelCase : Any = hidden_dropout_prob _lowerCamelCase : List[str] = attention_probs_dropout_prob _lowerCamelCase : Optional[Any] = max_position_embeddings _lowerCamelCase : List[Any] = eos_token_id _lowerCamelCase : Tuple = pad_token_id _lowerCamelCase : List[str] = bos_token_id _lowerCamelCase : Optional[int] = embed_dim _lowerCamelCase : List[str] = word_embed_proj_dim _lowerCamelCase : Any = False def A_ ( self ): _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _lowerCamelCase : Optional[int] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _lowerCamelCase : str = tf.concat([input_ids, eos_tensor] , axis=1 ) _lowerCamelCase : Tuple = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowercase , **self.config_updates , ) _lowerCamelCase : int = prepare_opt_inputs_dict(lowercase , lowercase ) return config, inputs_dict def A_ ( self , lowercase , lowercase ): _lowerCamelCase : Optional[Any] = TFOPTModel(config=lowercase ) _lowerCamelCase : Optional[Any] = inputs_dict['input_ids'] _lowerCamelCase : str = input_ids[:1, :] _lowerCamelCase : Dict = inputs_dict['attention_mask'][:1, :] _lowerCamelCase : Optional[Any] = 1 # first forward pass _lowerCamelCase : Any = model(lowercase , attention_mask=lowercase , use_cache=lowercase ) _lowerCamelCase, _lowerCamelCase : List[str] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _lowerCamelCase : Optional[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) _lowerCamelCase : Optional[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _lowerCamelCase : List[Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) _lowerCamelCase : Optional[int] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _lowerCamelCase : Optional[Any] = model(lowercase , attention_mask=lowercase )[0] _lowerCamelCase : List[str] = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _lowerCamelCase : Any = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _lowerCamelCase : Optional[int] = output_from_no_past[:, -3:, random_slice_idx] _lowerCamelCase : List[str] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase , lowercase , rtol=1E-3 ) @require_tf class lowerCAmelCase__ ( lowercase, lowercase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () lowerCamelCase__ = (TFOPTForCausalLM,) if is_tf_available() else () lowerCamelCase__ = ( {"""feature-extraction""": TFOPTModel, """text-generation""": TFOPTForCausalLM} if is_tf_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = 10 def A_ ( self ): _lowerCamelCase : int = TFOPTModelTester(self ) _lowerCamelCase : Tuple = ConfigTester(self , config_class=lowercase ) def A_ ( self ): self.config_tester.run_common_tests() def A_ ( self ): _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase ) def A_ ( self ): _lowerCamelCase, _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(lowercase , lowercase ): if hasattr(lowercase , 'weight' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(lowercase , 'weight' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings _lowerCamelCase : Optional[int] = model_class(config=lowercase ) _lowerCamelCase : int = _get_word_embedding_weight(lowercase , model.get_input_embeddings() ) _lowerCamelCase : Tuple = _get_word_embedding_weight(lowercase , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(lowercase ) _lowerCamelCase : str = _get_word_embedding_weight(lowercase , model.get_input_embeddings() ) _lowerCamelCase : Any = _get_word_embedding_weight(lowercase , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. _lowerCamelCase : Union[str, Any] = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , lowercase ) # check that weights remain the same after resizing _lowerCamelCase : int = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _lowerCamelCase : Optional[Any] = False self.assertTrue(lowercase ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , lowercase ) _lowerCamelCase : Dict = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _lowerCamelCase : Union[str, Any] = False self.assertTrue(lowercase ) def _snake_case ( lowercase__ ): return tf.constant(lowercase__ , dtype=tf.intaa ) @require_tf class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = 99 def A_ ( self ): _lowerCamelCase : Tuple = tf.ones((4, 1) , dtype=tf.intaa ) * 2 _lowerCamelCase : Tuple = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) _lowerCamelCase : int = input_ids.shape[0] _lowerCamelCase : List[Any] = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def A_ ( self ): _lowerCamelCase : Tuple = TFOPTModel.from_pretrained('facebook/opt-350m' ) _lowerCamelCase : List[Any] = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) _lowerCamelCase : List[str] = tf.not_equal(lowercase , model.config.pad_token_id ) with tf.GradientTape(): _lowerCamelCase : List[str] = model(input_ids=lowercase , attention_mask=lowercase ).last_hidden_state _lowerCamelCase : Optional[Any] = (1, 11, 512) self.assertEqual(output.shape , lowercase ) _lowerCamelCase : List[str] = tf.constant( [[-0.28_73, -1.92_18, -0.30_33], [-1.27_10, -0.13_38, -0.19_02], [0.40_95, 0.12_14, -1.31_21]] ) self.assertTrue(np.allclose(output[:, :3, :3] , lowercase , atol=4E-3 ) ) _lowerCamelCase : List[str] = tf.function(lowercase , jit_compile=lowercase ) _lowerCamelCase : Union[str, Any] = xla_generate(lowercase , lowercase )[0] self.assertTrue(np.allclose(output[:, :3, :3] , lowercase , atol=4E-2 ) ) @require_tf @slow class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): super().setUp() _lowerCamelCase : List[Any] = 'facebook/opt-350m' def A_ ( self ): _lowerCamelCase : int = TFOPTForCausalLM.from_pretrained(self.path_model ) _lowerCamelCase : List[Any] = GPTaTokenizer.from_pretrained(self.path_model ) _lowerCamelCase : List[str] = [ 'Today is a beautiful day and I want to', 'In the city of', 'Paris is the capital of France and', 'Computers and mobile phones have taken', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False _lowerCamelCase : List[Any] = tokenizer(lowercase , return_tensors='tf' , padding=lowercase , add_special_tokens=lowercase ) _lowerCamelCase : Optional[int] = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) _lowerCamelCase : Any = tf.constant( [ [1.38_51, -13.89_23, -10.52_29, -10.75_33, -0.23_09, -10.23_84, -0.53_65, -9.09_47, -5.16_70], [-4.70_73, -10.62_76, -3.94_15, -21.52_42, -0.28_22, -0.28_22, -0.28_22, -0.28_22, -0.28_22], [0.62_47, -3.42_29, -8.91_79, -1.42_97, -14.16_50, 1.41_46, -9.02_18, -0.27_03, -0.27_03], [6.47_83, -1.99_13, -10.79_26, -2.33_36, 1.50_92, -0.99_74, -6.82_13, 1.34_77, 1.34_77], ] ) self.assertTrue(np.allclose(lowercase , lowercase , atol=1E-4 ) ) _lowerCamelCase : Tuple = tf.function(lowercase , jit_compile=lowercase ) _lowerCamelCase : List[Any] = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(lowercase , lowercase , atol=1E-4 ) ) @require_tf @slow class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @property def A_ ( self ): return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def A_ ( self ): _lowerCamelCase : str = 'facebook/opt-125m' _lowerCamelCase : Dict = [ 'Today is a beautiful day and I want to', 'In the city of New York, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] _lowerCamelCase : Optional[int] = [] _lowerCamelCase : Optional[int] = GPTaTokenizer.from_pretrained(lowercase ) _lowerCamelCase : Dict = TFOPTForCausalLM.from_pretrained(lowercase ) for prompt in self.prompts: _lowerCamelCase : int = tokenizer(lowercase , return_tensors='tf' ).input_ids _lowerCamelCase : int = model.generate(lowercase , max_length=10 ) _lowerCamelCase : Any = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) predicted_outputs += generated_string self.assertListEqual(lowercase , lowercase ) def A_ ( self ): _lowerCamelCase : List[Any] = 'facebook/opt-350m' _lowerCamelCase : int = GPTaTokenizer.from_pretrained(lowercase ) _lowerCamelCase : Optional[int] = TFOPTForCausalLM.from_pretrained(lowercase ) _lowerCamelCase : Any = 'left' # use different length sentences to test batching _lowerCamelCase : Optional[int] = [ 'Hello, my dog is a little', 'Today, I', ] _lowerCamelCase : Dict = tokenizer(lowercase , return_tensors='tf' , padding=lowercase ) _lowerCamelCase : int = inputs['input_ids'] _lowerCamelCase : Tuple = model.generate(input_ids=lowercase , attention_mask=inputs['attention_mask'] ) _lowerCamelCase : Optional[int] = tokenizer(sentences[0] , return_tensors='tf' ).input_ids _lowerCamelCase : Union[str, Any] = model.generate(input_ids=lowercase ) _lowerCamelCase : Dict = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['attention_mask'][-1] , tf.intaa ) ) _lowerCamelCase : int = tokenizer(sentences[1] , return_tensors='tf' ).input_ids _lowerCamelCase : Union[str, Any] = model.generate(input_ids=lowercase , max_length=model.config.max_length - num_paddings ) _lowerCamelCase : List[Any] = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) _lowerCamelCase : Union[str, Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase ) _lowerCamelCase : Optional[Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase ) _lowerCamelCase : Optional[Any] = [ 'Hello, my dog is a little bit of a dork.\nI\'m a little bit', 'Today, I was in the middle of a conversation with a friend about the', ] self.assertListEqual(lowercase , lowercase ) self.assertListEqual(lowercase , [non_padded_sentence, padded_sentence] ) def A_ ( self ): _lowerCamelCase : Tuple = 'facebook/opt-350m' _lowerCamelCase : List[Any] = [ 'Today is a beautiful day and I want to', 'In the city of San Francisco, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] _lowerCamelCase : Optional[int] = [] _lowerCamelCase : Optional[Any] = GPTaTokenizer.from_pretrained(lowercase ) _lowerCamelCase : Optional[Any] = TFOPTForCausalLM.from_pretrained(lowercase ) for prompt in self.prompts: _lowerCamelCase : List[Any] = tokenizer(lowercase , return_tensors='tf' ).input_ids _lowerCamelCase : Optional[Any] = model.generate(lowercase , max_length=10 ) _lowerCamelCase : Dict = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) predicted_outputs += generated_string self.assertListEqual(lowercase , lowercase )
12
0
"""simple docstring""" import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow lowercase__ = logging.getLogger() @unittest.skip("""Temporarily disable the doc tests.""" ) @require_torch @require_tf @slow class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = True , ): _lowerCamelCase : Tuple = [file for file in os.listdir(lowercase ) if os.path.isfile(os.path.join(lowercase , lowercase ) )] if identifier is not None: _lowerCamelCase : Tuple = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(lowercase , lowercase ): for n_ in n_identifier: _lowerCamelCase : List[Any] = [file for file in files if n_ not in file] else: _lowerCamelCase : Union[str, Any] = [file for file in files if n_identifier not in file] _lowerCamelCase : Any = ignore_files or [] ignore_files.append('__init__.py' ) _lowerCamelCase : Union[str, Any] = [file for file in files if file not in ignore_files] for file in files: # Open all files print('Testing' , lowercase ) if only_modules: _lowerCamelCase : Dict = file.split('.' )[0] try: _lowerCamelCase : List[str] = getattr(lowercase , lowercase ) _lowerCamelCase : List[Any] = doctest.DocTestSuite(lowercase ) _lowerCamelCase : Tuple = unittest.TextTestRunner().run(lowercase ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F'''{module_identifier} is not a module.''' ) else: _lowerCamelCase : Optional[Any] = doctest.testfile(str('..' / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def A_ ( self ): _lowerCamelCase : List[str] = Path('src/transformers' ) _lowerCamelCase : List[str] = """modeling""" _lowerCamelCase : List[str] = [ """modeling_ctrl.py""", """modeling_tf_ctrl.py""", ] self.analyze_directory(lowercase , identifier=lowercase , ignore_files=lowercase ) def A_ ( self ): _lowerCamelCase : List[str] = Path('src/transformers' ) _lowerCamelCase : List[Any] = """tokenization""" self.analyze_directory(lowercase , identifier=lowercase ) def A_ ( self ): _lowerCamelCase : str = Path('src/transformers' ) _lowerCamelCase : Optional[int] = """configuration""" self.analyze_directory(lowercase , identifier=lowercase ) def A_ ( self ): _lowerCamelCase : Dict = Path('src/transformers' ) _lowerCamelCase : List[Any] = ["""configuration""", """modeling""", """tokenization"""] self.analyze_directory(lowercase , n_identifier=lowercase ) def A_ ( self ): _lowerCamelCase : Any = Path('docs/source' ) _lowerCamelCase : Optional[int] = ["""favicon.ico"""] self.analyze_directory(lowercase , ignore_files=lowercase , only_modules=lowercase )
362
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """philschmid/bart-large-cnn-samsum""" lowerCamelCase__ = ( """This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, """ """and returns a summary of the text.""" ) lowerCamelCase__ = """summarizer""" lowerCamelCase__ = AutoTokenizer lowerCamelCase__ = AutoModelForSeqaSeqLM lowerCamelCase__ = ["""text"""] lowerCamelCase__ = ["""text"""] def A_ ( self , lowercase ): return self.pre_processor(lowercase , return_tensors='pt' , truncation=lowercase ) def A_ ( self , lowercase ): return self.model.generate(**lowercase )[0] def A_ ( self , lowercase ): return self.pre_processor.decode(lowercase , skip_special_tokens=lowercase , clean_up_tokenization_spaces=lowercase )
12
0
"""simple docstring""" # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bsa_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_bfaa_cpu_available, is_torch_bfaa_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) lowercase__ = """pytorch_model.bin""" lowercase__ = """pytorch_model.bin.index.json""" lowercase__ = """adapter_config.json""" lowercase__ = """adapter_model.bin""" lowercase__ = """adapter_model.safetensors""" lowercase__ = """tf_model.h5""" lowercase__ = """tf_model.h5.index.json""" lowercase__ = """model.ckpt""" lowercase__ = """flax_model.msgpack""" lowercase__ = """flax_model.msgpack.index.json""" lowercase__ = """model.safetensors""" lowercase__ = """model.safetensors.index.json""" lowercase__ = """config.json""" lowercase__ = """preprocessor_config.json""" lowercase__ = FEATURE_EXTRACTOR_NAME lowercase__ = """generation_config.json""" lowercase__ = """modelcard.json""" lowercase__ = """▁""" lowercase__ = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility lowercase__ = [ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. lowercase__ = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] lowercase__ = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def _snake_case ( lowercase__ ): if version.parse(a_ ) < version.parse(a_ ): if "dev" in min_version: _lowerCamelCase : List[Any] = ( 'This example requires a source install from HuggingFace Transformers (see ' '`https://huggingface.co/docs/transformers/installation#install-from-source`),' ) else: _lowerCamelCase : str = f'''This example requires a minimum version of {min_version},''' error_message += f''' but the version found is {__version__}.\n''' raise ImportError( error_message + 'Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other ' 'versions of HuggingFace Transformers.' )
363
"""simple docstring""" from __future__ import annotations def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : Tuple = list(range(len(lowercase__ ) ) ) _lowerCamelCase : Any = [v / w for v, w in zip(lowercase__ , lowercase__ )] index.sort(key=lambda lowercase__ : ratio[i] , reverse=lowercase__ ) _lowerCamelCase : float = 0 _lowerCamelCase : list[float] = [0] * len(lowercase__ ) for i in index: if weight[i] <= capacity: _lowerCamelCase : int = 1 max_value += value[i] capacity -= weight[i] else: _lowerCamelCase : Any = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
12
0
"""simple docstring""" class lowerCAmelCase__ : '''simple docstring''' def __init__( self , lowercase ): _lowerCamelCase : Any = n _lowerCamelCase : Any = [None] * self.n _lowerCamelCase : Tuple = 0 # index of the first element _lowerCamelCase : str = 0 _lowerCamelCase : List[Any] = 0 def __len__( self ): return self.size def A_ ( self ): return self.size == 0 def A_ ( self ): return False if self.is_empty() else self.array[self.front] def A_ ( self , lowercase ): if self.size >= self.n: raise Exception('QUEUE IS FULL' ) _lowerCamelCase : Union[str, Any] = data _lowerCamelCase : Optional[int] = (self.rear + 1) % self.n self.size += 1 return self def A_ ( self ): if self.size == 0: raise Exception('UNDERFLOW' ) _lowerCamelCase : Optional[int] = self.array[self.front] _lowerCamelCase : Optional[int] = None _lowerCamelCase : Tuple = (self.front + 1) % self.n self.size -= 1 return temp
364
"""simple docstring""" import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate lowercase__ = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("""""", """|""", """|"""), datarow=DataRow("""""", """|""", """|"""), padding=1, with_header_hide=None, ) lowercase__ = [] lowercase__ = [] lowercase__ = {"""type""": """section""", """text""": {"""type""": """plain_text""", """text""": """No failed tests! 🤗""", """emoji""": True}} lowercase__ = [ { """type""": """header""", """text""": { """type""": """plain_text""", """text""": F"🤗 Accelerate nightly {os.environ.get('TEST_TYPE', '')} test results", """emoji""": True, }, } ] lowercase__ = 0 for log in Path().glob("""*.log"""): lowercase__ = 0 with open(log, """r""") as f: for line in f: lowercase__ = json.loads(line) if line.get("""nodeid""", """""") != "": lowercase__ = line["""nodeid"""] if line.get("""duration""", None) is not None: lowercase__ = F"{line['duration']:.4f}" if line.get("""outcome""", """""") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("""_""")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) lowercase__ = [] log.unlink() lowercase__ = """""" lowercase__ = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" lowercase__ = [] lowercase__ = {} for test in failed_tests: lowercase__ = test[0].split("""::""") lowercase__ = data[0].split("""/""")[-1] if data[0] not in filesafailed: lowercase__ = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) lowercase__ = [test[0] for test in failed_table] lowercase__ = list(set(files)) # Count number of instances in failed_tests lowercase__ = [] for file in individual_files: table.append([file, len(filesafailed[file])]) lowercase__ = tabulate( table, headers=["""Test Location""", """Num Failed"""], tablefmt=hf_table_format, stralign="""right""", ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: lowercase__ = """Too many failed tests, please see the full report in the Action results.""" lowercase__ = len(err) + 10 lowercase__ = message[: 3000 - offset] + F"\n...\n```\n{err}" print(F"### {message}") else: lowercase__ = """No failed tests! 🤗""" print(F"## {message}") payload.append(no_error_payload) if os.environ.get("""TEST_TYPE""", """""") != "": from slack_sdk import WebClient lowercase__ = WebClient(token=os.environ["""SLACK_API_TOKEN"""]) if message != "No failed tests! 🤗": lowercase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": message, }, } payload.append(md_report) lowercase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": """*For more details:*""", }, """accessory""": { """type""": """button""", """text""": { """type""": """plain_text""", """text""": """Check Action results""", """emoji""": True, }, """url""": F"https://github.com/{os.environ['GITHUB_REPOSITORY']}/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } payload.append(action_button) lowercase__ = { """type""": """context""", """elements""": [ { """type""": """plain_text""", """text""": F"Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}", } ], } payload.append(date_report) lowercase__ = client.chat_postMessage(channel="""#accelerate-ci-daily""", text=message, blocks=payload) lowercase__ = response.data["""ts"""] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name lowercase__ = """""" for i, row in enumerate(test_failures): if row[0] != test_class: lowercase__ = row[0] else: lowercase__ = """""" lowercase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": F"Test location: {test_location}\n```\n{tabulate(test_failures, headers=['Class', 'Test'], tablefmt=hf_table_format, stralign='right')}\n```", }, } client.chat_postMessage( channel="""#accelerate-ci-daily""", thread_ts=ts, blocks=[payload], )
12
0
"""simple docstring""" def _snake_case ( lowercase__ = 100 ): _lowerCamelCase : str = n * (n + 1) * (2 * n + 1) / 6 _lowerCamelCase : int = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F"{solution() = }")
365
"""simple docstring""" import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer lowercase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """AutoTokenizer""" lowerCamelCase__ = ["""tokenizer"""] lowerCamelCase__ = { """semantic_prompt""": 1, """coarse_prompt""": 2, """fine_prompt""": 2, } def __init__( self , lowercase , lowercase=None ): super().__init__(lowercase ) _lowerCamelCase : Optional[int] = speaker_embeddings @classmethod def A_ ( cls , lowercase , lowercase="speaker_embeddings_path.json" , **lowercase ): if speaker_embeddings_dict_path is not None: _lowerCamelCase : Optional[Any] = get_file_from_repo( lowercase , lowercase , subfolder=kwargs.pop('subfolder' , lowercase ) , cache_dir=kwargs.pop('cache_dir' , lowercase ) , force_download=kwargs.pop('force_download' , lowercase ) , proxies=kwargs.pop('proxies' , lowercase ) , resume_download=kwargs.pop('resume_download' , lowercase ) , local_files_only=kwargs.pop('local_files_only' , lowercase ) , use_auth_token=kwargs.pop('use_auth_token' , lowercase ) , revision=kwargs.pop('revision' , lowercase ) , ) if speaker_embeddings_path is None: logger.warning( F'''`{os.path.join(lowercase , lowercase )}` does not exists , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.''' ) _lowerCamelCase : List[Any] = None else: with open(lowercase ) as speaker_embeddings_json: _lowerCamelCase : Union[str, Any] = json.load(lowercase ) else: _lowerCamelCase : Tuple = None _lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained(lowercase , **lowercase ) return cls(tokenizer=lowercase , speaker_embeddings=lowercase ) def A_ ( self , lowercase , lowercase="speaker_embeddings_path.json" , lowercase="speaker_embeddings" , lowercase = False , **lowercase , ): if self.speaker_embeddings is not None: os.makedirs(os.path.join(lowercase , lowercase , 'v2' ) , exist_ok=lowercase ) _lowerCamelCase : int = {} _lowerCamelCase : List[Any] = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": _lowerCamelCase : Optional[Any] = self._load_voice_preset(lowercase ) _lowerCamelCase : Any = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict['repo_or_path'] , lowercase , F'''{prompt_key}_{key}''' ) , voice_preset[key] , allow_pickle=lowercase , ) _lowerCamelCase : List[str] = os.path.join(lowercase , F'''{prompt_key}_{key}.npy''' ) _lowerCamelCase : Optional[Any] = tmp_dict with open(os.path.join(lowercase , lowercase ) , 'w' ) as fp: json.dump(lowercase , lowercase ) super().save_pretrained(lowercase , lowercase , **lowercase ) def A_ ( self , lowercase = None , **lowercase ): _lowerCamelCase : Tuple = self.speaker_embeddings[voice_preset] _lowerCamelCase : Any = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( F'''Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].''' ) _lowerCamelCase : Union[str, Any] = get_file_from_repo( self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] , subfolder=kwargs.pop('subfolder' , lowercase ) , cache_dir=kwargs.pop('cache_dir' , lowercase ) , force_download=kwargs.pop('force_download' , lowercase ) , proxies=kwargs.pop('proxies' , lowercase ) , resume_download=kwargs.pop('resume_download' , lowercase ) , local_files_only=kwargs.pop('local_files_only' , lowercase ) , use_auth_token=kwargs.pop('use_auth_token' , lowercase ) , revision=kwargs.pop('revision' , lowercase ) , ) if path is None: raise ValueError( F'''`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset} embeddings.''' ) _lowerCamelCase : List[str] = np.load(lowercase ) return voice_preset_dict def A_ ( self , lowercase = None ): for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(F'''Voice preset unrecognized, missing {key} as a key.''' ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) def __call__( self , lowercase=None , lowercase=None , lowercase="pt" , lowercase=256 , lowercase=False , lowercase=True , lowercase=False , **lowercase , ): if voice_preset is not None and not isinstance(lowercase , lowercase ): if ( isinstance(lowercase , lowercase ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): _lowerCamelCase : Any = self._load_voice_preset(lowercase ) else: if isinstance(lowercase , lowercase ) and not voice_preset.endswith('.npz' ): _lowerCamelCase : Optional[Any] = voice_preset + '.npz' _lowerCamelCase : Union[str, Any] = np.load(lowercase ) if voice_preset is not None: self._validate_voice_preset_dict(lowercase , **lowercase ) _lowerCamelCase : Tuple = BatchFeature(data=lowercase , tensor_type=lowercase ) _lowerCamelCase : Any = self.tokenizer( lowercase , return_tensors=lowercase , padding='max_length' , max_length=lowercase , return_attention_mask=lowercase , return_token_type_ids=lowercase , add_special_tokens=lowercase , **lowercase , ) if voice_preset is not None: _lowerCamelCase : Optional[int] = voice_preset return encoded_text
12
0
"""simple docstring""" def _snake_case ( lowercase__ ): return " ".join( ''.join(word[::-1] ) if len(a_ ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words("""Hey wollef sroirraw"""))
366
"""simple docstring""" import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device lowercase__ = False class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' pass @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): _lowerCamelCase : Tuple = VersatileDiffusionImageVariationPipeline.from_pretrained('shi-labs/versatile-diffusion' ) pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) _lowerCamelCase : Tuple = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) _lowerCamelCase : Dict = torch.manual_seed(0 ) _lowerCamelCase : Dict = pipe( image=lowercase , generator=lowercase , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' , ).images _lowerCamelCase : str = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) _lowerCamelCase : Any = np.array([0.04_41, 0.04_69, 0.05_07, 0.05_75, 0.06_32, 0.06_50, 0.08_65, 0.09_09, 0.09_45] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
12
0
"""simple docstring""" import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def _snake_case ( lowercase__ ): return 1 / (1 + np.exp(-z )) def _snake_case ( lowercase__ , lowercase__ ): return (-y * np.log(_UpperCamelCase ) - (1 - y) * np.log(1 - h )).mean() def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : Dict = np.dot(_UpperCamelCase , _UpperCamelCase ) return np.sum(y * scores - np.log(1 + np.exp(_UpperCamelCase ) ) ) def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__=70000 ): _lowerCamelCase : Union[str, Any] = np.zeros(x.shape[1] ) for iterations in range(_UpperCamelCase ): _lowerCamelCase : Tuple = np.dot(_UpperCamelCase , _UpperCamelCase ) _lowerCamelCase : str = sigmoid_function(_UpperCamelCase ) _lowerCamelCase : Tuple = np.dot(x.T , h - y ) / y.size _lowerCamelCase : Optional[int] = theta - alpha * gradient # updating the weights _lowerCamelCase : List[Any] = np.dot(_UpperCamelCase , _UpperCamelCase ) _lowerCamelCase : int = sigmoid_function(_UpperCamelCase ) _lowerCamelCase : str = cost_function(_UpperCamelCase , _UpperCamelCase ) if iterations % 100 == 0: print(f'''loss: {j} \t''' ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": lowercase__ = datasets.load_iris() lowercase__ = iris.data[:, :2] lowercase__ = (iris.target != 0) * 1 lowercase__ = 0.1 lowercase__ = logistic_reg(alpha, x, y, max_iterations=7_0000) print("""theta: """, theta) # printing the theta i.e our weights vector def _snake_case ( lowercase__ ): return sigmoid_function( np.dot(_UpperCamelCase , _UpperCamelCase ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color="""b""", label="""0""") plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color="""r""", label="""1""") (lowercase__) = (x[:, 0].min(), x[:, 0].max()) (lowercase__) = (x[:, 1].min(), x[:, 1].max()) (lowercase__) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) lowercase__ = np.c_[xxa.ravel(), xxa.ravel()] lowercase__ = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors="""black""") plt.legend() plt.show()
367
"""simple docstring""" import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency lowercase__ = { """E""": 12.70, """T""": 9.06, """A""": 8.17, """O""": 7.51, """I""": 6.97, """N""": 6.75, """S""": 6.33, """H""": 6.09, """R""": 5.99, """D""": 4.25, """L""": 4.03, """C""": 2.78, """U""": 2.76, """M""": 2.41, """W""": 2.36, """F""": 2.23, """G""": 2.02, """Y""": 1.97, """P""": 1.93, """B""": 1.29, """V""": 0.98, """K""": 0.77, """J""": 0.15, """X""": 0.15, """Q""": 0.10, """Z""": 0.07, } lowercase__ = """ETAOINSHRDLCUMWFGYPBVKJXQZ""" lowercase__ = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def _snake_case ( lowercase__ ): _lowerCamelCase : Tuple = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def _snake_case ( lowercase__ ): return x[0] def _snake_case ( lowercase__ ): _lowerCamelCase : List[Any] = get_letter_count(lowercase__ ) _lowerCamelCase : dict[int, list[str]] = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(lowercase__ ) _lowerCamelCase : dict[int, str] = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=lowercase__ ) _lowerCamelCase : Optional[int] = ''.join(freq_to_letter[freq] ) _lowerCamelCase : Any = list(freq_to_letter_str.items() ) freq_pairs.sort(key=lowercase__ , reverse=lowercase__ ) _lowerCamelCase : list[str] = [freq_pair[1] for freq_pair in freq_pairs] return "".join(lowercase__ ) def _snake_case ( lowercase__ ): _lowerCamelCase : str = get_frequency_order(lowercase__ ) _lowerCamelCase : Union[str, Any] = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
12
0
"""simple docstring""" import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class lowerCAmelCase__ ( a__, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = BertJapaneseTokenizer lowerCamelCase__ = False lowerCamelCase__ = True def A_ ( self ): super().setUp() _lowerCamelCase : Optional[int] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''こんにちは''', '''こん''', '''にちは''', '''ばんは''', '''##こん''', '''##にちは''', '''##ばんは''', '''世界''', '''##世界''', '''、''', '''##、''', '''。''', '''##。''', ] _lowerCamelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def A_ ( self , lowercase ): _lowerCamelCase : Tuple = '''こんにちは、世界。 \nこんばんは、世界。''' _lowerCamelCase : str = '''こんにちは 、 世界 。 こんばんは 、 世界 。''' return input_text, output_text def A_ ( self , lowercase ): _lowerCamelCase : int = self.get_input_output_texts(_lowerCamelCase ) _lowerCamelCase : List[Any] = tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) _lowerCamelCase : Union[str, Any] = tokenizer.decode(_lowerCamelCase , clean_up_tokenization_spaces=_lowerCamelCase ) return text, ids def A_ ( self ): pass # TODO add if relevant def A_ ( self ): pass # TODO add if relevant def A_ ( self ): pass # TODO add if relevant def A_ ( self ): _lowerCamelCase : str = self.tokenizer_class(self.vocab_file ) _lowerCamelCase : Optional[Any] = tokenizer.tokenize('こんにちは、世界。\nこんばんは、世界。' ) self.assertListEqual(_lowerCamelCase , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) def A_ ( self ): _lowerCamelCase : Dict = self.tokenizer_class(self.vocab_file , word_tokenizer_type='mecab' ) self.assertIsNotNone(_lowerCamelCase ) _lowerCamelCase : Union[str, Any] = '''こんにちは、世界。\nこんばんは、世界。''' _lowerCamelCase : Optional[int] = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) _lowerCamelCase : Tuple = os.path.join(self.tmpdirname , 'tokenizer.bin' ) with open(_lowerCamelCase , 'wb' ) as handle: pickle.dump(_lowerCamelCase , _lowerCamelCase ) with open(_lowerCamelCase , 'rb' ) as handle: _lowerCamelCase : Any = pickle.load(_lowerCamelCase ) _lowerCamelCase : Tuple = tokenizer_new.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) def A_ ( self ): _lowerCamelCase : Optional[Any] = MecabTokenizer(mecab_dic='ipadic' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def A_ ( self ): try: _lowerCamelCase : Any = MecabTokenizer(mecab_dic='unidic_lite' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def A_ ( self ): try: _lowerCamelCase : str = MecabTokenizer(mecab_dic='unidic' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def A_ ( self ): _lowerCamelCase : Union[str, Any] = MecabTokenizer(do_lower_case=_lowerCamelCase , mecab_dic='ipadic' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iphone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def A_ ( self ): try: _lowerCamelCase : List[str] = MecabTokenizer( do_lower_case=_lowerCamelCase , normalize_text=_lowerCamelCase , mecab_option='-d /usr/local/lib/mecab/dic/jumandic' ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れた', '\u3000', '。'] , ) def A_ ( self ): _lowerCamelCase : Any = MecabTokenizer(normalize_text=_lowerCamelCase , mecab_dic='ipadic' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', ' ', '。'] , ) @require_sudachi def A_ ( self ): _lowerCamelCase : Dict = self.tokenizer_class(self.vocab_file , word_tokenizer_type='sudachi' ) self.assertIsNotNone(_lowerCamelCase ) _lowerCamelCase : List[str] = '''こんにちは、世界。\nこんばんは、世界。''' _lowerCamelCase : Dict = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) _lowerCamelCase : Optional[Any] = os.path.join(self.tmpdirname , 'tokenizer.bin' ) with open(_lowerCamelCase , 'wb' ) as handle: pickle.dump(_lowerCamelCase , _lowerCamelCase ) with open(_lowerCamelCase , 'rb' ) as handle: _lowerCamelCase : int = pickle.load(_lowerCamelCase ) _lowerCamelCase : Optional[int] = tokenizer_new.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) @require_sudachi def A_ ( self ): _lowerCamelCase : List[Any] = SudachiTokenizer(sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , [' ', '\t', 'アップル', 'ストア', 'で', 'iPhone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', ' ', '。', ' ', ' '] , ) @require_sudachi def A_ ( self ): _lowerCamelCase : Any = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='A' ) self.assertListEqual(tokenizer.tokenize('外国人参政権' ) , ['外国', '人', '参政', '権'] ) @require_sudachi def A_ ( self ): _lowerCamelCase : Dict = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='B' ) self.assertListEqual(tokenizer.tokenize('外国人参政権' ) , ['外国人', '参政権'] ) @require_sudachi def A_ ( self ): _lowerCamelCase : str = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='C' ) self.assertListEqual(tokenizer.tokenize('外国人参政権' ) , ['外国人参政権'] ) @require_sudachi def A_ ( self ): _lowerCamelCase : Dict = SudachiTokenizer(do_lower_case=_lowerCamelCase , sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , [' ', '\t', 'アップル', 'ストア', 'で', 'iphone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', ' ', '。', ' ', ' '] , ) @require_sudachi def A_ ( self ): _lowerCamelCase : Optional[int] = SudachiTokenizer(normalize_text=_lowerCamelCase , sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , [' ', '\t', 'アップル', 'ストア', 'で', 'iPhone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', '\u3000', '。', ' ', ' '] , ) @require_sudachi def A_ ( self ): _lowerCamelCase : Any = SudachiTokenizer(trim_whitespace=_lowerCamelCase , sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) @require_jumanpp def A_ ( self ): _lowerCamelCase : Any = self.tokenizer_class(self.vocab_file , word_tokenizer_type='jumanpp' ) self.assertIsNotNone(_lowerCamelCase ) _lowerCamelCase : Dict = '''こんにちは、世界。\nこんばんは、世界。''' _lowerCamelCase : Any = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) _lowerCamelCase : Union[str, Any] = os.path.join(self.tmpdirname , 'tokenizer.bin' ) with open(_lowerCamelCase , 'wb' ) as handle: pickle.dump(_lowerCamelCase , _lowerCamelCase ) with open(_lowerCamelCase , 'rb' ) as handle: _lowerCamelCase : Any = pickle.load(_lowerCamelCase ) _lowerCamelCase : Tuple = tokenizer_new.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) @require_jumanpp def A_ ( self ): _lowerCamelCase : List[str] = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , ) @require_jumanpp def A_ ( self ): _lowerCamelCase : Dict = JumanppTokenizer(do_lower_case=_lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iphone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , ) @require_jumanpp def A_ ( self ): _lowerCamelCase : Any = JumanppTokenizer(normalize_text=_lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['ア', 'ッ', 'フ', '゚', 'ル', 'ストア', 'で', 'iPhone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , ) @require_jumanpp def A_ ( self ): _lowerCamelCase : Optional[int] = JumanppTokenizer(trim_whitespace=_lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れた', '。'] , ) @require_jumanpp def A_ ( self ): _lowerCamelCase : Optional[int] = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize('ありがとうございますm(_ _)m見つけるのが大変です。' ) , ['ありがとう', 'ございます', 'm(_ _)m', '見つける', 'の', 'が', '大変です', '。'] , ) def A_ ( self ): _lowerCamelCase : Dict = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こんにちは''', '''こん''', '''にちは''', '''ばんは''', '''##こん''', '''##にちは''', '''##ばんは'''] _lowerCamelCase : List[Any] = {} for i, token in enumerate(_lowerCamelCase ): _lowerCamelCase : Any = i _lowerCamelCase : Tuple = WordpieceTokenizer(vocab=_lowerCamelCase , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('こんにちは' ) , ['こんにちは'] ) self.assertListEqual(tokenizer.tokenize('こんばんは' ) , ['こん', '##ばんは'] ) self.assertListEqual(tokenizer.tokenize('こんばんは こんばんにちは こんにちは' ) , ['こん', '##ばんは', '[UNK]', 'こんにちは'] ) def A_ ( self ): _lowerCamelCase : str = BertJapaneseTokenizer.from_pretrained('nlp-waseda/roberta-base-japanese-with-auto-jumanpp' ) _lowerCamelCase : List[str] = tokenizer.subword_tokenizer _lowerCamelCase : str = subword_tokenizer.tokenize('国境 の 長い トンネル を 抜ける と 雪国 であった 。' ) self.assertListEqual(_lowerCamelCase , ['▁国境', '▁の', '▁長い', '▁トンネル', '▁を', '▁抜ける', '▁と', '▁雪', '国', '▁であった', '▁。'] ) _lowerCamelCase : int = subword_tokenizer.tokenize('こんばんは こんばん にち は こんにちは' ) self.assertListEqual(_lowerCamelCase , ['▁こん', 'ばん', 'は', '▁こん', 'ばん', '▁に', 'ち', '▁は', '▁こんにちは'] ) def A_ ( self ): _lowerCamelCase : Union[str, Any] = self.tokenizer_class.from_pretrained('cl-tohoku/bert-base-japanese' ) _lowerCamelCase : Optional[int] = tokenizer.encode('ありがとう。' , add_special_tokens=_lowerCamelCase ) _lowerCamelCase : Optional[int] = tokenizer.encode('どういたしまして。' , add_special_tokens=_lowerCamelCase ) _lowerCamelCase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase ) _lowerCamelCase : Optional[Any] = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase , _lowerCamelCase ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class lowerCAmelCase__ ( a__, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = BertJapaneseTokenizer lowerCamelCase__ = False def A_ ( self ): super().setUp() _lowerCamelCase : Optional[Any] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。'''] _lowerCamelCase : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def A_ ( self , **lowercase ): return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type='character' , **_lowerCamelCase ) def A_ ( self , lowercase ): _lowerCamelCase : int = '''こんにちは、世界。 \nこんばんは、世界。''' _lowerCamelCase : Optional[int] = '''こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。''' return input_text, output_text def A_ ( self ): pass # TODO add if relevant def A_ ( self ): pass # TODO add if relevant def A_ ( self ): pass # TODO add if relevant def A_ ( self ): _lowerCamelCase : Optional[Any] = self.tokenizer_class(self.vocab_file , subword_tokenizer_type='character' ) _lowerCamelCase : List[str] = tokenizer.tokenize('こんにちは、世界。 \nこんばんは、世界。' ) self.assertListEqual( _lowerCamelCase , ['こ', 'ん', 'に', 'ち', 'は', '、', '世', '界', '。', 'こ', 'ん', 'ば', 'ん', 'は', '、', '世', '界', '。'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] ) def A_ ( self ): _lowerCamelCase : Any = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。'''] _lowerCamelCase : str = {} for i, token in enumerate(_lowerCamelCase ): _lowerCamelCase : Optional[int] = i _lowerCamelCase : Dict = CharacterTokenizer(vocab=_lowerCamelCase , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('こんにちは' ) , ['こ', 'ん', 'に', 'ち', 'は'] ) self.assertListEqual(tokenizer.tokenize('こんにちほ' ) , ['こ', 'ん', 'に', 'ち', '[UNK]'] ) def A_ ( self ): _lowerCamelCase : str = self.tokenizer_class.from_pretrained('cl-tohoku/bert-base-japanese-char' ) _lowerCamelCase : Optional[Any] = tokenizer.encode('ありがとう。' , add_special_tokens=_lowerCamelCase ) _lowerCamelCase : str = tokenizer.encode('どういたしまして。' , add_special_tokens=_lowerCamelCase ) _lowerCamelCase : List[Any] = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase ) _lowerCamelCase : Optional[Any] = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase , _lowerCamelCase ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): _lowerCamelCase : str = '''cl-tohoku/bert-base-japanese''' _lowerCamelCase : Tuple = AutoTokenizer.from_pretrained(_lowerCamelCase ) self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): _lowerCamelCase : Union[str, Any] = '''cl-tohoku/bert-base-japanese''' with self.assertLogs('transformers' , level='WARNING' ) as cm: BertTokenizer.from_pretrained(_lowerCamelCase ) self.assertTrue( cm.records[0].message.startswith( 'The tokenizer class you load from this checkpoint is not the same type as the class this function' ' is called from.' ) ) _lowerCamelCase : Optional[Any] = '''bert-base-cased''' with self.assertLogs('transformers' , level='WARNING' ) as cm: BertJapaneseTokenizer.from_pretrained(_lowerCamelCase ) self.assertTrue( cm.records[0].message.startswith( 'The tokenizer class you load from this checkpoint is not the same type as the class this function' ' is called from.' ) )
368
"""simple docstring""" import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig lowercase__ = logging.get_logger(__name__) class lowerCAmelCase__ : '''simple docstring''' def __init__( self , lowercase , lowercase ): _lowerCamelCase : Dict = question_encoder _lowerCamelCase : List[Any] = generator _lowerCamelCase : Optional[Any] = self.question_encoder def A_ ( self , lowercase ): if os.path.isfile(lowercase ): raise ValueError(F'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(lowercase , exist_ok=lowercase ) _lowerCamelCase : List[Any] = os.path.join(lowercase , 'question_encoder_tokenizer' ) _lowerCamelCase : Dict = os.path.join(lowercase , 'generator_tokenizer' ) self.question_encoder.save_pretrained(lowercase ) self.generator.save_pretrained(lowercase ) @classmethod def A_ ( cls , lowercase , **lowercase ): # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer _lowerCamelCase : Optional[int] = kwargs.pop('config' , lowercase ) if config is None: _lowerCamelCase : int = RagConfig.from_pretrained(lowercase ) _lowerCamelCase : Optional[Any] = AutoTokenizer.from_pretrained( lowercase , config=config.question_encoder , subfolder='question_encoder_tokenizer' ) _lowerCamelCase : Dict = AutoTokenizer.from_pretrained( lowercase , config=config.generator , subfolder='generator_tokenizer' ) return cls(question_encoder=lowercase , generator=lowercase ) def __call__( self , *lowercase , **lowercase ): return self.current_tokenizer(*lowercase , **lowercase ) def A_ ( self , *lowercase , **lowercase ): return self.generator.batch_decode(*lowercase , **lowercase ) def A_ ( self , *lowercase , **lowercase ): return self.generator.decode(*lowercase , **lowercase ) def A_ ( self ): _lowerCamelCase : Any = self.question_encoder def A_ ( self ): _lowerCamelCase : Optional[Any] = self.generator def A_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = "longest" , lowercase = None , lowercase = True , **lowercase , ): warnings.warn( '`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ' 'regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ' 'context manager to prepare your targets. See the documentation of your specific tokenizer for more ' 'details' , lowercase , ) if max_length is None: _lowerCamelCase : Optional[Any] = self.current_tokenizer.model_max_length _lowerCamelCase : Optional[Any] = self( lowercase , add_special_tokens=lowercase , return_tensors=lowercase , max_length=lowercase , padding=lowercase , truncation=lowercase , **lowercase , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: _lowerCamelCase : int = self.current_tokenizer.model_max_length _lowerCamelCase : str = self( text_target=lowercase , add_special_tokens=lowercase , return_tensors=lowercase , padding=lowercase , max_length=lowercase , truncation=lowercase , **lowercase , ) _lowerCamelCase : int = labels['input_ids'] return model_inputs
12
0
"""simple docstring""" import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class lowerCAmelCase__ ( __UpperCamelCase ): '''simple docstring''' def __init__( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = False , lowercase = False , lowercase = None , lowercase = None , **lowercase , ): super().__init__( _lowerCAmelCase , split=_lowerCAmelCase , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase , keep_in_memory=_lowerCAmelCase , streaming=_lowerCAmelCase , num_proc=_lowerCAmelCase , **_lowerCAmelCase , ) _lowerCamelCase : List[Any] = field _lowerCamelCase : Union[str, Any] = path_or_paths if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else {self.split: path_or_paths} _lowerCamelCase : List[str] = Json( cache_dir=_lowerCAmelCase , data_files=_lowerCAmelCase , features=_lowerCAmelCase , field=_lowerCAmelCase , **_lowerCAmelCase , ) def A_ ( self ): # Build iterable dataset if self.streaming: _lowerCamelCase : Optional[Any] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: _lowerCamelCase : Union[str, Any] = None _lowerCamelCase : Optional[int] = None _lowerCamelCase : List[Any] = None _lowerCamelCase : List[Any] = None self.builder.download_and_prepare( download_config=_lowerCAmelCase , download_mode=_lowerCAmelCase , verification_mode=_lowerCAmelCase , base_path=_lowerCAmelCase , num_proc=self.num_proc , ) _lowerCamelCase : Optional[Any] = self.builder.as_dataset( split=self.split , verification_mode=_lowerCAmelCase , in_memory=self.keep_in_memory ) return dataset class lowerCAmelCase__ : '''simple docstring''' def __init__( self , lowercase , lowercase , lowercase = None , lowercase = None , **lowercase , ): if num_proc is not None and num_proc <= 0: raise ValueError(F'''num_proc {num_proc} must be an integer > 0.''' ) _lowerCamelCase : List[str] = dataset _lowerCamelCase : Optional[Any] = path_or_buf _lowerCamelCase : Tuple = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE _lowerCamelCase : Union[str, Any] = num_proc _lowerCamelCase : Any = """utf-8""" _lowerCamelCase : List[Any] = to_json_kwargs def A_ ( self ): _lowerCamelCase : int = self.to_json_kwargs.pop('path_or_buf' , _lowerCAmelCase ) _lowerCamelCase : Tuple = self.to_json_kwargs.pop('orient' , 'records' ) _lowerCamelCase : List[Any] = self.to_json_kwargs.pop('lines' , True if orient == 'records' else False ) _lowerCamelCase : List[str] = self.to_json_kwargs.pop('index' , False if orient in ['split', 'table'] else True ) _lowerCamelCase : Dict = self.to_json_kwargs.pop('compression' , _lowerCAmelCase ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F'''`datasets` currently does not support {compression} compression''' ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , 'wb' , compression=_lowerCAmelCase ) as buffer: _lowerCamelCase : str = self._write(file_obj=_lowerCAmelCase , orient=_lowerCAmelCase , lines=_lowerCAmelCase , index=_lowerCAmelCase , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( F'''The compression parameter is not supported when writing to a buffer, but compression={compression}''' ' was passed. Please provide a local path instead.' ) _lowerCamelCase : Union[str, Any] = self._write( file_obj=self.path_or_buf , orient=_lowerCAmelCase , lines=_lowerCAmelCase , index=_lowerCAmelCase , **self.to_json_kwargs ) return written def A_ ( self , lowercase ): _lowerCamelCase : List[str] = args _lowerCamelCase : Tuple = query_table( table=self.dataset.data , key=slice(_lowerCAmelCase , offset + self.batch_size ) , indices=self.dataset._indices , ) _lowerCamelCase : Optional[int] = batch.to_pandas().to_json( path_or_buf=_lowerCAmelCase , orient=_lowerCAmelCase , lines=_lowerCAmelCase , index=_lowerCAmelCase , **_lowerCAmelCase ) if not json_str.endswith('\n' ): json_str += "\n" return json_str.encode(self.encoding ) def A_ ( self , lowercase , lowercase , lowercase , lowercase , **lowercase , ): _lowerCamelCase : List[Any] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating json from Arrow format' , ): _lowerCamelCase : Any = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(_lowerCAmelCase ) else: _lowerCamelCase : str = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , _lowerCAmelCase , _lowerCAmelCase )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating json from Arrow format' , ): written += file_obj.write(_lowerCAmelCase ) return written
369
"""simple docstring""" def _snake_case ( lowercase__ = 10 ): if not isinstance(lowercase__ , lowercase__ ) or n < 0: raise ValueError('Invalid input' ) _lowerCamelCase : str = 10**n _lowerCamelCase : Union[str, Any] = 28433 * (pow(2 , 7830457 , lowercase__ )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F"{solution(10) = }")
12
0
"""simple docstring""" from ...processing_utils import ProcessorMixin class lowerCAmelCase__ ( _UpperCAmelCase ): '''simple docstring''' lowerCamelCase__ = """WhisperFeatureExtractor""" lowerCamelCase__ = """WhisperTokenizer""" def __init__( self , lowercase , lowercase ): super().__init__(lowercase_ , lowercase_ ) _lowerCamelCase : Any = self.feature_extractor _lowerCamelCase : Tuple = False def A_ ( self , lowercase=None , lowercase=None , lowercase=True ): return self.tokenizer.get_decoder_prompt_ids(task=lowercase_ , language=lowercase_ , no_timestamps=lowercase_ ) def __call__( self , *lowercase , **lowercase ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*lowercase_ , **lowercase_ ) _lowerCamelCase : str = kwargs.pop('audio' , lowercase_ ) _lowerCamelCase : Tuple = kwargs.pop('sampling_rate' , lowercase_ ) _lowerCamelCase : Dict = kwargs.pop('text' , lowercase_ ) if len(lowercase_ ) > 0: _lowerCamelCase : Tuple = args[0] _lowerCamelCase : Any = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: _lowerCamelCase : List[Any] = self.feature_extractor(lowercase_ , *lowercase_ , sampling_rate=lowercase_ , **lowercase_ ) if text is not None: _lowerCamelCase : Any = self.tokenizer(lowercase_ , **lowercase_ ) if text is None: return inputs elif audio is None: return encodings else: _lowerCamelCase : List[Any] = encodings["""input_ids"""] return inputs def A_ ( self , *lowercase , **lowercase ): return self.tokenizer.batch_decode(*lowercase_ , **lowercase_ ) def A_ ( self , *lowercase , **lowercase ): return self.tokenizer.decode(*lowercase_ , **lowercase_ ) def A_ ( self , lowercase , lowercase="np" ): return self.tokenizer.get_prompt_ids(lowercase_ , return_tensors=lowercase_ )
370
"""simple docstring""" import argparse import datetime def _snake_case ( lowercase__ ): _lowerCamelCase : Dict = { '0': 'Sunday', '1': 'Monday', '2': 'Tuesday', '3': 'Wednesday', '4': 'Thursday', '5': 'Friday', '6': 'Saturday', } _lowerCamelCase : str = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(lowercase__ ) < 11: raise ValueError('Must be 10 characters long' ) # Get month _lowerCamelCase : int = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError('Month must be between 1 - 12' ) _lowerCamelCase : str = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError('Date separator must be \'-\' or \'/\'' ) # Get day _lowerCamelCase : int = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError('Date must be between 1 - 31' ) # Get second separator _lowerCamelCase : str = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError('Date separator must be \'-\' or \'/\'' ) # Get year _lowerCamelCase : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8500: raise ValueError( 'Year out of range. There has to be some sort of limit...right?' ) # Get datetime obj for validation _lowerCamelCase : str = datetime.date(int(lowercase__ ) , int(lowercase__ ) , int(lowercase__ ) ) # Start math if m <= 2: _lowerCamelCase : str = y - 1 _lowerCamelCase : Tuple = m + 12 # maths var _lowerCamelCase : int = int(str(lowercase__ )[:2] ) _lowerCamelCase : int = int(str(lowercase__ )[2:] ) _lowerCamelCase : int = int(2.6 * m - 5.3_9 ) _lowerCamelCase : int = int(c / 4 ) _lowerCamelCase : int = int(k / 4 ) _lowerCamelCase : int = int(d + k ) _lowerCamelCase : int = int(t + u + v + x ) _lowerCamelCase : int = int(z - (2 * c) ) _lowerCamelCase : int = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError('The date was evaluated incorrectly. Contact developer.' ) # Response _lowerCamelCase : str = f'''Your date {date_input}, is a {days[str(lowercase__ )]}!''' return response if __name__ == "__main__": import doctest doctest.testmod() lowercase__ = argparse.ArgumentParser( description=( """Find out what day of the week nearly any date is or was. Enter """ """date as a string in the mm-dd-yyyy or mm/dd/yyyy format""" ) ) parser.add_argument( """date_input""", type=str, help="""Date as a string (mm-dd-yyyy or mm/dd/yyyy)""" ) lowercase__ = parser.parse_args() zeller(args.date_input)
12
0
import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def _snake_case ( lowercase__ , lowercase__=1 ): if n_shave_prefix_segments >= 0: return ".".join(path.split('.' )[n_shave_prefix_segments:] ) else: return ".".join(path.split('.' )[:n_shave_prefix_segments] ) def _snake_case ( lowercase__ , lowercase__=0 ): _lowerCamelCase : str = [] for old_item in old_list: _lowerCamelCase : Any = old_item.replace('in_layers.0' , 'norm1' ) _lowerCamelCase : Tuple = new_item.replace('in_layers.2' , 'conv1' ) _lowerCamelCase : Optional[int] = new_item.replace('out_layers.0' , 'norm2' ) _lowerCamelCase : Union[str, Any] = new_item.replace('out_layers.3' , 'conv2' ) _lowerCamelCase : Tuple = new_item.replace('emb_layers.1' , 'time_emb_proj' ) _lowerCamelCase : List[str] = new_item.replace('skip_connection' , 'conv_shortcut' ) _lowerCamelCase : List[str] = shave_segments(__a , n_shave_prefix_segments=__a ) mapping.append({'old': old_item, 'new': new_item} ) return mapping def _snake_case ( lowercase__ , lowercase__=0 ): _lowerCamelCase : Union[str, Any] = [] for old_item in old_list: _lowerCamelCase : Union[str, Any] = old_item _lowerCamelCase : str = new_item.replace('norm.weight' , 'group_norm.weight' ) _lowerCamelCase : Dict = new_item.replace('norm.bias' , 'group_norm.bias' ) _lowerCamelCase : List[Any] = new_item.replace('proj_out.weight' , 'proj_attn.weight' ) _lowerCamelCase : Dict = new_item.replace('proj_out.bias' , 'proj_attn.bias' ) _lowerCamelCase : Optional[int] = shave_segments(__a , n_shave_prefix_segments=__a ) mapping.append({'old': old_item, 'new': new_item} ) return mapping def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__=None , lowercase__=None , lowercase__=None ): assert isinstance(__a , __a ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): _lowerCamelCase : List[Any] = old_checkpoint[path] _lowerCamelCase : Optional[int] = old_tensor.shape[0] // 3 _lowerCamelCase : List[Any] = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) _lowerCamelCase : Dict = old_tensor.shape[0] // config['num_head_channels'] // 3 _lowerCamelCase : Optional[int] = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Dict = old_tensor.split(channels // num_heads , dim=1 ) _lowerCamelCase : Tuple = query.reshape(__a ) _lowerCamelCase : Any = key.reshape(__a ) _lowerCamelCase : int = value.reshape(__a ) for path in paths: _lowerCamelCase : Optional[Any] = path['new'] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here _lowerCamelCase : Dict = new_path.replace('middle_block.0' , 'mid_block.resnets.0' ) _lowerCamelCase : List[str] = new_path.replace('middle_block.1' , 'mid_block.attentions.0' ) _lowerCamelCase : List[str] = new_path.replace('middle_block.2' , 'mid_block.resnets.1' ) if additional_replacements is not None: for replacement in additional_replacements: _lowerCamelCase : Optional[Any] = new_path.replace(replacement['old'] , replacement['new'] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: _lowerCamelCase : Union[str, Any] = old_checkpoint[path['old']][:, :, 0] else: _lowerCamelCase : Optional[Any] = old_checkpoint[path['old']] def _snake_case ( lowercase__ , lowercase__ ): _lowerCamelCase : Dict = {} _lowerCamelCase : Union[str, Any] = checkpoint['time_embed.0.weight'] _lowerCamelCase : Union[str, Any] = checkpoint['time_embed.0.bias'] _lowerCamelCase : Optional[Any] = checkpoint['time_embed.2.weight'] _lowerCamelCase : str = checkpoint['time_embed.2.bias'] _lowerCamelCase : Union[str, Any] = checkpoint['input_blocks.0.0.weight'] _lowerCamelCase : Dict = checkpoint['input_blocks.0.0.bias'] _lowerCamelCase : List[Any] = checkpoint['out.0.weight'] _lowerCamelCase : Any = checkpoint['out.0.bias'] _lowerCamelCase : str = checkpoint['out.2.weight'] _lowerCamelCase : Union[str, Any] = checkpoint['out.2.bias'] # Retrieves the keys for the input blocks only _lowerCamelCase : Tuple = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'input_blocks' in layer} ) _lowerCamelCase : Optional[int] = { layer_id: [key for key in checkpoint if f'''input_blocks.{layer_id}''' in key] for layer_id in range(__a ) } # Retrieves the keys for the middle blocks only _lowerCamelCase : Dict = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'middle_block' in layer} ) _lowerCamelCase : List[Any] = { layer_id: [key for key in checkpoint if f'''middle_block.{layer_id}''' in key] for layer_id in range(__a ) } # Retrieves the keys for the output blocks only _lowerCamelCase : Optional[Any] = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'output_blocks' in layer} ) _lowerCamelCase : List[Any] = { layer_id: [key for key in checkpoint if f'''output_blocks.{layer_id}''' in key] for layer_id in range(__a ) } for i in range(1 , __a ): _lowerCamelCase : List[Any] = (i - 1) // (config['num_res_blocks'] + 1) _lowerCamelCase : Tuple = (i - 1) % (config['num_res_blocks'] + 1) _lowerCamelCase : Any = [key for key in input_blocks[i] if f'''input_blocks.{i}.0''' in key] _lowerCamelCase : Optional[int] = [key for key in input_blocks[i] if f'''input_blocks.{i}.1''' in key] if f'''input_blocks.{i}.0.op.weight''' in checkpoint: _lowerCamelCase : List[str] = checkpoint[ f'''input_blocks.{i}.0.op.weight''' ] _lowerCamelCase : Optional[int] = checkpoint[ f'''input_blocks.{i}.0.op.bias''' ] continue _lowerCamelCase : Tuple = renew_resnet_paths(__a ) _lowerCamelCase : int = {'old': f'''input_blocks.{i}.0''', 'new': f'''down_blocks.{block_id}.resnets.{layer_in_block_id}'''} _lowerCamelCase : str = {'old': 'resnets.2.op', 'new': 'downsamplers.0.op'} assign_to_checkpoint( __a , __a , __a , additional_replacements=[meta_path, resnet_op] , config=__a ) if len(__a ): _lowerCamelCase : List[Any] = renew_attention_paths(__a ) _lowerCamelCase : Union[str, Any] = { 'old': f'''input_blocks.{i}.1''', 'new': f'''down_blocks.{block_id}.attentions.{layer_in_block_id}''', } _lowerCamelCase : Union[str, Any] = { f'''input_blocks.{i}.1.qkv.bias''': { 'key': f'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''', 'query': f'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''', 'value': f'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''', }, f'''input_blocks.{i}.1.qkv.weight''': { 'key': f'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''', 'query': f'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''', 'value': f'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''', }, } assign_to_checkpoint( __a , __a , __a , additional_replacements=[meta_path] , attention_paths_to_split=__a , config=__a , ) _lowerCamelCase : Optional[int] = middle_blocks[0] _lowerCamelCase : Union[str, Any] = middle_blocks[1] _lowerCamelCase : Optional[int] = middle_blocks[2] _lowerCamelCase : List[Any] = renew_resnet_paths(__a ) assign_to_checkpoint(__a , __a , __a , config=__a ) _lowerCamelCase : Optional[Any] = renew_resnet_paths(__a ) assign_to_checkpoint(__a , __a , __a , config=__a ) _lowerCamelCase : List[str] = renew_attention_paths(__a ) _lowerCamelCase : Optional[int] = { 'middle_block.1.qkv.bias': { 'key': 'mid_block.attentions.0.key.bias', 'query': 'mid_block.attentions.0.query.bias', 'value': 'mid_block.attentions.0.value.bias', }, 'middle_block.1.qkv.weight': { 'key': 'mid_block.attentions.0.key.weight', 'query': 'mid_block.attentions.0.query.weight', 'value': 'mid_block.attentions.0.value.weight', }, } assign_to_checkpoint( __a , __a , __a , attention_paths_to_split=__a , config=__a ) for i in range(__a ): _lowerCamelCase : Tuple = i // (config['num_res_blocks'] + 1) _lowerCamelCase : Optional[int] = i % (config['num_res_blocks'] + 1) _lowerCamelCase : int = [shave_segments(__a , 2 ) for name in output_blocks[i]] _lowerCamelCase : Optional[Any] = {} for layer in output_block_layers: _lowerCamelCase, _lowerCamelCase : Optional[Any] = layer.split('.' )[0], shave_segments(__a , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(__a ) else: _lowerCamelCase : Optional[Any] = [layer_name] if len(__a ) > 1: _lowerCamelCase : Optional[int] = [key for key in output_blocks[i] if f'''output_blocks.{i}.0''' in key] _lowerCamelCase : str = [key for key in output_blocks[i] if f'''output_blocks.{i}.1''' in key] _lowerCamelCase : Tuple = renew_resnet_paths(__a ) _lowerCamelCase : Any = renew_resnet_paths(__a ) _lowerCamelCase : Any = {'old': f'''output_blocks.{i}.0''', 'new': f'''up_blocks.{block_id}.resnets.{layer_in_block_id}'''} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) if ["conv.weight", "conv.bias"] in output_block_list.values(): _lowerCamelCase : str = list(output_block_list.values() ).index(['conv.weight', 'conv.bias'] ) _lowerCamelCase : Any = checkpoint[ f'''output_blocks.{i}.{index}.conv.weight''' ] _lowerCamelCase : List[Any] = checkpoint[ f'''output_blocks.{i}.{index}.conv.bias''' ] # Clear attentions as they have been attributed above. if len(__a ) == 2: _lowerCamelCase : Union[str, Any] = [] if len(__a ): _lowerCamelCase : Tuple = renew_attention_paths(__a ) _lowerCamelCase : Optional[Any] = { 'old': f'''output_blocks.{i}.1''', 'new': f'''up_blocks.{block_id}.attentions.{layer_in_block_id}''', } _lowerCamelCase : Any = { f'''output_blocks.{i}.1.qkv.bias''': { 'key': f'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''', 'query': f'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''', 'value': f'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''', }, f'''output_blocks.{i}.1.qkv.weight''': { 'key': f'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''', 'query': f'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''', 'value': f'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''', }, } assign_to_checkpoint( __a , __a , __a , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any('qkv' in key for key in attentions ) else None , config=__a , ) else: _lowerCamelCase : Any = renew_resnet_paths(__a , n_shave_prefix_segments=1 ) for path in resnet_0_paths: _lowerCamelCase : Any = '.'.join(['output_blocks', str(__a ), path['old']] ) _lowerCamelCase : List[str] = '.'.join(['up_blocks', str(__a ), 'resnets', str(__a ), path['new']] ) _lowerCamelCase : Optional[int] = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the architecture.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") lowercase__ = parser.parse_args() lowercase__ = torch.load(args.checkpoint_path) with open(args.config_file) as f: lowercase__ = json.loads(f.read()) lowercase__ = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] lowercase__ = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: lowercase__ = DDPMScheduler.from_config("""/""".join(args.checkpoint_path.split("""/""")[:-1])) lowercase__ = VQModel.from_pretrained("""/""".join(args.checkpoint_path.split("""/""")[:-1])) lowercase__ = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
371
"""simple docstring""" import re def _snake_case ( lowercase__ ): _lowerCamelCase : Optional[int] = re.compile(r'^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$' ) if match := re.search(lowercase__ , lowercase__ ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator("""+918827897895"""))
12
0
"""simple docstring""" import os from datetime import datetime as dt from github import Github lowercase__ = [ """good first issue""", """feature request""", """wip""", ] def _snake_case ( ): _lowerCamelCase : Optional[Any] = Github(os.environ['GITHUB_TOKEN'] ) _lowerCamelCase : List[Any] = g.get_repo('huggingface/accelerate' ) _lowerCamelCase : Union[str, Any] = repo.get_issues(state='open' ) for issue in open_issues: _lowerCamelCase : Union[str, Any] = sorted([comment for comment in issue.get_comments()] , key=lambda lowercase__ : i.created_at , reverse=__lowerCamelCase ) _lowerCamelCase : Any = comments[0] if len(__lowerCamelCase ) > 0 else None _lowerCamelCase : Optional[Any] = dt.utcnow() _lowerCamelCase : Optional[int] = (current_time - issue.updated_at).days _lowerCamelCase : str = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state='closed' ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) if __name__ == "__main__": main()
350
"""simple docstring""" # XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path lowercase__ = Path(__file__).resolve().parents[3] / """src""" sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) lowercase__ = {"""base""": """patrickvonplaten/wav2vec2_tiny_random""", """robust""": """patrickvonplaten/wav2vec2_tiny_random_robust"""} lowercase__ = """zero2""" lowercase__ = """zero3""" lowercase__ = [ZEROa, ZEROa] def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param _lowerCamelCase : List[str] = parameterized.to_safe_name('_'.join(str(lowercase__ ) for x in param.args ) ) return f'''{func.__name__}_{param_based_name}''' # Cartesian-product of zero stages with models to test lowercase__ = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class lowerCAmelCase__ ( lowercase ): '''simple docstring''' @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) def A_ ( self , lowercase ): # XXX: run_asr is premature and doesn't save any results # so all we check for now is that the process didn't fail pass def A_ ( self , lowercase , lowercase , lowercase = 10 , lowercase = True , lowercase = True , lowercase = True , ): _lowerCamelCase : List[str] = models[model] _lowerCamelCase : Optional[int] = self.run_trainer( stage=lowercase , model_name=lowercase , eval_steps=lowercase , num_train_epochs=1 , distributed=lowercase , fpaa=lowercase , ) self.do_checks(lowercase ) return output_dir def A_ ( self , lowercase , lowercase , lowercase = 10 , lowercase = 1 , lowercase = True , lowercase = True , ): _lowerCamelCase : List[str] = self.get_auto_remove_tmp_dir('./xxx' , after=lowercase ) _lowerCamelCase : Any = F''' --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(lowercase )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none '''.split() if fpaa: args.extend(['--fp16'] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files _lowerCamelCase : Optional[int] = F'''--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'''.split() _lowerCamelCase : Optional[Any] = [F'''{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'''] _lowerCamelCase : Dict = self.get_launcher(lowercase ) _lowerCamelCase : Union[str, Any] = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(lowercase , env=self.get_env() ) return output_dir def A_ ( self , lowercase=False ): # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup # - it won't be able to handle that # 2. for now testing with just 2 gpus max (since some quality tests may give different # results with mode gpus because we use very little data) _lowerCamelCase : Any = min(2 , get_gpu_count() ) if distributed else 1 return F'''deepspeed --num_nodes 1 --num_gpus {num_gpus}'''.split()
12
0
"""simple docstring""" def _snake_case ( lowercase__ , lowercase__ = 0 ): _lowerCamelCase : Optional[int] = length or len(_snake_case ) _lowerCamelCase : List[str] = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: _lowerCamelCase : str = list_data[i + 1], list_data[i] _lowerCamelCase : Dict = True return list_data if not swapped else bubble_sort(_snake_case , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
351
"""simple docstring""" from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging lowercase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = ["""pixel_values"""] def __init__( self , lowercase = True , lowercase = 1 / 255 , lowercase = True , lowercase = 8 , **lowercase , ): super().__init__(**lowercase ) _lowerCamelCase : Optional[Any] = do_rescale _lowerCamelCase : Union[str, Any] = rescale_factor _lowerCamelCase : Any = do_pad _lowerCamelCase : Optional[int] = pad_size def A_ ( self , lowercase , lowercase , lowercase = None , **lowercase ): return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase ) def A_ ( self , lowercase , lowercase , lowercase = None ): _lowerCamelCase, _lowerCamelCase : Tuple = get_image_size(lowercase ) _lowerCamelCase : Union[str, Any] = (old_height // size + 1) * size - old_height _lowerCamelCase : Tuple = (old_width // size + 1) * size - old_width return pad(lowercase , ((0, pad_height), (0, pad_width)) , mode='symmetric' , data_format=lowercase ) def A_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = ChannelDimension.FIRST , **lowercase , ): _lowerCamelCase : List[str] = do_rescale if do_rescale is not None else self.do_rescale _lowerCamelCase : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCamelCase : Any = do_pad if do_pad is not None else self.do_pad _lowerCamelCase : int = pad_size if pad_size is not None else self.pad_size _lowerCamelCase : Dict = make_list_of_images(lowercase ) if not valid_images(lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. _lowerCamelCase : Dict = [to_numpy_array(lowercase ) for image in images] if do_rescale: _lowerCamelCase : str = [self.rescale(image=lowercase , scale=lowercase ) for image in images] if do_pad: _lowerCamelCase : str = [self.pad(lowercase , size=lowercase ) for image in images] _lowerCamelCase : Any = [to_channel_dimension_format(lowercase , lowercase ) for image in images] _lowerCamelCase : Union[str, Any] = {'pixel_values': images} return BatchFeature(data=lowercase , tensor_type=lowercase )
12
0
import requests lowercase__ = """https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=""" def _snake_case ( lowercase__ ): _lowerCamelCase : Dict = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page['articles'] , 1 ): print(f'''{i}.) {article['title']}''' ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key="""<Your BBC News API key goes here>""")
352
"""simple docstring""" import os import string import sys lowercase__ = 1 << 8 lowercase__ = { """tab""": ord("""\t"""), """newline""": ord("""\r"""), """esc""": 27, """up""": 65 + ARROW_KEY_FLAG, """down""": 66 + ARROW_KEY_FLAG, """right""": 67 + ARROW_KEY_FLAG, """left""": 68 + ARROW_KEY_FLAG, """mod_int""": 91, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 50, """delete""": 51, """pg_up""": 53, """pg_down""": 54, } lowercase__ = KEYMAP["""up"""] lowercase__ = KEYMAP["""left"""] if sys.platform == "win32": lowercase__ = [] lowercase__ = { B"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, B"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(10): lowercase__ = ord(str(i)) def _snake_case ( ): if os.name == "nt": import msvcrt _lowerCamelCase : Any = 'mbcs' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(lowercase__ ) == 0: # Read the keystroke _lowerCamelCase : str = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): _lowerCamelCase : List[Any] = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: _lowerCamelCase : Union[str, Any] = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) ) WIN_CH_BUFFER.append(lowercase__ ) if ord(lowercase__ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) _lowerCamelCase : List[Any] = chr(KEYMAP['esc'] ) except KeyError: _lowerCamelCase : int = cha[1] else: _lowerCamelCase : Optional[int] = ch.decode(lowercase__ ) else: _lowerCamelCase : Union[str, Any] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty _lowerCamelCase : List[str] = sys.stdin.fileno() _lowerCamelCase : Tuple = termios.tcgetattr(lowercase__ ) try: tty.setraw(lowercase__ ) _lowerCamelCase : Optional[Any] = sys.stdin.read(1 ) finally: termios.tcsetattr(lowercase__ , termios.TCSADRAIN , lowercase__ ) return ch def _snake_case ( ): _lowerCamelCase : int = get_raw_chars() if ord(lowercase__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(lowercase__ ) == KEYMAP["esc"]: _lowerCamelCase : Union[str, Any] = get_raw_chars() if ord(lowercase__ ) == KEYMAP["mod_int"]: _lowerCamelCase : List[Any] = get_raw_chars() if ord(lowercase__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(lowercase__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(lowercase__ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
12
0
"""simple docstring""" import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm lowercase__ = re.compile("""[^A-Za-z_0-9]""") # parameters used in DuplicationIndex lowercase__ = 10 lowercase__ = 256 def _snake_case ( lowercase__ ): """simple docstring""" if len(lowercase__ ) < MIN_NUM_TOKENS: return None _lowerCamelCase : List[Any] = MinHash(num_perm=lowercase__ ) for token in set(lowercase__ ): min_hash.update(token.encode() ) return min_hash def _snake_case ( lowercase__ ): """simple docstring""" return {t for t in NON_ALPHA.split(lowercase__ ) if len(t.strip() ) > 0} class lowerCAmelCase__ : '''simple docstring''' def __init__( self , *, lowercase = 0.85 , ): _lowerCamelCase : Any = duplication_jaccard_threshold _lowerCamelCase : Dict = NUM_PERM _lowerCamelCase : Dict = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) _lowerCamelCase : Tuple = defaultdict(__UpperCAmelCase ) def A_ ( self , lowercase , lowercase ): _lowerCamelCase : Dict = self._index.query(__UpperCAmelCase ) if code_key in self._index.keys: print(F'''Duplicate key {code_key}''' ) return self._index.insert(__UpperCAmelCase , __UpperCAmelCase ) if len(__UpperCAmelCase ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(__UpperCAmelCase ) break else: self._duplicate_clusters[close_duplicates[0]].add(__UpperCAmelCase ) def A_ ( self ): _lowerCamelCase : Dict = [] for base, duplicates in self._duplicate_clusters.items(): _lowerCamelCase : Optional[int] = [base] + list(__UpperCAmelCase ) # reformat the cluster to be a list of dict _lowerCamelCase : Optional[int] = [{'base_index': el[0], 'repo_name': el[1], 'path': el[2]} for el in cluster] duplicate_clusters.append(__UpperCAmelCase ) return duplicate_clusters def A_ ( self , lowercase ): _lowerCamelCase : int = self.get_duplicate_clusters() with open(__UpperCAmelCase , 'w' ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase ) def _snake_case ( lowercase__ ): """simple docstring""" _lowerCamelCase, _lowerCamelCase : Dict = element _lowerCamelCase : Optional[int] = get_min_hash([t for t in NON_ALPHA.split(data['content'] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def _snake_case ( lowercase__ ): """simple docstring""" with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(lowercase__ , max_queue_size=10000 ) , chunksize=100 , ): if data is not None: yield data def _snake_case ( lowercase__ , lowercase__ ): """simple docstring""" _lowerCamelCase : List[str] = DuplicationIndex(duplication_jaccard_threshold=lowercase__ ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(lowercase__ ) ) , max_queue_size=100 ) ): di.add(lowercase__ , lowercase__ ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def _snake_case ( lowercase__ , lowercase__ ): """simple docstring""" _lowerCamelCase : Any = get_tokens(lowercase__ ) _lowerCamelCase : List[str] = get_tokens(lowercase__ ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) lowercase__ = None def _snake_case ( lowercase__ , lowercase__ ): """simple docstring""" _lowerCamelCase : Optional[int] = [] for elementa in cluster: _lowerCamelCase : List[str] = _shared_dataset[elementa['base_index']]['content'] for elementa in extremes: _lowerCamelCase : Union[str, Any] = _shared_dataset[elementa['base_index']]['content'] if jaccard_similarity(lowercase__ , lowercase__ ) >= jaccard_threshold: elementa["copies"] += 1 break else: _lowerCamelCase : Tuple = 1 extremes.append(lowercase__ ) return extremes def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): """simple docstring""" global _shared_dataset _lowerCamelCase : int = dataset _lowerCamelCase : Tuple = [] _lowerCamelCase : Dict = partial(_find_cluster_extremes_shared , jaccard_threshold=lowercase__ ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( lowercase__ , lowercase__ , ) , total=len(lowercase__ ) , ): extremes_list.append(lowercase__ ) return extremes_list def _snake_case ( lowercase__ , lowercase__ = 0.8_5 ): """simple docstring""" _lowerCamelCase : Union[str, Any] = make_duplicate_clusters(lowercase__ , lowercase__ ) _lowerCamelCase : Dict = {x['base_index'] for cluster in duplicate_clusters for x in cluster} _lowerCamelCase : Tuple = {} _lowerCamelCase : Union[str, Any] = find_extremes(lowercase__ , lowercase__ , lowercase__ ) for extremes in extremes_clusters: for element in extremes: _lowerCamelCase : Optional[Any] = element _lowerCamelCase : int = duplicate_indices - set(extreme_dict.keys() ) _lowerCamelCase : Union[str, Any] = dataset.filter(lambda lowercase__ , lowercase__ : idx not in remove_indices , with_indices=lowercase__ ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: _lowerCamelCase : Union[str, Any] = element['base_index'] in extreme_dict if element["is_extreme"]: _lowerCamelCase : str = extreme_dict[element['base_index']]['copies'] print(f'''Original dataset size: {len(lowercase__ )}''' ) print(f'''Number of duplicate clusters: {len(lowercase__ )}''' ) print(f'''Files in duplicate cluster: {len(lowercase__ )}''' ) print(f'''Unique files in duplicate cluster: {len(lowercase__ )}''' ) print(f'''Filtered dataset size: {len(lowercase__ )}''' ) return ds_filter, duplicate_clusters
353
"""simple docstring""" from typing import Any def _snake_case ( lowercase__ ): if not input_list: return [] _lowerCamelCase : Any = [input_list.count(lowercase__ ) for value in input_list] _lowerCamelCase : Dict = max(lowercase__ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(lowercase__ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
12
0
"""simple docstring""" import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging lowercase__ = { '''cola''': 2, '''mnli''': 3, '''mrpc''': 2, '''sst-2''': 2, '''sts-b''': 1, '''qqp''': 2, '''qnli''': 2, '''rte''': 2, '''wnli''': 2, } logging.set_verbosity_info() def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__=None ): _lowerCamelCase : Union[str, Any] = XLNetConfig.from_json_file(snake_case_ ) _lowerCamelCase : Dict = finetuning_task.lower() if finetuning_task is not None else """""" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(f'''Building PyTorch XLNetForSequenceClassification model from configuration: {config}''' ) _lowerCamelCase : Union[str, Any] = finetuning_task _lowerCamelCase : List[str] = GLUE_TASKS_NUM_LABELS[finetuning_task] _lowerCamelCase : Optional[Any] = XLNetForSequenceClassification(snake_case_ ) elif "squad" in finetuning_task: _lowerCamelCase : Dict = finetuning_task _lowerCamelCase : List[str] = XLNetForQuestionAnswering(snake_case_ ) else: _lowerCamelCase : int = XLNetLMHeadModel(snake_case_ ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(snake_case_ , snake_case_ , snake_case_ ) # Save pytorch-model _lowerCamelCase : List[str] = os.path.join(snake_case_ , snake_case_ ) _lowerCamelCase : int = os.path.join(snake_case_ , snake_case_ ) print(f'''Save PyTorch model to {os.path.abspath(snake_case_ )}''' ) torch.save(model.state_dict() , snake_case_ ) print(f'''Save configuration file to {os.path.abspath(snake_case_ )}''' ) with open(snake_case_ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--xlnet_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained XLNet model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the folder to store the PyTorch model or dataset/vocab.""", ) parser.add_argument( """--finetuning_task""", default=None, type=str, help="""Name of a task on which the XLNet TensorFlow model was fine-tuned""", ) lowercase__ = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
354
"""simple docstring""" def _snake_case ( lowercase__ ): # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection _lowerCamelCase : List[str] = len(lowercase__ ) _lowerCamelCase : List[str] = max(lowercase__ ) _lowerCamelCase : List[str] = min(lowercase__ ) # create the counting array _lowerCamelCase : List[Any] = coll_max + 1 - coll_min _lowerCamelCase : List[Any] = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , lowercase__ ): _lowerCamelCase : Optional[int] = counting_arr[i] + counting_arr[i - 1] # create the output collection _lowerCamelCase : Dict = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , lowercase__ ) ): _lowerCamelCase : Any = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def _snake_case ( lowercase__ ): return "".join([chr(lowercase__ ) for i in counting_sort([ord(lowercase__ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("""thisisthestring""") == "eghhiiinrsssttt" lowercase__ = input("""Enter numbers separated by a comma:\n""").strip() lowercase__ = [int(item) for item in user_input.split(""",""")] print(counting_sort(unsorted))
12
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available lowercase__ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ["""MLukeTokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
355
"""simple docstring""" import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( """--original_config_file""", default=None, type=str, help="""The YAML config file corresponding to the original architecture.""", ) parser.add_argument( """--num_in_channels""", default=None, type=int, help="""The number of input channels. If `None` number of input channels will be automatically inferred.""", ) parser.add_argument( """--scheduler_type""", default="""pndm""", type=str, help="""Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']""", ) parser.add_argument( """--pipeline_type""", default=None, type=str, help=( """The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'""" """. If `None` pipeline will be automatically inferred.""" ), ) parser.add_argument( """--image_size""", default=None, type=int, help=( """The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2""" """ Base. Use 768 for Stable Diffusion v2.""" ), ) parser.add_argument( """--prediction_type""", default=None, type=str, help=( """The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable""" """ Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2.""" ), ) parser.add_argument( """--extract_ema""", action="""store_true""", help=( """Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights""" """ or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield""" """ higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.""" ), ) parser.add_argument( """--upcast_attention""", action="""store_true""", help=( """Whether the attention computation should always be upcasted. This is necessary when running stable""" """ diffusion 2.1.""" ), ) parser.add_argument( """--from_safetensors""", action="""store_true""", help="""If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.""", ) parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") parser.add_argument( """--stable_unclip""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.""", ) parser.add_argument( """--stable_unclip_prior""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.""", ) parser.add_argument( """--clip_stats_path""", type=str, help="""Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.""", required=False, ) parser.add_argument( """--controlnet""", action="""store_true""", default=None, help="""Set flag if this is a controlnet checkpoint.""" ) parser.add_argument("""--half""", action="""store_true""", help="""Save weights in half precision.""") parser.add_argument( """--vae_path""", type=str, default=None, required=False, help="""Set to a path, hub id to an already converted vae to not convert it again.""", ) lowercase__ = parser.parse_args() lowercase__ = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
12
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase__ = { """configuration_vision_encoder_decoder""": ["""VisionEncoderDecoderConfig""", """VisionEncoderDecoderOnnxConfig"""] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ["""VisionEncoderDecoderModel"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ["""TFVisionEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ["""FlaxVisionEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
356
"""simple docstring""" import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = (UnCLIPScheduler,) def A_ ( self , **lowercase ): _lowerCamelCase : Any = { 'num_train_timesteps': 1000, 'variance_type': 'fixed_small_log', 'clip_sample': True, 'clip_sample_range': 1.0, 'prediction_type': 'epsilon', } config.update(**lowercase ) return config def A_ ( self ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=lowercase ) def A_ ( self ): for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=lowercase ) def A_ ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowercase ) def A_ ( self ): for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=lowercase ) def A_ ( self ): for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=lowercase ) def A_ ( self ): for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=lowercase , prev_timestep=lowercase ) def A_ ( self ): _lowerCamelCase : Optional[Any] = self.scheduler_classes[0] _lowerCamelCase : Optional[int] = self.get_scheduler_config(variance_type='fixed_small_log' ) _lowerCamelCase : str = scheduler_class(**lowercase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_54_96_25 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_99_49_87 ) ) < 1E-5 def A_ ( self ): _lowerCamelCase : List[str] = self.scheduler_classes[0] _lowerCamelCase : Optional[Any] = self.get_scheduler_config(variance_type='learned_range' ) _lowerCamelCase : int = scheduler_class(**lowercase ) _lowerCamelCase : List[str] = 0.5 assert scheduler._get_variance(1 , predicted_variance=lowercase ) - -10.1_71_27_90 < 1E-5 assert scheduler._get_variance(487 , predicted_variance=lowercase ) - -5.7_99_80_52 < 1E-5 assert scheduler._get_variance(999 , predicted_variance=lowercase ) - -0.0_01_00_11 < 1E-5 def A_ ( self ): _lowerCamelCase : List[Any] = self.scheduler_classes[0] _lowerCamelCase : Optional[Any] = self.get_scheduler_config() _lowerCamelCase : Tuple = scheduler_class(**lowercase ) _lowerCamelCase : Union[str, Any] = scheduler.timesteps _lowerCamelCase : Any = self.dummy_model() _lowerCamelCase : Optional[Any] = self.dummy_sample_deter _lowerCamelCase : Optional[int] = torch.manual_seed(0 ) for i, t in enumerate(lowercase ): # 1. predict noise residual _lowerCamelCase : Tuple = model(lowercase , lowercase ) # 2. predict previous mean of sample x_t-1 _lowerCamelCase : List[Any] = scheduler.step(lowercase , lowercase , lowercase , generator=lowercase ).prev_sample _lowerCamelCase : Optional[int] = pred_prev_sample _lowerCamelCase : Optional[Any] = torch.sum(torch.abs(lowercase ) ) _lowerCamelCase : List[Any] = torch.mean(torch.abs(lowercase ) ) assert abs(result_sum.item() - 2_52.2_68_24_95 ) < 1E-2 assert abs(result_mean.item() - 0.3_28_47_43 ) < 1E-3 def A_ ( self ): _lowerCamelCase : Tuple = self.scheduler_classes[0] _lowerCamelCase : str = self.get_scheduler_config() _lowerCamelCase : Optional[Any] = scheduler_class(**lowercase ) scheduler.set_timesteps(25 ) _lowerCamelCase : Optional[Any] = scheduler.timesteps _lowerCamelCase : Optional[int] = self.dummy_model() _lowerCamelCase : Any = self.dummy_sample_deter _lowerCamelCase : str = torch.manual_seed(0 ) for i, t in enumerate(lowercase ): # 1. predict noise residual _lowerCamelCase : List[Any] = model(lowercase , lowercase ) if i + 1 == timesteps.shape[0]: _lowerCamelCase : Optional[int] = None else: _lowerCamelCase : List[str] = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 _lowerCamelCase : Union[str, Any] = scheduler.step( lowercase , lowercase , lowercase , prev_timestep=lowercase , generator=lowercase ).prev_sample _lowerCamelCase : List[Any] = pred_prev_sample _lowerCamelCase : Optional[Any] = torch.sum(torch.abs(lowercase ) ) _lowerCamelCase : List[str] = torch.mean(torch.abs(lowercase ) ) assert abs(result_sum.item() - 2_58.2_04_49_83 ) < 1E-2 assert abs(result_mean.item() - 0.3_36_20_38 ) < 1E-3 def A_ ( self ): pass def A_ ( self ): pass
12
0
"""simple docstring""" import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowercase__ = 16 lowercase__ = 32 def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = 16 ): _lowerCamelCase : List[Any] = AutoTokenizer.from_pretrained('bert-base-cased' ) _lowerCamelCase : Tuple = DatasetDict( { 'train': dataset['train'].select(lowercase__ ), 'validation': dataset['train'].select(lowercase__ ), 'test': dataset['validation'], } ) def tokenize_function(lowercase__ ): # max_length=None => use the model max length (it's actually the default) _lowerCamelCase : Optional[int] = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=lowercase__ , max_length=lowercase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _lowerCamelCase : Optional[int] = datasets.map( lowercase__ , batched=lowercase__ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _lowerCamelCase : str = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(lowercase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. _lowerCamelCase : List[Any] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _lowerCamelCase : int = 16 elif accelerator.mixed_precision != "no": _lowerCamelCase : int = 8 else: _lowerCamelCase : int = None return tokenizer.pad( lowercase__ , padding='longest' , max_length=lowercase__ , pad_to_multiple_of=lowercase__ , return_tensors='pt' , ) # Instantiate dataloaders. _lowerCamelCase : str = DataLoader( tokenized_datasets['train'] , shuffle=lowercase__ , collate_fn=lowercase__ , batch_size=lowercase__ ) _lowerCamelCase : Union[str, Any] = DataLoader( tokenized_datasets['validation'] , shuffle=lowercase__ , collate_fn=lowercase__ , batch_size=lowercase__ ) _lowerCamelCase : Optional[Any] = DataLoader( tokenized_datasets['test'] , shuffle=lowercase__ , collate_fn=lowercase__ , batch_size=lowercase__ ) return train_dataloader, eval_dataloader, test_dataloader def _snake_case ( lowercase__ , lowercase__ ): _lowerCamelCase : Union[str, Any] = [] # Download the dataset _lowerCamelCase : List[str] = load_dataset('glue' , 'mrpc' ) # Create our splits _lowerCamelCase : Union[str, Any] = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator _lowerCamelCase : Optional[int] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _lowerCamelCase : Optional[int] = config['lr'] _lowerCamelCase : int = int(config['num_epochs'] ) _lowerCamelCase : Optional[Any] = int(config['seed'] ) _lowerCamelCase : Optional[int] = int(config['batch_size'] ) _lowerCamelCase : Dict = evaluate.load('glue' , 'mrpc' ) # If the batch size is too big we use gradient accumulation _lowerCamelCase : Optional[int] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _lowerCamelCase : int = batch_size // MAX_GPU_BATCH_SIZE _lowerCamelCase : Optional[Any] = MAX_GPU_BATCH_SIZE set_seed(lowercase__ ) # New Code # # Create our folds: _lowerCamelCase : Tuple = kfold.split(np.zeros(datasets['train'].num_rows ) , datasets['train']['label'] ) _lowerCamelCase : List[Any] = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(lowercase__ ): _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[Any] = get_fold_dataloaders( lowercase__ , lowercase__ , lowercase__ , lowercase__ , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _lowerCamelCase : str = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=lowercase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _lowerCamelCase : Dict = model.to(accelerator.device ) # Instantiate optimizer _lowerCamelCase : List[str] = AdamW(params=model.parameters() , lr=lowercase__ ) # Instantiate scheduler _lowerCamelCase : Dict = get_linear_schedule_with_warmup( optimizer=lowercase__ , num_warmup_steps=100 , num_training_steps=(len(lowercase__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Dict = accelerator.prepare( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # Now we train the model for epoch in range(lowercase__ ): model.train() for step, batch in enumerate(lowercase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _lowerCamelCase : Optional[Any] = model(**lowercase__ ) _lowerCamelCase : Any = outputs.loss _lowerCamelCase : Union[str, Any] = loss / gradient_accumulation_steps accelerator.backward(lowercase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowercase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _lowerCamelCase : Any = model(**lowercase__ ) _lowerCamelCase : int = outputs.logits.argmax(dim=-1 ) _lowerCamelCase, _lowerCamelCase : Dict = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=lowercase__ , references=lowercase__ , ) _lowerCamelCase : Union[str, Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , lowercase__ ) # New Code # # We also run predictions on the test set at the very end _lowerCamelCase : Dict = [] for step, batch in enumerate(lowercase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _lowerCamelCase : str = model(**lowercase__ ) _lowerCamelCase : str = outputs.logits _lowerCamelCase, _lowerCamelCase : Dict = accelerator.gather_for_metrics((predictions, batch['labels']) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(lowercase__ , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: _lowerCamelCase : Tuple = torch.cat(lowercase__ , dim=0 ) _lowerCamelCase : int = torch.stack(lowercase__ , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) _lowerCamelCase : Union[str, Any] = metric.compute(predictions=lowercase__ , references=lowercase__ ) accelerator.print('Average test metrics from all folds:' , lowercase__ ) def _snake_case ( ): _lowerCamelCase : Optional[int] = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=lowercase__ , default=lowercase__ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) # New Code # parser.add_argument('--num_folds' , type=lowercase__ , default=3 , help='The number of splits to perform across the dataset' ) _lowerCamelCase : int = parser.parse_args() _lowerCamelCase : Tuple = {'lr': 2E-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(lowercase__ , lowercase__ ) if __name__ == "__main__": main()
357
"""simple docstring""" import math from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { """facebook/data2vec-base-960h""": """https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json""", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """data2vec-audio""" def __init__( self , lowercase=32 , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=0.1 , lowercase=0.0 , lowercase=0.1 , lowercase=0.1 , lowercase=0.02 , lowercase=1E-5 , lowercase="gelu" , lowercase=(512, 512, 512, 512, 512, 512, 512) , lowercase=(5, 2, 2, 2, 2, 2, 2) , lowercase=(10, 3, 3, 3, 3, 2, 2) , lowercase=False , lowercase=16 , lowercase=19 , lowercase=5 , lowercase=0.05 , lowercase=10 , lowercase=2 , lowercase=0.0 , lowercase=10 , lowercase=0 , lowercase="sum" , lowercase=False , lowercase=False , lowercase=256 , lowercase=(512, 512, 512, 512, 1500) , lowercase=(5, 3, 3, 1, 1) , lowercase=(1, 2, 3, 1, 1) , lowercase=512 , lowercase=0 , lowercase=1 , lowercase=2 , lowercase=False , lowercase=3 , lowercase=2 , lowercase=3 , lowercase=None , **lowercase , ): super().__init__(**lowercase , pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase ) _lowerCamelCase : str = hidden_size _lowerCamelCase : str = feat_extract_activation _lowerCamelCase : Optional[Any] = list(lowercase ) _lowerCamelCase : Dict = list(lowercase ) _lowerCamelCase : Dict = list(lowercase ) _lowerCamelCase : Optional[Any] = conv_bias _lowerCamelCase : Union[str, Any] = num_conv_pos_embeddings _lowerCamelCase : List[Any] = num_conv_pos_embedding_groups _lowerCamelCase : List[Any] = conv_pos_kernel_size _lowerCamelCase : Optional[int] = len(self.conv_dim ) _lowerCamelCase : List[str] = num_hidden_layers _lowerCamelCase : Any = intermediate_size _lowerCamelCase : List[str] = hidden_act _lowerCamelCase : Tuple = num_attention_heads _lowerCamelCase : Any = hidden_dropout _lowerCamelCase : Union[str, Any] = attention_dropout _lowerCamelCase : str = activation_dropout _lowerCamelCase : Any = feat_proj_dropout _lowerCamelCase : Tuple = final_dropout _lowerCamelCase : Union[str, Any] = layerdrop _lowerCamelCase : List[Any] = layer_norm_eps _lowerCamelCase : Optional[Any] = initializer_range _lowerCamelCase : Optional[int] = vocab_size _lowerCamelCase : Tuple = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCamelCase : Optional[Any] = mask_time_prob _lowerCamelCase : List[Any] = mask_time_length _lowerCamelCase : List[Any] = mask_time_min_masks _lowerCamelCase : Tuple = mask_feature_prob _lowerCamelCase : Optional[Any] = mask_feature_length _lowerCamelCase : Dict = mask_feature_min_masks # ctc loss _lowerCamelCase : Tuple = ctc_loss_reduction _lowerCamelCase : str = ctc_zero_infinity # adapter _lowerCamelCase : Union[str, Any] = add_adapter _lowerCamelCase : List[Any] = adapter_kernel_size _lowerCamelCase : Optional[Any] = adapter_stride _lowerCamelCase : List[Any] = num_adapter_layers _lowerCamelCase : int = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowerCamelCase : Optional[int] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowerCamelCase : List[str] = list(lowercase ) _lowerCamelCase : Optional[Any] = list(lowercase ) _lowerCamelCase : Any = list(lowercase ) _lowerCamelCase : Optional[Any] = xvector_output_dim @property def A_ ( self ): return math.prod(self.conv_stride )
12
0
"""simple docstring""" import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class lowerCAmelCase__ : '''simple docstring''' @staticmethod def A_ ( *lowercase , **lowercase ): pass @is_pipeline_test @require_vision class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @require_torch def A_ ( self ): _lowerCamelCase : Optional[Any] = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , ) _lowerCamelCase : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _lowerCamelCase : List[Any] = image_classifier(a_ , candidate_labels=['a', 'b', 'c'] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(a_ ) , [ [{'score': 0.3_33, 'label': 'a'}, {'score': 0.3_33, 'label': 'b'}, {'score': 0.3_33, 'label': 'c'}], [{'score': 0.3_33, 'label': 'a'}, {'score': 0.3_33, 'label': 'c'}, {'score': 0.3_33, 'label': 'b'}], ] , ) _lowerCamelCase : Optional[int] = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2 ) self.assertEqual( nested_simplify(a_ ) , [ [ {'score': 0.3_33, 'label': ANY(a_ )}, {'score': 0.3_33, 'label': ANY(a_ )}, {'score': 0.3_33, 'label': ANY(a_ )}, ], [ {'score': 0.3_33, 'label': ANY(a_ )}, {'score': 0.3_33, 'label': ANY(a_ )}, {'score': 0.3_33, 'label': ANY(a_ )}, ], [ {'score': 0.3_33, 'label': ANY(a_ )}, {'score': 0.3_33, 'label': ANY(a_ )}, {'score': 0.3_33, 'label': ANY(a_ )}, ], [ {'score': 0.3_33, 'label': ANY(a_ )}, {'score': 0.3_33, 'label': ANY(a_ )}, {'score': 0.3_33, 'label': ANY(a_ )}, ], [ {'score': 0.3_33, 'label': ANY(a_ )}, {'score': 0.3_33, 'label': ANY(a_ )}, {'score': 0.3_33, 'label': ANY(a_ )}, ], ] , ) @require_tf def A_ ( self ): _lowerCamelCase : str = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , framework='tf' ) _lowerCamelCase : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _lowerCamelCase : Union[str, Any] = image_classifier(a_ , candidate_labels=['a', 'b', 'c'] ) self.assertEqual( nested_simplify(a_ ) , [{'score': 0.3_33, 'label': 'a'}, {'score': 0.3_33, 'label': 'b'}, {'score': 0.3_33, 'label': 'c'}] , ) _lowerCamelCase : int = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2 ) self.assertEqual( nested_simplify(a_ ) , [ [ {'score': 0.3_33, 'label': ANY(a_ )}, {'score': 0.3_33, 'label': ANY(a_ )}, {'score': 0.3_33, 'label': ANY(a_ )}, ], [ {'score': 0.3_33, 'label': ANY(a_ )}, {'score': 0.3_33, 'label': ANY(a_ )}, {'score': 0.3_33, 'label': ANY(a_ )}, ], [ {'score': 0.3_33, 'label': ANY(a_ )}, {'score': 0.3_33, 'label': ANY(a_ )}, {'score': 0.3_33, 'label': ANY(a_ )}, ], [ {'score': 0.3_33, 'label': ANY(a_ )}, {'score': 0.3_33, 'label': ANY(a_ )}, {'score': 0.3_33, 'label': ANY(a_ )}, ], [ {'score': 0.3_33, 'label': ANY(a_ )}, {'score': 0.3_33, 'label': ANY(a_ )}, {'score': 0.3_33, 'label': ANY(a_ )}, ], ] , ) @slow @require_torch def A_ ( self ): _lowerCamelCase : List[str] = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , ) # This is an image of 2 cats with remotes and no planes _lowerCamelCase : Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _lowerCamelCase : Union[str, Any] = image_classifier(a_ , candidate_labels=['cat', 'plane', 'remote'] ) self.assertEqual( nested_simplify(a_ ) , [ {'score': 0.5_11, 'label': 'remote'}, {'score': 0.4_85, 'label': 'cat'}, {'score': 0.0_04, 'label': 'plane'}, ] , ) _lowerCamelCase : Union[str, Any] = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2 ) self.assertEqual( nested_simplify(a_ ) , [ [ {'score': 0.5_11, 'label': 'remote'}, {'score': 0.4_85, 'label': 'cat'}, {'score': 0.0_04, 'label': 'plane'}, ], ] * 5 , ) @slow @require_tf def A_ ( self ): _lowerCamelCase : Optional[int] = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , framework='tf' ) # This is an image of 2 cats with remotes and no planes _lowerCamelCase : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _lowerCamelCase : Optional[int] = image_classifier(a_ , candidate_labels=['cat', 'plane', 'remote'] ) self.assertEqual( nested_simplify(a_ ) , [ {'score': 0.5_11, 'label': 'remote'}, {'score': 0.4_85, 'label': 'cat'}, {'score': 0.0_04, 'label': 'plane'}, ] , ) _lowerCamelCase : List[Any] = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2 ) self.assertEqual( nested_simplify(a_ ) , [ [ {'score': 0.5_11, 'label': 'remote'}, {'score': 0.4_85, 'label': 'cat'}, {'score': 0.0_04, 'label': 'plane'}, ], ] * 5 , )
358
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool lowercase__ = { """Acehnese Arabic""": """ace_Arab""", """Acehnese Latin""": """ace_Latn""", """Mesopotamian Arabic""": """acm_Arab""", """Ta'izzi-Adeni Arabic""": """acq_Arab""", """Tunisian Arabic""": """aeb_Arab""", """Afrikaans""": """afr_Latn""", """South Levantine Arabic""": """ajp_Arab""", """Akan""": """aka_Latn""", """Amharic""": """amh_Ethi""", """North Levantine Arabic""": """apc_Arab""", """Modern Standard Arabic""": """arb_Arab""", """Modern Standard Arabic Romanized""": """arb_Latn""", """Najdi Arabic""": """ars_Arab""", """Moroccan Arabic""": """ary_Arab""", """Egyptian Arabic""": """arz_Arab""", """Assamese""": """asm_Beng""", """Asturian""": """ast_Latn""", """Awadhi""": """awa_Deva""", """Central Aymara""": """ayr_Latn""", """South Azerbaijani""": """azb_Arab""", """North Azerbaijani""": """azj_Latn""", """Bashkir""": """bak_Cyrl""", """Bambara""": """bam_Latn""", """Balinese""": """ban_Latn""", """Belarusian""": """bel_Cyrl""", """Bemba""": """bem_Latn""", """Bengali""": """ben_Beng""", """Bhojpuri""": """bho_Deva""", """Banjar Arabic""": """bjn_Arab""", """Banjar Latin""": """bjn_Latn""", """Standard Tibetan""": """bod_Tibt""", """Bosnian""": """bos_Latn""", """Buginese""": """bug_Latn""", """Bulgarian""": """bul_Cyrl""", """Catalan""": """cat_Latn""", """Cebuano""": """ceb_Latn""", """Czech""": """ces_Latn""", """Chokwe""": """cjk_Latn""", """Central Kurdish""": """ckb_Arab""", """Crimean Tatar""": """crh_Latn""", """Welsh""": """cym_Latn""", """Danish""": """dan_Latn""", """German""": """deu_Latn""", """Southwestern Dinka""": """dik_Latn""", """Dyula""": """dyu_Latn""", """Dzongkha""": """dzo_Tibt""", """Greek""": """ell_Grek""", """English""": """eng_Latn""", """Esperanto""": """epo_Latn""", """Estonian""": """est_Latn""", """Basque""": """eus_Latn""", """Ewe""": """ewe_Latn""", """Faroese""": """fao_Latn""", """Fijian""": """fij_Latn""", """Finnish""": """fin_Latn""", """Fon""": """fon_Latn""", """French""": """fra_Latn""", """Friulian""": """fur_Latn""", """Nigerian Fulfulde""": """fuv_Latn""", """Scottish Gaelic""": """gla_Latn""", """Irish""": """gle_Latn""", """Galician""": """glg_Latn""", """Guarani""": """grn_Latn""", """Gujarati""": """guj_Gujr""", """Haitian Creole""": """hat_Latn""", """Hausa""": """hau_Latn""", """Hebrew""": """heb_Hebr""", """Hindi""": """hin_Deva""", """Chhattisgarhi""": """hne_Deva""", """Croatian""": """hrv_Latn""", """Hungarian""": """hun_Latn""", """Armenian""": """hye_Armn""", """Igbo""": """ibo_Latn""", """Ilocano""": """ilo_Latn""", """Indonesian""": """ind_Latn""", """Icelandic""": """isl_Latn""", """Italian""": """ita_Latn""", """Javanese""": """jav_Latn""", """Japanese""": """jpn_Jpan""", """Kabyle""": """kab_Latn""", """Jingpho""": """kac_Latn""", """Kamba""": """kam_Latn""", """Kannada""": """kan_Knda""", """Kashmiri Arabic""": """kas_Arab""", """Kashmiri Devanagari""": """kas_Deva""", """Georgian""": """kat_Geor""", """Central Kanuri Arabic""": """knc_Arab""", """Central Kanuri Latin""": """knc_Latn""", """Kazakh""": """kaz_Cyrl""", """Kabiyè""": """kbp_Latn""", """Kabuverdianu""": """kea_Latn""", """Khmer""": """khm_Khmr""", """Kikuyu""": """kik_Latn""", """Kinyarwanda""": """kin_Latn""", """Kyrgyz""": """kir_Cyrl""", """Kimbundu""": """kmb_Latn""", """Northern Kurdish""": """kmr_Latn""", """Kikongo""": """kon_Latn""", """Korean""": """kor_Hang""", """Lao""": """lao_Laoo""", """Ligurian""": """lij_Latn""", """Limburgish""": """lim_Latn""", """Lingala""": """lin_Latn""", """Lithuanian""": """lit_Latn""", """Lombard""": """lmo_Latn""", """Latgalian""": """ltg_Latn""", """Luxembourgish""": """ltz_Latn""", """Luba-Kasai""": """lua_Latn""", """Ganda""": """lug_Latn""", """Luo""": """luo_Latn""", """Mizo""": """lus_Latn""", """Standard Latvian""": """lvs_Latn""", """Magahi""": """mag_Deva""", """Maithili""": """mai_Deva""", """Malayalam""": """mal_Mlym""", """Marathi""": """mar_Deva""", """Minangkabau Arabic """: """min_Arab""", """Minangkabau Latin""": """min_Latn""", """Macedonian""": """mkd_Cyrl""", """Plateau Malagasy""": """plt_Latn""", """Maltese""": """mlt_Latn""", """Meitei Bengali""": """mni_Beng""", """Halh Mongolian""": """khk_Cyrl""", """Mossi""": """mos_Latn""", """Maori""": """mri_Latn""", """Burmese""": """mya_Mymr""", """Dutch""": """nld_Latn""", """Norwegian Nynorsk""": """nno_Latn""", """Norwegian Bokmål""": """nob_Latn""", """Nepali""": """npi_Deva""", """Northern Sotho""": """nso_Latn""", """Nuer""": """nus_Latn""", """Nyanja""": """nya_Latn""", """Occitan""": """oci_Latn""", """West Central Oromo""": """gaz_Latn""", """Odia""": """ory_Orya""", """Pangasinan""": """pag_Latn""", """Eastern Panjabi""": """pan_Guru""", """Papiamento""": """pap_Latn""", """Western Persian""": """pes_Arab""", """Polish""": """pol_Latn""", """Portuguese""": """por_Latn""", """Dari""": """prs_Arab""", """Southern Pashto""": """pbt_Arab""", """Ayacucho Quechua""": """quy_Latn""", """Romanian""": """ron_Latn""", """Rundi""": """run_Latn""", """Russian""": """rus_Cyrl""", """Sango""": """sag_Latn""", """Sanskrit""": """san_Deva""", """Santali""": """sat_Olck""", """Sicilian""": """scn_Latn""", """Shan""": """shn_Mymr""", """Sinhala""": """sin_Sinh""", """Slovak""": """slk_Latn""", """Slovenian""": """slv_Latn""", """Samoan""": """smo_Latn""", """Shona""": """sna_Latn""", """Sindhi""": """snd_Arab""", """Somali""": """som_Latn""", """Southern Sotho""": """sot_Latn""", """Spanish""": """spa_Latn""", """Tosk Albanian""": """als_Latn""", """Sardinian""": """srd_Latn""", """Serbian""": """srp_Cyrl""", """Swati""": """ssw_Latn""", """Sundanese""": """sun_Latn""", """Swedish""": """swe_Latn""", """Swahili""": """swh_Latn""", """Silesian""": """szl_Latn""", """Tamil""": """tam_Taml""", """Tatar""": """tat_Cyrl""", """Telugu""": """tel_Telu""", """Tajik""": """tgk_Cyrl""", """Tagalog""": """tgl_Latn""", """Thai""": """tha_Thai""", """Tigrinya""": """tir_Ethi""", """Tamasheq Latin""": """taq_Latn""", """Tamasheq Tifinagh""": """taq_Tfng""", """Tok Pisin""": """tpi_Latn""", """Tswana""": """tsn_Latn""", """Tsonga""": """tso_Latn""", """Turkmen""": """tuk_Latn""", """Tumbuka""": """tum_Latn""", """Turkish""": """tur_Latn""", """Twi""": """twi_Latn""", """Central Atlas Tamazight""": """tzm_Tfng""", """Uyghur""": """uig_Arab""", """Ukrainian""": """ukr_Cyrl""", """Umbundu""": """umb_Latn""", """Urdu""": """urd_Arab""", """Northern Uzbek""": """uzn_Latn""", """Venetian""": """vec_Latn""", """Vietnamese""": """vie_Latn""", """Waray""": """war_Latn""", """Wolof""": """wol_Latn""", """Xhosa""": """xho_Latn""", """Eastern Yiddish""": """ydd_Hebr""", """Yoruba""": """yor_Latn""", """Yue Chinese""": """yue_Hant""", """Chinese Simplified""": """zho_Hans""", """Chinese Traditional""": """zho_Hant""", """Standard Malay""": """zsm_Latn""", """Zulu""": """zul_Latn""", } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """facebook/nllb-200-distilled-600M""" lowerCamelCase__ = ( """This is a tool that translates text from a language to another. It takes three inputs: `text`, which should """ """be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, """ """which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in """ """plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`.""" ) lowerCamelCase__ = """translator""" lowerCamelCase__ = AutoTokenizer lowerCamelCase__ = AutoModelForSeqaSeqLM lowerCamelCase__ = LANGUAGE_CODES lowerCamelCase__ = ["""text""", """text""", """text"""] lowerCamelCase__ = ["""text"""] def A_ ( self , lowercase , lowercase , lowercase ): if src_lang not in self.lang_to_code: raise ValueError(F'''{src_lang} is not a supported language.''' ) if tgt_lang not in self.lang_to_code: raise ValueError(F'''{tgt_lang} is not a supported language.''' ) _lowerCamelCase : str = self.lang_to_code[src_lang] _lowerCamelCase : int = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( lowercase , return_tensors='pt' , src_lang=lowercase , tgt_lang=lowercase ) def A_ ( self , lowercase ): return self.model.generate(**lowercase ) def A_ ( self , lowercase ): return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowercase )
12
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { """google/switch-base-8""": """https://huggingface.co/google/switch-base-8/blob/main/config.json""", } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = 'switch_transformers' lowerCamelCase__ = ['past_key_values'] lowerCamelCase__ = {'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__( self , lowercase=32128 , lowercase=768 , lowercase=64 , lowercase=2048 , lowercase=64 , lowercase=12 , lowercase=3 , lowercase=12 , lowercase=3 , lowercase=12 , lowercase=8 , lowercase=False , lowercase=0.01 , lowercase="float32" , lowercase=False , lowercase=32 , lowercase=128 , lowercase=0.1 , lowercase=1E-6 , lowercase=0.0_01 , lowercase=0.0_01 , lowercase=1.0 , lowercase="relu" , lowercase=True , lowercase=False , lowercase=True , lowercase=0 , lowercase=1 , **lowercase , ): _lowerCamelCase : Optional[int] = vocab_size _lowerCamelCase : Tuple = d_model _lowerCamelCase : Optional[int] = d_kv _lowerCamelCase : int = d_ff _lowerCamelCase : str = num_sparse_encoder_layers _lowerCamelCase : Union[str, Any] = num_layers _lowerCamelCase : Optional[int] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry _lowerCamelCase : Union[str, Any] = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: _lowerCamelCase : Union[str, Any] = self.num_layers // self.num_sparse_encoder_layers else: _lowerCamelCase : str = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: _lowerCamelCase : Tuple = self.num_decoder_layers // self.num_sparse_decoder_layers else: _lowerCamelCase : Tuple = self.num_decoder_layers # HACK: this will create 0 sparse layers _lowerCamelCase : List[str] = num_heads _lowerCamelCase : str = num_experts _lowerCamelCase : int = expert_capacity _lowerCamelCase : Dict = router_bias _lowerCamelCase : List[Any] = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F'''`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}''' ) _lowerCamelCase : List[Any] = router_dtype _lowerCamelCase : Dict = router_ignore_padding_tokens _lowerCamelCase : Tuple = relative_attention_num_buckets _lowerCamelCase : str = relative_attention_max_distance _lowerCamelCase : List[str] = dropout_rate _lowerCamelCase : str = layer_norm_epsilon _lowerCamelCase : str = initializer_factor _lowerCamelCase : Tuple = feed_forward_proj _lowerCamelCase : Dict = use_cache _lowerCamelCase : Optional[Any] = add_router_probs _lowerCamelCase : List[str] = router_z_loss_coef _lowerCamelCase : Dict = router_aux_loss_coef _lowerCamelCase : int = self.feed_forward_proj.split('-' ) _lowerCamelCase : int = act_info[-1] _lowerCamelCase : int = act_info[0] == 'gated' if len(__lowerCAmelCase ) > 1 and act_info[0] != "gated" or len(__lowerCAmelCase ) > 2: raise ValueError( F'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": _lowerCamelCase : Optional[int] = 'gelu_new' super().__init__( pad_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , is_encoder_decoder=__lowerCAmelCase , **__lowerCAmelCase , )
359
"""simple docstring""" import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def A_ ( self , lowercase , lowercase , lowercase ): _lowerCamelCase : Optional[int] = hf_hub_download( repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' ) _lowerCamelCase : Tuple = VideoClassificationPipeline(model=lowercase , image_processor=lowercase , top_k=2 ) _lowerCamelCase : List[str] = [ example_video_filepath, 'https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4', ] return video_classifier, examples def A_ ( self , lowercase , lowercase ): for example in examples: _lowerCamelCase : Tuple = video_classifier(lowercase ) self.assertEqual( lowercase , [ {'score': ANY(lowercase ), 'label': ANY(lowercase )}, {'score': ANY(lowercase ), 'label': ANY(lowercase )}, ] , ) @require_torch def A_ ( self ): _lowerCamelCase : Optional[Any] = 'hf-internal-testing/tiny-random-VideoMAEForVideoClassification' _lowerCamelCase : Tuple = VideoMAEFeatureExtractor( size={'shortest_edge': 10} , crop_size={'height': 10, 'width': 10} ) _lowerCamelCase : Dict = pipeline( 'video-classification' , model=lowercase , feature_extractor=lowercase , frame_sampling_rate=4 ) _lowerCamelCase : Any = hf_hub_download(repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' ) _lowerCamelCase : Dict = video_classifier(lowercase , top_k=2 ) self.assertEqual( nested_simplify(lowercase , decimals=4 ) , [{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}] , ) _lowerCamelCase : str = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(lowercase , decimals=4 ) , [ [{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}], [{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}], ] , ) @require_tf def A_ ( self ): pass
12
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { 's-JoL/Open-Llama-V1': 'https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json', } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """open-llama""" def __init__( self , lowercase=100000 , lowercase=4096 , lowercase=11008 , lowercase=32 , lowercase=32 , lowercase="silu" , lowercase=2048 , lowercase=0.02 , lowercase=1E-6 , lowercase=True , lowercase=0 , lowercase=1 , lowercase=2 , lowercase=False , lowercase=True , lowercase=0.1 , lowercase=0.1 , lowercase=True , lowercase=True , lowercase=None , **lowercase , ): _lowerCamelCase : Optional[int] = vocab_size _lowerCamelCase : List[Any] = max_position_embeddings _lowerCamelCase : str = hidden_size _lowerCamelCase : Union[str, Any] = intermediate_size _lowerCamelCase : Tuple = num_hidden_layers _lowerCamelCase : Dict = num_attention_heads _lowerCamelCase : List[str] = hidden_act _lowerCamelCase : Tuple = initializer_range _lowerCamelCase : Optional[Any] = rms_norm_eps _lowerCamelCase : Dict = use_cache _lowerCamelCase : Optional[Any] = kwargs.pop( 'use_memorry_efficient_attention' , _snake_case ) _lowerCamelCase : Any = hidden_dropout_prob _lowerCamelCase : Optional[Any] = attention_dropout_prob _lowerCamelCase : Optional[Any] = use_stable_embedding _lowerCamelCase : str = shared_input_output_embedding _lowerCamelCase : List[str] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case , tie_word_embeddings=_snake_case , **_snake_case , ) def A_ ( self ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _snake_case ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' F'''got {self.rope_scaling}''' ) _lowerCamelCase : Optional[int] = self.rope_scaling.get('type' , _snake_case ) _lowerCamelCase : str = self.rope_scaling.get('factor' , _snake_case ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(_snake_case , _snake_case ) or rope_scaling_factor <= 1.0: raise ValueError(F'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
360
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowercase__ = { """configuration_mega""": ["""MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MegaConfig""", """MegaOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """MEGA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MegaForCausalLM""", """MegaForMaskedLM""", """MegaForMultipleChoice""", """MegaForQuestionAnswering""", """MegaForSequenceClassification""", """MegaForTokenClassification""", """MegaModel""", """MegaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
12
0
"""simple docstring""" from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo lowercase__ = """\ @misc{wu2016googles, title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ lowercase__ = """\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the \'GLEU score\'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score\'s range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. """ lowercase__ = """\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: \'google_bleu\': google_bleu score Examples: Example 1: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.44 Example 2: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.61 Example 3: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results[\"google_bleu\"], 2)) 0.53 Example 4: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results[\"google_bleu\"], 2)) 0.4 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): '''simple docstring''' def A_ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ), } ) , ) def A_ ( self , lowercase , lowercase , lowercase = 1 , lowercase = 4 , ): return { "google_bleu": gleu_score.corpus_gleu( list_of_references=lowercase , hypotheses=lowercase , min_len=lowercase , max_len=lowercase ) }
361
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def _snake_case ( lowercase__ , lowercase__ , lowercase__=None , lowercase__=None ): if attention_mask is None: _lowerCamelCase : List[str] = tf.cast(tf.math.not_equal(lowercase__ , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class lowerCAmelCase__ : '''simple docstring''' lowerCamelCase__ = OPTConfig lowerCamelCase__ = {} lowerCamelCase__ = """gelu""" def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=False , lowercase=99 , lowercase=16 , lowercase=2 , lowercase=4 , lowercase=4 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=20 , lowercase=2 , lowercase=1 , lowercase=0 , lowercase=16 , lowercase=16 , ): _lowerCamelCase : Tuple = parent _lowerCamelCase : Any = batch_size _lowerCamelCase : Tuple = seq_length _lowerCamelCase : str = is_training _lowerCamelCase : Optional[int] = use_labels _lowerCamelCase : List[Any] = vocab_size _lowerCamelCase : Dict = hidden_size _lowerCamelCase : str = num_hidden_layers _lowerCamelCase : Optional[int] = num_attention_heads _lowerCamelCase : Any = intermediate_size _lowerCamelCase : Dict = hidden_act _lowerCamelCase : Any = hidden_dropout_prob _lowerCamelCase : List[str] = attention_probs_dropout_prob _lowerCamelCase : Optional[Any] = max_position_embeddings _lowerCamelCase : List[Any] = eos_token_id _lowerCamelCase : Tuple = pad_token_id _lowerCamelCase : List[str] = bos_token_id _lowerCamelCase : Optional[int] = embed_dim _lowerCamelCase : List[str] = word_embed_proj_dim _lowerCamelCase : Any = False def A_ ( self ): _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _lowerCamelCase : Optional[int] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _lowerCamelCase : str = tf.concat([input_ids, eos_tensor] , axis=1 ) _lowerCamelCase : Tuple = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowercase , **self.config_updates , ) _lowerCamelCase : int = prepare_opt_inputs_dict(lowercase , lowercase ) return config, inputs_dict def A_ ( self , lowercase , lowercase ): _lowerCamelCase : Optional[Any] = TFOPTModel(config=lowercase ) _lowerCamelCase : Optional[Any] = inputs_dict['input_ids'] _lowerCamelCase : str = input_ids[:1, :] _lowerCamelCase : Dict = inputs_dict['attention_mask'][:1, :] _lowerCamelCase : Optional[Any] = 1 # first forward pass _lowerCamelCase : Any = model(lowercase , attention_mask=lowercase , use_cache=lowercase ) _lowerCamelCase, _lowerCamelCase : List[str] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _lowerCamelCase : Optional[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) _lowerCamelCase : Optional[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _lowerCamelCase : List[Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) _lowerCamelCase : Optional[int] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _lowerCamelCase : Optional[Any] = model(lowercase , attention_mask=lowercase )[0] _lowerCamelCase : List[str] = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _lowerCamelCase : Any = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _lowerCamelCase : Optional[int] = output_from_no_past[:, -3:, random_slice_idx] _lowerCamelCase : List[str] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase , lowercase , rtol=1E-3 ) @require_tf class lowerCAmelCase__ ( lowercase, lowercase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () lowerCamelCase__ = (TFOPTForCausalLM,) if is_tf_available() else () lowerCamelCase__ = ( {"""feature-extraction""": TFOPTModel, """text-generation""": TFOPTForCausalLM} if is_tf_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = 10 def A_ ( self ): _lowerCamelCase : int = TFOPTModelTester(self ) _lowerCamelCase : Tuple = ConfigTester(self , config_class=lowercase ) def A_ ( self ): self.config_tester.run_common_tests() def A_ ( self ): _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase ) def A_ ( self ): _lowerCamelCase, _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(lowercase , lowercase ): if hasattr(lowercase , 'weight' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(lowercase , 'weight' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings _lowerCamelCase : Optional[int] = model_class(config=lowercase ) _lowerCamelCase : int = _get_word_embedding_weight(lowercase , model.get_input_embeddings() ) _lowerCamelCase : Tuple = _get_word_embedding_weight(lowercase , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(lowercase ) _lowerCamelCase : str = _get_word_embedding_weight(lowercase , model.get_input_embeddings() ) _lowerCamelCase : Any = _get_word_embedding_weight(lowercase , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. _lowerCamelCase : Union[str, Any] = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , lowercase ) # check that weights remain the same after resizing _lowerCamelCase : int = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _lowerCamelCase : Optional[Any] = False self.assertTrue(lowercase ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , lowercase ) _lowerCamelCase : Dict = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _lowerCamelCase : Union[str, Any] = False self.assertTrue(lowercase ) def _snake_case ( lowercase__ ): return tf.constant(lowercase__ , dtype=tf.intaa ) @require_tf class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = 99 def A_ ( self ): _lowerCamelCase : Tuple = tf.ones((4, 1) , dtype=tf.intaa ) * 2 _lowerCamelCase : Tuple = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) _lowerCamelCase : int = input_ids.shape[0] _lowerCamelCase : List[Any] = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def A_ ( self ): _lowerCamelCase : Tuple = TFOPTModel.from_pretrained('facebook/opt-350m' ) _lowerCamelCase : List[Any] = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) _lowerCamelCase : List[str] = tf.not_equal(lowercase , model.config.pad_token_id ) with tf.GradientTape(): _lowerCamelCase : List[str] = model(input_ids=lowercase , attention_mask=lowercase ).last_hidden_state _lowerCamelCase : Optional[Any] = (1, 11, 512) self.assertEqual(output.shape , lowercase ) _lowerCamelCase : List[str] = tf.constant( [[-0.28_73, -1.92_18, -0.30_33], [-1.27_10, -0.13_38, -0.19_02], [0.40_95, 0.12_14, -1.31_21]] ) self.assertTrue(np.allclose(output[:, :3, :3] , lowercase , atol=4E-3 ) ) _lowerCamelCase : List[str] = tf.function(lowercase , jit_compile=lowercase ) _lowerCamelCase : Union[str, Any] = xla_generate(lowercase , lowercase )[0] self.assertTrue(np.allclose(output[:, :3, :3] , lowercase , atol=4E-2 ) ) @require_tf @slow class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): super().setUp() _lowerCamelCase : List[Any] = 'facebook/opt-350m' def A_ ( self ): _lowerCamelCase : int = TFOPTForCausalLM.from_pretrained(self.path_model ) _lowerCamelCase : List[Any] = GPTaTokenizer.from_pretrained(self.path_model ) _lowerCamelCase : List[str] = [ 'Today is a beautiful day and I want to', 'In the city of', 'Paris is the capital of France and', 'Computers and mobile phones have taken', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False _lowerCamelCase : List[Any] = tokenizer(lowercase , return_tensors='tf' , padding=lowercase , add_special_tokens=lowercase ) _lowerCamelCase : Optional[int] = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) _lowerCamelCase : Any = tf.constant( [ [1.38_51, -13.89_23, -10.52_29, -10.75_33, -0.23_09, -10.23_84, -0.53_65, -9.09_47, -5.16_70], [-4.70_73, -10.62_76, -3.94_15, -21.52_42, -0.28_22, -0.28_22, -0.28_22, -0.28_22, -0.28_22], [0.62_47, -3.42_29, -8.91_79, -1.42_97, -14.16_50, 1.41_46, -9.02_18, -0.27_03, -0.27_03], [6.47_83, -1.99_13, -10.79_26, -2.33_36, 1.50_92, -0.99_74, -6.82_13, 1.34_77, 1.34_77], ] ) self.assertTrue(np.allclose(lowercase , lowercase , atol=1E-4 ) ) _lowerCamelCase : Tuple = tf.function(lowercase , jit_compile=lowercase ) _lowerCamelCase : List[Any] = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(lowercase , lowercase , atol=1E-4 ) ) @require_tf @slow class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @property def A_ ( self ): return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def A_ ( self ): _lowerCamelCase : str = 'facebook/opt-125m' _lowerCamelCase : Dict = [ 'Today is a beautiful day and I want to', 'In the city of New York, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] _lowerCamelCase : Optional[int] = [] _lowerCamelCase : Optional[int] = GPTaTokenizer.from_pretrained(lowercase ) _lowerCamelCase : Dict = TFOPTForCausalLM.from_pretrained(lowercase ) for prompt in self.prompts: _lowerCamelCase : int = tokenizer(lowercase , return_tensors='tf' ).input_ids _lowerCamelCase : int = model.generate(lowercase , max_length=10 ) _lowerCamelCase : Any = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) predicted_outputs += generated_string self.assertListEqual(lowercase , lowercase ) def A_ ( self ): _lowerCamelCase : List[Any] = 'facebook/opt-350m' _lowerCamelCase : int = GPTaTokenizer.from_pretrained(lowercase ) _lowerCamelCase : Optional[int] = TFOPTForCausalLM.from_pretrained(lowercase ) _lowerCamelCase : Any = 'left' # use different length sentences to test batching _lowerCamelCase : Optional[int] = [ 'Hello, my dog is a little', 'Today, I', ] _lowerCamelCase : Dict = tokenizer(lowercase , return_tensors='tf' , padding=lowercase ) _lowerCamelCase : int = inputs['input_ids'] _lowerCamelCase : Tuple = model.generate(input_ids=lowercase , attention_mask=inputs['attention_mask'] ) _lowerCamelCase : Optional[int] = tokenizer(sentences[0] , return_tensors='tf' ).input_ids _lowerCamelCase : Union[str, Any] = model.generate(input_ids=lowercase ) _lowerCamelCase : Dict = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['attention_mask'][-1] , tf.intaa ) ) _lowerCamelCase : int = tokenizer(sentences[1] , return_tensors='tf' ).input_ids _lowerCamelCase : Union[str, Any] = model.generate(input_ids=lowercase , max_length=model.config.max_length - num_paddings ) _lowerCamelCase : List[Any] = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) _lowerCamelCase : Union[str, Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase ) _lowerCamelCase : Optional[Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase ) _lowerCamelCase : Optional[Any] = [ 'Hello, my dog is a little bit of a dork.\nI\'m a little bit', 'Today, I was in the middle of a conversation with a friend about the', ] self.assertListEqual(lowercase , lowercase ) self.assertListEqual(lowercase , [non_padded_sentence, padded_sentence] ) def A_ ( self ): _lowerCamelCase : Tuple = 'facebook/opt-350m' _lowerCamelCase : List[Any] = [ 'Today is a beautiful day and I want to', 'In the city of San Francisco, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] _lowerCamelCase : Optional[int] = [] _lowerCamelCase : Optional[Any] = GPTaTokenizer.from_pretrained(lowercase ) _lowerCamelCase : Optional[Any] = TFOPTForCausalLM.from_pretrained(lowercase ) for prompt in self.prompts: _lowerCamelCase : List[Any] = tokenizer(lowercase , return_tensors='tf' ).input_ids _lowerCamelCase : Optional[Any] = model.generate(lowercase , max_length=10 ) _lowerCamelCase : Dict = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) predicted_outputs += generated_string self.assertListEqual(lowercase , lowercase )
12
0
"""simple docstring""" def _snake_case ( lowercase__ ): if collection == []: return [] # get some information about the collection _lowerCamelCase : Optional[int] = len(UpperCamelCase__ ) _lowerCamelCase : List[Any] = max(UpperCamelCase__ ) _lowerCamelCase : Optional[Any] = min(UpperCamelCase__ ) # create the counting array _lowerCamelCase : Union[str, Any] = coll_max + 1 - coll_min _lowerCamelCase : List[Any] = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , UpperCamelCase__ ): _lowerCamelCase : str = counting_arr[i] + counting_arr[i - 1] # create the output collection _lowerCamelCase : Any = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , UpperCamelCase__ ) ): _lowerCamelCase : List[str] = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def _snake_case ( lowercase__ ): return "".join([chr(UpperCamelCase__ ) for i in counting_sort([ord(UpperCamelCase__ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("""thisisthestring""") == "eghhiiinrsssttt" lowercase__ = input("""Enter numbers separated by a comma:\n""").strip() lowercase__ = [int(item) for item in user_input.split(""",""")] print(counting_sort(unsorted))
362
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """philschmid/bart-large-cnn-samsum""" lowerCamelCase__ = ( """This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, """ """and returns a summary of the text.""" ) lowerCamelCase__ = """summarizer""" lowerCamelCase__ = AutoTokenizer lowerCamelCase__ = AutoModelForSeqaSeqLM lowerCamelCase__ = ["""text"""] lowerCamelCase__ = ["""text"""] def A_ ( self , lowercase ): return self.pre_processor(lowercase , return_tensors='pt' , truncation=lowercase ) def A_ ( self , lowercase ): return self.model.generate(**lowercase )[0] def A_ ( self , lowercase ): return self.pre_processor.decode(lowercase , skip_special_tokens=lowercase , clean_up_tokenization_spaces=lowercase )
12
0
"""simple docstring""" import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL lowercase__ = logging.get_logger(__name__) def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): def constraint_to_multiple_of(lowercase__ , lowercase__ , lowercase__=0 , lowercase__=None ): _lowerCamelCase : Optional[int] = round(val / multiple ) * multiple if max_val is not None and x > max_val: _lowerCamelCase : Tuple = math.floor(val / multiple ) * multiple if x < min_val: _lowerCamelCase : Union[str, Any] = math.ceil(val / multiple ) * multiple return x _lowerCamelCase : Union[str, Any] = (output_size, output_size) if isinstance(_a , _a ) else output_size _lowerCamelCase : Tuple = get_image_size(_a ) _lowerCamelCase : str = output_size # determine new height and width _lowerCamelCase : Dict = output_height / input_height _lowerCamelCase : Dict = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width _lowerCamelCase : List[str] = scale_width else: # fit height _lowerCamelCase : Tuple = scale_height _lowerCamelCase : List[str] = constraint_to_multiple_of(scale_height * input_height , multiple=_a ) _lowerCamelCase : Any = constraint_to_multiple_of(scale_width * input_width , multiple=_a ) return (new_height, new_width) class lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCamelCase__ = ['pixel_values'] def __init__( self , lowercase = True , lowercase = None , lowercase = PILImageResampling.BILINEAR , lowercase = False , lowercase = 1 , lowercase = True , lowercase = 1 / 255 , lowercase = True , lowercase = None , lowercase = None , **lowercase , ): super().__init__(**_SCREAMING_SNAKE_CASE ) _lowerCamelCase : int = size if size is not None else {"height": 384, "width": 384} _lowerCamelCase : List[Any] = get_size_dict(_SCREAMING_SNAKE_CASE ) _lowerCamelCase : List[Any] = do_resize _lowerCamelCase : List[str] = size _lowerCamelCase : Union[str, Any] = keep_aspect_ratio _lowerCamelCase : Dict = ensure_multiple_of _lowerCamelCase : Tuple = resample _lowerCamelCase : str = do_rescale _lowerCamelCase : Union[str, Any] = rescale_factor _lowerCamelCase : str = do_normalize _lowerCamelCase : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _lowerCamelCase : Union[str, Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def A_ ( self , lowercase , lowercase , lowercase = False , lowercase = 1 , lowercase = PILImageResampling.BICUBIC , lowercase = None , **lowercase , ): _lowerCamelCase : Tuple = get_size_dict(_SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(F'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) _lowerCamelCase : str = get_resize_output_image_size( _SCREAMING_SNAKE_CASE , output_size=(size['height'], size['width']) , keep_aspect_ratio=_SCREAMING_SNAKE_CASE , multiple=_SCREAMING_SNAKE_CASE , ) return resize(_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , resample=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def A_ ( self , lowercase , lowercase , lowercase = None , **lowercase , ): return rescale(_SCREAMING_SNAKE_CASE , scale=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def A_ ( self , lowercase , lowercase , lowercase , lowercase = None , **lowercase , ): return normalize(_SCREAMING_SNAKE_CASE , mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def A_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = ChannelDimension.FIRST , **lowercase , ): _lowerCamelCase : List[Any] = do_resize if do_resize is not None else self.do_resize _lowerCamelCase : List[Any] = size if size is not None else self.size _lowerCamelCase : Any = get_size_dict(_SCREAMING_SNAKE_CASE ) _lowerCamelCase : List[Any] = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio _lowerCamelCase : Dict = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of _lowerCamelCase : Optional[Any] = resample if resample is not None else self.resample _lowerCamelCase : int = do_rescale if do_rescale is not None else self.do_rescale _lowerCamelCase : str = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCamelCase : List[str] = do_normalize if do_normalize is not None else self.do_normalize _lowerCamelCase : List[Any] = image_mean if image_mean is not None else self.image_mean _lowerCamelCase : List[Any] = image_std if image_std is not None else self.image_std _lowerCamelCase : str = make_list_of_images(_SCREAMING_SNAKE_CASE ) if not valid_images(_SCREAMING_SNAKE_CASE ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. _lowerCamelCase : Any = [to_numpy_array(_SCREAMING_SNAKE_CASE ) for image in images] if do_resize: _lowerCamelCase : Dict = [self.resize(image=_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , resample=_SCREAMING_SNAKE_CASE ) for image in images] if do_rescale: _lowerCamelCase : Tuple = [self.rescale(image=_SCREAMING_SNAKE_CASE , scale=_SCREAMING_SNAKE_CASE ) for image in images] if do_normalize: _lowerCamelCase : Optional[Any] = [self.normalize(image=_SCREAMING_SNAKE_CASE , mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE ) for image in images] _lowerCamelCase : str = [to_channel_dimension_format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for image in images] _lowerCamelCase : List[Any] = {"pixel_values": images} return BatchFeature(data=_SCREAMING_SNAKE_CASE , tensor_type=_SCREAMING_SNAKE_CASE ) def A_ ( self , lowercase , lowercase = None ): _lowerCamelCase : str = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(_SCREAMING_SNAKE_CASE ): _lowerCamelCase : Any = target_sizes.numpy() _lowerCamelCase : Union[str, Any] = [] for idx in range(len(_SCREAMING_SNAKE_CASE ) ): _lowerCamelCase : List[str] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=_SCREAMING_SNAKE_CASE ) _lowerCamelCase : Dict = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_SCREAMING_SNAKE_CASE ) else: _lowerCamelCase : Any = logits.argmax(dim=1 ) _lowerCamelCase : List[str] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
363
"""simple docstring""" from __future__ import annotations def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : Tuple = list(range(len(lowercase__ ) ) ) _lowerCamelCase : Any = [v / w for v, w in zip(lowercase__ , lowercase__ )] index.sort(key=lambda lowercase__ : ratio[i] , reverse=lowercase__ ) _lowerCamelCase : float = 0 _lowerCamelCase : list[float] = [0] * len(lowercase__ ) for i in index: if weight[i] <= capacity: _lowerCamelCase : int = 1 max_value += value[i] capacity -= weight[i] else: _lowerCamelCase : Any = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
12
0
"""simple docstring""" from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) # TODO Update this lowercase__ = { "facebook/esm-1b": "https://huggingface.co/facebook/esm-1b/resolve/main/config.json", # See all ESM models at https://huggingface.co/models?filter=esm } class lowerCAmelCase__ ( snake_case__ ): '''simple docstring''' lowerCamelCase__ = """esm""" def __init__( self , lowercase=None , lowercase=None , lowercase=None , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase=0.1 , lowercase=0.1 , lowercase=1026 , lowercase=0.02 , lowercase=1E-12 , lowercase="absolute" , lowercase=True , lowercase=None , lowercase=False , lowercase=False , lowercase=None , lowercase=None , **lowercase , ): super().__init__(pad_token_id=UpperCAmelCase_ , mask_token_id=UpperCAmelCase_ , **UpperCAmelCase_ ) _lowerCamelCase : Optional[Any] = vocab_size _lowerCamelCase : Union[str, Any] = hidden_size _lowerCamelCase : Union[str, Any] = num_hidden_layers _lowerCamelCase : Optional[Any] = num_attention_heads _lowerCamelCase : Dict = intermediate_size _lowerCamelCase : List[str] = hidden_dropout_prob _lowerCamelCase : Tuple = attention_probs_dropout_prob _lowerCamelCase : List[str] = max_position_embeddings _lowerCamelCase : int = initializer_range _lowerCamelCase : Optional[Any] = layer_norm_eps _lowerCamelCase : Optional[Any] = position_embedding_type _lowerCamelCase : Dict = use_cache _lowerCamelCase : Union[str, Any] = emb_layer_norm_before _lowerCamelCase : str = token_dropout _lowerCamelCase : str = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('No esmfold_config supplied for folding model, using default values.' ) _lowerCamelCase : Optional[Any] = EsmFoldConfig() elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): _lowerCamelCase : Optional[int] = EsmFoldConfig(**UpperCAmelCase_ ) _lowerCamelCase : Dict = esmfold_config if vocab_list is None: logger.warning('No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!' ) _lowerCamelCase : Dict = get_default_vocab_list() else: _lowerCamelCase : str = vocab_list else: _lowerCamelCase : Any = None _lowerCamelCase : int = None if self.esmfold_config is not None and getattr(self.esmfold_config , 'use_esm_attn_map' , UpperCAmelCase_ ): raise ValueError('The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!' ) def A_ ( self ): _lowerCamelCase : Optional[int] = super().to_dict() if isinstance(self.esmfold_config , UpperCAmelCase_ ): _lowerCamelCase : List[Any] = self.esmfold_config.to_dict() return output @dataclass class lowerCAmelCase__ : '''simple docstring''' lowerCamelCase__ = None lowerCamelCase__ = True lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = 0 lowerCamelCase__ = True lowerCamelCase__ = False lowerCamelCase__ = 1_28 lowerCamelCase__ = None def A_ ( self ): if self.trunk is None: _lowerCamelCase : Optional[Any] = TrunkConfig() elif isinstance(self.trunk , UpperCAmelCase_ ): _lowerCamelCase : str = TrunkConfig(**self.trunk ) def A_ ( self ): _lowerCamelCase : Tuple = asdict(self ) _lowerCamelCase : Tuple = self.trunk.to_dict() return output @dataclass class lowerCAmelCase__ : '''simple docstring''' lowerCamelCase__ = 48 lowerCamelCase__ = 10_24 lowerCamelCase__ = 1_28 lowerCamelCase__ = 32 lowerCamelCase__ = 32 lowerCamelCase__ = 32 lowerCamelCase__ = 0 lowerCamelCase__ = 0 lowerCamelCase__ = False lowerCamelCase__ = 4 lowerCamelCase__ = 1_28 lowerCamelCase__ = None def A_ ( self ): if self.structure_module is None: _lowerCamelCase : int = StructureModuleConfig() elif isinstance(self.structure_module , UpperCAmelCase_ ): _lowerCamelCase : Dict = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F'''`max_recycles` should be positive, got {self.max_recycles}.''' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got' F''' {self.sequence_state_dim} and {self.sequence_state_dim}.''' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got' F''' {self.pairwise_state_dim} and {self.pairwise_state_dim}.''' ) _lowerCamelCase : Optional[int] = self.sequence_state_dim // self.sequence_head_width _lowerCamelCase : str = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got' F''' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.''' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got' F''' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.''' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F'''`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.''' ) if self.dropout >= 0.4: raise ValueError(F'''`dropout` should not be greater than 0.4, got {self.dropout}.''' ) def A_ ( self ): _lowerCamelCase : List[str] = asdict(self ) _lowerCamelCase : Optional[Any] = self.structure_module.to_dict() return output @dataclass class lowerCAmelCase__ : '''simple docstring''' lowerCamelCase__ = 3_84 lowerCamelCase__ = 1_28 lowerCamelCase__ = 16 lowerCamelCase__ = 1_28 lowerCamelCase__ = 12 lowerCamelCase__ = 4 lowerCamelCase__ = 8 lowerCamelCase__ = 0.1 lowerCamelCase__ = 8 lowerCamelCase__ = 1 lowerCamelCase__ = 2 lowerCamelCase__ = 7 lowerCamelCase__ = 10 lowerCamelCase__ = 1e-8 lowerCamelCase__ = 1e5 def A_ ( self ): return asdict(self ) def _snake_case ( ): return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
364
"""simple docstring""" import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate lowercase__ = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("""""", """|""", """|"""), datarow=DataRow("""""", """|""", """|"""), padding=1, with_header_hide=None, ) lowercase__ = [] lowercase__ = [] lowercase__ = {"""type""": """section""", """text""": {"""type""": """plain_text""", """text""": """No failed tests! 🤗""", """emoji""": True}} lowercase__ = [ { """type""": """header""", """text""": { """type""": """plain_text""", """text""": F"🤗 Accelerate nightly {os.environ.get('TEST_TYPE', '')} test results", """emoji""": True, }, } ] lowercase__ = 0 for log in Path().glob("""*.log"""): lowercase__ = 0 with open(log, """r""") as f: for line in f: lowercase__ = json.loads(line) if line.get("""nodeid""", """""") != "": lowercase__ = line["""nodeid"""] if line.get("""duration""", None) is not None: lowercase__ = F"{line['duration']:.4f}" if line.get("""outcome""", """""") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("""_""")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) lowercase__ = [] log.unlink() lowercase__ = """""" lowercase__ = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" lowercase__ = [] lowercase__ = {} for test in failed_tests: lowercase__ = test[0].split("""::""") lowercase__ = data[0].split("""/""")[-1] if data[0] not in filesafailed: lowercase__ = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) lowercase__ = [test[0] for test in failed_table] lowercase__ = list(set(files)) # Count number of instances in failed_tests lowercase__ = [] for file in individual_files: table.append([file, len(filesafailed[file])]) lowercase__ = tabulate( table, headers=["""Test Location""", """Num Failed"""], tablefmt=hf_table_format, stralign="""right""", ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: lowercase__ = """Too many failed tests, please see the full report in the Action results.""" lowercase__ = len(err) + 10 lowercase__ = message[: 3000 - offset] + F"\n...\n```\n{err}" print(F"### {message}") else: lowercase__ = """No failed tests! 🤗""" print(F"## {message}") payload.append(no_error_payload) if os.environ.get("""TEST_TYPE""", """""") != "": from slack_sdk import WebClient lowercase__ = WebClient(token=os.environ["""SLACK_API_TOKEN"""]) if message != "No failed tests! 🤗": lowercase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": message, }, } payload.append(md_report) lowercase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": """*For more details:*""", }, """accessory""": { """type""": """button""", """text""": { """type""": """plain_text""", """text""": """Check Action results""", """emoji""": True, }, """url""": F"https://github.com/{os.environ['GITHUB_REPOSITORY']}/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } payload.append(action_button) lowercase__ = { """type""": """context""", """elements""": [ { """type""": """plain_text""", """text""": F"Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}", } ], } payload.append(date_report) lowercase__ = client.chat_postMessage(channel="""#accelerate-ci-daily""", text=message, blocks=payload) lowercase__ = response.data["""ts"""] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name lowercase__ = """""" for i, row in enumerate(test_failures): if row[0] != test_class: lowercase__ = row[0] else: lowercase__ = """""" lowercase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": F"Test location: {test_location}\n```\n{tabulate(test_failures, headers=['Class', 'Test'], tablefmt=hf_table_format, stralign='right')}\n```", }, } client.chat_postMessage( channel="""#accelerate-ci-daily""", thread_ts=ts, blocks=[payload], )
12
0
"""simple docstring""" import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() lowercase__ = logging.get_logger(__name__) lowercase__ = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn.grep_linear""": """encoder.layers.*.attention.gru_rel_pos_linear""", """self_attn.relative_attention_bias""": """encoder.layers.*.attention.rel_attn_embed""", """self_attn.grep_a""": """encoder.layers.*.attention.gru_rel_pos_const""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """ctc_proj""", """mask_emb""": """masked_spec_embed""", } lowercase__ = [ """ctc_proj""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): for attribute in key.split('.' ): _lowerCamelCase : List[str] = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if weight_type is not None: _lowerCamelCase : Tuple = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).shape else: _lowerCamelCase : Union[str, Any] = hf_pointer.shape assert hf_shape == value.shape, ( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": _lowerCamelCase : int = value elif weight_type == "weight_g": _lowerCamelCase : Tuple = value elif weight_type == "weight_v": _lowerCamelCase : int = value elif weight_type == "bias": _lowerCamelCase : str = value else: _lowerCamelCase : Union[str, Any] = value logger.info(f'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def _snake_case ( lowercase__ , lowercase__ ): _lowerCamelCase : Dict = [] _lowerCamelCase : str = fairseq_model.state_dict() _lowerCamelCase : Optional[Any] = hf_model.feature_extractor for name, value in fairseq_dict.items(): _lowerCamelCase : str = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , hf_model.config.feat_extract_norm == 'group' , ) _lowerCamelCase : str = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: _lowerCamelCase : int = True if "*" in mapped_key: _lowerCamelCase : Optional[Any] = name.split(SCREAMING_SNAKE_CASE_ )[0].split('.' )[-2] _lowerCamelCase : int = mapped_key.replace('*' , SCREAMING_SNAKE_CASE_ ) if "weight_g" in name: _lowerCamelCase : Optional[Any] = 'weight_g' elif "weight_v" in name: _lowerCamelCase : Optional[int] = 'weight_v' elif "bias" in name and "relative_attention_bias" not in name: _lowerCamelCase : int = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowerCamelCase : Any = 'weight' else: _lowerCamelCase : str = None set_recursively(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE_ ) logger.warning(f'''Unused weights: {unused_weights}''' ) def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : Union[str, Any] = full_name.split('conv_layers.' )[-1] _lowerCamelCase : Dict = name.split('.' ) _lowerCamelCase : int = int(items[0] ) _lowerCamelCase : Tuple = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _lowerCamelCase : List[str] = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _lowerCamelCase : Union[str, Any] = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) _lowerCamelCase : Tuple = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) _lowerCamelCase : List[Any] = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(SCREAMING_SNAKE_CASE_ ) @torch.no_grad() def _snake_case ( lowercase__ , lowercase__ , lowercase__=None ): # load the pre-trained checkpoints _lowerCamelCase : str = torch.load(SCREAMING_SNAKE_CASE_ ) _lowerCamelCase : Tuple = WavLMConfigOrig(checkpoint['cfg'] ) _lowerCamelCase : Optional[int] = WavLMOrig(SCREAMING_SNAKE_CASE_ ) model.load_state_dict(checkpoint['model'] ) model.eval() if config_path is not None: _lowerCamelCase : Tuple = WavLMConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) else: _lowerCamelCase : str = WavLMConfig() _lowerCamelCase : List[Any] = WavLMModel(SCREAMING_SNAKE_CASE_ ) recursively_load_weights(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) hf_wavlm.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") lowercase__ = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
365
"""simple docstring""" import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer lowercase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """AutoTokenizer""" lowerCamelCase__ = ["""tokenizer"""] lowerCamelCase__ = { """semantic_prompt""": 1, """coarse_prompt""": 2, """fine_prompt""": 2, } def __init__( self , lowercase , lowercase=None ): super().__init__(lowercase ) _lowerCamelCase : Optional[int] = speaker_embeddings @classmethod def A_ ( cls , lowercase , lowercase="speaker_embeddings_path.json" , **lowercase ): if speaker_embeddings_dict_path is not None: _lowerCamelCase : Optional[Any] = get_file_from_repo( lowercase , lowercase , subfolder=kwargs.pop('subfolder' , lowercase ) , cache_dir=kwargs.pop('cache_dir' , lowercase ) , force_download=kwargs.pop('force_download' , lowercase ) , proxies=kwargs.pop('proxies' , lowercase ) , resume_download=kwargs.pop('resume_download' , lowercase ) , local_files_only=kwargs.pop('local_files_only' , lowercase ) , use_auth_token=kwargs.pop('use_auth_token' , lowercase ) , revision=kwargs.pop('revision' , lowercase ) , ) if speaker_embeddings_path is None: logger.warning( F'''`{os.path.join(lowercase , lowercase )}` does not exists , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.''' ) _lowerCamelCase : List[Any] = None else: with open(lowercase ) as speaker_embeddings_json: _lowerCamelCase : Union[str, Any] = json.load(lowercase ) else: _lowerCamelCase : Tuple = None _lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained(lowercase , **lowercase ) return cls(tokenizer=lowercase , speaker_embeddings=lowercase ) def A_ ( self , lowercase , lowercase="speaker_embeddings_path.json" , lowercase="speaker_embeddings" , lowercase = False , **lowercase , ): if self.speaker_embeddings is not None: os.makedirs(os.path.join(lowercase , lowercase , 'v2' ) , exist_ok=lowercase ) _lowerCamelCase : int = {} _lowerCamelCase : List[Any] = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": _lowerCamelCase : Optional[Any] = self._load_voice_preset(lowercase ) _lowerCamelCase : Any = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict['repo_or_path'] , lowercase , F'''{prompt_key}_{key}''' ) , voice_preset[key] , allow_pickle=lowercase , ) _lowerCamelCase : List[str] = os.path.join(lowercase , F'''{prompt_key}_{key}.npy''' ) _lowerCamelCase : Optional[Any] = tmp_dict with open(os.path.join(lowercase , lowercase ) , 'w' ) as fp: json.dump(lowercase , lowercase ) super().save_pretrained(lowercase , lowercase , **lowercase ) def A_ ( self , lowercase = None , **lowercase ): _lowerCamelCase : Tuple = self.speaker_embeddings[voice_preset] _lowerCamelCase : Any = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( F'''Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].''' ) _lowerCamelCase : Union[str, Any] = get_file_from_repo( self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] , subfolder=kwargs.pop('subfolder' , lowercase ) , cache_dir=kwargs.pop('cache_dir' , lowercase ) , force_download=kwargs.pop('force_download' , lowercase ) , proxies=kwargs.pop('proxies' , lowercase ) , resume_download=kwargs.pop('resume_download' , lowercase ) , local_files_only=kwargs.pop('local_files_only' , lowercase ) , use_auth_token=kwargs.pop('use_auth_token' , lowercase ) , revision=kwargs.pop('revision' , lowercase ) , ) if path is None: raise ValueError( F'''`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset} embeddings.''' ) _lowerCamelCase : List[str] = np.load(lowercase ) return voice_preset_dict def A_ ( self , lowercase = None ): for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(F'''Voice preset unrecognized, missing {key} as a key.''' ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) def __call__( self , lowercase=None , lowercase=None , lowercase="pt" , lowercase=256 , lowercase=False , lowercase=True , lowercase=False , **lowercase , ): if voice_preset is not None and not isinstance(lowercase , lowercase ): if ( isinstance(lowercase , lowercase ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): _lowerCamelCase : Any = self._load_voice_preset(lowercase ) else: if isinstance(lowercase , lowercase ) and not voice_preset.endswith('.npz' ): _lowerCamelCase : Optional[Any] = voice_preset + '.npz' _lowerCamelCase : Union[str, Any] = np.load(lowercase ) if voice_preset is not None: self._validate_voice_preset_dict(lowercase , **lowercase ) _lowerCamelCase : Tuple = BatchFeature(data=lowercase , tensor_type=lowercase ) _lowerCamelCase : Any = self.tokenizer( lowercase , return_tensors=lowercase , padding='max_length' , max_length=lowercase , return_attention_mask=lowercase , return_token_type_ids=lowercase , add_special_tokens=lowercase , **lowercase , ) if voice_preset is not None: _lowerCamelCase : Optional[int] = voice_preset return encoded_text
12
0
"""simple docstring""" class lowerCAmelCase__ : '''simple docstring''' def __init__( self , lowercase ): _lowerCamelCase : Union[str, Any] = val _lowerCamelCase : Union[str, Any] = None _lowerCamelCase : Optional[Any] = None def A_ ( self , lowercase ): if self.val: if val < self.val: if self.left is None: _lowerCamelCase : Any = Node(__lowerCamelCase ) else: self.left.insert(__lowerCamelCase ) elif val > self.val: if self.right is None: _lowerCamelCase : Union[str, Any] = Node(__lowerCamelCase ) else: self.right.insert(__lowerCamelCase ) else: _lowerCamelCase : Optional[int] = val def _snake_case ( lowercase__ , lowercase__ ): # Recursive traversal if root: inorder(root.left , UpperCamelCase__ ) res.append(root.val ) inorder(root.right , UpperCamelCase__ ) def _snake_case ( lowercase__ ): # Build BST if len(UpperCamelCase__ ) == 0: return arr _lowerCamelCase : List[Any] = Node(arr[0] ) for i in range(1 , len(UpperCamelCase__ ) ): root.insert(arr[i] ) # Traverse BST in order. _lowerCamelCase : List[Any] = [] inorder(UpperCamelCase__ , UpperCamelCase__ ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
366
"""simple docstring""" import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device lowercase__ = False class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' pass @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): _lowerCamelCase : Tuple = VersatileDiffusionImageVariationPipeline.from_pretrained('shi-labs/versatile-diffusion' ) pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) _lowerCamelCase : Tuple = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) _lowerCamelCase : Dict = torch.manual_seed(0 ) _lowerCamelCase : Dict = pipe( image=lowercase , generator=lowercase , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' , ).images _lowerCamelCase : str = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) _lowerCamelCase : Any = np.array([0.04_41, 0.04_69, 0.05_07, 0.05_75, 0.06_32, 0.06_50, 0.08_65, 0.09_09, 0.09_45] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
12
0
"""simple docstring""" from pathlib import Path import fire from tqdm import tqdm def _snake_case ( lowercase__="ro" , lowercase__="en" , lowercase__="wmt16" , lowercase__=None ): try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError('run pip install datasets' ) _lowerCamelCase : str = f'''{src_lang}-{tgt_lang}''' print(f'''Converting {dataset}-{pair}''' ) _lowerCamelCase : Optional[int] = datasets.load_dataset(__lowerCamelCase , __lowerCamelCase ) if save_dir is None: _lowerCamelCase : Tuple = f'''{dataset}-{pair}''' _lowerCamelCase : Dict = Path(__lowerCamelCase ) save_dir.mkdir(exist_ok=__lowerCamelCase ) for split in ds.keys(): print(f'''Splitting {split} with {ds[split].num_rows} records''' ) # to save to val.source, val.target like summary datasets _lowerCamelCase : int = 'val' if split == 'validation' else split _lowerCamelCase : str = save_dir.joinpath(f'''{fn}.source''' ) _lowerCamelCase : Dict = save_dir.joinpath(f'''{fn}.target''' ) _lowerCamelCase : List[Any] = src_path.open('w+' ) _lowerCamelCase : Optional[int] = tgt_path.open('w+' ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): _lowerCamelCase : Union[str, Any] = x['translation'] src_fp.write(ex[src_lang] + '\n' ) tgt_fp.write(ex[tgt_lang] + '\n' ) print(f'''Saved {dataset} dataset to {save_dir}''' ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
367
"""simple docstring""" import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency lowercase__ = { """E""": 12.70, """T""": 9.06, """A""": 8.17, """O""": 7.51, """I""": 6.97, """N""": 6.75, """S""": 6.33, """H""": 6.09, """R""": 5.99, """D""": 4.25, """L""": 4.03, """C""": 2.78, """U""": 2.76, """M""": 2.41, """W""": 2.36, """F""": 2.23, """G""": 2.02, """Y""": 1.97, """P""": 1.93, """B""": 1.29, """V""": 0.98, """K""": 0.77, """J""": 0.15, """X""": 0.15, """Q""": 0.10, """Z""": 0.07, } lowercase__ = """ETAOINSHRDLCUMWFGYPBVKJXQZ""" lowercase__ = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def _snake_case ( lowercase__ ): _lowerCamelCase : Tuple = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def _snake_case ( lowercase__ ): return x[0] def _snake_case ( lowercase__ ): _lowerCamelCase : List[Any] = get_letter_count(lowercase__ ) _lowerCamelCase : dict[int, list[str]] = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(lowercase__ ) _lowerCamelCase : dict[int, str] = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=lowercase__ ) _lowerCamelCase : Optional[int] = ''.join(freq_to_letter[freq] ) _lowerCamelCase : Any = list(freq_to_letter_str.items() ) freq_pairs.sort(key=lowercase__ , reverse=lowercase__ ) _lowerCamelCase : list[str] = [freq_pair[1] for freq_pair in freq_pairs] return "".join(lowercase__ ) def _snake_case ( lowercase__ ): _lowerCamelCase : str = get_frequency_order(lowercase__ ) _lowerCamelCase : Union[str, Any] = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
12
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowercase__ = { "configuration_gpt_bigcode": ["GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTBigCodeConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ "GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTBigCodeForSequenceClassification", "GPTBigCodeForTokenClassification", "GPTBigCodeForCausalLM", "GPTBigCodeModel", "GPTBigCodePreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
368
"""simple docstring""" import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig lowercase__ = logging.get_logger(__name__) class lowerCAmelCase__ : '''simple docstring''' def __init__( self , lowercase , lowercase ): _lowerCamelCase : Dict = question_encoder _lowerCamelCase : List[Any] = generator _lowerCamelCase : Optional[Any] = self.question_encoder def A_ ( self , lowercase ): if os.path.isfile(lowercase ): raise ValueError(F'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(lowercase , exist_ok=lowercase ) _lowerCamelCase : List[Any] = os.path.join(lowercase , 'question_encoder_tokenizer' ) _lowerCamelCase : Dict = os.path.join(lowercase , 'generator_tokenizer' ) self.question_encoder.save_pretrained(lowercase ) self.generator.save_pretrained(lowercase ) @classmethod def A_ ( cls , lowercase , **lowercase ): # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer _lowerCamelCase : Optional[int] = kwargs.pop('config' , lowercase ) if config is None: _lowerCamelCase : int = RagConfig.from_pretrained(lowercase ) _lowerCamelCase : Optional[Any] = AutoTokenizer.from_pretrained( lowercase , config=config.question_encoder , subfolder='question_encoder_tokenizer' ) _lowerCamelCase : Dict = AutoTokenizer.from_pretrained( lowercase , config=config.generator , subfolder='generator_tokenizer' ) return cls(question_encoder=lowercase , generator=lowercase ) def __call__( self , *lowercase , **lowercase ): return self.current_tokenizer(*lowercase , **lowercase ) def A_ ( self , *lowercase , **lowercase ): return self.generator.batch_decode(*lowercase , **lowercase ) def A_ ( self , *lowercase , **lowercase ): return self.generator.decode(*lowercase , **lowercase ) def A_ ( self ): _lowerCamelCase : Any = self.question_encoder def A_ ( self ): _lowerCamelCase : Optional[Any] = self.generator def A_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = "longest" , lowercase = None , lowercase = True , **lowercase , ): warnings.warn( '`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ' 'regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ' 'context manager to prepare your targets. See the documentation of your specific tokenizer for more ' 'details' , lowercase , ) if max_length is None: _lowerCamelCase : Optional[Any] = self.current_tokenizer.model_max_length _lowerCamelCase : Optional[Any] = self( lowercase , add_special_tokens=lowercase , return_tensors=lowercase , max_length=lowercase , padding=lowercase , truncation=lowercase , **lowercase , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: _lowerCamelCase : int = self.current_tokenizer.model_max_length _lowerCamelCase : str = self( text_target=lowercase , add_special_tokens=lowercase , return_tensors=lowercase , padding=lowercase , max_length=lowercase , truncation=lowercase , **lowercase , ) _lowerCamelCase : int = labels['input_ids'] return model_inputs
12
0
"""simple docstring""" import os import numpy import onnx def _snake_case ( lowercase__ , lowercase__ ): _lowerCamelCase : Dict = a.name _lowerCamelCase : Optional[int] = b.name _lowerCamelCase : Union[str, Any] = "" _lowerCamelCase : Dict = "" _lowerCamelCase : str = a == b _lowerCamelCase : str = name_a _lowerCamelCase : List[str] = name_b return res def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(lowercase__ , lowercase__ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , lowercase__ , lowercase__ ) _graph_replace_input_with(node_proto.attribute[1].g , lowercase__ , lowercase__ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , lowercase__ , lowercase__ ) def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): for n in graph_proto.node: _node_replace_input_with(lowercase__ , lowercase__ , lowercase__ ) def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : Dict = list(model.graph.initializer ) _lowerCamelCase : Optional[int] = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i _lowerCamelCase : List[str] = inits[i].name _lowerCamelCase : str = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , lowercase__ , lowercase__ ) def _snake_case ( lowercase__ ): _lowerCamelCase : Any = os.path.dirname(lowercase__ ) _lowerCamelCase : Optional[int] = os.path.basename(lowercase__ ) _lowerCamelCase : List[Any] = onnx.load(os.path.join(lowercase__ , lowercase__ ) ) _lowerCamelCase : Optional[Any] = list(model.graph.initializer ) _lowerCamelCase : str = set() _lowerCamelCase : List[str] = {} _lowerCamelCase : Tuple = [] _lowerCamelCase : str = 0 for i in range(len(lowercase__ ) ): if i in dup_set: continue for j in range(i + 1 , len(lowercase__ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(lowercase__ ) dup_set.add(lowercase__ ) _lowerCamelCase : Union[str, Any] = inits[j].data_type _lowerCamelCase : Tuple = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('unexpected data type: ' , lowercase__ ) total_reduced_size += mem_size _lowerCamelCase : str = inits[i].name _lowerCamelCase : List[Any] = inits[j].name if name_i in dup_map: dup_map[name_i].append(lowercase__ ) else: _lowerCamelCase : Any = [name_j] ind_to_replace.append((j, i) ) print('total reduced size: ' , total_reduced_size / 1024 / 1024 / 1024 , 'GB' ) _lowerCamelCase : List[Any] = sorted(lowercase__ ) _remove_dup_initializers_from_model(lowercase__ , lowercase__ , lowercase__ ) _lowerCamelCase : Optional[int] = "optimized_" + model_file_name _lowerCamelCase : List[Any] = os.path.join(lowercase__ , lowercase__ ) onnx.save(lowercase__ , lowercase__ ) return new_model
369
"""simple docstring""" def _snake_case ( lowercase__ = 10 ): if not isinstance(lowercase__ , lowercase__ ) or n < 0: raise ValueError('Invalid input' ) _lowerCamelCase : str = 10**n _lowerCamelCase : Union[str, Any] = 28433 * (pow(2 , 7830457 , lowercase__ )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F"{solution(10) = }")
12
0
"""simple docstring""" from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable lowercase__ = { """configuration_gpt_neox_japanese""": ["""GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoXJapaneseConfig"""], """tokenization_gpt_neox_japanese""": ["""GPTNeoXJapaneseTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoXJapaneseForCausalLM""", """GPTNeoXJapaneseLayer""", """GPTNeoXJapaneseModel""", """GPTNeoXJapanesePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
370
"""simple docstring""" import argparse import datetime def _snake_case ( lowercase__ ): _lowerCamelCase : Dict = { '0': 'Sunday', '1': 'Monday', '2': 'Tuesday', '3': 'Wednesday', '4': 'Thursday', '5': 'Friday', '6': 'Saturday', } _lowerCamelCase : str = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(lowercase__ ) < 11: raise ValueError('Must be 10 characters long' ) # Get month _lowerCamelCase : int = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError('Month must be between 1 - 12' ) _lowerCamelCase : str = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError('Date separator must be \'-\' or \'/\'' ) # Get day _lowerCamelCase : int = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError('Date must be between 1 - 31' ) # Get second separator _lowerCamelCase : str = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError('Date separator must be \'-\' or \'/\'' ) # Get year _lowerCamelCase : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8500: raise ValueError( 'Year out of range. There has to be some sort of limit...right?' ) # Get datetime obj for validation _lowerCamelCase : str = datetime.date(int(lowercase__ ) , int(lowercase__ ) , int(lowercase__ ) ) # Start math if m <= 2: _lowerCamelCase : str = y - 1 _lowerCamelCase : Tuple = m + 12 # maths var _lowerCamelCase : int = int(str(lowercase__ )[:2] ) _lowerCamelCase : int = int(str(lowercase__ )[2:] ) _lowerCamelCase : int = int(2.6 * m - 5.3_9 ) _lowerCamelCase : int = int(c / 4 ) _lowerCamelCase : int = int(k / 4 ) _lowerCamelCase : int = int(d + k ) _lowerCamelCase : int = int(t + u + v + x ) _lowerCamelCase : int = int(z - (2 * c) ) _lowerCamelCase : int = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError('The date was evaluated incorrectly. Contact developer.' ) # Response _lowerCamelCase : str = f'''Your date {date_input}, is a {days[str(lowercase__ )]}!''' return response if __name__ == "__main__": import doctest doctest.testmod() lowercase__ = argparse.ArgumentParser( description=( """Find out what day of the week nearly any date is or was. Enter """ """date as a string in the mm-dd-yyyy or mm/dd/yyyy format""" ) ) parser.add_argument( """date_input""", type=str, help="""Date as a string (mm-dd-yyyy or mm/dd/yyyy)""" ) lowercase__ = parser.parse_args() zeller(args.date_input)
12
0
def _snake_case ( lowercase__ = 1000000 ): _lowerCamelCase : List[str] = 1 _lowerCamelCase : str = 1 _lowerCamelCase : Dict = {1: 1} for inputa in range(2 , __lowerCAmelCase ): _lowerCamelCase : Union[str, Any] = 0 _lowerCamelCase : List[Any] = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: _lowerCamelCase : Union[str, Any] = (3 * number) + 1 counter += 1 if inputa not in counters: _lowerCamelCase : Union[str, Any] = counter if counter > pre_counter: _lowerCamelCase : Union[str, Any] = inputa _lowerCamelCase : Tuple = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
371
"""simple docstring""" import re def _snake_case ( lowercase__ ): _lowerCamelCase : Optional[int] = re.compile(r'^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$' ) if match := re.search(lowercase__ , lowercase__ ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator("""+918827897895"""))
12
0
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging lowercase__ = logging.get_logger(__name__) lowercase__ = { """bigscience/bloom""": """https://huggingface.co/bigscience/bloom/resolve/main/config.json""", """bigscience/bloom-560m""": """https://huggingface.co/bigscience/bloom-560m/blob/main/config.json""", """bigscience/bloom-1b1""": """https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json""", """bigscience/bloom-1b7""": """https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json""", """bigscience/bloom-3b""": """https://huggingface.co/bigscience/bloom-3b/blob/main/config.json""", """bigscience/bloom-7b1""": """https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json""", } class lowerCAmelCase__ ( __UpperCamelCase ): '''simple docstring''' lowerCamelCase__ = """bloom""" lowerCamelCase__ = ["""past_key_values"""] lowerCamelCase__ = { """num_hidden_layers""": """n_layer""", """num_attention_heads""": """n_head""", } def __init__( self , lowercase=250880 , lowercase=64 , lowercase=2 , lowercase=8 , lowercase=1E-5 , lowercase=0.02 , lowercase=True , lowercase=1 , lowercase=2 , lowercase=False , lowercase=0.0 , lowercase=0.0 , lowercase=1 , lowercase=False , **lowercase , ): _lowerCamelCase : Tuple = vocab_size # Backward compatibility with n_embed kwarg _lowerCamelCase : Union[str, Any] = kwargs.pop('n_embed' , lowercase ) _lowerCamelCase : Tuple = hidden_size if n_embed is None else n_embed _lowerCamelCase : Optional[int] = n_layer _lowerCamelCase : Dict = n_head _lowerCamelCase : int = layer_norm_epsilon _lowerCamelCase : Union[str, Any] = initializer_range _lowerCamelCase : Optional[int] = use_cache _lowerCamelCase : int = pretraining_tp _lowerCamelCase : Any = apply_residual_connection_post_layernorm _lowerCamelCase : Dict = hidden_dropout _lowerCamelCase : Optional[int] = attention_dropout _lowerCamelCase : Optional[int] = bos_token_id _lowerCamelCase : Dict = eos_token_id _lowerCamelCase : Optional[Any] = slow_but_exact super().__init__(bos_token_id=lowercase , eos_token_id=lowercase , **lowercase ) class lowerCAmelCase__ ( __UpperCamelCase ): '''simple docstring''' lowerCamelCase__ = version.parse("""1.12""" ) def __init__( self , lowercase , lowercase = "default" , lowercase = None , lowercase = False , ): super().__init__(lowercase , task=lowercase , patching_specs=lowercase , use_past=lowercase ) if not getattr(self._config , 'pad_token_id' , lowercase ): # TODO: how to do that better? _lowerCamelCase : Optional[int] = 0 @property def A_ ( self ): _lowerCamelCase : Dict = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(lowercase , direction='inputs' , inverted_values_shape=lowercase ) _lowerCamelCase : Optional[int] = {0: 'batch', 1: 'past_sequence + sequence'} else: _lowerCamelCase : Tuple = {0: 'batch', 1: 'sequence'} return common_inputs @property def A_ ( self ): return self._config.n_layer @property def A_ ( self ): return self._config.n_head @property def A_ ( self ): return 1E-3 def A_ ( self , lowercase , lowercase = -1 , lowercase = -1 , lowercase = False , lowercase = None , ): _lowerCamelCase : Dict = super(lowercase , self ).generate_dummy_inputs( lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase ) # We need to order the input in the way they appears in the forward() _lowerCamelCase : Optional[Any] = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch _lowerCamelCase : Optional[int] = common_inputs['input_ids'].shape # Not using the same length for past_key_values _lowerCamelCase : List[str] = seqlen + 2 _lowerCamelCase : Optional[Any] = self._config.hidden_size // self.num_attention_heads _lowerCamelCase : Optional[int] = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) _lowerCamelCase : Union[str, Any] = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) _lowerCamelCase : List[Any] = [ (torch.zeros(lowercase ), torch.zeros(lowercase )) for _ in range(self.num_layers ) ] _lowerCamelCase : Tuple = common_inputs['attention_mask'] if self.use_past: _lowerCamelCase : str = ordered_inputs['attention_mask'].dtype _lowerCamelCase : Optional[int] = torch.cat( [ordered_inputs['attention_mask'], torch.ones(lowercase , lowercase , dtype=lowercase )] , dim=1 ) return ordered_inputs @property def A_ ( self ): return 13
350
"""simple docstring""" # XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path lowercase__ = Path(__file__).resolve().parents[3] / """src""" sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) lowercase__ = {"""base""": """patrickvonplaten/wav2vec2_tiny_random""", """robust""": """patrickvonplaten/wav2vec2_tiny_random_robust"""} lowercase__ = """zero2""" lowercase__ = """zero3""" lowercase__ = [ZEROa, ZEROa] def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param _lowerCamelCase : List[str] = parameterized.to_safe_name('_'.join(str(lowercase__ ) for x in param.args ) ) return f'''{func.__name__}_{param_based_name}''' # Cartesian-product of zero stages with models to test lowercase__ = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class lowerCAmelCase__ ( lowercase ): '''simple docstring''' @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) def A_ ( self , lowercase ): # XXX: run_asr is premature and doesn't save any results # so all we check for now is that the process didn't fail pass def A_ ( self , lowercase , lowercase , lowercase = 10 , lowercase = True , lowercase = True , lowercase = True , ): _lowerCamelCase : List[str] = models[model] _lowerCamelCase : Optional[int] = self.run_trainer( stage=lowercase , model_name=lowercase , eval_steps=lowercase , num_train_epochs=1 , distributed=lowercase , fpaa=lowercase , ) self.do_checks(lowercase ) return output_dir def A_ ( self , lowercase , lowercase , lowercase = 10 , lowercase = 1 , lowercase = True , lowercase = True , ): _lowerCamelCase : List[str] = self.get_auto_remove_tmp_dir('./xxx' , after=lowercase ) _lowerCamelCase : Any = F''' --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(lowercase )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none '''.split() if fpaa: args.extend(['--fp16'] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files _lowerCamelCase : Optional[int] = F'''--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'''.split() _lowerCamelCase : Optional[Any] = [F'''{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'''] _lowerCamelCase : Dict = self.get_launcher(lowercase ) _lowerCamelCase : Union[str, Any] = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(lowercase , env=self.get_env() ) return output_dir def A_ ( self , lowercase=False ): # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup # - it won't be able to handle that # 2. for now testing with just 2 gpus max (since some quality tests may give different # results with mode gpus because we use very little data) _lowerCamelCase : Any = min(2 , get_gpu_count() ) if distributed else 1 return F'''deepspeed --num_nodes 1 --num_gpus {num_gpus}'''.split()
12
0
"""simple docstring""" import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase__ : '''simple docstring''' def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=True , lowercase=False , lowercase=True , lowercase=99 , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=37 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=16 , lowercase=2 , lowercase=0.02 , lowercase=3 , lowercase=4 , lowercase=None , ): _lowerCamelCase : Optional[Any] = parent _lowerCamelCase : Union[str, Any] = batch_size _lowerCamelCase : Any = seq_length _lowerCamelCase : Union[str, Any] = is_training _lowerCamelCase : str = use_input_mask _lowerCamelCase : Tuple = use_token_type_ids _lowerCamelCase : Union[str, Any] = use_labels _lowerCamelCase : Tuple = vocab_size _lowerCamelCase : Any = hidden_size _lowerCamelCase : Union[str, Any] = num_hidden_layers _lowerCamelCase : Union[str, Any] = num_attention_heads _lowerCamelCase : List[Any] = intermediate_size _lowerCamelCase : List[Any] = hidden_act _lowerCamelCase : Optional[int] = hidden_dropout_prob _lowerCamelCase : Tuple = attention_probs_dropout_prob _lowerCamelCase : Dict = max_position_embeddings _lowerCamelCase : List[str] = type_vocab_size _lowerCamelCase : Tuple = type_sequence_label_size _lowerCamelCase : Tuple = initializer_range _lowerCamelCase : Optional[int] = num_labels _lowerCamelCase : Optional[int] = num_choices _lowerCamelCase : Dict = scope def A_ ( self ): _lowerCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCamelCase : Dict = None if self.use_input_mask: _lowerCamelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : str = None if self.use_token_type_ids: _lowerCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCamelCase : Dict = None _lowerCamelCase : Union[str, Any] = None _lowerCamelCase : str = None if self.use_labels: _lowerCamelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCamelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices ) _lowerCamelCase : List[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A_ ( self ): return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): _lowerCamelCase : List[str] = BioGptModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() _lowerCamelCase : Dict = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE ) _lowerCamelCase : Optional[int] = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ): _lowerCamelCase : List[Any] = BioGptForCausalLM(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() _lowerCamelCase : Union[str, Any] = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , *lowercase ): _lowerCamelCase : Optional[Any] = BioGptModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() # create attention mask _lowerCamelCase : Optional[Any] = torch.ones(input_ids.shape , dtype=torch.long , device=__SCREAMING_SNAKE_CASE ) _lowerCamelCase : Optional[Any] = self.seq_length // 2 _lowerCamelCase : Optional[Any] = 0 # first forward pass _lowerCamelCase, _lowerCamelCase : Any = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE ).to_tuple() # create hypothetical next token and extent to next_input_ids _lowerCamelCase : Optional[int] = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids _lowerCamelCase : Optional[int] = ids_tensor((1,) , __SCREAMING_SNAKE_CASE ).item() + 1 _lowerCamelCase : Tuple = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) _lowerCamelCase : Optional[Any] = random_other_next_tokens # append to next input_ids and attn_mask _lowerCamelCase : List[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) _lowerCamelCase : int = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=__SCREAMING_SNAKE_CASE )] , dim=1 , ) # get two different outputs _lowerCamelCase : Tuple = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE )['last_hidden_state'] _lowerCamelCase : Any = model(__SCREAMING_SNAKE_CASE , past_key_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE )['last_hidden_state'] # select random slice _lowerCamelCase : Optional[int] = ids_tensor((1,) , output_from_past.shape[-1] ).item() _lowerCamelCase : List[Any] = output_from_no_past[:, -1, random_slice_idx].detach() _lowerCamelCase : List[str] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1E-3 ) ) def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , *lowercase ): _lowerCamelCase : str = BioGptModel(config=__SCREAMING_SNAKE_CASE ).to(__SCREAMING_SNAKE_CASE ).eval() _lowerCamelCase : Dict = torch.ones(input_ids.shape , dtype=torch.long , device=__SCREAMING_SNAKE_CASE ) # first forward pass _lowerCamelCase : Tuple = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , use_cache=__SCREAMING_SNAKE_CASE ) _lowerCamelCase, _lowerCamelCase : Optional[int] = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids _lowerCamelCase : str = ids_tensor((self.batch_size, 3) , config.vocab_size ) _lowerCamelCase : Optional[int] = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and _lowerCamelCase : List[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) _lowerCamelCase : int = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) _lowerCamelCase : List[Any] = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE )['last_hidden_state'] _lowerCamelCase : List[Any] = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , past_key_values=__SCREAMING_SNAKE_CASE )[ 'last_hidden_state' ] # select random slice _lowerCamelCase : Optional[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() _lowerCamelCase : Tuple = output_from_no_past[:, -3:, random_slice_idx].detach() _lowerCamelCase : Optional[int] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1E-3 ) ) def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , *lowercase , lowercase=False ): _lowerCamelCase : Any = BioGptForCausalLM(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) if gradient_checkpointing: model.gradient_checkpointing_enable() _lowerCamelCase : str = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def A_ ( self , lowercase , *lowercase ): _lowerCamelCase : List[str] = BioGptModel(__SCREAMING_SNAKE_CASE ) _lowerCamelCase : Optional[Any] = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.0_01 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 ) def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , *lowercase ): _lowerCamelCase : Union[str, Any] = self.num_labels _lowerCamelCase : int = BioGptForTokenClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() _lowerCamelCase : List[str] = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A_ ( self ): _lowerCamelCase : str = self.prepare_config_and_inputs() ( ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ) : Tuple = config_and_inputs _lowerCamelCase : int = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) lowerCamelCase__ = (BioGptForCausalLM,) if is_torch_available() else () lowerCamelCase__ = ( { """feature-extraction""": BioGptModel, """text-classification""": BioGptForSequenceClassification, """text-generation""": BioGptForCausalLM, """token-classification""": BioGptForTokenClassification, """zero-shot""": BioGptForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ = False def A_ ( self ): _lowerCamelCase : Optional[int] = BioGptModelTester(self ) _lowerCamelCase : Any = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , hidden_size=37 ) def A_ ( self ): self.config_tester.run_common_tests() def A_ ( self ): _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def A_ ( self ): _lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCamelCase : List[str] = type self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def A_ ( self ): _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*__SCREAMING_SNAKE_CASE ) def A_ ( self ): _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*__SCREAMING_SNAKE_CASE , gradient_checkpointing=__SCREAMING_SNAKE_CASE ) def A_ ( self ): _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*__SCREAMING_SNAKE_CASE ) def A_ ( self ): _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*__SCREAMING_SNAKE_CASE ) def A_ ( self ): _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*__SCREAMING_SNAKE_CASE ) @slow def A_ ( self ): _lowerCamelCase : List[str] = BioGptForCausalLM.from_pretrained('microsoft/biogpt' ) model.to(__SCREAMING_SNAKE_CASE ) _lowerCamelCase : Dict = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) _lowerCamelCase : Dict = 'left' # Define PAD Token = EOS Token = 50256 _lowerCamelCase : Any = tokenizer.eos_token _lowerCamelCase : List[str] = model.config.eos_token_id # use different length sentences to test batching _lowerCamelCase : Optional[Any] = [ 'Hello, my dog is a little', 'Today, I', ] _lowerCamelCase : str = tokenizer(__SCREAMING_SNAKE_CASE , return_tensors='pt' , padding=__SCREAMING_SNAKE_CASE ) _lowerCamelCase : Dict = inputs['input_ids'].to(__SCREAMING_SNAKE_CASE ) _lowerCamelCase : Union[str, Any] = model.generate( input_ids=__SCREAMING_SNAKE_CASE , attention_mask=inputs['attention_mask'].to(__SCREAMING_SNAKE_CASE ) , ) _lowerCamelCase : Dict = tokenizer(sentences[0] , return_tensors='pt' ).input_ids.to(__SCREAMING_SNAKE_CASE ) _lowerCamelCase : Union[str, Any] = model.generate(input_ids=__SCREAMING_SNAKE_CASE ) _lowerCamelCase : str = inputs_non_padded.shape[-1] - inputs['attention_mask'][-1].long().sum().cpu().item() _lowerCamelCase : Dict = tokenizer(sentences[1] , return_tensors='pt' ).input_ids.to(__SCREAMING_SNAKE_CASE ) _lowerCamelCase : Any = model.generate(input_ids=__SCREAMING_SNAKE_CASE , max_length=model.config.max_length - num_paddings ) _lowerCamelCase : Optional[Any] = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE ) _lowerCamelCase : Union[str, Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__SCREAMING_SNAKE_CASE ) _lowerCamelCase : Any = tokenizer.decode(output_padded[0] , skip_special_tokens=__SCREAMING_SNAKE_CASE ) _lowerCamelCase : Any = [ 'Hello, my dog is a little bit bigger than a little bit.', 'Today, I have a good idea of how to use the information', ] self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , [non_padded_sentence, padded_sentence] ) @slow def A_ ( self ): for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Tuple = BioGptModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) def A_ ( self ): _lowerCamelCase, _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Optional[int] = 3 _lowerCamelCase : Dict = input_dict['input_ids'] _lowerCamelCase : Tuple = input_ids.ne(1 ).to(__SCREAMING_SNAKE_CASE ) _lowerCamelCase : Union[str, Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _lowerCamelCase : List[Any] = BioGptForSequenceClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() _lowerCamelCase : Optional[int] = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def A_ ( self ): _lowerCamelCase, _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Any = 3 _lowerCamelCase : List[str] = 'multi_label_classification' _lowerCamelCase : Optional[Any] = input_dict['input_ids'] _lowerCamelCase : List[Any] = input_ids.ne(1 ).to(__SCREAMING_SNAKE_CASE ) _lowerCamelCase : Any = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) _lowerCamelCase : Union[str, Any] = BioGptForSequenceClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() _lowerCamelCase : Any = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def A_ ( self ): _lowerCamelCase : Union[str, Any] = BioGptForCausalLM.from_pretrained('microsoft/biogpt' ) _lowerCamelCase : Any = torch.tensor([[2, 4805, 9, 656, 21]] ) _lowerCamelCase : str = model(__SCREAMING_SNAKE_CASE )[0] _lowerCamelCase : Any = 42384 _lowerCamelCase : str = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , __SCREAMING_SNAKE_CASE ) _lowerCamelCase : Dict = torch.tensor( [[[-9.52_36, -9.89_18, 10.45_57], [-11.04_69, -9.64_23, 8.10_22], [-8.86_64, -7.88_26, 5.53_25]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 ) ) @slow def A_ ( self ): _lowerCamelCase : int = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) _lowerCamelCase : Any = BioGptForCausalLM.from_pretrained('microsoft/biogpt' ) model.to(__SCREAMING_SNAKE_CASE ) torch.manual_seed(0 ) _lowerCamelCase : Dict = tokenizer('COVID-19 is' , return_tensors='pt' ).to(__SCREAMING_SNAKE_CASE ) _lowerCamelCase : List[str] = model.generate( **__SCREAMING_SNAKE_CASE , min_length=100 , max_length=1024 , num_beams=5 , early_stopping=__SCREAMING_SNAKE_CASE , ) _lowerCamelCase : List[str] = tokenizer.decode(output_ids[0] , skip_special_tokens=__SCREAMING_SNAKE_CASE ) _lowerCamelCase : Optional[Any] = ( 'COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the' ' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and' ' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),' ' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and' ' more than 800,000 deaths.' ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
351
"""simple docstring""" from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging lowercase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = ["""pixel_values"""] def __init__( self , lowercase = True , lowercase = 1 / 255 , lowercase = True , lowercase = 8 , **lowercase , ): super().__init__(**lowercase ) _lowerCamelCase : Optional[Any] = do_rescale _lowerCamelCase : Union[str, Any] = rescale_factor _lowerCamelCase : Any = do_pad _lowerCamelCase : Optional[int] = pad_size def A_ ( self , lowercase , lowercase , lowercase = None , **lowercase ): return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase ) def A_ ( self , lowercase , lowercase , lowercase = None ): _lowerCamelCase, _lowerCamelCase : Tuple = get_image_size(lowercase ) _lowerCamelCase : Union[str, Any] = (old_height // size + 1) * size - old_height _lowerCamelCase : Tuple = (old_width // size + 1) * size - old_width return pad(lowercase , ((0, pad_height), (0, pad_width)) , mode='symmetric' , data_format=lowercase ) def A_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = ChannelDimension.FIRST , **lowercase , ): _lowerCamelCase : List[str] = do_rescale if do_rescale is not None else self.do_rescale _lowerCamelCase : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCamelCase : Any = do_pad if do_pad is not None else self.do_pad _lowerCamelCase : int = pad_size if pad_size is not None else self.pad_size _lowerCamelCase : Dict = make_list_of_images(lowercase ) if not valid_images(lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. _lowerCamelCase : Dict = [to_numpy_array(lowercase ) for image in images] if do_rescale: _lowerCamelCase : str = [self.rescale(image=lowercase , scale=lowercase ) for image in images] if do_pad: _lowerCamelCase : str = [self.pad(lowercase , size=lowercase ) for image in images] _lowerCamelCase : Any = [to_channel_dimension_format(lowercase , lowercase ) for image in images] _lowerCamelCase : Union[str, Any] = {'pixel_values': images} return BatchFeature(data=lowercase , tensor_type=lowercase )
12
0
class lowerCAmelCase__ : '''simple docstring''' def __init__( self , lowercase ): _lowerCamelCase : str = size _lowerCamelCase : Any = [0] * size _lowerCamelCase : Tuple = [0] * size @staticmethod def A_ ( lowercase ): return index | (index + 1) @staticmethod def A_ ( lowercase ): return (index & (index + 1)) - 1 def A_ ( self , lowercase , lowercase ): _lowerCamelCase : int = value while index < self.size: _lowerCamelCase : Any = self.get_prev(lowercase ) + 1 if current_left_border == index: _lowerCamelCase : int = value else: _lowerCamelCase : List[Any] = max(lowercase , lowercase , lowercase ) _lowerCamelCase : List[str] = self.get_next(lowercase ) def A_ ( self , lowercase , lowercase ): right -= 1 # Because of right is exclusive _lowerCamelCase : Optional[Any] = 0 while left <= right: _lowerCamelCase : Tuple = self.get_prev(lowercase ) if left <= current_left: _lowerCamelCase : Tuple = max(lowercase , self.tree[right] ) _lowerCamelCase : Dict = current_left else: _lowerCamelCase : str = max(lowercase , self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
352
"""simple docstring""" import os import string import sys lowercase__ = 1 << 8 lowercase__ = { """tab""": ord("""\t"""), """newline""": ord("""\r"""), """esc""": 27, """up""": 65 + ARROW_KEY_FLAG, """down""": 66 + ARROW_KEY_FLAG, """right""": 67 + ARROW_KEY_FLAG, """left""": 68 + ARROW_KEY_FLAG, """mod_int""": 91, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 50, """delete""": 51, """pg_up""": 53, """pg_down""": 54, } lowercase__ = KEYMAP["""up"""] lowercase__ = KEYMAP["""left"""] if sys.platform == "win32": lowercase__ = [] lowercase__ = { B"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, B"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(10): lowercase__ = ord(str(i)) def _snake_case ( ): if os.name == "nt": import msvcrt _lowerCamelCase : Any = 'mbcs' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(lowercase__ ) == 0: # Read the keystroke _lowerCamelCase : str = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): _lowerCamelCase : List[Any] = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: _lowerCamelCase : Union[str, Any] = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) ) WIN_CH_BUFFER.append(lowercase__ ) if ord(lowercase__ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) _lowerCamelCase : List[Any] = chr(KEYMAP['esc'] ) except KeyError: _lowerCamelCase : int = cha[1] else: _lowerCamelCase : Optional[int] = ch.decode(lowercase__ ) else: _lowerCamelCase : Union[str, Any] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty _lowerCamelCase : List[str] = sys.stdin.fileno() _lowerCamelCase : Tuple = termios.tcgetattr(lowercase__ ) try: tty.setraw(lowercase__ ) _lowerCamelCase : Optional[Any] = sys.stdin.read(1 ) finally: termios.tcsetattr(lowercase__ , termios.TCSADRAIN , lowercase__ ) return ch def _snake_case ( ): _lowerCamelCase : int = get_raw_chars() if ord(lowercase__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(lowercase__ ) == KEYMAP["esc"]: _lowerCamelCase : Union[str, Any] = get_raw_chars() if ord(lowercase__ ) == KEYMAP["mod_int"]: _lowerCamelCase : List[Any] = get_raw_chars() if ord(lowercase__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(lowercase__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(lowercase__ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
12
0
"""simple docstring""" import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging lowercase__ = logging.get_logger(__name__) logging.set_verbosity_info() def _snake_case ( lowercase__ , lowercase__ ): """simple docstring""" if "xprophetnet" in prophetnet_checkpoint_path: _lowerCamelCase : Optional[int] = XLMProphetNetForConditionalGenerationOld.from_pretrained(_lowerCAmelCase ) _lowerCamelCase, _lowerCamelCase : int = XLMProphetNetForConditionalGeneration.from_pretrained( _lowerCAmelCase , output_loading_info=_lowerCAmelCase ) else: _lowerCamelCase : Optional[Any] = ProphetNetForConditionalGenerationOld.from_pretrained(_lowerCAmelCase ) _lowerCamelCase, _lowerCamelCase : int = ProphetNetForConditionalGeneration.from_pretrained( _lowerCAmelCase , output_loading_info=_lowerCAmelCase ) _lowerCamelCase : int = ['key_proj', 'value_proj', 'query_proj'] _lowerCamelCase : List[Any] = { 'self_attn': 'ngram_self_attn', 'cross_attn': 'encoder_attn', 'cross_attn_layer_norm': 'encoder_attn_layer_norm', 'feed_forward_layer_norm': 'final_layer_norm', 'feed_forward': '', 'intermediate': 'fc1', 'output': 'fc2', 'key_proj': 'k_proj', 'query_proj': 'q_proj', 'value_proj': 'v_proj', 'word_embeddings': 'embed_tokens', 'embeddings_layer_norm': 'emb_layer_norm', 'relative_pos_embeddings': 'relative_linear', 'ngram_embeddings': 'ngram_input_embed', 'position_embeddings': 'embed_positions', } for key in loading_info["missing_keys"]: _lowerCamelCase : Any = key.split('.' ) if attributes[0] == "lm_head": _lowerCamelCase : Any = prophet _lowerCamelCase : Any = prophet_old else: _lowerCamelCase : Optional[Any] = prophet.prophetnet _lowerCamelCase : Dict = prophet_old.model _lowerCamelCase : List[Any] = False for attribute in attributes: if attribute in mapping: _lowerCamelCase : Union[str, Any] = mapping[attribute] if not hasattr(_lowerCAmelCase , _lowerCAmelCase ) and len(_lowerCAmelCase ) > 0: _lowerCamelCase : Optional[int] = attribute elif hasattr(_lowerCAmelCase , _lowerCAmelCase ): _lowerCamelCase : Tuple = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" _lowerCamelCase : Optional[int] = old_model.weight logger.info(f'''{attribute} is initialized.''' ) _lowerCamelCase : Optional[int] = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" _lowerCamelCase : int = old_model.bias logger.info(f'''{attribute} is initialized''' ) _lowerCamelCase : List[str] = True break elif attribute in special_keys and hasattr(_lowerCAmelCase , 'in_proj_weight' ): _lowerCamelCase : Tuple = old_model.in_proj_weight.shape[0] // 3 _lowerCamelCase : Dict = getattr(_lowerCAmelCase , _lowerCAmelCase ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": _lowerCamelCase : List[str] = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) _lowerCamelCase : Optional[Any] = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": _lowerCamelCase : Dict = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) _lowerCamelCase : Any = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": _lowerCamelCase : Optional[Any] = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) _lowerCamelCase : Dict = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) _lowerCamelCase : str = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." _lowerCamelCase : Optional[int] = nn.Parameter(old_model.embed_positions.weight[:512, :] ) _lowerCamelCase : Optional[int] = True break if attribute.isdigit(): _lowerCamelCase : Tuple = model[int(_lowerCAmelCase )] _lowerCamelCase : Dict = old_model[int(_lowerCAmelCase )] else: _lowerCamelCase : Any = getattr(_lowerCAmelCase , _lowerCAmelCase ) if old_attribute == "": _lowerCamelCase : List[str] = old_model else: if not hasattr(_lowerCAmelCase , _lowerCAmelCase ): raise ValueError(f'''{old_model} does not have {old_attribute}''' ) _lowerCamelCase : List[str] = getattr(_lowerCAmelCase , _lowerCAmelCase ) if not is_key_init: raise ValueError(f'''{key} was not correctly initialized!''' ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) prophet.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--prophetnet_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowercase__ = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
353
"""simple docstring""" from typing import Any def _snake_case ( lowercase__ ): if not input_list: return [] _lowerCamelCase : Any = [input_list.count(lowercase__ ) for value in input_list] _lowerCamelCase : Dict = max(lowercase__ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(lowercase__ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
12
0
"""simple docstring""" from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def _snake_case ( lowercase__ ): if isinstance(_A , collections.abc.Iterable ): return x return (x, x) @require_tf class lowerCAmelCase__ : '''simple docstring''' def A_ ( self , lowercase , lowercase ): pass def A_ ( self ): pass def A_ ( self ): pass def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase=None , **lowercase ): _lowerCamelCase : List[str] = VisionTextDualEncoderConfig.from_vision_text_configs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _lowerCamelCase : Any = TFVisionTextDualEncoderModel(_SCREAMING_SNAKE_CASE ) _lowerCamelCase : Tuple = model(input_ids=_SCREAMING_SNAKE_CASE , pixel_values=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], config.projection_dim) ) def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase=None , **lowercase ): _lowerCamelCase, _lowerCamelCase : int = self.get_vision_text_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _lowerCamelCase : Tuple = TFVisionTextDualEncoderModel(vision_model=_SCREAMING_SNAKE_CASE , text_model=_SCREAMING_SNAKE_CASE ) _lowerCamelCase : Optional[int] = model(input_ids=_SCREAMING_SNAKE_CASE , pixel_values=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) ) def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase=None , **lowercase ): _lowerCamelCase, _lowerCamelCase : int = self.get_vision_text_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _lowerCamelCase : str = {'vision_model': vision_model, 'text_model': text_model} _lowerCamelCase : List[Any] = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**_SCREAMING_SNAKE_CASE ) _lowerCamelCase : int = model(input_ids=_SCREAMING_SNAKE_CASE , pixel_values=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) ) def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase=None , **lowercase ): _lowerCamelCase, _lowerCamelCase : Any = self.get_vision_text_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _lowerCamelCase : Tuple = TFVisionTextDualEncoderModel(vision_model=_SCREAMING_SNAKE_CASE , text_model=_SCREAMING_SNAKE_CASE ) _lowerCamelCase : Any = model(input_ids=_SCREAMING_SNAKE_CASE , pixel_values=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE ) _lowerCamelCase : Union[str, Any] = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_SCREAMING_SNAKE_CASE ) _lowerCamelCase : List[str] = TFVisionTextDualEncoderModel.from_pretrained(_SCREAMING_SNAKE_CASE ) _lowerCamelCase : int = model(input_ids=_SCREAMING_SNAKE_CASE , pixel_values=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE ) _lowerCamelCase : Union[str, Any] = after_output[0].numpy() _lowerCamelCase : str = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-5 ) def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase=None , **lowercase ): _lowerCamelCase, _lowerCamelCase : Union[str, Any] = self.get_vision_text_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _lowerCamelCase : int = TFVisionTextDualEncoderModel(vision_model=_SCREAMING_SNAKE_CASE , text_model=_SCREAMING_SNAKE_CASE ) _lowerCamelCase : Dict = model( input_ids=_SCREAMING_SNAKE_CASE , pixel_values=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , output_attentions=_SCREAMING_SNAKE_CASE ) _lowerCamelCase : Optional[int] = output.vision_model_output.attentions self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) _lowerCamelCase : Dict = to_atuple(vision_model.config.image_size ) _lowerCamelCase : int = to_atuple(vision_model.config.patch_size ) _lowerCamelCase : List[str] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _lowerCamelCase : Optional[Any] = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) _lowerCamelCase : Tuple = output.text_model_output.attentions self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def A_ ( self , lowercase , lowercase , lowercase ): _lowerCamelCase : Optional[Any] = np.abs((a - b) ).max() self.assertLessEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , F'''Difference between torch and flax is {diff} (>= {tol}).''' ) def A_ ( self ): _lowerCamelCase : List[Any] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**_SCREAMING_SNAKE_CASE ) def A_ ( self ): _lowerCamelCase : Union[str, Any] = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_SCREAMING_SNAKE_CASE ) def A_ ( self ): _lowerCamelCase : str = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_SCREAMING_SNAKE_CASE ) def A_ ( self ): _lowerCamelCase : Tuple = self.prepare_config_and_inputs() self.check_save_load(**_SCREAMING_SNAKE_CASE ) def A_ ( self ): _lowerCamelCase : Union[str, Any] = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_SCREAMING_SNAKE_CASE ) @slow def A_ ( self ): _lowerCamelCase, _lowerCamelCase : Tuple = self.get_pretrained_model_and_inputs() _lowerCamelCase : Union[str, Any] = model_a(**_SCREAMING_SNAKE_CASE ) _lowerCamelCase : int = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_SCREAMING_SNAKE_CASE ) _lowerCamelCase : Optional[Any] = TFVisionTextDualEncoderModel.from_pretrained(_SCREAMING_SNAKE_CASE ) _lowerCamelCase : Optional[Any] = model_a(**_SCREAMING_SNAKE_CASE ) _lowerCamelCase : List[Any] = after_outputs[0].numpy() _lowerCamelCase : Tuple = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-5 ) @require_tf class lowerCAmelCase__ ( lowerCAmelCase__, unittest.TestCase ): '''simple docstring''' def A_ ( self ): _lowerCamelCase : Optional[Any] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-vit' , 'hf-internal-testing/tiny-random-bert' ) _lowerCamelCase : Union[str, Any] = 13 _lowerCamelCase : Union[str, Any] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) _lowerCamelCase : List[Any] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) _lowerCamelCase : Optional[Any] = random_attention_mask([batch_size, 4] ) _lowerCamelCase : Union[str, Any] = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def A_ ( self , lowercase , lowercase ): _lowerCamelCase : Any = TFViTModel(_SCREAMING_SNAKE_CASE , name='vision_model' ) _lowerCamelCase : Dict = TFBertModel(_SCREAMING_SNAKE_CASE , name='text_model' ) return vision_model, text_model def A_ ( self ): _lowerCamelCase : List[Any] = TFViTModelTester(self ) _lowerCamelCase : int = TFBertModelTester(self ) _lowerCamelCase : int = vit_model_tester.prepare_config_and_inputs() _lowerCamelCase : int = bert_model_tester.prepare_config_and_inputs() _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[Any] = vision_config_and_inputs ( ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ) : List[Any] = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class lowerCAmelCase__ ( lowerCAmelCase__, unittest.TestCase ): '''simple docstring''' def A_ ( self ): # DeiT repo doesn't have TF weights, but we don't actually use the weights at all so let's # just reinitialize it. _lowerCamelCase : List[Any] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'Rocketknight1/tiny-random-deit-tf' , 'hf-internal-testing/tiny-random-roberta' ) _lowerCamelCase : Dict = 13 _lowerCamelCase : List[Any] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) _lowerCamelCase : Optional[int] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) _lowerCamelCase : List[str] = random_attention_mask([batch_size, 4] ) _lowerCamelCase : Any = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase=None , **lowercase ): _lowerCamelCase, _lowerCamelCase : int = self.get_vision_text_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _lowerCamelCase : Optional[int] = TFVisionTextDualEncoderModel(vision_model=_SCREAMING_SNAKE_CASE , text_model=_SCREAMING_SNAKE_CASE ) _lowerCamelCase : Optional[int] = model( input_ids=_SCREAMING_SNAKE_CASE , pixel_values=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , output_attentions=_SCREAMING_SNAKE_CASE ) _lowerCamelCase : Optional[int] = output.vision_model_output.attentions self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) _lowerCamelCase : List[Any] = to_atuple(vision_model.config.image_size ) _lowerCamelCase : Optional[Any] = to_atuple(vision_model.config.patch_size ) _lowerCamelCase : Optional[int] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _lowerCamelCase : Any = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) _lowerCamelCase : Dict = output.text_model_output.attentions self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def A_ ( self , lowercase , lowercase ): _lowerCamelCase : Tuple = TFDeiTModel(_SCREAMING_SNAKE_CASE , name='vision_model' ) _lowerCamelCase : Union[str, Any] = TFRobertaModel(_SCREAMING_SNAKE_CASE , name='text_model' ) return vision_model, text_model def A_ ( self ): _lowerCamelCase : int = TFDeiTModelTester(self ) _lowerCamelCase : Dict = TFRobertaModelTester(self ) _lowerCamelCase : Union[str, Any] = vit_model_tester.prepare_config_and_inputs() _lowerCamelCase : str = bert_model_tester.prepare_config_and_inputs() _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Union[str, Any] = vision_config_and_inputs ( ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ) : int = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class lowerCAmelCase__ ( lowerCAmelCase__, unittest.TestCase ): '''simple docstring''' def A_ ( self ): _lowerCamelCase : List[Any] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'Rocketknight1/tiny-random-clip-tf' , 'hf-internal-testing/tiny-random-bert' ) _lowerCamelCase : Optional[Any] = 13 _lowerCamelCase : Dict = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) _lowerCamelCase : Union[str, Any] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) _lowerCamelCase : Any = random_attention_mask([batch_size, 4] ) _lowerCamelCase : Optional[int] = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def A_ ( self , lowercase , lowercase ): _lowerCamelCase : Union[str, Any] = TFCLIPVisionModel(_SCREAMING_SNAKE_CASE , name='vision_model' ) _lowerCamelCase : List[Any] = TFBertModel(_SCREAMING_SNAKE_CASE , name='text_model' ) return vision_model, text_model def A_ ( self ): _lowerCamelCase : List[str] = TFCLIPVisionModelTester(self ) _lowerCamelCase : List[Any] = TFBertModelTester(self ) _lowerCamelCase : Any = clip_model_tester.prepare_config_and_inputs() _lowerCamelCase : Union[str, Any] = bert_model_tester.prepare_config_and_inputs() _lowerCamelCase, _lowerCamelCase : Optional[Any] = vision_config_and_inputs ( ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ) : Optional[Any] = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def A_ ( self ): _lowerCamelCase : List[str] = TFVisionTextDualEncoderModel.from_pretrained( 'clip-italian/clip-italian' , logit_scale_init_value=1.0 , from_pt=_SCREAMING_SNAKE_CASE ) _lowerCamelCase : Optional[int] = VisionTextDualEncoderProcessor.from_pretrained('clip-italian/clip-italian' ) _lowerCamelCase : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _lowerCamelCase : Dict = processor( text=['una foto di un gatto', 'una foto di un cane'] , images=_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , return_tensors='np' ) _lowerCamelCase : Union[str, Any] = model(**_SCREAMING_SNAKE_CASE ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) _lowerCamelCase : Optional[Any] = np.array([[1.2_28_47_27, 0.3_10_41_22]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , _SCREAMING_SNAKE_CASE , atol=1E-3 ) )
354
"""simple docstring""" def _snake_case ( lowercase__ ): # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection _lowerCamelCase : List[str] = len(lowercase__ ) _lowerCamelCase : List[str] = max(lowercase__ ) _lowerCamelCase : List[str] = min(lowercase__ ) # create the counting array _lowerCamelCase : List[Any] = coll_max + 1 - coll_min _lowerCamelCase : List[Any] = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , lowercase__ ): _lowerCamelCase : Optional[int] = counting_arr[i] + counting_arr[i - 1] # create the output collection _lowerCamelCase : Dict = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , lowercase__ ) ): _lowerCamelCase : Any = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def _snake_case ( lowercase__ ): return "".join([chr(lowercase__ ) for i in counting_sort([ord(lowercase__ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("""thisisthestring""") == "eghhiiinrsssttt" lowercase__ = input("""Enter numbers separated by a comma:\n""").strip() lowercase__ = [int(item) for item in user_input.split(""",""")] print(counting_sort(unsorted))
12
0
"""simple docstring""" # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( """stable diffusion controlnet""", """0.22.0""", """Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.""", standard_warn=False, stacklevel=3, )
355
"""simple docstring""" import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( """--original_config_file""", default=None, type=str, help="""The YAML config file corresponding to the original architecture.""", ) parser.add_argument( """--num_in_channels""", default=None, type=int, help="""The number of input channels. If `None` number of input channels will be automatically inferred.""", ) parser.add_argument( """--scheduler_type""", default="""pndm""", type=str, help="""Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']""", ) parser.add_argument( """--pipeline_type""", default=None, type=str, help=( """The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'""" """. If `None` pipeline will be automatically inferred.""" ), ) parser.add_argument( """--image_size""", default=None, type=int, help=( """The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2""" """ Base. Use 768 for Stable Diffusion v2.""" ), ) parser.add_argument( """--prediction_type""", default=None, type=str, help=( """The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable""" """ Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2.""" ), ) parser.add_argument( """--extract_ema""", action="""store_true""", help=( """Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights""" """ or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield""" """ higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.""" ), ) parser.add_argument( """--upcast_attention""", action="""store_true""", help=( """Whether the attention computation should always be upcasted. This is necessary when running stable""" """ diffusion 2.1.""" ), ) parser.add_argument( """--from_safetensors""", action="""store_true""", help="""If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.""", ) parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") parser.add_argument( """--stable_unclip""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.""", ) parser.add_argument( """--stable_unclip_prior""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.""", ) parser.add_argument( """--clip_stats_path""", type=str, help="""Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.""", required=False, ) parser.add_argument( """--controlnet""", action="""store_true""", default=None, help="""Set flag if this is a controlnet checkpoint.""" ) parser.add_argument("""--half""", action="""store_true""", help="""Save weights in half precision.""") parser.add_argument( """--vae_path""", type=str, default=None, required=False, help="""Set to a path, hub id to an already converted vae to not convert it again.""", ) lowercase__ = parser.parse_args() lowercase__ = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
12
0
"""simple docstring""" import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): _lowerCamelCase : str = mock.Mock() _lowerCamelCase : Dict = 500 _lowerCamelCase : Dict = {} _lowerCamelCase : List[Any] = HTTPError _lowerCamelCase : Tuple = {} # Download this model to make sure it's in the cache. _lowerCamelCase : Any = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=lowerCamelCase__ ) as mock_head: _lowerCamelCase : Optional[Any] = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def A_ ( self ): _lowerCamelCase : Optional[Any] = mock.Mock() _lowerCamelCase : List[Any] = 500 _lowerCamelCase : Optional[Any] = {} _lowerCamelCase : Any = HTTPError _lowerCamelCase : Dict = {} # Download this model to make sure it's in the cache. _lowerCamelCase : List[Any] = GPTaTokenizerFast.from_pretrained('gpt2' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=lowerCamelCase__ ) as mock_head: _lowerCamelCase : List[str] = GPTaTokenizerFast.from_pretrained('gpt2' ) # This check we did call the fake head request mock_head.assert_called() def A_ ( self ): try: _lowerCamelCase : List[Any] = tempfile.mktemp() with open(lowerCamelCase__ , 'wb' ) as f: http_get('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' , lowerCamelCase__ ) _lowerCamelCase : List[Any] = AlbertTokenizer.from_pretrained(lowerCamelCase__ ) finally: os.remove(lowerCamelCase__ ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile('tokenizer.json' ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open('tokenizer.json' , 'wb' ) as f: http_get('https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json' , lowerCamelCase__ ) _lowerCamelCase : List[str] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 1000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove('tokenizer.json' ) def A_ ( self ): _lowerCamelCase : Optional[int] = AlbertTokenizer.from_pretrained('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' ) @is_staging_test class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def A_ ( cls ): _lowerCamelCase : Any = TOKEN HfFolder.save_token(lowerCamelCase__ ) @classmethod def A_ ( cls ): try: delete_repo(token=cls._token , repo_id='test-tokenizer' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-tokenizer-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-tokenizer' ) except HTTPError: pass def A_ ( self ): with tempfile.TemporaryDirectory() as tmp_dir: _lowerCamelCase : Optional[int] = os.path.join(lowerCamelCase__ , 'vocab.txt' ) with open(lowerCamelCase__ , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) _lowerCamelCase : Optional[Any] = BertTokenizer(lowerCamelCase__ ) tokenizer.push_to_hub('test-tokenizer' , use_auth_token=self._token ) _lowerCamelCase : Any = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='test-tokenizer' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowerCamelCase__ , repo_id='test-tokenizer' , push_to_hub=lowerCamelCase__ , use_auth_token=self._token ) _lowerCamelCase : Dict = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) def A_ ( self ): with tempfile.TemporaryDirectory() as tmp_dir: _lowerCamelCase : Optional[int] = os.path.join(lowerCamelCase__ , 'vocab.txt' ) with open(lowerCamelCase__ , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) _lowerCamelCase : List[str] = BertTokenizer(lowerCamelCase__ ) tokenizer.push_to_hub('valid_org/test-tokenizer-org' , use_auth_token=self._token ) _lowerCamelCase : Optional[int] = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-tokenizer-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( lowerCamelCase__ , repo_id='valid_org/test-tokenizer-org' , push_to_hub=lowerCamelCase__ , use_auth_token=self._token ) _lowerCamelCase : Any = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) @require_tokenizers def A_ ( self ): CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: _lowerCamelCase : Dict = os.path.join(lowerCamelCase__ , 'vocab.txt' ) with open(lowerCamelCase__ , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) _lowerCamelCase : int = CustomTokenizer(lowerCamelCase__ ) # No fast custom tokenizer tokenizer.push_to_hub('test-dynamic-tokenizer' , use_auth_token=self._token ) _lowerCamelCase : Dict = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=lowerCamelCase__ ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizer' ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: _lowerCamelCase : int = os.path.join(lowerCamelCase__ , 'vocab.txt' ) with open(lowerCamelCase__ , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) _lowerCamelCase : Any = BertTokenizerFast.from_pretrained(lowerCamelCase__ ) bert_tokenizer.save_pretrained(lowerCamelCase__ ) _lowerCamelCase : str = CustomTokenizerFast.from_pretrained(lowerCamelCase__ ) tokenizer.push_to_hub('test-dynamic-tokenizer' , use_auth_token=self._token ) _lowerCamelCase : Optional[int] = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=lowerCamelCase__ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizerFast' ) _lowerCamelCase : List[str] = AutoTokenizer.from_pretrained( F'''{USER}/test-dynamic-tokenizer''' , use_fast=lowerCamelCase__ , trust_remote_code=lowerCamelCase__ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizer' ) class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): _lowerCamelCase : str = Trie() trie.add('Hello 友達' ) self.assertEqual(trie.data , {'H': {'e': {'l': {'l': {'o': {' ': {'友': {'達': {'': 1}}}}}}}}} ) trie.add('Hello' ) trie.data self.assertEqual(trie.data , {'H': {'e': {'l': {'l': {'o': {'': 1, ' ': {'友': {'達': {'': 1}}}}}}}}} ) def A_ ( self ): _lowerCamelCase : Tuple = Trie() self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) , ['[CLS] This is a extra_id_100'] ) trie.add('[CLS]' ) trie.add('extra_id_1' ) trie.add('extra_id_100' ) self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) , ['[CLS]', ' This is a ', 'extra_id_100'] ) def A_ ( self ): _lowerCamelCase : int = Trie() trie.add('A' ) self.assertEqual(trie.split('ABC' ) , ['A', 'BC'] ) self.assertEqual(trie.split('BCA' ) , ['BC', 'A'] ) def A_ ( self ): _lowerCamelCase : str = Trie() trie.add('TOKEN]' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) , ['This is something ', '[SPECIAL_TOKEN]'] ) def A_ ( self ): _lowerCamelCase : List[Any] = Trie() trie.add('A' ) trie.add('P' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) , ['This is something ', '[SPECIAL_TOKEN]'] ) def A_ ( self ): _lowerCamelCase : Any = Trie() trie.add('AB' ) trie.add('B' ) trie.add('C' ) self.assertEqual(trie.split('ABC' ) , ['AB', 'C'] ) def A_ ( self ): _lowerCamelCase : List[Any] = Trie() trie.add('ABC' ) trie.add('B' ) trie.add('CD' ) self.assertEqual(trie.split('ABCD' ) , ['ABC', 'D'] ) def A_ ( self ): _lowerCamelCase : Union[str, Any] = Trie() _lowerCamelCase : Union[str, Any] = trie.cut_text('ABC' , [0, 0, 2, 1, 2, 3] ) self.assertEqual(lowerCamelCase__ , ['AB', 'C'] )
356
"""simple docstring""" import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = (UnCLIPScheduler,) def A_ ( self , **lowercase ): _lowerCamelCase : Any = { 'num_train_timesteps': 1000, 'variance_type': 'fixed_small_log', 'clip_sample': True, 'clip_sample_range': 1.0, 'prediction_type': 'epsilon', } config.update(**lowercase ) return config def A_ ( self ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=lowercase ) def A_ ( self ): for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=lowercase ) def A_ ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowercase ) def A_ ( self ): for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=lowercase ) def A_ ( self ): for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=lowercase ) def A_ ( self ): for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=lowercase , prev_timestep=lowercase ) def A_ ( self ): _lowerCamelCase : Optional[Any] = self.scheduler_classes[0] _lowerCamelCase : Optional[int] = self.get_scheduler_config(variance_type='fixed_small_log' ) _lowerCamelCase : str = scheduler_class(**lowercase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_54_96_25 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_99_49_87 ) ) < 1E-5 def A_ ( self ): _lowerCamelCase : List[str] = self.scheduler_classes[0] _lowerCamelCase : Optional[Any] = self.get_scheduler_config(variance_type='learned_range' ) _lowerCamelCase : int = scheduler_class(**lowercase ) _lowerCamelCase : List[str] = 0.5 assert scheduler._get_variance(1 , predicted_variance=lowercase ) - -10.1_71_27_90 < 1E-5 assert scheduler._get_variance(487 , predicted_variance=lowercase ) - -5.7_99_80_52 < 1E-5 assert scheduler._get_variance(999 , predicted_variance=lowercase ) - -0.0_01_00_11 < 1E-5 def A_ ( self ): _lowerCamelCase : List[Any] = self.scheduler_classes[0] _lowerCamelCase : Optional[Any] = self.get_scheduler_config() _lowerCamelCase : Tuple = scheduler_class(**lowercase ) _lowerCamelCase : Union[str, Any] = scheduler.timesteps _lowerCamelCase : Any = self.dummy_model() _lowerCamelCase : Optional[Any] = self.dummy_sample_deter _lowerCamelCase : Optional[int] = torch.manual_seed(0 ) for i, t in enumerate(lowercase ): # 1. predict noise residual _lowerCamelCase : Tuple = model(lowercase , lowercase ) # 2. predict previous mean of sample x_t-1 _lowerCamelCase : List[Any] = scheduler.step(lowercase , lowercase , lowercase , generator=lowercase ).prev_sample _lowerCamelCase : Optional[int] = pred_prev_sample _lowerCamelCase : Optional[Any] = torch.sum(torch.abs(lowercase ) ) _lowerCamelCase : List[Any] = torch.mean(torch.abs(lowercase ) ) assert abs(result_sum.item() - 2_52.2_68_24_95 ) < 1E-2 assert abs(result_mean.item() - 0.3_28_47_43 ) < 1E-3 def A_ ( self ): _lowerCamelCase : Tuple = self.scheduler_classes[0] _lowerCamelCase : str = self.get_scheduler_config() _lowerCamelCase : Optional[Any] = scheduler_class(**lowercase ) scheduler.set_timesteps(25 ) _lowerCamelCase : Optional[Any] = scheduler.timesteps _lowerCamelCase : Optional[int] = self.dummy_model() _lowerCamelCase : Any = self.dummy_sample_deter _lowerCamelCase : str = torch.manual_seed(0 ) for i, t in enumerate(lowercase ): # 1. predict noise residual _lowerCamelCase : List[Any] = model(lowercase , lowercase ) if i + 1 == timesteps.shape[0]: _lowerCamelCase : Optional[int] = None else: _lowerCamelCase : List[str] = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 _lowerCamelCase : Union[str, Any] = scheduler.step( lowercase , lowercase , lowercase , prev_timestep=lowercase , generator=lowercase ).prev_sample _lowerCamelCase : List[Any] = pred_prev_sample _lowerCamelCase : Optional[Any] = torch.sum(torch.abs(lowercase ) ) _lowerCamelCase : List[str] = torch.mean(torch.abs(lowercase ) ) assert abs(result_sum.item() - 2_58.2_04_49_83 ) < 1E-2 assert abs(result_mean.item() - 0.3_36_20_38 ) < 1E-3 def A_ ( self ): pass def A_ ( self ): pass
12
0
"""simple docstring""" import math from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { """facebook/data2vec-base-960h""": """https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json""", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class lowerCAmelCase__ ( lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ = 'data2vec-audio' def __init__( self , lowercase=32 , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=0.1 , lowercase=0.0 , lowercase=0.1 , lowercase=0.1 , lowercase=0.02 , lowercase=1E-5 , lowercase="gelu" , lowercase=(512, 512, 512, 512, 512, 512, 512) , lowercase=(5, 2, 2, 2, 2, 2, 2) , lowercase=(10, 3, 3, 3, 3, 2, 2) , lowercase=False , lowercase=16 , lowercase=19 , lowercase=5 , lowercase=0.05 , lowercase=10 , lowercase=2 , lowercase=0.0 , lowercase=10 , lowercase=0 , lowercase="sum" , lowercase=False , lowercase=False , lowercase=256 , lowercase=(512, 512, 512, 512, 1500) , lowercase=(5, 3, 3, 1, 1) , lowercase=(1, 2, 3, 1, 1) , lowercase=512 , lowercase=0 , lowercase=1 , lowercase=2 , lowercase=False , lowercase=3 , lowercase=2 , lowercase=3 , lowercase=None , **lowercase , ): super().__init__(**lowercase__ , pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ ) _lowerCamelCase : int = hidden_size _lowerCamelCase : Any = feat_extract_activation _lowerCamelCase : Dict = list(lowercase__ ) _lowerCamelCase : List[Any] = list(lowercase__ ) _lowerCamelCase : Tuple = list(lowercase__ ) _lowerCamelCase : Union[str, Any] = conv_bias _lowerCamelCase : Any = num_conv_pos_embeddings _lowerCamelCase : Union[str, Any] = num_conv_pos_embedding_groups _lowerCamelCase : int = conv_pos_kernel_size _lowerCamelCase : Dict = len(self.conv_dim ) _lowerCamelCase : Union[str, Any] = num_hidden_layers _lowerCamelCase : Any = intermediate_size _lowerCamelCase : Any = hidden_act _lowerCamelCase : str = num_attention_heads _lowerCamelCase : Any = hidden_dropout _lowerCamelCase : Optional[Any] = attention_dropout _lowerCamelCase : Any = activation_dropout _lowerCamelCase : Tuple = feat_proj_dropout _lowerCamelCase : int = final_dropout _lowerCamelCase : List[Any] = layerdrop _lowerCamelCase : Dict = layer_norm_eps _lowerCamelCase : int = initializer_range _lowerCamelCase : Optional[Any] = vocab_size _lowerCamelCase : Any = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCamelCase : List[str] = mask_time_prob _lowerCamelCase : Dict = mask_time_length _lowerCamelCase : Optional[int] = mask_time_min_masks _lowerCamelCase : int = mask_feature_prob _lowerCamelCase : List[str] = mask_feature_length _lowerCamelCase : Union[str, Any] = mask_feature_min_masks # ctc loss _lowerCamelCase : int = ctc_loss_reduction _lowerCamelCase : Any = ctc_zero_infinity # adapter _lowerCamelCase : Dict = add_adapter _lowerCamelCase : Union[str, Any] = adapter_kernel_size _lowerCamelCase : List[str] = adapter_stride _lowerCamelCase : List[Any] = num_adapter_layers _lowerCamelCase : Tuple = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowerCamelCase : str = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowerCamelCase : Union[str, Any] = list(lowercase__ ) _lowerCamelCase : str = list(lowercase__ ) _lowerCamelCase : List[str] = list(lowercase__ ) _lowerCamelCase : Tuple = xvector_output_dim @property def A_ ( self ): return math.prod(self.conv_stride )
357
"""simple docstring""" import math from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { """facebook/data2vec-base-960h""": """https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json""", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """data2vec-audio""" def __init__( self , lowercase=32 , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=0.1 , lowercase=0.0 , lowercase=0.1 , lowercase=0.1 , lowercase=0.02 , lowercase=1E-5 , lowercase="gelu" , lowercase=(512, 512, 512, 512, 512, 512, 512) , lowercase=(5, 2, 2, 2, 2, 2, 2) , lowercase=(10, 3, 3, 3, 3, 2, 2) , lowercase=False , lowercase=16 , lowercase=19 , lowercase=5 , lowercase=0.05 , lowercase=10 , lowercase=2 , lowercase=0.0 , lowercase=10 , lowercase=0 , lowercase="sum" , lowercase=False , lowercase=False , lowercase=256 , lowercase=(512, 512, 512, 512, 1500) , lowercase=(5, 3, 3, 1, 1) , lowercase=(1, 2, 3, 1, 1) , lowercase=512 , lowercase=0 , lowercase=1 , lowercase=2 , lowercase=False , lowercase=3 , lowercase=2 , lowercase=3 , lowercase=None , **lowercase , ): super().__init__(**lowercase , pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase ) _lowerCamelCase : str = hidden_size _lowerCamelCase : str = feat_extract_activation _lowerCamelCase : Optional[Any] = list(lowercase ) _lowerCamelCase : Dict = list(lowercase ) _lowerCamelCase : Dict = list(lowercase ) _lowerCamelCase : Optional[Any] = conv_bias _lowerCamelCase : Union[str, Any] = num_conv_pos_embeddings _lowerCamelCase : List[Any] = num_conv_pos_embedding_groups _lowerCamelCase : List[Any] = conv_pos_kernel_size _lowerCamelCase : Optional[int] = len(self.conv_dim ) _lowerCamelCase : List[str] = num_hidden_layers _lowerCamelCase : Any = intermediate_size _lowerCamelCase : List[str] = hidden_act _lowerCamelCase : Tuple = num_attention_heads _lowerCamelCase : Any = hidden_dropout _lowerCamelCase : Union[str, Any] = attention_dropout _lowerCamelCase : str = activation_dropout _lowerCamelCase : Any = feat_proj_dropout _lowerCamelCase : Tuple = final_dropout _lowerCamelCase : Union[str, Any] = layerdrop _lowerCamelCase : List[Any] = layer_norm_eps _lowerCamelCase : Optional[Any] = initializer_range _lowerCamelCase : Optional[int] = vocab_size _lowerCamelCase : Tuple = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCamelCase : Optional[Any] = mask_time_prob _lowerCamelCase : List[Any] = mask_time_length _lowerCamelCase : List[Any] = mask_time_min_masks _lowerCamelCase : Tuple = mask_feature_prob _lowerCamelCase : Optional[Any] = mask_feature_length _lowerCamelCase : Dict = mask_feature_min_masks # ctc loss _lowerCamelCase : Tuple = ctc_loss_reduction _lowerCamelCase : str = ctc_zero_infinity # adapter _lowerCamelCase : Union[str, Any] = add_adapter _lowerCamelCase : List[Any] = adapter_kernel_size _lowerCamelCase : Optional[Any] = adapter_stride _lowerCamelCase : List[Any] = num_adapter_layers _lowerCamelCase : int = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowerCamelCase : Optional[int] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowerCamelCase : List[str] = list(lowercase ) _lowerCamelCase : Optional[Any] = list(lowercase ) _lowerCamelCase : Any = list(lowercase ) _lowerCamelCase : Optional[Any] = xvector_output_dim @property def A_ ( self ): return math.prod(self.conv_stride )
12
0
"""simple docstring""" from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
358
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool lowercase__ = { """Acehnese Arabic""": """ace_Arab""", """Acehnese Latin""": """ace_Latn""", """Mesopotamian Arabic""": """acm_Arab""", """Ta'izzi-Adeni Arabic""": """acq_Arab""", """Tunisian Arabic""": """aeb_Arab""", """Afrikaans""": """afr_Latn""", """South Levantine Arabic""": """ajp_Arab""", """Akan""": """aka_Latn""", """Amharic""": """amh_Ethi""", """North Levantine Arabic""": """apc_Arab""", """Modern Standard Arabic""": """arb_Arab""", """Modern Standard Arabic Romanized""": """arb_Latn""", """Najdi Arabic""": """ars_Arab""", """Moroccan Arabic""": """ary_Arab""", """Egyptian Arabic""": """arz_Arab""", """Assamese""": """asm_Beng""", """Asturian""": """ast_Latn""", """Awadhi""": """awa_Deva""", """Central Aymara""": """ayr_Latn""", """South Azerbaijani""": """azb_Arab""", """North Azerbaijani""": """azj_Latn""", """Bashkir""": """bak_Cyrl""", """Bambara""": """bam_Latn""", """Balinese""": """ban_Latn""", """Belarusian""": """bel_Cyrl""", """Bemba""": """bem_Latn""", """Bengali""": """ben_Beng""", """Bhojpuri""": """bho_Deva""", """Banjar Arabic""": """bjn_Arab""", """Banjar Latin""": """bjn_Latn""", """Standard Tibetan""": """bod_Tibt""", """Bosnian""": """bos_Latn""", """Buginese""": """bug_Latn""", """Bulgarian""": """bul_Cyrl""", """Catalan""": """cat_Latn""", """Cebuano""": """ceb_Latn""", """Czech""": """ces_Latn""", """Chokwe""": """cjk_Latn""", """Central Kurdish""": """ckb_Arab""", """Crimean Tatar""": """crh_Latn""", """Welsh""": """cym_Latn""", """Danish""": """dan_Latn""", """German""": """deu_Latn""", """Southwestern Dinka""": """dik_Latn""", """Dyula""": """dyu_Latn""", """Dzongkha""": """dzo_Tibt""", """Greek""": """ell_Grek""", """English""": """eng_Latn""", """Esperanto""": """epo_Latn""", """Estonian""": """est_Latn""", """Basque""": """eus_Latn""", """Ewe""": """ewe_Latn""", """Faroese""": """fao_Latn""", """Fijian""": """fij_Latn""", """Finnish""": """fin_Latn""", """Fon""": """fon_Latn""", """French""": """fra_Latn""", """Friulian""": """fur_Latn""", """Nigerian Fulfulde""": """fuv_Latn""", """Scottish Gaelic""": """gla_Latn""", """Irish""": """gle_Latn""", """Galician""": """glg_Latn""", """Guarani""": """grn_Latn""", """Gujarati""": """guj_Gujr""", """Haitian Creole""": """hat_Latn""", """Hausa""": """hau_Latn""", """Hebrew""": """heb_Hebr""", """Hindi""": """hin_Deva""", """Chhattisgarhi""": """hne_Deva""", """Croatian""": """hrv_Latn""", """Hungarian""": """hun_Latn""", """Armenian""": """hye_Armn""", """Igbo""": """ibo_Latn""", """Ilocano""": """ilo_Latn""", """Indonesian""": """ind_Latn""", """Icelandic""": """isl_Latn""", """Italian""": """ita_Latn""", """Javanese""": """jav_Latn""", """Japanese""": """jpn_Jpan""", """Kabyle""": """kab_Latn""", """Jingpho""": """kac_Latn""", """Kamba""": """kam_Latn""", """Kannada""": """kan_Knda""", """Kashmiri Arabic""": """kas_Arab""", """Kashmiri Devanagari""": """kas_Deva""", """Georgian""": """kat_Geor""", """Central Kanuri Arabic""": """knc_Arab""", """Central Kanuri Latin""": """knc_Latn""", """Kazakh""": """kaz_Cyrl""", """Kabiyè""": """kbp_Latn""", """Kabuverdianu""": """kea_Latn""", """Khmer""": """khm_Khmr""", """Kikuyu""": """kik_Latn""", """Kinyarwanda""": """kin_Latn""", """Kyrgyz""": """kir_Cyrl""", """Kimbundu""": """kmb_Latn""", """Northern Kurdish""": """kmr_Latn""", """Kikongo""": """kon_Latn""", """Korean""": """kor_Hang""", """Lao""": """lao_Laoo""", """Ligurian""": """lij_Latn""", """Limburgish""": """lim_Latn""", """Lingala""": """lin_Latn""", """Lithuanian""": """lit_Latn""", """Lombard""": """lmo_Latn""", """Latgalian""": """ltg_Latn""", """Luxembourgish""": """ltz_Latn""", """Luba-Kasai""": """lua_Latn""", """Ganda""": """lug_Latn""", """Luo""": """luo_Latn""", """Mizo""": """lus_Latn""", """Standard Latvian""": """lvs_Latn""", """Magahi""": """mag_Deva""", """Maithili""": """mai_Deva""", """Malayalam""": """mal_Mlym""", """Marathi""": """mar_Deva""", """Minangkabau Arabic """: """min_Arab""", """Minangkabau Latin""": """min_Latn""", """Macedonian""": """mkd_Cyrl""", """Plateau Malagasy""": """plt_Latn""", """Maltese""": """mlt_Latn""", """Meitei Bengali""": """mni_Beng""", """Halh Mongolian""": """khk_Cyrl""", """Mossi""": """mos_Latn""", """Maori""": """mri_Latn""", """Burmese""": """mya_Mymr""", """Dutch""": """nld_Latn""", """Norwegian Nynorsk""": """nno_Latn""", """Norwegian Bokmål""": """nob_Latn""", """Nepali""": """npi_Deva""", """Northern Sotho""": """nso_Latn""", """Nuer""": """nus_Latn""", """Nyanja""": """nya_Latn""", """Occitan""": """oci_Latn""", """West Central Oromo""": """gaz_Latn""", """Odia""": """ory_Orya""", """Pangasinan""": """pag_Latn""", """Eastern Panjabi""": """pan_Guru""", """Papiamento""": """pap_Latn""", """Western Persian""": """pes_Arab""", """Polish""": """pol_Latn""", """Portuguese""": """por_Latn""", """Dari""": """prs_Arab""", """Southern Pashto""": """pbt_Arab""", """Ayacucho Quechua""": """quy_Latn""", """Romanian""": """ron_Latn""", """Rundi""": """run_Latn""", """Russian""": """rus_Cyrl""", """Sango""": """sag_Latn""", """Sanskrit""": """san_Deva""", """Santali""": """sat_Olck""", """Sicilian""": """scn_Latn""", """Shan""": """shn_Mymr""", """Sinhala""": """sin_Sinh""", """Slovak""": """slk_Latn""", """Slovenian""": """slv_Latn""", """Samoan""": """smo_Latn""", """Shona""": """sna_Latn""", """Sindhi""": """snd_Arab""", """Somali""": """som_Latn""", """Southern Sotho""": """sot_Latn""", """Spanish""": """spa_Latn""", """Tosk Albanian""": """als_Latn""", """Sardinian""": """srd_Latn""", """Serbian""": """srp_Cyrl""", """Swati""": """ssw_Latn""", """Sundanese""": """sun_Latn""", """Swedish""": """swe_Latn""", """Swahili""": """swh_Latn""", """Silesian""": """szl_Latn""", """Tamil""": """tam_Taml""", """Tatar""": """tat_Cyrl""", """Telugu""": """tel_Telu""", """Tajik""": """tgk_Cyrl""", """Tagalog""": """tgl_Latn""", """Thai""": """tha_Thai""", """Tigrinya""": """tir_Ethi""", """Tamasheq Latin""": """taq_Latn""", """Tamasheq Tifinagh""": """taq_Tfng""", """Tok Pisin""": """tpi_Latn""", """Tswana""": """tsn_Latn""", """Tsonga""": """tso_Latn""", """Turkmen""": """tuk_Latn""", """Tumbuka""": """tum_Latn""", """Turkish""": """tur_Latn""", """Twi""": """twi_Latn""", """Central Atlas Tamazight""": """tzm_Tfng""", """Uyghur""": """uig_Arab""", """Ukrainian""": """ukr_Cyrl""", """Umbundu""": """umb_Latn""", """Urdu""": """urd_Arab""", """Northern Uzbek""": """uzn_Latn""", """Venetian""": """vec_Latn""", """Vietnamese""": """vie_Latn""", """Waray""": """war_Latn""", """Wolof""": """wol_Latn""", """Xhosa""": """xho_Latn""", """Eastern Yiddish""": """ydd_Hebr""", """Yoruba""": """yor_Latn""", """Yue Chinese""": """yue_Hant""", """Chinese Simplified""": """zho_Hans""", """Chinese Traditional""": """zho_Hant""", """Standard Malay""": """zsm_Latn""", """Zulu""": """zul_Latn""", } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """facebook/nllb-200-distilled-600M""" lowerCamelCase__ = ( """This is a tool that translates text from a language to another. It takes three inputs: `text`, which should """ """be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, """ """which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in """ """plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`.""" ) lowerCamelCase__ = """translator""" lowerCamelCase__ = AutoTokenizer lowerCamelCase__ = AutoModelForSeqaSeqLM lowerCamelCase__ = LANGUAGE_CODES lowerCamelCase__ = ["""text""", """text""", """text"""] lowerCamelCase__ = ["""text"""] def A_ ( self , lowercase , lowercase , lowercase ): if src_lang not in self.lang_to_code: raise ValueError(F'''{src_lang} is not a supported language.''' ) if tgt_lang not in self.lang_to_code: raise ValueError(F'''{tgt_lang} is not a supported language.''' ) _lowerCamelCase : str = self.lang_to_code[src_lang] _lowerCamelCase : int = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( lowercase , return_tensors='pt' , src_lang=lowercase , tgt_lang=lowercase ) def A_ ( self , lowercase ): return self.model.generate(**lowercase ) def A_ ( self , lowercase ): return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowercase )
12
0
lowercase__ = """Tobias Carryer""" from time import time class lowerCAmelCase__ : '''simple docstring''' def __init__( self , lowercase , lowercase , lowercase , lowercase=int(time() ) ): # noqa: B008 _lowerCamelCase : Dict = multiplier _lowerCamelCase : Any = increment _lowerCamelCase : Dict = modulo _lowerCamelCase : str = seed def A_ ( self ): _lowerCamelCase : Dict = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. lowercase__ = LinearCongruentialGenerator(166_4525, 10_1390_4223, 2 << 31) while True: print(lcg.next_number())
359
"""simple docstring""" import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def A_ ( self , lowercase , lowercase , lowercase ): _lowerCamelCase : Optional[int] = hf_hub_download( repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' ) _lowerCamelCase : Tuple = VideoClassificationPipeline(model=lowercase , image_processor=lowercase , top_k=2 ) _lowerCamelCase : List[str] = [ example_video_filepath, 'https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4', ] return video_classifier, examples def A_ ( self , lowercase , lowercase ): for example in examples: _lowerCamelCase : Tuple = video_classifier(lowercase ) self.assertEqual( lowercase , [ {'score': ANY(lowercase ), 'label': ANY(lowercase )}, {'score': ANY(lowercase ), 'label': ANY(lowercase )}, ] , ) @require_torch def A_ ( self ): _lowerCamelCase : Optional[Any] = 'hf-internal-testing/tiny-random-VideoMAEForVideoClassification' _lowerCamelCase : Tuple = VideoMAEFeatureExtractor( size={'shortest_edge': 10} , crop_size={'height': 10, 'width': 10} ) _lowerCamelCase : Dict = pipeline( 'video-classification' , model=lowercase , feature_extractor=lowercase , frame_sampling_rate=4 ) _lowerCamelCase : Any = hf_hub_download(repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' ) _lowerCamelCase : Dict = video_classifier(lowercase , top_k=2 ) self.assertEqual( nested_simplify(lowercase , decimals=4 ) , [{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}] , ) _lowerCamelCase : str = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(lowercase , decimals=4 ) , [ [{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}], [{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}], ] , ) @require_tf def A_ ( self ): pass
12
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available lowercase__ = {"""configuration_speech_encoder_decoder""": ["""SpeechEncoderDecoderConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ["""SpeechEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ["""FlaxSpeechEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
360
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowercase__ = { """configuration_mega""": ["""MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MegaConfig""", """MegaOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """MEGA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MegaForCausalLM""", """MegaForMaskedLM""", """MegaForMultipleChoice""", """MegaForQuestionAnswering""", """MegaForSequenceClassification""", """MegaForTokenClassification""", """MegaModel""", """MegaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
12
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer lowercase__ = logging.get_logger(__name__) lowercase__ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all MVP models at https://huggingface.co/models?filter=mvp lowercase__ = { "vocab_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json", }, "added_tokens.json": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json", }, "merges_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt", }, "tokenizer_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json", }, } lowercase__ = { "RUCAIBox/mvp": 1024, } class lowerCAmelCase__ ( UpperCamelCase_ ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = ["""input_ids""", """attention_mask"""] lowerCamelCase__ = MvpTokenizer def __init__( self , lowercase=None , lowercase=None , lowercase=None , lowercase="replace" , lowercase="<s>" , lowercase="</s>" , lowercase="</s>" , lowercase="<s>" , lowercase="<unk>" , lowercase="<pad>" , lowercase="<mask>" , lowercase=False , lowercase=True , **lowercase , ): super().__init__( _a , _a , tokenizer_file=_a , errors=_a , bos_token=_a , eos_token=_a , sep_token=_a , cls_token=_a , unk_token=_a , pad_token=_a , mask_token=_a , add_prefix_space=_a , trim_offsets=_a , **_a , ) _lowerCamelCase : Union[str, Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , _a ) != add_prefix_space: _lowerCamelCase : Union[str, Any] = getattr(_a , pre_tok_state.pop('type' ) ) _lowerCamelCase : Union[str, Any] = add_prefix_space _lowerCamelCase : str = pre_tok_class(**_a ) _lowerCamelCase : List[Any] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _lowerCamelCase : List[str] = """post_processor""" _lowerCamelCase : str = getattr(self.backend_tokenizer , _a , _a ) if tokenizer_component_instance: _lowerCamelCase : List[str] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _lowerCamelCase : str = tuple(state['sep'] ) if "cls" in state: _lowerCamelCase : str = tuple(state['cls'] ) _lowerCamelCase : str = False if state.get('add_prefix_space' , _a ) != add_prefix_space: _lowerCamelCase : List[str] = add_prefix_space _lowerCamelCase : List[Any] = True if state.get('trim_offsets' , _a ) != trim_offsets: _lowerCamelCase : Any = trim_offsets _lowerCamelCase : Tuple = True if changes_to_apply: _lowerCamelCase : Optional[int] = getattr(_a , state.pop('type' ) ) _lowerCamelCase : Dict = component_class(**_a ) setattr(self.backend_tokenizer , _a , _a ) @property def A_ ( self ): if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def A_ ( self , lowercase ): _lowerCamelCase : Tuple = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else value _lowerCamelCase : Any = value def A_ ( self , *lowercase , **lowercase ): _lowerCamelCase : Optional[int] = kwargs.get('is_split_into_words' , _a ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*_a , **_a ) def A_ ( self , *lowercase , **lowercase ): _lowerCamelCase : int = kwargs.get('is_split_into_words' , _a ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.' ) return super()._encode_plus(*_a , **_a ) def A_ ( self , lowercase , lowercase = None ): _lowerCamelCase : Optional[int] = self._tokenizer.model.save(_a , name=_a ) return tuple(_a ) def A_ ( self , lowercase , lowercase=None ): _lowerCamelCase : Union[str, Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def A_ ( self , lowercase , lowercase = None ): _lowerCamelCase : List[str] = [self.sep_token_id] _lowerCamelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
361
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def _snake_case ( lowercase__ , lowercase__ , lowercase__=None , lowercase__=None ): if attention_mask is None: _lowerCamelCase : List[str] = tf.cast(tf.math.not_equal(lowercase__ , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class lowerCAmelCase__ : '''simple docstring''' lowerCamelCase__ = OPTConfig lowerCamelCase__ = {} lowerCamelCase__ = """gelu""" def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=False , lowercase=99 , lowercase=16 , lowercase=2 , lowercase=4 , lowercase=4 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=20 , lowercase=2 , lowercase=1 , lowercase=0 , lowercase=16 , lowercase=16 , ): _lowerCamelCase : Tuple = parent _lowerCamelCase : Any = batch_size _lowerCamelCase : Tuple = seq_length _lowerCamelCase : str = is_training _lowerCamelCase : Optional[int] = use_labels _lowerCamelCase : List[Any] = vocab_size _lowerCamelCase : Dict = hidden_size _lowerCamelCase : str = num_hidden_layers _lowerCamelCase : Optional[int] = num_attention_heads _lowerCamelCase : Any = intermediate_size _lowerCamelCase : Dict = hidden_act _lowerCamelCase : Any = hidden_dropout_prob _lowerCamelCase : List[str] = attention_probs_dropout_prob _lowerCamelCase : Optional[Any] = max_position_embeddings _lowerCamelCase : List[Any] = eos_token_id _lowerCamelCase : Tuple = pad_token_id _lowerCamelCase : List[str] = bos_token_id _lowerCamelCase : Optional[int] = embed_dim _lowerCamelCase : List[str] = word_embed_proj_dim _lowerCamelCase : Any = False def A_ ( self ): _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _lowerCamelCase : Optional[int] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _lowerCamelCase : str = tf.concat([input_ids, eos_tensor] , axis=1 ) _lowerCamelCase : Tuple = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowercase , **self.config_updates , ) _lowerCamelCase : int = prepare_opt_inputs_dict(lowercase , lowercase ) return config, inputs_dict def A_ ( self , lowercase , lowercase ): _lowerCamelCase : Optional[Any] = TFOPTModel(config=lowercase ) _lowerCamelCase : Optional[Any] = inputs_dict['input_ids'] _lowerCamelCase : str = input_ids[:1, :] _lowerCamelCase : Dict = inputs_dict['attention_mask'][:1, :] _lowerCamelCase : Optional[Any] = 1 # first forward pass _lowerCamelCase : Any = model(lowercase , attention_mask=lowercase , use_cache=lowercase ) _lowerCamelCase, _lowerCamelCase : List[str] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _lowerCamelCase : Optional[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) _lowerCamelCase : Optional[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _lowerCamelCase : List[Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) _lowerCamelCase : Optional[int] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _lowerCamelCase : Optional[Any] = model(lowercase , attention_mask=lowercase )[0] _lowerCamelCase : List[str] = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _lowerCamelCase : Any = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _lowerCamelCase : Optional[int] = output_from_no_past[:, -3:, random_slice_idx] _lowerCamelCase : List[str] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase , lowercase , rtol=1E-3 ) @require_tf class lowerCAmelCase__ ( lowercase, lowercase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () lowerCamelCase__ = (TFOPTForCausalLM,) if is_tf_available() else () lowerCamelCase__ = ( {"""feature-extraction""": TFOPTModel, """text-generation""": TFOPTForCausalLM} if is_tf_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = 10 def A_ ( self ): _lowerCamelCase : int = TFOPTModelTester(self ) _lowerCamelCase : Tuple = ConfigTester(self , config_class=lowercase ) def A_ ( self ): self.config_tester.run_common_tests() def A_ ( self ): _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase ) def A_ ( self ): _lowerCamelCase, _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(lowercase , lowercase ): if hasattr(lowercase , 'weight' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(lowercase , 'weight' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings _lowerCamelCase : Optional[int] = model_class(config=lowercase ) _lowerCamelCase : int = _get_word_embedding_weight(lowercase , model.get_input_embeddings() ) _lowerCamelCase : Tuple = _get_word_embedding_weight(lowercase , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(lowercase ) _lowerCamelCase : str = _get_word_embedding_weight(lowercase , model.get_input_embeddings() ) _lowerCamelCase : Any = _get_word_embedding_weight(lowercase , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. _lowerCamelCase : Union[str, Any] = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , lowercase ) # check that weights remain the same after resizing _lowerCamelCase : int = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _lowerCamelCase : Optional[Any] = False self.assertTrue(lowercase ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , lowercase ) _lowerCamelCase : Dict = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _lowerCamelCase : Union[str, Any] = False self.assertTrue(lowercase ) def _snake_case ( lowercase__ ): return tf.constant(lowercase__ , dtype=tf.intaa ) @require_tf class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = 99 def A_ ( self ): _lowerCamelCase : Tuple = tf.ones((4, 1) , dtype=tf.intaa ) * 2 _lowerCamelCase : Tuple = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) _lowerCamelCase : int = input_ids.shape[0] _lowerCamelCase : List[Any] = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def A_ ( self ): _lowerCamelCase : Tuple = TFOPTModel.from_pretrained('facebook/opt-350m' ) _lowerCamelCase : List[Any] = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) _lowerCamelCase : List[str] = tf.not_equal(lowercase , model.config.pad_token_id ) with tf.GradientTape(): _lowerCamelCase : List[str] = model(input_ids=lowercase , attention_mask=lowercase ).last_hidden_state _lowerCamelCase : Optional[Any] = (1, 11, 512) self.assertEqual(output.shape , lowercase ) _lowerCamelCase : List[str] = tf.constant( [[-0.28_73, -1.92_18, -0.30_33], [-1.27_10, -0.13_38, -0.19_02], [0.40_95, 0.12_14, -1.31_21]] ) self.assertTrue(np.allclose(output[:, :3, :3] , lowercase , atol=4E-3 ) ) _lowerCamelCase : List[str] = tf.function(lowercase , jit_compile=lowercase ) _lowerCamelCase : Union[str, Any] = xla_generate(lowercase , lowercase )[0] self.assertTrue(np.allclose(output[:, :3, :3] , lowercase , atol=4E-2 ) ) @require_tf @slow class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): super().setUp() _lowerCamelCase : List[Any] = 'facebook/opt-350m' def A_ ( self ): _lowerCamelCase : int = TFOPTForCausalLM.from_pretrained(self.path_model ) _lowerCamelCase : List[Any] = GPTaTokenizer.from_pretrained(self.path_model ) _lowerCamelCase : List[str] = [ 'Today is a beautiful day and I want to', 'In the city of', 'Paris is the capital of France and', 'Computers and mobile phones have taken', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False _lowerCamelCase : List[Any] = tokenizer(lowercase , return_tensors='tf' , padding=lowercase , add_special_tokens=lowercase ) _lowerCamelCase : Optional[int] = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) _lowerCamelCase : Any = tf.constant( [ [1.38_51, -13.89_23, -10.52_29, -10.75_33, -0.23_09, -10.23_84, -0.53_65, -9.09_47, -5.16_70], [-4.70_73, -10.62_76, -3.94_15, -21.52_42, -0.28_22, -0.28_22, -0.28_22, -0.28_22, -0.28_22], [0.62_47, -3.42_29, -8.91_79, -1.42_97, -14.16_50, 1.41_46, -9.02_18, -0.27_03, -0.27_03], [6.47_83, -1.99_13, -10.79_26, -2.33_36, 1.50_92, -0.99_74, -6.82_13, 1.34_77, 1.34_77], ] ) self.assertTrue(np.allclose(lowercase , lowercase , atol=1E-4 ) ) _lowerCamelCase : Tuple = tf.function(lowercase , jit_compile=lowercase ) _lowerCamelCase : List[Any] = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(lowercase , lowercase , atol=1E-4 ) ) @require_tf @slow class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @property def A_ ( self ): return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def A_ ( self ): _lowerCamelCase : str = 'facebook/opt-125m' _lowerCamelCase : Dict = [ 'Today is a beautiful day and I want to', 'In the city of New York, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] _lowerCamelCase : Optional[int] = [] _lowerCamelCase : Optional[int] = GPTaTokenizer.from_pretrained(lowercase ) _lowerCamelCase : Dict = TFOPTForCausalLM.from_pretrained(lowercase ) for prompt in self.prompts: _lowerCamelCase : int = tokenizer(lowercase , return_tensors='tf' ).input_ids _lowerCamelCase : int = model.generate(lowercase , max_length=10 ) _lowerCamelCase : Any = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) predicted_outputs += generated_string self.assertListEqual(lowercase , lowercase ) def A_ ( self ): _lowerCamelCase : List[Any] = 'facebook/opt-350m' _lowerCamelCase : int = GPTaTokenizer.from_pretrained(lowercase ) _lowerCamelCase : Optional[int] = TFOPTForCausalLM.from_pretrained(lowercase ) _lowerCamelCase : Any = 'left' # use different length sentences to test batching _lowerCamelCase : Optional[int] = [ 'Hello, my dog is a little', 'Today, I', ] _lowerCamelCase : Dict = tokenizer(lowercase , return_tensors='tf' , padding=lowercase ) _lowerCamelCase : int = inputs['input_ids'] _lowerCamelCase : Tuple = model.generate(input_ids=lowercase , attention_mask=inputs['attention_mask'] ) _lowerCamelCase : Optional[int] = tokenizer(sentences[0] , return_tensors='tf' ).input_ids _lowerCamelCase : Union[str, Any] = model.generate(input_ids=lowercase ) _lowerCamelCase : Dict = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['attention_mask'][-1] , tf.intaa ) ) _lowerCamelCase : int = tokenizer(sentences[1] , return_tensors='tf' ).input_ids _lowerCamelCase : Union[str, Any] = model.generate(input_ids=lowercase , max_length=model.config.max_length - num_paddings ) _lowerCamelCase : List[Any] = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) _lowerCamelCase : Union[str, Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase ) _lowerCamelCase : Optional[Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase ) _lowerCamelCase : Optional[Any] = [ 'Hello, my dog is a little bit of a dork.\nI\'m a little bit', 'Today, I was in the middle of a conversation with a friend about the', ] self.assertListEqual(lowercase , lowercase ) self.assertListEqual(lowercase , [non_padded_sentence, padded_sentence] ) def A_ ( self ): _lowerCamelCase : Tuple = 'facebook/opt-350m' _lowerCamelCase : List[Any] = [ 'Today is a beautiful day and I want to', 'In the city of San Francisco, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] _lowerCamelCase : Optional[int] = [] _lowerCamelCase : Optional[Any] = GPTaTokenizer.from_pretrained(lowercase ) _lowerCamelCase : Optional[Any] = TFOPTForCausalLM.from_pretrained(lowercase ) for prompt in self.prompts: _lowerCamelCase : List[Any] = tokenizer(lowercase , return_tensors='tf' ).input_ids _lowerCamelCase : Optional[Any] = model.generate(lowercase , max_length=10 ) _lowerCamelCase : Dict = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) predicted_outputs += generated_string self.assertListEqual(lowercase , lowercase )
12
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowercase__ = { 'configuration_convnext': ['CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvNextConfig', 'ConvNextOnnxConfig'] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ['ConvNextFeatureExtractor'] lowercase__ = ['ConvNextImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ 'CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvNextForImageClassification', 'ConvNextModel', 'ConvNextPreTrainedModel', 'ConvNextBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ 'TFConvNextForImageClassification', 'TFConvNextModel', 'TFConvNextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
362
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """philschmid/bart-large-cnn-samsum""" lowerCamelCase__ = ( """This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, """ """and returns a summary of the text.""" ) lowerCamelCase__ = """summarizer""" lowerCamelCase__ = AutoTokenizer lowerCamelCase__ = AutoModelForSeqaSeqLM lowerCamelCase__ = ["""text"""] lowerCamelCase__ = ["""text"""] def A_ ( self , lowercase ): return self.pre_processor(lowercase , return_tensors='pt' , truncation=lowercase ) def A_ ( self , lowercase ): return self.model.generate(**lowercase )[0] def A_ ( self , lowercase ): return self.pre_processor.decode(lowercase , skip_special_tokens=lowercase , clean_up_tokenization_spaces=lowercase )
12
0
"""simple docstring""" import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def _snake_case ( lowercase__ , lowercase__=0.9_9_9 , lowercase__="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(lowercase__ ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowercase__ ): return math.exp(t * -1_2.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) _lowerCamelCase : List[str] = [] for i in range(__snake_case ): _lowerCamelCase : Tuple = i / num_diffusion_timesteps _lowerCamelCase : Dict = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__snake_case ) / alpha_bar_fn(__snake_case ) , __snake_case ) ) return torch.tensor(__snake_case , dtype=torch.floataa ) class lowerCAmelCase__ ( __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = [e.name for e in KarrasDiffusionSchedulers] lowerCamelCase__ = 2 @register_to_config def __init__( self , lowercase = 1000 , lowercase = 0.0_00_85 , lowercase = 0.0_12 , lowercase = "linear" , lowercase = None , lowercase = "epsilon" , lowercase = "linspace" , lowercase = 0 , ): if trained_betas is not None: _lowerCamelCase : Any = torch.tensor(_SCREAMING_SNAKE_CASE , dtype=torch.floataa ) elif beta_schedule == "linear": _lowerCamelCase : Optional[Any] = torch.linspace(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _lowerCamelCase : Optional[Any] = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , _SCREAMING_SNAKE_CASE , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _lowerCamelCase : Optional[Any] = betas_for_alpha_bar(_SCREAMING_SNAKE_CASE ) else: raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''' ) _lowerCamelCase : Union[str, Any] = 1.0 - self.betas _lowerCamelCase : Dict = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def A_ ( self , lowercase , lowercase=None ): if schedule_timesteps is None: _lowerCamelCase : List[Any] = self.timesteps _lowerCamelCase : Any = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _lowerCamelCase : int = 1 if len(_SCREAMING_SNAKE_CASE ) > 1 else 0 else: _lowerCamelCase : str = timestep.cpu().item() if torch.is_tensor(_SCREAMING_SNAKE_CASE ) else timestep _lowerCamelCase : Optional[Any] = self._index_counter[timestep_int] return indices[pos].item() @property def A_ ( self ): if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def A_ ( self , lowercase , lowercase , ): _lowerCamelCase : Optional[int] = self.index_for_timestep(_SCREAMING_SNAKE_CASE ) if self.state_in_first_order: _lowerCamelCase : Union[str, Any] = self.sigmas[step_index] else: _lowerCamelCase : str = self.sigmas_interpol[step_index] _lowerCamelCase : List[str] = sample / ((sigma**2 + 1) ** 0.5) return sample def A_ ( self , lowercase , lowercase = None , lowercase = None , ): _lowerCamelCase : int = num_inference_steps _lowerCamelCase : Dict = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _lowerCamelCase : Union[str, Any] = np.linspace(0 , num_train_timesteps - 1 , _SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE )[::-1].copy() elif self.config.timestep_spacing == "leading": _lowerCamelCase : Optional[int] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _lowerCamelCase : Optional[int] = (np.arange(0 , _SCREAMING_SNAKE_CASE ) * step_ratio).round()[::-1].copy().astype(_SCREAMING_SNAKE_CASE ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _lowerCamelCase : List[Any] = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _lowerCamelCase : Tuple = (np.arange(_SCREAMING_SNAKE_CASE , 0 , -step_ratio )).round().copy().astype(_SCREAMING_SNAKE_CASE ) timesteps -= 1 else: raise ValueError( F'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) _lowerCamelCase : Any = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _lowerCamelCase : Union[str, Any] = torch.from_numpy(np.log(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE ) _lowerCamelCase : Optional[int] = np.interp(_SCREAMING_SNAKE_CASE , np.arange(0 , len(_SCREAMING_SNAKE_CASE ) ) , _SCREAMING_SNAKE_CASE ) _lowerCamelCase : Optional[Any] = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _lowerCamelCase : List[Any] = torch.from_numpy(_SCREAMING_SNAKE_CASE ).to(device=_SCREAMING_SNAKE_CASE ) # interpolate sigmas _lowerCamelCase : Optional[Any] = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() _lowerCamelCase : str = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) _lowerCamelCase : List[Any] = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(_SCREAMING_SNAKE_CASE ).startswith('mps' ): # mps does not support float64 _lowerCamelCase : Any = torch.from_numpy(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE , dtype=torch.floataa ) else: _lowerCamelCase : Optional[int] = torch.from_numpy(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) # interpolate timesteps _lowerCamelCase : List[str] = self.sigma_to_t(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE , dtype=timesteps.dtype ) _lowerCamelCase : Tuple = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() _lowerCamelCase : Optional[Any] = torch.cat([timesteps[:1], interleaved_timesteps] ) _lowerCamelCase : List[str] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _lowerCamelCase : List[str] = defaultdict(_SCREAMING_SNAKE_CASE ) def A_ ( self , lowercase ): _lowerCamelCase : str = sigma.log() # get distribution _lowerCamelCase : Optional[int] = log_sigma - self.log_sigmas[:, None] # get sigmas range _lowerCamelCase : List[Any] = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) _lowerCamelCase : List[str] = low_idx + 1 _lowerCamelCase : str = self.log_sigmas[low_idx] _lowerCamelCase : str = self.log_sigmas[high_idx] # interpolate sigmas _lowerCamelCase : Dict = (low - log_sigma) / (low - high) _lowerCamelCase : Union[str, Any] = w.clamp(0 , 1 ) # transform interpolation to time range _lowerCamelCase : List[Any] = (1 - w) * low_idx + w * high_idx _lowerCamelCase : Union[str, Any] = t.view(sigma.shape ) return t @property def A_ ( self ): return self.sample is None def A_ ( self , lowercase , lowercase , lowercase , lowercase = True , ): _lowerCamelCase : Tuple = self.index_for_timestep(_SCREAMING_SNAKE_CASE ) # advance index counter by 1 _lowerCamelCase : Dict = timestep.cpu().item() if torch.is_tensor(_SCREAMING_SNAKE_CASE ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _lowerCamelCase : List[str] = self.sigmas[step_index] _lowerCamelCase : Optional[int] = self.sigmas_interpol[step_index + 1] _lowerCamelCase : Any = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method _lowerCamelCase : List[Any] = self.sigmas[step_index - 1] _lowerCamelCase : Optional[int] = self.sigmas_interpol[step_index] _lowerCamelCase : Optional[int] = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _lowerCamelCase : Union[str, Any] = 0 _lowerCamelCase : List[Any] = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _lowerCamelCase : List[str] = sigma_hat if self.state_in_first_order else sigma_interpol _lowerCamelCase : Tuple = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _lowerCamelCase : Optional[int] = sigma_hat if self.state_in_first_order else sigma_interpol _lowerCamelCase : Optional[Any] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError('prediction_type not implemented yet: sample' ) else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _lowerCamelCase : int = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _lowerCamelCase : str = sigma_interpol - sigma_hat # store for 2nd order step _lowerCamelCase : Dict = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order _lowerCamelCase : Any = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep _lowerCamelCase : List[str] = sigma_next - sigma_hat _lowerCamelCase : str = self.sample _lowerCamelCase : Union[str, Any] = None _lowerCamelCase : Union[str, Any] = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_SCREAMING_SNAKE_CASE ) def A_ ( self , lowercase , lowercase , lowercase , ): _lowerCamelCase : str = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(_SCREAMING_SNAKE_CASE ): # mps does not support float64 _lowerCamelCase : List[str] = self.timesteps.to(original_samples.device , dtype=torch.floataa ) _lowerCamelCase : Tuple = timesteps.to(original_samples.device , dtype=torch.floataa ) else: _lowerCamelCase : Tuple = self.timesteps.to(original_samples.device ) _lowerCamelCase : Optional[int] = timesteps.to(original_samples.device ) _lowerCamelCase : List[Any] = [self.index_for_timestep(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for t in timesteps] _lowerCamelCase : Union[str, Any] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _lowerCamelCase : Union[str, Any] = sigma.unsqueeze(-1 ) _lowerCamelCase : Optional[Any] = original_samples + noise * sigma return noisy_samples def __len__( self ): return self.config.num_train_timesteps
363
"""simple docstring""" from __future__ import annotations def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : Tuple = list(range(len(lowercase__ ) ) ) _lowerCamelCase : Any = [v / w for v, w in zip(lowercase__ , lowercase__ )] index.sort(key=lambda lowercase__ : ratio[i] , reverse=lowercase__ ) _lowerCamelCase : float = 0 _lowerCamelCase : list[float] = [0] * len(lowercase__ ) for i in index: if weight[i] <= capacity: _lowerCamelCase : int = 1 max_value += value[i] capacity -= weight[i] else: _lowerCamelCase : Any = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
12
0
"""simple docstring""" def _snake_case ( lowercase__ ): _lowerCamelCase : Optional[Any] = len(_a ) while cur > 1: # Find the maximum number in arr _lowerCamelCase : Tuple = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi _lowerCamelCase : Optional[Any] = arr[mi::-1] + arr[mi + 1 : len(_a )] # Reverse whole list _lowerCamelCase : Union[str, Any] = arr[cur - 1 :: -1] + arr[cur : len(_a )] cur -= 1 return arr if __name__ == "__main__": lowercase__ = input("""Enter numbers separated by a comma:\n""").strip() lowercase__ = [int(item) for item in user_input.split(""",""")] print(pancake_sort(unsorted))
364
"""simple docstring""" import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate lowercase__ = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("""""", """|""", """|"""), datarow=DataRow("""""", """|""", """|"""), padding=1, with_header_hide=None, ) lowercase__ = [] lowercase__ = [] lowercase__ = {"""type""": """section""", """text""": {"""type""": """plain_text""", """text""": """No failed tests! 🤗""", """emoji""": True}} lowercase__ = [ { """type""": """header""", """text""": { """type""": """plain_text""", """text""": F"🤗 Accelerate nightly {os.environ.get('TEST_TYPE', '')} test results", """emoji""": True, }, } ] lowercase__ = 0 for log in Path().glob("""*.log"""): lowercase__ = 0 with open(log, """r""") as f: for line in f: lowercase__ = json.loads(line) if line.get("""nodeid""", """""") != "": lowercase__ = line["""nodeid"""] if line.get("""duration""", None) is not None: lowercase__ = F"{line['duration']:.4f}" if line.get("""outcome""", """""") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("""_""")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) lowercase__ = [] log.unlink() lowercase__ = """""" lowercase__ = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" lowercase__ = [] lowercase__ = {} for test in failed_tests: lowercase__ = test[0].split("""::""") lowercase__ = data[0].split("""/""")[-1] if data[0] not in filesafailed: lowercase__ = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) lowercase__ = [test[0] for test in failed_table] lowercase__ = list(set(files)) # Count number of instances in failed_tests lowercase__ = [] for file in individual_files: table.append([file, len(filesafailed[file])]) lowercase__ = tabulate( table, headers=["""Test Location""", """Num Failed"""], tablefmt=hf_table_format, stralign="""right""", ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: lowercase__ = """Too many failed tests, please see the full report in the Action results.""" lowercase__ = len(err) + 10 lowercase__ = message[: 3000 - offset] + F"\n...\n```\n{err}" print(F"### {message}") else: lowercase__ = """No failed tests! 🤗""" print(F"## {message}") payload.append(no_error_payload) if os.environ.get("""TEST_TYPE""", """""") != "": from slack_sdk import WebClient lowercase__ = WebClient(token=os.environ["""SLACK_API_TOKEN"""]) if message != "No failed tests! 🤗": lowercase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": message, }, } payload.append(md_report) lowercase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": """*For more details:*""", }, """accessory""": { """type""": """button""", """text""": { """type""": """plain_text""", """text""": """Check Action results""", """emoji""": True, }, """url""": F"https://github.com/{os.environ['GITHUB_REPOSITORY']}/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } payload.append(action_button) lowercase__ = { """type""": """context""", """elements""": [ { """type""": """plain_text""", """text""": F"Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}", } ], } payload.append(date_report) lowercase__ = client.chat_postMessage(channel="""#accelerate-ci-daily""", text=message, blocks=payload) lowercase__ = response.data["""ts"""] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name lowercase__ = """""" for i, row in enumerate(test_failures): if row[0] != test_class: lowercase__ = row[0] else: lowercase__ = """""" lowercase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": F"Test location: {test_location}\n```\n{tabulate(test_failures, headers=['Class', 'Test'], tablefmt=hf_table_format, stralign='right')}\n```", }, } client.chat_postMessage( channel="""#accelerate-ci-daily""", thread_ts=ts, blocks=[payload], )
12
0
"""simple docstring""" def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: _lowerCamelCase : Optional[int] = mf_knapsack(i - 1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: _lowerCamelCase : Optional[int] = max( mf_knapsack(i - 1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , mf_knapsack(i - 1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , j - wt[i - 1] ) + val[i - 1] , ) _lowerCamelCase : Tuple = val return f[i][j] def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : Dict = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: _lowerCamelCase : int = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: _lowerCamelCase : str = dp[i - 1][w_] return dp[n][w_], dp def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): if not (isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) and isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) )): raise ValueError( 'Both the weights and values vectors must be either lists or tuples' ) _lowerCamelCase : Union[str, Any] = len(SCREAMING_SNAKE_CASE_ ) if num_items != len(SCREAMING_SNAKE_CASE_ ): _lowerCamelCase : Dict = ( 'The number of weights must be the same as the number of values.\n' f'''But got {num_items} weights and {len(SCREAMING_SNAKE_CASE_ )} values''' ) raise ValueError(SCREAMING_SNAKE_CASE_ ) for i in range(SCREAMING_SNAKE_CASE_ ): if not isinstance(wt[i] , SCREAMING_SNAKE_CASE_ ): _lowerCamelCase : Any = ( 'All weights must be integers but got weight of ' f'''type {type(wt[i] )} at index {i}''' ) raise TypeError(SCREAMING_SNAKE_CASE_ ) _lowerCamelCase, _lowerCamelCase : Dict = knapsack(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _lowerCamelCase : Any = set() _construct_solution(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return optimal_val, example_optional_set def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , i - 1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: optimal_set.add(SCREAMING_SNAKE_CASE_ ) _construct_solution(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , i - 1 , j - wt[i - 1] , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": lowercase__ = [3, 2, 4, 4] lowercase__ = [4, 3, 2, 3] lowercase__ = 4 lowercase__ = 6 lowercase__ = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] lowercase__ = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 lowercase__ = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("""optimal_value = """, optimal_solution) print("""An optimal subset corresponding to the optimal value""", optimal_subset)
365
"""simple docstring""" import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer lowercase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """AutoTokenizer""" lowerCamelCase__ = ["""tokenizer"""] lowerCamelCase__ = { """semantic_prompt""": 1, """coarse_prompt""": 2, """fine_prompt""": 2, } def __init__( self , lowercase , lowercase=None ): super().__init__(lowercase ) _lowerCamelCase : Optional[int] = speaker_embeddings @classmethod def A_ ( cls , lowercase , lowercase="speaker_embeddings_path.json" , **lowercase ): if speaker_embeddings_dict_path is not None: _lowerCamelCase : Optional[Any] = get_file_from_repo( lowercase , lowercase , subfolder=kwargs.pop('subfolder' , lowercase ) , cache_dir=kwargs.pop('cache_dir' , lowercase ) , force_download=kwargs.pop('force_download' , lowercase ) , proxies=kwargs.pop('proxies' , lowercase ) , resume_download=kwargs.pop('resume_download' , lowercase ) , local_files_only=kwargs.pop('local_files_only' , lowercase ) , use_auth_token=kwargs.pop('use_auth_token' , lowercase ) , revision=kwargs.pop('revision' , lowercase ) , ) if speaker_embeddings_path is None: logger.warning( F'''`{os.path.join(lowercase , lowercase )}` does not exists , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.''' ) _lowerCamelCase : List[Any] = None else: with open(lowercase ) as speaker_embeddings_json: _lowerCamelCase : Union[str, Any] = json.load(lowercase ) else: _lowerCamelCase : Tuple = None _lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained(lowercase , **lowercase ) return cls(tokenizer=lowercase , speaker_embeddings=lowercase ) def A_ ( self , lowercase , lowercase="speaker_embeddings_path.json" , lowercase="speaker_embeddings" , lowercase = False , **lowercase , ): if self.speaker_embeddings is not None: os.makedirs(os.path.join(lowercase , lowercase , 'v2' ) , exist_ok=lowercase ) _lowerCamelCase : int = {} _lowerCamelCase : List[Any] = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": _lowerCamelCase : Optional[Any] = self._load_voice_preset(lowercase ) _lowerCamelCase : Any = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict['repo_or_path'] , lowercase , F'''{prompt_key}_{key}''' ) , voice_preset[key] , allow_pickle=lowercase , ) _lowerCamelCase : List[str] = os.path.join(lowercase , F'''{prompt_key}_{key}.npy''' ) _lowerCamelCase : Optional[Any] = tmp_dict with open(os.path.join(lowercase , lowercase ) , 'w' ) as fp: json.dump(lowercase , lowercase ) super().save_pretrained(lowercase , lowercase , **lowercase ) def A_ ( self , lowercase = None , **lowercase ): _lowerCamelCase : Tuple = self.speaker_embeddings[voice_preset] _lowerCamelCase : Any = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( F'''Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].''' ) _lowerCamelCase : Union[str, Any] = get_file_from_repo( self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] , subfolder=kwargs.pop('subfolder' , lowercase ) , cache_dir=kwargs.pop('cache_dir' , lowercase ) , force_download=kwargs.pop('force_download' , lowercase ) , proxies=kwargs.pop('proxies' , lowercase ) , resume_download=kwargs.pop('resume_download' , lowercase ) , local_files_only=kwargs.pop('local_files_only' , lowercase ) , use_auth_token=kwargs.pop('use_auth_token' , lowercase ) , revision=kwargs.pop('revision' , lowercase ) , ) if path is None: raise ValueError( F'''`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset} embeddings.''' ) _lowerCamelCase : List[str] = np.load(lowercase ) return voice_preset_dict def A_ ( self , lowercase = None ): for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(F'''Voice preset unrecognized, missing {key} as a key.''' ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) def __call__( self , lowercase=None , lowercase=None , lowercase="pt" , lowercase=256 , lowercase=False , lowercase=True , lowercase=False , **lowercase , ): if voice_preset is not None and not isinstance(lowercase , lowercase ): if ( isinstance(lowercase , lowercase ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): _lowerCamelCase : Any = self._load_voice_preset(lowercase ) else: if isinstance(lowercase , lowercase ) and not voice_preset.endswith('.npz' ): _lowerCamelCase : Optional[Any] = voice_preset + '.npz' _lowerCamelCase : Union[str, Any] = np.load(lowercase ) if voice_preset is not None: self._validate_voice_preset_dict(lowercase , **lowercase ) _lowerCamelCase : Tuple = BatchFeature(data=lowercase , tensor_type=lowercase ) _lowerCamelCase : Any = self.tokenizer( lowercase , return_tensors=lowercase , padding='max_length' , max_length=lowercase , return_attention_mask=lowercase , return_token_type_ids=lowercase , add_special_tokens=lowercase , **lowercase , ) if voice_preset is not None: _lowerCamelCase : Optional[int] = voice_preset return encoded_text
12
0
"""simple docstring""" import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase__ ( lowerCamelCase_, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = BlenderbotSmallTokenizer lowerCamelCase__ = False def A_ ( self ): super().setUp() _lowerCamelCase : Optional[Any] = ['__start__', 'adapt', 'act', 'ap@@', 'te', '__end__', '__unk__'] _lowerCamelCase : List[str] = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) _lowerCamelCase : Any = ['#version: 0.2', 'a p', 't e</w>', 'ap t</w>', 'a d', 'ad apt</w>', 'a c', 'ac t</w>', ''] _lowerCamelCase : Any = {'unk_token': '__unk__', 'bos_token': '__start__', 'eos_token': '__end__'} _lowerCamelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _lowerCamelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_UpperCAmelCase ) ) def A_ ( self , **lowercase ): kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def A_ ( self , lowercase ): _lowerCamelCase : Tuple = 'adapt act apte' _lowerCamelCase : Any = 'adapt act apte' return input_text, output_text def A_ ( self ): _lowerCamelCase : List[str] = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _lowerCamelCase : Optional[int] = 'adapt act apte' _lowerCamelCase : int = ['adapt', 'act', 'ap@@', 'te'] _lowerCamelCase : Optional[int] = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) _lowerCamelCase : Tuple = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] _lowerCamelCase : List[Any] = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , _UpperCAmelCase ) def A_ ( self ): _lowerCamelCase : List[Any] = BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) assert tok('sam' ).input_ids == [1384] _lowerCamelCase : List[str] = 'I am a small frog.' _lowerCamelCase : str = tok([src_text] , padding=_UpperCAmelCase , truncation=_UpperCAmelCase )['input_ids'] _lowerCamelCase : Tuple = tok.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def A_ ( self ): _lowerCamelCase : Union[str, Any] = BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) _lowerCamelCase : Any = 'I am a small frog .' _lowerCamelCase : str = '.' _lowerCamelCase : Optional[int] = tok(_UpperCAmelCase )['input_ids'] _lowerCamelCase : Union[str, Any] = tok(_UpperCAmelCase )['input_ids'] assert encoded[-1] == encoded_dot[0]
366
"""simple docstring""" import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device lowercase__ = False class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' pass @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): _lowerCamelCase : Tuple = VersatileDiffusionImageVariationPipeline.from_pretrained('shi-labs/versatile-diffusion' ) pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) _lowerCamelCase : Tuple = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) _lowerCamelCase : Dict = torch.manual_seed(0 ) _lowerCamelCase : Dict = pipe( image=lowercase , generator=lowercase , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' , ).images _lowerCamelCase : str = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) _lowerCamelCase : Any = np.array([0.04_41, 0.04_69, 0.05_07, 0.05_75, 0.06_32, 0.06_50, 0.08_65, 0.09_09, 0.09_45] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
12
0
"""simple docstring""" import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin lowercase__ = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right lowercase__ = 25_6047 lowercase__ = 25_6145 @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( _a, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = NllbTokenizer lowerCamelCase__ = NllbTokenizerFast lowerCamelCase__ = True lowerCamelCase__ = True lowerCamelCase__ = {} def A_ ( self ): super().setUp() # We have a SentencePiece fixture for testing _lowerCamelCase : Union[str, Any] = NllbTokenizer(__lowerCamelCase , keep_accents=__lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def A_ ( self ): _lowerCamelCase : str = NllbTokenizer(__lowerCamelCase , keep_accents=__lowerCamelCase ) _lowerCamelCase : Tuple = tokenizer.tokenize('This is a test' ) self.assertListEqual(__lowerCamelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) _lowerCamelCase : Union[str, Any] = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( __lowerCamelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) _lowerCamelCase : str = tokenizer.convert_tokens_to_ids(__lowerCamelCase ) self.assertListEqual( __lowerCamelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) _lowerCamelCase : Optional[Any] = tokenizer.convert_ids_to_tokens(__lowerCamelCase ) self.assertListEqual( __lowerCamelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def A_ ( self ): _lowerCamelCase : List[Any] = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-nllb""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _lowerCamelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) _lowerCamelCase : Optional[int] = self.tokenizer_class.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) _lowerCamelCase : Any = tempfile.mkdtemp() _lowerCamelCase : Union[str, Any] = tokenizer_r.save_pretrained(__lowerCamelCase ) _lowerCamelCase : Any = tokenizer_p.save_pretrained(__lowerCamelCase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) _lowerCamelCase : List[Any] = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(__lowerCamelCase , __lowerCamelCase ) # Checks everything loads correctly in the same way _lowerCamelCase : Dict = tokenizer_r.from_pretrained(__lowerCamelCase ) _lowerCamelCase : List[Any] = tokenizer_p.from_pretrained(__lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowerCamelCase , __lowerCamelCase ) ) shutil.rmtree(__lowerCamelCase ) # Save tokenizer rust, legacy_format=True _lowerCamelCase : Union[str, Any] = tempfile.mkdtemp() _lowerCamelCase : Optional[int] = tokenizer_r.save_pretrained(__lowerCamelCase , legacy_format=__lowerCamelCase ) _lowerCamelCase : Dict = tokenizer_p.save_pretrained(__lowerCamelCase ) # Checks it save with the same files self.assertSequenceEqual(__lowerCamelCase , __lowerCamelCase ) # Checks everything loads correctly in the same way _lowerCamelCase : List[str] = tokenizer_r.from_pretrained(__lowerCamelCase ) _lowerCamelCase : Dict = tokenizer_p.from_pretrained(__lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowerCamelCase , __lowerCamelCase ) ) shutil.rmtree(__lowerCamelCase ) # Save tokenizer rust, legacy_format=False _lowerCamelCase : Tuple = tempfile.mkdtemp() _lowerCamelCase : Union[str, Any] = tokenizer_r.save_pretrained(__lowerCamelCase , legacy_format=__lowerCamelCase ) _lowerCamelCase : List[str] = tokenizer_p.save_pretrained(__lowerCamelCase ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way _lowerCamelCase : Optional[int] = tokenizer_r.from_pretrained(__lowerCamelCase ) _lowerCamelCase : int = tokenizer_p.from_pretrained(__lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowerCamelCase , __lowerCamelCase ) ) shutil.rmtree(__lowerCamelCase ) @require_torch def A_ ( self ): if not self.test_seqaseq: return _lowerCamelCase : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Longer text that will definitely require truncation. _lowerCamelCase : Optional[Any] = [ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for""" """ Syria is that 'there is no military solution' to the nearly five-year conflict and more weapons""" """ will only worsen the violence and misery for millions of people.""", ] _lowerCamelCase : Union[str, Any] = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al""" """ Rusiei pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi""" """ că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] try: _lowerCamelCase : Any = tokenizer.prepare_seqaseq_batch( src_texts=__lowerCamelCase , tgt_texts=__lowerCamelCase , max_length=3 , max_target_length=10 , return_tensors='pt' , src_lang='eng_Latn' , tgt_lang='ron_Latn' , ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 10 ) # max_target_length will default to max_length if not specified _lowerCamelCase : List[str] = tokenizer.prepare_seqaseq_batch( __lowerCamelCase , tgt_texts=__lowerCamelCase , max_length=3 , return_tensors='pt' ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 3 ) _lowerCamelCase : Tuple = tokenizer.prepare_seqaseq_batch( src_texts=__lowerCamelCase , max_length=3 , max_target_length=10 , return_tensors='pt' ) self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 ) self.assertNotIn('decoder_input_ids' , __lowerCamelCase ) @unittest.skip('Unfortunately way too slow to build a BPE with SentencePiece.' ) def A_ ( self ): pass def A_ ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _lowerCamelCase : List[str] = [AddedToken('<special>' , lstrip=__lowerCamelCase )] _lowerCamelCase : List[Any] = self.rust_tokenizer_class.from_pretrained( __lowerCamelCase , additional_special_tokens=__lowerCamelCase , **__lowerCamelCase ) _lowerCamelCase : Optional[int] = tokenizer_r.encode('Hey this is a <special> token' ) _lowerCamelCase : List[Any] = tokenizer_r.encode('<special>' , add_special_tokens=__lowerCamelCase )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: _lowerCamelCase : str = self.rust_tokenizer_class.from_pretrained( __lowerCamelCase , additional_special_tokens=__lowerCamelCase , **__lowerCamelCase , ) _lowerCamelCase : Dict = self.tokenizer_class.from_pretrained( __lowerCamelCase , additional_special_tokens=__lowerCamelCase , **__lowerCamelCase ) _lowerCamelCase : Union[str, Any] = tokenizer_p.encode('Hey this is a <special> token' ) _lowerCamelCase : List[str] = tokenizer_cr.encode('Hey this is a <special> token' ) self.assertEqual(__lowerCamelCase , __lowerCamelCase ) self.assertEqual(__lowerCamelCase , __lowerCamelCase ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = """facebook/nllb-200-distilled-600M""" lowerCamelCase__ = [ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""", ] lowerCamelCase__ = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei""" """ pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor""" """ face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] lowerCamelCase__ = [ 25_60_47, 1_62_97, 13_44_08, 81_65, 24_80_66, 1_47_34, 9_50, 11_35, 10_57_21, 35_73, 83, 2_73_52, 1_08, 4_94_86, 2, ] @classmethod def A_ ( cls ): _lowerCamelCase : NllbTokenizer = NllbTokenizer.from_pretrained( cls.checkpoint_name , src_lang='eng_Latn' , tgt_lang='ron_Latn' ) _lowerCamelCase : List[Any] = 1 return cls def A_ ( self ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Arab'] , 256001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Latn'] , 256002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['fra_Latn'] , 256057 ) def A_ ( self ): _lowerCamelCase : Optional[Any] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __lowerCamelCase ) def A_ ( self ): self.assertIn(__lowerCamelCase , self.tokenizer.all_special_ids ) # fmt: off _lowerCamelCase : Optional[int] = [RO_CODE, 4254, 98068, 112923, 39072, 3909, 713, 102767, 26, 17314, 35642, 14683, 33118, 2022, 66987, 2, 256047] # fmt: on _lowerCamelCase : List[Any] = self.tokenizer.decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) _lowerCamelCase : int = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__lowerCamelCase ) self.assertEqual(__lowerCamelCase , __lowerCamelCase ) self.assertNotIn(self.tokenizer.eos_token , __lowerCamelCase ) def A_ ( self ): _lowerCamelCase : Union[str, Any] = ["""this is gunna be a long sentence """ * 20] assert isinstance(src_text[0] , __lowerCamelCase ) _lowerCamelCase : int = 10 _lowerCamelCase : List[Any] = self.tokenizer(__lowerCamelCase , max_length=__lowerCamelCase , truncation=__lowerCamelCase ).input_ids[0] self.assertEqual(ids[-1] , 2 ) self.assertEqual(ids[0] , __lowerCamelCase ) self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) def A_ ( self ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [256203, 3] ) def A_ ( self ): _lowerCamelCase : List[str] = tempfile.mkdtemp() _lowerCamelCase : Tuple = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__lowerCamelCase ) _lowerCamelCase : Dict = NllbTokenizer.from_pretrained(__lowerCamelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __lowerCamelCase ) @require_torch def A_ ( self ): _lowerCamelCase : Optional[int] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) _lowerCamelCase : Tuple = shift_tokens_right( batch['labels'] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id['ron_Latn'] ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) self.assertEqual((2, 15) , batch.input_ids.shape ) self.assertEqual((2, 15) , batch.attention_mask.shape ) _lowerCamelCase : Optional[Any] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __lowerCamelCase ) self.assertEqual(__lowerCamelCase , batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def A_ ( self ): _lowerCamelCase : Dict = self.tokenizer(self.src_text , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=3 , return_tensors='pt' ) _lowerCamelCase : int = self.tokenizer( text_target=self.tgt_text , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=10 , return_tensors='pt' ) _lowerCamelCase : str = targets["""input_ids"""] _lowerCamelCase : Dict = shift_tokens_right( __lowerCamelCase , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def A_ ( self ): _lowerCamelCase : Optional[int] = self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( nested_simplify(__lowerCamelCase ) , { # A, test, EOS, en_XX 'input_ids': [[256047, 70, 7356, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 256057, } , ) @require_torch def A_ ( self ): _lowerCamelCase : List[Any] = True _lowerCamelCase : Tuple = self.tokenizer( 'UN Chief says there is no military solution in Syria' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( inputs.input_ids , [16297, 134408, 25653, 6370, 248, 254, 103929, 94995, 108, 49486, 2, 256047] ) _lowerCamelCase : Optional[int] = False _lowerCamelCase : Dict = self.tokenizer( 'UN Chief says there is no military solution in Syria' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( inputs.input_ids , [256047, 16297, 134408, 25653, 6370, 248, 254, 103929, 94995, 108, 49486, 2] )
367
"""simple docstring""" import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency lowercase__ = { """E""": 12.70, """T""": 9.06, """A""": 8.17, """O""": 7.51, """I""": 6.97, """N""": 6.75, """S""": 6.33, """H""": 6.09, """R""": 5.99, """D""": 4.25, """L""": 4.03, """C""": 2.78, """U""": 2.76, """M""": 2.41, """W""": 2.36, """F""": 2.23, """G""": 2.02, """Y""": 1.97, """P""": 1.93, """B""": 1.29, """V""": 0.98, """K""": 0.77, """J""": 0.15, """X""": 0.15, """Q""": 0.10, """Z""": 0.07, } lowercase__ = """ETAOINSHRDLCUMWFGYPBVKJXQZ""" lowercase__ = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def _snake_case ( lowercase__ ): _lowerCamelCase : Tuple = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def _snake_case ( lowercase__ ): return x[0] def _snake_case ( lowercase__ ): _lowerCamelCase : List[Any] = get_letter_count(lowercase__ ) _lowerCamelCase : dict[int, list[str]] = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(lowercase__ ) _lowerCamelCase : dict[int, str] = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=lowercase__ ) _lowerCamelCase : Optional[int] = ''.join(freq_to_letter[freq] ) _lowerCamelCase : Any = list(freq_to_letter_str.items() ) freq_pairs.sort(key=lowercase__ , reverse=lowercase__ ) _lowerCamelCase : list[str] = [freq_pair[1] for freq_pair in freq_pairs] return "".join(lowercase__ ) def _snake_case ( lowercase__ ): _lowerCamelCase : str = get_frequency_order(lowercase__ ) _lowerCamelCase : Union[str, Any] = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
12
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class lowerCAmelCase__ ( metaclass=lowercase ): '''simple docstring''' lowerCamelCase__ = ["""torch""", """scipy"""] def __init__( self , *lowercase , **lowercase ): requires_backends(self , ['torch', 'scipy'] ) @classmethod def A_ ( cls , *lowercase , **lowercase ): requires_backends(cls , ['torch', 'scipy'] ) @classmethod def A_ ( cls , *lowercase , **lowercase ): requires_backends(cls , ['torch', 'scipy'] )
368
"""simple docstring""" import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig lowercase__ = logging.get_logger(__name__) class lowerCAmelCase__ : '''simple docstring''' def __init__( self , lowercase , lowercase ): _lowerCamelCase : Dict = question_encoder _lowerCamelCase : List[Any] = generator _lowerCamelCase : Optional[Any] = self.question_encoder def A_ ( self , lowercase ): if os.path.isfile(lowercase ): raise ValueError(F'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(lowercase , exist_ok=lowercase ) _lowerCamelCase : List[Any] = os.path.join(lowercase , 'question_encoder_tokenizer' ) _lowerCamelCase : Dict = os.path.join(lowercase , 'generator_tokenizer' ) self.question_encoder.save_pretrained(lowercase ) self.generator.save_pretrained(lowercase ) @classmethod def A_ ( cls , lowercase , **lowercase ): # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer _lowerCamelCase : Optional[int] = kwargs.pop('config' , lowercase ) if config is None: _lowerCamelCase : int = RagConfig.from_pretrained(lowercase ) _lowerCamelCase : Optional[Any] = AutoTokenizer.from_pretrained( lowercase , config=config.question_encoder , subfolder='question_encoder_tokenizer' ) _lowerCamelCase : Dict = AutoTokenizer.from_pretrained( lowercase , config=config.generator , subfolder='generator_tokenizer' ) return cls(question_encoder=lowercase , generator=lowercase ) def __call__( self , *lowercase , **lowercase ): return self.current_tokenizer(*lowercase , **lowercase ) def A_ ( self , *lowercase , **lowercase ): return self.generator.batch_decode(*lowercase , **lowercase ) def A_ ( self , *lowercase , **lowercase ): return self.generator.decode(*lowercase , **lowercase ) def A_ ( self ): _lowerCamelCase : Any = self.question_encoder def A_ ( self ): _lowerCamelCase : Optional[Any] = self.generator def A_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = "longest" , lowercase = None , lowercase = True , **lowercase , ): warnings.warn( '`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ' 'regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ' 'context manager to prepare your targets. See the documentation of your specific tokenizer for more ' 'details' , lowercase , ) if max_length is None: _lowerCamelCase : Optional[Any] = self.current_tokenizer.model_max_length _lowerCamelCase : Optional[Any] = self( lowercase , add_special_tokens=lowercase , return_tensors=lowercase , max_length=lowercase , padding=lowercase , truncation=lowercase , **lowercase , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: _lowerCamelCase : int = self.current_tokenizer.model_max_length _lowerCamelCase : str = self( text_target=lowercase , add_special_tokens=lowercase , return_tensors=lowercase , padding=lowercase , max_length=lowercase , truncation=lowercase , **lowercase , ) _lowerCamelCase : int = labels['input_ids'] return model_inputs
12
0
"""simple docstring""" from typing import Any import numpy as np def _snake_case ( lowercase__ ): return np.array_equal(_lowerCamelCase , matrix.conjugate().T ) def _snake_case ( lowercase__ , lowercase__ ): _lowerCamelCase : Union[str, Any] = v.conjugate().T _lowerCamelCase : Any = v_star.dot(_lowerCamelCase ) assert isinstance(_lowerCamelCase , np.ndarray ) return (v_star_dot.dot(_lowerCamelCase )) / (v_star.dot(_lowerCamelCase )) def _snake_case ( ): _lowerCamelCase : List[str] = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) _lowerCamelCase : int = np.array([[1], [2], [3]] ) assert is_hermitian(_lowerCamelCase ), f'''{a} is not hermitian.''' print(rayleigh_quotient(_lowerCamelCase , _lowerCamelCase ) ) _lowerCamelCase : Dict = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(_lowerCamelCase ), f'''{a} is not hermitian.''' assert rayleigh_quotient(_lowerCamelCase , _lowerCamelCase ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
369
"""simple docstring""" def _snake_case ( lowercase__ = 10 ): if not isinstance(lowercase__ , lowercase__ ) or n < 0: raise ValueError('Invalid input' ) _lowerCamelCase : str = 10**n _lowerCamelCase : Union[str, Any] = 28433 * (pow(2 , 7830457 , lowercase__ )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F"{solution(10) = }")
12
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCAmelCase__ ( lowercase, lowercase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = StableDiffusionXLImgaImgPipeline lowerCamelCase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} lowerCamelCase__ = PipelineTesterMixin.required_optional_params - {"""latents"""} lowerCamelCase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowerCamelCase__ = IMAGE_TO_IMAGE_IMAGE_PARAMS lowerCamelCase__ = IMAGE_TO_IMAGE_IMAGE_PARAMS def A_ ( self ): torch.manual_seed(0 ) _lowerCamelCase : int = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , attention_head_dim=(2, 4) , use_linear_projection=_SCREAMING_SNAKE_CASE , addition_embed_type='text_time' , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) _lowerCamelCase : str = EulerDiscreteScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , steps_offset=1 , beta_schedule='scaled_linear' , timestep_spacing='leading' , ) torch.manual_seed(0 ) _lowerCamelCase : Dict = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) _lowerCamelCase : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='gelu' , projection_dim=32 , ) _lowerCamelCase : Any = CLIPTextModel(_SCREAMING_SNAKE_CASE ) _lowerCamelCase : Tuple = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' , local_files_only=_SCREAMING_SNAKE_CASE ) _lowerCamelCase : Union[str, Any] = CLIPTextModelWithProjection(_SCREAMING_SNAKE_CASE ) _lowerCamelCase : List[str] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' , local_files_only=_SCREAMING_SNAKE_CASE ) _lowerCamelCase : List[str] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''text_encoder_2''': text_encoder_a, '''tokenizer_2''': tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def A_ ( self , lowercase , lowercase=0 ): _lowerCamelCase : str = floats_tensor((1, 3, 32, 32) , rng=random.Random(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE ) _lowerCamelCase : Optional[int] = image / 2 + 0.5 if str(_SCREAMING_SNAKE_CASE ).startswith('mps' ): _lowerCamelCase : Any = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: _lowerCamelCase : Tuple = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) _lowerCamelCase : List[str] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 5.0, '''output_type''': '''numpy''', '''strength''': 0.75, } return inputs def A_ ( self ): _lowerCamelCase : int = '''cpu''' # ensure determinism for the device-dependent torch.Generator _lowerCamelCase : List[str] = self.get_dummy_components() _lowerCamelCase : List[Any] = StableDiffusionXLImgaImgPipeline(**_SCREAMING_SNAKE_CASE ) _lowerCamelCase : Tuple = sd_pipe.to(_SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) _lowerCamelCase : str = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) _lowerCamelCase : str = sd_pipe(**_SCREAMING_SNAKE_CASE ).images _lowerCamelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _lowerCamelCase : Optional[Any] = np.array([0.46_56, 0.48_40, 0.44_39, 0.66_98, 0.55_74, 0.45_24, 0.57_99, 0.59_43, 0.51_65] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def A_ ( self ): super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def A_ ( self ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def A_ ( self ): pass def A_ ( self ): _lowerCamelCase : Optional[int] = self.get_dummy_components() _lowerCamelCase : Optional[Any] = StableDiffusionXLImgaImgPipeline(**_SCREAMING_SNAKE_CASE ) _lowerCamelCase : Optional[int] = sd_pipe.to(_SCREAMING_SNAKE_CASE ) _lowerCamelCase : List[Any] = sd_pipe.to(_SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) # forward without prompt embeds _lowerCamelCase : Optional[Any] = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) _lowerCamelCase : Union[str, Any] = 3 * ['''this is a negative prompt'''] _lowerCamelCase : List[str] = negative_prompt _lowerCamelCase : Dict = 3 * [inputs['''prompt''']] _lowerCamelCase : str = sd_pipe(**_SCREAMING_SNAKE_CASE ) _lowerCamelCase : Any = output.images[0, -3:, -3:, -1] # forward with prompt embeds _lowerCamelCase : Any = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) _lowerCamelCase : List[Any] = 3 * ['''this is a negative prompt'''] _lowerCamelCase : Tuple = 3 * [inputs.pop('prompt' )] ( _lowerCamelCase ) : Dict = sd_pipe.encode_prompt(_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE ) _lowerCamelCase : str = sd_pipe( **_SCREAMING_SNAKE_CASE , prompt_embeds=_SCREAMING_SNAKE_CASE , negative_prompt_embeds=_SCREAMING_SNAKE_CASE , pooled_prompt_embeds=_SCREAMING_SNAKE_CASE , negative_pooled_prompt_embeds=_SCREAMING_SNAKE_CASE , ) _lowerCamelCase : Dict = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def A_ ( self , lowercase , lowercase="cpu" , lowercase=torch.floataa , lowercase=0 ): _lowerCamelCase : Optional[int] = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) _lowerCamelCase : str = np.random.RandomState(_SCREAMING_SNAKE_CASE ).standard_normal((1, 4, 64, 64) ) _lowerCamelCase : Optional[int] = torch.from_numpy(_SCREAMING_SNAKE_CASE ).to(device=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE ) _lowerCamelCase : Any = { '''prompt''': '''a photograph of an astronaut riding a horse''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def A_ ( self ): _lowerCamelCase : int = DiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-base' ) pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) _lowerCamelCase : Optional[Any] = self.get_inputs(_SCREAMING_SNAKE_CASE ) _lowerCamelCase : Optional[Any] = pipe(**_SCREAMING_SNAKE_CASE ).images _lowerCamelCase : List[str] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) _lowerCamelCase : Union[str, Any] = np.array([0.4_94_93, 0.4_78_96, 0.4_07_98, 0.5_42_14, 0.5_32_12, 0.4_82_02, 0.4_76_56, 0.4_63_29, 0.4_85_06] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
370
"""simple docstring""" import argparse import datetime def _snake_case ( lowercase__ ): _lowerCamelCase : Dict = { '0': 'Sunday', '1': 'Monday', '2': 'Tuesday', '3': 'Wednesday', '4': 'Thursday', '5': 'Friday', '6': 'Saturday', } _lowerCamelCase : str = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(lowercase__ ) < 11: raise ValueError('Must be 10 characters long' ) # Get month _lowerCamelCase : int = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError('Month must be between 1 - 12' ) _lowerCamelCase : str = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError('Date separator must be \'-\' or \'/\'' ) # Get day _lowerCamelCase : int = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError('Date must be between 1 - 31' ) # Get second separator _lowerCamelCase : str = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError('Date separator must be \'-\' or \'/\'' ) # Get year _lowerCamelCase : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8500: raise ValueError( 'Year out of range. There has to be some sort of limit...right?' ) # Get datetime obj for validation _lowerCamelCase : str = datetime.date(int(lowercase__ ) , int(lowercase__ ) , int(lowercase__ ) ) # Start math if m <= 2: _lowerCamelCase : str = y - 1 _lowerCamelCase : Tuple = m + 12 # maths var _lowerCamelCase : int = int(str(lowercase__ )[:2] ) _lowerCamelCase : int = int(str(lowercase__ )[2:] ) _lowerCamelCase : int = int(2.6 * m - 5.3_9 ) _lowerCamelCase : int = int(c / 4 ) _lowerCamelCase : int = int(k / 4 ) _lowerCamelCase : int = int(d + k ) _lowerCamelCase : int = int(t + u + v + x ) _lowerCamelCase : int = int(z - (2 * c) ) _lowerCamelCase : int = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError('The date was evaluated incorrectly. Contact developer.' ) # Response _lowerCamelCase : str = f'''Your date {date_input}, is a {days[str(lowercase__ )]}!''' return response if __name__ == "__main__": import doctest doctest.testmod() lowercase__ = argparse.ArgumentParser( description=( """Find out what day of the week nearly any date is or was. Enter """ """date as a string in the mm-dd-yyyy or mm/dd/yyyy format""" ) ) parser.add_argument( """date_input""", type=str, help="""Date as a string (mm-dd-yyyy or mm/dd/yyyy)""" ) lowercase__ = parser.parse_args() zeller(args.date_input)
12
0
from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class lowerCAmelCase__ ( a_ ): '''simple docstring''' def __lt__( self , lowercase ): return self[-1] < other[-1] def __eq__( self , lowercase ): return self[-1] == other[-1] def _snake_case ( lowercase__ ): _lowerCamelCase : str = [] # sort into stacks for element in collection: _lowerCamelCase : str = Stack([element] ) _lowerCamelCase : Optional[int] = bisect_left(lowerCamelCase__ , lowerCamelCase__ ) if i != len(lowerCamelCase__ ): stacks[i].append(lowerCamelCase__ ) else: stacks.append(lowerCamelCase__ ) # use a heap-based merge to merge stack efficiently _lowerCamelCase : Tuple = merge(*(reversed(lowerCamelCase__ ) for stack in stacks) ) return collection if __name__ == "__main__": lowercase__ = input("""Enter numbers separated by a comma:\n""").strip() lowercase__ = [int(item) for item in user_input.split(""",""")] print(patience_sort(unsorted))
371
"""simple docstring""" import re def _snake_case ( lowercase__ ): _lowerCamelCase : Optional[int] = re.compile(r'^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$' ) if match := re.search(lowercase__ , lowercase__ ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator("""+918827897895"""))
12
0
"""simple docstring""" from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING lowercase__ = logging.get_logger(__name__) lowercase__ = Dict[str, Any] lowercase__ = List[Prediction] @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class lowerCAmelCase__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , *lowercase , **lowercase ): super().__init__(*_snake_case , **_snake_case ) if self.framework == "tf": raise ValueError(F'''The {self.__class__} is only available in PyTorch.''' ) requires_backends(self , 'vision' ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def A_ ( self , **lowercase ): _lowerCamelCase : List[str] = {} if "threshold" in kwargs: _lowerCamelCase : Any = kwargs["threshold"] return {}, {}, postprocess_kwargs def __call__( self , *lowercase , **lowercase ): return super().__call__(*_snake_case , **_snake_case ) def A_ ( self , lowercase ): _lowerCamelCase : str = load_image(_snake_case ) _lowerCamelCase : Union[str, Any] = torch.IntTensor([[image.height, image.width]] ) _lowerCamelCase : Dict = self.image_processor(images=[image] , return_tensors='pt' ) if self.tokenizer is not None: _lowerCamelCase : Any = self.tokenizer(text=inputs['words'] , boxes=inputs['boxes'] , return_tensors='pt' ) _lowerCamelCase : Union[str, Any] = target_size return inputs def A_ ( self , lowercase ): _lowerCamelCase : List[Any] = model_inputs.pop('target_size' ) _lowerCamelCase : Union[str, Any] = self.model(**_snake_case ) _lowerCamelCase : Optional[Any] = outputs.__class__({'target_size': target_size, **outputs} ) if self.tokenizer is not None: _lowerCamelCase : Union[str, Any] = model_inputs["bbox"] return model_outputs def A_ ( self , lowercase , lowercase=0.9 ): _lowerCamelCase : List[Any] = model_outputs["target_size"] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. _lowerCamelCase : Union[str, Any] = target_size[0].tolist() def unnormalize(lowercase ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1000), (height * bbox[1] / 1000), (width * bbox[2] / 1000), (height * bbox[3] / 1000), ] ) ) _lowerCamelCase : int = model_outputs["logits"].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) _lowerCamelCase : Dict = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] _lowerCamelCase : Tuple = [unnormalize(_snake_case ) for bbox in model_outputs["bbox"].squeeze(0 )] _lowerCamelCase : List[Any] = ["score", "label", "box"] _lowerCamelCase : List[Any] = [dict(zip(_snake_case , _snake_case ) ) for vals in zip(scores.tolist() , _snake_case , _snake_case ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel _lowerCamelCase : List[str] = self.image_processor.post_process_object_detection(_snake_case , _snake_case , _snake_case ) _lowerCamelCase : Union[str, Any] = raw_annotations[0] _lowerCamelCase : Optional[Any] = raw_annotation["scores"] _lowerCamelCase : Union[str, Any] = raw_annotation["labels"] _lowerCamelCase : Dict = raw_annotation["boxes"] _lowerCamelCase : str = scores.tolist() _lowerCamelCase : List[Any] = [self.model.config.idalabel[label.item()] for label in labels] _lowerCamelCase : List[str] = [self._get_bounding_box(_snake_case ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] _lowerCamelCase : List[Any] = ["score", "label", "box"] _lowerCamelCase : Any = [ dict(zip(_snake_case , _snake_case ) ) for vals in zip(raw_annotation['scores'] , raw_annotation['labels'] , raw_annotation['boxes'] ) ] return annotation def A_ ( self , lowercase ): if self.framework != "pt": raise ValueError('The ObjectDetectionPipeline is only available in PyTorch.' ) _lowerCamelCase : Optional[Any] = box.int().tolist() _lowerCamelCase : Optional[Any] = { "xmin": xmin, "ymin": ymin, "xmax": xmax, "ymax": ymax, } return bbox
350
"""simple docstring""" # XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path lowercase__ = Path(__file__).resolve().parents[3] / """src""" sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) lowercase__ = {"""base""": """patrickvonplaten/wav2vec2_tiny_random""", """robust""": """patrickvonplaten/wav2vec2_tiny_random_robust"""} lowercase__ = """zero2""" lowercase__ = """zero3""" lowercase__ = [ZEROa, ZEROa] def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param _lowerCamelCase : List[str] = parameterized.to_safe_name('_'.join(str(lowercase__ ) for x in param.args ) ) return f'''{func.__name__}_{param_based_name}''' # Cartesian-product of zero stages with models to test lowercase__ = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class lowerCAmelCase__ ( lowercase ): '''simple docstring''' @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) def A_ ( self , lowercase ): # XXX: run_asr is premature and doesn't save any results # so all we check for now is that the process didn't fail pass def A_ ( self , lowercase , lowercase , lowercase = 10 , lowercase = True , lowercase = True , lowercase = True , ): _lowerCamelCase : List[str] = models[model] _lowerCamelCase : Optional[int] = self.run_trainer( stage=lowercase , model_name=lowercase , eval_steps=lowercase , num_train_epochs=1 , distributed=lowercase , fpaa=lowercase , ) self.do_checks(lowercase ) return output_dir def A_ ( self , lowercase , lowercase , lowercase = 10 , lowercase = 1 , lowercase = True , lowercase = True , ): _lowerCamelCase : List[str] = self.get_auto_remove_tmp_dir('./xxx' , after=lowercase ) _lowerCamelCase : Any = F''' --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(lowercase )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none '''.split() if fpaa: args.extend(['--fp16'] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files _lowerCamelCase : Optional[int] = F'''--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'''.split() _lowerCamelCase : Optional[Any] = [F'''{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'''] _lowerCamelCase : Dict = self.get_launcher(lowercase ) _lowerCamelCase : Union[str, Any] = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(lowercase , env=self.get_env() ) return output_dir def A_ ( self , lowercase=False ): # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup # - it won't be able to handle that # 2. for now testing with just 2 gpus max (since some quality tests may give different # results with mode gpus because we use very little data) _lowerCamelCase : Any = min(2 , get_gpu_count() ) if distributed else 1 return F'''deepspeed --num_nodes 1 --num_gpus {num_gpus}'''.split()
12
0
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowerCAmelCase__ ( lowercase ): '''simple docstring''' def __init__( self , lowercase , lowercase ): super().__init__() # make sure scheduler can always be converted to DDIM _lowerCamelCase : Dict = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=lowercase , scheduler=lowercase ) @torch.no_grad() def __call__( self , lowercase = 1 , lowercase = None , lowercase = 0.0 , lowercase = 50 , lowercase = None , lowercase = "pil" , lowercase = True , ): # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , lowercase ): _lowerCamelCase : str = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: _lowerCamelCase : Dict = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(lowercase , lowercase ) and len(lowercase ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(lowercase )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) _lowerCamelCase : Tuple = randn_tensor(lowercase , generator=lowercase , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(lowercase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output _lowerCamelCase : List[Any] = self.unet(lowercase , lowercase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _lowerCamelCase : Optional[Any] = self.scheduler.step( lowercase , lowercase , lowercase , eta=lowercase , use_clipped_model_output=lowercase , generator=lowercase ).prev_sample _lowerCamelCase : Dict = (image / 2 + 0.5).clamp(0 , 1 ) _lowerCamelCase : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _lowerCamelCase : Dict = self.numpy_to_pil(lowercase ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase )
351
"""simple docstring""" from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging lowercase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = ["""pixel_values"""] def __init__( self , lowercase = True , lowercase = 1 / 255 , lowercase = True , lowercase = 8 , **lowercase , ): super().__init__(**lowercase ) _lowerCamelCase : Optional[Any] = do_rescale _lowerCamelCase : Union[str, Any] = rescale_factor _lowerCamelCase : Any = do_pad _lowerCamelCase : Optional[int] = pad_size def A_ ( self , lowercase , lowercase , lowercase = None , **lowercase ): return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase ) def A_ ( self , lowercase , lowercase , lowercase = None ): _lowerCamelCase, _lowerCamelCase : Tuple = get_image_size(lowercase ) _lowerCamelCase : Union[str, Any] = (old_height // size + 1) * size - old_height _lowerCamelCase : Tuple = (old_width // size + 1) * size - old_width return pad(lowercase , ((0, pad_height), (0, pad_width)) , mode='symmetric' , data_format=lowercase ) def A_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = ChannelDimension.FIRST , **lowercase , ): _lowerCamelCase : List[str] = do_rescale if do_rescale is not None else self.do_rescale _lowerCamelCase : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCamelCase : Any = do_pad if do_pad is not None else self.do_pad _lowerCamelCase : int = pad_size if pad_size is not None else self.pad_size _lowerCamelCase : Dict = make_list_of_images(lowercase ) if not valid_images(lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. _lowerCamelCase : Dict = [to_numpy_array(lowercase ) for image in images] if do_rescale: _lowerCamelCase : str = [self.rescale(image=lowercase , scale=lowercase ) for image in images] if do_pad: _lowerCamelCase : str = [self.pad(lowercase , size=lowercase ) for image in images] _lowerCamelCase : Any = [to_channel_dimension_format(lowercase , lowercase ) for image in images] _lowerCamelCase : Union[str, Any] = {'pixel_values': images} return BatchFeature(data=lowercase , tensor_type=lowercase )
12
0
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
352
"""simple docstring""" import os import string import sys lowercase__ = 1 << 8 lowercase__ = { """tab""": ord("""\t"""), """newline""": ord("""\r"""), """esc""": 27, """up""": 65 + ARROW_KEY_FLAG, """down""": 66 + ARROW_KEY_FLAG, """right""": 67 + ARROW_KEY_FLAG, """left""": 68 + ARROW_KEY_FLAG, """mod_int""": 91, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 50, """delete""": 51, """pg_up""": 53, """pg_down""": 54, } lowercase__ = KEYMAP["""up"""] lowercase__ = KEYMAP["""left"""] if sys.platform == "win32": lowercase__ = [] lowercase__ = { B"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, B"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(10): lowercase__ = ord(str(i)) def _snake_case ( ): if os.name == "nt": import msvcrt _lowerCamelCase : Any = 'mbcs' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(lowercase__ ) == 0: # Read the keystroke _lowerCamelCase : str = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): _lowerCamelCase : List[Any] = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: _lowerCamelCase : Union[str, Any] = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) ) WIN_CH_BUFFER.append(lowercase__ ) if ord(lowercase__ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) _lowerCamelCase : List[Any] = chr(KEYMAP['esc'] ) except KeyError: _lowerCamelCase : int = cha[1] else: _lowerCamelCase : Optional[int] = ch.decode(lowercase__ ) else: _lowerCamelCase : Union[str, Any] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty _lowerCamelCase : List[str] = sys.stdin.fileno() _lowerCamelCase : Tuple = termios.tcgetattr(lowercase__ ) try: tty.setraw(lowercase__ ) _lowerCamelCase : Optional[Any] = sys.stdin.read(1 ) finally: termios.tcsetattr(lowercase__ , termios.TCSADRAIN , lowercase__ ) return ch def _snake_case ( ): _lowerCamelCase : int = get_raw_chars() if ord(lowercase__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(lowercase__ ) == KEYMAP["esc"]: _lowerCamelCase : Union[str, Any] = get_raw_chars() if ord(lowercase__ ) == KEYMAP["mod_int"]: _lowerCamelCase : List[Any] = get_raw_chars() if ord(lowercase__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(lowercase__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(lowercase__ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
12
0
"""simple docstring""" # Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar lowercase__ = TypeVar("""T""") class lowerCAmelCase__ ( Generic[T] ): '''simple docstring''' def __init__( self , lowercase = True ): _lowerCamelCase : dict[T, list[T]] = {} # dictionary of lists _lowerCamelCase : Dict = directed def A_ ( self , lowercase , lowercase ): if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(lowercase ) self.adj_list[destination_vertex].append(lowercase ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(lowercase ) _lowerCamelCase : Any = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(lowercase ) _lowerCamelCase : List[Any] = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: _lowerCamelCase : Tuple = [destination_vertex] _lowerCamelCase : List[Any] = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(lowercase ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(lowercase ) _lowerCamelCase : Union[str, Any] = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: _lowerCamelCase : Any = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: _lowerCamelCase : Dict = [destination_vertex] _lowerCamelCase : List[str] = [] return self def __repr__( self ): return pformat(self.adj_list )
353
"""simple docstring""" from typing import Any def _snake_case ( lowercase__ ): if not input_list: return [] _lowerCamelCase : Any = [input_list.count(lowercase__ ) for value in input_list] _lowerCamelCase : Dict = max(lowercase__ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(lowercase__ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
12
0
"""simple docstring""" import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): _lowerCamelCase : List[Any] = logging.get_logger() # the current default level is logging.WARNING _lowerCamelCase : int = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(lowerCamelCase_ ) def A_ ( self ): _lowerCamelCase : Optional[int] = logging.get_verbosity() _lowerCamelCase : Dict = logging.get_logger('transformers.models.bart.tokenization_bart' ) _lowerCamelCase : Optional[Any] = 'Testing 1, 2, 3' # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(lowerCamelCase_ ) as cl: logger.warning(lowerCamelCase_ ) self.assertEqual(cl.out , msg + '\n' ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(lowerCamelCase_ ) as cl: logger.warning(lowerCamelCase_ ) self.assertEqual(cl.out , '' ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(lowerCamelCase_ ) as cl: logger.warning(lowerCamelCase_ ) self.assertEqual(cl.out , msg + '\n' ) # restore to the original level logging.set_verbosity(lowerCamelCase_ ) @mockenv(TRANSFORMERS_VERBOSITY='error' ) def A_ ( self ): transformers.utils.logging._reset_library_root_logger() # this action activates the env var _lowerCamelCase : Tuple = logging.get_logger('transformers.models.bart.tokenization_bart' ) _lowerCamelCase : int = os.getenv('TRANSFORMERS_VERBOSITY' , lowerCamelCase_ ) _lowerCamelCase : List[Any] = logging.log_levels[env_level_str] _lowerCamelCase : Optional[int] = logging.get_verbosity() self.assertEqual( lowerCamelCase_ , lowerCamelCase_ , F'''TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}''' , ) # restore to the original level _lowerCamelCase : Any = '' transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY='super-error' ) def A_ ( self ): transformers.utils.logging._reset_library_root_logger() _lowerCamelCase : Dict = logging.logging.getLogger() with CaptureLogger(lowerCamelCase_ ) as cl: # this action activates the env var logging.get_logger('transformers.models.bart.tokenization_bart' ) self.assertIn('Unknown option TRANSFORMERS_VERBOSITY=super-error' , cl.out ) # no need to restore as nothing was changed def A_ ( self ): transformers.utils.logging._reset_library_root_logger() _lowerCamelCase : List[str] = logging.get_logger('transformers.models.bart.tokenization_bart' ) _lowerCamelCase : Optional[int] = 'Testing 1, 2, 3' with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='1' ): # nothing should be logged as env var disables this method with CaptureLogger(lowerCamelCase_ ) as cl: logger.warning_advice(lowerCamelCase_ ) self.assertEqual(cl.out , '' ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='' ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(lowerCamelCase_ ) as cl: logger.warning_advice(lowerCamelCase_ ) self.assertEqual(cl.out , msg + '\n' ) def _snake_case ( ): disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
354
"""simple docstring""" def _snake_case ( lowercase__ ): # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection _lowerCamelCase : List[str] = len(lowercase__ ) _lowerCamelCase : List[str] = max(lowercase__ ) _lowerCamelCase : List[str] = min(lowercase__ ) # create the counting array _lowerCamelCase : List[Any] = coll_max + 1 - coll_min _lowerCamelCase : List[Any] = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , lowercase__ ): _lowerCamelCase : Optional[int] = counting_arr[i] + counting_arr[i - 1] # create the output collection _lowerCamelCase : Dict = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , lowercase__ ) ): _lowerCamelCase : Any = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def _snake_case ( lowercase__ ): return "".join([chr(lowercase__ ) for i in counting_sort([ord(lowercase__ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("""thisisthestring""") == "eghhiiinrsssttt" lowercase__ = input("""Enter numbers separated by a comma:\n""").strip() lowercase__ = [int(item) for item in user_input.split(""",""")] print(counting_sort(unsorted))
12
0
"""simple docstring""" import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset lowercase__ = 'bert-base-cased' lowercase__ = 'google/pegasus-xsum' lowercase__ = [' Sam ate lunch today.', 'Sams lunch ingredients.'] lowercase__ = ['A very interesting story about what I ate for lunch.', 'Avocado, celery, turkey, coffee'] lowercase__ = 'patrickvonplaten/t5-tiny-random' lowercase__ = 'sshleifer/bart-tiny-random' lowercase__ = 'sshleifer/tiny-mbart' lowercase__ = 'sshleifer/tiny-marian-en-de' def _snake_case ( lowercase__ , lowercase__ ): _lowerCamelCase : Dict = '\n'.join(__UpperCAmelCase ) Path(__UpperCAmelCase ).open('w' ).writelines(__UpperCAmelCase ) def _snake_case ( lowercase__ ): for split in ["train", "val", "test"]: _dump_articles(os.path.join(__UpperCAmelCase , f'''{split}.source''' ) , __UpperCAmelCase ) _dump_articles(os.path.join(__UpperCAmelCase , f'''{split}.target''' ) , __UpperCAmelCase ) return tmp_dir class lowerCAmelCase__ ( _lowerCamelCase ): '''simple docstring''' @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def A_ ( self , lowercase ): _lowerCamelCase : Optional[Any] = AutoTokenizer.from_pretrained(lowercase_ ) _lowerCamelCase : Optional[int] = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) _lowerCamelCase : int = max(len(tokenizer.encode(lowercase_ ) ) for a in ARTICLES ) _lowerCamelCase : Tuple = max(len(tokenizer.encode(lowercase_ ) ) for a in SUMMARIES ) _lowerCamelCase : Optional[Any] = 4 _lowerCamelCase : Union[str, Any] = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated _lowerCamelCase, _lowerCamelCase : Any = 'ro_RO', 'de_DE' # ignored for all but mbart, but never causes error. _lowerCamelCase : List[str] = SeqaSeqDataset( lowercase_ , data_dir=lowercase_ , type_path='train' , max_source_length=lowercase_ , max_target_length=lowercase_ , src_lang=lowercase_ , tgt_lang=lowercase_ , ) _lowerCamelCase : List[str] = DataLoader(lowercase_ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(lowercase_ , lowercase_ ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place _lowerCamelCase : Tuple = shift_tokens_right(batch['labels'] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def A_ ( self , lowercase ): _lowerCamelCase : Dict = AutoTokenizer.from_pretrained(lowercase_ ) _lowerCamelCase : str = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) _lowerCamelCase : List[str] = max(len(tokenizer.encode(lowercase_ ) ) for a in ARTICLES ) _lowerCamelCase : Dict = max(len(tokenizer.encode(lowercase_ ) ) for a in SUMMARIES ) _lowerCamelCase : Dict = 4 _lowerCamelCase : Optional[Any] = LegacySeqaSeqDataset( lowercase_ , data_dir=lowercase_ , type_path='train' , max_source_length=20 , max_target_length=lowercase_ , ) _lowerCamelCase : str = DataLoader(lowercase_ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def A_ ( self ): _lowerCamelCase : Optional[int] = AutoTokenizer.from_pretrained('facebook/mbart-large-cc25' ) _lowerCamelCase : Optional[Any] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) _lowerCamelCase : int = tmp_dir.joinpath('train.source' ).open().readlines() _lowerCamelCase : int = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(lowercase_ , lowercase_ , 128 , lowercase_ ) _lowerCamelCase : Any = {x.name for x in tmp_dir.iterdir()} _lowerCamelCase : int = {x.name for x in save_dir.iterdir()} _lowerCamelCase : Any = save_dir.joinpath('train.source' ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(lowercase_ ) < len(lowercase_ ) assert len(lowercase_ ) == 1 assert len(packed_examples[0] ) == sum(len(lowercase_ ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='This test requires fairseq' ) def A_ ( self ): if not FAIRSEQ_AVAILABLE: return _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Any = self._get_dataset(max_len=64 ) _lowerCamelCase : Any = 64 _lowerCamelCase : Tuple = ds.make_dynamic_sampler(lowercase_ , required_batch_size_multiple=lowercase_ ) _lowerCamelCase : Dict = [len(lowercase_ ) for x in batch_sampler] assert len(set(lowercase_ ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(lowercase_ ) == len(lowercase_ ) # no dropped or added examples _lowerCamelCase : Optional[Any] = DataLoader(lowercase_ , batch_sampler=lowercase_ , collate_fn=ds.collate_fn , num_workers=2 ) _lowerCamelCase : Dict = [] _lowerCamelCase : Any = [] for batch in data_loader: _lowerCamelCase : Dict = batch['input_ids'].shape _lowerCamelCase : List[Any] = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple _lowerCamelCase : Union[str, Any] = np.product(batch['input_ids'].shape ) num_src_per_batch.append(lowercase_ ) if num_src_tokens > (max_tokens * 1.1): failures.append(lowercase_ ) assert num_src_per_batch[0] == max(lowercase_ ) if failures: raise AssertionError(F'''too many tokens in {len(lowercase_ )} batches''' ) def A_ ( self ): _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : str = self._get_dataset(max_len=512 ) _lowerCamelCase : Tuple = 2 _lowerCamelCase : Any = ds.make_sortish_sampler(lowercase_ , shuffle=lowercase_ ) _lowerCamelCase : List[Any] = DataLoader(lowercase_ , batch_size=lowercase_ , collate_fn=ds.collate_fn , num_workers=2 ) _lowerCamelCase : Any = DataLoader(lowercase_ , batch_size=lowercase_ , collate_fn=ds.collate_fn , num_workers=2 , sampler=lowercase_ ) _lowerCamelCase : Optional[int] = tokenizer.pad_token_id def count_pad_tokens(lowercase , lowercase="input_ids" ): return [batch[k].eq(lowercase_ ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(lowercase_ , k='labels' ) ) < sum(count_pad_tokens(lowercase_ , k='labels' ) ) assert sum(count_pad_tokens(lowercase_ ) ) < sum(count_pad_tokens(lowercase_ ) ) assert len(lowercase_ ) == len(lowercase_ ) def A_ ( self , lowercase=1000 , lowercase=128 ): if os.getenv('USE_REAL_DATA' , lowercase_ ): _lowerCamelCase : str = 'examples/seq2seq/wmt_en_ro' _lowerCamelCase : Dict = max_len * 2 * 64 if not Path(lowercase_ ).joinpath('train.len' ).exists(): save_len_file(lowercase_ , lowercase_ ) else: _lowerCamelCase : List[Any] = 'examples/seq2seq/test_data/wmt_en_ro' _lowerCamelCase : List[str] = max_len * 4 save_len_file(lowercase_ , lowercase_ ) _lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained(lowercase_ ) _lowerCamelCase : Union[str, Any] = SeqaSeqDataset( lowercase_ , data_dir=lowercase_ , type_path='train' , max_source_length=lowercase_ , max_target_length=lowercase_ , n_obs=lowercase_ , ) return ds, max_tokens, tokenizer def A_ ( self ): _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Any = self._get_dataset() _lowerCamelCase : Any = set(DistributedSortishSampler(lowercase_ , 256 , num_replicas=2 , rank=0 , add_extra_examples=lowercase_ ) ) _lowerCamelCase : List[Any] = set(DistributedSortishSampler(lowercase_ , 256 , num_replicas=2 , rank=1 , add_extra_examples=lowercase_ ) ) assert idsa.intersection(lowercase_ ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def A_ ( self , lowercase ): _lowerCamelCase : Any = AutoTokenizer.from_pretrained(lowercase_ , use_fast=lowercase_ ) if tok_name == MBART_TINY: _lowerCamelCase : Tuple = SeqaSeqDataset( lowercase_ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='train' , max_source_length=4 , max_target_length=8 , src_lang='EN' , tgt_lang='FR' , ) _lowerCamelCase : str = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: _lowerCamelCase : Optional[int] = SeqaSeqDataset( lowercase_ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='train' , max_source_length=4 , max_target_length=8 , ) _lowerCamelCase : List[Any] = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(lowercase_ ) == 1 if tok_name == BART_TINY else len(lowercase_ ) == 0
355
"""simple docstring""" import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( """--original_config_file""", default=None, type=str, help="""The YAML config file corresponding to the original architecture.""", ) parser.add_argument( """--num_in_channels""", default=None, type=int, help="""The number of input channels. If `None` number of input channels will be automatically inferred.""", ) parser.add_argument( """--scheduler_type""", default="""pndm""", type=str, help="""Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']""", ) parser.add_argument( """--pipeline_type""", default=None, type=str, help=( """The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'""" """. If `None` pipeline will be automatically inferred.""" ), ) parser.add_argument( """--image_size""", default=None, type=int, help=( """The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2""" """ Base. Use 768 for Stable Diffusion v2.""" ), ) parser.add_argument( """--prediction_type""", default=None, type=str, help=( """The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable""" """ Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2.""" ), ) parser.add_argument( """--extract_ema""", action="""store_true""", help=( """Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights""" """ or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield""" """ higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.""" ), ) parser.add_argument( """--upcast_attention""", action="""store_true""", help=( """Whether the attention computation should always be upcasted. This is necessary when running stable""" """ diffusion 2.1.""" ), ) parser.add_argument( """--from_safetensors""", action="""store_true""", help="""If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.""", ) parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") parser.add_argument( """--stable_unclip""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.""", ) parser.add_argument( """--stable_unclip_prior""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.""", ) parser.add_argument( """--clip_stats_path""", type=str, help="""Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.""", required=False, ) parser.add_argument( """--controlnet""", action="""store_true""", default=None, help="""Set flag if this is a controlnet checkpoint.""" ) parser.add_argument("""--half""", action="""store_true""", help="""Save weights in half precision.""") parser.add_argument( """--vae_path""", type=str, default=None, required=False, help="""Set to a path, hub id to an already converted vae to not convert it again.""", ) lowercase__ = parser.parse_args() lowercase__ = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
12
0
"""simple docstring""" import argparse import os import re lowercase__ = '''src/transformers''' # Pattern that looks at the indentation in a line. lowercase__ = re.compile(R"""^(\s*)\S""") # Pattern that matches `"key":" and puts `key` in group 0. lowercase__ = re.compile(R"""^\s*\"([^\"]+)\":""") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowercase__ = re.compile(R"""^\s*_import_structure\[\"([^\"]+)\"\]""") # Pattern that matches `"key",` and puts `key` in group 0. lowercase__ = re.compile(R"""^\s*\"([^\"]+)\",\s*$""") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowercase__ = re.compile(R"""\[([^\]]+)\]""") def _snake_case ( lowercase__ ): _lowerCamelCase : Dict = _re_indent.search(lowercase_ ) return "" if search is None else search.groups()[0] def _snake_case ( lowercase__ , lowercase__="" , lowercase__=None , lowercase__=None ): _lowerCamelCase : int = 0 _lowerCamelCase : Optional[Any] = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(lowercase_ ): index += 1 _lowerCamelCase : Union[str, Any] = ['\n'.join(lines[:index] )] else: _lowerCamelCase : List[Any] = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). _lowerCamelCase : List[str] = [lines[index]] index += 1 while index < len(lowercase_ ) and (end_prompt is None or not lines[index].startswith(lowercase_ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(lowercase_ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(lowercase_ ) ) if index < len(lowercase_ ) - 1: _lowerCamelCase : Optional[Any] = [lines[index + 1]] index += 1 else: _lowerCamelCase : Optional[int] = [] else: blocks.append('\n'.join(lowercase_ ) ) _lowerCamelCase : Optional[Any] = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(lowercase_ ) > 0: blocks.append('\n'.join(lowercase_ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(lowercase_ ): blocks.append('\n'.join(lines[index:] ) ) return blocks def _snake_case ( lowercase__ ): def _inner(lowercase__ ): return key(lowercase_ ).lower().replace('_' , '' ) return _inner def _snake_case ( lowercase__ , lowercase__=None ): # If no key is provided, we use a noop. def noop(lowercase__ ): return x if key is None: _lowerCamelCase : str = noop # Constants are all uppercase, they go first. _lowerCamelCase : Optional[Any] = [obj for obj in objects if key(lowercase_ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. _lowerCamelCase : Any = [obj for obj in objects if key(lowercase_ )[0].isupper() and not key(lowercase_ ).isupper()] # Functions begin with a lowercase, they go last. _lowerCamelCase : List[str] = [obj for obj in objects if not key(lowercase_ )[0].isupper()] _lowerCamelCase : Optional[int] = ignore_underscore(lowercase_ ) return sorted(lowercase_ , key=lowercase_ ) + sorted(lowercase_ , key=lowercase_ ) + sorted(lowercase_ , key=lowercase_ ) def _snake_case ( lowercase__ ): # This inner function sort imports between [ ]. def _replace(lowercase__ ): _lowerCamelCase : Dict = match.groups()[0] if "," not in imports: return f'''[{imports}]''' _lowerCamelCase : Optional[int] = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowerCamelCase : Optional[Any] = keys[:-1] return "[" + ", ".join([f'''\"{k}\"''' for k in sort_objects(lowercase_ )] ) + "]" _lowerCamelCase : int = import_statement.split('\n' ) if len(lowercase_ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. _lowerCamelCase : List[Any] = 2 if lines[1].strip() == '[' else 1 _lowerCamelCase : str = [(i, _re_strip_line.search(lowercase_ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] _lowerCamelCase : Optional[Any] = sort_objects(lowercase_ , key=lambda lowercase__ : x[1] ) _lowerCamelCase : Any = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(lowercase_ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: _lowerCamelCase : str = _re_bracket_content.sub(_replace , lines[1] ) else: _lowerCamelCase : Union[str, Any] = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowerCamelCase : int = keys[:-1] _lowerCamelCase : Optional[Any] = get_indent(lines[1] ) + ', '.join([f'''\"{k}\"''' for k in sort_objects(lowercase_ )] ) return "\n".join(lowercase_ ) else: # Finally we have to deal with imports fitting on one line _lowerCamelCase : str = _re_bracket_content.sub(_replace , lowercase_ ) return import_statement def _snake_case ( lowercase__ , lowercase__=True ): with open(lowercase_ , encoding='utf-8' ) as f: _lowerCamelCase : Any = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 _lowerCamelCase : Union[str, Any] = split_code_in_indented_blocks( lowercase_ , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(lowercase_ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. _lowerCamelCase : int = main_blocks[block_idx] _lowerCamelCase : Union[str, Any] = block.split('\n' ) # Get to the start of the imports. _lowerCamelCase : Union[str, Any] = 0 while line_idx < len(lowercase_ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: _lowerCamelCase : List[Any] = len(lowercase_ ) else: line_idx += 1 if line_idx >= len(lowercase_ ): continue # Ignore beginning and last line: they don't contain anything. _lowerCamelCase : str = '\n'.join(block_lines[line_idx:-1] ) _lowerCamelCase : Optional[int] = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. _lowerCamelCase : Optional[int] = split_code_in_indented_blocks(lowercase_ , indent_level=lowercase_ ) # We have two categories of import key: list or _import_structure[key].append/extend _lowerCamelCase : Union[str, Any] = _re_direct_key if '_import_structure = {' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. _lowerCamelCase : Tuple = [(pattern.search(lowercase_ ).groups()[0] if pattern.search(lowercase_ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. _lowerCamelCase : List[str] = [(i, key) for i, key in enumerate(lowercase_ ) if key is not None] _lowerCamelCase : Dict = [x[0] for x in sorted(lowercase_ , key=lambda lowercase__ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. _lowerCamelCase : Union[str, Any] = 0 _lowerCamelCase : List[Any] = [] for i in range(len(lowercase_ ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: _lowerCamelCase : int = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(lowercase_ ) count += 1 # And we put our main block back together with its first and last line. _lowerCamelCase : Optional[int] = '\n'.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(lowercase_ ): if check_only: return True else: print(f'''Overwriting {file}.''' ) with open(lowercase_ , 'w' , encoding='utf-8' ) as f: f.write('\n'.join(lowercase_ ) ) def _snake_case ( lowercase__=True ): _lowerCamelCase : str = [] for root, _, files in os.walk(lowercase_ ): if "__init__.py" in files: _lowerCamelCase : List[Any] = sort_imports(os.path.join(lowercase_ , '__init__.py' ) , check_only=lowercase_ ) if result: _lowerCamelCase : Optional[int] = [os.path.join(lowercase_ , '__init__.py' )] if len(lowercase_ ) > 0: raise ValueError(f'''Would overwrite {len(lowercase_ )} files, run `make style`.''' ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") lowercase__ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
356
"""simple docstring""" import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = (UnCLIPScheduler,) def A_ ( self , **lowercase ): _lowerCamelCase : Any = { 'num_train_timesteps': 1000, 'variance_type': 'fixed_small_log', 'clip_sample': True, 'clip_sample_range': 1.0, 'prediction_type': 'epsilon', } config.update(**lowercase ) return config def A_ ( self ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=lowercase ) def A_ ( self ): for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=lowercase ) def A_ ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowercase ) def A_ ( self ): for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=lowercase ) def A_ ( self ): for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=lowercase ) def A_ ( self ): for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=lowercase , prev_timestep=lowercase ) def A_ ( self ): _lowerCamelCase : Optional[Any] = self.scheduler_classes[0] _lowerCamelCase : Optional[int] = self.get_scheduler_config(variance_type='fixed_small_log' ) _lowerCamelCase : str = scheduler_class(**lowercase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_54_96_25 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_99_49_87 ) ) < 1E-5 def A_ ( self ): _lowerCamelCase : List[str] = self.scheduler_classes[0] _lowerCamelCase : Optional[Any] = self.get_scheduler_config(variance_type='learned_range' ) _lowerCamelCase : int = scheduler_class(**lowercase ) _lowerCamelCase : List[str] = 0.5 assert scheduler._get_variance(1 , predicted_variance=lowercase ) - -10.1_71_27_90 < 1E-5 assert scheduler._get_variance(487 , predicted_variance=lowercase ) - -5.7_99_80_52 < 1E-5 assert scheduler._get_variance(999 , predicted_variance=lowercase ) - -0.0_01_00_11 < 1E-5 def A_ ( self ): _lowerCamelCase : List[Any] = self.scheduler_classes[0] _lowerCamelCase : Optional[Any] = self.get_scheduler_config() _lowerCamelCase : Tuple = scheduler_class(**lowercase ) _lowerCamelCase : Union[str, Any] = scheduler.timesteps _lowerCamelCase : Any = self.dummy_model() _lowerCamelCase : Optional[Any] = self.dummy_sample_deter _lowerCamelCase : Optional[int] = torch.manual_seed(0 ) for i, t in enumerate(lowercase ): # 1. predict noise residual _lowerCamelCase : Tuple = model(lowercase , lowercase ) # 2. predict previous mean of sample x_t-1 _lowerCamelCase : List[Any] = scheduler.step(lowercase , lowercase , lowercase , generator=lowercase ).prev_sample _lowerCamelCase : Optional[int] = pred_prev_sample _lowerCamelCase : Optional[Any] = torch.sum(torch.abs(lowercase ) ) _lowerCamelCase : List[Any] = torch.mean(torch.abs(lowercase ) ) assert abs(result_sum.item() - 2_52.2_68_24_95 ) < 1E-2 assert abs(result_mean.item() - 0.3_28_47_43 ) < 1E-3 def A_ ( self ): _lowerCamelCase : Tuple = self.scheduler_classes[0] _lowerCamelCase : str = self.get_scheduler_config() _lowerCamelCase : Optional[Any] = scheduler_class(**lowercase ) scheduler.set_timesteps(25 ) _lowerCamelCase : Optional[Any] = scheduler.timesteps _lowerCamelCase : Optional[int] = self.dummy_model() _lowerCamelCase : Any = self.dummy_sample_deter _lowerCamelCase : str = torch.manual_seed(0 ) for i, t in enumerate(lowercase ): # 1. predict noise residual _lowerCamelCase : List[Any] = model(lowercase , lowercase ) if i + 1 == timesteps.shape[0]: _lowerCamelCase : Optional[int] = None else: _lowerCamelCase : List[str] = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 _lowerCamelCase : Union[str, Any] = scheduler.step( lowercase , lowercase , lowercase , prev_timestep=lowercase , generator=lowercase ).prev_sample _lowerCamelCase : List[Any] = pred_prev_sample _lowerCamelCase : Optional[Any] = torch.sum(torch.abs(lowercase ) ) _lowerCamelCase : List[str] = torch.mean(torch.abs(lowercase ) ) assert abs(result_sum.item() - 2_58.2_04_49_83 ) < 1E-2 assert abs(result_mean.item() - 0.3_36_20_38 ) < 1E-3 def A_ ( self ): pass def A_ ( self ): pass
12
0
"""simple docstring""" from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class lowerCAmelCase__ ( a_ ): '''simple docstring''' lowerCamelCase__ = 42 class lowerCAmelCase__ ( nn.Module ): '''simple docstring''' def __init__( self , lowercase=3 , lowercase=3 , lowercase=("DownEncoderBlock2D",) , lowercase=(64,) , lowercase=2 , lowercase=32 , lowercase="silu" , lowercase=True , ): super().__init__() _lowerCamelCase : Dict = layers_per_block _lowerCamelCase : Optional[Any] = torch.nn.Convad( lowercase_ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) _lowerCamelCase : Any = None _lowerCamelCase : Union[str, Any] = nn.ModuleList([] ) # down _lowerCamelCase : Tuple = block_out_channels[0] for i, down_block_type in enumerate(lowercase_ ): _lowerCamelCase : Optional[Any] = output_channel _lowerCamelCase : Tuple = block_out_channels[i] _lowerCamelCase : Tuple = i == len(lowercase_ ) - 1 _lowerCamelCase : Any = get_down_block( lowercase_ , num_layers=self.layers_per_block , in_channels=lowercase_ , out_channels=lowercase_ , add_downsample=not is_final_block , resnet_eps=1E-6 , downsample_padding=0 , resnet_act_fn=lowercase_ , resnet_groups=lowercase_ , attention_head_dim=lowercase_ , temb_channels=lowercase_ , ) self.down_blocks.append(lowercase_ ) # mid _lowerCamelCase : Any = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=lowercase_ , output_scale_factor=1 , resnet_time_scale_shift='default' , attention_head_dim=block_out_channels[-1] , resnet_groups=lowercase_ , temb_channels=lowercase_ , ) # out _lowerCamelCase : Dict = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=lowercase_ , eps=1E-6 ) _lowerCamelCase : Tuple = nn.SiLU() _lowerCamelCase : str = 2 * out_channels if double_z else out_channels _lowerCamelCase : int = nn.Convad(block_out_channels[-1] , lowercase_ , 3 , padding=1 ) _lowerCamelCase : Dict = False def A_ ( self , lowercase ): _lowerCamelCase : str = x _lowerCamelCase : Optional[Any] = self.conv_in(lowercase_ ) if self.training and self.gradient_checkpointing: def create_custom_forward(lowercase ): def custom_forward(*lowercase ): return module(*lowercase_ ) return custom_forward # down if is_torch_version('>=' , '1.11.0' ): for down_block in self.down_blocks: _lowerCamelCase : List[str] = torch.utils.checkpoint.checkpoint( create_custom_forward(lowercase_ ) , lowercase_ , use_reentrant=lowercase_ ) # middle _lowerCamelCase : List[str] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , lowercase_ , use_reentrant=lowercase_ ) else: for down_block in self.down_blocks: _lowerCamelCase : Optional[Any] = torch.utils.checkpoint.checkpoint(create_custom_forward(lowercase_ ) , lowercase_ ) # middle _lowerCamelCase : Optional[int] = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , lowercase_ ) else: # down for down_block in self.down_blocks: _lowerCamelCase : Any = down_block(lowercase_ ) # middle _lowerCamelCase : List[Any] = self.mid_block(lowercase_ ) # post-process _lowerCamelCase : Optional[Any] = self.conv_norm_out(lowercase_ ) _lowerCamelCase : int = self.conv_act(lowercase_ ) _lowerCamelCase : Optional[Any] = self.conv_out(lowercase_ ) return sample class lowerCAmelCase__ ( nn.Module ): '''simple docstring''' def __init__( self , lowercase=3 , lowercase=3 , lowercase=("UpDecoderBlock2D",) , lowercase=(64,) , lowercase=2 , lowercase=32 , lowercase="silu" , lowercase="group" , ): super().__init__() _lowerCamelCase : Dict = layers_per_block _lowerCamelCase : List[Any] = nn.Convad( lowercase_ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) _lowerCamelCase : Optional[Any] = None _lowerCamelCase : int = nn.ModuleList([] ) _lowerCamelCase : Tuple = in_channels if norm_type == '''spatial''' else None # mid _lowerCamelCase : List[Any] = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=lowercase_ , output_scale_factor=1 , resnet_time_scale_shift='default' if norm_type == 'group' else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=lowercase_ , temb_channels=lowercase_ , ) # up _lowerCamelCase : int = list(reversed(lowercase_ ) ) _lowerCamelCase : Tuple = reversed_block_out_channels[0] for i, up_block_type in enumerate(lowercase_ ): _lowerCamelCase : Tuple = output_channel _lowerCamelCase : Optional[Any] = reversed_block_out_channels[i] _lowerCamelCase : int = i == len(lowercase_ ) - 1 _lowerCamelCase : List[str] = get_up_block( lowercase_ , num_layers=self.layers_per_block + 1 , in_channels=lowercase_ , out_channels=lowercase_ , prev_output_channel=lowercase_ , add_upsample=not is_final_block , resnet_eps=1E-6 , resnet_act_fn=lowercase_ , resnet_groups=lowercase_ , attention_head_dim=lowercase_ , temb_channels=lowercase_ , resnet_time_scale_shift=lowercase_ , ) self.up_blocks.append(lowercase_ ) _lowerCamelCase : Dict = output_channel # out if norm_type == "spatial": _lowerCamelCase : Optional[Any] = SpatialNorm(block_out_channels[0] , lowercase_ ) else: _lowerCamelCase : Union[str, Any] = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=lowercase_ , eps=1E-6 ) _lowerCamelCase : Optional[int] = nn.SiLU() _lowerCamelCase : List[Any] = nn.Convad(block_out_channels[0] , lowercase_ , 3 , padding=1 ) _lowerCamelCase : Optional[Any] = False def A_ ( self , lowercase , lowercase=None ): _lowerCamelCase : List[Any] = z _lowerCamelCase : List[Any] = self.conv_in(lowercase_ ) _lowerCamelCase : Union[str, Any] = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(lowercase ): def custom_forward(*lowercase ): return module(*lowercase_ ) return custom_forward if is_torch_version('>=' , '1.11.0' ): # middle _lowerCamelCase : Any = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , lowercase_ , lowercase_ , use_reentrant=lowercase_ ) _lowerCamelCase : Optional[Any] = sample.to(lowercase_ ) # up for up_block in self.up_blocks: _lowerCamelCase : Any = torch.utils.checkpoint.checkpoint( create_custom_forward(lowercase_ ) , lowercase_ , lowercase_ , use_reentrant=lowercase_ ) else: # middle _lowerCamelCase : List[Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , lowercase_ , lowercase_ ) _lowerCamelCase : Any = sample.to(lowercase_ ) # up for up_block in self.up_blocks: _lowerCamelCase : str = torch.utils.checkpoint.checkpoint(create_custom_forward(lowercase_ ) , lowercase_ , lowercase_ ) else: # middle _lowerCamelCase : Optional[Any] = self.mid_block(lowercase_ , lowercase_ ) _lowerCamelCase : Union[str, Any] = sample.to(lowercase_ ) # up for up_block in self.up_blocks: _lowerCamelCase : Optional[Any] = up_block(lowercase_ , lowercase_ ) # post-process if latent_embeds is None: _lowerCamelCase : Any = self.conv_norm_out(lowercase_ ) else: _lowerCamelCase : Dict = self.conv_norm_out(lowercase_ , lowercase_ ) _lowerCamelCase : int = self.conv_act(lowercase_ ) _lowerCamelCase : Optional[Any] = self.conv_out(lowercase_ ) return sample class lowerCAmelCase__ ( nn.Module ): '''simple docstring''' def __init__( self , lowercase , lowercase , lowercase , lowercase=None , lowercase="random" , lowercase=False , lowercase=True ): super().__init__() _lowerCamelCase : List[Any] = n_e _lowerCamelCase : List[Any] = vq_embed_dim _lowerCamelCase : int = beta _lowerCamelCase : Optional[int] = legacy _lowerCamelCase : Union[str, Any] = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) _lowerCamelCase : int = remap if self.remap is not None: self.register_buffer('used' , torch.tensor(np.load(self.remap ) ) ) _lowerCamelCase : str = self.used.shape[0] _lowerCamelCase : Optional[Any] = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": _lowerCamelCase : str = self.re_embed _lowerCamelCase : Optional[int] = self.re_embed + 1 print( F'''Remapping {self.n_e} indices to {self.re_embed} indices. ''' F'''Using {self.unknown_index} for unknown indices.''' ) else: _lowerCamelCase : Any = n_e _lowerCamelCase : List[Any] = sane_index_shape def A_ ( self , lowercase ): _lowerCamelCase : Tuple = inds.shape assert len(lowercase_ ) > 1 _lowerCamelCase : int = inds.reshape(ishape[0] , -1 ) _lowerCamelCase : Dict = self.used.to(lowercase_ ) _lowerCamelCase : Tuple = (inds[:, :, None] == used[None, None, ...]).long() _lowerCamelCase : Any = match.argmax(-1 ) _lowerCamelCase : str = match.sum(2 ) < 1 if self.unknown_index == "random": _lowerCamelCase : Dict = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: _lowerCamelCase : List[str] = self.unknown_index return new.reshape(lowercase_ ) def A_ ( self , lowercase ): _lowerCamelCase : Any = inds.shape assert len(lowercase_ ) > 1 _lowerCamelCase : Tuple = inds.reshape(ishape[0] , -1 ) _lowerCamelCase : Dict = self.used.to(lowercase_ ) if self.re_embed > self.used.shape[0]: # extra token _lowerCamelCase : Tuple = 0 # simply set to zero _lowerCamelCase : int = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , lowercase_ ) return back.reshape(lowercase_ ) def A_ ( self , lowercase ): # reshape z -> (batch, height, width, channel) and flatten _lowerCamelCase : List[Any] = z.permute(0 , 2 , 3 , 1 ).contiguous() _lowerCamelCase : List[str] = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z _lowerCamelCase : List[Any] = torch.argmin(torch.cdist(lowercase_ , self.embedding.weight ) , dim=1 ) _lowerCamelCase : List[Any] = self.embedding(lowercase_ ).view(z.shape ) _lowerCamelCase : Tuple = None _lowerCamelCase : Tuple = None # compute loss for embedding if not self.legacy: _lowerCamelCase : Optional[Any] = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: _lowerCamelCase : List[Any] = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients _lowerCamelCase : Dict = z + (z_q - z).detach() # reshape back to match original input shape _lowerCamelCase : Optional[Any] = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: _lowerCamelCase : List[Any] = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis _lowerCamelCase : List[Any] = self.remap_to_used(lowercase_ ) _lowerCamelCase : int = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: _lowerCamelCase : List[str] = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def A_ ( self , lowercase , lowercase ): # shape specifying (batch, height, width, channel) if self.remap is not None: _lowerCamelCase : List[str] = indices.reshape(shape[0] , -1 ) # add batch axis _lowerCamelCase : Optional[Any] = self.unmap_to_all(lowercase_ ) _lowerCamelCase : List[str] = indices.reshape(-1 ) # flatten again # get quantized latent vectors _lowerCamelCase : Optional[int] = self.embedding(lowercase_ ) if shape is not None: _lowerCamelCase : List[Any] = z_q.view(lowercase_ ) # reshape back to match original input shape _lowerCamelCase : Tuple = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class lowerCAmelCase__ ( a_ ): '''simple docstring''' def __init__( self , lowercase , lowercase=False ): _lowerCamelCase : str = parameters _lowerCamelCase : Tuple = torch.chunk(lowercase_ , 2 , dim=1 ) _lowerCamelCase : Optional[int] = torch.clamp(self.logvar , -30.0 , 20.0 ) _lowerCamelCase : str = deterministic _lowerCamelCase : Dict = torch.exp(0.5 * self.logvar ) _lowerCamelCase : List[str] = torch.exp(self.logvar ) if self.deterministic: _lowerCamelCase : str = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def A_ ( self , lowercase = None ): # make sure sample is on the same device as the parameters and has same dtype _lowerCamelCase : Tuple = randn_tensor( self.mean.shape , generator=lowercase_ , device=self.parameters.device , dtype=self.parameters.dtype ) _lowerCamelCase : Union[str, Any] = self.mean + self.std * sample return x def A_ ( self , lowercase=None ): if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def A_ ( self , lowercase , lowercase=[1, 2, 3] ): if self.deterministic: return torch.Tensor([0.0] ) _lowerCamelCase : Dict = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=lowercase_ ) def A_ ( self ): return self.mean
357
"""simple docstring""" import math from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { """facebook/data2vec-base-960h""": """https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json""", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """data2vec-audio""" def __init__( self , lowercase=32 , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=0.1 , lowercase=0.0 , lowercase=0.1 , lowercase=0.1 , lowercase=0.02 , lowercase=1E-5 , lowercase="gelu" , lowercase=(512, 512, 512, 512, 512, 512, 512) , lowercase=(5, 2, 2, 2, 2, 2, 2) , lowercase=(10, 3, 3, 3, 3, 2, 2) , lowercase=False , lowercase=16 , lowercase=19 , lowercase=5 , lowercase=0.05 , lowercase=10 , lowercase=2 , lowercase=0.0 , lowercase=10 , lowercase=0 , lowercase="sum" , lowercase=False , lowercase=False , lowercase=256 , lowercase=(512, 512, 512, 512, 1500) , lowercase=(5, 3, 3, 1, 1) , lowercase=(1, 2, 3, 1, 1) , lowercase=512 , lowercase=0 , lowercase=1 , lowercase=2 , lowercase=False , lowercase=3 , lowercase=2 , lowercase=3 , lowercase=None , **lowercase , ): super().__init__(**lowercase , pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase ) _lowerCamelCase : str = hidden_size _lowerCamelCase : str = feat_extract_activation _lowerCamelCase : Optional[Any] = list(lowercase ) _lowerCamelCase : Dict = list(lowercase ) _lowerCamelCase : Dict = list(lowercase ) _lowerCamelCase : Optional[Any] = conv_bias _lowerCamelCase : Union[str, Any] = num_conv_pos_embeddings _lowerCamelCase : List[Any] = num_conv_pos_embedding_groups _lowerCamelCase : List[Any] = conv_pos_kernel_size _lowerCamelCase : Optional[int] = len(self.conv_dim ) _lowerCamelCase : List[str] = num_hidden_layers _lowerCamelCase : Any = intermediate_size _lowerCamelCase : List[str] = hidden_act _lowerCamelCase : Tuple = num_attention_heads _lowerCamelCase : Any = hidden_dropout _lowerCamelCase : Union[str, Any] = attention_dropout _lowerCamelCase : str = activation_dropout _lowerCamelCase : Any = feat_proj_dropout _lowerCamelCase : Tuple = final_dropout _lowerCamelCase : Union[str, Any] = layerdrop _lowerCamelCase : List[Any] = layer_norm_eps _lowerCamelCase : Optional[Any] = initializer_range _lowerCamelCase : Optional[int] = vocab_size _lowerCamelCase : Tuple = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCamelCase : Optional[Any] = mask_time_prob _lowerCamelCase : List[Any] = mask_time_length _lowerCamelCase : List[Any] = mask_time_min_masks _lowerCamelCase : Tuple = mask_feature_prob _lowerCamelCase : Optional[Any] = mask_feature_length _lowerCamelCase : Dict = mask_feature_min_masks # ctc loss _lowerCamelCase : Tuple = ctc_loss_reduction _lowerCamelCase : str = ctc_zero_infinity # adapter _lowerCamelCase : Union[str, Any] = add_adapter _lowerCamelCase : List[Any] = adapter_kernel_size _lowerCamelCase : Optional[Any] = adapter_stride _lowerCamelCase : List[Any] = num_adapter_layers _lowerCamelCase : int = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowerCamelCase : Optional[int] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowerCamelCase : List[str] = list(lowercase ) _lowerCamelCase : Optional[Any] = list(lowercase ) _lowerCamelCase : Any = list(lowercase ) _lowerCamelCase : Optional[Any] = xvector_output_dim @property def A_ ( self ): return math.prod(self.conv_stride )
12
0
"""simple docstring""" from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING lowercase__ = logging.get_logger(__name__) @add_end_docstrings(lowercase ) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' def __init__( self , *lowercase , **lowercase ): super().__init__(*__A , **__A ) requires_backends(self , 'decord' ) self.check_model_type(__A ) def A_ ( self , lowercase=None , lowercase=None , lowercase=None ): _lowerCamelCase : Tuple = {} if frame_sampling_rate is not None: _lowerCamelCase : Dict = frame_sampling_rate if num_frames is not None: _lowerCamelCase : Optional[int] = num_frames _lowerCamelCase : int = {} if top_k is not None: _lowerCamelCase : str = top_k return preprocess_params, {}, postprocess_params def __call__( self , lowercase , **lowercase ): return super().__call__(__A , **__A ) def A_ ( self , lowercase , lowercase=None , lowercase=1 ): if num_frames is None: _lowerCamelCase : str = self.model.config.num_frames if video.startswith('http://' ) or video.startswith('https://' ): _lowerCamelCase : Dict = BytesIO(requests.get(__A ).content ) _lowerCamelCase : Optional[int] = VideoReader(__A ) videoreader.seek(0 ) _lowerCamelCase : str = 0 _lowerCamelCase : List[str] = num_frames * frame_sampling_rate - 1 _lowerCamelCase : List[str] = np.linspace(__A , __A , num=__A , dtype=np.intaa ) _lowerCamelCase : int = videoreader.get_batch(__A ).asnumpy() _lowerCamelCase : int = list(__A ) _lowerCamelCase : Any = self.image_processor(__A , return_tensors=self.framework ) return model_inputs def A_ ( self , lowercase ): _lowerCamelCase : Any = self.model(**__A ) return model_outputs def A_ ( self , lowercase , lowercase=5 ): if top_k > self.model.config.num_labels: _lowerCamelCase : Union[str, Any] = self.model.config.num_labels if self.framework == "pt": _lowerCamelCase : str = model_outputs.logits.softmax(-1 )[0] _lowerCamelCase, _lowerCamelCase : Any = probs.topk(__A ) else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) _lowerCamelCase : int = scores.tolist() _lowerCamelCase : Union[str, Any] = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(__A , __A )]
358
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool lowercase__ = { """Acehnese Arabic""": """ace_Arab""", """Acehnese Latin""": """ace_Latn""", """Mesopotamian Arabic""": """acm_Arab""", """Ta'izzi-Adeni Arabic""": """acq_Arab""", """Tunisian Arabic""": """aeb_Arab""", """Afrikaans""": """afr_Latn""", """South Levantine Arabic""": """ajp_Arab""", """Akan""": """aka_Latn""", """Amharic""": """amh_Ethi""", """North Levantine Arabic""": """apc_Arab""", """Modern Standard Arabic""": """arb_Arab""", """Modern Standard Arabic Romanized""": """arb_Latn""", """Najdi Arabic""": """ars_Arab""", """Moroccan Arabic""": """ary_Arab""", """Egyptian Arabic""": """arz_Arab""", """Assamese""": """asm_Beng""", """Asturian""": """ast_Latn""", """Awadhi""": """awa_Deva""", """Central Aymara""": """ayr_Latn""", """South Azerbaijani""": """azb_Arab""", """North Azerbaijani""": """azj_Latn""", """Bashkir""": """bak_Cyrl""", """Bambara""": """bam_Latn""", """Balinese""": """ban_Latn""", """Belarusian""": """bel_Cyrl""", """Bemba""": """bem_Latn""", """Bengali""": """ben_Beng""", """Bhojpuri""": """bho_Deva""", """Banjar Arabic""": """bjn_Arab""", """Banjar Latin""": """bjn_Latn""", """Standard Tibetan""": """bod_Tibt""", """Bosnian""": """bos_Latn""", """Buginese""": """bug_Latn""", """Bulgarian""": """bul_Cyrl""", """Catalan""": """cat_Latn""", """Cebuano""": """ceb_Latn""", """Czech""": """ces_Latn""", """Chokwe""": """cjk_Latn""", """Central Kurdish""": """ckb_Arab""", """Crimean Tatar""": """crh_Latn""", """Welsh""": """cym_Latn""", """Danish""": """dan_Latn""", """German""": """deu_Latn""", """Southwestern Dinka""": """dik_Latn""", """Dyula""": """dyu_Latn""", """Dzongkha""": """dzo_Tibt""", """Greek""": """ell_Grek""", """English""": """eng_Latn""", """Esperanto""": """epo_Latn""", """Estonian""": """est_Latn""", """Basque""": """eus_Latn""", """Ewe""": """ewe_Latn""", """Faroese""": """fao_Latn""", """Fijian""": """fij_Latn""", """Finnish""": """fin_Latn""", """Fon""": """fon_Latn""", """French""": """fra_Latn""", """Friulian""": """fur_Latn""", """Nigerian Fulfulde""": """fuv_Latn""", """Scottish Gaelic""": """gla_Latn""", """Irish""": """gle_Latn""", """Galician""": """glg_Latn""", """Guarani""": """grn_Latn""", """Gujarati""": """guj_Gujr""", """Haitian Creole""": """hat_Latn""", """Hausa""": """hau_Latn""", """Hebrew""": """heb_Hebr""", """Hindi""": """hin_Deva""", """Chhattisgarhi""": """hne_Deva""", """Croatian""": """hrv_Latn""", """Hungarian""": """hun_Latn""", """Armenian""": """hye_Armn""", """Igbo""": """ibo_Latn""", """Ilocano""": """ilo_Latn""", """Indonesian""": """ind_Latn""", """Icelandic""": """isl_Latn""", """Italian""": """ita_Latn""", """Javanese""": """jav_Latn""", """Japanese""": """jpn_Jpan""", """Kabyle""": """kab_Latn""", """Jingpho""": """kac_Latn""", """Kamba""": """kam_Latn""", """Kannada""": """kan_Knda""", """Kashmiri Arabic""": """kas_Arab""", """Kashmiri Devanagari""": """kas_Deva""", """Georgian""": """kat_Geor""", """Central Kanuri Arabic""": """knc_Arab""", """Central Kanuri Latin""": """knc_Latn""", """Kazakh""": """kaz_Cyrl""", """Kabiyè""": """kbp_Latn""", """Kabuverdianu""": """kea_Latn""", """Khmer""": """khm_Khmr""", """Kikuyu""": """kik_Latn""", """Kinyarwanda""": """kin_Latn""", """Kyrgyz""": """kir_Cyrl""", """Kimbundu""": """kmb_Latn""", """Northern Kurdish""": """kmr_Latn""", """Kikongo""": """kon_Latn""", """Korean""": """kor_Hang""", """Lao""": """lao_Laoo""", """Ligurian""": """lij_Latn""", """Limburgish""": """lim_Latn""", """Lingala""": """lin_Latn""", """Lithuanian""": """lit_Latn""", """Lombard""": """lmo_Latn""", """Latgalian""": """ltg_Latn""", """Luxembourgish""": """ltz_Latn""", """Luba-Kasai""": """lua_Latn""", """Ganda""": """lug_Latn""", """Luo""": """luo_Latn""", """Mizo""": """lus_Latn""", """Standard Latvian""": """lvs_Latn""", """Magahi""": """mag_Deva""", """Maithili""": """mai_Deva""", """Malayalam""": """mal_Mlym""", """Marathi""": """mar_Deva""", """Minangkabau Arabic """: """min_Arab""", """Minangkabau Latin""": """min_Latn""", """Macedonian""": """mkd_Cyrl""", """Plateau Malagasy""": """plt_Latn""", """Maltese""": """mlt_Latn""", """Meitei Bengali""": """mni_Beng""", """Halh Mongolian""": """khk_Cyrl""", """Mossi""": """mos_Latn""", """Maori""": """mri_Latn""", """Burmese""": """mya_Mymr""", """Dutch""": """nld_Latn""", """Norwegian Nynorsk""": """nno_Latn""", """Norwegian Bokmål""": """nob_Latn""", """Nepali""": """npi_Deva""", """Northern Sotho""": """nso_Latn""", """Nuer""": """nus_Latn""", """Nyanja""": """nya_Latn""", """Occitan""": """oci_Latn""", """West Central Oromo""": """gaz_Latn""", """Odia""": """ory_Orya""", """Pangasinan""": """pag_Latn""", """Eastern Panjabi""": """pan_Guru""", """Papiamento""": """pap_Latn""", """Western Persian""": """pes_Arab""", """Polish""": """pol_Latn""", """Portuguese""": """por_Latn""", """Dari""": """prs_Arab""", """Southern Pashto""": """pbt_Arab""", """Ayacucho Quechua""": """quy_Latn""", """Romanian""": """ron_Latn""", """Rundi""": """run_Latn""", """Russian""": """rus_Cyrl""", """Sango""": """sag_Latn""", """Sanskrit""": """san_Deva""", """Santali""": """sat_Olck""", """Sicilian""": """scn_Latn""", """Shan""": """shn_Mymr""", """Sinhala""": """sin_Sinh""", """Slovak""": """slk_Latn""", """Slovenian""": """slv_Latn""", """Samoan""": """smo_Latn""", """Shona""": """sna_Latn""", """Sindhi""": """snd_Arab""", """Somali""": """som_Latn""", """Southern Sotho""": """sot_Latn""", """Spanish""": """spa_Latn""", """Tosk Albanian""": """als_Latn""", """Sardinian""": """srd_Latn""", """Serbian""": """srp_Cyrl""", """Swati""": """ssw_Latn""", """Sundanese""": """sun_Latn""", """Swedish""": """swe_Latn""", """Swahili""": """swh_Latn""", """Silesian""": """szl_Latn""", """Tamil""": """tam_Taml""", """Tatar""": """tat_Cyrl""", """Telugu""": """tel_Telu""", """Tajik""": """tgk_Cyrl""", """Tagalog""": """tgl_Latn""", """Thai""": """tha_Thai""", """Tigrinya""": """tir_Ethi""", """Tamasheq Latin""": """taq_Latn""", """Tamasheq Tifinagh""": """taq_Tfng""", """Tok Pisin""": """tpi_Latn""", """Tswana""": """tsn_Latn""", """Tsonga""": """tso_Latn""", """Turkmen""": """tuk_Latn""", """Tumbuka""": """tum_Latn""", """Turkish""": """tur_Latn""", """Twi""": """twi_Latn""", """Central Atlas Tamazight""": """tzm_Tfng""", """Uyghur""": """uig_Arab""", """Ukrainian""": """ukr_Cyrl""", """Umbundu""": """umb_Latn""", """Urdu""": """urd_Arab""", """Northern Uzbek""": """uzn_Latn""", """Venetian""": """vec_Latn""", """Vietnamese""": """vie_Latn""", """Waray""": """war_Latn""", """Wolof""": """wol_Latn""", """Xhosa""": """xho_Latn""", """Eastern Yiddish""": """ydd_Hebr""", """Yoruba""": """yor_Latn""", """Yue Chinese""": """yue_Hant""", """Chinese Simplified""": """zho_Hans""", """Chinese Traditional""": """zho_Hant""", """Standard Malay""": """zsm_Latn""", """Zulu""": """zul_Latn""", } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """facebook/nllb-200-distilled-600M""" lowerCamelCase__ = ( """This is a tool that translates text from a language to another. It takes three inputs: `text`, which should """ """be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, """ """which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in """ """plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`.""" ) lowerCamelCase__ = """translator""" lowerCamelCase__ = AutoTokenizer lowerCamelCase__ = AutoModelForSeqaSeqLM lowerCamelCase__ = LANGUAGE_CODES lowerCamelCase__ = ["""text""", """text""", """text"""] lowerCamelCase__ = ["""text"""] def A_ ( self , lowercase , lowercase , lowercase ): if src_lang not in self.lang_to_code: raise ValueError(F'''{src_lang} is not a supported language.''' ) if tgt_lang not in self.lang_to_code: raise ValueError(F'''{tgt_lang} is not a supported language.''' ) _lowerCamelCase : str = self.lang_to_code[src_lang] _lowerCamelCase : int = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( lowercase , return_tensors='pt' , src_lang=lowercase , tgt_lang=lowercase ) def A_ ( self , lowercase ): return self.model.generate(**lowercase ) def A_ ( self , lowercase ): return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowercase )
12
0
import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): super().tearDown() gc.collect() def A_ ( self ): _lowerCamelCase : int = FlaxStableDiffusionPipeline.from_pretrained( 'stabilityai/stable-diffusion-2' , revision='bf16' , dtype=jnp.bfloataa , ) _lowerCamelCase : Any = """A painting of a squirrel eating a burger""" _lowerCamelCase : Union[str, Any] = jax.device_count() _lowerCamelCase : List[str] = num_samples * [prompt] _lowerCamelCase : Optional[Any] = sd_pipe.prepare_inputs(_SCREAMING_SNAKE_CASE ) _lowerCamelCase : List[str] = replicate(_SCREAMING_SNAKE_CASE ) _lowerCamelCase : Any = shard(_SCREAMING_SNAKE_CASE ) _lowerCamelCase : int = jax.random.PRNGKey(0 ) _lowerCamelCase : Tuple = jax.random.split(_SCREAMING_SNAKE_CASE , jax.device_count() ) _lowerCamelCase : Dict = sd_pipe(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_inference_steps=25 , jit=_SCREAMING_SNAKE_CASE )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) _lowerCamelCase : Union[str, Any] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _lowerCamelCase : int = images[0, 253:256, 253:256, -1] _lowerCamelCase : Any = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _lowerCamelCase : str = jnp.array([0.42_38, 0.44_14, 0.43_95, 0.44_53, 0.46_29, 0.45_90, 0.45_31, 0.4_55_08, 0.45_12] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def A_ ( self ): _lowerCamelCase : Optional[Any] = """stabilityai/stable-diffusion-2""" _lowerCamelCase : Dict = FlaxDPMSolverMultistepScheduler.from_pretrained(_SCREAMING_SNAKE_CASE , subfolder='scheduler' ) _lowerCamelCase : Optional[Any] = FlaxStableDiffusionPipeline.from_pretrained( _SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , revision='bf16' , dtype=jnp.bfloataa , ) _lowerCamelCase : Optional[Any] = scheduler_params _lowerCamelCase : int = """A painting of a squirrel eating a burger""" _lowerCamelCase : Optional[Any] = jax.device_count() _lowerCamelCase : Optional[Any] = num_samples * [prompt] _lowerCamelCase : Any = sd_pipe.prepare_inputs(_SCREAMING_SNAKE_CASE ) _lowerCamelCase : Optional[int] = replicate(_SCREAMING_SNAKE_CASE ) _lowerCamelCase : Dict = shard(_SCREAMING_SNAKE_CASE ) _lowerCamelCase : int = jax.random.PRNGKey(0 ) _lowerCamelCase : Tuple = jax.random.split(_SCREAMING_SNAKE_CASE , jax.device_count() ) _lowerCamelCase : List[str] = sd_pipe(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_inference_steps=25 , jit=_SCREAMING_SNAKE_CASE )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) _lowerCamelCase : Dict = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _lowerCamelCase : Optional[Any] = images[0, 253:256, 253:256, -1] _lowerCamelCase : Any = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _lowerCamelCase : List[Any] = jnp.array([0.43_36, 0.4_29_69, 0.44_53, 0.41_99, 0.42_97, 0.45_31, 0.44_34, 0.44_34, 0.42_97] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
359
"""simple docstring""" import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def A_ ( self , lowercase , lowercase , lowercase ): _lowerCamelCase : Optional[int] = hf_hub_download( repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' ) _lowerCamelCase : Tuple = VideoClassificationPipeline(model=lowercase , image_processor=lowercase , top_k=2 ) _lowerCamelCase : List[str] = [ example_video_filepath, 'https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4', ] return video_classifier, examples def A_ ( self , lowercase , lowercase ): for example in examples: _lowerCamelCase : Tuple = video_classifier(lowercase ) self.assertEqual( lowercase , [ {'score': ANY(lowercase ), 'label': ANY(lowercase )}, {'score': ANY(lowercase ), 'label': ANY(lowercase )}, ] , ) @require_torch def A_ ( self ): _lowerCamelCase : Optional[Any] = 'hf-internal-testing/tiny-random-VideoMAEForVideoClassification' _lowerCamelCase : Tuple = VideoMAEFeatureExtractor( size={'shortest_edge': 10} , crop_size={'height': 10, 'width': 10} ) _lowerCamelCase : Dict = pipeline( 'video-classification' , model=lowercase , feature_extractor=lowercase , frame_sampling_rate=4 ) _lowerCamelCase : Any = hf_hub_download(repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' ) _lowerCamelCase : Dict = video_classifier(lowercase , top_k=2 ) self.assertEqual( nested_simplify(lowercase , decimals=4 ) , [{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}] , ) _lowerCamelCase : str = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(lowercase , decimals=4 ) , [ [{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}], [{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}], ] , ) @require_tf def A_ ( self ): pass
12
0
"""simple docstring""" from random import randint, random def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ = False , lowercase__ = False , lowercase__ = 5 , ): _lowerCamelCase : Optional[Any] = [[-1] * number_of_cells] # Create a highway without any car _lowerCamelCase : Any = 0 _lowerCamelCase : List[str] = max(_a , 0 ) while i < number_of_cells: _lowerCamelCase : Optional[Any] = ( randint(0 , _a ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def _snake_case ( lowercase__ , lowercase__ ): _lowerCamelCase : Any = 0 _lowerCamelCase : int = highway_now[car_index + 1 :] for cell in range(len(_a ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(_a , -1 ) def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : str = len(_a ) # Beforce calculations, the highway is empty _lowerCamelCase : Any = [-1] * number_of_cells for car_index in range(_a ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed _lowerCamelCase : Any = min(highway_now[car_index] + 1 , _a ) # Number of empty cell before the next car _lowerCamelCase : Optional[int] = get_distance(_a , _a ) - 1 # We can't have the car causing an accident _lowerCamelCase : Union[str, Any] = min(next_highway[car_index] , _a ) if random() < probability: # Randomly, a driver will slow down _lowerCamelCase : Tuple = max(next_highway[car_index] - 1 , 0 ) return next_highway def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : Union[str, Any] = len(highway[0] ) for i in range(_a ): _lowerCamelCase : str = update(highway[i] , _a , _a ) _lowerCamelCase : Any = [-1] * number_of_cells for car_index in range(_a ): _lowerCamelCase : Any = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) _lowerCamelCase : Any = (car_index + speed) % number_of_cells # Commit the change of position _lowerCamelCase : Optional[int] = speed highway.append(_a ) return highway if __name__ == "__main__": import doctest doctest.testmod()
360
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowercase__ = { """configuration_mega""": ["""MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MegaConfig""", """MegaOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """MEGA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MegaForCausalLM""", """MegaForMaskedLM""", """MegaForMultipleChoice""", """MegaForQuestionAnswering""", """MegaForSequenceClassification""", """MegaForTokenClassification""", """MegaModel""", """MegaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
12
0
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowercase__ = logging.get_logger(__name__) def _snake_case ( lowercase__ ): _lowerCamelCase : int = OrderedDict() for key, value in state_dict.items(): if key.startswith('module.encoder' ): _lowerCamelCase : Optional[int] = key.replace('module.encoder' , 'glpn.encoder' ) if key.startswith('module.decoder' ): _lowerCamelCase : Optional[Any] = key.replace('module.decoder' , 'decoder.stages' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 _lowerCamelCase : Dict = key[key.find('patch_embed' ) + len('patch_embed' )] _lowerCamelCase : Tuple = key.replace(f'''patch_embed{idx}''' , f'''patch_embeddings.{int(__lowerCAmelCase )-1}''' ) if "norm" in key: _lowerCamelCase : Dict = key.replace('norm' , 'layer_norm' ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 _lowerCamelCase : Dict = key[key.find('glpn.encoder.layer_norm' ) + len('glpn.encoder.layer_norm' )] _lowerCamelCase : List[str] = key.replace(f'''layer_norm{idx}''' , f'''layer_norm.{int(__lowerCAmelCase )-1}''' ) if "layer_norm1" in key: _lowerCamelCase : Tuple = key.replace('layer_norm1' , 'layer_norm_1' ) if "layer_norm2" in key: _lowerCamelCase : Optional[int] = key.replace('layer_norm2' , 'layer_norm_2' ) if "block" in key: # replace for example block1 by block.0 _lowerCamelCase : Tuple = key[key.find('block' ) + len('block' )] _lowerCamelCase : Optional[int] = key.replace(f'''block{idx}''' , f'''block.{int(__lowerCAmelCase )-1}''' ) if "attn.q" in key: _lowerCamelCase : Dict = key.replace('attn.q' , 'attention.self.query' ) if "attn.proj" in key: _lowerCamelCase : str = key.replace('attn.proj' , 'attention.output.dense' ) if "attn" in key: _lowerCamelCase : Union[str, Any] = key.replace('attn' , 'attention.self' ) if "fc1" in key: _lowerCamelCase : List[Any] = key.replace('fc1' , 'dense1' ) if "fc2" in key: _lowerCamelCase : List[str] = key.replace('fc2' , 'dense2' ) if "linear_pred" in key: _lowerCamelCase : Any = key.replace('linear_pred' , 'classifier' ) if "linear_fuse" in key: _lowerCamelCase : int = key.replace('linear_fuse.conv' , 'linear_fuse' ) _lowerCamelCase : Optional[int] = key.replace('linear_fuse.bn' , 'batch_norm' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 _lowerCamelCase : Tuple = key[key.find('linear_c' ) + len('linear_c' )] _lowerCamelCase : Any = key.replace(f'''linear_c{idx}''' , f'''linear_c.{int(__lowerCAmelCase )-1}''' ) if "bot_conv" in key: _lowerCamelCase : List[str] = key.replace('bot_conv' , '0.convolution' ) if "skip_conv1" in key: _lowerCamelCase : Dict = key.replace('skip_conv1' , '1.convolution' ) if "skip_conv2" in key: _lowerCamelCase : int = key.replace('skip_conv2' , '2.convolution' ) if "fusion1" in key: _lowerCamelCase : Optional[int] = key.replace('fusion1' , '1.fusion' ) if "fusion2" in key: _lowerCamelCase : List[Any] = key.replace('fusion2' , '2.fusion' ) if "fusion3" in key: _lowerCamelCase : Union[str, Any] = key.replace('fusion3' , '3.fusion' ) if "fusion" in key and "conv" in key: _lowerCamelCase : Dict = key.replace('conv' , 'convolutional_layer' ) if key.startswith('module.last_layer_depth' ): _lowerCamelCase : Optional[Any] = key.replace('module.last_layer_depth' , 'head.head' ) _lowerCamelCase : int = value return new_state_dict def _snake_case ( lowercase__ , lowercase__ ): for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) _lowerCamelCase : Optional[Any] = state_dict.pop(f'''glpn.encoder.block.{i}.{j}.attention.self.kv.weight''' ) _lowerCamelCase : int = state_dict.pop(f'''glpn.encoder.block.{i}.{j}.attention.self.kv.bias''' ) # next, add keys and values (in that order) to the state dict _lowerCamelCase : Union[str, Any] = kv_weight[ : config.hidden_sizes[i], : ] _lowerCamelCase : Optional[int] = kv_bias[: config.hidden_sizes[i]] _lowerCamelCase : str = kv_weight[ config.hidden_sizes[i] :, : ] _lowerCamelCase : Tuple = kv_bias[config.hidden_sizes[i] :] def _snake_case ( ): _lowerCamelCase : Optional[int] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _lowerCamelCase : int = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return image @torch.no_grad() def _snake_case ( lowercase__ , lowercase__ , lowercase__=False , lowercase__=None ): _lowerCamelCase : Dict = GLPNConfig(hidden_sizes=[64, 128, 320, 512] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) _lowerCamelCase : Dict = GLPNImageProcessor() # prepare image _lowerCamelCase : Union[str, Any] = prepare_img() _lowerCamelCase : List[Any] = image_processor(images=__lowerCAmelCase , return_tensors='pt' ).pixel_values logger.info('Converting model...' ) # load original state dict _lowerCamelCase : str = torch.load(__lowerCAmelCase , map_location=torch.device('cpu' ) ) # rename keys _lowerCamelCase : int = rename_keys(__lowerCAmelCase ) # key and value matrices need special treatment read_in_k_v(__lowerCAmelCase , __lowerCAmelCase ) # create HuggingFace model and load state dict _lowerCamelCase : Tuple = GLPNForDepthEstimation(__lowerCAmelCase ) model.load_state_dict(__lowerCAmelCase ) model.eval() # forward pass _lowerCamelCase : int = model(__lowerCAmelCase ) _lowerCamelCase : List[str] = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: _lowerCamelCase : str = torch.tensor( [[4.4_1_4_7, 4.0_8_7_3, 4.0_6_7_3], [3.7_8_9_0, 3.2_8_8_1, 3.1_5_2_5], [3.7_6_7_4, 3.5_4_2_3, 3.4_9_1_3]] ) elif "kitti" in model_name: _lowerCamelCase : Optional[Any] = torch.tensor( [[3.4_2_9_1, 2.7_8_6_5, 2.5_1_5_1], [3.2_8_4_1, 2.7_0_2_1, 2.3_5_0_2], [3.1_1_4_7, 2.4_6_2_5, 2.2_4_8_1]] ) else: raise ValueError(f'''Unknown model name: {model_name}''' ) _lowerCamelCase : Tuple = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , __lowerCAmelCase , atol=1E-4 ) print('Looks ok!' ) # finally, push to hub if required if push_to_hub: logger.info('Pushing model and image processor to the hub...' ) model.push_to_hub( repo_path_or_name=Path(__lowerCAmelCase , __lowerCAmelCase ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=__lowerCAmelCase , ) image_processor.push_to_hub( repo_path_or_name=Path(__lowerCAmelCase , __lowerCAmelCase ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=__lowerCAmelCase , ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) parser.add_argument( """--model_name""", default="""glpn-kitti""", type=str, help="""Name of the model in case you\'re pushing to the hub.""", ) lowercase__ = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
361
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def _snake_case ( lowercase__ , lowercase__ , lowercase__=None , lowercase__=None ): if attention_mask is None: _lowerCamelCase : List[str] = tf.cast(tf.math.not_equal(lowercase__ , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class lowerCAmelCase__ : '''simple docstring''' lowerCamelCase__ = OPTConfig lowerCamelCase__ = {} lowerCamelCase__ = """gelu""" def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=False , lowercase=99 , lowercase=16 , lowercase=2 , lowercase=4 , lowercase=4 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=20 , lowercase=2 , lowercase=1 , lowercase=0 , lowercase=16 , lowercase=16 , ): _lowerCamelCase : Tuple = parent _lowerCamelCase : Any = batch_size _lowerCamelCase : Tuple = seq_length _lowerCamelCase : str = is_training _lowerCamelCase : Optional[int] = use_labels _lowerCamelCase : List[Any] = vocab_size _lowerCamelCase : Dict = hidden_size _lowerCamelCase : str = num_hidden_layers _lowerCamelCase : Optional[int] = num_attention_heads _lowerCamelCase : Any = intermediate_size _lowerCamelCase : Dict = hidden_act _lowerCamelCase : Any = hidden_dropout_prob _lowerCamelCase : List[str] = attention_probs_dropout_prob _lowerCamelCase : Optional[Any] = max_position_embeddings _lowerCamelCase : List[Any] = eos_token_id _lowerCamelCase : Tuple = pad_token_id _lowerCamelCase : List[str] = bos_token_id _lowerCamelCase : Optional[int] = embed_dim _lowerCamelCase : List[str] = word_embed_proj_dim _lowerCamelCase : Any = False def A_ ( self ): _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _lowerCamelCase : Optional[int] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _lowerCamelCase : str = tf.concat([input_ids, eos_tensor] , axis=1 ) _lowerCamelCase : Tuple = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowercase , **self.config_updates , ) _lowerCamelCase : int = prepare_opt_inputs_dict(lowercase , lowercase ) return config, inputs_dict def A_ ( self , lowercase , lowercase ): _lowerCamelCase : Optional[Any] = TFOPTModel(config=lowercase ) _lowerCamelCase : Optional[Any] = inputs_dict['input_ids'] _lowerCamelCase : str = input_ids[:1, :] _lowerCamelCase : Dict = inputs_dict['attention_mask'][:1, :] _lowerCamelCase : Optional[Any] = 1 # first forward pass _lowerCamelCase : Any = model(lowercase , attention_mask=lowercase , use_cache=lowercase ) _lowerCamelCase, _lowerCamelCase : List[str] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _lowerCamelCase : Optional[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) _lowerCamelCase : Optional[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _lowerCamelCase : List[Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) _lowerCamelCase : Optional[int] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _lowerCamelCase : Optional[Any] = model(lowercase , attention_mask=lowercase )[0] _lowerCamelCase : List[str] = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _lowerCamelCase : Any = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _lowerCamelCase : Optional[int] = output_from_no_past[:, -3:, random_slice_idx] _lowerCamelCase : List[str] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase , lowercase , rtol=1E-3 ) @require_tf class lowerCAmelCase__ ( lowercase, lowercase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () lowerCamelCase__ = (TFOPTForCausalLM,) if is_tf_available() else () lowerCamelCase__ = ( {"""feature-extraction""": TFOPTModel, """text-generation""": TFOPTForCausalLM} if is_tf_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = 10 def A_ ( self ): _lowerCamelCase : int = TFOPTModelTester(self ) _lowerCamelCase : Tuple = ConfigTester(self , config_class=lowercase ) def A_ ( self ): self.config_tester.run_common_tests() def A_ ( self ): _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase ) def A_ ( self ): _lowerCamelCase, _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(lowercase , lowercase ): if hasattr(lowercase , 'weight' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(lowercase , 'weight' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings _lowerCamelCase : Optional[int] = model_class(config=lowercase ) _lowerCamelCase : int = _get_word_embedding_weight(lowercase , model.get_input_embeddings() ) _lowerCamelCase : Tuple = _get_word_embedding_weight(lowercase , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(lowercase ) _lowerCamelCase : str = _get_word_embedding_weight(lowercase , model.get_input_embeddings() ) _lowerCamelCase : Any = _get_word_embedding_weight(lowercase , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. _lowerCamelCase : Union[str, Any] = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , lowercase ) # check that weights remain the same after resizing _lowerCamelCase : int = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _lowerCamelCase : Optional[Any] = False self.assertTrue(lowercase ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , lowercase ) _lowerCamelCase : Dict = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _lowerCamelCase : Union[str, Any] = False self.assertTrue(lowercase ) def _snake_case ( lowercase__ ): return tf.constant(lowercase__ , dtype=tf.intaa ) @require_tf class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = 99 def A_ ( self ): _lowerCamelCase : Tuple = tf.ones((4, 1) , dtype=tf.intaa ) * 2 _lowerCamelCase : Tuple = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) _lowerCamelCase : int = input_ids.shape[0] _lowerCamelCase : List[Any] = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def A_ ( self ): _lowerCamelCase : Tuple = TFOPTModel.from_pretrained('facebook/opt-350m' ) _lowerCamelCase : List[Any] = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) _lowerCamelCase : List[str] = tf.not_equal(lowercase , model.config.pad_token_id ) with tf.GradientTape(): _lowerCamelCase : List[str] = model(input_ids=lowercase , attention_mask=lowercase ).last_hidden_state _lowerCamelCase : Optional[Any] = (1, 11, 512) self.assertEqual(output.shape , lowercase ) _lowerCamelCase : List[str] = tf.constant( [[-0.28_73, -1.92_18, -0.30_33], [-1.27_10, -0.13_38, -0.19_02], [0.40_95, 0.12_14, -1.31_21]] ) self.assertTrue(np.allclose(output[:, :3, :3] , lowercase , atol=4E-3 ) ) _lowerCamelCase : List[str] = tf.function(lowercase , jit_compile=lowercase ) _lowerCamelCase : Union[str, Any] = xla_generate(lowercase , lowercase )[0] self.assertTrue(np.allclose(output[:, :3, :3] , lowercase , atol=4E-2 ) ) @require_tf @slow class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): super().setUp() _lowerCamelCase : List[Any] = 'facebook/opt-350m' def A_ ( self ): _lowerCamelCase : int = TFOPTForCausalLM.from_pretrained(self.path_model ) _lowerCamelCase : List[Any] = GPTaTokenizer.from_pretrained(self.path_model ) _lowerCamelCase : List[str] = [ 'Today is a beautiful day and I want to', 'In the city of', 'Paris is the capital of France and', 'Computers and mobile phones have taken', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False _lowerCamelCase : List[Any] = tokenizer(lowercase , return_tensors='tf' , padding=lowercase , add_special_tokens=lowercase ) _lowerCamelCase : Optional[int] = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) _lowerCamelCase : Any = tf.constant( [ [1.38_51, -13.89_23, -10.52_29, -10.75_33, -0.23_09, -10.23_84, -0.53_65, -9.09_47, -5.16_70], [-4.70_73, -10.62_76, -3.94_15, -21.52_42, -0.28_22, -0.28_22, -0.28_22, -0.28_22, -0.28_22], [0.62_47, -3.42_29, -8.91_79, -1.42_97, -14.16_50, 1.41_46, -9.02_18, -0.27_03, -0.27_03], [6.47_83, -1.99_13, -10.79_26, -2.33_36, 1.50_92, -0.99_74, -6.82_13, 1.34_77, 1.34_77], ] ) self.assertTrue(np.allclose(lowercase , lowercase , atol=1E-4 ) ) _lowerCamelCase : Tuple = tf.function(lowercase , jit_compile=lowercase ) _lowerCamelCase : List[Any] = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(lowercase , lowercase , atol=1E-4 ) ) @require_tf @slow class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @property def A_ ( self ): return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def A_ ( self ): _lowerCamelCase : str = 'facebook/opt-125m' _lowerCamelCase : Dict = [ 'Today is a beautiful day and I want to', 'In the city of New York, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] _lowerCamelCase : Optional[int] = [] _lowerCamelCase : Optional[int] = GPTaTokenizer.from_pretrained(lowercase ) _lowerCamelCase : Dict = TFOPTForCausalLM.from_pretrained(lowercase ) for prompt in self.prompts: _lowerCamelCase : int = tokenizer(lowercase , return_tensors='tf' ).input_ids _lowerCamelCase : int = model.generate(lowercase , max_length=10 ) _lowerCamelCase : Any = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) predicted_outputs += generated_string self.assertListEqual(lowercase , lowercase ) def A_ ( self ): _lowerCamelCase : List[Any] = 'facebook/opt-350m' _lowerCamelCase : int = GPTaTokenizer.from_pretrained(lowercase ) _lowerCamelCase : Optional[int] = TFOPTForCausalLM.from_pretrained(lowercase ) _lowerCamelCase : Any = 'left' # use different length sentences to test batching _lowerCamelCase : Optional[int] = [ 'Hello, my dog is a little', 'Today, I', ] _lowerCamelCase : Dict = tokenizer(lowercase , return_tensors='tf' , padding=lowercase ) _lowerCamelCase : int = inputs['input_ids'] _lowerCamelCase : Tuple = model.generate(input_ids=lowercase , attention_mask=inputs['attention_mask'] ) _lowerCamelCase : Optional[int] = tokenizer(sentences[0] , return_tensors='tf' ).input_ids _lowerCamelCase : Union[str, Any] = model.generate(input_ids=lowercase ) _lowerCamelCase : Dict = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['attention_mask'][-1] , tf.intaa ) ) _lowerCamelCase : int = tokenizer(sentences[1] , return_tensors='tf' ).input_ids _lowerCamelCase : Union[str, Any] = model.generate(input_ids=lowercase , max_length=model.config.max_length - num_paddings ) _lowerCamelCase : List[Any] = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) _lowerCamelCase : Union[str, Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase ) _lowerCamelCase : Optional[Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase ) _lowerCamelCase : Optional[Any] = [ 'Hello, my dog is a little bit of a dork.\nI\'m a little bit', 'Today, I was in the middle of a conversation with a friend about the', ] self.assertListEqual(lowercase , lowercase ) self.assertListEqual(lowercase , [non_padded_sentence, padded_sentence] ) def A_ ( self ): _lowerCamelCase : Tuple = 'facebook/opt-350m' _lowerCamelCase : List[Any] = [ 'Today is a beautiful day and I want to', 'In the city of San Francisco, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] _lowerCamelCase : Optional[int] = [] _lowerCamelCase : Optional[Any] = GPTaTokenizer.from_pretrained(lowercase ) _lowerCamelCase : Optional[Any] = TFOPTForCausalLM.from_pretrained(lowercase ) for prompt in self.prompts: _lowerCamelCase : List[Any] = tokenizer(lowercase , return_tensors='tf' ).input_ids _lowerCamelCase : Optional[Any] = model.generate(lowercase , max_length=10 ) _lowerCamelCase : Dict = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) predicted_outputs += generated_string self.assertListEqual(lowercase , lowercase )
12
0
"""simple docstring""" from __future__ import annotations from math import pow, sqrt def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if resistance == 0: return {"resistance": sqrt(pow(_lowercase , 2 ) - pow(_lowercase , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(_lowercase , 2 ) - pow(_lowercase , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(_lowercase , 2 ) + pow(_lowercase , 2 ) )} else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
362
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """philschmid/bart-large-cnn-samsum""" lowerCamelCase__ = ( """This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, """ """and returns a summary of the text.""" ) lowerCamelCase__ = """summarizer""" lowerCamelCase__ = AutoTokenizer lowerCamelCase__ = AutoModelForSeqaSeqLM lowerCamelCase__ = ["""text"""] lowerCamelCase__ = ["""text"""] def A_ ( self , lowercase ): return self.pre_processor(lowercase , return_tensors='pt' , truncation=lowercase ) def A_ ( self , lowercase ): return self.model.generate(**lowercase )[0] def A_ ( self , lowercase ): return self.pre_processor.decode(lowercase , skip_special_tokens=lowercase , clean_up_tokenization_spaces=lowercase )
12
0
"""simple docstring""" import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( """--original_config_file""", default=None, type=str, help="""The YAML config file corresponding to the original architecture.""", ) parser.add_argument( """--num_in_channels""", default=None, type=int, help="""The number of input channels. If `None` number of input channels will be automatically inferred.""", ) parser.add_argument( """--scheduler_type""", default="""pndm""", type=str, help="""Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']""", ) parser.add_argument( """--pipeline_type""", default=None, type=str, help=( """The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'""" """. If `None` pipeline will be automatically inferred.""" ), ) parser.add_argument( """--image_size""", default=None, type=int, help=( """The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2""" """ Base. Use 768 for Stable Diffusion v2.""" ), ) parser.add_argument( """--prediction_type""", default=None, type=str, help=( """The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable""" """ Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2.""" ), ) parser.add_argument( """--extract_ema""", action="""store_true""", help=( """Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights""" """ or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield""" """ higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.""" ), ) parser.add_argument( """--upcast_attention""", action="""store_true""", help=( """Whether the attention computation should always be upcasted. This is necessary when running stable""" """ diffusion 2.1.""" ), ) parser.add_argument( """--from_safetensors""", action="""store_true""", help="""If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.""", ) parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") parser.add_argument( """--stable_unclip""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.""", ) parser.add_argument( """--stable_unclip_prior""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.""", ) parser.add_argument( """--clip_stats_path""", type=str, help="""Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.""", required=False, ) parser.add_argument( """--controlnet""", action="""store_true""", default=None, help="""Set flag if this is a controlnet checkpoint.""" ) parser.add_argument("""--half""", action="""store_true""", help="""Save weights in half precision.""") parser.add_argument( """--vae_path""", type=str, default=None, required=False, help="""Set to a path, hub id to an already converted vae to not convert it again.""", ) lowercase__ = parser.parse_args() lowercase__ = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
363
"""simple docstring""" from __future__ import annotations def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : Tuple = list(range(len(lowercase__ ) ) ) _lowerCamelCase : Any = [v / w for v, w in zip(lowercase__ , lowercase__ )] index.sort(key=lambda lowercase__ : ratio[i] , reverse=lowercase__ ) _lowerCamelCase : float = 0 _lowerCamelCase : list[float] = [0] * len(lowercase__ ) for i in index: if weight[i] <= capacity: _lowerCamelCase : int = 1 max_value += value[i] capacity -= weight[i] else: _lowerCamelCase : Any = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
12
0
"""simple docstring""" import sys lowercase__ = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def _snake_case ( lowercase__ = N ): _lowerCamelCase : Optional[Any] = -sys.maxsize - 1 for i in range(len(snake_case__ ) - 12 ): _lowerCamelCase : Any = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: _lowerCamelCase : Optional[Any] = product return largest_product if __name__ == "__main__": print(F"{solution() = }")
364
"""simple docstring""" import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate lowercase__ = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("""""", """|""", """|"""), datarow=DataRow("""""", """|""", """|"""), padding=1, with_header_hide=None, ) lowercase__ = [] lowercase__ = [] lowercase__ = {"""type""": """section""", """text""": {"""type""": """plain_text""", """text""": """No failed tests! 🤗""", """emoji""": True}} lowercase__ = [ { """type""": """header""", """text""": { """type""": """plain_text""", """text""": F"🤗 Accelerate nightly {os.environ.get('TEST_TYPE', '')} test results", """emoji""": True, }, } ] lowercase__ = 0 for log in Path().glob("""*.log"""): lowercase__ = 0 with open(log, """r""") as f: for line in f: lowercase__ = json.loads(line) if line.get("""nodeid""", """""") != "": lowercase__ = line["""nodeid"""] if line.get("""duration""", None) is not None: lowercase__ = F"{line['duration']:.4f}" if line.get("""outcome""", """""") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("""_""")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) lowercase__ = [] log.unlink() lowercase__ = """""" lowercase__ = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" lowercase__ = [] lowercase__ = {} for test in failed_tests: lowercase__ = test[0].split("""::""") lowercase__ = data[0].split("""/""")[-1] if data[0] not in filesafailed: lowercase__ = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) lowercase__ = [test[0] for test in failed_table] lowercase__ = list(set(files)) # Count number of instances in failed_tests lowercase__ = [] for file in individual_files: table.append([file, len(filesafailed[file])]) lowercase__ = tabulate( table, headers=["""Test Location""", """Num Failed"""], tablefmt=hf_table_format, stralign="""right""", ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: lowercase__ = """Too many failed tests, please see the full report in the Action results.""" lowercase__ = len(err) + 10 lowercase__ = message[: 3000 - offset] + F"\n...\n```\n{err}" print(F"### {message}") else: lowercase__ = """No failed tests! 🤗""" print(F"## {message}") payload.append(no_error_payload) if os.environ.get("""TEST_TYPE""", """""") != "": from slack_sdk import WebClient lowercase__ = WebClient(token=os.environ["""SLACK_API_TOKEN"""]) if message != "No failed tests! 🤗": lowercase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": message, }, } payload.append(md_report) lowercase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": """*For more details:*""", }, """accessory""": { """type""": """button""", """text""": { """type""": """plain_text""", """text""": """Check Action results""", """emoji""": True, }, """url""": F"https://github.com/{os.environ['GITHUB_REPOSITORY']}/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } payload.append(action_button) lowercase__ = { """type""": """context""", """elements""": [ { """type""": """plain_text""", """text""": F"Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}", } ], } payload.append(date_report) lowercase__ = client.chat_postMessage(channel="""#accelerate-ci-daily""", text=message, blocks=payload) lowercase__ = response.data["""ts"""] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name lowercase__ = """""" for i, row in enumerate(test_failures): if row[0] != test_class: lowercase__ = row[0] else: lowercase__ = """""" lowercase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": F"Test location: {test_location}\n```\n{tabulate(test_failures, headers=['Class', 'Test'], tablefmt=hf_table_format, stralign='right')}\n```", }, } client.chat_postMessage( channel="""#accelerate-ci-daily""", thread_ts=ts, blocks=[payload], )
12
0
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def _snake_case ( lowercase__ ): _lowerCamelCase : int = 384 if "tiny" in model_name: _lowerCamelCase : Optional[Any] = [3, 3, 9, 3] _lowerCamelCase : Any = [96, 192, 384, 768] if "small" in model_name: _lowerCamelCase : Any = [3, 3, 27, 3] _lowerCamelCase : Dict = [96, 192, 384, 768] if "base" in model_name: _lowerCamelCase : int = [3, 3, 27, 3] _lowerCamelCase : Optional[int] = [128, 256, 512, 1024] _lowerCamelCase : Any = 512 if "large" in model_name: _lowerCamelCase : List[Any] = [3, 3, 27, 3] _lowerCamelCase : Tuple = [192, 384, 768, 1536] _lowerCamelCase : Optional[int] = 768 if "xlarge" in model_name: _lowerCamelCase : Dict = [3, 3, 27, 3] _lowerCamelCase : Tuple = [256, 512, 1024, 2048] _lowerCamelCase : Dict = 1024 # set label information _lowerCamelCase : Dict = 150 _lowerCamelCase : str = """huggingface/label-files""" _lowerCamelCase : int = """ade20k-id2label.json""" _lowerCamelCase : int = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type='dataset' ) , 'r' ) ) _lowerCamelCase : Optional[Any] = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} _lowerCamelCase : Union[str, Any] = {v: k for k, v in idalabel.items()} _lowerCamelCase : List[Any] = ConvNextConfig( depths=lowerCAmelCase__ , hidden_sizes=lowerCAmelCase__ , out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) _lowerCamelCase : Optional[Any] = UperNetConfig( backbone_config=lowerCAmelCase__ , auxiliary_in_channels=lowerCAmelCase__ , num_labels=lowerCAmelCase__ , idalabel=lowerCAmelCase__ , labelaid=lowerCAmelCase__ , ) return config def _snake_case ( lowercase__ ): _lowerCamelCase : Tuple = [] # fmt: off # stem rename_keys.append(('backbone.downsample_layers.0.0.weight', 'backbone.embeddings.patch_embeddings.weight') ) rename_keys.append(('backbone.downsample_layers.0.0.bias', 'backbone.embeddings.patch_embeddings.bias') ) rename_keys.append(('backbone.downsample_layers.0.1.weight', 'backbone.embeddings.layernorm.weight') ) rename_keys.append(('backbone.downsample_layers.0.1.bias', 'backbone.embeddings.layernorm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.stages.{i}.{j}.gamma''', f'''backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.norm.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.norm.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias''') ) if i > 0: rename_keys.append((f'''backbone.downsample_layers.{i}.0.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.weight''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.0.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.bias''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.1.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.weight''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.1.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.bias''') ) rename_keys.append((f'''backbone.norm{i}.weight''', f'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((f'''backbone.norm{i}.bias''', f'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ('decode_head.conv_seg.weight', 'decode_head.classifier.weight'), ('decode_head.conv_seg.bias', 'decode_head.classifier.bias'), ('auxiliary_head.conv_seg.weight', 'auxiliary_head.classifier.weight'), ('auxiliary_head.conv_seg.bias', 'auxiliary_head.classifier.bias'), ] ) # fmt: on return rename_keys def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : Tuple = dct.pop(lowerCAmelCase__ ) _lowerCamelCase : int = val def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : str = { """upernet-convnext-tiny""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth""", """upernet-convnext-small""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth""", """upernet-convnext-base""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth""", """upernet-convnext-large""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth""", """upernet-convnext-xlarge""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth""", } _lowerCamelCase : List[str] = model_name_to_url[model_name] _lowerCamelCase : Any = torch.hub.load_state_dict_from_url(lowerCAmelCase__ , map_location='cpu' )["""state_dict"""] _lowerCamelCase : Any = get_upernet_config(lowerCAmelCase__ ) _lowerCamelCase : int = UperNetForSemanticSegmentation(lowerCAmelCase__ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): _lowerCamelCase : Optional[int] = state_dict.pop(lowerCAmelCase__ ) if "bn" in key: _lowerCamelCase : str = key.replace('bn' , 'batch_norm' ) _lowerCamelCase : Dict = val # rename keys _lowerCamelCase : Optional[int] = create_rename_keys(lowerCAmelCase__ ) for src, dest in rename_keys: rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) model.load_state_dict(lowerCAmelCase__ ) # verify on image _lowerCamelCase : List[str] = """https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg""" _lowerCamelCase : Any = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert('RGB' ) _lowerCamelCase : Tuple = SegformerImageProcessor() _lowerCamelCase : List[Any] = processor(lowerCAmelCase__ , return_tensors='pt' ).pixel_values with torch.no_grad(): _lowerCamelCase : List[str] = model(lowerCAmelCase__ ) if model_name == "upernet-convnext-tiny": _lowerCamelCase : List[Any] = torch.tensor( [[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]] ) elif model_name == "upernet-convnext-small": _lowerCamelCase : Optional[Any] = torch.tensor( [[-8.8_2_3_6, -8.8_2_3_6, -8.6_7_7_1], [-8.8_2_3_6, -8.8_2_3_6, -8.6_7_7_1], [-8.7_6_3_8, -8.7_6_3_8, -8.6_2_4_0]] ) elif model_name == "upernet-convnext-base": _lowerCamelCase : int = torch.tensor( [[-8.8_5_5_8, -8.8_5_5_8, -8.6_9_0_5], [-8.8_5_5_8, -8.8_5_5_8, -8.6_9_0_5], [-8.7_6_6_9, -8.7_6_6_9, -8.6_0_2_1]] ) elif model_name == "upernet-convnext-large": _lowerCamelCase : Union[str, Any] = torch.tensor( [[-8.6_6_6_0, -8.6_6_6_0, -8.6_2_1_0], [-8.6_6_6_0, -8.6_6_6_0, -8.6_2_1_0], [-8.6_3_1_0, -8.6_3_1_0, -8.5_9_6_4]] ) elif model_name == "upernet-convnext-xlarge": _lowerCamelCase : List[str] = torch.tensor( [[-8.4_9_8_0, -8.4_9_8_0, -8.3_9_7_7], [-8.4_9_8_0, -8.4_9_8_0, -8.3_9_7_7], [-8.4_3_7_9, -8.4_3_7_9, -8.3_4_1_2]] ) print('Logits:' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCAmelCase__ , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCAmelCase__ ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(lowerCAmelCase__ ) if push_to_hub: print(f'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(f'''openmmlab/{model_name}''' ) processor.push_to_hub(f'''openmmlab/{model_name}''' ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""upernet-convnext-tiny""", type=str, choices=[F"upernet-convnext-{size}" for size in ["""tiny""", """small""", """base""", """large""", """xlarge"""]], help="""Name of the ConvNext UperNet model you\'d like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowercase__ = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
365
"""simple docstring""" import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer lowercase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """AutoTokenizer""" lowerCamelCase__ = ["""tokenizer"""] lowerCamelCase__ = { """semantic_prompt""": 1, """coarse_prompt""": 2, """fine_prompt""": 2, } def __init__( self , lowercase , lowercase=None ): super().__init__(lowercase ) _lowerCamelCase : Optional[int] = speaker_embeddings @classmethod def A_ ( cls , lowercase , lowercase="speaker_embeddings_path.json" , **lowercase ): if speaker_embeddings_dict_path is not None: _lowerCamelCase : Optional[Any] = get_file_from_repo( lowercase , lowercase , subfolder=kwargs.pop('subfolder' , lowercase ) , cache_dir=kwargs.pop('cache_dir' , lowercase ) , force_download=kwargs.pop('force_download' , lowercase ) , proxies=kwargs.pop('proxies' , lowercase ) , resume_download=kwargs.pop('resume_download' , lowercase ) , local_files_only=kwargs.pop('local_files_only' , lowercase ) , use_auth_token=kwargs.pop('use_auth_token' , lowercase ) , revision=kwargs.pop('revision' , lowercase ) , ) if speaker_embeddings_path is None: logger.warning( F'''`{os.path.join(lowercase , lowercase )}` does not exists , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.''' ) _lowerCamelCase : List[Any] = None else: with open(lowercase ) as speaker_embeddings_json: _lowerCamelCase : Union[str, Any] = json.load(lowercase ) else: _lowerCamelCase : Tuple = None _lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained(lowercase , **lowercase ) return cls(tokenizer=lowercase , speaker_embeddings=lowercase ) def A_ ( self , lowercase , lowercase="speaker_embeddings_path.json" , lowercase="speaker_embeddings" , lowercase = False , **lowercase , ): if self.speaker_embeddings is not None: os.makedirs(os.path.join(lowercase , lowercase , 'v2' ) , exist_ok=lowercase ) _lowerCamelCase : int = {} _lowerCamelCase : List[Any] = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": _lowerCamelCase : Optional[Any] = self._load_voice_preset(lowercase ) _lowerCamelCase : Any = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict['repo_or_path'] , lowercase , F'''{prompt_key}_{key}''' ) , voice_preset[key] , allow_pickle=lowercase , ) _lowerCamelCase : List[str] = os.path.join(lowercase , F'''{prompt_key}_{key}.npy''' ) _lowerCamelCase : Optional[Any] = tmp_dict with open(os.path.join(lowercase , lowercase ) , 'w' ) as fp: json.dump(lowercase , lowercase ) super().save_pretrained(lowercase , lowercase , **lowercase ) def A_ ( self , lowercase = None , **lowercase ): _lowerCamelCase : Tuple = self.speaker_embeddings[voice_preset] _lowerCamelCase : Any = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( F'''Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].''' ) _lowerCamelCase : Union[str, Any] = get_file_from_repo( self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] , subfolder=kwargs.pop('subfolder' , lowercase ) , cache_dir=kwargs.pop('cache_dir' , lowercase ) , force_download=kwargs.pop('force_download' , lowercase ) , proxies=kwargs.pop('proxies' , lowercase ) , resume_download=kwargs.pop('resume_download' , lowercase ) , local_files_only=kwargs.pop('local_files_only' , lowercase ) , use_auth_token=kwargs.pop('use_auth_token' , lowercase ) , revision=kwargs.pop('revision' , lowercase ) , ) if path is None: raise ValueError( F'''`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset} embeddings.''' ) _lowerCamelCase : List[str] = np.load(lowercase ) return voice_preset_dict def A_ ( self , lowercase = None ): for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(F'''Voice preset unrecognized, missing {key} as a key.''' ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) def __call__( self , lowercase=None , lowercase=None , lowercase="pt" , lowercase=256 , lowercase=False , lowercase=True , lowercase=False , **lowercase , ): if voice_preset is not None and not isinstance(lowercase , lowercase ): if ( isinstance(lowercase , lowercase ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): _lowerCamelCase : Any = self._load_voice_preset(lowercase ) else: if isinstance(lowercase , lowercase ) and not voice_preset.endswith('.npz' ): _lowerCamelCase : Optional[Any] = voice_preset + '.npz' _lowerCamelCase : Union[str, Any] = np.load(lowercase ) if voice_preset is not None: self._validate_voice_preset_dict(lowercase , **lowercase ) _lowerCamelCase : Tuple = BatchFeature(data=lowercase , tensor_type=lowercase ) _lowerCamelCase : Any = self.tokenizer( lowercase , return_tensors=lowercase , padding='max_length' , max_length=lowercase , return_attention_mask=lowercase , return_token_type_ids=lowercase , add_special_tokens=lowercase , **lowercase , ) if voice_preset is not None: _lowerCamelCase : Optional[int] = voice_preset return encoded_text
12
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy lowercase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , lowercase , lowercase , lowercase , **lowercase ): _lowerCamelCase : Optional[Any] = feature_size _lowerCamelCase : Dict = sampling_rate _lowerCamelCase : List[Any] = padding_value _lowerCamelCase : Dict = kwargs.pop('padding_side' , 'right' ) _lowerCamelCase : Tuple = kwargs.pop('return_attention_mask' , UpperCamelCase__ ) super().__init__(**UpperCamelCase__ ) def A_ ( self , lowercase , lowercase = True , lowercase = None , lowercase = False , lowercase = None , lowercase = None , lowercase = None , ): if isinstance(UpperCamelCase__ , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): _lowerCamelCase : Any = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( 'You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`' F''' to this method that includes {self.model_input_names[0]}, but you provided''' F''' {list(processed_features.keys() )}''' ) _lowerCamelCase : Any = processed_features[self.model_input_names[0]] _lowerCamelCase : str = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(UpperCamelCase__ ) == 0: if return_attention_mask: _lowerCamelCase : Any = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch _lowerCamelCase : int = required_input[0] if isinstance(UpperCamelCase__ , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. _lowerCamelCase : int = 0 while len(required_input[index] ) == 0: index += 1 if index < len(UpperCamelCase__ ): _lowerCamelCase : Any = required_input[index][0] if return_tensors is None: if is_tf_tensor(UpperCamelCase__ ): _lowerCamelCase : Tuple = '''tf''' elif is_torch_tensor(UpperCamelCase__ ): _lowerCamelCase : Tuple = '''pt''' elif isinstance(UpperCamelCase__ , (int, float, list, tuple, np.ndarray) ): _lowerCamelCase : Any = '''np''' else: raise ValueError( F'''type of {first_element} unknown: {type(UpperCamelCase__ )}. ''' 'Should be one of a python, numpy, pytorch or tensorflow object.' ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): _lowerCamelCase : Dict = to_numpy(UpperCamelCase__ ) else: _lowerCamelCase : int = [to_numpy(UpperCamelCase__ ) for v in value] # Convert padding_strategy in PaddingStrategy _lowerCamelCase : Tuple = self._get_padding_strategies(padding=UpperCamelCase__ , max_length=UpperCamelCase__ ) _lowerCamelCase : Any = processed_features[self.model_input_names[0]] _lowerCamelCase : Dict = len(UpperCamelCase__ ) if not all(len(UpperCamelCase__ ) == batch_size for v in processed_features.values() ): raise ValueError('Some items in the output dictionary have a different batch size than others.' ) _lowerCamelCase : Union[str, Any] = [] for i in range(UpperCamelCase__ ): _lowerCamelCase : Dict = {k: v[i] for k, v in processed_features.items()} # truncation _lowerCamelCase : int = self._truncate( UpperCamelCase__ , max_length=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , truncation=UpperCamelCase__ , ) truncated_inputs.append(UpperCamelCase__ ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length _lowerCamelCase : Optional[Any] = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) _lowerCamelCase : int = PaddingStrategy.MAX_LENGTH _lowerCamelCase : int = {} for i in range(UpperCamelCase__ ): # padding _lowerCamelCase : Optional[Any] = self._pad( truncated_inputs[i] , max_length=UpperCamelCase__ , padding_strategy=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , ) for key, value in outputs.items(): if key not in batch_outputs: _lowerCamelCase : str = [] if value.dtype is np.dtype(np.floataa ): _lowerCamelCase : Dict = value.astype(np.floataa ) batch_outputs[key].append(UpperCamelCase__ ) return BatchFeature(UpperCamelCase__ , tensor_type=UpperCamelCase__ ) def A_ ( self , lowercase , lowercase = None , lowercase = PaddingStrategy.DO_NOT_PAD , lowercase = None , lowercase = None , ): _lowerCamelCase : Optional[int] = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: _lowerCamelCase : Tuple = len(UpperCamelCase__ ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): _lowerCamelCase : Any = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of _lowerCamelCase : Dict = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(UpperCamelCase__ ) < max_length if return_attention_mask and "attention_mask" not in processed_features: _lowerCamelCase : Optional[int] = np.ones(len(UpperCamelCase__ ) , dtype=np.intaa ) if needs_to_be_padded: _lowerCamelCase : Union[str, Any] = max_length - len(UpperCamelCase__ ) if self.padding_side == "right": if return_attention_mask: _lowerCamelCase : str = np.pad( processed_features['attention_mask'] , (0, difference) ) _lowerCamelCase : Tuple = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) _lowerCamelCase : Optional[int] = np.pad( UpperCamelCase__ , UpperCamelCase__ , 'constant' , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: _lowerCamelCase : Optional[int] = np.pad( processed_features['attention_mask'] , (difference, 0) ) _lowerCamelCase : int = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) _lowerCamelCase : int = np.pad( UpperCamelCase__ , UpperCamelCase__ , 'constant' , constant_values=self.padding_value ) else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return processed_features def A_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , ): if not truncation: return processed_features elif truncation and max_length is None: raise ValueError('When setting ``truncation=True``, make sure that ``max_length`` is defined.' ) _lowerCamelCase : Union[str, Any] = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): _lowerCamelCase : List[str] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of _lowerCamelCase : List[Any] = len(UpperCamelCase__ ) > max_length if needs_to_be_truncated: _lowerCamelCase : Any = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: _lowerCamelCase : List[str] = processed_features['''attention_mask'''][:max_length] return processed_features def A_ ( self , lowercase=False , lowercase=None ): if padding is not False: if padding is True: _lowerCamelCase : Tuple = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(UpperCamelCase__ , UpperCamelCase__ ): _lowerCamelCase : Any = PaddingStrategy(UpperCamelCase__ ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): _lowerCamelCase : Any = padding else: _lowerCamelCase : List[Any] = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( F'''When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined''' ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( 'Asking to pad but the feature_extractor does not have a padding value. Please select a value to use' ' as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.' ) return padding_strategy
366
"""simple docstring""" import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device lowercase__ = False class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' pass @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): _lowerCamelCase : Tuple = VersatileDiffusionImageVariationPipeline.from_pretrained('shi-labs/versatile-diffusion' ) pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) _lowerCamelCase : Tuple = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) _lowerCamelCase : Dict = torch.manual_seed(0 ) _lowerCamelCase : Dict = pipe( image=lowercase , generator=lowercase , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' , ).images _lowerCamelCase : str = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) _lowerCamelCase : Any = np.array([0.04_41, 0.04_69, 0.05_07, 0.05_75, 0.06_32, 0.06_50, 0.08_65, 0.09_09, 0.09_45] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
12
0
"""simple docstring""" from collections import deque from .hash_table import HashTable class lowerCAmelCase__ ( _a ): '''simple docstring''' def __init__( self , *lowercase , **lowercase ): super().__init__(*lowercase , **lowercase ) def A_ ( self , lowercase , lowercase ): _lowerCamelCase : Tuple = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(lowercase ) _lowerCamelCase : Optional[Any] = self.values[key] def A_ ( self ): return ( sum(self.charge_factor - len(lowercase ) for slot in self.values ) / self.size_table * self.charge_factor ) def A_ ( self , lowercase , lowercase=None ): if not ( len(self.values[key] ) == self.charge_factor and self.values.count(lowercase ) == 0 ): return key return super()._collision_resolution(lowercase , lowercase )
367
"""simple docstring""" import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency lowercase__ = { """E""": 12.70, """T""": 9.06, """A""": 8.17, """O""": 7.51, """I""": 6.97, """N""": 6.75, """S""": 6.33, """H""": 6.09, """R""": 5.99, """D""": 4.25, """L""": 4.03, """C""": 2.78, """U""": 2.76, """M""": 2.41, """W""": 2.36, """F""": 2.23, """G""": 2.02, """Y""": 1.97, """P""": 1.93, """B""": 1.29, """V""": 0.98, """K""": 0.77, """J""": 0.15, """X""": 0.15, """Q""": 0.10, """Z""": 0.07, } lowercase__ = """ETAOINSHRDLCUMWFGYPBVKJXQZ""" lowercase__ = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def _snake_case ( lowercase__ ): _lowerCamelCase : Tuple = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def _snake_case ( lowercase__ ): return x[0] def _snake_case ( lowercase__ ): _lowerCamelCase : List[Any] = get_letter_count(lowercase__ ) _lowerCamelCase : dict[int, list[str]] = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(lowercase__ ) _lowerCamelCase : dict[int, str] = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=lowercase__ ) _lowerCamelCase : Optional[int] = ''.join(freq_to_letter[freq] ) _lowerCamelCase : Any = list(freq_to_letter_str.items() ) freq_pairs.sort(key=lowercase__ , reverse=lowercase__ ) _lowerCamelCase : list[str] = [freq_pair[1] for freq_pair in freq_pairs] return "".join(lowercase__ ) def _snake_case ( lowercase__ ): _lowerCamelCase : str = get_frequency_order(lowercase__ ) _lowerCamelCase : Union[str, Any] = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
12
0
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu lowercase__ = False class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() @property def A_ ( self ): return 12 @property def A_ ( self ): return 12 @property def A_ ( self ): return 32 @property def A_ ( self ): torch.manual_seed(0 ) _lowerCamelCase : Optional[int] = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def A_ ( self ): _lowerCamelCase : int = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def A_ ( self ): torch.manual_seed(0 ) _lowerCamelCase : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(UpperCamelCase__ ) @property def A_ ( self ): torch.manual_seed(0 ) _lowerCamelCase : str = 12 _lowerCamelCase : Optional[Any] = 12 _lowerCamelCase : List[Any] = { 'attention_bias': True, 'cross_attention_dim': 32, 'attention_head_dim': height * width, 'num_attention_heads': 1, 'num_vector_embeds': self.num_embed, 'num_embeds_ada_norm': self.num_embeds_ada_norm, 'norm_num_groups': 32, 'sample_size': width, 'activation_fn': 'geglu-approximate', } _lowerCamelCase : Dict = TransformeraDModel(**UpperCamelCase__ ) return model def A_ ( self ): _lowerCamelCase : Tuple = 'cpu' _lowerCamelCase : Dict = self.dummy_vqvae _lowerCamelCase : Any = self.dummy_text_encoder _lowerCamelCase : List[str] = self.dummy_tokenizer _lowerCamelCase : Tuple = self.dummy_transformer _lowerCamelCase : Dict = VQDiffusionScheduler(self.num_embed ) _lowerCamelCase : Optional[Any] = LearnedClassifierFreeSamplingEmbeddings(learnable=UpperCamelCase__ ) _lowerCamelCase : Optional[Any] = VQDiffusionPipeline( vqvae=UpperCamelCase__ , text_encoder=UpperCamelCase__ , tokenizer=UpperCamelCase__ , transformer=UpperCamelCase__ , scheduler=UpperCamelCase__ , learned_classifier_free_sampling_embeddings=UpperCamelCase__ , ) _lowerCamelCase : List[Any] = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) _lowerCamelCase : str = 'teddy bear playing in the pool' _lowerCamelCase : Optional[int] = torch.Generator(device=UpperCamelCase__ ).manual_seed(0 ) _lowerCamelCase : List[str] = pipe([prompt] , generator=UpperCamelCase__ , num_inference_steps=2 , output_type='np' ) _lowerCamelCase : Any = output.images _lowerCamelCase : str = torch.Generator(device=UpperCamelCase__ ).manual_seed(0 ) _lowerCamelCase : str = pipe( [prompt] , generator=UpperCamelCase__ , output_type='np' , return_dict=UpperCamelCase__ , num_inference_steps=2 )[0] _lowerCamelCase : str = image[0, -3:, -3:, -1] _lowerCamelCase : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) _lowerCamelCase : Optional[Any] = np.array([0.65_51, 0.61_68, 0.50_08, 0.56_76, 0.56_59, 0.42_95, 0.60_73, 0.55_99, 0.49_92] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def A_ ( self ): _lowerCamelCase : int = 'cpu' _lowerCamelCase : Optional[Any] = self.dummy_vqvae _lowerCamelCase : Tuple = self.dummy_text_encoder _lowerCamelCase : Dict = self.dummy_tokenizer _lowerCamelCase : List[str] = self.dummy_transformer _lowerCamelCase : List[Any] = VQDiffusionScheduler(self.num_embed ) _lowerCamelCase : Optional[int] = LearnedClassifierFreeSamplingEmbeddings( learnable=UpperCamelCase__ , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) _lowerCamelCase : Union[str, Any] = VQDiffusionPipeline( vqvae=UpperCamelCase__ , text_encoder=UpperCamelCase__ , tokenizer=UpperCamelCase__ , transformer=UpperCamelCase__ , scheduler=UpperCamelCase__ , learned_classifier_free_sampling_embeddings=UpperCamelCase__ , ) _lowerCamelCase : List[Any] = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) _lowerCamelCase : Union[str, Any] = 'teddy bear playing in the pool' _lowerCamelCase : int = torch.Generator(device=UpperCamelCase__ ).manual_seed(0 ) _lowerCamelCase : str = pipe([prompt] , generator=UpperCamelCase__ , num_inference_steps=2 , output_type='np' ) _lowerCamelCase : Dict = output.images _lowerCamelCase : Union[str, Any] = torch.Generator(device=UpperCamelCase__ ).manual_seed(0 ) _lowerCamelCase : List[str] = pipe( [prompt] , generator=UpperCamelCase__ , output_type='np' , return_dict=UpperCamelCase__ , num_inference_steps=2 )[0] _lowerCamelCase : Dict = image[0, -3:, -3:, -1] _lowerCamelCase : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) _lowerCamelCase : List[Any] = np.array([0.66_93, 0.60_75, 0.49_59, 0.57_01, 0.55_83, 0.43_33, 0.61_71, 0.56_84, 0.49_88] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def A_ ( self ): _lowerCamelCase : List[str] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy' ) _lowerCamelCase : Tuple = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq' ) _lowerCamelCase : Dict = pipeline.to(UpperCamelCase__ ) pipeline.set_progress_bar_config(disable=UpperCamelCase__ ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though _lowerCamelCase : str = torch.Generator(device=UpperCamelCase__ ).manual_seed(0 ) _lowerCamelCase : List[Any] = pipeline( 'teddy bear playing in the pool' , num_images_per_prompt=1 , generator=UpperCamelCase__ , output_type='np' , ) _lowerCamelCase : Tuple = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
368
"""simple docstring""" import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig lowercase__ = logging.get_logger(__name__) class lowerCAmelCase__ : '''simple docstring''' def __init__( self , lowercase , lowercase ): _lowerCamelCase : Dict = question_encoder _lowerCamelCase : List[Any] = generator _lowerCamelCase : Optional[Any] = self.question_encoder def A_ ( self , lowercase ): if os.path.isfile(lowercase ): raise ValueError(F'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(lowercase , exist_ok=lowercase ) _lowerCamelCase : List[Any] = os.path.join(lowercase , 'question_encoder_tokenizer' ) _lowerCamelCase : Dict = os.path.join(lowercase , 'generator_tokenizer' ) self.question_encoder.save_pretrained(lowercase ) self.generator.save_pretrained(lowercase ) @classmethod def A_ ( cls , lowercase , **lowercase ): # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer _lowerCamelCase : Optional[int] = kwargs.pop('config' , lowercase ) if config is None: _lowerCamelCase : int = RagConfig.from_pretrained(lowercase ) _lowerCamelCase : Optional[Any] = AutoTokenizer.from_pretrained( lowercase , config=config.question_encoder , subfolder='question_encoder_tokenizer' ) _lowerCamelCase : Dict = AutoTokenizer.from_pretrained( lowercase , config=config.generator , subfolder='generator_tokenizer' ) return cls(question_encoder=lowercase , generator=lowercase ) def __call__( self , *lowercase , **lowercase ): return self.current_tokenizer(*lowercase , **lowercase ) def A_ ( self , *lowercase , **lowercase ): return self.generator.batch_decode(*lowercase , **lowercase ) def A_ ( self , *lowercase , **lowercase ): return self.generator.decode(*lowercase , **lowercase ) def A_ ( self ): _lowerCamelCase : Any = self.question_encoder def A_ ( self ): _lowerCamelCase : Optional[Any] = self.generator def A_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = "longest" , lowercase = None , lowercase = True , **lowercase , ): warnings.warn( '`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ' 'regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ' 'context manager to prepare your targets. See the documentation of your specific tokenizer for more ' 'details' , lowercase , ) if max_length is None: _lowerCamelCase : Optional[Any] = self.current_tokenizer.model_max_length _lowerCamelCase : Optional[Any] = self( lowercase , add_special_tokens=lowercase , return_tensors=lowercase , max_length=lowercase , padding=lowercase , truncation=lowercase , **lowercase , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: _lowerCamelCase : int = self.current_tokenizer.model_max_length _lowerCamelCase : str = self( text_target=lowercase , add_special_tokens=lowercase , return_tensors=lowercase , padding=lowercase , max_length=lowercase , truncation=lowercase , **lowercase , ) _lowerCamelCase : int = labels['input_ids'] return model_inputs
12
0
"""simple docstring""" from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class lowerCAmelCase__ : '''simple docstring''' def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=True , lowercase=True , lowercase=True , lowercase=99 , lowercase=32 , lowercase=2 , lowercase=4 , lowercase=37 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=16 , lowercase=2 , lowercase=0.02 , lowercase=3 , lowercase=4 , lowercase=None , ): _lowerCamelCase : Union[str, Any] = parent _lowerCamelCase : Dict = 13 _lowerCamelCase : Union[str, Any] = 7 _lowerCamelCase : str = True _lowerCamelCase : int = True _lowerCamelCase : Optional[Any] = True _lowerCamelCase : Any = True _lowerCamelCase : Union[str, Any] = 99 _lowerCamelCase : Union[str, Any] = 384 _lowerCamelCase : Optional[Any] = 2 _lowerCamelCase : str = 4 _lowerCamelCase : Optional[int] = 37 _lowerCamelCase : Union[str, Any] = 'gelu' _lowerCamelCase : Optional[Any] = 0.1 _lowerCamelCase : Optional[int] = 0.1 _lowerCamelCase : Any = 512 _lowerCamelCase : Dict = 16 _lowerCamelCase : Dict = 2 _lowerCamelCase : Optional[Any] = 0.02 _lowerCamelCase : str = 3 _lowerCamelCase : Any = 4 _lowerCamelCase : int = 128 _lowerCamelCase : Tuple = 2 _lowerCamelCase : Optional[int] = 9 _lowerCamelCase : str = 1 _lowerCamelCase : Dict = None def A_ ( self ): _lowerCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCamelCase : List[Any] = None if self.use_input_mask: _lowerCamelCase : Any = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : Union[str, Any] = None if self.use_token_type_ids: _lowerCamelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCamelCase : Optional[Any] = None _lowerCamelCase : int = None _lowerCamelCase : List[Any] = None if self.use_labels: _lowerCamelCase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCamelCase : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) _lowerCamelCase : Any = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_lowercase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): _lowerCamelCase : List[Any] = TFConvBertModel(config=_lowercase ) _lowerCamelCase : int = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowerCamelCase : int = [input_ids, input_mask] _lowerCamelCase : Dict = model(_lowercase ) _lowerCamelCase : str = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): _lowerCamelCase : Tuple = TFConvBertForMaskedLM(config=_lowercase ) _lowerCamelCase : List[str] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _lowerCamelCase : str = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): _lowerCamelCase : Optional[int] = self.num_labels _lowerCamelCase : str = TFConvBertForSequenceClassification(config=_lowercase ) _lowerCamelCase : Any = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _lowerCamelCase : Optional[Any] = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): _lowerCamelCase : Dict = self.num_choices _lowerCamelCase : Any = TFConvBertForMultipleChoice(config=_lowercase ) _lowerCamelCase : Dict = tf.tile(tf.expand_dims(_lowercase , 1 ) , (1, self.num_choices, 1) ) _lowerCamelCase : Dict = tf.tile(tf.expand_dims(_lowercase , 1 ) , (1, self.num_choices, 1) ) _lowerCamelCase : Optional[Any] = tf.tile(tf.expand_dims(_lowercase , 1 ) , (1, self.num_choices, 1) ) _lowerCamelCase : Optional[int] = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } _lowerCamelCase : Union[str, Any] = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): _lowerCamelCase : Any = self.num_labels _lowerCamelCase : Dict = TFConvBertForTokenClassification(config=_lowercase ) _lowerCamelCase : Union[str, Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _lowerCamelCase : Any = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): _lowerCamelCase : Any = TFConvBertForQuestionAnswering(config=_lowercase ) _lowerCamelCase : Union[str, Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _lowerCamelCase : Union[str, Any] = model(_lowercase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A_ ( self ): _lowerCamelCase : Any = self.prepare_config_and_inputs() ( ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ) : str = config_and_inputs _lowerCamelCase : Optional[int] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class lowerCAmelCase__ ( _lowerCAmelCase, _lowerCAmelCase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) lowerCamelCase__ = ( { "feature-extraction": TFConvBertModel, "fill-mask": TFConvBertForMaskedLM, "question-answering": TFConvBertForQuestionAnswering, "text-classification": TFConvBertForSequenceClassification, "token-classification": TFConvBertForTokenClassification, "zero-shot": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def A_ ( self ): _lowerCamelCase : Tuple = TFConvBertModelTester(self ) _lowerCamelCase : str = ConfigTester(self , config_class=_lowercase , hidden_size=37 ) def A_ ( self ): self.config_tester.run_common_tests() def A_ ( self ): _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def A_ ( self ): _lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowercase ) def A_ ( self ): _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_lowercase ) def A_ ( self ): _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowercase ) def A_ ( self ): _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowercase ) def A_ ( self ): _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowercase ) @slow def A_ ( self ): _lowerCamelCase, _lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : List[Any] = True _lowerCamelCase : Tuple = True if hasattr(_lowercase , 'use_cache' ): _lowerCamelCase : Optional[int] = True _lowerCamelCase : Any = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) _lowerCamelCase : Union[str, Any] = getattr(self.model_tester , 'key_length' , _lowercase ) for model_class in self.all_model_classes: _lowerCamelCase : Optional[int] = self._prepare_for_class(_lowercase , _lowercase ) _lowerCamelCase : Any = model_class(_lowercase ) _lowerCamelCase : List[str] = len(model(_lowercase ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowercase , saved_model=_lowercase ) _lowerCamelCase : int = os.path.join(_lowercase , 'saved_model' , '1' ) _lowerCamelCase : int = tf.keras.models.load_model(_lowercase ) _lowerCamelCase : str = model(_lowercase ) if self.is_encoder_decoder: _lowerCamelCase : List[str] = outputs['encoder_hidden_states'] _lowerCamelCase : str = outputs['encoder_attentions'] else: _lowerCamelCase : Dict = outputs['hidden_states'] _lowerCamelCase : Optional[Any] = outputs['attentions'] self.assertEqual(len(_lowercase ) , _lowercase ) _lowerCamelCase : Tuple = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_lowercase ) , _lowercase ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(_lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def A_ ( self ): _lowerCamelCase : List[Any] = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) self.assertIsNotNone(_lowercase ) def A_ ( self ): _lowerCamelCase, _lowerCamelCase : str = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Any = True _lowerCamelCase : str = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length ) _lowerCamelCase : Tuple = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) _lowerCamelCase : Any = getattr(self.model_tester , 'key_length' , _lowercase ) _lowerCamelCase : int = getattr(self.model_tester , 'key_length' , _lowercase ) def check_decoder_attentions_output(lowercase ): _lowerCamelCase : Union[str, Any] = len(_lowercase ) self.assertEqual(out_len % 2 , 0 ) _lowerCamelCase : Optional[Any] = outputs.decoder_attentions self.assertEqual(len(_lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(lowercase ): _lowerCamelCase : Optional[int] = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: _lowerCamelCase : Union[str, Any] = True _lowerCamelCase : List[str] = False _lowerCamelCase : int = model_class(_lowercase ) _lowerCamelCase : List[str] = model(self._prepare_for_class(_lowercase , _lowercase ) ) _lowerCamelCase : List[Any] = len(_lowercase ) self.assertEqual(config.output_hidden_states , _lowercase ) check_encoder_attentions_output(_lowercase ) if self.is_encoder_decoder: _lowerCamelCase : Any = model_class(_lowercase ) _lowerCamelCase : Dict = model(self._prepare_for_class(_lowercase , _lowercase ) ) self.assertEqual(config.output_hidden_states , _lowercase ) check_decoder_attentions_output(_lowercase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _lowerCamelCase : Optional[Any] = True _lowerCamelCase : Optional[int] = model_class(_lowercase ) _lowerCamelCase : Optional[int] = model(self._prepare_for_class(_lowercase , _lowercase ) ) self.assertEqual(config.output_hidden_states , _lowercase ) check_encoder_attentions_output(_lowercase ) # Check attention is always last and order is fine _lowerCamelCase : List[Any] = True _lowerCamelCase : Tuple = True _lowerCamelCase : Optional[Any] = model_class(_lowercase ) _lowerCamelCase : Optional[Any] = model(self._prepare_for_class(_lowercase , _lowercase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_lowercase ) ) self.assertEqual(model.config.output_hidden_states , _lowercase ) check_encoder_attentions_output(_lowercase ) @require_tf class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def A_ ( self ): _lowerCamelCase : Dict = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) _lowerCamelCase : Tuple = tf.constant([[0, 1, 2, 3, 4, 5]] ) _lowerCamelCase : Optional[int] = model(_lowercase )[0] _lowerCamelCase : Optional[Any] = [1, 6, 768] self.assertEqual(output.shape , _lowercase ) _lowerCamelCase : str = tf.constant( [ [ [-0.03_47_54_93, -0.4_68_60_34, -0.30_63_88_32], [0.22_63_72_48, -0.26_98_86_46, -0.7_42_34_24], [0.10_32_48_68, -0.45_01_35_08, -0.58_28_07_84], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _lowercase , atol=1E-4 )
369
"""simple docstring""" def _snake_case ( lowercase__ = 10 ): if not isinstance(lowercase__ , lowercase__ ) or n < 0: raise ValueError('Invalid input' ) _lowerCamelCase : str = 10**n _lowerCamelCase : Union[str, Any] = 28433 * (pow(2 , 7830457 , lowercase__ )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F"{solution(10) = }")
12
0
"""simple docstring""" import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() def A_ ( self ): _lowerCamelCase, _lowerCamelCase : int = FlaxStableDiffusionPipeline.from_pretrained( 'stabilityai/stable-diffusion-2' , revision='bf16' , dtype=jnp.bfloataa , ) _lowerCamelCase : Union[str, Any] = 'A painting of a squirrel eating a burger' _lowerCamelCase : Optional[int] = jax.device_count() _lowerCamelCase : Dict = num_samples * [prompt] _lowerCamelCase : Optional[int] = sd_pipe.prepare_inputs(__lowerCAmelCase ) _lowerCamelCase : List[Any] = replicate(__lowerCAmelCase ) _lowerCamelCase : List[str] = shard(__lowerCAmelCase ) _lowerCamelCase : List[str] = jax.random.PRNGKey(0 ) _lowerCamelCase : Tuple = jax.random.split(__lowerCAmelCase , jax.device_count() ) _lowerCamelCase : Optional[int] = sd_pipe(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , num_inference_steps=25 , jit=__lowerCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) _lowerCamelCase : Dict = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _lowerCamelCase : Tuple = images[0, 253:256, 253:256, -1] _lowerCamelCase : str = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _lowerCamelCase : Optional[Any] = jnp.array([0.42_38, 0.44_14, 0.43_95, 0.44_53, 0.46_29, 0.45_90, 0.45_31, 0.4_55_08, 0.45_12] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def A_ ( self ): _lowerCamelCase : str = 'stabilityai/stable-diffusion-2' _lowerCamelCase, _lowerCamelCase : List[Any] = FlaxDPMSolverMultistepScheduler.from_pretrained(__lowerCAmelCase , subfolder='scheduler' ) _lowerCamelCase, _lowerCamelCase : Optional[Any] = FlaxStableDiffusionPipeline.from_pretrained( __lowerCAmelCase , scheduler=__lowerCAmelCase , revision='bf16' , dtype=jnp.bfloataa , ) _lowerCamelCase : List[Any] = scheduler_params _lowerCamelCase : Tuple = 'A painting of a squirrel eating a burger' _lowerCamelCase : List[Any] = jax.device_count() _lowerCamelCase : List[str] = num_samples * [prompt] _lowerCamelCase : List[Any] = sd_pipe.prepare_inputs(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = replicate(__lowerCAmelCase ) _lowerCamelCase : Dict = shard(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = jax.random.PRNGKey(0 ) _lowerCamelCase : List[str] = jax.random.split(__lowerCAmelCase , jax.device_count() ) _lowerCamelCase : List[Any] = sd_pipe(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , num_inference_steps=25 , jit=__lowerCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) _lowerCamelCase : Union[str, Any] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _lowerCamelCase : Optional[int] = images[0, 253:256, 253:256, -1] _lowerCamelCase : Tuple = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _lowerCamelCase : Optional[int] = jnp.array([0.43_36, 0.4_29_69, 0.44_53, 0.41_99, 0.42_97, 0.45_31, 0.44_34, 0.44_34, 0.42_97] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
370
"""simple docstring""" import argparse import datetime def _snake_case ( lowercase__ ): _lowerCamelCase : Dict = { '0': 'Sunday', '1': 'Monday', '2': 'Tuesday', '3': 'Wednesday', '4': 'Thursday', '5': 'Friday', '6': 'Saturday', } _lowerCamelCase : str = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(lowercase__ ) < 11: raise ValueError('Must be 10 characters long' ) # Get month _lowerCamelCase : int = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError('Month must be between 1 - 12' ) _lowerCamelCase : str = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError('Date separator must be \'-\' or \'/\'' ) # Get day _lowerCamelCase : int = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError('Date must be between 1 - 31' ) # Get second separator _lowerCamelCase : str = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError('Date separator must be \'-\' or \'/\'' ) # Get year _lowerCamelCase : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8500: raise ValueError( 'Year out of range. There has to be some sort of limit...right?' ) # Get datetime obj for validation _lowerCamelCase : str = datetime.date(int(lowercase__ ) , int(lowercase__ ) , int(lowercase__ ) ) # Start math if m <= 2: _lowerCamelCase : str = y - 1 _lowerCamelCase : Tuple = m + 12 # maths var _lowerCamelCase : int = int(str(lowercase__ )[:2] ) _lowerCamelCase : int = int(str(lowercase__ )[2:] ) _lowerCamelCase : int = int(2.6 * m - 5.3_9 ) _lowerCamelCase : int = int(c / 4 ) _lowerCamelCase : int = int(k / 4 ) _lowerCamelCase : int = int(d + k ) _lowerCamelCase : int = int(t + u + v + x ) _lowerCamelCase : int = int(z - (2 * c) ) _lowerCamelCase : int = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError('The date was evaluated incorrectly. Contact developer.' ) # Response _lowerCamelCase : str = f'''Your date {date_input}, is a {days[str(lowercase__ )]}!''' return response if __name__ == "__main__": import doctest doctest.testmod() lowercase__ = argparse.ArgumentParser( description=( """Find out what day of the week nearly any date is or was. Enter """ """date as a string in the mm-dd-yyyy or mm/dd/yyyy format""" ) ) parser.add_argument( """date_input""", type=str, help="""Date as a string (mm-dd-yyyy or mm/dd/yyyy)""" ) lowercase__ = parser.parse_args() zeller(args.date_input)
12
0
from typing import TYPE_CHECKING from ...utils import _LazyModule lowercase__ = {"""tokenization_bertweet""": ["""BertweetTokenizer"""]} if TYPE_CHECKING: from .tokenization_bertweet import BertweetTokenizer else: import sys lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
371
"""simple docstring""" import re def _snake_case ( lowercase__ ): _lowerCamelCase : Optional[int] = re.compile(r'^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$' ) if match := re.search(lowercase__ , lowercase__ ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator("""+918827897895"""))
12
0
"""simple docstring""" def _snake_case ( lowercase__ ): return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
350
"""simple docstring""" # XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path lowercase__ = Path(__file__).resolve().parents[3] / """src""" sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) lowercase__ = {"""base""": """patrickvonplaten/wav2vec2_tiny_random""", """robust""": """patrickvonplaten/wav2vec2_tiny_random_robust"""} lowercase__ = """zero2""" lowercase__ = """zero3""" lowercase__ = [ZEROa, ZEROa] def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param _lowerCamelCase : List[str] = parameterized.to_safe_name('_'.join(str(lowercase__ ) for x in param.args ) ) return f'''{func.__name__}_{param_based_name}''' # Cartesian-product of zero stages with models to test lowercase__ = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class lowerCAmelCase__ ( lowercase ): '''simple docstring''' @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) def A_ ( self , lowercase ): # XXX: run_asr is premature and doesn't save any results # so all we check for now is that the process didn't fail pass def A_ ( self , lowercase , lowercase , lowercase = 10 , lowercase = True , lowercase = True , lowercase = True , ): _lowerCamelCase : List[str] = models[model] _lowerCamelCase : Optional[int] = self.run_trainer( stage=lowercase , model_name=lowercase , eval_steps=lowercase , num_train_epochs=1 , distributed=lowercase , fpaa=lowercase , ) self.do_checks(lowercase ) return output_dir def A_ ( self , lowercase , lowercase , lowercase = 10 , lowercase = 1 , lowercase = True , lowercase = True , ): _lowerCamelCase : List[str] = self.get_auto_remove_tmp_dir('./xxx' , after=lowercase ) _lowerCamelCase : Any = F''' --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(lowercase )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none '''.split() if fpaa: args.extend(['--fp16'] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files _lowerCamelCase : Optional[int] = F'''--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'''.split() _lowerCamelCase : Optional[Any] = [F'''{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'''] _lowerCamelCase : Dict = self.get_launcher(lowercase ) _lowerCamelCase : Union[str, Any] = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(lowercase , env=self.get_env() ) return output_dir def A_ ( self , lowercase=False ): # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup # - it won't be able to handle that # 2. for now testing with just 2 gpus max (since some quality tests may give different # results with mode gpus because we use very little data) _lowerCamelCase : Any = min(2 , get_gpu_count() ) if distributed else 1 return F'''deepspeed --num_nodes 1 --num_gpus {num_gpus}'''.split()
12
0
"""simple docstring""" from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar lowercase__ = TypeVar("""T""") def _snake_case ( lowercase__ ): return (position - 1) // 2 def _snake_case ( lowercase__ ): return (2 * position) + 1 def _snake_case ( lowercase__ ): return (2 * position) + 2 class lowerCAmelCase__ ( Generic[T] ): '''simple docstring''' def __init__( self ): _lowerCamelCase : list[tuple[T, int]] = [] _lowerCamelCase : dict[T, int] = {} _lowerCamelCase : int = 0 def __len__( self ): return self.elements def __repr__( self ): return str(self.heap ) def A_ ( self ): # Check if the priority queue is empty return self.elements == 0 def A_ ( self , lowercase , lowercase ): # Add an element with given priority to the queue self.heap.append((elem, weight) ) _lowerCamelCase : Dict = self.elements self.elements += 1 self._bubble_up(snake_case_ ) def A_ ( self ): # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) _lowerCamelCase : Tuple = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: _lowerCamelCase : int = self.heap[0] self._bubble_down(snake_case_ ) return elem def A_ ( self , lowercase , lowercase ): # Update the weight of the given key _lowerCamelCase : Dict = self.position_map[elem] _lowerCamelCase : Union[str, Any] = (elem, weight) if position > 0: _lowerCamelCase : Optional[Any] = get_parent_position(snake_case_ ) _lowerCamelCase : List[Any] = self.heap[parent_position] if parent_weight > weight: self._bubble_up(snake_case_ ) else: self._bubble_down(snake_case_ ) else: self._bubble_down(snake_case_ ) def A_ ( self , lowercase ): # Place a node at the proper position (upward movement) [to be used internally # only] _lowerCamelCase : Dict = self.position_map[elem] if curr_pos == 0: return None _lowerCamelCase : int = get_parent_position(snake_case_ ) _lowerCamelCase : Dict = self.heap[curr_pos] _lowerCamelCase : Any = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(snake_case_ , snake_case_ ) return self._bubble_up(snake_case_ ) return None def A_ ( self , lowercase ): # Place a node at the proper position (downward movement) [to be used # internally only] _lowerCamelCase : Optional[Any] = self.position_map[elem] _lowerCamelCase : Optional[int] = self.heap[curr_pos] _lowerCamelCase : List[str] = get_child_left_position(snake_case_ ) _lowerCamelCase : int = get_child_right_position(snake_case_ ) if child_left_position < self.elements and child_right_position < self.elements: _lowerCamelCase : Union[str, Any] = self.heap[child_left_position] _lowerCamelCase : int = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(snake_case_ , snake_case_ ) return self._bubble_down(snake_case_ ) if child_left_position < self.elements: _lowerCamelCase : List[Any] = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(snake_case_ , snake_case_ ) return self._bubble_down(snake_case_ ) else: return None if child_right_position < self.elements: _lowerCamelCase : List[Any] = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(snake_case_ , snake_case_ ) return self._bubble_down(snake_case_ ) return None def A_ ( self , lowercase , lowercase ): # Swap the nodes at the given positions _lowerCamelCase : Tuple = self.heap[nodea_pos][0] _lowerCamelCase : List[Any] = self.heap[nodea_pos][0] _lowerCamelCase : List[str] = ( self.heap[nodea_pos], self.heap[nodea_pos], ) _lowerCamelCase : Any = nodea_pos _lowerCamelCase : List[Any] = nodea_pos class lowerCAmelCase__ ( Generic[T] ): '''simple docstring''' def __init__( self ): _lowerCamelCase : dict[T, dict[T, int]] = {} _lowerCamelCase : int = 0 def __repr__( self ): return str(self.connections ) def __len__( self ): return self.nodes def A_ ( self , lowercase ): # Add a node in the graph if it is not in the graph if node not in self.connections: _lowerCamelCase : str = {} self.nodes += 1 def A_ ( self , lowercase , lowercase , lowercase ): # Add an edge between 2 nodes in the graph self.add_node(snake_case_ ) self.add_node(snake_case_ ) _lowerCamelCase : Optional[int] = weight _lowerCamelCase : Optional[Any] = weight def _snake_case ( lowercase__ , ): _lowerCamelCase : dict[T, int] = {node: maxsize for node in graph.connections} _lowerCamelCase : dict[T, T | None] = {node: None for node in graph.connections} _lowerCamelCase : MinPriorityQueue[T] = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(lowerCAmelCase__ , lowerCAmelCase__ ) if priority_queue.is_empty(): return dist, parent # initialization _lowerCamelCase : List[str] = priority_queue.extract_min() _lowerCamelCase : Union[str, Any] = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: _lowerCamelCase : str = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(lowerCAmelCase__ , dist[neighbour] ) _lowerCamelCase : Optional[Any] = node # running prim's algorithm while not priority_queue.is_empty(): _lowerCamelCase : Any = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: _lowerCamelCase : Optional[Any] = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(lowerCAmelCase__ , dist[neighbour] ) _lowerCamelCase : List[Any] = node return dist, parent
351
"""simple docstring""" from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging lowercase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = ["""pixel_values"""] def __init__( self , lowercase = True , lowercase = 1 / 255 , lowercase = True , lowercase = 8 , **lowercase , ): super().__init__(**lowercase ) _lowerCamelCase : Optional[Any] = do_rescale _lowerCamelCase : Union[str, Any] = rescale_factor _lowerCamelCase : Any = do_pad _lowerCamelCase : Optional[int] = pad_size def A_ ( self , lowercase , lowercase , lowercase = None , **lowercase ): return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase ) def A_ ( self , lowercase , lowercase , lowercase = None ): _lowerCamelCase, _lowerCamelCase : Tuple = get_image_size(lowercase ) _lowerCamelCase : Union[str, Any] = (old_height // size + 1) * size - old_height _lowerCamelCase : Tuple = (old_width // size + 1) * size - old_width return pad(lowercase , ((0, pad_height), (0, pad_width)) , mode='symmetric' , data_format=lowercase ) def A_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = ChannelDimension.FIRST , **lowercase , ): _lowerCamelCase : List[str] = do_rescale if do_rescale is not None else self.do_rescale _lowerCamelCase : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCamelCase : Any = do_pad if do_pad is not None else self.do_pad _lowerCamelCase : int = pad_size if pad_size is not None else self.pad_size _lowerCamelCase : Dict = make_list_of_images(lowercase ) if not valid_images(lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. _lowerCamelCase : Dict = [to_numpy_array(lowercase ) for image in images] if do_rescale: _lowerCamelCase : str = [self.rescale(image=lowercase , scale=lowercase ) for image in images] if do_pad: _lowerCamelCase : str = [self.pad(lowercase , size=lowercase ) for image in images] _lowerCamelCase : Any = [to_channel_dimension_format(lowercase , lowercase ) for image in images] _lowerCamelCase : Union[str, Any] = {'pixel_values': images} return BatchFeature(data=lowercase , tensor_type=lowercase )
12
0
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = """▁""" lowercase__ = { """vocab_file""": """vocab.json""", """spm_file""": """sentencepiece.bpe.model""", """tokenizer_config_file""": """tokenizer_config.json""", } lowercase__ = { """vocab_file""": { """facebook/m2m100_418M""": """https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json""", """facebook/m2m100_1.2B""": """https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json""", }, """spm_file""": { """facebook/m2m100_418M""": """https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model""", """facebook/m2m100_1.2B""": """https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model""", }, """tokenizer_config_file""": { """facebook/m2m100_418M""": """https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json""", """facebook/m2m100_1.2B""": """https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json""", }, } lowercase__ = { """facebook/m2m100_418M""": 1024, } # fmt: off lowercase__ = { """m2m100""": ["""af""", """am""", """ar""", """ast""", """az""", """ba""", """be""", """bg""", """bn""", """br""", """bs""", """ca""", """ceb""", """cs""", """cy""", """da""", """de""", """el""", """en""", """es""", """et""", """fa""", """ff""", """fi""", """fr""", """fy""", """ga""", """gd""", """gl""", """gu""", """ha""", """he""", """hi""", """hr""", """ht""", """hu""", """hy""", """id""", """ig""", """ilo""", """is""", """it""", """ja""", """jv""", """ka""", """kk""", """km""", """kn""", """ko""", """lb""", """lg""", """ln""", """lo""", """lt""", """lv""", """mg""", """mk""", """ml""", """mn""", """mr""", """ms""", """my""", """ne""", """nl""", """no""", """ns""", """oc""", """or""", """pa""", """pl""", """ps""", """pt""", """ro""", """ru""", """sd""", """si""", """sk""", """sl""", """so""", """sq""", """sr""", """ss""", """su""", """sv""", """sw""", """ta""", """th""", """tl""", """tn""", """tr""", """uk""", """ur""", """uz""", """vi""", """wo""", """xh""", """yi""", """yo""", """zh""", """zu"""], """wmt21""": ["""en""", """ha""", """is""", """ja""", """cs""", """ru""", """zh""", """de"""] } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = ["input_ids", "attention_mask"] lowerCamelCase__ = [] lowerCamelCase__ = [] def __init__( self , lowercase , lowercase , lowercase=None , lowercase=None , lowercase="<s>" , lowercase="</s>" , lowercase="</s>" , lowercase="<pad>" , lowercase="<unk>" , lowercase="m2m100" , lowercase = None , lowercase=8 , **lowercase , ): _lowerCamelCase : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs _lowerCamelCase : int = language_codes _lowerCamelCase : Union[str, Any] = FAIRSEQ_LANGUAGE_CODES[language_codes] _lowerCamelCase : List[str] = {lang_code: F'''__{lang_code}__''' for lang_code in fairseq_language_code} _lowerCamelCase : Tuple = kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(lowercase ) for lang_code in fairseq_language_code if self.get_lang_token(lowercase ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=lowercase , tgt_lang=lowercase , bos_token=lowercase , eos_token=lowercase , sep_token=lowercase , unk_token=lowercase , pad_token=lowercase , language_codes=lowercase , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=lowercase , **lowercase , ) _lowerCamelCase : List[Any] = vocab_file _lowerCamelCase : Union[str, Any] = load_json(lowercase ) _lowerCamelCase : Any = {v: k for k, v in self.encoder.items()} _lowerCamelCase : Tuple = spm_file _lowerCamelCase : List[str] = load_spm(lowercase , self.sp_model_kwargs ) _lowerCamelCase : str = len(self.encoder ) _lowerCamelCase : List[str] = { self.get_lang_token(lowercase ): self.encoder_size + i for i, lang_code in enumerate(lowercase ) } _lowerCamelCase : Optional[Any] = {lang_code: self.encoder_size + i for i, lang_code in enumerate(lowercase )} _lowerCamelCase : Tuple = {v: k for k, v in self.lang_token_to_id.items()} _lowerCamelCase : Tuple = src_lang if src_lang is not None else 'en' _lowerCamelCase : Any = tgt_lang _lowerCamelCase : Tuple = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) _lowerCamelCase : List[Any] = num_madeup_words @property def A_ ( self ): return len(self.encoder ) + len(self.lang_token_to_id ) @property def A_ ( self ): return self._src_lang @src_lang.setter def A_ ( self , lowercase ): _lowerCamelCase : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def A_ ( self , lowercase ): return self.sp_model.encode(lowercase , out_type=lowercase ) def A_ ( self , lowercase ): if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(lowercase , self.encoder[self.unk_token] ) def A_ ( self , lowercase ): if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(lowercase , self.unk_token ) def A_ ( self , lowercase ): _lowerCamelCase : Union[str, Any] = [] _lowerCamelCase : List[str] = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowercase ) + token _lowerCamelCase : List[str] = [] else: current_sub_tokens.append(lowercase ) out_string += self.sp_model.decode(lowercase ) return out_string.strip() def A_ ( self , lowercase , lowercase = None , lowercase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase , token_ids_a=lowercase , already_has_special_tokens=lowercase ) _lowerCamelCase : Optional[Any] = [1] * len(self.prefix_tokens ) _lowerCamelCase : Tuple = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowercase )) + suffix_ones return prefix_ones + ([0] * len(lowercase )) + ([0] * len(lowercase )) + suffix_ones def A_ ( self , lowercase , lowercase = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def A_ ( self ): _lowerCamelCase : Optional[Any] = {self.convert_ids_to_tokens(lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): _lowerCamelCase : str = self.__dict__.copy() _lowerCamelCase : List[Any] = None return state def __setstate__( self , lowercase ): _lowerCamelCase : Dict = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): _lowerCamelCase : List[str] = {} _lowerCamelCase : int = load_spm(self.spm_file , self.sp_model_kwargs ) def A_ ( self , lowercase , lowercase = None ): _lowerCamelCase : str = Path(lowercase ) if not save_dir.is_dir(): raise OSError(F'''{save_directory} should be a directory''' ) _lowerCamelCase : Dict = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file'] ) _lowerCamelCase : int = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file'] ) save_json(self.encoder , lowercase ) if os.path.abspath(self.spm_file ) != os.path.abspath(lowercase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , lowercase ) elif not os.path.isfile(self.spm_file ): with open(lowercase , 'wb' ) as fi: _lowerCamelCase : List[Any] = self.sp_model.serialized_model_proto() fi.write(lowercase ) return (str(lowercase ), str(lowercase )) def A_ ( self , lowercase , lowercase = "en" , lowercase = None , lowercase = "ro" , **lowercase , ): _lowerCamelCase : Tuple = src_lang _lowerCamelCase : Optional[Any] = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(lowercase , lowercase , **lowercase ) def A_ ( self , lowercase , lowercase , lowercase , **lowercase ): if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) _lowerCamelCase : List[Any] = src_lang _lowerCamelCase : Dict = self(lowercase , add_special_tokens=lowercase , **lowercase ) _lowerCamelCase : List[Any] = self.get_lang_id(lowercase ) _lowerCamelCase : Optional[Any] = tgt_lang_id return inputs def A_ ( self ): self.set_src_lang_special_tokens(self.src_lang ) def A_ ( self ): self.set_tgt_lang_special_tokens(self.tgt_lang ) def A_ ( self , lowercase ): _lowerCamelCase : Optional[Any] = self.get_lang_token(lowercase ) _lowerCamelCase : Optional[Any] = self.lang_token_to_id[lang_token] _lowerCamelCase : Dict = [self.cur_lang_id] _lowerCamelCase : List[str] = [self.eos_token_id] def A_ ( self , lowercase ): _lowerCamelCase : List[Any] = self.get_lang_token(lowercase ) _lowerCamelCase : List[Any] = self.lang_token_to_id[lang_token] _lowerCamelCase : Optional[Any] = [self.cur_lang_id] _lowerCamelCase : Optional[int] = [self.eos_token_id] def A_ ( self , lowercase ): return self.lang_code_to_token[lang] def A_ ( self , lowercase ): _lowerCamelCase : int = self.get_lang_token(lowercase ) return self.lang_token_to_id[lang_token] def _snake_case ( lowercase__ , lowercase__ ): _lowerCamelCase : str = sentencepiece.SentencePieceProcessor(**lowercase__ ) spm.Load(str(lowercase__ ) ) return spm def _snake_case ( lowercase__ ): with open(lowercase__ , 'r' ) as f: return json.load(lowercase__ ) def _snake_case ( lowercase__ , lowercase__ ): with open(lowercase__ , 'w' ) as f: json.dump(lowercase__ , lowercase__ , indent=2 )
352
"""simple docstring""" import os import string import sys lowercase__ = 1 << 8 lowercase__ = { """tab""": ord("""\t"""), """newline""": ord("""\r"""), """esc""": 27, """up""": 65 + ARROW_KEY_FLAG, """down""": 66 + ARROW_KEY_FLAG, """right""": 67 + ARROW_KEY_FLAG, """left""": 68 + ARROW_KEY_FLAG, """mod_int""": 91, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 50, """delete""": 51, """pg_up""": 53, """pg_down""": 54, } lowercase__ = KEYMAP["""up"""] lowercase__ = KEYMAP["""left"""] if sys.platform == "win32": lowercase__ = [] lowercase__ = { B"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, B"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(10): lowercase__ = ord(str(i)) def _snake_case ( ): if os.name == "nt": import msvcrt _lowerCamelCase : Any = 'mbcs' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(lowercase__ ) == 0: # Read the keystroke _lowerCamelCase : str = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): _lowerCamelCase : List[Any] = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: _lowerCamelCase : Union[str, Any] = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) ) WIN_CH_BUFFER.append(lowercase__ ) if ord(lowercase__ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) _lowerCamelCase : List[Any] = chr(KEYMAP['esc'] ) except KeyError: _lowerCamelCase : int = cha[1] else: _lowerCamelCase : Optional[int] = ch.decode(lowercase__ ) else: _lowerCamelCase : Union[str, Any] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty _lowerCamelCase : List[str] = sys.stdin.fileno() _lowerCamelCase : Tuple = termios.tcgetattr(lowercase__ ) try: tty.setraw(lowercase__ ) _lowerCamelCase : Optional[Any] = sys.stdin.read(1 ) finally: termios.tcsetattr(lowercase__ , termios.TCSADRAIN , lowercase__ ) return ch def _snake_case ( ): _lowerCamelCase : int = get_raw_chars() if ord(lowercase__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(lowercase__ ) == KEYMAP["esc"]: _lowerCamelCase : Union[str, Any] = get_raw_chars() if ord(lowercase__ ) == KEYMAP["mod_int"]: _lowerCamelCase : List[Any] = get_raw_chars() if ord(lowercase__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(lowercase__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(lowercase__ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
12
0
"""simple docstring""" import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def _snake_case ( lowercase__ , lowercase__ ): """simple docstring""" if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer _lowerCamelCase : List[Any] = flax_key_tuple[:-1] + ('weight',) _lowerCamelCase : Union[str, Any] = torch.permute(lowercase__ , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(lowercase__ ): # linear layer _lowerCamelCase : Any = flax_key_tuple[:-1] + ('weight',) _lowerCamelCase : Optional[Any] = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: _lowerCamelCase : Optional[Any] = flax_key_tuple[:-1] + ('weight',) return flax_key_tuple, flax_tensor def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): """simple docstring""" if "metadata" in layer: _lowerCamelCase : Optional[int] = layer.split('metadata' ) _lowerCamelCase : Tuple = ''.join(split_layer[0] )[:-1] _lowerCamelCase : Tuple = [tuple(('metadata' + split_layer[1]).split('/' ) )] elif "kvstore" in layer: _lowerCamelCase : List[str] = layer.split('kvstore' ) _lowerCamelCase : Any = ''.join(split_layer[0] )[:-1] _lowerCamelCase : List[Any] = [tuple(('kvstore' + split_layer[1]).split('/' ) )] else: _lowerCamelCase : List[Any] = layer.split('/' ) _lowerCamelCase : Dict = '/'.join(split_layer[:-1] ) _lowerCamelCase : Dict = (split_layer[-1],) if "kvstore/path" in layer: _lowerCamelCase : str = f'''{switch_checkpoint_path}/{checkpoint_info[layer]}''' elif "kvstore/driver" in layer: _lowerCamelCase : str = 'file' else: _lowerCamelCase : str = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def _snake_case ( lowercase__ , lowercase__ ): """simple docstring""" _lowerCamelCase : Dict = rename_keys(lowercase__ ) _lowerCamelCase : Optional[int] = {} for k, v in current_block.items(): _lowerCamelCase : List[str] = v _lowerCamelCase : Dict = new_current_block torch.save(lowercase__ , lowercase__ ) def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = WEIGHTS_NAME ): """simple docstring""" _lowerCamelCase : Dict = convert_file_size_to_int(lowercase__ ) _lowerCamelCase : Tuple = [] _lowerCamelCase : int = {} _lowerCamelCase : Optional[Any] = 0 _lowerCamelCase : int = 0 os.makedirs(lowercase__ , exist_ok=lowercase__ ) with gfile.GFile(switch_checkpoint_path + '/checkpoint' , 'rb' ) as fp: _lowerCamelCase : List[str] = serialization.msgpack_restore(fp.read() )['optimizer']['target'] _lowerCamelCase : List[str] = flatten_dict(lowercase__ , sep='/' ) _lowerCamelCase : Optional[Any] = {} for layer in checkpoint_info.keys(): _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[str] = get_key_and_tensorstore_dict( lowercase__ , lowercase__ , lowercase__ ) if curr_real_layer_name in all_layers: _lowerCamelCase : Any = content else: _lowerCamelCase : int = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file _lowerCamelCase : List[str] = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() _lowerCamelCase : Any = torch.tensor(lowercase__ ) _lowerCamelCase : str = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts _lowerCamelCase, _lowerCamelCase : Tuple = rename_base_flax_keys(tuple(key.split('/' ) ) , lowercase__ ) _lowerCamelCase : List[str] = '/'.join(lowercase__ ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: _lowerCamelCase : Dict = os.path.join( lowercase__ , weights_name.replace('.bin' , f'''-{len(lowercase__ )+1:05d}-of-???.bin''' ) ) rename_and_save_block(lowercase__ , lowercase__ ) sharded_state_dicts.append(current_block.keys() ) del current_block _lowerCamelCase : Optional[int] = {} _lowerCamelCase : int = 0 _lowerCamelCase : Dict = raw_weights.to(getattr(lowercase__ , lowercase__ ) ) current_block_size += weight_size total_size += weight_size # Add the last block _lowerCamelCase : str = os.path.join(lowercase__ , weights_name.replace('.bin' , f'''-{len(lowercase__ )+1:05d}-of-???.bin''' ) ) rename_and_save_block(lowercase__ , lowercase__ ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(lowercase__ ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index _lowerCamelCase : Union[str, Any] = {} _lowerCamelCase : int = {} for idx, shard in enumerate(lowercase__ ): _lowerCamelCase : str = weights_name.replace( '.bin' , f'''-{idx+1:05d}-of-{len(lowercase__ ):05d}.bin''' ) # len(sharded_state_dicts):05d} _lowerCamelCase : int = os.path.join(lowercase__ , weights_name.replace('.bin' , f'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(lowercase__ , os.path.join(lowercase__ , lowercase__ ) ) _lowerCamelCase : List[str] = shard for key in shard: _lowerCamelCase : List[str] = shard_file # Add the metadata _lowerCamelCase : str = {'total_size': total_size} _lowerCamelCase : Any = {'metadata': metadata, 'weight_map': weight_map} with open(os.path.join(lowercase__ , lowercase__ ) , 'w' , encoding='utf-8' ) as f: _lowerCamelCase : Optional[Any] = json.dumps(lowercase__ , indent=2 , sort_keys=lowercase__ ) + '\n' f.write(lowercase__ ) return metadata, index if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--switch_t5x_checkpoint_path""", default="""/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600""", type=str, required=False, help="""Path to a directory containing a folder per layer. Follows the original Google format.""", ) parser.add_argument("""--max_shard_size""", default="""10GB""", required=False, help="""Max shard size""") parser.add_argument("""--dtype""", default="""bfloat16""", type=str, required=False, help="""dtype of the saved model""") parser.add_argument( """--pytorch_dump_folder_path""", default="""/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted""", type=str, required=False, help="""Path to the output pytorch model.""", ) lowercase__ = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def _snake_case ( ): """simple docstring""" from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer _lowerCamelCase : Tuple = SwitchTransformersConfig.from_pretrained('google/switch-base-8' ) config.save_pretrained('/home/arthur_huggingface_co/transformers/switch_converted' ) _lowerCamelCase : Optional[Any] = SwitchTransformersForConditionalGeneration.from_pretrained( '/home/arthur_huggingface_co/transformers/switch_converted' , device_map='auto' ) _lowerCamelCase : List[str] = TaTokenizer.from_pretrained('t5-small' ) _lowerCamelCase : Tuple = 'A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.' _lowerCamelCase : List[Any] = tokenizer(lowercase__ , return_tensors='pt' ).input_ids _lowerCamelCase : Optional[Any] = model.generate(lowercase__ , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
353
"""simple docstring""" from typing import Any def _snake_case ( lowercase__ ): if not input_list: return [] _lowerCamelCase : Any = [input_list.count(lowercase__ ) for value in input_list] _lowerCamelCase : Dict = max(lowercase__ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(lowercase__ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
12
0
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING lowercase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' lowerCamelCase__ = '''upernet''' def __init__( self , lowercase=None , lowercase=512 , lowercase=0.02 , lowercase=[1, 2, 3, 6] , lowercase=True , lowercase=0.4 , lowercase=384 , lowercase=256 , lowercase=1 , lowercase=False , lowercase=255 , **lowercase , ): super().__init__(**UpperCamelCase_ ) if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) _lowerCamelCase : int = CONFIG_MAPPING['resnet'](out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) elif isinstance(UpperCamelCase_ , UpperCamelCase_ ): _lowerCamelCase : Optional[Any] = backbone_config.get('model_type' ) _lowerCamelCase : int = CONFIG_MAPPING[backbone_model_type] _lowerCamelCase : Optional[Any] = config_class.from_dict(UpperCamelCase_ ) _lowerCamelCase : List[Any] = backbone_config _lowerCamelCase : Tuple = hidden_size _lowerCamelCase : int = initializer_range _lowerCamelCase : str = pool_scales _lowerCamelCase : Dict = use_auxiliary_head _lowerCamelCase : List[str] = auxiliary_loss_weight _lowerCamelCase : Optional[int] = auxiliary_in_channels _lowerCamelCase : int = auxiliary_channels _lowerCamelCase : Union[str, Any] = auxiliary_num_convs _lowerCamelCase : Union[str, Any] = auxiliary_concat_input _lowerCamelCase : str = loss_ignore_index def A_ ( self ): _lowerCamelCase : List[str] = copy.deepcopy(self.__dict__ ) _lowerCamelCase : Optional[int] = self.backbone_config.to_dict() _lowerCamelCase : Any = self.__class__.model_type return output
354
"""simple docstring""" def _snake_case ( lowercase__ ): # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection _lowerCamelCase : List[str] = len(lowercase__ ) _lowerCamelCase : List[str] = max(lowercase__ ) _lowerCamelCase : List[str] = min(lowercase__ ) # create the counting array _lowerCamelCase : List[Any] = coll_max + 1 - coll_min _lowerCamelCase : List[Any] = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , lowercase__ ): _lowerCamelCase : Optional[int] = counting_arr[i] + counting_arr[i - 1] # create the output collection _lowerCamelCase : Dict = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , lowercase__ ) ): _lowerCamelCase : Any = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def _snake_case ( lowercase__ ): return "".join([chr(lowercase__ ) for i in counting_sort([ord(lowercase__ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("""thisisthestring""") == "eghhiiinrsssttt" lowercase__ = input("""Enter numbers separated by a comma:\n""").strip() lowercase__ = [int(item) for item in user_input.split(""",""")] print(counting_sort(unsorted))
12
0
"""simple docstring""" import argparse import copy def _snake_case ( lowercase__ ): _lowerCamelCase : Union[str, Any] = {} with open(lowerCamelCase_ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: _lowerCamelCase : Dict = [] _list.append([line.split()[1], line.split()[2]] ) _lowerCamelCase : List[str] = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: _lowerCamelCase : str = [] _list.append([line.split()[0], line.split()[2]] ) _lowerCamelCase : Union[str, Any] = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def _snake_case ( lowercase__ , lowercase__ ): with open(lowerCamelCase_ ) as f: _lowerCamelCase : Any = f.read(1 ) _lowerCamelCase : Dict = start_node _lowerCamelCase : Dict = [] _lowerCamelCase : List[Any] = start_node _lowerCamelCase : List[str] = 0 while visiting not in first_solution: _lowerCamelCase : Dict = 10000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(lowerCamelCase_ ) and k[0] not in first_solution: _lowerCamelCase : int = k[1] _lowerCamelCase : Optional[int] = k[0] first_solution.append(lowerCamelCase_ ) _lowerCamelCase : Tuple = distance_of_first_solution + int(lowerCamelCase_ ) _lowerCamelCase : str = best_node first_solution.append(lowerCamelCase_ ) _lowerCamelCase : List[Any] = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 _lowerCamelCase : Union[str, Any] = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 10000 ) return first_solution, distance_of_first_solution def _snake_case ( lowercase__ , lowercase__ ): _lowerCamelCase : Union[str, Any] = [] for n in solution[1:-1]: _lowerCamelCase : Optional[Any] = solution.index(lowerCamelCase_ ) for kn in solution[1:-1]: _lowerCamelCase : Any = solution.index(lowerCamelCase_ ) if n == kn: continue _lowerCamelCase : int = copy.deepcopy(lowerCamelCase_ ) _lowerCamelCase : List[Any] = kn _lowerCamelCase : Any = n _lowerCamelCase : List[Any] = 0 for k in _tmp[:-1]: _lowerCamelCase : str = _tmp[_tmp.index(lowerCamelCase_ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: _lowerCamelCase : List[Any] = distance + int(i[1] ) _tmp.append(lowerCamelCase_ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) _lowerCamelCase : List[Any] = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda lowercase__ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : str = 1 _lowerCamelCase : Tuple = first_solution _lowerCamelCase : Union[str, Any] = [] _lowerCamelCase : Optional[Any] = distance_of_first_solution _lowerCamelCase : Optional[Any] = solution while count <= iters: _lowerCamelCase : Union[str, Any] = find_neighborhood(lowerCamelCase_ , lowerCamelCase_ ) _lowerCamelCase : int = 0 _lowerCamelCase : Optional[Any] = neighborhood[index_of_best_solution] _lowerCamelCase : int = len(lowerCamelCase_ ) - 1 _lowerCamelCase : int = False while not found: _lowerCamelCase : Any = 0 while i < len(lowerCamelCase_ ): if best_solution[i] != solution[i]: _lowerCamelCase : List[str] = best_solution[i] _lowerCamelCase : List[Any] = solution[i] break _lowerCamelCase : int = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) _lowerCamelCase : Optional[int] = True _lowerCamelCase : Dict = best_solution[:-1] _lowerCamelCase : Optional[int] = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: _lowerCamelCase : List[str] = cost _lowerCamelCase : Union[str, Any] = solution else: _lowerCamelCase : Optional[Any] = index_of_best_solution + 1 _lowerCamelCase : Union[str, Any] = neighborhood[index_of_best_solution] if len(lowerCamelCase_ ) >= size: tabu_list.pop(0 ) _lowerCamelCase : Optional[int] = count + 1 return best_solution_ever, best_cost def _snake_case ( lowercase__=None ): _lowerCamelCase : Union[str, Any] = generate_neighbours(args.File ) _lowerCamelCase : List[str] = generate_first_solution( args.File , lowerCamelCase_ ) _lowerCamelCase : List[Any] = tabu_search( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , args.Iterations , args.Size , ) print(f'''Best solution: {best_sol}, with total distance: {best_cost}.''' ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser(description="""Tabu Search""") parser.add_argument( """-f""", """--File""", type=str, help="""Path to the file containing the data""", required=True, ) parser.add_argument( """-i""", """--Iterations""", type=int, help="""How many iterations the algorithm should perform""", required=True, ) parser.add_argument( """-s""", """--Size""", type=int, help="""Size of the tabu list""", required=True ) # Pass the arguments to main method main(parser.parse_args())
355
"""simple docstring""" import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( """--original_config_file""", default=None, type=str, help="""The YAML config file corresponding to the original architecture.""", ) parser.add_argument( """--num_in_channels""", default=None, type=int, help="""The number of input channels. If `None` number of input channels will be automatically inferred.""", ) parser.add_argument( """--scheduler_type""", default="""pndm""", type=str, help="""Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']""", ) parser.add_argument( """--pipeline_type""", default=None, type=str, help=( """The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'""" """. If `None` pipeline will be automatically inferred.""" ), ) parser.add_argument( """--image_size""", default=None, type=int, help=( """The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2""" """ Base. Use 768 for Stable Diffusion v2.""" ), ) parser.add_argument( """--prediction_type""", default=None, type=str, help=( """The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable""" """ Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2.""" ), ) parser.add_argument( """--extract_ema""", action="""store_true""", help=( """Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights""" """ or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield""" """ higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.""" ), ) parser.add_argument( """--upcast_attention""", action="""store_true""", help=( """Whether the attention computation should always be upcasted. This is necessary when running stable""" """ diffusion 2.1.""" ), ) parser.add_argument( """--from_safetensors""", action="""store_true""", help="""If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.""", ) parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") parser.add_argument( """--stable_unclip""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.""", ) parser.add_argument( """--stable_unclip_prior""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.""", ) parser.add_argument( """--clip_stats_path""", type=str, help="""Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.""", required=False, ) parser.add_argument( """--controlnet""", action="""store_true""", default=None, help="""Set flag if this is a controlnet checkpoint.""" ) parser.add_argument("""--half""", action="""store_true""", help="""Save weights in half precision.""") parser.add_argument( """--vae_path""", type=str, default=None, required=False, help="""Set to a path, hub id to an already converted vae to not convert it again.""", ) lowercase__ = parser.parse_args() lowercase__ = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
12
0
"""simple docstring""" import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self , lowercase , lowercase=7 , lowercase=3 , lowercase=18 , lowercase=30 , lowercase=400 , lowercase=True , lowercase=None , lowercase=True , ): _lowerCamelCase : int = size if size is not None else {'height': 18, 'width': 18} _lowerCamelCase : List[str] = parent _lowerCamelCase : Optional[Any] = batch_size _lowerCamelCase : Optional[int] = num_channels _lowerCamelCase : Dict = image_size _lowerCamelCase : int = min_resolution _lowerCamelCase : Tuple = max_resolution _lowerCamelCase : List[str] = do_resize _lowerCamelCase : Dict = size _lowerCamelCase : Dict = do_normalize def A_ ( self ): return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.88_66_44_36_34_03_32_03, 0.66_18_82_93_69_54_49_83, 0.38_91_74_64_01_78_68_04], [-0.60_42_55_91_46_88_11_04, -0.0_22_95_00_88_60_52_84_69, 0.54_23_79_73_69_00_32_96], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class lowerCAmelCase__ ( lowercase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = ImageGPTImageProcessor if is_vision_available() else None def A_ ( self ): _lowerCamelCase : Dict = ImageGPTImageProcessingTester(self ) @property def A_ ( self ): return self.image_processor_tester.prepare_image_processor_dict() def A_ ( self ): _lowerCamelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , 'clusters' ) ) self.assertTrue(hasattr(_A , 'do_resize' ) ) self.assertTrue(hasattr(_A , 'size' ) ) self.assertTrue(hasattr(_A , 'do_normalize' ) ) def A_ ( self ): _lowerCamelCase : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) _lowerCamelCase : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def A_ ( self ): _lowerCamelCase : int = self.image_processing_class(**self.image_processor_dict ) _lowerCamelCase : Optional[int] = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(_A , obj[key] ) ) else: self.assertEqual(obj[key] , _A ) def A_ ( self ): _lowerCamelCase : Dict = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _lowerCamelCase : List[Any] = os.path.join(_A , 'image_processor.json' ) image_processor_first.to_json_file(_A ) _lowerCamelCase : Optional[Any] = self.image_processing_class.from_json_file(_A ).to_dict() _lowerCamelCase : Optional[int] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(_A , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , _A ) def A_ ( self ): _lowerCamelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(_A ) _lowerCamelCase : Optional[int] = self.image_processing_class.from_pretrained(_A ).to_dict() _lowerCamelCase : Any = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(_A , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , _A ) @unittest.skip('ImageGPT requires clusters at initialization' ) def A_ ( self ): pass def _snake_case ( ): _lowerCamelCase : Tuple = load_dataset('hf-internal-testing/fixtures_image_utils' , split='test' ) _lowerCamelCase : List[str] = Image.open(dataset[4]['file'] ) _lowerCamelCase : List[Any] = Image.open(dataset[5]['file'] ) _lowerCamelCase : Any = [imagea, imagea] return images @require_vision @require_torch class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def A_ ( self ): _lowerCamelCase : Optional[int] = ImageGPTImageProcessor.from_pretrained('openai/imagegpt-small' ) _lowerCamelCase : Union[str, Any] = prepare_images() # test non-batched _lowerCamelCase : List[Any] = image_processing(images[0] , return_tensors='pt' ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1024) ) _lowerCamelCase : int = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() , _A ) # test batched _lowerCamelCase : List[str] = image_processing(_A , return_tensors='pt' ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1024) ) _lowerCamelCase : Any = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , _A )
356
"""simple docstring""" import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = (UnCLIPScheduler,) def A_ ( self , **lowercase ): _lowerCamelCase : Any = { 'num_train_timesteps': 1000, 'variance_type': 'fixed_small_log', 'clip_sample': True, 'clip_sample_range': 1.0, 'prediction_type': 'epsilon', } config.update(**lowercase ) return config def A_ ( self ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=lowercase ) def A_ ( self ): for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=lowercase ) def A_ ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowercase ) def A_ ( self ): for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=lowercase ) def A_ ( self ): for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=lowercase ) def A_ ( self ): for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=lowercase , prev_timestep=lowercase ) def A_ ( self ): _lowerCamelCase : Optional[Any] = self.scheduler_classes[0] _lowerCamelCase : Optional[int] = self.get_scheduler_config(variance_type='fixed_small_log' ) _lowerCamelCase : str = scheduler_class(**lowercase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_54_96_25 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_99_49_87 ) ) < 1E-5 def A_ ( self ): _lowerCamelCase : List[str] = self.scheduler_classes[0] _lowerCamelCase : Optional[Any] = self.get_scheduler_config(variance_type='learned_range' ) _lowerCamelCase : int = scheduler_class(**lowercase ) _lowerCamelCase : List[str] = 0.5 assert scheduler._get_variance(1 , predicted_variance=lowercase ) - -10.1_71_27_90 < 1E-5 assert scheduler._get_variance(487 , predicted_variance=lowercase ) - -5.7_99_80_52 < 1E-5 assert scheduler._get_variance(999 , predicted_variance=lowercase ) - -0.0_01_00_11 < 1E-5 def A_ ( self ): _lowerCamelCase : List[Any] = self.scheduler_classes[0] _lowerCamelCase : Optional[Any] = self.get_scheduler_config() _lowerCamelCase : Tuple = scheduler_class(**lowercase ) _lowerCamelCase : Union[str, Any] = scheduler.timesteps _lowerCamelCase : Any = self.dummy_model() _lowerCamelCase : Optional[Any] = self.dummy_sample_deter _lowerCamelCase : Optional[int] = torch.manual_seed(0 ) for i, t in enumerate(lowercase ): # 1. predict noise residual _lowerCamelCase : Tuple = model(lowercase , lowercase ) # 2. predict previous mean of sample x_t-1 _lowerCamelCase : List[Any] = scheduler.step(lowercase , lowercase , lowercase , generator=lowercase ).prev_sample _lowerCamelCase : Optional[int] = pred_prev_sample _lowerCamelCase : Optional[Any] = torch.sum(torch.abs(lowercase ) ) _lowerCamelCase : List[Any] = torch.mean(torch.abs(lowercase ) ) assert abs(result_sum.item() - 2_52.2_68_24_95 ) < 1E-2 assert abs(result_mean.item() - 0.3_28_47_43 ) < 1E-3 def A_ ( self ): _lowerCamelCase : Tuple = self.scheduler_classes[0] _lowerCamelCase : str = self.get_scheduler_config() _lowerCamelCase : Optional[Any] = scheduler_class(**lowercase ) scheduler.set_timesteps(25 ) _lowerCamelCase : Optional[Any] = scheduler.timesteps _lowerCamelCase : Optional[int] = self.dummy_model() _lowerCamelCase : Any = self.dummy_sample_deter _lowerCamelCase : str = torch.manual_seed(0 ) for i, t in enumerate(lowercase ): # 1. predict noise residual _lowerCamelCase : List[Any] = model(lowercase , lowercase ) if i + 1 == timesteps.shape[0]: _lowerCamelCase : Optional[int] = None else: _lowerCamelCase : List[str] = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 _lowerCamelCase : Union[str, Any] = scheduler.step( lowercase , lowercase , lowercase , prev_timestep=lowercase , generator=lowercase ).prev_sample _lowerCamelCase : List[Any] = pred_prev_sample _lowerCamelCase : Optional[Any] = torch.sum(torch.abs(lowercase ) ) _lowerCamelCase : List[str] = torch.mean(torch.abs(lowercase ) ) assert abs(result_sum.item() - 2_58.2_04_49_83 ) < 1E-2 assert abs(result_mean.item() - 0.3_36_20_38 ) < 1E-3 def A_ ( self ): pass def A_ ( self ): pass
12
0
"""simple docstring""" from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor lowercase__ = transforms.Compose( [ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def _snake_case ( lowercase__ ): if isinstance(_A , torch.Tensor ): return image elif isinstance(_A , PIL.Image.Image ): _lowerCamelCase : str = [image] _lowerCamelCase : Dict = [trans(img.convert('RGB' ) ) for img in image] _lowerCamelCase : Optional[int] = torch.stack(_A ) return image class lowerCAmelCase__ ( lowerCamelCase__ ): '''simple docstring''' def __init__( self , lowercase , lowercase ): super().__init__() # make sure scheduler can always be converted to DDIM _lowerCamelCase : str = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=__snake_case , scheduler=__snake_case ) def A_ ( self , lowercase ): if strength < 0 or strength > 1: raise ValueError(F'''The value of strength should in [0.0, 1.0] but is {strength}''' ) def A_ ( self , lowercase , lowercase , lowercase ): # get the original timestep using init_timestep _lowerCamelCase : Union[str, Any] = min(int(num_inference_steps * strength ) , __snake_case ) _lowerCamelCase : str = max(num_inference_steps - init_timestep , 0 ) _lowerCamelCase : int = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase=None ): if not isinstance(__snake_case , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(__snake_case )}''' ) _lowerCamelCase : Union[str, Any] = image.to(device=__snake_case , dtype=__snake_case ) if isinstance(__snake_case , __snake_case ) and len(__snake_case ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(__snake_case )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) _lowerCamelCase : List[Any] = init_latents.shape _lowerCamelCase : str = randn_tensor(__snake_case , generator=__snake_case , device=__snake_case , dtype=__snake_case ) # get latents print('add noise to latents at timestep' , __snake_case ) _lowerCamelCase : List[Any] = self.scheduler.add_noise(__snake_case , __snake_case , __snake_case ) _lowerCamelCase : Dict = init_latents return latents @torch.no_grad() def __call__( self , lowercase = None , lowercase = 0.8 , lowercase = 1 , lowercase = None , lowercase = 0.0 , lowercase = 50 , lowercase = None , lowercase = "pil" , lowercase = True , ): self.check_inputs(__snake_case ) # 2. Preprocess image _lowerCamelCase : Tuple = preprocess(__snake_case ) # 3. set timesteps self.scheduler.set_timesteps(__snake_case , device=self.device ) _lowerCamelCase : Optional[Any] = self.get_timesteps(__snake_case , __snake_case , self.device ) _lowerCamelCase : List[str] = timesteps[:1].repeat(__snake_case ) # 4. Prepare latent variables _lowerCamelCase : List[str] = self.prepare_latents(__snake_case , __snake_case , __snake_case , self.unet.dtype , self.device , __snake_case ) _lowerCamelCase : Optional[Any] = latents # 5. Denoising loop for t in self.progress_bar(__snake_case ): # 1. predict noise model_output _lowerCamelCase : List[Any] = self.unet(__snake_case , __snake_case ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _lowerCamelCase : Optional[int] = self.scheduler.step( __snake_case , __snake_case , __snake_case , eta=__snake_case , use_clipped_model_output=__snake_case , generator=__snake_case , ).prev_sample _lowerCamelCase : Optional[Any] = (image / 2 + 0.5).clamp(0 , 1 ) _lowerCamelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _lowerCamelCase : List[str] = self.numpy_to_pil(__snake_case ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=__snake_case )
357
"""simple docstring""" import math from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { """facebook/data2vec-base-960h""": """https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json""", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """data2vec-audio""" def __init__( self , lowercase=32 , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=0.1 , lowercase=0.0 , lowercase=0.1 , lowercase=0.1 , lowercase=0.02 , lowercase=1E-5 , lowercase="gelu" , lowercase=(512, 512, 512, 512, 512, 512, 512) , lowercase=(5, 2, 2, 2, 2, 2, 2) , lowercase=(10, 3, 3, 3, 3, 2, 2) , lowercase=False , lowercase=16 , lowercase=19 , lowercase=5 , lowercase=0.05 , lowercase=10 , lowercase=2 , lowercase=0.0 , lowercase=10 , lowercase=0 , lowercase="sum" , lowercase=False , lowercase=False , lowercase=256 , lowercase=(512, 512, 512, 512, 1500) , lowercase=(5, 3, 3, 1, 1) , lowercase=(1, 2, 3, 1, 1) , lowercase=512 , lowercase=0 , lowercase=1 , lowercase=2 , lowercase=False , lowercase=3 , lowercase=2 , lowercase=3 , lowercase=None , **lowercase , ): super().__init__(**lowercase , pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase ) _lowerCamelCase : str = hidden_size _lowerCamelCase : str = feat_extract_activation _lowerCamelCase : Optional[Any] = list(lowercase ) _lowerCamelCase : Dict = list(lowercase ) _lowerCamelCase : Dict = list(lowercase ) _lowerCamelCase : Optional[Any] = conv_bias _lowerCamelCase : Union[str, Any] = num_conv_pos_embeddings _lowerCamelCase : List[Any] = num_conv_pos_embedding_groups _lowerCamelCase : List[Any] = conv_pos_kernel_size _lowerCamelCase : Optional[int] = len(self.conv_dim ) _lowerCamelCase : List[str] = num_hidden_layers _lowerCamelCase : Any = intermediate_size _lowerCamelCase : List[str] = hidden_act _lowerCamelCase : Tuple = num_attention_heads _lowerCamelCase : Any = hidden_dropout _lowerCamelCase : Union[str, Any] = attention_dropout _lowerCamelCase : str = activation_dropout _lowerCamelCase : Any = feat_proj_dropout _lowerCamelCase : Tuple = final_dropout _lowerCamelCase : Union[str, Any] = layerdrop _lowerCamelCase : List[Any] = layer_norm_eps _lowerCamelCase : Optional[Any] = initializer_range _lowerCamelCase : Optional[int] = vocab_size _lowerCamelCase : Tuple = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCamelCase : Optional[Any] = mask_time_prob _lowerCamelCase : List[Any] = mask_time_length _lowerCamelCase : List[Any] = mask_time_min_masks _lowerCamelCase : Tuple = mask_feature_prob _lowerCamelCase : Optional[Any] = mask_feature_length _lowerCamelCase : Dict = mask_feature_min_masks # ctc loss _lowerCamelCase : Tuple = ctc_loss_reduction _lowerCamelCase : str = ctc_zero_infinity # adapter _lowerCamelCase : Union[str, Any] = add_adapter _lowerCamelCase : List[Any] = adapter_kernel_size _lowerCamelCase : Optional[Any] = adapter_stride _lowerCamelCase : List[Any] = num_adapter_layers _lowerCamelCase : int = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowerCamelCase : Optional[int] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowerCamelCase : List[str] = list(lowercase ) _lowerCamelCase : Optional[Any] = list(lowercase ) _lowerCamelCase : Any = list(lowercase ) _lowerCamelCase : Optional[Any] = xvector_output_dim @property def A_ ( self ): return math.prod(self.conv_stride )
12
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class lowerCAmelCase__ ( metaclass=SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCamelCase__ = ['''torch''', '''scipy'''] def __init__( self , *lowercase , **lowercase ): requires_backends(self , ['torch', 'scipy'] ) @classmethod def A_ ( cls , *lowercase , **lowercase ): requires_backends(cls , ['torch', 'scipy'] ) @classmethod def A_ ( cls , *lowercase , **lowercase ): requires_backends(cls , ['torch', 'scipy'] )
358
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool lowercase__ = { """Acehnese Arabic""": """ace_Arab""", """Acehnese Latin""": """ace_Latn""", """Mesopotamian Arabic""": """acm_Arab""", """Ta'izzi-Adeni Arabic""": """acq_Arab""", """Tunisian Arabic""": """aeb_Arab""", """Afrikaans""": """afr_Latn""", """South Levantine Arabic""": """ajp_Arab""", """Akan""": """aka_Latn""", """Amharic""": """amh_Ethi""", """North Levantine Arabic""": """apc_Arab""", """Modern Standard Arabic""": """arb_Arab""", """Modern Standard Arabic Romanized""": """arb_Latn""", """Najdi Arabic""": """ars_Arab""", """Moroccan Arabic""": """ary_Arab""", """Egyptian Arabic""": """arz_Arab""", """Assamese""": """asm_Beng""", """Asturian""": """ast_Latn""", """Awadhi""": """awa_Deva""", """Central Aymara""": """ayr_Latn""", """South Azerbaijani""": """azb_Arab""", """North Azerbaijani""": """azj_Latn""", """Bashkir""": """bak_Cyrl""", """Bambara""": """bam_Latn""", """Balinese""": """ban_Latn""", """Belarusian""": """bel_Cyrl""", """Bemba""": """bem_Latn""", """Bengali""": """ben_Beng""", """Bhojpuri""": """bho_Deva""", """Banjar Arabic""": """bjn_Arab""", """Banjar Latin""": """bjn_Latn""", """Standard Tibetan""": """bod_Tibt""", """Bosnian""": """bos_Latn""", """Buginese""": """bug_Latn""", """Bulgarian""": """bul_Cyrl""", """Catalan""": """cat_Latn""", """Cebuano""": """ceb_Latn""", """Czech""": """ces_Latn""", """Chokwe""": """cjk_Latn""", """Central Kurdish""": """ckb_Arab""", """Crimean Tatar""": """crh_Latn""", """Welsh""": """cym_Latn""", """Danish""": """dan_Latn""", """German""": """deu_Latn""", """Southwestern Dinka""": """dik_Latn""", """Dyula""": """dyu_Latn""", """Dzongkha""": """dzo_Tibt""", """Greek""": """ell_Grek""", """English""": """eng_Latn""", """Esperanto""": """epo_Latn""", """Estonian""": """est_Latn""", """Basque""": """eus_Latn""", """Ewe""": """ewe_Latn""", """Faroese""": """fao_Latn""", """Fijian""": """fij_Latn""", """Finnish""": """fin_Latn""", """Fon""": """fon_Latn""", """French""": """fra_Latn""", """Friulian""": """fur_Latn""", """Nigerian Fulfulde""": """fuv_Latn""", """Scottish Gaelic""": """gla_Latn""", """Irish""": """gle_Latn""", """Galician""": """glg_Latn""", """Guarani""": """grn_Latn""", """Gujarati""": """guj_Gujr""", """Haitian Creole""": """hat_Latn""", """Hausa""": """hau_Latn""", """Hebrew""": """heb_Hebr""", """Hindi""": """hin_Deva""", """Chhattisgarhi""": """hne_Deva""", """Croatian""": """hrv_Latn""", """Hungarian""": """hun_Latn""", """Armenian""": """hye_Armn""", """Igbo""": """ibo_Latn""", """Ilocano""": """ilo_Latn""", """Indonesian""": """ind_Latn""", """Icelandic""": """isl_Latn""", """Italian""": """ita_Latn""", """Javanese""": """jav_Latn""", """Japanese""": """jpn_Jpan""", """Kabyle""": """kab_Latn""", """Jingpho""": """kac_Latn""", """Kamba""": """kam_Latn""", """Kannada""": """kan_Knda""", """Kashmiri Arabic""": """kas_Arab""", """Kashmiri Devanagari""": """kas_Deva""", """Georgian""": """kat_Geor""", """Central Kanuri Arabic""": """knc_Arab""", """Central Kanuri Latin""": """knc_Latn""", """Kazakh""": """kaz_Cyrl""", """Kabiyè""": """kbp_Latn""", """Kabuverdianu""": """kea_Latn""", """Khmer""": """khm_Khmr""", """Kikuyu""": """kik_Latn""", """Kinyarwanda""": """kin_Latn""", """Kyrgyz""": """kir_Cyrl""", """Kimbundu""": """kmb_Latn""", """Northern Kurdish""": """kmr_Latn""", """Kikongo""": """kon_Latn""", """Korean""": """kor_Hang""", """Lao""": """lao_Laoo""", """Ligurian""": """lij_Latn""", """Limburgish""": """lim_Latn""", """Lingala""": """lin_Latn""", """Lithuanian""": """lit_Latn""", """Lombard""": """lmo_Latn""", """Latgalian""": """ltg_Latn""", """Luxembourgish""": """ltz_Latn""", """Luba-Kasai""": """lua_Latn""", """Ganda""": """lug_Latn""", """Luo""": """luo_Latn""", """Mizo""": """lus_Latn""", """Standard Latvian""": """lvs_Latn""", """Magahi""": """mag_Deva""", """Maithili""": """mai_Deva""", """Malayalam""": """mal_Mlym""", """Marathi""": """mar_Deva""", """Minangkabau Arabic """: """min_Arab""", """Minangkabau Latin""": """min_Latn""", """Macedonian""": """mkd_Cyrl""", """Plateau Malagasy""": """plt_Latn""", """Maltese""": """mlt_Latn""", """Meitei Bengali""": """mni_Beng""", """Halh Mongolian""": """khk_Cyrl""", """Mossi""": """mos_Latn""", """Maori""": """mri_Latn""", """Burmese""": """mya_Mymr""", """Dutch""": """nld_Latn""", """Norwegian Nynorsk""": """nno_Latn""", """Norwegian Bokmål""": """nob_Latn""", """Nepali""": """npi_Deva""", """Northern Sotho""": """nso_Latn""", """Nuer""": """nus_Latn""", """Nyanja""": """nya_Latn""", """Occitan""": """oci_Latn""", """West Central Oromo""": """gaz_Latn""", """Odia""": """ory_Orya""", """Pangasinan""": """pag_Latn""", """Eastern Panjabi""": """pan_Guru""", """Papiamento""": """pap_Latn""", """Western Persian""": """pes_Arab""", """Polish""": """pol_Latn""", """Portuguese""": """por_Latn""", """Dari""": """prs_Arab""", """Southern Pashto""": """pbt_Arab""", """Ayacucho Quechua""": """quy_Latn""", """Romanian""": """ron_Latn""", """Rundi""": """run_Latn""", """Russian""": """rus_Cyrl""", """Sango""": """sag_Latn""", """Sanskrit""": """san_Deva""", """Santali""": """sat_Olck""", """Sicilian""": """scn_Latn""", """Shan""": """shn_Mymr""", """Sinhala""": """sin_Sinh""", """Slovak""": """slk_Latn""", """Slovenian""": """slv_Latn""", """Samoan""": """smo_Latn""", """Shona""": """sna_Latn""", """Sindhi""": """snd_Arab""", """Somali""": """som_Latn""", """Southern Sotho""": """sot_Latn""", """Spanish""": """spa_Latn""", """Tosk Albanian""": """als_Latn""", """Sardinian""": """srd_Latn""", """Serbian""": """srp_Cyrl""", """Swati""": """ssw_Latn""", """Sundanese""": """sun_Latn""", """Swedish""": """swe_Latn""", """Swahili""": """swh_Latn""", """Silesian""": """szl_Latn""", """Tamil""": """tam_Taml""", """Tatar""": """tat_Cyrl""", """Telugu""": """tel_Telu""", """Tajik""": """tgk_Cyrl""", """Tagalog""": """tgl_Latn""", """Thai""": """tha_Thai""", """Tigrinya""": """tir_Ethi""", """Tamasheq Latin""": """taq_Latn""", """Tamasheq Tifinagh""": """taq_Tfng""", """Tok Pisin""": """tpi_Latn""", """Tswana""": """tsn_Latn""", """Tsonga""": """tso_Latn""", """Turkmen""": """tuk_Latn""", """Tumbuka""": """tum_Latn""", """Turkish""": """tur_Latn""", """Twi""": """twi_Latn""", """Central Atlas Tamazight""": """tzm_Tfng""", """Uyghur""": """uig_Arab""", """Ukrainian""": """ukr_Cyrl""", """Umbundu""": """umb_Latn""", """Urdu""": """urd_Arab""", """Northern Uzbek""": """uzn_Latn""", """Venetian""": """vec_Latn""", """Vietnamese""": """vie_Latn""", """Waray""": """war_Latn""", """Wolof""": """wol_Latn""", """Xhosa""": """xho_Latn""", """Eastern Yiddish""": """ydd_Hebr""", """Yoruba""": """yor_Latn""", """Yue Chinese""": """yue_Hant""", """Chinese Simplified""": """zho_Hans""", """Chinese Traditional""": """zho_Hant""", """Standard Malay""": """zsm_Latn""", """Zulu""": """zul_Latn""", } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """facebook/nllb-200-distilled-600M""" lowerCamelCase__ = ( """This is a tool that translates text from a language to another. It takes three inputs: `text`, which should """ """be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, """ """which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in """ """plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`.""" ) lowerCamelCase__ = """translator""" lowerCamelCase__ = AutoTokenizer lowerCamelCase__ = AutoModelForSeqaSeqLM lowerCamelCase__ = LANGUAGE_CODES lowerCamelCase__ = ["""text""", """text""", """text"""] lowerCamelCase__ = ["""text"""] def A_ ( self , lowercase , lowercase , lowercase ): if src_lang not in self.lang_to_code: raise ValueError(F'''{src_lang} is not a supported language.''' ) if tgt_lang not in self.lang_to_code: raise ValueError(F'''{tgt_lang} is not a supported language.''' ) _lowerCamelCase : str = self.lang_to_code[src_lang] _lowerCamelCase : int = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( lowercase , return_tensors='pt' , src_lang=lowercase , tgt_lang=lowercase ) def A_ ( self , lowercase ): return self.model.generate(**lowercase ) def A_ ( self , lowercase ): return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowercase )
12
0
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time lowercase__ = Lock() def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(lowercase__ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() _lowerCamelCase : int = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left _lowerCamelCase : Dict = min(lowercase__ , lowercase__ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(lowercase__ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() _lowerCamelCase : List[str] = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right _lowerCamelCase : List[Any] = max(lowercase__ , lowercase__ ) # after all swaps are performed, send the values back to main result_pipe[1].send(lowercase__ ) def _snake_case ( lowercase__ ): _lowerCamelCase : Union[str, Any] = [] _lowerCamelCase : List[Any] = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop _lowerCamelCase : List[Any] = Pipe() _lowerCamelCase : Union[str, Any] = Pipe() process_array_.append( Process( target=lowercase__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) _lowerCamelCase : Optional[int] = temp_rs _lowerCamelCase : str = temp_rr for i in range(1 , len(lowercase__ ) - 1 ): _lowerCamelCase : Any = Pipe() _lowerCamelCase : List[Any] = Pipe() process_array_.append( Process( target=lowercase__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) _lowerCamelCase : List[Any] = temp_rs _lowerCamelCase : Union[str, Any] = temp_rr process_array_.append( Process( target=lowercase__ , args=( len(lowercase__ ) - 1, arr[len(lowercase__ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(lowercase__ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(lowercase__ ) ): _lowerCamelCase : str = result_pipe[p][0].recv() process_array_[p].join() return arr def _snake_case ( ): _lowerCamelCase : Union[str, Any] = list(range(10 , 0 , -1 ) ) print('Initial List' ) print(*lowercase__ ) _lowerCamelCase : Union[str, Any] = odd_even_transposition(lowercase__ ) print('Sorted List\n' ) print(*lowercase__ ) if __name__ == "__main__": main()
359
"""simple docstring""" import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def A_ ( self , lowercase , lowercase , lowercase ): _lowerCamelCase : Optional[int] = hf_hub_download( repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' ) _lowerCamelCase : Tuple = VideoClassificationPipeline(model=lowercase , image_processor=lowercase , top_k=2 ) _lowerCamelCase : List[str] = [ example_video_filepath, 'https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4', ] return video_classifier, examples def A_ ( self , lowercase , lowercase ): for example in examples: _lowerCamelCase : Tuple = video_classifier(lowercase ) self.assertEqual( lowercase , [ {'score': ANY(lowercase ), 'label': ANY(lowercase )}, {'score': ANY(lowercase ), 'label': ANY(lowercase )}, ] , ) @require_torch def A_ ( self ): _lowerCamelCase : Optional[Any] = 'hf-internal-testing/tiny-random-VideoMAEForVideoClassification' _lowerCamelCase : Tuple = VideoMAEFeatureExtractor( size={'shortest_edge': 10} , crop_size={'height': 10, 'width': 10} ) _lowerCamelCase : Dict = pipeline( 'video-classification' , model=lowercase , feature_extractor=lowercase , frame_sampling_rate=4 ) _lowerCamelCase : Any = hf_hub_download(repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' ) _lowerCamelCase : Dict = video_classifier(lowercase , top_k=2 ) self.assertEqual( nested_simplify(lowercase , decimals=4 ) , [{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}] , ) _lowerCamelCase : str = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(lowercase , decimals=4 ) , [ [{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}], [{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}], ] , ) @require_tf def A_ ( self ): pass
12
0
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): _lowerCamelCase : List[Any] = inspect.getfile(accelerate.test_utils ) _lowerCamelCase : Any = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'external_deps', 'test_metrics.py'] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 _lowerCamelCase : int = test_metrics @require_cpu def A_ ( self ): debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def A_ ( self ): debug_launcher(self.test_metrics.main ) @require_single_gpu def A_ ( self ): self.test_metrics.main() @require_multi_gpu def A_ ( self ): print(F'''Found {torch.cuda.device_count()} devices.''' ) _lowerCamelCase : List[Any] = ['''torchrun''', F'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__A , env=os.environ.copy() )
360
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowercase__ = { """configuration_mega""": ["""MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MegaConfig""", """MegaOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """MEGA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MegaForCausalLM""", """MegaForMaskedLM""", """MegaForMultipleChoice""", """MegaForQuestionAnswering""", """MegaForSequenceClassification""", """MegaForTokenClassification""", """MegaModel""", """MegaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
12
0
"""simple docstring""" def _snake_case ( lowercase__ , lowercase__ ): if not len(__snake_case ) == len(__snake_case ) == 3: raise ValueError('Please enter a valid equation.' ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError('Both a & b of two equations can\'t be zero.' ) # Extract the coefficients _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : str = equationa _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = equationa # Calculate the determinants of the matrices _lowerCamelCase : List[str] = aa * ba - aa * ba _lowerCamelCase : int = ca * ba - ca * ba _lowerCamelCase : List[str] = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError('Infinite solutions. (Consistent system)' ) else: raise ValueError('No solution. (Inconsistent system)' ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: _lowerCamelCase : Union[str, Any] = determinant_x / determinant _lowerCamelCase : Any = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
361
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def _snake_case ( lowercase__ , lowercase__ , lowercase__=None , lowercase__=None ): if attention_mask is None: _lowerCamelCase : List[str] = tf.cast(tf.math.not_equal(lowercase__ , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class lowerCAmelCase__ : '''simple docstring''' lowerCamelCase__ = OPTConfig lowerCamelCase__ = {} lowerCamelCase__ = """gelu""" def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=False , lowercase=99 , lowercase=16 , lowercase=2 , lowercase=4 , lowercase=4 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=20 , lowercase=2 , lowercase=1 , lowercase=0 , lowercase=16 , lowercase=16 , ): _lowerCamelCase : Tuple = parent _lowerCamelCase : Any = batch_size _lowerCamelCase : Tuple = seq_length _lowerCamelCase : str = is_training _lowerCamelCase : Optional[int] = use_labels _lowerCamelCase : List[Any] = vocab_size _lowerCamelCase : Dict = hidden_size _lowerCamelCase : str = num_hidden_layers _lowerCamelCase : Optional[int] = num_attention_heads _lowerCamelCase : Any = intermediate_size _lowerCamelCase : Dict = hidden_act _lowerCamelCase : Any = hidden_dropout_prob _lowerCamelCase : List[str] = attention_probs_dropout_prob _lowerCamelCase : Optional[Any] = max_position_embeddings _lowerCamelCase : List[Any] = eos_token_id _lowerCamelCase : Tuple = pad_token_id _lowerCamelCase : List[str] = bos_token_id _lowerCamelCase : Optional[int] = embed_dim _lowerCamelCase : List[str] = word_embed_proj_dim _lowerCamelCase : Any = False def A_ ( self ): _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _lowerCamelCase : Optional[int] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _lowerCamelCase : str = tf.concat([input_ids, eos_tensor] , axis=1 ) _lowerCamelCase : Tuple = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowercase , **self.config_updates , ) _lowerCamelCase : int = prepare_opt_inputs_dict(lowercase , lowercase ) return config, inputs_dict def A_ ( self , lowercase , lowercase ): _lowerCamelCase : Optional[Any] = TFOPTModel(config=lowercase ) _lowerCamelCase : Optional[Any] = inputs_dict['input_ids'] _lowerCamelCase : str = input_ids[:1, :] _lowerCamelCase : Dict = inputs_dict['attention_mask'][:1, :] _lowerCamelCase : Optional[Any] = 1 # first forward pass _lowerCamelCase : Any = model(lowercase , attention_mask=lowercase , use_cache=lowercase ) _lowerCamelCase, _lowerCamelCase : List[str] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _lowerCamelCase : Optional[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) _lowerCamelCase : Optional[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _lowerCamelCase : List[Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) _lowerCamelCase : Optional[int] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _lowerCamelCase : Optional[Any] = model(lowercase , attention_mask=lowercase )[0] _lowerCamelCase : List[str] = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _lowerCamelCase : Any = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _lowerCamelCase : Optional[int] = output_from_no_past[:, -3:, random_slice_idx] _lowerCamelCase : List[str] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase , lowercase , rtol=1E-3 ) @require_tf class lowerCAmelCase__ ( lowercase, lowercase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () lowerCamelCase__ = (TFOPTForCausalLM,) if is_tf_available() else () lowerCamelCase__ = ( {"""feature-extraction""": TFOPTModel, """text-generation""": TFOPTForCausalLM} if is_tf_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = 10 def A_ ( self ): _lowerCamelCase : int = TFOPTModelTester(self ) _lowerCamelCase : Tuple = ConfigTester(self , config_class=lowercase ) def A_ ( self ): self.config_tester.run_common_tests() def A_ ( self ): _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase ) def A_ ( self ): _lowerCamelCase, _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(lowercase , lowercase ): if hasattr(lowercase , 'weight' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(lowercase , 'weight' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings _lowerCamelCase : Optional[int] = model_class(config=lowercase ) _lowerCamelCase : int = _get_word_embedding_weight(lowercase , model.get_input_embeddings() ) _lowerCamelCase : Tuple = _get_word_embedding_weight(lowercase , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(lowercase ) _lowerCamelCase : str = _get_word_embedding_weight(lowercase , model.get_input_embeddings() ) _lowerCamelCase : Any = _get_word_embedding_weight(lowercase , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. _lowerCamelCase : Union[str, Any] = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , lowercase ) # check that weights remain the same after resizing _lowerCamelCase : int = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _lowerCamelCase : Optional[Any] = False self.assertTrue(lowercase ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , lowercase ) _lowerCamelCase : Dict = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _lowerCamelCase : Union[str, Any] = False self.assertTrue(lowercase ) def _snake_case ( lowercase__ ): return tf.constant(lowercase__ , dtype=tf.intaa ) @require_tf class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = 99 def A_ ( self ): _lowerCamelCase : Tuple = tf.ones((4, 1) , dtype=tf.intaa ) * 2 _lowerCamelCase : Tuple = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) _lowerCamelCase : int = input_ids.shape[0] _lowerCamelCase : List[Any] = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def A_ ( self ): _lowerCamelCase : Tuple = TFOPTModel.from_pretrained('facebook/opt-350m' ) _lowerCamelCase : List[Any] = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) _lowerCamelCase : List[str] = tf.not_equal(lowercase , model.config.pad_token_id ) with tf.GradientTape(): _lowerCamelCase : List[str] = model(input_ids=lowercase , attention_mask=lowercase ).last_hidden_state _lowerCamelCase : Optional[Any] = (1, 11, 512) self.assertEqual(output.shape , lowercase ) _lowerCamelCase : List[str] = tf.constant( [[-0.28_73, -1.92_18, -0.30_33], [-1.27_10, -0.13_38, -0.19_02], [0.40_95, 0.12_14, -1.31_21]] ) self.assertTrue(np.allclose(output[:, :3, :3] , lowercase , atol=4E-3 ) ) _lowerCamelCase : List[str] = tf.function(lowercase , jit_compile=lowercase ) _lowerCamelCase : Union[str, Any] = xla_generate(lowercase , lowercase )[0] self.assertTrue(np.allclose(output[:, :3, :3] , lowercase , atol=4E-2 ) ) @require_tf @slow class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): super().setUp() _lowerCamelCase : List[Any] = 'facebook/opt-350m' def A_ ( self ): _lowerCamelCase : int = TFOPTForCausalLM.from_pretrained(self.path_model ) _lowerCamelCase : List[Any] = GPTaTokenizer.from_pretrained(self.path_model ) _lowerCamelCase : List[str] = [ 'Today is a beautiful day and I want to', 'In the city of', 'Paris is the capital of France and', 'Computers and mobile phones have taken', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False _lowerCamelCase : List[Any] = tokenizer(lowercase , return_tensors='tf' , padding=lowercase , add_special_tokens=lowercase ) _lowerCamelCase : Optional[int] = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) _lowerCamelCase : Any = tf.constant( [ [1.38_51, -13.89_23, -10.52_29, -10.75_33, -0.23_09, -10.23_84, -0.53_65, -9.09_47, -5.16_70], [-4.70_73, -10.62_76, -3.94_15, -21.52_42, -0.28_22, -0.28_22, -0.28_22, -0.28_22, -0.28_22], [0.62_47, -3.42_29, -8.91_79, -1.42_97, -14.16_50, 1.41_46, -9.02_18, -0.27_03, -0.27_03], [6.47_83, -1.99_13, -10.79_26, -2.33_36, 1.50_92, -0.99_74, -6.82_13, 1.34_77, 1.34_77], ] ) self.assertTrue(np.allclose(lowercase , lowercase , atol=1E-4 ) ) _lowerCamelCase : Tuple = tf.function(lowercase , jit_compile=lowercase ) _lowerCamelCase : List[Any] = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(lowercase , lowercase , atol=1E-4 ) ) @require_tf @slow class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @property def A_ ( self ): return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def A_ ( self ): _lowerCamelCase : str = 'facebook/opt-125m' _lowerCamelCase : Dict = [ 'Today is a beautiful day and I want to', 'In the city of New York, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] _lowerCamelCase : Optional[int] = [] _lowerCamelCase : Optional[int] = GPTaTokenizer.from_pretrained(lowercase ) _lowerCamelCase : Dict = TFOPTForCausalLM.from_pretrained(lowercase ) for prompt in self.prompts: _lowerCamelCase : int = tokenizer(lowercase , return_tensors='tf' ).input_ids _lowerCamelCase : int = model.generate(lowercase , max_length=10 ) _lowerCamelCase : Any = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) predicted_outputs += generated_string self.assertListEqual(lowercase , lowercase ) def A_ ( self ): _lowerCamelCase : List[Any] = 'facebook/opt-350m' _lowerCamelCase : int = GPTaTokenizer.from_pretrained(lowercase ) _lowerCamelCase : Optional[int] = TFOPTForCausalLM.from_pretrained(lowercase ) _lowerCamelCase : Any = 'left' # use different length sentences to test batching _lowerCamelCase : Optional[int] = [ 'Hello, my dog is a little', 'Today, I', ] _lowerCamelCase : Dict = tokenizer(lowercase , return_tensors='tf' , padding=lowercase ) _lowerCamelCase : int = inputs['input_ids'] _lowerCamelCase : Tuple = model.generate(input_ids=lowercase , attention_mask=inputs['attention_mask'] ) _lowerCamelCase : Optional[int] = tokenizer(sentences[0] , return_tensors='tf' ).input_ids _lowerCamelCase : Union[str, Any] = model.generate(input_ids=lowercase ) _lowerCamelCase : Dict = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['attention_mask'][-1] , tf.intaa ) ) _lowerCamelCase : int = tokenizer(sentences[1] , return_tensors='tf' ).input_ids _lowerCamelCase : Union[str, Any] = model.generate(input_ids=lowercase , max_length=model.config.max_length - num_paddings ) _lowerCamelCase : List[Any] = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) _lowerCamelCase : Union[str, Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase ) _lowerCamelCase : Optional[Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase ) _lowerCamelCase : Optional[Any] = [ 'Hello, my dog is a little bit of a dork.\nI\'m a little bit', 'Today, I was in the middle of a conversation with a friend about the', ] self.assertListEqual(lowercase , lowercase ) self.assertListEqual(lowercase , [non_padded_sentence, padded_sentence] ) def A_ ( self ): _lowerCamelCase : Tuple = 'facebook/opt-350m' _lowerCamelCase : List[Any] = [ 'Today is a beautiful day and I want to', 'In the city of San Francisco, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] _lowerCamelCase : Optional[int] = [] _lowerCamelCase : Optional[Any] = GPTaTokenizer.from_pretrained(lowercase ) _lowerCamelCase : Optional[Any] = TFOPTForCausalLM.from_pretrained(lowercase ) for prompt in self.prompts: _lowerCamelCase : List[Any] = tokenizer(lowercase , return_tensors='tf' ).input_ids _lowerCamelCase : Optional[Any] = model.generate(lowercase , max_length=10 ) _lowerCamelCase : Dict = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) predicted_outputs += generated_string self.assertListEqual(lowercase , lowercase )
12
0